pax_global_header00006660000000000000000000000064146646624550014534gustar00rootroot0000000000000052 comment=72f82cc7b98f026c6827743d8f48bd43f6b49b32 ossp-1.3.3/000077500000000000000000000000001466466245500125245ustar00rootroot00000000000000ossp-1.3.3/.github/000077500000000000000000000000001466466245500140645ustar00rootroot00000000000000ossp-1.3.3/.github/workflows/000077500000000000000000000000001466466245500161215ustar00rootroot00000000000000ossp-1.3.3/.github/workflows/build.yml000066400000000000000000000020001466466245500177330ustar00rootroot00000000000000name: Build on: [push, pull_request] jobs: build: runs-on: ${{matrix.os}} strategy: fail-fast: false matrix: include: - name: 'Ubuntu (Clang)' os: ubuntu-latest cCompiler: 'clang' cppCompiler: 'clang++' - name: 'Ubuntu (GCC)' os: ubuntu-latest cCompiler: 'gcc' cppCompiler: 'g++' steps: - name: Install packages run: sudo apt-get install -y cmake ninja-build libfuse3-dev libasound-dev libpulse-dev - uses: actions/checkout@v4 with: submodules: recursive - name: Build uses: threeal/cmake-action@v2 with: generator: Ninja c-compiler: ${{matrix.cCompiler}} cxx-compiler: ${{matrix.cppCompiler}} options: | alsa=ON test=ON ossp-1.3.3/.gitignore000066400000000000000000000000071466466245500145110ustar00rootroot00000000000000build/ ossp-1.3.3/98-osscuse.rules000066400000000000000000000004611466466245500155230ustar00rootroot00000000000000# Allow everyone to use these devices # /dev/cuse can stay mode 0660 root:root since osspd is run as root # and drops privileges to user level when opened by user KERNEL=="dsp", SUBSYSTEM=="cuse", MODE="0666" KERNEL=="mixer", SUBSYSTEM=="cuse", MODE="0666" KERNEL=="adsp", SUBSYSTEM=="cuse", MODE="0666" ossp-1.3.3/CMakeLists.txt000066400000000000000000000030011466466245500152560ustar00rootroot00000000000000cmake_minimum_required(VERSION 3.1) list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ) project("OSS Proxy" VERSION 1.3.3 DESCRIPTION "Emulate OSS device(s) using CUSE." HOMEPAGE_URL "https://github.com/OpenMandrivaSoftware/ossp" LANGUAGES "C" ) option(alsa "Build ALSA slave." OFF) option(daemon "Build daemon." ON) option(pulseaudio "Build PulseAudio slave." ON) option(test "Build test." OFF) include(ossp-util) if(test) include(CTest) endif() # Shared library add_library(libossp OBJECT "ossp.c" "ossp.h" "ossp-slave.c" "ossp-slave.h" "ossp-util.c" "ossp-util.h" ) target_compile_definitions(libossp PUBLIC "OSSP_VERSION=\"${PROJECT_VERSION}\"" ) # Daemon if(daemon) add_executable(osspd "osspd.c") set_output_dir(osspd) link_pkg(osspd "fuse3") target_link_libraries(osspd PRIVATE libossp) install_daemon(osspd) endif() # ALSA slave if(alsa) add_executable(ossp-alsap "ossp-alsap.c") set_output_dir(ossp-alsap) link_pkg(ossp-alsap "alsa") target_link_libraries(ossp-alsap PRIVATE libossp) install_slave(ossp-alsap) endif() # PulseAudio slave if(pulseaudio) add_executable(ossp-padsp "ossp-padsp.c") set_output_dir(ossp-padsp) link_pkg(ossp-padsp "libpulse") target_link_libraries(ossp-padsp PRIVATE libossp) install_slave(ossp-padsp) endif() if(test) add_executable(osstest "osstest.c") add_test( NAME osstest COMMAND osstest WORKING_DIRECTORY ${PROJECT_BINARY_DIR} ) endif() install_udev_rules("98-osscuse.rules") ossp-1.3.3/LICENSE000066400000000000000000000431031466466245500135320ustar00rootroot00000000000000 GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. ossp-1.3.3/README000066400000000000000000000115751466466245500134150ustar00rootroot00000000000000 OSS Proxy - emulate OSS device using CUSE 1. What is it? -------------- Well, first, OSS refers to Open Sound System. If it still doesn't ring a bell, think /dev/dsp, /dev/adsp and /dev/mixer. Currently, Linux supports two audio programming interface - ALSA and OSS. The latter one is deprecated and has been that way for a long time but there still are applications which still use them including UML (usermode Linux) host sound support. ALSA contains OSS emulation but sadly the emulation is behind multiplexing layer (which is in userland) which means that if your sound card doesn't support multiple audio streams, only either one of ALSA or OSS interface would be usable at any given moment. There have been also attempts to emulate OSS in userland using dynamic library preloading - aoss and more recently padsp. This works for many applications but it's just not easy to emulate everything using the technique. Things like polling, signals, forking, privilege changes make it very difficult to emulate things reliably. OSS Proxy uses CUSE (extension of FUSE allowing character devices to be implemented in userspace) to implement OSS interface - /dev/dsp, /dev/adsp and /dev/mixer. From the POV of the applications, these devices are proper character devices and behave exactly the same way so it can be made quite versatile. 2. Hmmm... So, how does the whole thing work? --------------------------------------------- The OSS Proxy daemon - osspd - should be started first. Note that osspd will fail to start if sound device number regions are already occupied. You'll need to turn off OSS or its emulation[1]. On startup, osspd creates /dev/dsp, /dev/adsp and /dev/mixer using CUSE. When an application access one of the devices, all IOs are redirected to osspd via CUSE. Upon receiving a new DSP open request, osspd creates a slave process which drops the root privilege and assumes the opening process's credentials. After handshaking, osspd forwards all relevant IOs to the slave which is responsible for actually playing the sound. Currently there's only one slave implemented - ossp-padsp, which as the name suggests forwards (again) the sound to pulseaudio. To sum up, the whole pipe looks like the following. App <-> /dev/dsp <-> CUSE <-> osspd <-> ossp-padsp <-> pulseaudio Which is a lot of forwarding, but on modern machines, it won't be too noticeable. 3. What works? -------------- Well, MIDI part isn't implemented and I doubt it will be in any near future but except that everything should work. Playing, recording, 5.1ch, A-V syncing, all should work. If not, it's a bug, so please report. The mixer behaves a bit differently tho. In the original OSS, /dev/mixer is the hardware mixer, so adjusting volumes there affects all audio streams. When using ossp, each process group gets its own mixer and the mixer always contains only two knobs - PCM and IGAIN. Combined with per-stream volume control of pulseaudio, this scheme works quite well for applications with embedded volume control although it makes standalone OSS mixer programs virtually useless[2]. 4. How do I use it? ------------------- First you need CUSE support in kernel which might land on 2.6.28 with sufficient luck[3] and then you also need libfuse which supports CUSE[4]. Once you have both, it should be easy. First build it by running `make'. You can set OSSPD_CFLAGS, OSSPD_LDFLAGS, OSSP_PADSP_CFLAGS and OSSP_PADSP_LDFLAGS if you have stuff at non-default locations. After build completes, there will be two executables - `osspd' and `ossp-padsp'. Just copy them to where other system executables live. Specific location doesn't matter as long as both files end up in the same directory. Execute `osspd'. It will create the device files and you're all set. `osspd' uses syslog with LOG_DAEMON facility, so if something doesn't work take a look at what osspd complains about. [1] As of this writing, turning on any sound support makes the soundcore module claim OSS device regions. Patch to make it claim OSS device regions only when OSS support or emulation is enabled is scheduled for 2.6.28. Even with the patch, soundcore will claim OSS device regions if OSS support or ALSA OSS emulation is enabled. Make sure they're turned off. [2] If you have a strong reason to use standalone OSS mixer program, you can play some shell tricks to put it into the same process group as the target audio application. e.g. To use aumix with mpg123 - `(mpg123 asdf.mp3 > /dev/null 2>&1 & aumix)', but seriously, just use PA or ALSA one. [3] For the time being, here's the git tree with all the necessary changes. This tree is base on top of 2.6.27-rc3. http://git.kernel.org/?p=linux/kernel/git/tj/misc.git;a=shortlog;h=cuse git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc.git cuse [4] And libfuse with the modifications can be found at... http://userweb.kernel.org/~tj/ossp/fuse-cuse.tar.gz ossp-1.3.3/cmake/000077500000000000000000000000001466466245500136045ustar00rootroot00000000000000ossp-1.3.3/cmake/ossp-util.cmake000066400000000000000000000021231466466245500165430ustar00rootroot00000000000000include(GNUInstallDirs) find_package(PkgConfig REQUIRED) pkg_check_modules(PKGCONFIG_UDEV udev QUIET) if(PKGCONFIG_UDEV_FOUND) pkg_get_variable(UDEVDIR udev udevdir) else() set(UDEVDIR "${CMAKE_INSTALL_PREFIX}/lib/udev") endif() set(INSTALL_UDEVRULESDIR "${UDEVDIR}/rules.d" CACHE PATH "Install path for udev rules." ) function(link_pkg TARGET PKG) pkg_search_module(${PKG} ${PKG} REQUIRED) target_compile_options(${TARGET} PRIVATE ${${PKG}_CFLAGS}) target_include_directories(${TARGET} PRIVATE ${${PKG}_INCLUDE_DIRS}) target_link_libraries(${TARGET} PRIVATE ${${PKG}_LINK_LIBRARIES}) endfunction() macro(set_output_dir TARGET) set_target_properties(${TARGET} PROPERTIES RUNTIME_OUTPUT_DIRECTORY ${PROJECT_BINARY_DIR} ) endmacro() macro(install_daemon TARGET) install(TARGETS ${TARGET} RUNTIME DESTINATION ${CMAKE_INSTALL_SBINDIR} ) endmacro() macro(install_slave TARGET) install(TARGETS ${TARGET} RUNTIME DESTINATION "${CMAKE_INSTALL_LIBEXECDIR}/ossp" ) endmacro() macro(install_udev_rules FILES) install(FILES ${FILES} DESTINATION ${INSTALL_UDEVRULESDIR} ) endmacro() ossp-1.3.3/ossp-alsap.c000066400000000000000000000327461466466245500147660ustar00rootroot00000000000000/* * ossp-alsap - ossp DSP slave which forwards to ALSA * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ossp-slave.h" enum { AFMT_FLOAT = 0x00004000, AFMT_S32_LE = 0x00001000, AFMT_S32_BE = 0x00002000, }; static size_t page_size; /* alsa structures */ static snd_pcm_t *pcm[2]; static snd_pcm_hw_params_t *hw_params; static snd_pcm_sw_params_t *sw_params; static int block; static unsigned int byte_counter[2]; static snd_pcm_uframes_t mmap_pos[2]; static int stream_corked[2]; static int stream_notify; static struct format { snd_pcm_format_t format; snd_pcm_sframes_t rate; int channels; } hw_format = { SND_PCM_FORMAT_U8, 8000, 1 }; #if 0 /* future mmap stuff */ static size_t mmap_raw_size, mmap_size; static int mmap_fd[2] = { -1, -1 }; static void *mmap_map[2]; static uint64_t mmap_idx[2]; /* mmap pointer */ static uint64_t mmap_last_idx[2]; /* last idx for get_ptr */ static struct ring_buf mmap_stg[2]; /* staging ring buffer */ static size_t mmap_lead[2]; /* lead bytes */ static int mmap_sync[2]; /* sync with backend stream */ #endif static snd_pcm_format_t fmt_oss_to_alsa(int fmt) { switch (fmt) { case AFMT_U8: return SND_PCM_FORMAT_U8; case AFMT_A_LAW: return SND_PCM_FORMAT_A_LAW; case AFMT_MU_LAW: return SND_PCM_FORMAT_MU_LAW; case AFMT_S16_LE: return SND_PCM_FORMAT_S16_LE; case AFMT_S16_BE: return SND_PCM_FORMAT_S16_BE; case AFMT_FLOAT: return SND_PCM_FORMAT_FLOAT; case AFMT_S32_LE: return SND_PCM_FORMAT_S32_LE; case AFMT_S32_BE: return SND_PCM_FORMAT_S32_BE; default: return SND_PCM_FORMAT_U8; } } static int fmt_alsa_to_oss(snd_pcm_format_t fmt) { switch (fmt) { case SND_PCM_FORMAT_U8: return AFMT_U8; case SND_PCM_FORMAT_A_LAW: return AFMT_A_LAW; case SND_PCM_FORMAT_MU_LAW: return AFMT_MU_LAW; case SND_PCM_FORMAT_S16_LE: return AFMT_S16_LE; case SND_PCM_FORMAT_S16_BE: return AFMT_S16_BE; case SND_PCM_FORMAT_FLOAT: return AFMT_FLOAT; case SND_PCM_FORMAT_S32_LE: return AFMT_S32_LE; case SND_PCM_FORMAT_S32_BE: return AFMT_S32_BE; default: return AFMT_U8; } } static void flush_streams(int drain) { /* FIXME: snd_pcm_drain appears to be able to deadlock, * always drop or check state? */ if (drain) { if (pcm[PLAY]) snd_pcm_drain(pcm[PLAY]); if (pcm[REC]) snd_pcm_drain(pcm[REC]); } else { if (pcm[PLAY]) snd_pcm_drop(pcm[PLAY]); if (pcm[REC]) snd_pcm_drop(pcm[REC]); } /* XXX: Really needed? */ #if 0 if (pcm[PLAY]) { snd_pcm_close(pcm[PLAY]); snd_pcm_open(&pcm[PLAY], "default", SND_PCM_STREAM_PLAYBACK, block); } if (pcm[REC]) { snd_pcm_close(pcm[REC]); snd_pcm_open(&pcm[REC], "default", SND_PCM_STREAM_CAPTURE, block); } #endif } static void kill_streams(void) { flush_streams(0); } static int trigger_streams(int play, int rec) { int ret = 0; if (pcm[PLAY] && play >= 0) { ret = snd_pcm_sw_params_set_start_threshold(pcm[PLAY], sw_params, play ? 1 : -1); if (ret >= 0) snd_pcm_sw_params(pcm[PLAY], sw_params); } if (ret >= 0 && pcm[REC] && rec >= 0) { ret = snd_pcm_sw_params_set_start_threshold(pcm[REC], sw_params, rec ? 1 : -1); if (ret >= 0) snd_pcm_sw_params(pcm[REC], sw_params); } return ret; } static ssize_t alsap_mixer(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { return -EBUSY; } static int set_hw_params(snd_pcm_t *pcm) { int ret; unsigned rate; ret = snd_pcm_hw_params_any(pcm, hw_params); if (ret >= 0) ret = snd_pcm_hw_params_set_access(pcm, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED); rate = hw_format.rate; if (ret >= 0) ret = snd_pcm_hw_params_set_rate_minmax(pcm, hw_params, &rate, NULL, &rate, NULL); if (ret >= 0) ret = snd_pcm_hw_params_set_format(pcm, hw_params, hw_format.format); if (ret >= 0) ret = snd_pcm_hw_params_set_channels(pcm, hw_params, hw_format.channels); if (ret >= 0) ret = snd_pcm_hw_params(pcm, hw_params); if (ret >= 0) ret = snd_pcm_sw_params_current(pcm, sw_params); if (ret >= 0) ret = snd_pcm_sw_params(pcm, sw_params); return ret; } static ssize_t alsap_open(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_dsp_open_arg *arg = carg; int ret; block = arg->flags & O_NONBLOCK ? SND_PCM_NONBLOCK : 0; int access; // block |= SND_PCM_ASYNC; /* Woop dee dooo.. I love handling things in SIGIO (PAIN!!) * Probably needed for MMAP */ if (!hw_params) ret = snd_pcm_hw_params_malloc(&hw_params); if (ret < 0) return ret; if (!sw_params) ret = snd_pcm_sw_params_malloc(&sw_params); if (ret < 0) return ret; if (pcm[PLAY]) snd_pcm_close(pcm[PLAY]); if (pcm[REC]) snd_pcm_close(pcm[REC]); pcm[REC] = pcm[PLAY] = NULL; access = arg->flags & O_ACCMODE; if (access == O_WRONLY || access == O_RDWR) { ret = snd_pcm_open(&pcm[PLAY], "default", SND_PCM_STREAM_PLAYBACK, block); if (ret >= 0) ret = set_hw_params(pcm[PLAY]); } if (ret >= 0 && (access == O_RDONLY || access == O_RDWR)) { ret = snd_pcm_open(&pcm[REC], "default", SND_PCM_STREAM_CAPTURE, block); if (ret >= 0) ret = set_hw_params(pcm[REC]); } if (ret < 0) { if (pcm[PLAY]) snd_pcm_close(pcm[PLAY]); if (pcm[REC]) snd_pcm_close(pcm[REC]); pcm[REC] = pcm[PLAY] = NULL; return ret; } return 0; } static ssize_t alsap_write(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { // struct ossp_dsp_rw_arg *arg = carg; int ret, insize; insize = snd_pcm_bytes_to_frames(pcm[PLAY], din_sz); if (snd_pcm_state(pcm[PLAY]) == SND_PCM_STATE_SETUP) snd_pcm_prepare(pcm[PLAY]); // snd_pcm_start(pcm[PLAY]); ret = snd_pcm_writei(pcm[PLAY], din, insize); if (ret < 0) ret = snd_pcm_recover(pcm[PLAY], ret, 1); if (ret >= 0) return snd_pcm_frames_to_bytes(pcm[PLAY], ret); else return ret; } static ssize_t alsap_read(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { // struct ossp_dsp_rw_arg *arg = carg; int ret, outsize; outsize = snd_pcm_bytes_to_frames(pcm[REC], *dout_szp); if (snd_pcm_state(pcm[REC]) == SND_PCM_STATE_SETUP) snd_pcm_prepare(pcm[REC]); ret = snd_pcm_readi(pcm[REC], dout, outsize); if (ret < 0) ret = snd_pcm_recover(pcm[REC], ret, 1); if (ret >= 0) *dout_szp = ret = snd_pcm_frames_to_bytes(pcm[REC], ret); else *dout_szp = 0; return ret; } static ssize_t alsap_poll(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { unsigned revents = 0; stream_notify |= *(int *)carg; if (pcm[PLAY]) revents |= POLLOUT; if (pcm[REC]) revents |= POLLIN; *(unsigned *)rarg = revents; return 0; } static ssize_t alsap_flush(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { flush_streams(opcode == OSSP_DSP_SYNC); return 0; } static ssize_t alsap_post(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int ret; ret = trigger_streams(1, 1); if (ret >= 0 && pcm[PLAY]) ret = snd_pcm_start(pcm[PLAY]); if (pcm[REC]) ret = snd_pcm_start(pcm[REC]); return ret; } static ssize_t alsap_get_param(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int v = 0; switch (opcode) { case OSSP_DSP_GET_RATE: return hw_format.rate; case OSSP_DSP_GET_CHANNELS: return hw_format.channels; case OSSP_DSP_GET_FORMAT: { v = fmt_alsa_to_oss(hw_format.format); break; } case OSSP_DSP_GET_BLKSIZE: { snd_pcm_uframes_t psize; snd_pcm_hw_params_get_period_size(hw_params, &psize, NULL); v = psize; break; } case OSSP_DSP_GET_FORMATS: v = AFMT_U8 | AFMT_A_LAW | AFMT_MU_LAW | AFMT_S16_LE | AFMT_S16_BE | AFMT_FLOAT | AFMT_S32_LE | AFMT_S32_BE; break; case OSSP_DSP_GET_TRIGGER: if (!stream_corked[PLAY]) v |= PCM_ENABLE_OUTPUT; if (!stream_corked[REC]) v |= PCM_ENABLE_INPUT; break; default: assert(0); } *(int *)rarg = v; return 0; } static ssize_t alsap_set_param(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int v = *(int *)carg; int ret = 0; /* kill the streams before changing parameters */ kill_streams(); switch (opcode) { case OSSP_DSP_SET_RATE: { hw_format.rate = v; break; } case OSSP_DSP_SET_CHANNELS: { hw_format.channels = v; break; } case OSSP_DSP_SET_FORMAT: { snd_pcm_format_t format = fmt_oss_to_alsa(v); hw_format.format = format; break; } case OSSP_DSP_SET_SUBDIVISION: if (!v) v = 1; #if 0 if (!v) { v = user_subdivision ?: 1; break; } user_frag_size = 0; user_subdivision = v; break; case OSSP_DSP_SET_FRAGMENT: user_subdivision = 0; user_frag_size = 1 << (v & 0xffff); user_max_frags = (v >> 16) & 0xffff; if (user_frag_size < 4) user_frag_size = 4; if (user_max_frags < 2) user_max_frags = 2; #else case OSSP_DSP_SET_FRAGMENT: #endif break; default: assert(0); } if (pcm[PLAY]) ret = set_hw_params(pcm[PLAY]); if (ret >= 0 && pcm[REC]) ret = set_hw_params(pcm[REC]); if (rarg) *(int *)rarg = v; return 0; } static ssize_t alsap_set_trigger(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int fd) { int enable = *(int *)carg; stream_corked[PLAY] = !!(enable & PCM_ENABLE_OUTPUT); stream_corked[REC] = !!(enable & PCM_ENABLE_INPUT); return trigger_streams(enable & PCM_ENABLE_OUTPUT, enable & PCM_ENABLE_INPUT); } static ssize_t alsap_get_space(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int dir = (opcode == OSSP_DSP_GET_OSPACE) ? PLAY : REC; int underrun = 0; struct audio_buf_info info = { }; unsigned long bufsize; snd_pcm_uframes_t avail, fragsize; snd_pcm_state_t state; if (!pcm[dir]) return -EINVAL; state = snd_pcm_state(pcm[dir]); if (state == SND_PCM_STATE_XRUN) { snd_pcm_recover(pcm[dir], -EPIPE, 0); underrun = 1; } else if (state == SND_PCM_STATE_SUSPENDED) { snd_pcm_recover(pcm[dir], -ESTRPIPE, 0); underrun = 1; } snd_pcm_hw_params_current(pcm[dir], hw_params); snd_pcm_hw_params_get_period_size(hw_params, &fragsize, NULL); snd_pcm_hw_params_get_buffer_size(hw_params, &bufsize); info.fragsize = snd_pcm_frames_to_bytes(pcm[dir], fragsize); info.fragstotal = bufsize / fragsize; if (!underrun) { avail = snd_pcm_avail_update(pcm[dir]); info.fragments = avail / fragsize; } else info.fragments = info.fragstotal; info.bytes = info.fragsize * info.fragments; *(struct audio_buf_info *)rarg = info; return 0; } static ssize_t alsap_get_ptr(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int dir = (opcode == OSSP_DSP_GET_OPTR) ? PLAY : REC; struct count_info info = { }; if (!pcm[dir]) return -EIO; snd_pcm_hw_params_current(pcm[dir], hw_params); info.bytes = byte_counter[dir]; snd_pcm_hw_params_get_periods(hw_params, (unsigned int *)&info.blocks, NULL); info.ptr = mmap_pos[dir]; *(struct count_info *)rarg = info; return 0; } static ssize_t alsap_get_odelay(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int fd) { snd_pcm_sframes_t delay; if (!pcm[PLAY]) return -EIO; if (snd_pcm_delay(pcm[PLAY], &delay) < 0) return -EIO; *(int *)rarg = snd_pcm_frames_to_bytes(pcm[PLAY], delay); return 0; } static ossp_action_fn_t action_fn_tbl[OSSP_NR_OPCODES] = { [OSSP_MIXER] = alsap_mixer, [OSSP_DSP_OPEN] = alsap_open, [OSSP_DSP_READ] = alsap_read, [OSSP_DSP_WRITE] = alsap_write, [OSSP_DSP_POLL] = alsap_poll, #if 0 [OSSP_DSP_MMAP] = alsap_mmap, [OSSP_DSP_MUNMAP] = alsap_munmap, #endif [OSSP_DSP_RESET] = alsap_flush, [OSSP_DSP_SYNC] = alsap_flush, [OSSP_DSP_POST] = alsap_post, [OSSP_DSP_GET_RATE] = alsap_get_param, [OSSP_DSP_GET_CHANNELS] = alsap_get_param, [OSSP_DSP_GET_FORMAT] = alsap_get_param, [OSSP_DSP_GET_BLKSIZE] = alsap_get_param, [OSSP_DSP_GET_FORMATS] = alsap_get_param, [OSSP_DSP_SET_RATE] = alsap_set_param, [OSSP_DSP_SET_CHANNELS] = alsap_set_param, [OSSP_DSP_SET_FORMAT] = alsap_set_param, [OSSP_DSP_SET_SUBDIVISION] = alsap_set_param, [OSSP_DSP_SET_FRAGMENT] = alsap_set_param, [OSSP_DSP_GET_TRIGGER] = alsap_get_param, [OSSP_DSP_SET_TRIGGER] = alsap_set_trigger, [OSSP_DSP_GET_OSPACE] = alsap_get_space, [OSSP_DSP_GET_ISPACE] = alsap_get_space, [OSSP_DSP_GET_OPTR] = alsap_get_ptr, [OSSP_DSP_GET_IPTR] = alsap_get_ptr, [OSSP_DSP_GET_ODELAY] = alsap_get_odelay, }; static int action_pre(void) { return 0; } static void action_post(void) { } int main(int argc, char **argv) { int rc; ossp_slave_init("ossp-alsap", argc, argv); page_size = sysconf(_SC_PAGE_SIZE); /* Okay, now we're open for business */ rc = 0; do { rc = ossp_slave_process_command(ossp_cmd_fd, action_fn_tbl, action_pre, action_post); } while (rc > 0); return rc ? 1 : 0; } ossp-1.3.3/ossp-padsp.c000066400000000000000000001125361466466245500147710ustar00rootroot00000000000000/* * ossp-padsp - ossp DSP slave which forwards to PulseAudio * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ossp-slave.h" enum { AFMT_FLOAT = 0x00004000, AFMT_S32_LE = 0x00001000, AFMT_S32_BE = 0x00002000, }; /* everything is in millisecs */ struct stream_params { size_t min_process; size_t min_latency; size_t dfl_process; size_t dfl_latency; size_t mmap_process; size_t mmap_latency; size_t mmap_lead; size_t mmap_staging; }; /* TODO: make this configurable */ static struct stream_params stream_params[] = { [ PLAY ] = { .min_process = 25, .min_latency = 100, .dfl_process = 50, .dfl_latency = 200, .mmap_process = 25, .mmap_latency = 50, .mmap_lead = 25, .mmap_staging = 100 }, [ REC ] = { .min_process = 25, .min_latency = 200, .dfl_process = 50, .dfl_latency = 400, .mmap_process = 25, .mmap_latency = 50, .mmap_lead = 25, .mmap_staging = 1000 }, }; static size_t page_size; static pa_context *context; static pa_threaded_mainloop *mainloop; static pa_mainloop_api *mainloop_api; static char stream_name[128]; static int stream_enabled[2]; static int stream_corked[2]; static int stream_waiting; static int stream_notify; static pa_channel_map channel_map_stor; static pa_channel_map *channel_map; static pa_stream *stream[2]; static pa_usec_t stream_ptr_timestamp[2]; static struct ring_buf rec_buf; static int stored_oss_vol[2][2] = { { -1, -1 }, { -1, -1 } }; static int fail_code; static pa_sample_spec sample_spec = { .format = PA_SAMPLE_U8, .rate = 8000, .channels = 1, }; static size_t sample_bps = 8000; static size_t frame_size = 1; /* user visible stream parameters */ static size_t user_frag_size; static size_t user_subdivision; /* alternative way to determine frag_size */ static size_t user_max_frags; /* maximum number of fragments */ static size_t user_max_length; /* actual stream parameters */ static size_t frag_size; static size_t target_length; static size_t max_length; static size_t prebuf_size; /* mmap stuff */ static size_t mmap_raw_size, mmap_size; static void *mmap_map[2]; static uint64_t mmap_idx[2]; /* mmap pointer */ static uint64_t mmap_last_idx[2]; /* last idx for get_ptr */ static struct ring_buf mmap_stg[2]; /* staging ring buffer */ static size_t mmap_lead[2]; /* lead bytes */ static int mmap_sync[2]; /* sync with backend stream */ static const char *dir_str[] = { [PLAY] = "PLAY", [REC] = "REC", }; static void stream_rw_callback(pa_stream *s, size_t length, void *userdata); #define __pa_err pa_strerror(pa_context_errno(context)) #define dbg1_pa(fmt, args...) dbg1(fmt" (%s)" , ##args, __pa_err) #define dbg0_pa(fmt, args...) dbg0(fmt" (%s)" , ##args, __pa_err) #define info_pa(fmt, args...) info(fmt" (%s)" , ##args, __pa_err) #define warn_pa(fmt, args...) warn(fmt" (%s)" , ##args, __pa_err) #define err_pa(fmt, args...) err(fmt" (%s)" , ##args, __pa_err) #define round_down(v, t) ((v) / (t) * (t)) #define round_up(v, t) (((v) + (t) - 1) / (t) * (t)) #define is_power2(v) !((v) & ((v) - 1)) static int do_mixer(int dir, int *vol); static int padsp_done(void) { fail_code = -EIO; mainloop_api->quit(mainloop_api, 1); return fail_code; } static int fmt_oss_to_pa(int fmt) { switch (fmt) { case AFMT_U8: return PA_SAMPLE_U8; case AFMT_A_LAW: return PA_SAMPLE_ALAW; case AFMT_MU_LAW: return PA_SAMPLE_ULAW; case AFMT_S16_LE: return PA_SAMPLE_S16LE; case AFMT_S16_BE: return PA_SAMPLE_S16BE; case AFMT_FLOAT: return PA_SAMPLE_FLOAT32NE; case AFMT_S32_LE: return PA_SAMPLE_S32LE; case AFMT_S32_BE: return PA_SAMPLE_S32BE; default: return PA_SAMPLE_U8; } } static int fmt_pa_to_oss(int fmt) { switch (fmt) { case PA_SAMPLE_U8: return AFMT_U8; case PA_SAMPLE_ALAW: return AFMT_A_LAW; case PA_SAMPLE_ULAW: return AFMT_MU_LAW; case PA_SAMPLE_S16LE: return AFMT_S16_LE; case PA_SAMPLE_S16BE: return AFMT_S16_BE; case PA_SAMPLE_FLOAT32NE: return AFMT_FLOAT; case PA_SAMPLE_S32LE: return AFMT_S32_LE; case PA_SAMPLE_S32BE: return AFMT_S32_BE; default: return AFMT_U8; } } #define EXEC_OP(op, args...) do { \ pa_operation *_o; \ _o = op(args); \ if (_o) { \ while (pa_operation_get_state(_o) != PA_OPERATION_DONE) \ pa_threaded_mainloop_wait(mainloop); \ pa_operation_unref(_o); \ } } while (0) static void context_op_callback(pa_context *s, int success, void *userdata) { *(int *)userdata = success; pa_threaded_mainloop_signal(mainloop, 0); } static void stream_op_callback(pa_stream *s, int success, void *userdata) { *(int *)userdata = success; pa_threaded_mainloop_signal(mainloop, 0); } #define EXEC_CONTEXT_OP(op, args...) ({ \ int _success; \ EXEC_OP(op , ##args, context_op_callback, &_success); \ if (!_success) \ warn_pa("%s() failed", #op); \ _success ? 0 : -EIO; }) #define EXEC_STREAM_OP(op, args...) ({ \ int _success; \ EXEC_OP(op , ##args, stream_op_callback, &_success); \ if (!_success) \ warn_pa("%s() failed", #op); \ _success ? 0 : -EIO; }) static int mmapped(void) { return mmap_map[PLAY] || mmap_map[REC]; } static uint64_t get_mmap_idx(int dir) { uint64_t idx; pa_usec_t time; if (!stream[dir]) return mmap_idx[dir]; if (pa_stream_get_time(stream[dir], &time) < 0) { dbg1_pa("pa_stream_get_time() failed"); return mmap_idx[dir]; } /* calculate the current index from time elapsed */ idx = ((uint64_t)time * sample_bps / 1000000); /* round down to the nearest frame boundary */ idx = idx / frame_size * frame_size; return idx; } static void flush_streams(int drain) { int i; if (!(stream[PLAY] || stream[REC])) return; dbg0("FLUSH drain=%d", drain); /* mmapped streams run forever, can't drain */ if (drain && !mmapped() && stream[PLAY]) EXEC_STREAM_OP(pa_stream_drain, stream[PLAY]); for (i = 0; i < 2; i++) if (stream[i]) EXEC_STREAM_OP(pa_stream_flush, stream[i]); ring_consume(&rec_buf, ring_bytes(&rec_buf)); } static void kill_streams(void) { int dir; if (!(stream[PLAY] || stream[REC])) return; flush_streams(1); dbg0("KILL"); for (dir = 0; dir < 2; dir++) { if (!stream[dir]) continue; pa_stream_disconnect(stream[dir]); pa_stream_unref(stream[dir]); stream[dir] = NULL; stream_ptr_timestamp[dir] = 0; ring_consume(&mmap_stg[dir], ring_bytes(&mmap_stg[dir])); ring_resize(&mmap_stg[dir], 0); } } static int trigger_streams(int play, int rec) { int ret = 0, dir, rc; if (play >= 0) stream_corked[PLAY] = !play; if (rec >= 0) stream_corked[REC] = !rec; for (dir = 0; dir < 2; dir++) { if (!stream[dir]) continue; rc = EXEC_STREAM_OP(pa_stream_cork, stream[dir], stream_corked[dir]); if (!rc && dir == PLAY && !mmap_map[dir] && !stream_corked[dir]) rc = EXEC_STREAM_OP(pa_stream_trigger, stream[dir]); if (!ret) ret = rc; } return ret; } static void stream_state_callback(pa_stream *s, void *userdata) { pa_threaded_mainloop_signal(mainloop, 0); } static void stream_underflow_callback(pa_stream *s, void *userdata) { int dir = (s == stream[PLAY]) ? PLAY : REC; dbg0("%s stream underrun", dir_str[dir]); } static void stream_overflow_callback(pa_stream *s, void *userdata) { int dir = (s == stream[PLAY]) ? PLAY : REC; dbg0("%s stream overrun", dir_str[dir]); } static size_t duration_to_bytes(size_t dur) { return round_up(dur * sample_bps / 1000, frame_size); } static int prepare_streams(void) { const struct stream_params *sp; size_t min_frag_size, min_target_length, tmp; int dir, rc; /* nothing to do? */ if ((!stream_enabled[PLAY] || stream[PLAY]) && (!stream_enabled[REC] || stream[REC])) return 0; /* determine sample parameters */ sample_bps = pa_bytes_per_second(&sample_spec); frame_size = pa_frame_size(&sample_spec); sp = &stream_params[PLAY]; if (stream_enabled[REC]) sp = &stream_params[REC]; min_frag_size = duration_to_bytes(sp->min_process); min_target_length = duration_to_bytes(sp->min_latency); /* determine frag_size */ if (user_frag_size % frame_size) { warn("requested frag_size (%zu) isn't multiple of frame (%zu)", user_frag_size, frame_size); user_frag_size = round_up(user_frag_size, frame_size); } if (user_subdivision) user_frag_size = round_up(sample_bps / user_subdivision, frame_size); if (user_frag_size) { frag_size = user_frag_size; if (frag_size < min_frag_size) { dbg0("requested frag_size (%zu) is smaller than " "minimum (%zu)", frag_size, min_frag_size); frag_size = min_frag_size; } } else { tmp = round_up(sp->dfl_process * sample_bps / 1000, frame_size); frag_size = tmp; /* if frame_size is power of two, make frag_size so too */ if (is_power2(frame_size)) { frag_size = frame_size; while (frag_size < tmp) frag_size <<= 1; } user_frag_size = frag_size; } /* determine target and max length */ if (user_max_frags) { target_length = user_max_frags * user_frag_size; if (target_length < min_target_length) { dbg0("requested target_length (%zu) is smaller than " "minimum (%zu)", target_length, min_target_length); target_length = min_target_length; } } else { tmp = round_up(sp->dfl_latency * sample_bps / 1000, frag_size); target_length = tmp; /* if frag_size is power of two, make target_length so * too and align it to page_size. */ if (is_power2(frag_size)) { target_length = frag_size; while (target_length < max(tmp, page_size)) target_length <<= 1; } user_max_frags = target_length / frag_size; } user_max_length = user_frag_size * user_max_frags; max_length = target_length + 2 * frag_size; /* If mmapped, create backend stream with fixed parameters to * create illusion of hardware buffer with acceptable latency. */ if (mmapped()) { /* set parameters for backend streams */ frag_size = duration_to_bytes(sp->mmap_process); target_length = duration_to_bytes(sp->mmap_latency); max_length = target_length + frag_size; prebuf_size = 0; mmap_size = round_down(mmap_raw_size, frame_size); if (mmap_size != mmap_raw_size) warn("mmap_raw_size (%zu) unaligned to frame_size " "(%zu), mmap_size adjusted to %zu", mmap_raw_size, frame_size, mmap_size); } else { prebuf_size = min(user_frag_size * 2, user_max_length / 2); prebuf_size = round_down(prebuf_size, frame_size); } for (dir = 0; dir < 2; dir++) { pa_buffer_attr new_ba = { }; char buf[128]; pa_stream *s; pa_stream_flags_t flags; int vol[2]; size_t size; if (!stream_enabled[dir] || stream[dir]) continue; dbg0("CREATE %s %s fsz=%zu:%zu", dir_str[dir], pa_sample_spec_snprint(buf, sizeof(buf), &sample_spec), frag_size, frag_size * 1000 / sample_bps); dbg0(" tlen=%zu:%zu max=%zu:%zu pre=%zu:%zu", target_length, target_length * 1000 / sample_bps, max_length, max_length * 1000 / sample_bps, prebuf_size, prebuf_size * 1000 / sample_bps); dbg0(" u_sd=%zu u_fsz=%zu:%zu u_maxf=%zu", user_subdivision, user_frag_size, user_frag_size * 1000 / sample_bps, user_max_frags); channel_map = pa_channel_map_init_auto(&channel_map_stor, sample_spec.channels, PA_CHANNEL_MAP_OSS); s = pa_stream_new(context, stream_name, &sample_spec, channel_map); if (!s) { err_pa("can't create streams"); goto fail; } stream[dir] = s; pa_stream_set_state_callback(s, stream_state_callback, NULL); if (dir == PLAY) { pa_stream_set_write_callback(s, stream_rw_callback, NULL); pa_stream_set_underflow_callback(s, stream_underflow_callback, NULL); } else { pa_stream_set_read_callback(s, stream_rw_callback, NULL); pa_stream_set_overflow_callback(s, stream_overflow_callback, NULL); } flags = PA_STREAM_AUTO_TIMING_UPDATE | PA_STREAM_INTERPOLATE_TIMING; if (stream_corked[dir]) flags |= PA_STREAM_START_CORKED; new_ba.maxlength = max_length; new_ba.tlength = target_length; new_ba.prebuf = prebuf_size; new_ba.minreq = frag_size; new_ba.fragsize = frag_size; if (dir == PLAY) { if (pa_stream_connect_playback(s, NULL, &new_ba, flags, NULL, NULL)) { err_pa("failed to connect playback stream"); goto fail; } } else { if (pa_stream_connect_record(s, NULL, &new_ba, flags)) { err_pa("failed to connect record stream"); goto fail; } } while (pa_stream_get_state(s) == PA_STREAM_CREATING) pa_threaded_mainloop_wait(mainloop); if (pa_stream_get_state(s) != PA_STREAM_READY) { err_pa("failed to connect stream (state=%d)", pa_stream_get_state(s)); goto fail; } /* apply stored OSS volume */ memcpy(vol, stored_oss_vol[dir], sizeof(vol)); if (do_mixer(dir, vol)) warn_pa("initial volume control failed"); /* stream is ready setup mmap stuff */ if (!mmap_map[dir]) continue; /* prep mmap staging buffer */ size = round_up(sp->mmap_staging * sample_bps / 1000, frag_size); rc = ring_resize(&mmap_stg[dir], size); if (rc) return rc; mmap_idx[dir] = mmap_last_idx[dir] = get_mmap_idx(dir); mmap_lead[dir] = round_up(sp->mmap_lead * sample_bps / 1000, frame_size); mmap_sync[dir] = 1; /* apply the current trigger settings */ trigger_streams(-1, -1); } return 0; fail: return padsp_done(); } struct volume_ret { int success; pa_cvolume *cv; }; static void play_volume_callback(pa_context *c, const pa_sink_input_info *i, int eol, void *userdata) { struct volume_ret *vr = userdata; if (i) { *vr->cv = i->volume; vr->success = 1; } pa_threaded_mainloop_signal(mainloop, 0); } static void rec_volume_callback(pa_context *c, const pa_source_info *i, int eol, void *userdata) { struct volume_ret *vr = userdata; if (i) { *vr->cv = i->volume; vr->success = 1; } pa_threaded_mainloop_signal(mainloop, 0); } static int get_volume(int dir, pa_cvolume *cv) { struct volume_ret vr = { .cv = cv }; uint32_t idx; if (dir == PLAY) { idx = pa_stream_get_index(stream[PLAY]); EXEC_OP(pa_context_get_sink_input_info, context, idx, play_volume_callback, &vr); } else { idx = pa_stream_get_device_index(stream[REC]); EXEC_OP(pa_context_get_source_info_by_index, context, idx, rec_volume_callback, &vr); } if (!vr.success) { warn_pa("failed to get %s volume", dir_str[dir]); return -EIO; } return 0; } static int set_volume(int dir, pa_cvolume *cv) { uint32_t idx; int rc; if (dir == PLAY) { idx = pa_stream_get_index(stream[PLAY]); rc = EXEC_CONTEXT_OP(pa_context_set_sink_input_volume, context, idx, cv); } else { idx = pa_stream_get_device_index(stream[REC]); rc = EXEC_CONTEXT_OP(pa_context_set_source_volume_by_index, context, idx, cv); } return rc; } static int chan_left_right(int ch) { if (!channel_map || channel_map->channels <= ch) { switch (ch) { case 0: return LEFT; case 1: return RIGHT; default: return -1; } } switch (channel_map->map[ch]) { /*case PA_CHANNEL_POSITION_LEFT:*/ /* same as FRONT_LEFT */ case PA_CHANNEL_POSITION_FRONT_LEFT: case PA_CHANNEL_POSITION_REAR_LEFT: case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: case PA_CHANNEL_POSITION_SIDE_LEFT: case PA_CHANNEL_POSITION_TOP_FRONT_LEFT: case PA_CHANNEL_POSITION_TOP_REAR_LEFT: return LEFT; /*case PA_CHANNEL_POSITION_RIGHT:*/ /* same as FRONT_RIGHT */ case PA_CHANNEL_POSITION_FRONT_RIGHT: case PA_CHANNEL_POSITION_REAR_RIGHT: case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: case PA_CHANNEL_POSITION_SIDE_RIGHT: case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: case PA_CHANNEL_POSITION_TOP_REAR_RIGHT: return RIGHT; default: return -1; } } static int do_mixer(int dir, int *vol) { pa_cvolume cv; unsigned lv, rv; int i, rc; if (vol[0] >= 0) { int avg; stored_oss_vol[dir][LEFT] = vol[LEFT]; stored_oss_vol[dir][RIGHT] = vol[RIGHT]; vol[LEFT] = vol[LEFT] * PA_VOLUME_NORM / 100; vol[RIGHT] = vol[RIGHT] * PA_VOLUME_NORM / 100; avg = (vol[LEFT] + vol[RIGHT]) / 2; pa_cvolume_mute(&cv, sample_spec.channels); for (i = 0; i < cv.channels; i++) switch (chan_left_right(i)) { case LEFT: cv.values[i] = vol[LEFT]; break; case RIGHT: cv.values[i] = vol[RIGHT]; break; default: cv.values[i] = avg; break; } rc = set_volume(dir, &cv); if (rc) return rc; } rc = get_volume(dir, &cv); if (rc) return rc; if (cv.channels == 1) lv = rv = pa_cvolume_avg(&cv); else { unsigned lcnt = 0, rcnt = 0; for (i = 0, lv = 0, rv = 0; i < cv.channels; i++) switch (chan_left_right(i)) { case LEFT: lv += cv.values[i]; lcnt++; break; case RIGHT: rv += cv.values[i]; rcnt++; break; } if (lcnt) lv /= lcnt; if (rcnt) rv /= rcnt; } vol[LEFT] = lv * 100 / PA_VOLUME_NORM; vol[RIGHT] = rv * 100 / PA_VOLUME_NORM; return 0; } static ssize_t padsp_mixer(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_mixer_arg *arg = carg; int i, rc[2] = { }; if (prepare_streams()) return -EIO; for (i = 0; i < 2; i++) if (stream[i]) rc[i] = do_mixer(i, arg->vol[i]); else memset(arg->vol[i], -1, sizeof(arg->vol[i])); *(struct ossp_mixer_arg *)rarg = *arg; return rc[0] ?: rc[1]; } static void context_state_callback(pa_context *cxt, void *userdata) { pa_threaded_mainloop_signal(mainloop, 0); } static void context_subscribe_callback(pa_context *context, pa_subscription_event_type_t type, uint32_t idx, void *userdata) { struct ossp_notify event = { .magic = OSSP_NOTIFY_MAGIC, .opcode = OSSP_NOTIFY_VOLCHG }; ssize_t ret; if ((type & PA_SUBSCRIPTION_EVENT_TYPE_MASK) != PA_SUBSCRIPTION_EVENT_CHANGE) return; ret = write(ossp_notify_fd, &event, sizeof(event)); if (ret != sizeof(event) && errno != EPIPE) warn_e(-errno, "write to notify_fd failed"); } static ssize_t padsp_open(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_dsp_open_arg *arg = carg; char host_name[128] = "(unknown)", opener[128] = "(unknown)"; int state; switch (arg->flags & O_ACCMODE) { case O_WRONLY: stream_enabled[PLAY] = 1; break; case O_RDONLY: stream_enabled[REC] = 1; break; case O_RDWR: stream_enabled[PLAY] = 1; stream_enabled[REC] = 1; break; default: assert(0); } /* determine stream name */ gethostname(host_name, sizeof(host_name) - 1); snprintf(stream_name, sizeof(stream_name), "OSS Proxy %s/%s:%ld", host_name, ossp_user_name, (long)arg->opener_pid); /* create and connect PA context */ get_proc_self_info(arg->opener_pid, NULL, opener, sizeof(opener)); context = pa_context_new(mainloop_api, opener); if (!context) { err("pa_context_new() failed"); return -EIO; } pa_context_set_state_callback(context, context_state_callback, NULL); pa_context_set_subscribe_callback(context, context_subscribe_callback, NULL); pa_context_connect(context, NULL, 0, NULL); while (1) { state = pa_context_get_state(context); if (state != PA_CONTEXT_CONNECTING && state != PA_CONTEXT_AUTHORIZING && state != PA_CONTEXT_SETTING_NAME) break; pa_threaded_mainloop_wait(mainloop); } if (EXEC_CONTEXT_OP(pa_context_subscribe, context, PA_SUBSCRIPTION_MASK_SINK_INPUT | PA_SUBSCRIPTION_MASK_SOURCE)) warn_pa("failed to subscribe to context events"); if (state != PA_CONTEXT_READY) { err_pa("failed to connect context, state=%d", state); return -EIO; } return 0; } static void notify_mmap_fill_play(size_t mmap_size, size_t pos, size_t bytes) { while (bytes) { ssize_t ret; size_t count = min(bytes, mmap_size - pos); struct ossp_notify event = { .magic = OSSP_NOTIFY_MAGIC, .opcode = OSSP_NOTIFY_FILL }; ossp_mmap_transfer[PLAY].pos = pos; ossp_mmap_transfer[PLAY].bytes = count; ret = write(ossp_notify_fd, &event, sizeof(event)); if (ret != sizeof(event)) { if (errno != EPIPE) err_e(-errno, "write to notify_fd failed"); padsp_done(); return; } sem_wait(&ossp_mmap_transfer[PLAY].sem); bytes -= count; pos = (pos + count) % mmap_size; } } static void notify_mmap_store_rec(size_t mmap_size, size_t pos, size_t bytes) { while (bytes) { ssize_t ret; size_t count = min(bytes, mmap_size - pos); struct ossp_notify event = { .magic = OSSP_NOTIFY_MAGIC, .opcode = OSSP_NOTIFY_STORE }; ossp_mmap_transfer[REC].pos = pos; ossp_mmap_transfer[REC].bytes = count; ret = write(ossp_notify_fd, &event, sizeof(event)); if (ret != sizeof(event)) { if (errno != EPIPE) err_e(-errno, "write to notify_fd failed"); padsp_done(); return; } sem_wait(&ossp_mmap_transfer[REC].sem); bytes -= count; pos = (pos + count) % mmap_size; } } static void mmap_fill_pstg(void) { struct ring_buf *stg = &mmap_stg[PLAY]; struct ring_buf mmap; uint64_t new_idx = get_mmap_idx(PLAY); size_t bytes, space, size; void *data; if (new_idx <= mmap_idx[PLAY]) return; bytes = new_idx - mmap_idx[PLAY]; space = ring_space(stg); if (bytes > mmap_size) { dbg0("mmap playback transfer chunk bigger than " "mmap size (bytes=%zu mmap_size=%zu)", bytes, mmap_size); mmap_sync[PLAY] = 1; bytes = mmap_size; } if (bytes > space) { dbg0("mmap playback staging buffer overflow " "(bytes=%zu space=%zu)", bytes, space); mmap_sync[PLAY] = 1; bytes = space; } notify_mmap_fill_play(mmap_size, mmap_idx[PLAY] % mmap_size, bytes); ring_manual_init(&mmap, mmap_map[PLAY], mmap_size, new_idx % mmap_size, bytes); while ((data = ring_data(&mmap, &size))) { ring_fill(stg, data, size); ring_consume(&mmap, size); } mmap_idx[PLAY] = new_idx; } static void mmap_consume_rstg(void) { struct ring_buf *stg = &mmap_stg[REC]; struct ring_buf mmap; uint64_t new_idx = get_mmap_idx(REC); uint64_t fill_idx = mmap_idx[REC]; size_t bytes, space; if (new_idx <= mmap_idx[REC]) return; space = new_idx - mmap_idx[REC]; /* mmapped space to fill in */ bytes = ring_bytes(stg); /* recorded bytes in staging */ if (space > bytes) { if (!mmap_sync[REC]) dbg0("mmap recording staging buffer underflow " "(space=%zu bytes=%zu)", space, bytes); mmap_sync[REC] = 1; } if (space > mmap_size) { if (!mmap_sync[REC]) dbg0("mmap recording transfer chunk bigger than " "mmap size (space=%zu mmap_size=%zu)", bytes, mmap_size); mmap_sync[REC] = 1; space = mmap_size; } /* If resync is requested, leave lead bytes in the staging * buffer and copy everything else such that data is filled * upto the new_idx. If there are more bytes in staging than * available space, those will be dropped. */ if (mmap_sync[REC]) { ssize_t avail = bytes - mmap_lead[REC]; /* make sure we always have lead bytes in staging */ if (avail < 0) goto skip; if (avail > space) { dbg0("dropping %zu bytes from record staging buffer", avail - space); ring_consume(&mmap_stg[REC], avail - space); avail = space; } else { dbg0("skippping %zu bytes in record mmap map", space - avail); space = avail; } assert(new_idx >= avail); fill_idx = new_idx - avail; mmap_sync[REC] = 0; } ring_manual_init(&mmap, mmap_map[REC], mmap_size, fill_idx % mmap_size, 0); while (space) { void *data; size_t size, todo; data = ring_data(stg, &size); assert(data); todo = min(size, space); ring_fill(&mmap, data, todo); ring_consume(stg, todo); space -= todo; } notify_mmap_store_rec(mmap_size, fill_idx % mmap_size, ring_bytes(&mmap)); skip: mmap_idx[REC] = new_idx; } static void do_mmap_write(size_t space) { struct ring_buf *stg = &mmap_stg[PLAY]; size_t todo; void *data; space = round_down(space, frame_size); mmap_fill_pstg(); while (space && (data = ring_data(stg, &todo))) { pa_seek_mode_t mode = PA_SEEK_RELATIVE_END; int64_t offset = 0; todo = min(todo, space); if (mmap_sync[PLAY]) { mode = PA_SEEK_RELATIVE_ON_READ; offset = (int64_t)mmap_lead[PLAY] - ring_bytes(stg); dbg0("mmap resync, offset=%ld", (long)offset); } if (pa_stream_write(stream[PLAY], data, todo, NULL, offset, mode) < 0) { err_pa("pa_stream_write() failed"); padsp_done(); return; } mmap_sync[PLAY] = 0; ring_consume(stg, todo); space -= todo; } } static void do_mmap_read(size_t bytes) { struct ring_buf *stg = &mmap_stg[REC]; bytes = round_down(bytes, frame_size); mmap_consume_rstg(); while (bytes) { const void *peek_data; size_t size; if (pa_stream_peek(stream[REC], &peek_data, &size)) { err_pa("pa_stream_peek() failed"); padsp_done(); return; } if (!peek_data) break; if (size <= ring_space(stg)) ring_fill(stg, peek_data, size); else { if (!mmap_sync[REC]) dbg0("recording staging buffer overflow, " "requesting resync"); mmap_sync[REC] = 1; } pa_stream_drop(stream[REC]); bytes -= size; } } static void stream_rw_callback(pa_stream *s, size_t length, void *userdata) { size_t size; if (s == stream[PLAY]) { size = pa_stream_writable_size(s); if (mmap_map[PLAY]) do_mmap_write(size); } else if (s == stream[REC]) { size = pa_stream_readable_size(s); if (mmap_map[REC]) do_mmap_read(size); } else { dbg0("stream_rw_callback(): unknown stream %p PLAY/REC=%p/%p\n", s, stream[PLAY], stream[REC]); return; } if (size < user_frag_size) return; if (stream_waiting) pa_threaded_mainloop_signal(mainloop, 0); if (stream_notify) { struct ossp_notify event = { .magic = OSSP_NOTIFY_MAGIC, .opcode = OSSP_NOTIFY_POLL }; ssize_t ret; ret = write(ossp_notify_fd, &event, sizeof(event)); if (ret != sizeof(event)) { if (errno != EPIPE) err_e(-errno, "write to notify_fd failed"); /* This function is run from PA mainloop and * thus the following padsp_done() won't be * noticed before the mainthread tries to run * the next command. Well, that's good enough. */ padsp_done(); } stream_notify = 0; } } static ssize_t padsp_write(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_dsp_rw_arg *arg = carg; size_t size; if (prepare_streams() || !stream[PLAY]) return -EIO; stream_waiting++; while (1) { size = pa_stream_writable_size(stream[PLAY]); if (arg->nonblock || size >= user_frag_size) break; pa_threaded_mainloop_wait(mainloop); } stream_waiting--; size = round_down(size, user_frag_size); if (!size) return -EAGAIN; size = min(size, din_sz); if (pa_stream_write(stream[PLAY], din, size, NULL, 0, PA_SEEK_RELATIVE) < 0) { err_pa("pa_stream_write() failed"); return padsp_done(); } return size; } static ssize_t padsp_read(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_dsp_rw_arg *arg = carg; size_t size; void *data; if (prepare_streams() || !stream[REC]) return -EIO; again: if (!arg->nonblock) { stream_waiting++; while (1) { size = pa_stream_readable_size(stream[REC]); if (size + ring_bytes(&rec_buf) >= user_frag_size) break; pa_threaded_mainloop_wait(mainloop); } stream_waiting--; } while (ring_bytes(&rec_buf) < max(user_frag_size, *dout_szp)) { const void *peek_data; if (pa_stream_peek(stream[REC], &peek_data, &size) < 0) { err_pa("pa_stream_peek() failed"); return padsp_done(); } if (!peek_data) break; if (ring_space(&rec_buf) < size) { size_t bufsz; bufsz = ring_size(&rec_buf); bufsz = max(2 * bufsz, bufsz + 2 * size); if (ring_resize(&rec_buf, bufsz)) { err("failed to allocate recording buffer"); return padsp_done(); } } ring_fill(&rec_buf, peek_data, size); pa_stream_drop(stream[REC]); } size = round_down(ring_bytes(&rec_buf), user_frag_size); if (!size) { if (arg->nonblock) return -EAGAIN; else goto again; } *dout_szp = size = min(size, *dout_szp); while (size) { size_t cnt; data = ring_data(&rec_buf, &cnt); assert(data); cnt = min(size, cnt); memcpy(dout, data, cnt); ring_consume(&rec_buf, cnt); dout += cnt; size -= cnt; } return *dout_szp; } static ssize_t padsp_poll(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { unsigned revents = 0; if (prepare_streams() < 0) return -EIO; stream_notify |= *(int *)carg; if (stream[PLAY] && pa_stream_writable_size(stream[PLAY]) >= user_frag_size) revents |= POLLOUT; if (stream[REC] && pa_stream_readable_size(stream[REC]) >= user_frag_size) revents |= POLLIN; *(unsigned *)rarg = revents; return 0; } static ssize_t padsp_mmap(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { struct ossp_dsp_mmap_arg *arg = carg; int dir = arg->dir; assert(!mmap_map[dir]); kill_streams(); /* arg->size is rounded up to the nearest page boundary. * There is no way to tell what the actual requested value is * but assume that it was the reported buffer space if it * falls into the same page aligned range. */ mmap_raw_size = arg->size; if (user_max_length && user_max_length < mmap_raw_size && round_up(mmap_raw_size, page_size) == round_up(user_max_length, page_size)) { info("MMAP adjusting raw_size %zu -> %zu", mmap_raw_size, user_max_length); mmap_raw_size = user_max_length; } dbg0("MMAP server-addr=%p sz=%zu", ossp_mmap_addr[dir], mmap_raw_size); mmap_map[dir] = ossp_mmap_addr[dir]; /* if mmapped, only mmapped streams are enabled */ stream_enabled[PLAY] = !!mmap_map[PLAY]; stream_enabled[REC] = !!mmap_map[REC]; return 0; } static ssize_t padsp_munmap(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int dir = *(int *)carg; assert(mmap_map[dir]); kill_streams(); mmap_map[dir] = NULL; return 0; } static ssize_t padsp_flush(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { flush_streams(opcode == OSSP_DSP_SYNC); return 0; } static ssize_t padsp_post(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { return trigger_streams(1, -1); } static ssize_t padsp_get_param(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int v = 0; switch (opcode) { case OSSP_DSP_GET_RATE: v = sample_spec.rate; break; case OSSP_DSP_GET_CHANNELS: v = sample_spec.channels; break; case OSSP_DSP_GET_FORMAT: v = fmt_pa_to_oss(sample_spec.format); break; case OSSP_DSP_GET_BLKSIZE: if (prepare_streams() < 0) return -EIO; v = user_frag_size; break; case OSSP_DSP_GET_FORMATS: v = AFMT_U8 | AFMT_A_LAW | AFMT_MU_LAW | AFMT_S16_LE | AFMT_S16_BE | AFMT_FLOAT | AFMT_S32_LE | AFMT_S32_BE; break; case OSSP_DSP_GET_TRIGGER: if (!stream_corked[PLAY]) v |= PCM_ENABLE_OUTPUT; if (!stream_corked[REC]) v |= PCM_ENABLE_INPUT; break; default: assert(0); } *(int *)rarg = v; return 0; } static ssize_t padsp_set_param(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { pa_sample_spec new_spec = sample_spec; int v = *(int *)carg; /* kill the streams before changing parameters */ kill_streams(); switch (opcode) { case OSSP_DSP_SET_RATE: new_spec.rate = v; if (pa_sample_spec_valid(&new_spec)) sample_spec = new_spec; v = sample_spec.rate; break; case OSSP_DSP_SET_CHANNELS: new_spec.channels = v; if (pa_sample_spec_valid(&new_spec)) sample_spec = new_spec; v = sample_spec.channels; break; case OSSP_DSP_SET_FORMAT: new_spec.format = fmt_oss_to_pa(v); if (pa_sample_spec_valid(&new_spec)) sample_spec = new_spec; v = fmt_pa_to_oss(sample_spec.format); break; case OSSP_DSP_SET_SUBDIVISION: if (!v) { v = user_subdivision ?: 1; break; } user_frag_size= 0; user_subdivision = v; break; case OSSP_DSP_SET_FRAGMENT: user_subdivision = 0; user_frag_size = 1 << (v & 0xffff); user_max_frags = (v >> 16) & 0xffff; if (user_frag_size < 4) user_frag_size = 4; if (user_max_frags < 2) user_max_frags = 2; break; default: assert(0); } if (rarg) *(int *)rarg = v; return 0; } static ssize_t padsp_set_trigger(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int fd) { int enable = *(int *)carg; return trigger_streams(enable & PCM_ENABLE_OUTPUT, enable & PCM_ENABLE_INPUT); } static ssize_t padsp_get_space(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int dir = (opcode == OSSP_DSP_GET_OSPACE) ? PLAY : REC; struct audio_buf_info info = { }; int rc; rc = prepare_streams(); if (rc) return -EIO; if (mmapped()) { info.fragments = mmap_raw_size / user_frag_size; info.fragstotal = info.fragments; info.fragsize = user_frag_size; info.bytes = mmap_raw_size; } else { size_t space; if (dir == PLAY) space = pa_stream_writable_size(stream[PLAY]); else space = pa_stream_readable_size(stream[REC]); space = round_down(space, user_frag_size); space = min(space, user_frag_size * user_max_frags); info.fragments = space / user_frag_size; info.fragstotal = user_max_frags; info.fragsize = user_frag_size; info.bytes = space; } *(struct audio_buf_info *)rarg = info; return 0; } static ssize_t padsp_get_ptr(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int tfd) { int dir = (opcode == OSSP_DSP_GET_OPTR) ? PLAY : REC; struct count_info info = { }; if (prepare_streams() < 0 || !stream[dir]) return -EIO; if (mmap_map[dir]) { /* mmap operation in progress, report mmap buffer parameters */ if (dir == PLAY) mmap_fill_pstg(); else mmap_consume_rstg(); info.bytes = mmap_idx[dir]; info.blocks = (mmap_idx[dir] - mmap_last_idx[dir]) / frame_size; info.ptr = mmap_idx[dir] % mmap_size; mmap_last_idx[dir] = mmap_idx[dir]; } else { /* simulate pointers using timestamps */ double bpus = (double)sample_bps / 1000000; size_t bytes, delta_bytes; pa_usec_t usec, delta; if (pa_stream_get_time(stream[dir], &usec) < 0) { warn_pa("pa_stream_get_time() failed"); return -EIO; } delta = usec - stream_ptr_timestamp[dir]; stream_ptr_timestamp[dir] = usec; bytes = bpus * usec; delta_bytes = bpus * delta; info.bytes = bytes & INT_MAX; info.blocks = (delta_bytes + frame_size - 1) / frame_size; info.ptr = bytes % user_max_length; } *(struct count_info *)rarg = info; return 0; } static ssize_t padsp_get_odelay(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int fd) { double bpus = (double)sample_bps / 1000000; pa_usec_t usec; if (prepare_streams() < 0 || !stream[PLAY]) return -EIO; if (pa_stream_get_latency(stream[PLAY], &usec, NULL) < 0) { warn_pa("pa_stream_get_latency() failed"); return -EIO; } *(int *)rarg = bpus * usec; return 0; } static ossp_action_fn_t action_fn_tbl[OSSP_NR_OPCODES] = { [OSSP_MIXER] = padsp_mixer, [OSSP_DSP_OPEN] = padsp_open, [OSSP_DSP_READ] = padsp_read, [OSSP_DSP_WRITE] = padsp_write, [OSSP_DSP_POLL] = padsp_poll, [OSSP_DSP_MMAP] = padsp_mmap, [OSSP_DSP_MUNMAP] = padsp_munmap, [OSSP_DSP_RESET] = padsp_flush, [OSSP_DSP_SYNC] = padsp_flush, [OSSP_DSP_POST] = padsp_post, [OSSP_DSP_GET_RATE] = padsp_get_param, [OSSP_DSP_GET_CHANNELS] = padsp_get_param, [OSSP_DSP_GET_FORMAT] = padsp_get_param, [OSSP_DSP_GET_BLKSIZE] = padsp_get_param, [OSSP_DSP_GET_FORMATS] = padsp_get_param, [OSSP_DSP_SET_RATE] = padsp_set_param, [OSSP_DSP_SET_CHANNELS] = padsp_set_param, [OSSP_DSP_SET_FORMAT] = padsp_set_param, [OSSP_DSP_SET_SUBDIVISION] = padsp_set_param, [OSSP_DSP_SET_FRAGMENT] = padsp_set_param, [OSSP_DSP_GET_TRIGGER] = padsp_get_param, [OSSP_DSP_SET_TRIGGER] = padsp_set_trigger, [OSSP_DSP_GET_OSPACE] = padsp_get_space, [OSSP_DSP_GET_ISPACE] = padsp_get_space, [OSSP_DSP_GET_OPTR] = padsp_get_ptr, [OSSP_DSP_GET_IPTR] = padsp_get_ptr, [OSSP_DSP_GET_ODELAY] = padsp_get_odelay, }; static int action_pre(void) { pa_threaded_mainloop_lock(mainloop); if (fail_code) { pa_threaded_mainloop_unlock(mainloop); return fail_code; } return 0; } static void action_post(void) { pa_threaded_mainloop_unlock(mainloop); } int main(int argc, char **argv) { int rc; ossp_slave_init("ossp-padsp", argc, argv); page_size = sysconf(_SC_PAGE_SIZE); mainloop = pa_threaded_mainloop_new(); if (!mainloop) { err("failed to allocate mainloop"); return 1; } mainloop_api = pa_threaded_mainloop_get_api(mainloop); if (pa_threaded_mainloop_start(mainloop)) { err("pa_mainloop_start() failed"); return 1; } /* Okay, now we're open for business */ rc = 0; do { rc = ossp_slave_process_command(ossp_cmd_fd, action_fn_tbl, action_pre, action_post); } while (rc > 0 && !fail_code); if (rc) fail_code = rc; pa_threaded_mainloop_lock(mainloop); kill_streams(); if (context) { pa_context_disconnect(context); pa_context_unref(context); } pa_threaded_mainloop_unlock(mainloop); pa_threaded_mainloop_stop(mainloop); pa_threaded_mainloop_free(mainloop); return fail_code ? 1 : 0; } ossp-1.3.3/ossp-slave.c000066400000000000000000000135171466466245500147730ustar00rootroot00000000000000/* * ossp-slave - OSS Proxy: Common codes for slaves * * This file is released under the GPLv2. */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include "ossp-slave.h" static const char *usage = "usage: ossp-SLAVE [options]\n" "\n" "proxies commands from osspd to pulseaudio\n" "\n" "options:\n" " -u UID uid to use\n" " -g GID gid to use\n" " -c CMD_FD fd to receive commands from osspd\n" " -n NOTIFY_FD fd to send async notifications to osspd\n" " -m MMAP_FD fd to use for mmap\n" " -s MMAP_SIZE mmap size\n" " -l LOG_LEVEL set log level\n" " -t enable log timestamps\n"; char ossp_user_name[OSSP_USER_NAME_LEN]; int ossp_cmd_fd = -1, ossp_notify_fd = -1; void *ossp_mmap_addr[2]; struct ossp_transfer *ossp_mmap_transfer; void ossp_slave_init(const char *slave_name, int argc, char **argv) { int have_uid = 0, have_gid = 0; uid_t uid; gid_t gid; int mmap_fd = -1; size_t mmap_size = 0; int opt; struct passwd *pw, pw_buf; struct sigaction sa; char pw_sbuf[sysconf(_SC_GETPW_R_SIZE_MAX)]; while ((opt = getopt(argc, argv, "u:g:c:n:m:o:s:l:t")) != -1) { switch (opt) { case 'u': have_uid = 1; uid = strtol(optarg, NULL, 0); break; case 'g': have_gid = 1; gid = strtol(optarg, NULL, 0); break; case 'c': ossp_cmd_fd = strtol(optarg, NULL, 0); break; case 'n': ossp_notify_fd = strtol(optarg, NULL, 0); break; case 'm': mmap_fd = strtol(optarg, NULL, 0); break; case 's': mmap_size = strtoul(optarg, NULL, 0); break; case 'l': ossp_log_level = strtol(optarg, NULL, 0); break; case 't': ossp_log_timestamp = 1; break; } } if (!have_uid || !have_gid || ossp_cmd_fd < 0 || ossp_notify_fd < 0) { fputs(usage, stderr); _exit(1); } snprintf(ossp_user_name, sizeof(ossp_user_name), "uid%d", uid); if (getpwuid_r(uid, &pw_buf, pw_sbuf, sizeof(pw_sbuf), &pw) == 0) snprintf(ossp_user_name, sizeof(ossp_user_name), "%s", pw->pw_name); snprintf(ossp_log_name, sizeof(ossp_log_name), "%s[%s:%d]", slave_name, ossp_user_name, getpid()); if (mmap_fd >= 0) { void *p; if (!mmap_size) { fputs(usage, stderr); _exit(1); } p = mmap(NULL, mmap_size + 2 * sizeof(struct ossp_transfer), PROT_READ | PROT_WRITE, MAP_SHARED, mmap_fd, 0); if (p == MAP_FAILED) fatal_e(-errno, "mmap failed"); ossp_mmap_addr[PLAY] = p; ossp_mmap_addr[REC] = p + mmap_size / 2; ossp_mmap_transfer = p + mmap_size; close(mmap_fd); } /* mmap done, drop privileges */ if (setresgid(gid, gid, gid) || setresuid(uid, uid, uid)) fatal_e(-errno, "failed to drop privileges"); /* block SIGPIPE */ memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; if (sigaction(SIGPIPE, &sa, NULL)) fatal_e(-errno, "failed to ignore SIGPIPE"); } int ossp_slave_process_command(int cmd_fd, ossp_action_fn_t const *action_fn_tbl, int (*action_pre_fn)(void), void (*action_post_fn)(void)) { static struct sized_buf carg_sbuf = { }, rarg_sbuf = { }; static struct sized_buf din_sbuf = { }, dout_sbuf = { }; struct ossp_cmd cmd; int fd = -1; char cmsg_buf[CMSG_SPACE(sizeof(fd))]; struct iovec iov = { &cmd, sizeof(cmd) }; struct msghdr msg = { .msg_iov = &iov, .msg_iovlen = 1, .msg_control = cmsg_buf, .msg_controllen = sizeof(cmsg_buf) }; struct cmsghdr *cmsg; size_t carg_size, din_size, rarg_size, dout_size; char *carg = NULL, *din = NULL, *rarg = NULL, *dout = NULL; struct ossp_reply reply = { .magic = OSSP_REPLY_MAGIC }; ssize_t ret; ret = recvmsg(cmd_fd, &msg, 0); if (ret == 0) return 0; if (ret < 0) { ret = -errno; err_e(ret, "failed to read command channel"); return ret; } if (ret != sizeof(cmd)) { err("command struct size mismatch (%zu, should be %zu)", ret, sizeof(cmd)); return -EINVAL; } if (cmd.magic != OSSP_CMD_MAGIC) { err("illegal command magic 0x%x", cmd.magic); return -EINVAL; } for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) fd = *(int *)CMSG_DATA(cmsg); else { err("unknown cmsg %d:%d received (opcode %d)", cmsg->cmsg_level, cmsg->cmsg_type, cmd.opcode); return -EINVAL; } } if (cmd.opcode >= OSSP_NR_OPCODES) { err("unknown opcode %d", cmd.opcode); return -EINVAL; } carg_size = ossp_arg_sizes[cmd.opcode].carg_size; din_size = cmd.din_size; rarg_size = ossp_arg_sizes[cmd.opcode].rarg_size; dout_size = cmd.dout_size; if ((fd >= 0) != ossp_arg_sizes[cmd.opcode].has_fd) { err("fd=%d unexpected for opcode %d", fd, cmd.opcode); return -EINVAL; } if (ensure_sbuf_size(&carg_sbuf, carg_size) || ensure_sbuf_size(&din_sbuf, din_size) || ensure_sbuf_size(&rarg_sbuf, rarg_size) || ensure_sbuf_size(&dout_sbuf, dout_size)) { err("failed to allocate command buffers"); return -ENOMEM; } if (carg_size) { carg = carg_sbuf.buf; ret = read_fill(cmd_fd, carg, carg_size); if (ret < 0) return ret; } if (din_size) { din = din_sbuf.buf; ret = read_fill(cmd_fd, din, din_size); if (ret < 0) return ret; } if (rarg_size) rarg = rarg_sbuf.buf; if (dout_size) dout = dout_sbuf.buf; ret = -EINVAL; if (action_fn_tbl[cmd.opcode]) { ret = action_pre_fn(); if (ret == 0) { ret = action_fn_tbl[cmd.opcode](cmd.opcode, carg, din, din_size, rarg, dout, &dout_size, fd); action_post_fn(); } } reply.result = ret; if (ret >= 0) reply.dout_size = dout_size; else { rarg_size = 0; dout_size = 0; } if (write_fill(cmd_fd, &reply, sizeof(reply)) < 0 || write_fill(cmd_fd, rarg, rarg_size) < 0 || write_fill(cmd_fd, dout, dout_size) < 0) return -EIO; return 1; } ossp-1.3.3/ossp-slave.h000066400000000000000000000012251466466245500147710ustar00rootroot00000000000000/* * ossp-slave - OSS Proxy: Common codes for slaves * * This file is released under the GPLv2. */ #ifndef _OSSP_SLAVE_H #define _OSSP_SLAVE_H #include "ossp.h" #include "ossp-util.h" #define OSSP_USER_NAME_LEN 128 extern char ossp_user_name[OSSP_USER_NAME_LEN]; extern int ossp_cmd_fd, ossp_notify_fd; extern void *ossp_mmap_addr[2]; extern struct ossp_transfer *ossp_mmap_transfer; void ossp_slave_init(const char *slave_name, int argc, char **argv); int ossp_slave_process_command(int cmd_fd, ossp_action_fn_t const *action_fn_tbl, int (*action_pre_fn)(void), void (*action_post_fn)(void)); #endif /* _OSSP_SLAVE_H */ ossp-1.3.3/ossp-util.c000066400000000000000000000160461466466245500146360ustar00rootroot00000000000000/* * ossp-util - OSS Proxy: Common utilities * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include "ossp-util.h" #define BIT(nr) (1UL << (nr)) #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) #define BIT_WORD(nr) ((nr) / BITS_PER_LONG) #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) char ossp_log_name[OSSP_LOG_NAME_LEN]; int ossp_log_level = OSSP_LOG_DFL; int ossp_log_timestamp; static const char *severity_strs[] = { [OSSP_LOG_CRIT] = "CRIT", [OSSP_LOG_ERR] = " ERR", [OSSP_LOG_WARN] = "WARN", [OSSP_LOG_INFO] = NULL, [OSSP_LOG_DBG0] = "DBG0", [OSSP_LOG_DBG1] = "DBG1", }; static int severity_map[] = { [OSSP_LOG_CRIT] = LOG_ERR, [OSSP_LOG_ERR] = LOG_ERR, [OSSP_LOG_WARN] = LOG_WARNING, [OSSP_LOG_INFO] = LOG_INFO, [OSSP_LOG_DBG0] = LOG_DEBUG, [OSSP_LOG_DBG1] = LOG_DEBUG, }; void log_msg(int severity, const char *fmt, ...) { static int syslog_opened = 0; char buf[1024]; size_t len = sizeof(buf), off = 0; va_list ap; if (severity > abs(ossp_log_level)) return; if (ossp_log_level < 0 && !syslog_opened) openlog(ossp_log_name, 0, LOG_DAEMON); assert(severity >= 0 && severity < ARRAY_SIZE(severity_strs)); if (ossp_log_timestamp) { static uint64_t start; uint64_t now; struct timeval tv; gettimeofday(&tv, NULL); now = tv.tv_sec * 1000 + tv.tv_usec / 1000; if (!start) start = now; off += snprintf(buf + off, len - off, "<%08"PRIu64"> ", now - start); } if (ossp_log_level > 0) { char sev_buf[16] = ""; if (severity_strs[severity]) snprintf(sev_buf, sizeof(sev_buf), " %s", severity_strs[severity]); off += snprintf(buf + off, len - off, "%s%s: ", ossp_log_name, sev_buf); } else if (severity_strs[severity]) off += snprintf(buf + off, len - off, "%s ", severity_strs[severity]); va_start(ap, fmt); off += vsnprintf(buf + off, len - off, fmt, ap); va_end(ap); off += snprintf(buf + off, len - off, "\n"); if (ossp_log_level > 0) fputs(buf, stderr); else syslog(severity_map[severity], "%s", buf); } int read_fill(int fd, void *buf, size_t size) { while (size) { ssize_t ret; int rc; ret = read(fd, buf, size); if (ret <= 0) { if (ret == 0) rc = -EIO; else rc = -errno; err_e(rc, "failed to read_fill %zu bytes from fd %d", size, fd); return rc; } buf += ret; size -= ret; } return 0; } int write_fill(int fd, const void *buf, size_t size) { while (size) { ssize_t ret; int rc; ret = write(fd, buf, size); if (ret <= 0) { if (ret == 0) rc = -EIO; else rc = -errno; err_e(rc, "failed to write_fill %zu bytes to fd %d", size, fd); return rc; } buf += ret; size -= ret; } return 0; } void ring_fill(struct ring_buf *ring, const void *buf, size_t size) { size_t tail; assert(ring_space(ring) >= size); tail = (ring->head + ring->size - ring->bytes) % ring->size; if (ring->head >= tail) { size_t todo = min(size, ring->size - ring->head); memcpy(ring->buf + ring->head, buf, todo); ring->head = (ring->head + todo) % ring->size; ring->bytes += todo; buf += todo; size -= todo; } assert(ring->size - ring->head >= size); memcpy(ring->buf + ring->head, buf, size); ring->head += size; ring->bytes += size; } void *ring_data(struct ring_buf *ring, size_t *sizep) { size_t tail; if (!ring->bytes) return NULL; tail = (ring->head + ring->size - ring->bytes) % ring->size; *sizep = min(ring->bytes, ring->size - tail); return ring->buf + tail; } int ring_resize(struct ring_buf *ring, size_t new_size) { struct ring_buf new_ring = { .size = new_size }; void *p; size_t size; if (ring_bytes(ring) > new_size) return -ENOSPC; new_ring.buf = calloc(1, new_size); if (new_size && !new_ring.buf) return -ENOMEM; while ((p = ring_data(ring, &size))) { ring_fill(&new_ring, p, size); ring_consume(ring, size); } free(ring->buf); *ring = new_ring; return 0; } int ensure_sbuf_size(struct sized_buf *sbuf, size_t size) { char *new_buf; if (sbuf->size >= size) return 0; new_buf = realloc(sbuf->buf, size); if (size && !new_buf) return -ENOMEM; sbuf->buf = new_buf; sbuf->size = size; return 0; } static unsigned long __ffs(unsigned long word) { int num = 0; if (BITS_PER_LONG == 64) { if ((word & 0xffffffff) == 0) { num += 32; word >>= 32; } } if ((word & 0xffff) == 0) { num += 16; word >>= 16; } if ((word & 0xff) == 0) { num += 8; word >>= 8; } if ((word & 0xf) == 0) { num += 4; word >>= 4; } if ((word & 0x3) == 0) { num += 2; word >>= 2; } if ((word & 0x1) == 0) num += 1; return num; } #define ffz(x) __ffs(~(x)) unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + BITOP_WORD(offset); unsigned long result = offset & ~(BITS_PER_LONG-1); unsigned long tmp; if (offset >= size) return size; size -= result; offset %= BITS_PER_LONG; if (offset) { tmp = *(p++); tmp |= ~0UL >> (BITS_PER_LONG - offset); if (size < BITS_PER_LONG) goto found_first; if (~tmp) goto found_middle; size -= BITS_PER_LONG; result += BITS_PER_LONG; } while (size & ~(BITS_PER_LONG-1)) { if (~(tmp = *(p++))) goto found_middle; result += BITS_PER_LONG; size -= BITS_PER_LONG; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; if (tmp == ~0UL) /* Are any bits zero? */ return result + size; /* Nope. */ found_middle: return result + ffz(tmp); } void __set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p |= mask; } void __clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p &= ~mask; } int get_proc_self_info(pid_t pid, pid_t *ppid_r, char *cmd_buf, size_t cmd_buf_sz) { char path[64], buf[4096]; int fd = -1; char *cmd_start, *cmd_end, *ppid_start, *end; ssize_t ret; pid_t ppid; int i, rc; snprintf(path, sizeof(path), "/proc/%ld/stat", (long)pid); fd = open(path, O_RDONLY); if (fd < 0) { rc = -errno; goto out; } ret = read(fd, buf, sizeof(buf)); if (ret < 0) goto out; if (ret == sizeof(buf)) { rc = -EOVERFLOW; goto out; } buf[ret] = '\0'; rc = -EINVAL; cmd_start = strchr(buf, '('); cmd_end = strrchr(buf, ')'); if (!cmd_start || !cmd_end) goto out; cmd_start++; ppid_start = cmd_end; for (i = 0; i < 3; i++) { ppid_start = strchr(ppid_start, ' '); if (!ppid_start) goto out; ppid_start++; } ppid = strtoul(ppid_start, &end, 10); if (end == ppid_start || *end != ' ') goto out; if (ppid_r) *ppid_r = ppid; if (cmd_buf) { size_t len = min_t(size_t, cmd_end - cmd_start, cmd_buf_sz - 1); memcpy(cmd_buf, cmd_start, len); cmd_buf[len] = '\0'; } rc = 0; out: close(fd); return rc; } ossp-1.3.3/ossp-util.h000066400000000000000000000426231466466245500146430ustar00rootroot00000000000000/* * ossp-util - OSS Proxy: Common utilities * * This file is released under the GPLv2. */ #ifndef _OSSP_UTIL_H #define _OSSP_UTIL_H #include #include #include #include #include #include #include "ossp.h" #define OSSP_LOG_NAME_LEN 128 enum { OSSP_LOG_CRIT = 1, OSSP_LOG_ERR, OSSP_LOG_WARN, OSSP_LOG_INFO, OSSP_LOG_DFL = OSSP_LOG_INFO, /* default log level */ OSSP_LOG_DBG0, OSSP_LOG_DBG1, OSSP_LOG_MAX = OSSP_LOG_DBG1, }; extern char ossp_log_name[OSSP_LOG_NAME_LEN]; extern int ossp_log_level; extern int ossp_log_timestamp; #define BITS_PER_BYTE 8 #define BITS_PER_LONG (BITS_PER_BYTE * sizeof(long)) #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long)) /* ARRAY_SIZE and min/max macros stolen from linux/kernel.h */ #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; }) #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1: __min2; }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1: __max2; }) void log_msg(int severity, const char *fmt, ...) __attribute__ ((format (printf, 2, 3))); #define fatal(fmt, args...) do { \ log_msg(OSSP_LOG_CRIT, fmt , ##args); \ _exit(1); \ } while (0) #define err(fmt, args...) log_msg(OSSP_LOG_ERR, fmt , ##args) #define warn(fmt, args...) log_msg(OSSP_LOG_WARN, fmt , ##args) #define info(fmt, args...) log_msg(OSSP_LOG_INFO, fmt , ##args) #define dbg0(fmt, args...) log_msg(OSSP_LOG_DBG0, fmt , ##args) #define dbg1(fmt, args...) log_msg(OSSP_LOG_DBG1, fmt , ##args) #define fatal_e(e, fmt, args...) \ fatal(fmt" (%s)" , ##args, strerror(-(e))) #define err_e(e, fmt, args...) \ err(fmt" (%s)" , ##args, strerror(-(e))) #define warn_e(e, fmt, args...) \ warn(fmt" (%s)" , ##args, strerror(-(e))) #define info_e(e, fmt, args...) \ info(fmt" (%s)" , ##args, strerror(-(e))) #define dbg0_e(e, fmt, args...) \ dbg0(fmt" (%s)" , ##args, strerror(-(e))) #define dbg1_e(e, fmt, args...) \ dbg1(fmt" (%s)" , ##args, strerror(-(e))) struct ring_buf { char *buf; size_t size; size_t head; size_t bytes; }; static inline size_t ring_size(struct ring_buf *ring) { return ring->size; } static inline size_t ring_bytes(struct ring_buf *ring) { return ring->bytes; } static inline size_t ring_space(struct ring_buf *ring) { return ring->size - ring->bytes; } static inline void ring_consume(struct ring_buf *ring, size_t size) { assert(ring->bytes >= size); ring->bytes -= size; } static inline void ring_manual_init(struct ring_buf *ring, void *buf, size_t size, size_t head, size_t bytes) { ring->buf = buf; ring->size = size; ring->head = head; ring->bytes = bytes; } void ring_fill(struct ring_buf *ring, const void *buf, size_t size); void *ring_data(struct ring_buf *ring, size_t *sizep); int ring_resize(struct ring_buf *ring, size_t new_size); struct sized_buf { char *buf; size_t size; }; int ensure_sbuf_size(struct sized_buf *sbuf, size_t size); int read_fill(int fd, void *buf, size_t size); int write_fill(int fd, const void *buf, size_t size); /* * Bitops lifted from linux asm-generic implementation. */ unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset); #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) extern void __set_bit(int nr, volatile unsigned long *addr); extern void __clear_bit(int nr, volatile unsigned long *addr); typedef ssize_t (*ossp_action_fn_t)(enum ossp_opcode opcode, void *carg, void *din, size_t din_sz, void *rarg, void *dout, size_t *dout_szp, int fd); int get_proc_self_info(pid_t tid, pid_t *pgrp, char *cmd_buf, size_t cmd_buf_sz); /* * Doubly linked list handling code shamelessly stolen from the Linux * kernel 2.6.26 include/linux/list.h. */ /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ const typeof( ((type *)0)->member ) *__mptr = (ptr); \ (type *)( (char *)__mptr - offsetof(type,member) );}) #define LIST_POISON1 ((void *) 0x00100100) #define LIST_POISON2 ((void *) 0x00200200) /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ struct list_head { struct list_head *next, *prev; }; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) static inline void INIT_LIST_HEAD(struct list_head *list) { list->next = list; list->prev = list; } /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { next->prev = new; new->next = next; new->prev = prev; prev->next = new; } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; prev->next = next; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } /** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add_tail(list, head); } /** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return head->next == head; } /** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = head->next; return (next == head) && (next == head->prev); } /** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } static inline void __list_splice(const struct list_head *list, struct list_head *head) { struct list_head *first = list->next; struct list_head *last = list->prev; struct list_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } /** * list_splice - join two lists * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. * * Note, that list is expected to be not empty. */ #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); pos = n, n = pos->prev) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_entry((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_entry((head)->prev, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry(pos->member.prev, typeof(*pos), member)) /** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_struct within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */ #define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member)) /** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */ #define list_for_each_entry_continue(pos, head, member) \ for (pos = list_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */ #define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry(pos->member.prev, typeof(*pos), member)) /** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Iterate over list of given type, continuing from current position. */ #define list_for_each_entry_from(pos, head, member) \ for (; &pos->member != (head); \ pos = list_entry(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_entry((head)->next, typeof(*pos), member), \ n = list_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.next, typeof(*n), member)) /** * list_for_each_entry_safe_continue * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */ #define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_entry(pos->member.next, typeof(*pos), member), \ n = list_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.next, typeof(*n), member)) /** * list_for_each_entry_safe_from * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */ #define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.next, typeof(*n), member)) /** * list_for_each_entry_safe_reverse * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */ #define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_entry((head)->prev, typeof(*pos), member), \ n = list_entry(pos->member.prev, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.prev, typeof(*n), member)) #endif /*_OSSP_UTIL_H*/ ossp-1.3.3/ossp.c000066400000000000000000000054311466466245500136570ustar00rootroot00000000000000/* * ossp - OSS Proxy: emulate OSS device using CUSE * * This file is released under the GPLv2. */ #include "ossp.h" const struct ossp_arg_size ossp_arg_sizes[OSSP_NR_OPCODES] = { [OSSP_MIXER] = { sizeof(struct ossp_mixer_arg), sizeof(struct ossp_mixer_arg), 0 }, [OSSP_DSP_OPEN] = { sizeof(struct ossp_dsp_open_arg), 0, 0 }, [OSSP_DSP_READ] = { sizeof(struct ossp_dsp_rw_arg), 0, 0 }, [OSSP_DSP_WRITE] = { sizeof(struct ossp_dsp_rw_arg), 0, 0 }, [OSSP_DSP_POLL] = { sizeof(int), sizeof(unsigned), 0 }, [OSSP_DSP_MMAP] = { sizeof(struct ossp_dsp_mmap_arg), 0, 0 }, [OSSP_DSP_MUNMAP] = { sizeof(int), 0, 0 }, [OSSP_DSP_RESET] = { 0, 0, 0 }, [OSSP_DSP_SYNC] = { 0, 0, 0 }, [OSSP_DSP_POST] = { 0, 0, 0 }, [OSSP_DSP_GET_RATE] = { 0, sizeof(int), 0 }, [OSSP_DSP_GET_CHANNELS] = { 0, sizeof(int), 0 }, [OSSP_DSP_GET_FORMAT] = { 0, sizeof(int), 0 }, [OSSP_DSP_GET_BLKSIZE] = { 0, sizeof(int), 0 }, [OSSP_DSP_GET_FORMATS] = { 0, sizeof(int), 0 }, [OSSP_DSP_SET_RATE] = { sizeof(int), sizeof(int), 0 }, [OSSP_DSP_SET_CHANNELS] = { sizeof(int), sizeof(int), 0 }, [OSSP_DSP_SET_FORMAT] = { sizeof(int), sizeof(int), 0 }, [OSSP_DSP_SET_SUBDIVISION] = { sizeof(int), sizeof(int), 0 }, [OSSP_DSP_SET_FRAGMENT] = { sizeof(int), 0, 0 }, [OSSP_DSP_GET_TRIGGER] = { 0, sizeof(int), 0 }, [OSSP_DSP_SET_TRIGGER] = { sizeof(int), 0, 0 }, [OSSP_DSP_GET_OSPACE] = { 0, sizeof(struct audio_buf_info), 0 }, [OSSP_DSP_GET_ISPACE] = { 0, sizeof(struct audio_buf_info), 0 }, [OSSP_DSP_GET_OPTR] = { 0, sizeof(struct count_info), 0 }, [OSSP_DSP_GET_IPTR] = { 0, sizeof(struct count_info), 0 }, [OSSP_DSP_GET_ODELAY] = { 0, sizeof(int), 0 }, }; const char *ossp_cmd_str[OSSP_NR_OPCODES] = { [OSSP_MIXER] = "MIXER", [OSSP_DSP_OPEN] = "OPEN", [OSSP_DSP_READ] = "READ", [OSSP_DSP_WRITE] = "WRITE", [OSSP_DSP_POLL] = "POLL", [OSSP_DSP_MMAP] = "MMAP", [OSSP_DSP_MUNMAP] = "MUNMAP", [OSSP_DSP_RESET] = "RESET", [OSSP_DSP_SYNC] = "SYNC", [OSSP_DSP_POST] = "POST", [OSSP_DSP_GET_RATE] = "GET_RATE", [OSSP_DSP_GET_CHANNELS] = "GET_CHANNELS", [OSSP_DSP_GET_FORMAT] = "GET_FORMAT", [OSSP_DSP_GET_BLKSIZE] = "GET_BLKSIZE", [OSSP_DSP_GET_FORMATS] = "GET_FORMATS", [OSSP_DSP_SET_RATE] = "SET_RATE", [OSSP_DSP_SET_CHANNELS] = "SET_CHANNELS", [OSSP_DSP_SET_FORMAT] = "SET_FORMAT", [OSSP_DSP_SET_SUBDIVISION] = "SET_BUSDIVISION", [OSSP_DSP_SET_FRAGMENT] = "SET_FRAGMENT", [OSSP_DSP_GET_TRIGGER] = "GET_TRIGGER", [OSSP_DSP_SET_TRIGGER] = "SET_TRIGGER", [OSSP_DSP_GET_OSPACE] = "GET_OSPACE", [OSSP_DSP_GET_ISPACE] = "GET_ISPACE", [OSSP_DSP_GET_OPTR] = "GET_OPTR", [OSSP_DSP_GET_IPTR] = "GET_IPTR", [OSSP_DSP_GET_ODELAY] = "GET_ODELAY", }; const char *ossp_notify_str[OSSP_NR_NOTIFY_OPCODES] = { [OSSP_NOTIFY_POLL] = "POLL", [OSSP_NOTIFY_OBITUARY] = "OBITUARY", [OSSP_NOTIFY_VOLCHG] = "VOLCHG", }; ossp-1.3.3/ossp.h000066400000000000000000000037511466466245500136670ustar00rootroot00000000000000/* * ossp - OSS Proxy: emulate OSS device using CUSE * * This file is released under the GPLv2. */ #ifndef _OSSP_H #define _OSSP_H #include #include #include #include #define OSSP_CMD_MAGIC 0xdeadbeef #define OSSP_REPLY_MAGIC 0xbeefdead #define OSSP_NOTIFY_MAGIC 0xbebebebe #define PLAY 0 #define REC 1 #define LEFT 0 #define RIGHT 1 enum ossp_opcode { OSSP_MIXER, OSSP_DSP_OPEN, OSSP_DSP_READ, OSSP_DSP_WRITE, OSSP_DSP_POLL, OSSP_DSP_MMAP, OSSP_DSP_MUNMAP, OSSP_DSP_RESET, OSSP_DSP_SYNC, OSSP_DSP_POST, OSSP_DSP_GET_RATE, OSSP_DSP_GET_CHANNELS, OSSP_DSP_GET_FORMAT, OSSP_DSP_GET_BLKSIZE, OSSP_DSP_GET_FORMATS, OSSP_DSP_SET_RATE, OSSP_DSP_SET_CHANNELS, OSSP_DSP_SET_FORMAT, OSSP_DSP_SET_SUBDIVISION, OSSP_DSP_SET_FRAGMENT, OSSP_DSP_GET_TRIGGER, OSSP_DSP_SET_TRIGGER, OSSP_DSP_GET_OSPACE, OSSP_DSP_GET_ISPACE, OSSP_DSP_GET_OPTR, OSSP_DSP_GET_IPTR, OSSP_DSP_GET_ODELAY, OSSP_NR_OPCODES, }; enum ossp_notify_opcode { OSSP_NOTIFY_POLL, OSSP_NOTIFY_OBITUARY, OSSP_NOTIFY_VOLCHG, OSSP_NOTIFY_FILL, OSSP_NOTIFY_STORE, OSSP_NR_NOTIFY_OPCODES, }; struct ossp_transfer { sem_t sem; size_t pos; size_t bytes; }; struct ossp_mixer_arg { int vol[2][2]; }; struct ossp_dsp_open_arg { int flags; pid_t opener_pid; }; struct ossp_dsp_rw_arg { unsigned nonblock:1; }; struct ossp_dsp_mmap_arg { int dir; size_t size; }; struct ossp_cmd { unsigned magic; enum ossp_opcode opcode; size_t din_size; size_t dout_size; }; struct ossp_reply { unsigned magic; int result; size_t dout_size; /* <= cmd.data_in_size */ }; struct ossp_notify { unsigned magic; enum ossp_notify_opcode opcode; }; struct ossp_arg_size { ssize_t carg_size; ssize_t rarg_size; unsigned has_fd:1; }; extern const struct ossp_arg_size ossp_arg_sizes[OSSP_NR_OPCODES]; extern const char *ossp_cmd_str[OSSP_NR_OPCODES]; extern const char *ossp_notify_str[OSSP_NR_NOTIFY_OPCODES]; #endif /* _OSSP_H */ ossp-1.3.3/osspd.c000066400000000000000000001633001466466245500140230ustar00rootroot00000000000000/* * osspd - OSS Proxy Daemon: emulate OSS device using CUSE * * This file is released under the GPLv2. */ #define FUSE_USE_VERSION 35 #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ossp.h" #include "ossp-util.h" #define DFL_MIXER_NAME "mixer" #define DFL_DSP_NAME "dsp" #define DFL_ADSP_NAME "adsp" #define STRFMT "S[%u/%d]" #define STRID(os) os->id, os->pid #define dbg1_os(os, fmt, args...) dbg1(STRFMT" "fmt, STRID(os) , ##args) #define dbg0_os(os, fmt, args...) dbg0(STRFMT" "fmt, STRID(os) , ##args) #define warn_os(os, fmt, args...) warn(STRFMT" "fmt, STRID(os) , ##args) #define err_os(os, fmt, args...) err(STRFMT" "fmt, STRID(os) , ##args) #define warn_ose(os, err, fmt, args...) \ warn_e(err, STRFMT" "fmt, STRID(os) , ##args) #define err_ose(os, err, fmt, args...) \ err_e(err, STRFMT" "fmt, STRID(os) , ##args) enum { SNDRV_OSS_VERSION = ((3<<16)|(8<<8)|(1<<4)|(0)), /* 3.8.1a */ DFL_MIXER_MAJOR = 14, DFL_MIXER_MINOR = 0, DFL_DSP_MAJOR = 14, DFL_DSP_MINOR = 3, DFL_ADSP_MAJOR = 14, DFL_ADSP_MINOR = 12, DFL_MAX_STREAMS = 128, MIXER_PUT_DELAY = 600, /* 10 mins */ /* DSPS_MMAP_SIZE / 2 must be multiple of SHMLBA */ DSPS_MMAP_SIZE = 2 * (512 << 10), /* 512k for each dir */ }; struct ossp_uid_cnt { struct list_head link; uid_t uid; unsigned nr_os; }; struct ossp_mixer { pid_t pgrp; struct list_head link; struct list_head delayed_put_link; unsigned refcnt; /* the following two fields are protected by mixer_mutex */ int vol[2][2]; int modify_counter; time_t put_expires; }; struct ossp_mixer_cmd { struct ossp_mixer *mixer; struct ossp_mixer_arg set; int out_dir; int rvol; }; #define for_each_vol(i, j) \ for (i = 0, j = 0; i < 2; j += i << 1, j++, i = j >> 1, j &= 1) struct ossp_stream { unsigned id; /* stream ID */ struct list_head link; struct list_head pgrp_link; struct list_head notify_link; unsigned refcnt; pthread_mutex_t cmd_mutex; pthread_mutex_t mmap_mutex; struct fuse_pollhandle *ph; /* stream owner info */ pid_t pid; pid_t pgrp; uid_t uid; gid_t gid; /* slave info */ pid_t slave_pid; int cmd_fd; int notify_tx; int notify_rx; /* the following dead flag is set asynchronously, keep it separate. */ int dead; /* stream mixer state, protected by mixer_mutex */ int mixer_pending; int vol[2][2]; int vol_set[2][2]; int mmap_fd; size_t mmap_size; void *mmap; void *mmap_addr[2]; struct ossp_transfer *mmap_transfer; struct ossp_uid_cnt *ucnt; struct fuse_session *se; /* associated fuse session */ struct ossp_mixer *mixer; }; struct ossp_dsp_stream { struct ossp_stream os; unsigned rw; unsigned mmapped; int nonblock; }; #define os_to_dsps(_os) container_of(_os, struct ossp_dsp_stream, os) static unsigned max_streams; static unsigned umax_streams; static unsigned hashtbl_size; static char dsp_slave_path[PATH_MAX]; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t mixer_mutex = PTHREAD_MUTEX_INITIALIZER; static unsigned long *os_id_bitmap; static unsigned nr_mixers; static struct list_head *mixer_tbl; /* indexed by PGRP */ static struct list_head *os_tbl; /* indexed by ID */ static struct list_head *os_pgrp_tbl; /* indexed by PGRP */ static struct list_head *os_notify_tbl; /* indexed by notify fd */ static LIST_HEAD(uid_cnt_list); static int notify_epfd; /* epoll used to monitor notify fds */ static pthread_t notify_poller_thread; static pthread_t slave_reaper_thread; static pthread_t mixer_delayed_put_thread; static pthread_t cuse_mixer_thread; static pthread_t cuse_adsp_thread; static pthread_cond_t notify_poller_kill_wait = PTHREAD_COND_INITIALIZER; static pthread_cond_t slave_reaper_wait = PTHREAD_COND_INITIALIZER; static LIST_HEAD(slave_corpse_list); static LIST_HEAD(mixer_delayed_put_head); /* delayed reference */ static pthread_cond_t mixer_delayed_put_cond = PTHREAD_COND_INITIALIZER; static int init_wait_fd = -1; static int exit_on_idle; static struct fuse_session *mixer_se; static struct fuse_session *dsp_se; static struct fuse_session *adsp_se; static void put_os(struct ossp_stream *os); /*************************************************************************** * Accessors */ static struct list_head *mixer_tbl_head(pid_t pid) { return &mixer_tbl[pid % hashtbl_size]; } static struct list_head *os_tbl_head(uint64_t id) { return &os_tbl[id % hashtbl_size]; } static struct list_head *os_pgrp_tbl_head(pid_t pgrp) { return &os_pgrp_tbl[pgrp % hashtbl_size]; } static struct list_head *os_notify_tbl_head(int notify_rx) { return &os_notify_tbl[notify_rx % hashtbl_size]; } static struct ossp_mixer *find_mixer_locked(pid_t pgrp) { struct ossp_mixer *mixer; list_for_each_entry(mixer, mixer_tbl_head(pgrp), link) if (mixer->pgrp == pgrp) return mixer; return NULL; } static struct ossp_mixer *find_mixer(pid_t pgrp) { struct ossp_mixer *mixer; pthread_mutex_lock(&mutex); mixer = find_mixer_locked(pgrp); pthread_mutex_unlock(&mutex); return mixer; } static struct ossp_stream *find_os(unsigned id) { struct ossp_stream *os, *found = NULL; pthread_mutex_lock(&mutex); list_for_each_entry(os, os_tbl_head(id), link) if (os->id == id) { found = os; break; } pthread_mutex_unlock(&mutex); return found; } static struct ossp_stream *find_os_by_notify_rx(int notify_rx) { struct ossp_stream *os, *found = NULL; pthread_mutex_lock(&mutex); list_for_each_entry(os, os_notify_tbl_head(notify_rx), notify_link) if (os->notify_rx == notify_rx) { found = os; break; } pthread_mutex_unlock(&mutex); return found; } /*************************************************************************** * Command and ioctl helpers */ static ssize_t exec_cmd_intern(struct ossp_stream *os, enum ossp_opcode opcode, const void *carg, size_t carg_size, const void *din, size_t din_size, void *rarg, size_t rarg_size, void *dout, size_t *dout_sizep, int fd) { size_t dout_size = dout_sizep ? *dout_sizep : 0; struct ossp_cmd cmd = { .magic = OSSP_CMD_MAGIC, .opcode = opcode, .din_size = din_size, .dout_size = dout_size }; struct iovec iov = { &cmd, sizeof(cmd) }; struct msghdr msg = { .msg_iov = &iov, .msg_iovlen = 1 }; struct ossp_reply reply = { }; char cmsg_buf[CMSG_SPACE(sizeof(fd))]; char reason[512]; int rc; if (os->dead) return -EIO; dbg1_os(os, "%s carg=%zu din=%zu rarg=%zu dout=%zu", ossp_cmd_str[opcode], carg_size, din_size, rarg_size, dout_size); if (fd >= 0) { struct cmsghdr *cmsg; msg.msg_control = cmsg_buf; msg.msg_controllen = sizeof(cmsg_buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN(sizeof(fd)); *(int *)CMSG_DATA(cmsg) = fd; msg.msg_controllen = cmsg->cmsg_len; } if (sendmsg(os->cmd_fd, &msg, 0) <= 0) { rc = -errno; snprintf(reason, sizeof(reason), "command sendmsg failed: %s", strerror(-rc)); goto fail; } if ((rc = write_fill(os->cmd_fd, carg, carg_size)) < 0 || (rc = write_fill(os->cmd_fd, din, din_size)) < 0) { snprintf(reason, sizeof(reason), "can't tranfer command argument and/or data: %s", strerror(-rc)); goto fail; } if ((rc = read_fill(os->cmd_fd, &reply, sizeof(reply))) < 0) { snprintf(reason, sizeof(reason), "can't read reply: %s", strerror(-rc)); goto fail; } if (reply.magic != OSSP_REPLY_MAGIC) { snprintf(reason, sizeof(reason), "reply magic mismatch %x != %x", reply.magic, OSSP_REPLY_MAGIC); rc = -EINVAL; goto fail; } if (reply.result < 0) goto out_unlock; if (reply.dout_size > dout_size) { snprintf(reason, sizeof(reason), "data out size overflow %zu > %zu", reply.dout_size, dout_size); rc = -EINVAL; goto fail; } dout_size = reply.dout_size; if (dout_sizep) *dout_sizep = dout_size; if ((rc = read_fill(os->cmd_fd, rarg, rarg_size)) < 0 || (rc = read_fill(os->cmd_fd, dout, dout_size)) < 0) { snprintf(reason, sizeof(reason), "can't read data out: %s", strerror(-rc)); goto fail; } out_unlock: dbg1_os(os, " completed, result=%d dout=%zu", reply.result, dout_size); return reply.result; fail: warn_os(os, "communication with slave failed (%s)", reason); os->dead = 1; return rc; } static ssize_t exec_cmd(struct ossp_stream *os, enum ossp_opcode opcode, const void *carg, size_t carg_size, const void *din, size_t din_size, void *rarg, size_t rarg_size, void *dout, size_t *dout_sizep, int fd) { int is_mixer; int i, j; ssize_t ret, mret; /* mixer command is handled exlicitly below */ is_mixer = opcode == OSSP_MIXER; if (is_mixer) { ret = -pthread_mutex_trylock(&os->cmd_mutex); if (ret) return ret; } else { pthread_mutex_lock(&os->cmd_mutex); ret = exec_cmd_intern(os, opcode, carg, carg_size, din, din_size, rarg, rarg_size, dout, dout_sizep, fd); } /* lazy mixer handling */ pthread_mutex_lock(&mixer_mutex); if (os->mixer_pending) { struct ossp_mixer_arg marg; repeat_mixer: /* we have mixer command pending */ memcpy(marg.vol, os->vol_set, sizeof(os->vol_set)); memset(os->vol_set, -1, sizeof(os->vol_set)); pthread_mutex_unlock(&mixer_mutex); mret = exec_cmd_intern(os, OSSP_MIXER, &marg, sizeof(marg), NULL, 0, &marg, sizeof(marg), NULL, NULL, -1); pthread_mutex_lock(&mixer_mutex); /* was there mixer set request while executing mixer command? */ for_each_vol(i, j) if (os->vol_set[i][j] >= 0) goto repeat_mixer; /* update internal mixer state */ if (mret == 0) { for_each_vol(i, j) { if (marg.vol[i][j] >= 0) { if (os->vol[i][j] != marg.vol[i][j]) os->mixer->modify_counter++; os->vol[i][j] = marg.vol[i][j]; } } } os->mixer_pending = 0; } pthread_mutex_unlock(&os->cmd_mutex); /* * mixer mutex must be released after cmd_mutex so that * exec_mixer_cmd() can guarantee that mixer_pending flags * will be handled immediately or when the currently * in-progress command completes. */ pthread_mutex_unlock(&mixer_mutex); return is_mixer ? mret : ret; } static ssize_t exec_simple_cmd(struct ossp_stream *os, enum ossp_opcode opcode, void *carg, void *rarg) { return exec_cmd(os, opcode, carg, ossp_arg_sizes[opcode].carg_size, NULL, 0, rarg, ossp_arg_sizes[opcode].rarg_size, NULL, NULL, -1); } static int ioctl_prep_uarg(fuse_req_t req, void *in, size_t in_sz, void *out, size_t out_sz, void *uarg, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { struct iovec in_iov = { }, out_iov = { }; int retry = 0; if (in) { if (!in_bufsz) { in_iov.iov_base = uarg; in_iov.iov_len = in_sz; retry = 1; } else { assert(in_bufsz == in_sz); memcpy(in, in_buf, in_sz); } } if (out) { if (!out_bufsz) { out_iov.iov_base = uarg; out_iov.iov_len = out_sz; retry = 1; } else assert(out_bufsz == out_sz); } if (retry) fuse_reply_ioctl_retry(req, &in_iov, 1, &out_iov, 1); return retry; } #define PREP_UARG(inp, outp) do { \ if (ioctl_prep_uarg(req, (inp), sizeof(*(inp)), \ (outp), sizeof(*(outp)), uarg, \ in_buf, in_bufsz, out_bufsz)) \ return; \ } while (0) /*************************************************************************** * Mixer implementation */ static void put_mixer_real(struct ossp_mixer *mixer) { if (!--mixer->refcnt) { dbg0("DESTROY mixer(%d)", mixer->pgrp); list_del_init(&mixer->link); list_del_init(&mixer->delayed_put_link); free(mixer); nr_mixers--; /* * If exit_on_idle, mixer for pgrp0 is touched during * init and each stream has mixer attached. As mixers * are destroyed after they have been idle for * MIXER_PUT_DELAY seconds, we can use it for idle * detection. Note that this might race with * concurrent open. The race is inherent. */ if (exit_on_idle && !nr_mixers) { info("idle, exiting"); exit(0); } } } static struct ossp_mixer *get_mixer(pid_t pgrp) { struct ossp_mixer *mixer; pthread_mutex_lock(&mutex); /* is there a matching one? */ mixer = find_mixer_locked(pgrp); if (mixer) { if (list_empty(&mixer->delayed_put_link)) mixer->refcnt++; else list_del_init(&mixer->delayed_put_link); goto out_unlock; } /* reap delayed put list if there are too many mixers */ while (nr_mixers > 2 * max_streams && !list_empty(&mixer_delayed_put_head)) { struct ossp_mixer *mixer = list_first_entry(&mixer_delayed_put_head, struct ossp_mixer, delayed_put_link); assert(mixer->refcnt == 1); put_mixer_real(mixer); } /* create a new one */ mixer = calloc(1, sizeof(*mixer)); if (!mixer) { warn("failed to allocate mixer for %d", pgrp); mixer = NULL; goto out_unlock; } mixer->pgrp = pgrp; INIT_LIST_HEAD(&mixer->link); INIT_LIST_HEAD(&mixer->delayed_put_link); mixer->refcnt = 1; memset(mixer->vol, -1, sizeof(mixer->vol)); list_add(&mixer->link, mixer_tbl_head(pgrp)); nr_mixers++; dbg0("CREATE mixer(%d)", pgrp); out_unlock: pthread_mutex_unlock(&mutex); return mixer; } static void put_mixer(struct ossp_mixer *mixer) { pthread_mutex_lock(&mutex); if (mixer) { if (mixer->refcnt == 1) { struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts); mixer->put_expires = ts.tv_sec + MIXER_PUT_DELAY; list_add_tail(&mixer->delayed_put_link, &mixer_delayed_put_head); pthread_cond_signal(&mixer_delayed_put_cond); } else put_mixer_real(mixer); } pthread_mutex_unlock(&mutex); } static void *mixer_delayed_put_worker(void *arg) { struct ossp_mixer *mixer; struct timespec ts; time_t now; pthread_mutex_lock(&mutex); again: clock_gettime(CLOCK_REALTIME, &ts); now = ts.tv_sec; mixer = NULL; while (!list_empty(&mixer_delayed_put_head)) { mixer = list_first_entry(&mixer_delayed_put_head, struct ossp_mixer, delayed_put_link); if (now <= mixer->put_expires) break; assert(mixer->refcnt == 1); put_mixer_real(mixer); mixer = NULL; } if (mixer) { ts.tv_sec = mixer->put_expires + 1; pthread_cond_timedwait(&mixer_delayed_put_cond, &mutex, &ts); } else pthread_cond_wait(&mixer_delayed_put_cond, &mutex); goto again; } static void init_mixer_cmd(struct ossp_mixer_cmd *mxcmd, struct ossp_mixer *mixer) { memset(mxcmd, 0, sizeof(*mxcmd)); memset(&mxcmd->set.vol, -1, sizeof(mxcmd->set.vol)); mxcmd->mixer = mixer; mxcmd->out_dir = -1; } static int exec_mixer_cmd(struct ossp_mixer_cmd *mxcmd, struct ossp_stream *os) { int i, j, rc; /* * Set pending flags before trying to execute mixer command. * Combined with lock release order in exec_cmd(), this * guarantees that the mixer command will be executed * immediately or when the current command completes. */ pthread_mutex_lock(&mixer_mutex); os->mixer_pending = 1; for_each_vol(i, j) if (mxcmd->set.vol[i][j] >= 0) os->vol_set[i][j] = mxcmd->set.vol[i][j]; pthread_mutex_unlock(&mixer_mutex); rc = exec_simple_cmd(os, OSSP_MIXER, NULL, NULL); if (rc >= 0) { dbg0_os(os, "volume set=%d/%d:%d/%d get=%d/%d:%d/%d", mxcmd->set.vol[PLAY][LEFT], mxcmd->set.vol[PLAY][RIGHT], mxcmd->set.vol[REC][LEFT], mxcmd->set.vol[REC][RIGHT], os->vol[PLAY][LEFT], os->vol[PLAY][RIGHT], os->vol[REC][LEFT], os->vol[REC][RIGHT]); } else if (rc != -EBUSY) warn_ose(os, rc, "mixer command failed"); return rc; } static void finish_mixer_cmd(struct ossp_mixer_cmd *mxcmd) { struct ossp_mixer *mixer = mxcmd->mixer; struct ossp_stream *os; int dir = mxcmd->out_dir; int vol[2][2] = { }; int cnt[2][2] = { }; int i, j; pthread_mutex_lock(&mixer_mutex); /* get volume of all streams attached to this mixer */ pthread_mutex_lock(&mutex); list_for_each_entry(os, os_pgrp_tbl_head(mixer->pgrp), pgrp_link) { if (os->pgrp != mixer->pgrp) continue; for_each_vol(i, j) { if (os->vol[i][j] < 0) continue; vol[i][j] += os->vol[i][j]; cnt[i][j]++; } } pthread_mutex_unlock(&mutex); /* calculate the summary volume values */ for_each_vol(i, j) { if (mxcmd->set.vol[i][j] >= 0) vol[i][j] = mxcmd->set.vol[i][j]; else if (cnt[i][j]) vol[i][j] = vol[i][j] / cnt[i][j]; else if (mixer->vol[i][j] >= 0) vol[i][j] = mixer->vol[i][j]; else vol[i][j] = 100; vol[i][j] = min(max(0, vol[i][j]), 100); } if (dir >= 0) mxcmd->rvol = vol[dir][LEFT] | (vol[dir][RIGHT] << 8); pthread_mutex_unlock(&mixer_mutex); } static void mixer_simple_ioctl(fuse_req_t req, struct ossp_mixer *mixer, unsigned cmd, void *uarg, const void *in_buf, size_t in_bufsz, size_t out_bufsz, int *not_minep) { const char *id = "OSS Proxy", *name = "Mixer"; int i; switch (cmd) { case SOUND_MIXER_INFO: { struct mixer_info info = { }; PREP_UARG(NULL, &info); strncpy(info.id, id, sizeof(info.id) - 1); strncpy(info.name, name, sizeof(info.name) - 1); info.modify_counter = mixer->modify_counter; fuse_reply_ioctl(req, 0, &info, sizeof(info)); break; } case SOUND_OLD_MIXER_INFO: { struct _old_mixer_info info = { }; PREP_UARG(NULL, &info); strncpy(info.id, id, sizeof(info.id) - 1); strncpy(info.name, name, sizeof(info.name) - 1); fuse_reply_ioctl(req, 0, &info, sizeof(info)); break; } case OSS_GETVERSION: i = SNDRV_OSS_VERSION; goto puti; case SOUND_MIXER_READ_DEVMASK: case SOUND_MIXER_READ_STEREODEVS: i = SOUND_MASK_PCM | SOUND_MASK_IGAIN; goto puti; case SOUND_MIXER_READ_CAPS: i = SOUND_CAP_EXCL_INPUT; goto puti; case SOUND_MIXER_READ_RECMASK: case SOUND_MIXER_READ_RECSRC: i = SOUND_MASK_IGAIN; goto puti; puti: PREP_UARG(NULL, &i); fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SOUND_MIXER_WRITE_RECSRC: fuse_reply_ioctl(req, 0, NULL, 0); break; default: *not_minep = 1; } } static void mixer_do_ioctl(fuse_req_t req, struct ossp_mixer *mixer, unsigned cmd, void *uarg, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { struct ossp_mixer_cmd mxcmd; struct ossp_stream *os, **osa; int not_mine = 0; int slot = cmd & 0xff, dir; int nr_os; int i, rc; mixer_simple_ioctl(req, mixer, cmd, uarg, in_buf, in_bufsz, out_bufsz, ¬_mine); if (!not_mine) return; rc = -ENXIO; if (!(cmd & (SIOC_IN | SIOC_OUT))) goto err; /* * Okay, it's not one of the easy ones. Build mxcmd for * actual volume control. */ if (cmd & SIOC_IN) PREP_UARG(&i, &i); else PREP_UARG(NULL, &i); switch (slot) { case SOUND_MIXER_PCM: dir = PLAY; break; case SOUND_MIXER_IGAIN: dir = REC; break; default: i = 0; fuse_reply_ioctl(req, 0, &i, sizeof(i)); return; } init_mixer_cmd(&mxcmd, mixer); if (cmd & SIOC_IN) { unsigned l, r; rc = -EINVAL; l = i & 0xff; r = (i >> 8) & 0xff; if (l > 100 || r > 100) goto err; mixer->vol[dir][LEFT] = mxcmd.set.vol[dir][LEFT] = l; mixer->vol[dir][RIGHT] = mxcmd.set.vol[dir][RIGHT] = r; } mxcmd.out_dir = dir; /* * Apply volume conrol */ /* acquire target streams */ pthread_mutex_lock(&mutex); osa = calloc(max_streams, sizeof(osa[0])); if (!osa) { pthread_mutex_unlock(&mutex); rc = -ENOMEM; goto err; } nr_os = 0; list_for_each_entry(os, os_pgrp_tbl_head(mixer->pgrp), pgrp_link) { if (os->pgrp == mixer->pgrp) { osa[nr_os++] = os; os->refcnt++; } } pthread_mutex_unlock(&mutex); /* execute mxcmd for each stream and put it */ for (i = 0; i < nr_os; i++) { exec_mixer_cmd(&mxcmd, osa[i]); put_os(osa[i]); } finish_mixer_cmd(&mxcmd); free(osa); if (out_bufsz) fuse_reply_ioctl(req, 0, &mxcmd.rvol, sizeof(mxcmd.rvol)); else fuse_reply_ioctl(req, 0, NULL, 0); return; err: fuse_reply_err(req, -rc); } static void mixer_open(fuse_req_t req, struct fuse_file_info *fi) { pid_t pid = fuse_req_ctx(req)->pid, pgrp; struct ossp_mixer *mixer; int rc; rc = get_proc_self_info(pid, &pgrp, NULL, 0); if (rc) { err_e(rc, "get_proc_self_info(%d) failed", pid); fuse_reply_err(req, -rc); return; } mixer = get_mixer(pgrp); fi->fh = pgrp; if (mixer) fuse_reply_open(req, fi); else fuse_reply_err(req, ENOMEM); } static void mixer_ioctl(fuse_req_t req, int signed_cmd, void *uarg, struct fuse_file_info *fi, unsigned int flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { struct ossp_mixer *mixer; mixer = find_mixer(fi->fh); if (!mixer) { fuse_reply_err(req, EBADF); return; } mixer_do_ioctl(req, mixer, signed_cmd, uarg, in_buf, in_bufsz, out_bufsz); } static void mixer_release(fuse_req_t req, struct fuse_file_info *fi) { struct ossp_mixer *mixer; mixer = find_mixer(fi->fh); if (mixer) { put_mixer(mixer); fuse_reply_err(req, 0); } else fuse_reply_err(req, EBADF); } /*************************************************************************** * Stream implementation */ static int os_create_shared_memory(struct ossp_stream *os, size_t mmap_size) { int rc = 0; os->mmap_fd = -1; os->mmap_size = 0; #ifdef OSSP_MMAP if (mmap_size) { char shmname[32]; int fd; void *p; sprintf(shmname, "/ossp.%i", getpid()); fd = shm_open(shmname, O_RDWR | O_CREAT | O_EXCL | O_TRUNC, 0600); if (fd == -1) { rc = -errno; warn_ose(os, rc, "failed to open shared memory"); return rc; } rc = shm_unlink(shmname); if (rc == -1) { rc = -errno; close(fd); warn_ose(os, rc, "failed to unlink shared memory"); return rc; } rc = ftruncate(fd, mmap_size + 2*sizeof(struct ossp_transfer)); if (rc == -1) { rc = -errno; close(fd); warn_ose(os, rc, "failed to set shared memory size"); return rc; } rc = fcntl(fd, F_SETFD, 0); /* reset cloexec */ if (rc == -1) { rc = -errno; close(fd); warn_ose(os, rc, "failed to reset close-on-exec for shared memory"); return rc; } p = mmap(NULL, mmap_size + 2 * sizeof(struct ossp_transfer), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (p == MAP_FAILED) { rc = -errno; close(fd); warn_ose(os, rc, "failed to mmap shared memory"); return rc; } os->mmap_addr[PLAY] = p; os->mmap_addr[REC] = p + mmap_size / 2; os->mmap_transfer = p + mmap_size; if (sem_init(&os->mmap_transfer[PLAY].sem, 1, 0) == -1 || sem_init(&os->mmap_transfer[REC].sem, 1, 0) == -1) { rc = -errno; close(fd); munmap(p, mmap_size + 2 * sizeof(struct ossp_transfer)); warn_ose(os, rc, "failed to init shared semaphore"); return rc; } os->mmap = p; os->mmap_size = mmap_size; os->mmap_fd = fd; } #endif return rc; } static int alloc_os(size_t stream_size, size_t mmap_size, pid_t pid, uid_t pgrp, uid_t uid, gid_t gid, int cmd_sock, const int *notify, struct fuse_session *se, struct ossp_stream **osp) { struct ossp_uid_cnt *tmp_ucnt, *ucnt = NULL; struct ossp_stream *os; int rc; assert(stream_size >= sizeof(struct ossp_stream)); os = calloc(1, stream_size); if (!os) return -ENOMEM; INIT_LIST_HEAD(&os->link); INIT_LIST_HEAD(&os->pgrp_link); INIT_LIST_HEAD(&os->notify_link); os->refcnt = 1; rc = -pthread_mutex_init(&os->cmd_mutex, NULL); if (rc) goto err_free; rc = -pthread_mutex_init(&os->mmap_mutex, NULL); if (rc) goto err_destroy_cmd_mutex; pthread_mutex_lock(&mutex); list_for_each_entry(tmp_ucnt, &uid_cnt_list, link) if (tmp_ucnt->uid == uid) { ucnt = tmp_ucnt; break; } if (!ucnt) { rc = -ENOMEM; ucnt = calloc(1, sizeof(*ucnt)); if (!ucnt) goto err_unlock; ucnt->uid = uid; list_add(&ucnt->link, &uid_cnt_list); } rc = -EBUSY; if (ucnt->nr_os + 1 > umax_streams) goto err_unlock; /* everything looks fine, allocate id and init stream */ rc = -EBUSY; os->id = find_next_zero_bit(os_id_bitmap, max_streams, 0); if (os->id >= max_streams) goto err_unlock; __set_bit(os->id, os_id_bitmap); os->cmd_fd = cmd_sock; os->notify_tx = notify[1]; os->notify_rx = notify[0]; os->pid = pid; os->pgrp = pgrp; os->uid = uid; os->gid = gid; os->ucnt = ucnt; os->se = se; rc = os_create_shared_memory(os, mmap_size); if (rc) goto err_unlock; memset(os->vol, -1, sizeof(os->vol)); memset(os->vol_set, -1, sizeof(os->vol)); list_add(&os->link, os_tbl_head(os->id)); list_add(&os->pgrp_link, os_pgrp_tbl_head(os->pgrp)); ucnt->nr_os++; *osp = os; pthread_mutex_unlock(&mutex); return 0; err_unlock: pthread_mutex_unlock(&mutex); pthread_mutex_destroy(&os->mmap_mutex); err_destroy_cmd_mutex: pthread_mutex_destroy(&os->cmd_mutex); err_free: free(os); return rc; } static void shutdown_notification(struct ossp_stream *os) { struct ossp_notify obituary = { .magic = OSSP_NOTIFY_MAGIC, .opcode = OSSP_NOTIFY_OBITUARY }; ssize_t ret; /* * Shutdown notification for this stream. We politely ask * notify_poller to shut the receive side down to avoid racing * with it. */ while (os->notify_rx >= 0) { ret = write(os->notify_tx, &obituary, sizeof(obituary)); if (ret <= 0) { if (ret == 0) warn_os(os, "unexpected EOF on notify_tx"); else if (errno != EPIPE) warn_ose(os, -errno, "unexpected error on notify_tx"); close(os->notify_rx); os->notify_rx = -1; break; } if (ret != sizeof(obituary)) warn_os(os, "short transfer on notify_tx"); pthread_cond_wait(¬ify_poller_kill_wait, &mutex); } } static void put_os(struct ossp_stream *os) { if (!os) return; pthread_mutex_lock(&mutex); assert(os->refcnt); if (--os->refcnt) { pthread_mutex_unlock(&mutex); return; } os->dead = 1; shutdown_notification(os); dbg0_os(os, "DESTROY"); list_del_init(&os->link); list_del_init(&os->pgrp_link); list_del_init(&os->notify_link); os->ucnt->nr_os--; pthread_mutex_unlock(&mutex); close(os->cmd_fd); close(os->notify_tx); put_mixer(os->mixer); pthread_mutex_destroy(&os->cmd_mutex); pthread_mutex_destroy(&os->mmap_mutex); pthread_mutex_lock(&mutex); dbg1_os(os, "stream dead, requesting reaping"); list_add_tail(&os->link, &slave_corpse_list); pthread_cond_signal(&slave_reaper_wait); pthread_mutex_unlock(&mutex); } static void set_extra_env(const pid_t pid) { const char *target_vars[] = { "DISPLAY=", // Display manager "PULSE_", // PulseAudio "XDG_RUNTIME_DIR=" // Audio servers }; char *line = NULL; FILE *file; size_t size; ssize_t len; char path[32]; snprintf(path, sizeof(path), "/proc/%d/environ", pid); file = fopen(path, "r"); if (!file) return; while ((len = getdelim(&line, &size, '\0', file)) != -1) { for (uint8_t i = 0; i < ARRAY_SIZE(target_vars); ++i) { char *sign; if (strncmp(line, target_vars[i], strlen(target_vars[i])) != 0) continue; if ((sign = strchr(line, '='))) { *sign = '\0'; setenv(line, sign + 1, 1); } } } free(line); fclose(file); } static int create_os(const char *slave_path, size_t stream_size, size_t mmap_size, pid_t pid, pid_t pgrp, uid_t uid, gid_t gid, struct fuse_session *se, struct ossp_stream **osp) { static pthread_mutex_t create_mutex = PTHREAD_MUTEX_INITIALIZER; int cmd_sock[2] = { -1, -1 }; int notify_sock[2] = { -1, -1 }; struct ossp_stream *os = NULL; struct epoll_event ev = { }; int i, rc; /* * Only one thread can be creating a stream. This is to avoid * leaking unwanted fds into slaves. */ pthread_mutex_lock(&create_mutex); /* prepare communication channels */ if (socketpair(AF_UNIX, SOCK_STREAM, 0, cmd_sock) || socketpair(AF_UNIX, SOCK_STREAM, 0, notify_sock)) { rc = -errno; warn_e(rc, "failed to create slave command channel"); goto close_all; } if (fcntl(notify_sock[0], F_SETFL, O_NONBLOCK) < 0) { rc = -errno; warn_e(rc, "failed to set NONBLOCK on notify sock"); goto close_all; } /* * Alloc stream which will be responsible for all server side * resources from now on. */ rc = alloc_os(stream_size, mmap_size, pid, pgrp, uid, gid, cmd_sock[0], notify_sock, se, &os); if (rc) { warn_e(rc, "failed to allocate stream for %d", pid); goto close_all; } rc = -ENOMEM; os->mixer = get_mixer(pgrp); if (!os->mixer) goto put_os; /* * Register notification. If successful, notify_poller has * custody of notify_rx fd. */ pthread_mutex_lock(&mutex); list_add(&os->notify_link, os_notify_tbl_head(os->notify_rx)); pthread_mutex_unlock(&mutex); ev.events = EPOLLIN; ev.data.fd = notify_sock[0]; if (epoll_ctl(notify_epfd, EPOLL_CTL_ADD, notify_sock[0], &ev)) { /* * Without poller watching this notify sock, poller * shutdown sequence in shutdown_notification() can't * be used. Kill notification rx manually. */ rc = -errno; warn_ose(os, rc, "failed to add notify epoll"); close(os->notify_rx); os->notify_rx = -1; goto put_os; } /* start slave */ os->slave_pid = fork(); if (os->slave_pid < 0) { rc = -errno; warn_ose(os, rc, "failed to fork slave"); goto put_os; } if (os->slave_pid == 0) { /* child */ char id_str[2][16], fd_str[3][16]; char mmap_size_str[32]; char log_str[16], slave_path_copy[PATH_MAX]; char *argv[] = { slave_path_copy, "-u", id_str[0], "-g", id_str[1], "-c", fd_str[0], "-n", fd_str[1], "-m", fd_str[2], "-s", mmap_size_str, "-l", log_str, NULL, NULL }; struct passwd *pwd; /* drop stuff we don't need */ if (close(cmd_sock[0]) || close(notify_sock[0])) fatal_e(-errno, "failed to close server pipe fds"); clearenv(); pwd = getpwuid(os->uid); if (pwd) { setenv("LOGNAME", pwd->pw_name, 1); setenv("USER", pwd->pw_name, 1); setenv("HOME", pwd->pw_dir, 1); } /* Set extra environment variables from the caller */ set_extra_env(pid); /* prep and exec */ slave_path_copy[sizeof(slave_path_copy) - 1] = '\0'; strncpy(slave_path_copy, slave_path, sizeof(slave_path_copy) - 1); if (slave_path_copy[sizeof(slave_path_copy) - 1] != '\0') { rc = -errno; err_ose(os, rc, "slave path too long"); goto child_fail; } snprintf(id_str[0], sizeof(id_str[0]), "%d", os->uid); snprintf(id_str[1], sizeof(id_str[0]), "%d", os->gid); snprintf(fd_str[0], sizeof(fd_str[0]), "%d", cmd_sock[1]); snprintf(fd_str[1], sizeof(fd_str[1]), "%d", notify_sock[1]); snprintf(fd_str[2], sizeof(fd_str[2]), "%d", os->mmap_fd); snprintf(mmap_size_str, sizeof(mmap_size_str), "0x%zx", os->mmap_size); snprintf(log_str, sizeof(log_str), "%d", ossp_log_level); if (ossp_log_timestamp) argv[ARRAY_SIZE(argv) - 2] = "-t"; execv(slave_path, argv); rc = -errno; err_ose(os, rc, "execv failed for <%d>", pid); child_fail: _exit(1); } /* turn on CLOEXEC on all server side fds */ if (fcntl(os->cmd_fd, F_SETFD, FD_CLOEXEC) < 0 || fcntl(os->notify_tx, F_SETFD, FD_CLOEXEC) < 0 || fcntl(os->notify_rx, F_SETFD, FD_CLOEXEC) < 0) { rc = -errno; err_ose(os, rc, "failed to set CLOEXEC on server side fds"); goto put_os; } dbg0_os(os, "CREATE slave=%d %s", os->slave_pid, slave_path); dbg0_os(os, " client=%d cmd=%d:%d notify=%d:%d mmap=%d:%zu", pid, cmd_sock[0], cmd_sock[1], notify_sock[0], notify_sock[1], os->mmap_fd, os->mmap_size); close(os->mmap_fd); os->mmap_fd = -1; *osp = os; rc = 0; goto close_client_fds; put_os: put_os(os); close_client_fds: close(cmd_sock[1]); pthread_mutex_unlock(&create_mutex); return rc; close_all: for (i = 0; i < 2; i++) { close(cmd_sock[i]); close(notify_sock[i]); } pthread_mutex_unlock(&create_mutex); return rc; } static void dsp_open_common(fuse_req_t req, struct fuse_file_info *fi, struct fuse_session *se) { const struct fuse_ctx *fuse_ctx = fuse_req_ctx(req); struct ossp_dsp_open_arg arg = { }; struct ossp_stream *os = NULL; struct ossp_mixer *mixer; struct ossp_dsp_stream *dsps; struct ossp_mixer_cmd mxcmd; pid_t pgrp; ssize_t ret; ret = get_proc_self_info(fuse_ctx->pid, &pgrp, NULL, 0); if (ret) { err_e(ret, "get_proc_self_info(%d) failed", fuse_ctx->pid); goto err; } ret = create_os(dsp_slave_path, sizeof(*dsps), DSPS_MMAP_SIZE, fuse_ctx->pid, pgrp, fuse_ctx->uid, fuse_ctx->gid, se, &os); if (ret) goto err; dsps = os_to_dsps(os); mixer = os->mixer; switch (fi->flags & O_ACCMODE) { case O_WRONLY: dsps->rw |= 1 << PLAY; break; case O_RDONLY: dsps->rw |= 1 << REC; break; case O_RDWR: dsps->rw |= (1 << PLAY) | (1 << REC); break; default: assert(0); } arg.flags = fi->flags; arg.opener_pid = os->pid; ret = exec_simple_cmd(&dsps->os, OSSP_DSP_OPEN, &arg, NULL); if (ret < 0) { put_os(os); goto err; } memcpy(os->vol, mixer->vol, sizeof(os->vol)); if (os->vol[PLAY][0] >= 0 || os->vol[REC][0] >= 0) { init_mixer_cmd(&mxcmd, mixer); memcpy(mxcmd.set.vol, os->vol, sizeof(os->vol)); exec_mixer_cmd(&mxcmd, os); finish_mixer_cmd(&mxcmd); } fi->direct_io = 1; fi->nonseekable = 1; fi->fh = os->id; fuse_reply_open(req, fi); return; err: fuse_reply_err(req, -ret); } static void dsp_open(fuse_req_t req, struct fuse_file_info *fi) { dsp_open_common(req, fi, dsp_se); } static void adsp_open(fuse_req_t req, struct fuse_file_info *fi) { dsp_open_common(req, fi, adsp_se); } static void dsp_release(fuse_req_t req, struct fuse_file_info *fi) { struct ossp_stream *os; os = find_os(fi->fh); if (os) { put_os(os); fuse_reply_err(req, 0); } else fuse_reply_err(req, EBADF); } static void dsp_read(fuse_req_t req, size_t size, off_t off, struct fuse_file_info *fi) { struct ossp_dsp_rw_arg arg = { }; struct ossp_stream *os; struct ossp_dsp_stream *dsps; void *buf = NULL; ssize_t ret; ret = -EBADF; os = find_os(fi->fh); if (!os) goto out; dsps = os_to_dsps(os); ret = -EINVAL; if (!(dsps->rw & (1 << REC))) goto out; ret = -ENXIO; if (dsps->mmapped) goto out; ret = -ENOMEM; buf = malloc(size); if (!buf) goto out; arg.nonblock = (fi->flags & O_NONBLOCK) || dsps->nonblock; ret = exec_cmd(os, OSSP_DSP_READ, &arg, sizeof(arg), NULL, 0, NULL, 0, buf, &size, -1); out: if (ret >= 0) fuse_reply_buf(req, buf, size); else fuse_reply_err(req, -ret); free(buf); } static void dsp_write(fuse_req_t req, const char *buf, size_t size, off_t off, struct fuse_file_info *fi) { struct ossp_dsp_rw_arg arg = { }; struct ossp_stream *os; struct ossp_dsp_stream *dsps; ssize_t ret; ret = -EBADF; os = find_os(fi->fh); if (!os) goto out; dsps = os_to_dsps(os); ret = -EINVAL; if (!(dsps->rw & (1 << PLAY))) goto out; ret = -ENXIO; if (dsps->mmapped) goto out; arg.nonblock = (fi->flags & O_NONBLOCK) || dsps->nonblock; ret = exec_cmd(os, OSSP_DSP_WRITE, &arg, sizeof(arg), buf, size, NULL, 0, NULL, NULL, -1); out: if (ret >= 0) fuse_reply_write(req, ret); else fuse_reply_err(req, -ret); } static void dsp_poll(fuse_req_t req, struct fuse_file_info *fi, struct fuse_pollhandle *ph) { int notify = ph != NULL; unsigned revents = 0; struct ossp_stream *os; ssize_t ret; ret = -EBADF; os = find_os(fi->fh); if (!os) goto out; if (ph) { pthread_mutex_lock(&mutex); if (os->ph) fuse_pollhandle_destroy(os->ph); os->ph = ph; pthread_mutex_unlock(&mutex); } ret = exec_simple_cmd(os, OSSP_DSP_POLL, ¬ify, &revents); out: if (ret >= 0) fuse_reply_poll(req, revents); else fuse_reply_err(req, -ret); } static void dsp_ioctl(fuse_req_t req, int signed_cmd, void *uarg, struct fuse_file_info *fi, unsigned int flags, const void *in_buf, size_t in_bufsz, size_t out_bufsz) { /* some ioctl constants are long and has the highest bit set */ unsigned cmd = signed_cmd; struct ossp_stream *os; struct ossp_dsp_stream *dsps; enum ossp_opcode op; ssize_t ret; int i; ret = -EBADF; os = find_os(fi->fh); if (!os) goto err; dsps = os_to_dsps(os); /* mixer commands are allowed on DSP devices */ if (((cmd >> 8) & 0xff) == 'M') { mixer_do_ioctl(req, os->mixer, cmd, uarg, in_buf, in_bufsz, out_bufsz); return; } /* and the rest */ switch (cmd) { case OSS_GETVERSION: i = SNDRV_OSS_VERSION; PREP_UARG(NULL, &i); fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SNDCTL_DSP_GETCAPS: i = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | #ifdef OSSP_MMAP DSP_CAP_MMAP | #endif DSP_CAP_MULTI; PREP_UARG(NULL, &i); fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SNDCTL_DSP_NONBLOCK: dsps->nonblock = 1; ret = 0; fuse_reply_ioctl(req, 0, NULL, 0); break; case SNDCTL_DSP_RESET: op = OSSP_DSP_RESET; goto nd; case SNDCTL_DSP_SYNC: op = OSSP_DSP_SYNC; goto nd; case SNDCTL_DSP_POST: op = OSSP_DSP_POST; goto nd; nd: ret = exec_simple_cmd(&dsps->os, op, NULL, NULL); if (ret) goto err; fuse_reply_ioctl(req, 0, NULL, 0); break; case SOUND_PCM_READ_RATE: op = OSSP_DSP_GET_RATE; goto ri; case SOUND_PCM_READ_BITS: op = OSSP_DSP_GET_FORMAT; goto ri; case SOUND_PCM_READ_CHANNELS: op = OSSP_DSP_GET_CHANNELS; goto ri; case SNDCTL_DSP_GETBLKSIZE: op = OSSP_DSP_GET_BLKSIZE; goto ri; case SNDCTL_DSP_GETFMTS: op = OSSP_DSP_GET_FORMATS; goto ri; case SNDCTL_DSP_GETTRIGGER: op = OSSP_DSP_GET_TRIGGER; goto ri; ri: PREP_UARG(NULL, &i); ret = exec_simple_cmd(&dsps->os, op, NULL, &i); if (ret) goto err; fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SNDCTL_DSP_SPEED: op = OSSP_DSP_SET_RATE; goto wi; case SNDCTL_DSP_SETFMT: op = OSSP_DSP_SET_FORMAT; goto wi; case SNDCTL_DSP_CHANNELS: op = OSSP_DSP_SET_CHANNELS; goto wi; case SNDCTL_DSP_SUBDIVIDE: op = OSSP_DSP_SET_SUBDIVISION; goto wi; wi: PREP_UARG(&i, &i); ret = exec_simple_cmd(&dsps->os, op, &i, &i); if (ret) goto err; fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SNDCTL_DSP_STEREO: PREP_UARG(NULL, &i); i = 2; ret = exec_simple_cmd(&dsps->os, OSSP_DSP_SET_CHANNELS, &i, &i); i--; if (ret) goto err; fuse_reply_ioctl(req, 0, &i, sizeof(i)); break; case SNDCTL_DSP_SETFRAGMENT: PREP_UARG(&i, NULL); ret = exec_simple_cmd(&dsps->os, OSSP_DSP_SET_FRAGMENT, &i, NULL); if (ret) goto err; fuse_reply_ioctl(req, 0, NULL, 0); break; case SNDCTL_DSP_SETTRIGGER: PREP_UARG(&i, NULL); ret = exec_simple_cmd(&dsps->os, OSSP_DSP_SET_TRIGGER, &i, NULL); if (ret) goto err; fuse_reply_ioctl(req, 0, NULL, 0); break; case SNDCTL_DSP_GETOSPACE: case SNDCTL_DSP_GETISPACE: { struct audio_buf_info info; ret = -EINVAL; if (cmd == SNDCTL_DSP_GETOSPACE) { if (!(dsps->rw & (1 << PLAY))) goto err; op = OSSP_DSP_GET_OSPACE; } else { if (!(dsps->rw & (1 << REC))) goto err; op = OSSP_DSP_GET_ISPACE; } PREP_UARG(NULL, &info); ret = exec_simple_cmd(&dsps->os, op, NULL, &info); if (ret) goto err; fuse_reply_ioctl(req, 0, &info, sizeof(info)); break; } case SNDCTL_DSP_GETOPTR: case SNDCTL_DSP_GETIPTR: { struct count_info info; op = cmd == SNDCTL_DSP_GETOPTR ? OSSP_DSP_GET_OPTR : OSSP_DSP_GET_IPTR; PREP_UARG(NULL, &info); ret = exec_simple_cmd(&dsps->os, op, NULL, &info); if (ret) goto err; fuse_reply_ioctl(req, 0, &info, sizeof(info)); break; } case SNDCTL_DSP_GETODELAY: PREP_UARG(NULL, &i); i = 0; ret = exec_simple_cmd(&dsps->os, OSSP_DSP_GET_ODELAY, NULL, &i); fuse_reply_ioctl(req, ret, &i, sizeof(i)); /* always copy out result, 0 on err */ break; case SOUND_PCM_WRITE_FILTER: case SOUND_PCM_READ_FILTER: ret = -EIO; goto err; case SNDCTL_DSP_MAPINBUF: case SNDCTL_DSP_MAPOUTBUF: ret = -EINVAL; goto err; case SNDCTL_DSP_SETSYNCRO: case SNDCTL_DSP_SETDUPLEX: case SNDCTL_DSP_PROFILE: fuse_reply_ioctl(req, 0, NULL, 0); break; default: warn_os(os, "unknown ioctl 0x%x", cmd); ret = -EINVAL; goto err; } return; err: fuse_reply_err(req, -ret); } #ifdef OSSP_MMAP static int dsp_mmap_dir(int prot) { if (!(prot & PROT_WRITE)) return REC; return PLAY; } static int dsp_dir_to_mapid(struct ossp_stream *os, int dir) { return os->id * 2 + dir + 1; } static int dsp_mapid_to_dir(int map_id) { return (map_id - 1) & 1; } static void dsp_mmap(fuse_req_t req, uint64_t addr, size_t len, int prot, int flags, off_t offset, struct fuse_file_info *fi) { int dir = dsp_mmap_dir(prot); struct ossp_dsp_mmap_arg arg = { }; struct ossp_stream *os; struct ossp_dsp_stream *dsps; ssize_t ret; os = find_os(fi->fh); if (!os) { fuse_reply_err(req, EBADF); return; } dsps = os_to_dsps(os); if (len > os->mmap_size / 2) { fuse_reply_err(req, EINVAL); return; } pthread_mutex_lock(&os->mmap_mutex); ret = -EBUSY; if (dsps->mmapped & (1 << dir)) goto out_unlock; arg.dir = dir; arg.size = len; ret = exec_simple_cmd(os, OSSP_DSP_MMAP, &arg, NULL); if (ret == 0) dsps->mmapped |= 1 << dir; out_unlock: pthread_mutex_unlock(&os->mmap_mutex); if (ret == 0) fuse_reply_mmap(req, dsp_dir_to_mapid(os, dir), os->mmap_size / 2); else fuse_reply_err(req, -ret); } static void dsp_munmap(fuse_req_t req, uint64_t map_id, size_t length, struct fuse_file_info *fi) { struct ossp_stream *os; struct ossp_dsp_stream *dsps; int dir, rc; os = find_os(fi->fh); if (!os) goto out; dsps = os_to_dsps(os); pthread_mutex_lock(&os->mmap_mutex); dir = dsp_mapid_to_dir(map_id); if (dsp_dir_to_mapid(os, dir) != map_id || (dir != PLAY && dir != REC) || length != os->mmap_size / 2) { warn_os(os, "invalid munmap request map_id=%llu len=%zu mmapped=0x%x", (unsigned long long) map_id, length, dsps->mmapped); goto out_unlock; } rc = exec_simple_cmd(os, OSSP_DSP_MUNMAP, &dir, NULL); if (rc) warn_ose(os, rc, "MUNMAP failed for dir=%d", dir); dsps->mmapped &= ~(1 << dir); out_unlock: pthread_mutex_unlock(&os->mmap_mutex); out: fuse_reply_err(req, -rc); } static void fill_mmap_buffer(struct ossp_stream *os) { int rc; struct fuse_chan *ch = fuse_session_next_chan(os->se, NULL); unsigned mapid = dsp_dir_to_mapid(os, PLAY); size_t pos = os->mmap_transfer[PLAY].pos; size_t bytes = os->mmap_transfer[PLAY].bytes; dbg1_os(os, "fill mmap buffer pos=%zu bytes=%zu", pos, bytes); rc = fuse_lowlevel_notify_retrieve(ch, mapid, bytes, pos, os); if (rc) sem_post(&os->mmap_transfer[PLAY].sem); } static void dsp_retrieve_reply(fuse_req_t req, void *cookie, uint64_t map_id, off_t offset, struct fuse_bufvec *bufv) { struct ossp_stream *os = cookie; size_t size = fuse_buf_size(bufv); struct fuse_bufvec dest = FUSE_BUFVEC_INIT(size); ssize_t res; if (dsp_mapid_to_dir(map_id) != PLAY || dsp_dir_to_mapid(os, PLAY) != map_id || offset != os->mmap_transfer[PLAY].pos || size > os->mmap_transfer[PLAY].bytes) { warn_os(os, "invalid retrieve reply map_id=%llu offset=%llu, size=%zu", (unsigned long long) map_id, (unsigned long long) offset, size); sem_post(&os->mmap_transfer[PLAY].sem); return; } dest.buf[0].mem = os->mmap_addr[PLAY] + offset; res = fuse_buf_copy(&dest, bufv, 0); if (res < 0) warn_ose(os, res, "dsp_retrieve_reply: buffer copy"); else if ((size_t) res < size) { warn_os(os, "dsp_retrieve_reply: short buffer copy"); } if (size < os->mmap_transfer[PLAY].bytes) { os->mmap_transfer[PLAY].bytes -= size; os->mmap_transfer[PLAY].pos += size; fill_mmap_buffer(os); } else { sem_post(&os->mmap_transfer[PLAY].sem); } } static void store_mmap_buffer(struct ossp_stream *os) { int rc; struct fuse_chan *ch = fuse_session_next_chan(os->se, NULL); unsigned mapid = dsp_dir_to_mapid(os, REC); size_t pos = os->mmap_transfer[REC].pos; size_t bytes = os->mmap_transfer[REC].bytes; struct fuse_bufvec bufv = FUSE_BUFVEC_INIT(bytes); dbg1_os(os, "store mmap buffer pos=%zu bytes=%zu", pos, bytes); bufv.buf[0].mem = os->mmap_addr[REC] + pos; rc = fuse_lowlevel_notify_store(ch, mapid, pos, &bufv, 0); if (rc < 0) warn_ose(os, rc, "store_mmap_buffer: failure"); sem_post(&os->mmap_transfer[REC].sem); } #endif /*************************************************************************** * Notify poller */ static void *notify_poller(void *arg) { struct epoll_event events[1024]; int i, nfds; repeat: nfds = epoll_wait(notify_epfd, events, ARRAY_SIZE(events), -1); for (i = 0; i < nfds; i++) { int do_notify = 0; struct ossp_stream *os; struct ossp_notify notify; ssize_t ret; os = find_os_by_notify_rx(events[i].data.fd); if (!os) { err("can't find stream for notify_rx fd %d", events[i].data.fd); epoll_ctl(notify_epfd, EPOLL_CTL_DEL, events[i].data.fd, NULL); /* we don't know what's going on, don't close the fd */ continue; } while ((ret = read(os->notify_rx, ¬ify, sizeof(notify))) > 0) { if (os->dead) continue; if (ret != sizeof(notify)) { warn_os(os, "short read on notify_rx (%zu, " "expected %zu), killing the stream", ret, sizeof(notify)); os->dead = 1; break; } if (notify.magic != OSSP_NOTIFY_MAGIC) { warn_os(os, "invalid magic on notification, " "killing the stream"); os->dead = 1; break; } if (notify.opcode >= OSSP_NR_NOTIFY_OPCODES) goto unknown; dbg1_os(os, "NOTIFY %s", ossp_notify_str[notify.opcode]); switch (notify.opcode) { case OSSP_NOTIFY_POLL: do_notify = 1; break; case OSSP_NOTIFY_OBITUARY: os->dead = 1; break; case OSSP_NOTIFY_VOLCHG: pthread_mutex_lock(&mixer_mutex); os->mixer->modify_counter++; pthread_mutex_unlock(&mixer_mutex); break; #ifdef OSSP_MMAP case OSSP_NOTIFY_FILL: fill_mmap_buffer(os); break; case OSSP_NOTIFY_STORE: store_mmap_buffer(os); break; #endif default: unknown: warn_os(os, "unknown notification %d", notify.opcode); } } if (ret == 0) os->dead = 1; else if (ret < 0 && errno != EAGAIN) { warn_ose(os, -errno, "read fail on notify fd"); os->dead = 1; } if (!do_notify && !os->dead) continue; pthread_mutex_lock(&mutex); if (os->ph) { fuse_lowlevel_notify_poll(os->ph); fuse_pollhandle_destroy(os->ph); os->ph = NULL; } if (os->dead) { dbg0_os(os, "removing %d from notify poll list", os->notify_rx); epoll_ctl(notify_epfd, EPOLL_CTL_DEL, os->notify_rx, NULL); close(os->notify_rx); os->notify_rx = -1; pthread_cond_broadcast(¬ify_poller_kill_wait); } pthread_mutex_unlock(&mutex); } goto repeat; /* not reachable */ return NULL; } /*************************************************************************** * Slave corpse reaper */ static void *slave_reaper(void *arg) { struct ossp_stream *os; int status; pid_t pid; pthread_mutex_lock(&mutex); repeat: while (list_empty(&slave_corpse_list)) pthread_cond_wait(&slave_reaper_wait, &mutex); os = list_first_entry(&slave_corpse_list, struct ossp_stream, link); list_del_init(&os->link); pthread_mutex_unlock(&mutex); do { pid = waitpid(os->slave_pid, &status, 0); } while (pid < 0 && errno == EINTR); if (pid < 0) { if (errno == ECHILD) warn_ose(os, -errno, "slave %d already gone?", os->slave_pid); else fatal_e(-errno, "waitpid(%d) failed", os->slave_pid); } pthread_mutex_lock(&mutex); dbg1_os(os, "slave %d reaped", os->slave_pid); __clear_bit(os->id, os_id_bitmap); if (os->mmap_size) { sem_destroy(&os->mmap_transfer[PLAY].sem); sem_destroy(&os->mmap_transfer[REC].sem); munmap(os->mmap, os->mmap_size + 2 * sizeof(struct ossp_transfer)); close(os->mmap_fd); } free(os); goto repeat; /* not reachable */ return NULL; } /*************************************************************************** * Stuff to bind and start everything */ static void ossp_daemonize(void) { int fd, pfd[2]; pid_t pid; ssize_t ret; int err; fd = open("/dev/null", O_RDWR); if (fd >= 0) { dup2(fd, 0); dup2(fd, 1); dup2(fd, 2); if (fd > 2) close(fd); } if (pipe(pfd)) fatal_e(-errno, "failed to create pipe for init wait"); if (fcntl(pfd[0], F_SETFD, FD_CLOEXEC) < 0 || fcntl(pfd[1], F_SETFD, FD_CLOEXEC) < 0) fatal_e(-errno, "failed to set CLOEXEC on init wait pipe"); pid = fork(); if (pid < 0) fatal_e(-errno, "failed to fork for daemon"); if (pid == 0) { close(pfd[0]); init_wait_fd = pfd[1]; /* be evil, my child */ chdir("/"); setsid(); return; } /* wait for init completion and pass over success indication */ close(pfd[1]); do { ret = read(pfd[0], &err, sizeof(err)); } while (ret < 0 && errno == EINTR); if (ret == sizeof(err) && err == 0) exit(0); fatal("daemon init failed ret=%zd err=%d", ret, err); exit(1); } static void ossp_init_done(void *userdata) { /* init complete, notify parent if it's waiting */ if (init_wait_fd >= 0) { ssize_t ret; int err = 0; ret = write(init_wait_fd, &err, sizeof(err)); if (ret != sizeof(err)) fatal_e(-errno, "failed to notify init completion, " "ret=%zd", ret); close(init_wait_fd); init_wait_fd = -1; } } static const struct cuse_lowlevel_ops mixer_ops = { .open = mixer_open, .release = mixer_release, .ioctl = mixer_ioctl, }; static const struct cuse_lowlevel_ops dsp_ops = { .init_done = ossp_init_done, .open = dsp_open, .release = dsp_release, .read = dsp_read, .write = dsp_write, .poll = dsp_poll, .ioctl = dsp_ioctl, #ifdef OSSP_MMAP .mmap = dsp_mmap, .munmap = dsp_munmap, .retrieve_reply = dsp_retrieve_reply, #endif }; static const struct cuse_lowlevel_ops adsp_ops = { .open = adsp_open, .release = dsp_release, .read = dsp_read, .write = dsp_write, .poll = dsp_poll, .ioctl = dsp_ioctl, #ifdef OSSP_MMAP .mmap = dsp_mmap, .munmap = dsp_munmap, .retrieve_reply = dsp_retrieve_reply, #endif }; static const char *usage = "usage: osspd [options]\n" "\n" "options:\n" " --help print this help message\n" " --dsp=NAME DSP device name (default dsp)\n" " --dsp-maj=MAJ DSP device major number (default 14)\n" " --dsp-min=MIN DSP device minor number (default 3)\n" " --adsp=NAME Aux DSP device name (default adsp, blank to disable)\n" " --adsp-maj=MAJ Aux DSP device major number (default 14)\n" " --adsp-min=MIN Aux DSP device minor number (default 12)\n" " --mixer=NAME mixer device name (default mixer, blank to disable)\n" " --mixer-maj=MAJ mixer device major number (default 14)\n" " --mixer-min=MIN mixer device minor number (default 0)\n" " --max=MAX maximum number of open streams (default 256)\n" " --umax=MAX maximum number of open streams per UID (default --max)\n" " --exit-on-idle exit if idle\n" " --dsp-slave=PATH DSP slave (default ossp-padsp in the same dir)\n" " --log=LEVEL log level (0..6)\n" " --timestamp timestamp log messages\n" " -v increase verbosity, can be specified multiple times\n" " -f Run in foreground (don't daemonize)\n" "\n"; struct ossp_param { char *dsp_name; unsigned dsp_major; unsigned dsp_minor; char *adsp_name; unsigned adsp_major; unsigned adsp_minor; char *mixer_name; unsigned mixer_major; unsigned mixer_minor; unsigned max_streams; unsigned umax_streams; char *dsp_slave_path; unsigned log_level; int exit_on_idle; int timestamp; int fg; int help; }; #define OSSP_OPT(t, p) { t, offsetof(struct ossp_param, p), 1 } static const struct fuse_opt ossp_opts[] = { OSSP_OPT("--dsp=%s", dsp_name), OSSP_OPT("--dsp-maj=%u", dsp_major), OSSP_OPT("--dsp-min=%u", dsp_minor), OSSP_OPT("--adsp=%s", adsp_name), OSSP_OPT("--adsp-maj=%u", adsp_major), OSSP_OPT("--adsp-min=%u", adsp_minor), OSSP_OPT("--mixer=%s", mixer_name), OSSP_OPT("--mixer-maj=%u", mixer_major), OSSP_OPT("--mixer-min=%u", mixer_minor), OSSP_OPT("--max=%u", max_streams), OSSP_OPT("--umax=%u", umax_streams), OSSP_OPT("--exit-on-idle", exit_on_idle), OSSP_OPT("--dsp-slave=%s", dsp_slave_path), OSSP_OPT("--timestamp", timestamp), OSSP_OPT("--log=%u", log_level), OSSP_OPT("-f", fg), FUSE_OPT_KEY("-h", 0), FUSE_OPT_KEY("--help", 0), FUSE_OPT_KEY("-v", 1), FUSE_OPT_END }; static struct fuse_session *setup_ossp_cuse(const struct cuse_lowlevel_ops *ops, const char *name, int major, int minor, int argc, char **argv) { char name_buf[128]; const char *bufp = name_buf; struct cuse_info ci = { .dev_major = major, .dev_minor = minor, .dev_info_argc = 1, .dev_info_argv = &bufp, .flags = CUSE_UNRESTRICTED_IOCTL }; struct fuse_session *se; int fd; int multithreaded; snprintf(name_buf, sizeof(name_buf), "DEVNAME=%s", name); se = cuse_lowlevel_setup(argc, argv, &ci, ops, &multithreaded, NULL); if (!se) { err("failed to setup %s CUSE", name); return NULL; } fd = fuse_session_fd(se); if (fcntl(fd, F_SETFD, FD_CLOEXEC) < 0) { err_e(-errno, "failed to set CLOEXEC on %s CUSE fd", name); cuse_lowlevel_teardown(se); return NULL; } return se; } static void *cuse_worker(void *arg) { struct fuse_session *se = arg; int rc; rc = fuse_session_loop_mt(se, NULL); cuse_lowlevel_teardown(se); return (void *)(unsigned long)rc; } static int process_arg(void *data, const char *arg, int key, struct fuse_args *outargs) { struct ossp_param *param = data; switch (key) { case 0: fputs(usage, stderr); param->help = 1; return 0; case 1: param->log_level++; return 0; } return 1; } int main(int argc, char **argv) { static struct ossp_param param = { .dsp_name = DFL_DSP_NAME, .dsp_major = DFL_DSP_MAJOR, .dsp_minor = DFL_DSP_MINOR, .adsp_name = DFL_ADSP_NAME, .adsp_major = DFL_ADSP_MAJOR, .adsp_minor = DFL_ADSP_MINOR, .mixer_name = DFL_MIXER_NAME, .mixer_major = DFL_MIXER_MAJOR, .mixer_minor = DFL_MIXER_MINOR, .max_streams = DFL_MAX_STREAMS, }; struct fuse_args args = FUSE_ARGS_INIT(argc, argv); char path_buf[PATH_MAX], *dir; char adsp_buf[64] = "", mixer_buf[64] = ""; struct sigaction sa; struct stat stat_buf; ssize_t ret; unsigned u; snprintf(ossp_log_name, sizeof(ossp_log_name), "osspd"); param.log_level = ossp_log_level; if (fuse_opt_parse(&args, ¶m, ossp_opts, process_arg)) fatal("failed to parse arguments"); if (param.help) return 0; max_streams = param.max_streams; hashtbl_size = max_streams / 2 + 13; umax_streams = max_streams; if (param.umax_streams) umax_streams = param.umax_streams; if (param.log_level > OSSP_LOG_MAX) param.log_level = OSSP_LOG_MAX; if (!param.fg) param.log_level = -param.log_level; ossp_log_level = param.log_level; ossp_log_timestamp = param.timestamp; if (!param.fg) ossp_daemonize(); /* daemonization already handled, prevent forking inside FUSE */ fuse_opt_add_arg(&args, "-f"); info("OSS Proxy v%s", OSSP_VERSION); /* ignore stupid SIGPIPEs */ memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; if (sigaction(SIGPIPE, &sa, NULL)) fatal_e(-errno, "failed to ignore SIGPIPE"); /* determine slave path and check for availability */ ret = readlink("/proc/self/exe", path_buf, PATH_MAX - 1); if (ret < 0) fatal_e(-errno, "failed to determine executable path"); path_buf[ret] = '\0'; dir = dirname(path_buf); if (param.dsp_slave_path) { strncpy(dsp_slave_path, param.dsp_slave_path, PATH_MAX - 1); dsp_slave_path[PATH_MAX - 1] = '\0'; } else { ret = snprintf(dsp_slave_path, PATH_MAX, "%s/%s", dir, "ossp-padsp"); if (ret >= PATH_MAX) fatal("dsp slave pathname too long"); } if (stat(dsp_slave_path, &stat_buf)) fatal_e(-errno, "failed to stat %s", dsp_slave_path); if (!S_ISREG(stat_buf.st_mode) || !(stat_buf.st_mode & 0444)) fatal("%s is not executable", dsp_slave_path); /* allocate tables */ os_id_bitmap = calloc(BITS_TO_LONGS(max_streams), sizeof(long)); mixer_tbl = calloc(hashtbl_size, sizeof(mixer_tbl[0])); os_tbl = calloc(hashtbl_size, sizeof(os_tbl[0])); os_pgrp_tbl = calloc(hashtbl_size, sizeof(os_pgrp_tbl[0])); os_notify_tbl = calloc(hashtbl_size, sizeof(os_notify_tbl[0])); if (!os_id_bitmap || !mixer_tbl || !os_tbl || !os_pgrp_tbl || !os_notify_tbl) fatal("failed to allocate stream hash tables"); for (u = 0; u < hashtbl_size; u++) { INIT_LIST_HEAD(&mixer_tbl[u]); INIT_LIST_HEAD(&os_tbl[u]); INIT_LIST_HEAD(&os_pgrp_tbl[u]); INIT_LIST_HEAD(&os_notify_tbl[u]); } __set_bit(0, os_id_bitmap); /* don't use id 0 */ /* create mixer delayed reference worker */ ret = -pthread_create(&mixer_delayed_put_thread, NULL, mixer_delayed_put_worker, NULL); if (ret) fatal_e(ret, "failed to create mixer delayed put worker"); /* if exit_on_idle, touch mixer for pgrp0 */ exit_on_idle = param.exit_on_idle; if (exit_on_idle) { struct ossp_mixer *mixer; mixer = get_mixer(0); if (!mixer) fatal("failed to touch idle mixer"); put_mixer(mixer); } /* create notify epoll and kick off watcher thread */ notify_epfd = epoll_create(max_streams); if (notify_epfd < 0) fatal_e(-errno, "failed to create notify epoll"); if (fcntl(notify_epfd, F_SETFD, FD_CLOEXEC) < 0) fatal_e(-errno, "failed to set CLOEXEC on notify epfd"); ret = -pthread_create(¬ify_poller_thread, NULL, notify_poller, NULL); if (ret) fatal_e(ret, "failed to create notify poller thread"); /* create reaper for slave corpses */ ret = -pthread_create(&slave_reaper_thread, NULL, slave_reaper, NULL); if (ret) fatal_e(ret, "failed to create slave reaper thread"); /* we're set, let's setup fuse structures */ if (strlen(param.mixer_name)) mixer_se = setup_ossp_cuse(&mixer_ops, param.mixer_name, param.mixer_major, param.mixer_minor, args.argc, args.argv); if (strlen(param.adsp_name)) adsp_se = setup_ossp_cuse(&adsp_ops, param.adsp_name, param.adsp_major, param.adsp_minor, args.argc, args.argv); dsp_se = setup_ossp_cuse(&dsp_ops, param.dsp_name, param.dsp_major, param.dsp_minor, args.argc, args.argv); if (!dsp_se) fatal("can't create dsp, giving up"); if (mixer_se) snprintf(mixer_buf, sizeof(mixer_buf), ", %s (%d:%d)", param.mixer_name, param.mixer_major, param.mixer_minor); if (adsp_se) snprintf(adsp_buf, sizeof(adsp_buf), ", %s (%d:%d)", param.adsp_name, param.adsp_major, param.adsp_minor); info("Creating %s (%d:%d)%s%s", param.dsp_name, param.dsp_major, param.dsp_minor, adsp_buf, mixer_buf); /* start threads for mixer and adsp */ if (mixer_se) { ret = -pthread_create(&cuse_mixer_thread, NULL, cuse_worker, mixer_se); if (ret) err_e(ret, "failed to create mixer worker"); } if (adsp_se) { ret = -pthread_create(&cuse_adsp_thread, NULL, cuse_worker, adsp_se); if (ret) err_e(ret, "failed to create adsp worker"); } /* run CUSE for /dev/dsp in the main thread */ ret = (ssize_t)cuse_worker(dsp_se); if (ret < 0) fatal("dsp worker failed"); return 0; } ossp-1.3.3/osstest.c000066400000000000000000000127761466466245500144110ustar00rootroot00000000000000/* Simple oss testsuite * * This file is released under the GPLv2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define MIXERDEV "/dev/mixer" #define DSPDEV "/dev/dsp" /* Test macros */ static int errors, success; static int report_success = 1; #define ok(a, b, c...) do { \ if (!(a)) { \ fprintf(stderr, "%s@%d test failed (%s): " b "\n", __func__, __LINE__, #a, ##c); \ ++errors; \ } else { \ if (report_success) \ printf("%s@%d test succeeded (%s)\n", __func__, __LINE__, #a); \ ++success; \ } } while (0) static int mixerfd, dspfd; static int reopen(int blocking) { close(dspfd); if (!blocking) blocking = O_NDELAY; else blocking = 0; dspfd = open(DSPDEV, O_RDWR|blocking); return dspfd; } static void test_ro(int fd) { int ret; char buf[1024]; struct audio_buf_info abi; memset(buf, 0, sizeof(buf)); ret = read(fd, buf, sizeof(buf)); ok(ret >= 0, "%s", strerror(errno)); ret = write(fd, buf, sizeof(buf)); ok(ret < 0, "read %d bytes", ret); ret = ioctl(fd, SNDCTL_DSP_GETISPACE, &abi); ok(ret >= 0, "%s", strerror(errno)); ret = ioctl(fd, SNDCTL_DSP_GETOSPACE, &abi); ok(ret < 0, "%s", strerror(errno)); if (ret < 0) ok(errno == EINVAL, "Invalid errno: %s", strerror(errno)); } static void test_wo(int fd) { int ret; char buf[1024]; struct audio_buf_info abi; memset(buf, 0, sizeof(buf)); ret = read(fd, buf, sizeof(buf)); ok(ret < 0, "read %d bytes", ret); ret = write(fd, buf, sizeof(buf)); ok(ret >= 0, "%s", strerror(errno)); ret = ioctl(fd, SNDCTL_DSP_GETISPACE, &abi); ok(ret < 0, "%s", strerror(errno)); if (ret < 0) ok(errno == EINVAL, "Invalid errno: %s", strerror(errno)); ret = ioctl(fd, SNDCTL_DSP_GETOSPACE, &abi); ok(ret >= 0, "%s", strerror(errno)); } static void test_rw(int fd) { int ret; char buf[1024]; struct audio_buf_info abi; memset(buf, 0, sizeof(buf)); ret = read(fd, buf, sizeof(buf)); ok(ret >= 0, "%s", strerror(errno)); ret = write(fd, buf, sizeof(buf)); ok(ret >= 0, "%s", strerror(errno)); ret = ioctl(fd, SNDCTL_DSP_GETISPACE, &abi); ok(ret >= 0, "%s", strerror(errno)); ret = ioctl(fd, SNDCTL_DSP_GETOSPACE, &abi); ok(ret >= 0, "%s", strerror(errno)); } static void test_open(void) { int ro_fd, rw_fd, wo_fd; mixerfd = open(MIXERDEV, O_RDONLY|O_NDELAY); ok(mixerfd >= 0, "%s", strerror(errno)); /* In order to make this work it has to be serialized * alsa's kernel emulation can only have device open once * so do some specific smokescreen tests here * and then open dsp for testing */ ro_fd = open(DSPDEV, O_RDONLY); ok(ro_fd >= 0, "%s", strerror(errno)); if (ro_fd >= 0) test_ro(ro_fd); close(ro_fd); wo_fd = open(DSPDEV, O_WRONLY); ok(wo_fd >= 0, "%s", strerror(errno)); if (wo_fd >= 0) test_wo(wo_fd); close(wo_fd); rw_fd = open(DSPDEV, O_RDWR); ok(rw_fd >= 0, "%s", strerror(errno)); if (rw_fd >= 0) test_rw(rw_fd); dspfd = rw_fd; } static void test_mixer(void) { int ret; struct mixer_info info; memset(&info, 0, sizeof(info)); ret = ioctl(mixerfd, SOUND_MIXER_INFO, &info); ok(ret >= 0, "%s", strerror(errno)); if (ret >= 0) { printf("Mixer id: %s\n", info.id); printf("Name: %s\n", info.name); } } static void test_trigger(int fd) { int ret, i; ret = ioctl(fd, SNDCTL_DSP_GETTRIGGER, &i); ok(ret == 0, "Returned error %s", strerror(errno)); ok(i == (PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT), "i is set to %d", i); i = 0; ret = ioctl(fd, SNDCTL_DSP_SETTRIGGER, &i); ok(ret == 0, "Returned error %s", strerror(errno)); ok(i == 0, "Wrong i returned"); i = PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT; ret = ioctl(fd, SNDCTL_DSP_SETTRIGGER, &i); ok(ret == 0, "Returned error %s", strerror(errno)); ok(i == (PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT), "i has value %d", i); ret = ioctl(fd, SNDCTL_DSP_POST, NULL); ok(ret == 0, "Returned error %s", strerror(errno)); } static void test_mmap(int fd) { char *area; int ret; char buf[24]; area = mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); ok(area != MAP_FAILED, "Failed to map: %s\n", strerror(errno)); if (area == MAP_FAILED) return; ret = write(fd, &buf, sizeof(buf)); ok(ret == -1, "write after mmap returned %i\n", ret); if (ret == -1) ok(errno == ENXIO, "Error returned is %s\n", strerror(errno)); munmap(area, 8192); } static void test_notify(int fd) { struct audio_buf_info bi; char *bytes = NULL; int ret, written; struct pollfd pfd = { fd, POLLOUT }; int rounds = 20; ioctl(fd, SNDCTL_DSP_GETOSPACE, &bi); bytes = calloc(1, bi.fragsize); written = 0; ok(0, "Fragsize: %i, bytes: %i\n", bi.fragsize, bi.bytes); while (written + bi.fragsize - 1 < bi.bytes) { ret = write(fd, bytes, bi.fragsize); ok(ret == bi.fragsize, "Returned: %i instead of %i\n", ret, bi.fragsize); if (ret > 0) written += ret; }; while (rounds--) { ret = poll(&pfd, 1, -1); ok(ret > 0, "Poll returned %i\n", ret); if (ret < 0) break; ret = write(fd, bytes, bi.fragsize); if (ret < 0) ret = -errno; ok(ret == bi.fragsize, "Returned: %i instead of %i\n", ret, bi.fragsize); } } int main() { test_open(); if (mixerfd >= 0) test_mixer(); if (reopen(1) >= 0) test_trigger(dspfd); if (reopen(0) >= 0) test_notify(dspfd); if (reopen(1) >= 0) test_mmap(dspfd); close(mixerfd); close(dspfd); printf("Tests: %d errors %d success\n", errors, success); return errors > 127 ? 127 : errors; }