pax_global_header 0000666 0000000 0000000 00000000064 14475172214 0014521 g ustar 00root root 0000000 0000000 52 comment=2218709b97a11ec87bacddae354aa682e483626b
pplpy-0.8.9/ 0000775 0000000 0000000 00000000000 14475172214 0012703 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/.github/ 0000775 0000000 0000000 00000000000 14475172214 0014243 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/.github/workflows/ 0000775 0000000 0000000 00000000000 14475172214 0016300 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/.github/workflows/doc.yml 0000664 0000000 0000000 00000003142 14475172214 0017570 0 ustar 00root root 0000000 0000000 name: Documentation
on:
push: { branches: [ "master" ] }
pull_request: { branches: [ "master" ] }
concurrency:
group: doc-${{ github.ref }}
cancel-in-progress: true
jobs:
build-manual:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with: { submodules: recursive }
- uses: conda-incubator/setup-miniconda@v2
with: { miniforge-variant: "Mambaforge", miniforge-version: "latest" }
- name: Install pplpy dependencies
shell: bash -l {0}
run: |
mamba env update --quiet -n test -f environment.yml
conda list
- name: Install pplpy
shell: bash -l {0}
run: |
pip install --verbose --no-index --no-build-isolation .
- name: Install test dependencies
run: |
mamba env update --quiet -n test -f environment.test.yml
conda list
- name: Build documentation
shell: bash -l {0}
run:
sphinx-build docs/source html/pplpy
- name: Detect broken links
shell: bash -l {0}
run: |
python -m http.server 8880 --directory html &
sleep 1
# We ignore _modules since sphinx puts all modules in the module
# overview but does not generate pages for .pyx modules.
linkchecker --check-extern --ignore-url=_modules/ http://localhost:8880
- uses: JamesIves/github-pages-deploy-action@3.7.1
with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
BRANCH: gh-pages
FOLDER: html/pplpy/
TARGET_FOLDER: docs/
if: ${{ github.event_name == 'push' }}
pplpy-0.8.9/.github/workflows/test.yml 0000664 0000000 0000000 00000002605 14475172214 0020005 0 ustar 00root root 0000000 0000000 name: Test
on:
push: { branches: [ "master" ] }
pull_request: { branches: [ "master" ] }
concurrency:
group: test-${{ github.ref }}
cancel-in-progress: true
jobs:
test:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
cython: ["cython", "cython<3.0.0"]
steps:
- uses: actions/checkout@v2
with: { submodules: recursive }
- uses: conda-incubator/setup-miniconda@v2
with: { miniforge-variant: "Mambaforge", miniforge-version: "latest", python-version: "${{matrix.python-version}}" }
- name: Install pplpy dependencies
shell: bash -l {0}
run: |
mamba install --quiet setuptools gmpy2 cysignals ppl "${{matrix.cython}}"
conda list
- name: Install pplpy
shell: bash -l {0}
run: |
pip install --verbose --no-index --no-build-isolation .
- name: Install test dependencies
run: |
mamba env update --quiet -n test -f environment.test.yml
conda list
- name: Linter
shell: bash -l {0}
run: |
cython-lint --ignore=E265,E266,E501,E741 --exclude='ppl_decl.pxd' ppl/
- name: Run tests
shell: bash -l {0}
run: |
python setup.py test
- name: Show logs
run: grep "" /dev/null `find -name '*.log'` || true
if: ${{ always() }}
pplpy-0.8.9/.gitignore 0000664 0000000 0000000 00000000246 14475172214 0014675 0 ustar 00root root 0000000 0000000 build/*
ppl.so
ppl/*.c
ppl/*.cpp
ppl/*.so
ppl/cygmp/*.c
ppl/cygmp/*.cpp
ppl/cygmp/*.so
*.so
*.o
*.pyc
*.c
*.cpp
*.swp
dist/
pplpy.egg-info/
docs/build/
.idea/*
/.tox
pplpy-0.8.9/.gitlab-ci.yml 0000664 0000000 0000000 00000001476 14475172214 0015347 0 ustar 00root root 0000000 0000000 image: ubuntu:20.04
before_script:
- export DEBIAN_FRONTEND=noninteractive # avoid tzdata interactive configuration
- apt-get -qq update
- apt-get install -y apt-utils git libgmp-dev libmpfr-dev libmpc-dev libppl-dev $PKGS
- $PYTHON --version
# NOTE: currently it seems not possible to build the sdist without manually installing
# dependencies. pyproject.toml is ignored by the call to 'setup.py sdist' below and the
# install_requires of setuptools is broken with Cython.
- $PYTHON -m pip install "gmpy2>=2.1.0b1"
- $PYTHON setup.py sdist
- $PYTHON -m pip -v install dist/pplpy-*.tar.gz
python3:
stage: test
variables:
PYTHON: python3
PKGS: python3 python3-dev python3-pip python3-setuptools python3-wheel python3-sphinx cython3 python3-cysignals-bare
script:
- $PYTHON setup.py test
- make -w -C docs html
pplpy-0.8.9/CHANGES.txt 0000664 0000000 0000000 00000002112 14475172214 0014510 0 ustar 00root root 0000000 0000000 v0.8, 2019/01/18
- switch from github to gitlab
- some more support for PPL objects: permute_space_dimensions, Bit_Row,
Bit_Matrix
- upgrade gmpy2 version dependency
- add pyproject.toml and setup.cfg files
- remove the OK functions which caused trouble for clang on FreeBSD
- switch back to github under SageMath organization
- fast initialization of Linear_Expression from list/dict
- CI (test, linter, doc build and deployment)
- add a Cython pool for ppl.Variable
- support for congruences
v0.7, 2017/11/24
- use of gmpy2 for integers and rationals (Vincent Delecroix/Vincent Klein)
- tests on travis (Vincent Delecroix/Vincent Klein)
- fixes in install scripts (Vincent Delecroix)
- port some upgrades from Sage (Vincent Klein)
- split in several Cython files (Vincent Klein)
- adding widening (Jesús Doménech)
v0.6, 2016/01/17 -- distribution bug fixes
v0.5, 2016/01/17 -- bug fixes
v0.4, 2016/01/16 -- iterator for MIP_Problem
v0.3, 2016/01/16 -- Reworked documentation
v0.2, 2016/01/16 -- Fix build
v0.1, 2016/01/16 -- Initial release
pplpy-0.8.9/LICENSE.txt 0000664 0000000 0000000 00000104513 14475172214 0014532 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
pplpy-0.8.9/MANIFEST.in 0000664 0000000 0000000 00000000555 14475172214 0014446 0 ustar 00root root 0000000 0000000 include README.rst LICENSE.txt CHANGES.txt pyproject.toml setup.py setup.cfg tox.ini
recursive-include ppl *.pxd *.pyx *.py
recursive-include tests *.pyx *.py
include ppl/ppl_shim.cc
include ppl/ppl_shim.hh
include docs/Makefile
include docs/source/conf.py
include docs/source/index.rst
recursive-exclude ppl *.so *.c *.cpp
recursive-exclude tests *.so *.c *.cpp
pplpy-0.8.9/README.rst 0000664 0000000 0000000 00000006717 14475172214 0014405 0 ustar 00root root 0000000 0000000 PPL Python wrapper
==================
This Python package provides a wrapper to the C++ `Parma Polyhedra Library
(PPL) `_.
The whole package started as a fork of a tiny part of the `Sage
`_ software.
How it works
------------
The names of objects and methods are the same as in the library:
.. code:: python
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> z = ppl.Variable(2)
>>> cs = ppl.Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(y >= 0)
>>> cs.insert(z >= 0)
>>> cs.insert(x + y + z == 1)
>>> poly = ppl.C_Polyhedron(cs)
>>> poly.minimized_generators()
Generator_System {point(1/1, 0/1, 0/1), point(0/1, 1/1, 0/1), point(0/1, 0/1, 1/1)}
The available objects and functions from the `ppl` Python module are:
- `Variable`, `Variables_Set`, `Linear_Expression` (defined in `ppl.linear_algebra`)
- `MIP_Problem` (defined in `ppl.mip_problem`)
- `C_Polyhedron`, `NNC_Polyhedron` (defined in `ppl.polyhedron`)
- `Generator`, `Generator_System`, `Poly_Gen_Relation`, `point`,
`closure_point`, `ray`, `line` (defined in `ppl.generator`)
- `Constraint`, `Constraint_System`, `Poly_Con_Relation`,
`inequality`, `equation`, `strict_inequality` (defined in `ppl.constraint`)
Installation
------------
The project is available at `Python Package Index `_ and
can be installed with pip::
$ pip install pplpy
Note that if you have gmp and ppl installed in a non standard directory (e.g. you use brew
on MacOSX) then you need to set appropriately the variables `CFLAGS` before calling `pip`. For
example::
$ export CFLAGS="-I/path/to/gmp/include/ -L/path/to/gmp/lib/ -I/path/to/ppl/include/ -L/path/to/ppl/lib $CFLAGS"
$ pip install pplpy
Using from Cython
-----------------
All Python classes from pplpy are extension types and can be used with Cython. Each
extension type carries an attribute `thisptr` that holds a pointer to
the corresponding C++ object from ppl.
A complete example is provided with the files `tests/testpplpy.pyx` and `tests/setup.py`.
Source
------
You can find the latest version of the source code on github:
https://github.com/sagemath/pplpy
Documentation
-------------
An online version of the documentation is available at https://www.sagemath.org/pplpy/
Compiling the html documentation requires make and `sphinx `_.
Before building the documentation, you need to install the pplpy package (sphinx uses Python introspection).
The documentation source code is contained in the repository `docs` where there is a standard
Makefile with a target `html`. Running `make html` in the `docs` repository builds the documentation
inside `docs/build/html`. For more configuration options, run `make help`.
License
-------
pplpy is distributed under the terms of the GNU General Public License (GPL)
published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version. See http://www.gnu.org/licenses/.
Requirements
------------
- `PPL `_
- `Cython `_ (tested with both 0.29 and 3.0)
- `cysignals `_
- `gmpy2 `_
On Debian/Ubuntu systems the dependencies can be installed with::
$ sudo apt-get install libgmp-dev libmpfr-dev libmpc-dev libppl-dev cython3 python3-gmpy2 python3-cysignals-pari
pplpy-0.8.9/docs/ 0000775 0000000 0000000 00000000000 14475172214 0013633 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/docs/Makefile 0000664 0000000 0000000 00000001222 14475172214 0015270 0 ustar 00root root 0000000 0000000 # Minimal makefile for Sphinx documentation
# NOTE: we removed the shortcut $(O) for passing options to
# sphinx-build as this is undocummented and sometimes
# confusing.
# You can set these variables from the command line.
SPHINXBUILD = sphinx-build
SPHINXPROJ = pplpy
SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option.
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS)
pplpy-0.8.9/docs/source/ 0000775 0000000 0000000 00000000000 14475172214 0015133 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/docs/source/conf.py 0000664 0000000 0000000 00000013752 14475172214 0016442 0 ustar 00root root 0000000 0000000 # -*- coding: utf-8 -*-
#
# pplpy documentation build configuration file
#
import sys
import os
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#sys.path.insert(0, os.path.abspath('/home/vincent/programming/ppl/'))
# -- General configuration ------------------------------------------------
# Sphinx extension modules
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.intersphinx',
'sphinx.ext.todo',
'sphinx.ext.coverage',
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode',
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'pplpy'
copyright = u'2016, Vincent Delecroix'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
import configparser
config = configparser.ConfigParser(allow_no_value=True)
try:
with open("../../setup.cfg", encoding='utf-8') as f:
config.read_string(f.read())
except TypeError:
# NOTE: encoding is not a keyword in Python 2
with open("../../setup.cfg") as f:
config.read_string(f.read().decode('utf-8'))
version = release = config['metadata']['version']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# If true, keep warnings as "system message" paragraphs in the built documents.
#keep_warnings = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = 'default'
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
#html_logo = None
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
#html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
# html_static_path = ['_static']
# Add any extra paths that contain custom files (such as robots.txt or
# .htaccess) here, relative to this directory. These files are copied
# directly to the root of the documentation.
#html_extra_path = []
# If false, no module index is generated.
#html_domain_indices = True
# If false, no index is generated.
#html_use_index = True
# If true, the index is split into individual pages for each letter.
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = 'pplpydoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
'papersize': 'a4paper',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
('index', 'pplpy.tex', u'pplpy Documentation',
u'Vincent Delecroix', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#latex_use_parts = False
# If true, show page references after internal links.
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# If false, no module index is generated.
#latex_domain_indices = True
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
('index', 'pplpy', u'pplpy Documentation',
[u'Vincent Delecroix'], 1)
]
# If true, show URL addresses after external links.
#man_show_urls = False
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
('index', 'pplpy', u'pplpy Documentation',
u'Vincent Delecroix', 'pplpy', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
#texinfo_appendices = []
# If false, no module index is generated.
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
#texinfo_show_urls = 'footnote'
# If true, do not generate a @detailmenu in the "Top" node's menu.
#texinfo_no_detailmenu = False
pplpy-0.8.9/docs/source/index.rst 0000664 0000000 0000000 00000006241 14475172214 0016777 0 ustar 00root root 0000000 0000000 .. pplpy documentation master file
Welcome to pplpy's documentation!
=================================
Installation
------------
pplpy is available from the `Python Package Index `_. You can hence install it with::
$ pip install pplpy
The code source can be obtained from `github `_::
$ git clone https://github.com/sagemath/pplpy.git
Introduction
------------
.. automodule:: ppl
Using in Cython
---------------
All types from ppl are extension types and can be used with Cython. The following is a
short sample of Cython code using pplpy::
from ppl.linear_algebra cimport Variable
from ppl.constraint cimport Constraint_System
from ppl.polyhedron cimport C_Polyhedron
cdef Variable x = ppl.Variable(0)
cdef Variable y = ppl.Variable(1)
cdef Variable z = ppl.Variable(2)
cdef Constraint_System cs = Constraint_System()
cs.insert(x >= 0)
cs.insert(y >= 0)
cs.insert(x + y + z == 1)
cdef C_Polyhedron poly = C_Polyhedron(cs)
print(poly.minimized_generators())
Each extension type carries an attribute ``thisptr`` that holds a pointer to
the corresponding C++ object from ppl. Continuing the above example, one can
do::
print('dim = %lu' % poly.thisptr.space_dimension())
To avoid name collisions, the original C++ class names are prefixed with
``PPL_``, for example, the original ``Linear_Expression`` becomes
``PPL_Linear_Expression``. The Python wrapper has the same name as the original
library class, that is, just ``Linear_Expression``. All ``ppl`` declarations
are done in the ``.pxd`` file ``ppl/ppl_decl.pxd``. Only few functionalities
from ``ppl`` are exposed in ``ppl_decl.pxd``. It is also preferable to avoid
mixing C++ ``ppl`` objects with Cython ``pplpy`` extension types.
To compile a Cython extension using pplpy you need to:
- add the path of your pplpy installation to ``include_dirs``
- link with the ``ppl`` library
Here is a minimal example of a ``setup.py`` file for a unique Cython file
called ``test.pyx``::
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
import ppl
extensions = [
Extension("test", ["test.pyx"], libraries=['ppl'], include_dirs=ppl.__path__, language='c++')
]
setup(ext_modules=cythonize(extensions))
Module `ppl.constraint`
-----------------------
.. automodule:: ppl.constraint
:members:
:undoc-members:
:show-inheritance:
Module `ppl.linear_algebra`
---------------------------
.. automodule:: ppl.linear_algebra
:members:
:undoc-members:
:show-inheritance:
Module `ppl.generator`
----------------------
.. automodule:: ppl.generator
:members:
:undoc-members:
:show-inheritance:
Module `ppl.polyhedron`
-----------------------
.. automodule:: ppl.polyhedron
:members:
:undoc-members:
:show-inheritance:
Module `ppl.mip_problem`
------------------------
.. automodule:: ppl.mip_problem
:members:
:undoc-members:
:show-inheritance:
Module `ppl.congruence`
-----------------------
.. automodule:: ppl.congruence
:members:
:undoc-members:
:show-inheritance:
pplpy-0.8.9/environment.test.yml 0000664 0000000 0000000 00000000177 14475172214 0016755 0 ustar 00root root 0000000 0000000 name: pplpy-test
channels:
- conda-forge
- defaults
dependencies:
- sphinx
- pip:
- linkchecker
- cython-lint
pplpy-0.8.9/environment.yml 0000664 0000000 0000000 00000000201 14475172214 0015763 0 ustar 00root root 0000000 0000000 name: pplpy-build
channels:
- conda-forge
- defaults
dependencies:
- setuptools
- gmpy2
- cysignals
- cython
- ppl
pplpy-0.8.9/ppl/ 0000775 0000000 0000000 00000000000 14475172214 0013476 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/ppl/__init__.py 0000664 0000000 0000000 00000011711 14475172214 0015610 0 ustar 00root root 0000000 0000000 r"""
Cython wrapper for the Parma Polyhedra Library (PPL)
The Parma Polyhedra Library (PPL) is a library for polyhedral computations over
the rationals. This interface tries to reproduce the C++ API as faithfully as possible
in Python. For example, the following C++ excerpt:
.. code-block:: c++
Variable x(0);
Variable y(1);
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron poly_from_constraints(cs);
translates into:
>>> from ppl import Variable, Constraint_System, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(x <= 3)
>>> cs.insert(y >= 0)
>>> cs.insert(y <= 3)
>>> poly_from_constraints = C_Polyhedron(cs)
The same polyhedron constructed from generators:
>>> from ppl import Variable, Generator_System, C_Polyhedron, point
>>> gs = Generator_System()
>>> gs.insert(point(0*x + 0*y))
>>> gs.insert(point(0*x + 3*y))
>>> gs.insert(point(3*x + 0*y))
>>> gs.insert(point(3*x + 3*y))
>>> poly_from_generators = C_Polyhedron(gs)
Rich comparisons test equality/inequality and strict/non-strict
containment:
>>> poly_from_generators == poly_from_constraints
True
>>> poly_from_generators >= poly_from_constraints
True
>>> poly_from_generators < poly_from_constraints
False
>>> poly_from_constraints.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 3/1), point(3/1, 0/1), point(3/1, 3/1)}
>>> poly_from_constraints.minimized_constraints()
Constraint_System {-x0+3>=0, -x1+3>=0, x0>=0, x1>=0}
As we see above, the library is generally easy to use. There are a few
pitfalls that are not entirely obvious without consulting the
documentation, in particular:
* There are no vectors used to describe :class:`Generator` (points,
closure points, rays, lines) or :class:`Constraint` (strict
inequalities, non-strict inequalities, or equations). Coordinates
are always specified via linear polynomials in :class:`Variable`
* All coordinates of rays and lines as well as all coefficients of
constraint relations are (arbitrary precision) integers. Only the
generators :func:`point` and :func:`closure_point` allow one to
specify an overall divisor of the otherwise integral
coordinates. For example:
>>> from ppl import Variable, point
>>> x = Variable(0); y = Variable(1)
>>> p = point( 2*x+3*y, 5 ); p
point(2/5, 3/5)
>>> p.coefficient(x)
mpz(2)
>>> p.coefficient(y)
mpz(3)
>>> p.divisor()
mpz(5)
* PPL supports (topologically) closed polyhedra
(:class:`C_Polyhedron`) as well as not necessarily closed polyhedra
(:class:`NNC_Polyhedron`). Only the latter allows closure points
(=points of the closure but not of the actual polyhedron) and strict
inequalities (``>`` and ``<``)
The naming convention for the C++ classes is that they start with
``PPL_``, for example, the original ``Linear_Expression`` becomes
``PPL_Linear_Expression``. The Python wrapper has the same name as the
original library class, that is, just ``Linear_Expression``. In short:
* If you are using the Python wrapper (if in doubt: that's you), then
you use the same names as the PPL C++ class library.
* If you are writing your own Cython code, you can access the
underlying C++ classes by adding the prefix ``PPL_``.
Finally, PPL is fast. For example, here is the permutahedron of 5
basis vectors:
>>> from ppl import Variable, Generator_System, point, C_Polyhedron
>>> basis = range(0,5)
>>> x = [ Variable(i) for i in basis ]
>>> gs = Generator_System();
>>> from itertools import permutations
>>> for coeff in permutations(basis):
... gs.insert(point( sum( (coeff[i]+1)*x[i] for i in basis ) ))
>>> C_Polyhedron(gs)
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 points
DIFFERENCES VS. C++
Since Python and C++ syntax are not always compatible, there are
necessarily some differences. The main ones are:
* The :class:`Linear_Expression` also accepts an iterable as input for
the homogeneous coefficients.
AUTHORS:
- Volker Braun (2010): initial version (within Sage).
- Risan (2012): extension for MIP_Problem class (within Sage)
- Vincent Delecroix (2016-2020): convert Sage files into a standalone Python package,
interface bit_array, interface congruence
- Vincent Klein (2017): improve doctest support and Python 3 compatibility
Split the main code into several files.
Remove the _mutable_immutable class.
"""
from .linear_algebra import (
Variable, Variables_Set, Linear_Expression,
)
from .mip_problem import MIP_Problem
from .polyhedron import C_Polyhedron, NNC_Polyhedron
from .generator import Generator, Generator_System, Poly_Gen_Relation
line = Generator.line
point = Generator.point
ray = Generator.ray
closure_point = Generator.closure_point
from .constraint import (
Constraint, Constraint_System, Poly_Con_Relation,
inequality, equation, strict_inequality)
from .congruence import Congruence, Congruence_System
from .bit_arrays import Bit_Row, Bit_Matrix
pplpy-0.8.9/ppl/bit_arrays.pxd 0000664 0000000 0000000 00000000225 14475172214 0016351 0 ustar 00root root 0000000 0000000 from .ppl_decl cimport *
cdef class Bit_Row(object):
cdef PPL_Bit_Row *thisptr
cdef class Bit_Matrix(object):
cdef PPL_Bit_Matrix *thisptr
pplpy-0.8.9/ppl/bit_arrays.pyx 0000664 0000000 0000000 00000010244 14475172214 0016400 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp ppl m
#*****************************************************************************
# Copyright (C) 2018 Vincent Delecroix
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from libc.limits cimport ULONG_MAX
from .ppl_decl cimport PPL_Bit_Row
cdef class Bit_Row(object):
r"""
A bit row
This can be considered as a subset of the non-negative integers (with
upper bound the maximum value ``ULONG_MAX`` that fits in an
``unsigned long``).
"""
def __cinit__(self):
self.thisptr = new PPL_Bit_Row()
def __dealloc__(self):
del self.thisptr
def __repr__(self):
r"""
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r
{}
>>> r.set(2); r.set(12)
>>> r
{2, 12}
"""
cdef list l = []
cdef unsigned long k = self.thisptr.first()
while k != ULONG_MAX:
l.append(str(k))
k = self.thisptr.next(k)
return "{" + ", ".join(l) + "}"
def __hash__(self):
r"""
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> hash(r)
Traceback (most recent call last):
...
TypeError: Bit_Row unhashable
"""
raise TypeError("Bit_Row unhashable")
def set(self, unsigned long k):
r"""
Set the bit in position ``k``
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.set(2); r.set(34); r.set(12)
>>> r
{2, 12, 34}
>>> r.set(22)
>>> r
{2, 12, 22, 34}
"""
self.thisptr.set(k)
def set_until(self, unsigned long k):
r"""
Set bits up to position ``k`` (excluded)
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.set_until(5)
>>> r
{0, 1, 2, 3, 4}
"""
self.thisptr.set_until(k)
def clear_from(self, unsigned long k):
r"""
Clear bits from position ``k`` (included) onward
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.set_until(10)
>>> r.clear_from(5)
>>> r
{0, 1, 2, 3, 4}
"""
self.thisptr.clear_from(k)
def clear(self):
r"""
Clear all the bits of the row
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.set(1); r.set(3)
>>> r
{1, 3}
>>> r.clear()
>>> r
{}
"""
self.thisptr.clear()
def first(self):
r"""
Return the index of the first set bit or ``-1`` if no bit is set.
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.first() == -1
True
>>> r.set(127)
>>> r.first() == 127
True
>>> r.set(2)
>>> r.first() == 2
True
>>> r.set(253)
>>> r.first() == 2
True
>>> r.clear()
>>> r.first() == -1
True
"""
cdef unsigned long k = self.thisptr.first()
if k == ULONG_MAX:
return -1
else:
return k
def last(self):
r"""
Return the index of the last set bit or ``-1`` if no bit is set.
Examples:
>>> from ppl import Bit_Row
>>> r = Bit_Row()
>>> r.last() == -1
True
>>> r.set(127)
>>> r.last() == 127
True
>>> r.set(2)
>>> r.last() == 127
True
>>> r.set(253)
>>> r.last() == 253
True
>>> r.clear()
>>> r.last() == -1
True
"""
cdef unsigned long k = self.thisptr.last()
if k == ULONG_MAX:
return -1
else:
return k
cdef class Bit_Matrix(object):
pass
pplpy-0.8.9/ppl/congruence.pxd 0000664 0000000 0000000 00000000320 14475172214 0016336 0 ustar 00root root 0000000 0000000 from .ppl_decl cimport *
cdef _wrap_Congruence(PPL_Congruence)
cdef class Congruence(object):
cdef PPL_Congruence *thisptr
cdef class Congruence_System(object):
cdef PPL_Congruence_System *thisptr
pplpy-0.8.9/ppl/congruence.pyx 0000664 0000000 0000000 00000025067 14475172214 0016402 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2020 Vincent Delecroix
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from cython.operator cimport dereference as deref
from gmpy2 cimport GMPy_MPZ_From_mpz, mpz, import_gmpy2
from .constraint cimport Constraint
from .linear_algebra cimport Variable, Linear_Expression, PPL_Coefficient_from_pyobject
import_gmpy2()
def _dummy():
raise ValueError
cdef class Congruence(object):
r"""
Wrapper for PPL's ``Congruence`` class.
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> ppl.Congruence(x + 2*y - 1, 7)
x0+2*x1-1==0 (mod 7)
>>> ppl.Congruence(x + y == 2, 5)
x0+x1-2==0 (mod 5)
"""
def __init__(self, arg=None, mod=None):
if arg is None:
self.thisptr = new PPL_Congruence()
elif isinstance(arg, Congruence):
self.thisptr = new PPL_Congruence(( arg).thisptr[0])
elif isinstance(arg, Variable):
self.thisptr = new PPL_Congruence()
if mod is None:
mod = mpz(1)
self.thisptr[0] = modulo(PPL_Linear_Expression(( arg).thisptr[0]),
PPL_Coefficient_from_pyobject(mod))
elif isinstance(arg, Linear_Expression):
self.thisptr = new PPL_Congruence()
if mod is None:
mod = mpz(1)
self.thisptr[0] = modulo(( arg).thisptr[0],
PPL_Coefficient_from_pyobject(mod))
elif isinstance(arg, Constraint):
self.thisptr = new PPL_Congruence(( arg).thisptr[0])
if mod is None:
mod = mpz(1)
self.thisptr.set_modulus(PPL_Coefficient_from_pyobject(mod))
else:
raise TypeError("invalid argument for Congruence")
def __cinit__(self):
self.thisptr = NULL
def __dealloc__(self):
del self.thisptr
def is_equal(self, Congruence other):
r"""
Return whether ``self`` is equal to ``other``.
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> Congruence(x + 1, 3).is_equal(Congruence(x + 1, 3))
True
>>> Congruence(x, 3).is_equal(Congruence(x - 2, 3))
False
>>> Congruence(x, 3).is_equal(Congruence(x , 2))
False
"""
return ( self).thisptr[0] == ( other).thisptr[0]
def coefficient(self, v):
r"""
Return the coefficient ``v`` of this congruence.
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> c = (2 * x + y == 1) % 12
>>> c.coefficient(0)
mpz(2)
>>> c.coefficient(x)
mpz(2)
Note that contrarily to :class:`Linear_Expression` the congruences raise
an error when trying to access a coefficient beyond the dimension
>>> c.coefficient(ppl.Variable(13))
Traceback (most recent call last):
...
ValueError: PPL::Congruence::coefficient(v):
this->space_dimension() == 2, v.space_dimension() == 14.
"""
cdef Variable vv
if type(v) is Variable:
vv = v
else:
vv = Variable(v)
return GMPy_MPZ_From_mpz(self.thisptr.coefficient(vv.thisptr[0]).get_mpz_t())
def coefficients(self):
r"""
Return the coefficients of this congruence as a tuple.
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> t = ppl.Variable(3)
>>> c = ppl.Congruence(x + 2*y + t - 1, 7)
>>> c.coefficients()
(mpz(1), mpz(2), mpz(0), mpz(1))
"""
cdef int d = self.space_dimension()
cdef int i
coeffs = []
for i in range(0, d):
coeffs.append(GMPy_MPZ_From_mpz(self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t()))
return tuple(coeffs)
def modulus(self):
r"""
Return the modulus of this congruence.
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> c = ppl.Congruence(x + 2*y - 3, 7)
>>> c.modulus()
mpz(7)
"""
return GMPy_MPZ_From_mpz(self.thisptr.modulus().get_mpz_t())
def inhomogeneous_term(self):
r"""
Return the inhomogeneous term of this congruence.
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> c = ppl.Congruence(x + 2*y - 3, 7)
>>> c.inhomogeneous_term()
mpz(-3)
"""
return GMPy_MPZ_From_mpz(self.thisptr.inhomogeneous_term().get_mpz_t())
def space_dimension(self):
return self.thisptr.space_dimension()
def __repr__(self):
s = ''
v = [Variable(i) for i in range(self.space_dimension())]
e = sum(self.coefficient(x)*x for x in v)
e += self.inhomogeneous_term()
s = repr(e) + '==0 (mod %s)' % self.modulus()
return s
def __reduce__(self):
r"""
>>> from ppl import Variable, Congruence, Congruence_System
>>> from pickle import loads, dumps
>>> x = Variable(0)
>>> y = Variable(1)
>>> z = Variable(2)
>>> c1 = Congruence(2*x + 3*y - 5*z == 3, 12)
>>> c1
2*x0+3*x1-5*x2-3==0 (mod 12)
>>> loads(dumps(c1))
2*x0+3*x1-5*x2-3==0 (mod 12)
>>> assert c1.is_equal(loads(dumps(c1)))
"""
le = Linear_Expression(self.coefficients(), self.inhomogeneous_term())
return (congruence, (le == 0, self.modulus()))
cdef class Congruence_System(object):
r"""
Wrapper for PPL's ``Congruence_System`` class.
>>> from ppl import Variable, Congruence, Congruence_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> z = Variable(2)
>>> c1 = Congruence(2*x + 3*y - 5*z == 0, 12)
>>> c2 = Congruence(4*x + y == 5, 18)
>>> C = Congruence_System()
>>> C.insert(c1)
>>> C.insert(c2)
>>> C
Congruence_System {2*x0+3*x1-5*x2==0 (mod 12), 4*x0+x1+13==0 (mod 18)}
"""
def __init__(self, arg=None):
if arg is None:
self.thisptr = new PPL_Congruence_System()
elif isinstance(arg, Congruence):
c = arg
self.thisptr = new PPL_Congruence_System(c.thisptr[0])
elif isinstance(arg, Congruence_System):
cs = arg
self.thisptr = new PPL_Congruence_System(cs.thisptr[0])
elif isinstance(arg, (list, tuple)):
self.thisptr = new PPL_Congruence_System()
for congruence in arg:
self.insert(congruence)
def ascii_dump(self):
r"""
Write an ASCII dump of this congruence to stderr.
Examples:
>>> cmd = 'from ppl import Variable, Congruence_System\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'cs = Congruence_System( (3*x == 2*y+1) % 7 )\n'
>>> cmd += 'cs.ascii_dump()\n'
>>> import subprocess, sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
1 x 2 SPARSE
size 3 6 3 -2 m 7
"""
self.thisptr.ascii_dump()
def __len__(self):
r"""
Return the number of congruences in the system.
Examples:
>>> from ppl import Variable, Congruence_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Congruence_System( [(x == 3) % 15, (2*y == 7) % 12])
>>> len(cs)
2
>>> cs.insert((2*x + y == 12) % 22)
>>> len(cs)
3
>>> cs.clear()
>>> len(cs)
0
"""
cdef Py_ssize_t l = 0
cdef PPL_Congruence_System_iterator * csi_ptr = new PPL_Congruence_System_iterator(self.thisptr[0].begin())
while csi_ptr[0] != self.thisptr[0].end():
l += 1
csi_ptr[0].inc(1)
del csi_ptr
return l
def __iter__(self):
cdef PPL_Congruence_System_iterator * csi_ptr = new PPL_Congruence_System_iterator(self.thisptr[0].begin())
try:
while csi_ptr[0] != self.thisptr[0].end():
yield _wrap_Congruence(deref(csi_ptr[0].inc(1)))
finally:
del csi_ptr
def __repr__(self):
s = 'Congruence_System {'
s += ', '.join([repr(c) for c in self])
s += '}'
return s
def insert(self, Congruence c):
r"""
Insert the congruence ``c`` into the congruence system.
Examples:
>>> from ppl import Variable, Congruence_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Congruence_System()
>>> cs.insert((3 * x + 2 == 0) % 13)
>>> cs
Congruence_System {3*x0+2==0 (mod 13)}
"""
self.thisptr.insert(c.thisptr[0])
def clear(self):
r"""
Remove all congruences from this congruence system.
>>> from ppl import Variable, Congruence_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Congruence_System([(3*x+2*y+1 == 3) % 15, (x+2*y + 7 == 0) % 22])
>>> len(cs)
2
>>> cs.clear()
>>> len(cs)
0
"""
self.thisptr.clear()
def __reduce__(self):
"""
Pickle object.
Examples:
>>> from ppl import Variable, Congruence_System
>>> from pickle import loads, dumps
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Congruence_System([(3*x+2*y+1 == 3) % 15, (x+2*y + 7 == 0) % 22])
>>> cs
Congruence_System {3*x0+2*x1+13==0 (mod 15), x0+2*x1+7==0 (mod 22)}
>>> loads(dumps(cs))
Congruence_System {3*x0+2*x1+13==0 (mod 15), x0+2*x1+7==0 (mod 22)}
"""
return (Congruence_System, (tuple(self),))
cdef _wrap_Congruence(PPL_Congruence congruence):
cdef Congruence c = Congruence.__new__(Congruence)
c.thisptr = new PPL_Congruence(congruence)
return c
def congruence(le, m):
return Congruence(le, m)
pplpy-0.8.9/ppl/constraint.pxd 0000664 0000000 0000000 00000000653 14475172214 0016403 0 ustar 00root root 0000000 0000000 from .linear_algebra cimport *
cdef _wrap_Constraint(PPL_Constraint constraint)
cdef _wrap_Constraint_System(PPL_Constraint_System constraint_system)
cdef _make_Constraint_from_richcmp(lhs_, rhs_, op)
cdef class Constraint(object):
cdef PPL_Constraint *thisptr
cdef class Constraint_System(object):
cdef PPL_Constraint_System *thisptr
cdef class Poly_Con_Relation(object):
cdef PPL_Poly_Con_Relation *thisptr
pplpy-0.8.9/ppl/constraint.pyx 0000664 0000000 0000000 00000101471 14475172214 0016430 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2010-2014 Volker Braun
# 2011 Simon King
# 2011-2017 Jeroen Demeyer
# 2012 Risan
# 2013 Julien Puydt
# 2013 Travis Scrimshaw
# 2015 André Apitzsch
# 2016 Jori Mäntysalo
# 2016 Matthias Koeppe
# 2016-2017 Frédéric Chapoton
# 2016-2020 Vincent Delecroix
# 2017-2018 Vincent Klein
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from gmpy2 cimport GMPy_MPZ_From_mpz, import_gmpy2
from cython.operator cimport dereference as deref
from cpython.object cimport Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, Py_GE
from .congruence cimport Congruence
# PPL can use floating-point arithmetic to compute integers
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
# initialize gmpy2 C API
import_gmpy2()
# but with PPL's rounding the gsl will be very unhappy; must turn off!
restore_pre_PPL_rounding()
def _dummy():
raise ValueError
cdef class Constraint(object):
r"""
Wrapper for PPL's ``Constraint`` class.
An object of the class ``Constraint`` is either:
* an equality :math:`\sum_{i=0}^{n-1} a_i x_i + b = 0`
* a non-strict inequality :math:`\sum_{i=0}^{n-1} a_i x_i + b \geq 0`
* a strict inequality :math:`\sum_{i=0}^{n-1} a_i x_i + b > 0`
where :math:`n` is the dimension of the space, :math:`a_i` is the integer
coefficient of variable :math:`x_i`, and :math:`b_i` is the integer
inhomogeneous term.
INPUT/OUTPUT:
You construct constraints by writing inequalities in
:class:`Linear_Expression`. Do not attempt to manually construct
constraints.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> x = Variable(0)
>>> y = Variable(1)
>>> 5*x-2*y > x+y-1
4*x0-3*x1+1>0
>>> 5*x-2*y >= x+y-1
4*x0-3*x1+1>=0
>>> 5*x-2*y == x+y-1
4*x0-3*x1+1==0
>>> 5*x-2*y <= x+y-1
-4*x0+3*x1-1>=0
>>> 5*x-2*y < x+y-1
-4*x0+3*x1-1>0
>>> x > 0
x0>0
Special care is needed if the left hand side is a constant:
>>> 0 == 1 # watch out!
False
>>> Linear_Expression(0) == 1
mpz(-1)==0
"""
def __init__(self, arg=None):
if arg is None:
self.thisptr = new PPL_Constraint()
elif isinstance(arg, Constraint):
self.thisptr = new PPL_Constraint(( arg).thisptr[0])
else:
raise TypeError("invalid argument for Constraint")
def __cinit__(self):
"""
The Cython constructor.
See :class:`Constraint` for documentation.
Tests:
>>> from ppl import Variable
>>> x = Variable(0)
>>> x>0 # indirect doctest
x0>0
"""
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Variable(0) == 3)
Traceback (most recent call last):
...
TypeError: Constraint unhashable
"""
raise TypeError('Constraint unhashable')
def __repr__(self):
"""
Return a string representation of the constraint.
OUTPUT:
String.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> (2*x-y+5 > x).__repr__()
'x0-x1+5>0'
>>> (2*x-y+5 == x).__repr__()
'x0-x1+5==0'
>>> (2*x-y+5 >= x).__repr__()
'x0-x1+5>=0'
"""
e = sum(self.coefficient(x)*x
for x in (Variable(i)
for i in range(self.space_dimension())))
e += self.inhomogeneous_term()
s = repr(e)
t = self.thisptr.type()
if t == EQUALITY:
s += '==0'
elif t == NONSTRICT_INEQUALITY:
s += '>=0'
elif t == STRICT_INEQUALITY:
s += '>0'
else:
raise RuntimeError
return s
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> (x>=0).space_dimension()
1
>>> (y==1).space_dimension()
2
"""
return self.thisptr.space_dimension()
def type(self):
r"""
Return the constraint type of ``self``.
OUTPUT:
String. One of ``'equality'``, ``'nonstrict_inequality'``, or
``'strict_inequality'``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).type()
'equality'
>>> (x>=0).type()
'nonstrict_inequality'
>>> (x>0).type()
'strict_inequality'
"""
t = self.thisptr.type()
if t == EQUALITY:
return 'equality'
elif t == NONSTRICT_INEQUALITY:
return 'nonstrict_inequality'
elif t == STRICT_INEQUALITY:
return 'strict_inequality'
else:
raise RuntimeError
def is_equality(self):
r"""
Test whether ``self`` is an equality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
equality constraint.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).is_equality()
True
>>> (x>=0).is_equality()
False
>>> (x>0).is_equality()
False
"""
return self.thisptr.is_equality()
def is_inequality(self):
r"""
Test whether ``self`` is an inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
inequality constraint, either strict or non-strict.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).is_inequality()
False
>>> (x>=0).is_inequality()
True
>>> (x>0).is_inequality()
True
"""
return self.thisptr.is_inequality()
def is_nonstrict_inequality(self):
r"""
Test whether ``self`` is a non-strict inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
non-strict inequality constraint.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).is_nonstrict_inequality()
False
>>> (x>=0).is_nonstrict_inequality()
True
>>> (x>0).is_nonstrict_inequality()
False
"""
return self.thisptr.is_nonstrict_inequality()
def is_strict_inequality(self):
r"""
Test whether ``self`` is a strict inequality.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
strict inequality constraint.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).is_strict_inequality()
False
>>> (x>=0).is_strict_inequality()
False
>>> (x>0).is_strict_inequality()
True
"""
return self.thisptr.is_strict_inequality()
def coefficient(self, Variable v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
An integer.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> ineq = 3*x+1 > 0
>>> ineq.coefficient(x)
mpz(3)
>>> y = Variable(1)
>>> ineq = 3**50 * y + 2 > 1
>>> str(ineq.coefficient(y))
'717897987691852588770249'
>>> ineq.coefficient(x)
mpz(0)
"""
return GMPy_MPZ_From_mpz(self.thisptr.coefficient(v.thisptr[0]).get_mpz_t())
def coefficients(self):
"""
Return the coefficients of the constraint.
See also :meth:`coefficient`.
OUTPUT:
A tuple of integers of length :meth:`space_dimension`.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1)
>>> ineq = ( 3*x+5*y+1 == 2); ineq
3*x0+5*x1-1==0
>>> ineq.coefficients()
(mpz(3), mpz(5))
"""
cdef int d = self.space_dimension()
cdef int i
coeffs = []
for i in range(0, d):
coeffs.append(GMPy_MPZ_From_mpz(self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t()))
return tuple(coeffs)
def inhomogeneous_term(self):
"""
Return the inhomogeneous term of the constraint.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable
>>> y = Variable(1)
>>> ineq = 10+y > 9
>>> ineq
x1+1>0
>>> ineq.inhomogeneous_term()
mpz(1)
>>> ineq = 2**66 + y > 0
>>> str(ineq.inhomogeneous_term())
'73786976294838206464'
"""
return GMPy_MPZ_From_mpz(self.thisptr.inhomogeneous_term().get_mpz_t())
def is_tautological(self):
r"""
Test whether ``self`` is a tautological constraint.
A tautology can have either one of the following forms:
* an equality: :math:`\sum 0 x_i + 0 = 0`,
* a non-strict inequality: :math:`\sum 0 x_i + b \geq 0` with `b\geq 0`, or
* a strict inequality: :math:`\sum 0 x_i + b > 0` with `b> 0`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is a
tautological constraint.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==0).is_tautological()
False
>>> (0*x>=0).is_tautological()
True
"""
return self.thisptr.is_tautological()
def is_inconsistent(self):
r"""
Test whether ``self`` is an inconsistent constraint, that is, always false.
An inconsistent constraint can have either one of the
following forms:
* an equality: :math:`\sum 0 x_i + b = 0` with `b\not=0`,
* a non-strict inequality: :math:`\sum 0 x_i + b \geq 0` with `b< 0`, or
* a strict inequality: :math:`\sum 0 x_i + b > 0` with `b\leq 0`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is an
inconsistent constraint.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> (x==1).is_inconsistent()
False
>>> (0*x>=1).is_inconsistent()
True
"""
return self.thisptr.is_inconsistent()
def is_equivalent_to(self, Constraint c):
r"""
Test whether ``self`` and ``c`` are equivalent.
INPUT:
- ``c`` -- a :class:`Constraint`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``c``
are equivalent constraints.
Note that constraints having different space dimensions are
not equivalent. However, constraints having different types
may nonetheless be equivalent, if they both are tautologies or
inconsistent.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> x = Variable(0)
>>> y = Variable(1)
>>> (x > 0).is_equivalent_to(Linear_Expression(0) < x)
True
>>> (x > 0).is_equivalent_to(0*y < x)
False
>>> (0*x > 1).is_equivalent_to(0*x == -2)
True
"""
return self.thisptr.is_equivalent_to(c.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'e = (3*x+2*y+1 > 0)\n'
>>> cmd += 'e.ascii_dump()\n'
>>> import subprocess, sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
size 4 1 3 2 -1 ...
"""
self.thisptr.ascii_dump()
def __reduce__(self):
"""
Pickle object.
Examples:
>>> from ppl import Variable
>>> from pickle import loads, dumps
>>> x = Variable(0)
>>> y = Variable(1)
>>> loads(dumps(3*x+2*y+1>=5))
3*x0+2*x1-4>=0
>>> loads(dumps(3*x+2*y+1>5))
3*x0+2*x1-4>0
>>> loads(dumps(3*x+2*y+1==5))
3*x0+2*x1-4==0
"""
le = Linear_Expression(self.coefficients(), self.inhomogeneous_term())
if self.is_nonstrict_inequality():
return (inequality, (le, ))
elif self.is_strict_inequality():
return (strict_inequality, (le, ))
elif self.is_equality():
return (equation, (le, ))
else:
raise RuntimeError
def permute_space_dimensions(self, cycle):
"""
Permute the coordinates according to ``cycle``.
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1); z = Variable(2)
>>> l = 2*x - y + 3*z
>>> ieq = l >= 5
>>> ieq.permute_space_dimensions([2, 1, 0])
>>> ieq
-x0+3*x1+2*x2-5>=0
"""
cdef cppvector[PPL_Variable] cpp_cycle
cdef int i
for i in cycle:
cpp_cycle.push_back(PPL_Variable(i))
self.thisptr.permute_space_dimensions(cpp_cycle)
def __mod__(self, m):
r"""
Return this equality modulo m
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> (2*x + 3*y == 3) % 5
2*x0+3*x1-3==0 (mod 5)
>>> (x <= 3) % 5
Traceback (most recent call last):
...
ValueError: PPL::Congruence::Congruence(c, r):
constraint c must be an equality.
"""
return Congruence(self, m)
def inequality(expression):
"""
Construct an inequality.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The inequality ``expression`` >= 0.
Examples:
>>> from ppl import Variable, inequality
>>> y = Variable(1)
>>> 2*y+1 >= 0
2*x1+1>=0
>>> inequality(2*y+1)
2*x1+1>=0
"""
return expression >= 0
def strict_inequality(expression):
"""
Construct a strict inequality.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The inequality ``expression`` > 0.
Examples:
>>> from ppl import Variable, strict_inequality
>>> y = Variable(1)
>>> 2*y+1 > 0
2*x1+1>0
>>> strict_inequality(2*y+1)
2*x1+1>0
"""
return expression > 0
def equation(expression):
"""
Construct an equation.
INPUT:
- ``expression`` -- a :class:`Linear_Expression`.
OUTPUT:
The equation ``expression`` == 0.
Examples:
>>> from ppl import Variable, equation
>>> y = Variable(1)
>>> 2*y+1 == 0
2*x1+1==0
>>> equation(2*y+1)
2*x1+1==0
"""
return expression == 0
cdef class Constraint_System(object):
"""
Wrapper for PPL's ``Constraint_System`` class.
An object of the class Constraint_System is a system of
constraints, i.e., a multiset of objects of the class
Constraint. When inserting constraints in a system, space
dimensions are automatically adjusted so that all the constraints
in the system are defined on the same vector space.
Examples:
>>> from ppl import Constraint_System, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System( 5*x-2*y > 0 )
>>> cs.insert( 6*x < 3*y )
>>> cs.insert( x >= 2*x-7*y )
>>> cs
Constraint_System {5*x0-2*x1>0, ...}
>>> cs[0]
5*x0-2*x1>0
"""
def __init__(self, arg=None):
if arg is None:
self.thisptr = new PPL_Constraint_System()
elif isinstance(arg, Constraint):
g = arg
self.thisptr = new PPL_Constraint_System(g.thisptr[0])
elif isinstance(arg, Constraint_System):
gs = arg
self.thisptr = new PPL_Constraint_System(gs.thisptr[0])
elif isinstance(arg, (list, tuple)):
self.thisptr = new PPL_Constraint_System()
for constraint in arg:
self.insert(constraint)
else:
raise TypeError('cannot initialize from {!r}'.format(arg))
def __cinit__(self, arg=None):
"""
The Cython constructor.
See :class:`Constraint_System` for documentation.
Tests:
>>> from ppl import Constraint_System
>>> Constraint_System()
Constraint_System {}
"""
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Constraint_System())
Traceback (most recent call last):
...
TypeError: Constraint_System unhashable
"""
raise TypeError('Constraint_System unhashable')
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System( x>0 )
>>> cs.space_dimension()
1
"""
return self.thisptr.space_dimension()
def has_equalities(self):
r"""
Tests whether ``self`` contains one or more equality constraints.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System()
>>> cs.insert( x>0 )
>>> cs.insert( x<0 )
>>> cs.has_equalities()
False
>>> cs.insert( x==0 )
>>> cs.has_equalities()
True
"""
return self.thisptr.has_equalities()
def has_strict_inequalities(self):
r"""
Tests whether ``self`` contains one or more strict inequality constraints.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System()
>>> cs.insert( x>=0 )
>>> cs.insert( x==-1 )
>>> cs.has_strict_inequalities()
False
>>> cs.insert( x>0 )
>>> cs.has_strict_inequalities()
True
"""
return self.thisptr.has_strict_inequalities()
def clear(self):
r"""
Removes all constraints from the constraint system and sets its
space dimension to 0.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System(x>0)
>>> cs
Constraint_System {x0>0}
>>> cs.clear()
>>> cs
Constraint_System {}
"""
self.thisptr.clear()
def insert(self, Constraint c):
"""
Insert ``c`` into the constraint system.
INPUT:
- ``c`` -- a :class:`Constraint`.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System()
>>> cs.insert( x>0 )
>>> cs
Constraint_System {x0>0}
"""
self.thisptr.insert(c.thisptr[0])
def empty(self):
"""
Return ``True`` if and only if ``self`` has no constraints.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System()
>>> cs.empty()
True
>>> cs.insert( x>0 )
>>> cs.empty()
False
"""
return self.thisptr.empty()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Constraint_System, Variable\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'cs = Constraint_System( 3*x > 2*y+1 )\n'
>>> cmd += 'cs.ascii_dump()\n'
>>> import subprocess, sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
topology NOT_NECESSARILY_CLOSED
...
"""
self.thisptr.ascii_dump()
def __len__(self):
"""
Return the number of constraints in the system.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System( [x>0, x<1] )
>>> len(cs)
2
>>> cs.insert(2*x < 3)
>>> len(cs)
3
>>> cs.clear()
>>> len(cs)
0
"""
cdef Py_ssize_t length = 0
cdef PPL_Constraint_System_iterator *csi_ptr = new PPL_Constraint_System_iterator(self.thisptr[0].begin())
while csi_ptr[0] != self.thisptr[0].end():
length += 1
csi_ptr[0].inc(1)
del csi_ptr
return length
def __iter__(self):
"""
Iterate through the constraints of the system.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System( x>0 )
>>> iter = cs.__iter__()
>>> next(iter)
x0>0
>>> list(cs) # uses __iter__() internally
[x0>0]
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System( 5*x < 2*y )
>>> cs.insert( 6*x-y == 0 )
>>> cs.insert( x >= 2*x-7*y )
>>> next(cs.__iter__())
-5*x0+2*x1>0
>>> list(cs)
[-5*x0+2*x1>0, 6*x0-x1==0, -x0+7*x1>=0]
>>> x = Variable(0)
>>> cs = Constraint_System( x > 0 )
>>> cs.insert ( 2*x <= -3)
>>> it = cs.__iter__()
>>> next(it)
x0>0
>>> next(it)
-2*x0-3>=0
>>> next(it)
Traceback (most recent call last):
...
StopIteration
"""
cdef PPL_Constraint_System_iterator *csi_ptr = new PPL_Constraint_System_iterator(self.thisptr[0].begin())
try:
while csi_ptr[0] != self.thisptr[0].end():
yield _wrap_Constraint(deref(csi_ptr[0].inc(1)))
finally:
del csi_ptr
def __getitem__(self, int k):
"""
Return the k-th constraint.
The correct way to read the individual constraints is to
iterate over the constraint system. This method is for
convenience only.
INPUT:
- ``k`` -- integer. The index of the constraint.
OUTPUT:
The `k`-th constraint of the constraint system.
Examples:
>>> from ppl import Variable, Constraint_System
>>> x = Variable(0)
>>> cs = Constraint_System( x>0 )
>>> cs.insert( x<1 )
>>> cs
Constraint_System {x0>0, -x0+1>0}
>>> cs[0]
x0>0
>>> cs[1]
-x0+1>0
"""
if k < 0:
raise IndexError('index must be nonnegative')
iterator = iter(self)
try:
for i in range(k):
next(iterator)
except StopIteration:
raise IndexError('index is past-the-end')
return next(iterator)
def __repr__(self):
r"""
Return a string representation of the constraint system.
OUTPUT:
A string.
Examples:
>>> from ppl import Constraint_System, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System([3*x+2*y+1 < 3, 0*x>x+1])
>>> cs.__repr__()
'Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}'
"""
s = 'Constraint_System {'
s += ', '.join([repr(c) for c in self])
s += '}'
return s
def __reduce__(self):
"""
Pickle object.
Tests:
>>> from ppl import Constraint_System, Variable
>>> from pickle import loads, dumps
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System([3*x+2*y+1 < 3, 0*x>x+1]); cs
Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}
>>> loads(dumps(cs))
Constraint_System {-3*x0-2*x1+2>0, -x0-1>0}
"""
return (Constraint_System, (tuple(self),))
cdef class Poly_Con_Relation(object):
r"""
Wrapper for PPL's ``Poly_Con_Relation`` class.
INPUT/OUTPUT:
You must not construct :class:`Poly_Con_Relation` objects
manually. You will usually get them from
:meth:`~sage.libs.ppl.Polyhedron.relation_with`. You can also get
pre-defined relations from the class methods :meth:`nothing`,
:meth:`is_disjoint`, :meth:`strictly_intersects`,
:meth:`is_included`, and :meth:`saturates`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> saturates = Poly_Con_Relation.saturates(); saturates
saturates
>>> is_included = Poly_Con_Relation.is_included(); is_included
is_included
>>> is_included.implies(saturates)
False
>>> saturates.implies(is_included)
False
>>> rels = []
>>> rels.append(Poly_Con_Relation.nothing())
>>> rels.append(Poly_Con_Relation.is_disjoint())
>>> rels.append(Poly_Con_Relation.strictly_intersects())
>>> rels.append(Poly_Con_Relation.is_included())
>>> rels.append(Poly_Con_Relation.saturates())
>>> rels
[nothing, is_disjoint, strictly_intersects, is_included, saturates]
>>> for i, rel_i in enumerate(rels):
... s = ""
... for j, rel_j in enumerate(rels):
... s=s+str(int(rel_i.implies(rel_j))) + ' '
... print(" ".join(str(int(rel_i.implies(rel_j))) for j, rel_j in enumerate(rels)))
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
"""
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Poly_Con_Relation` for documentation.
Tests:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.nothing()
nothing
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Poly_Con_Relation objects manually!'
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Poly_Con_Relation.saturates())
Traceback (most recent call last):
...
TypeError: Poly_Con_Relation unhashable
"""
raise TypeError('Poly_Con_Relation unhashable')
def implies(self, Poly_Con_Relation y):
r"""
Test whether ``self`` implies ``y``.
INPUT:
- ``y`` -- a :class:`Poly_Con_Relation`.
OUTPUT:
Boolean. ``True`` if and only if ``self`` implies ``y``.
Examples:
>>> from ppl import Poly_Con_Relation
>>> nothing = Poly_Con_Relation.nothing()
>>> nothing.implies( nothing )
True
"""
return self.thisptr.implies(y.thisptr[0])
@classmethod
def nothing(cls):
r"""
Return the assertion that says nothing.
OUTPUT:
A :class:`Poly_Con_Relation`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.nothing()
nothing
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_nothing())
@classmethod
def is_disjoint(cls):
r"""
Return the assertion "The polyhedron and the set of points
satisfying the constraint are disjoint".
OUTPUT:
A :class:`Poly_Con_Relation`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.is_disjoint()
is_disjoint
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_is_disjoint())
@classmethod
def strictly_intersects(cls):
r"""
Return the assertion "The polyhedron intersects the set of
points satisfying the constraint, but it is not included in
it".
:return: a :class:`Poly_Con_Relation`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.strictly_intersects()
strictly_intersects
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_strictly_intersects())
@classmethod
def is_included(cls):
r"""
Return the assertion "The polyhedron is included in the set of
points satisfying the constraint".
OUTPUT:
A :class:`Poly_Con_Relation`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.is_included()
is_included
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_is_included())
@classmethod
def saturates(cls):
r"""
Return the assertion "".
OUTPUT:
A :class:`Poly_Con_Relation`.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.saturates()
saturates
"""
return _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation_saturates())
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Poly_Con_Relation\n'
>>> cmd += 'Poly_Con_Relation.nothing().ascii_dump()\n'
>>> import subprocess, sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
NOTHING
"""
self.thisptr.ascii_dump()
def __repr__(self):
r"""
Return a string representation.
OUTPUT:
String.
Examples:
>>> from ppl import Poly_Con_Relation
>>> Poly_Con_Relation.nothing().__repr__()
'nothing'
"""
rel = []
if self.implies(Poly_Con_Relation.is_disjoint()):
rel.append('is_disjoint')
if self.implies(Poly_Con_Relation.strictly_intersects()):
rel.append('strictly_intersects')
if self.implies(Poly_Con_Relation.is_included()):
rel.append('is_included')
if self.implies(Poly_Con_Relation.saturates()):
rel.append('saturates')
if rel:
return ', '.join(rel)
else:
return 'nothing'
cdef _make_Constraint_from_richcmp(lhs_, rhs_, op):
cdef Linear_Expression lhs = Linear_Expression(lhs_)
cdef Linear_Expression rhs = Linear_Expression(rhs_)
if op == Py_LT:
return _wrap_Constraint(lhs.thisptr[0] < rhs.thisptr[0])
elif op == Py_LE:
return _wrap_Constraint(lhs.thisptr[0] <= rhs.thisptr[0])
elif op == Py_EQ:
return _wrap_Constraint(lhs.thisptr[0] == rhs.thisptr[0])
elif op == Py_GT:
return _wrap_Constraint(lhs.thisptr[0] > rhs.thisptr[0])
elif op == Py_GE:
return _wrap_Constraint(lhs.thisptr[0] >= rhs.thisptr[0])
elif op == Py_NE:
raise NotImplementedError
else:
assert(False)
cdef _wrap_Constraint(PPL_Constraint constraint):
"""
Wrap a C++ ``PPL_Constraint`` into a Cython ``Constraint``.
"""
cdef Constraint c = Constraint.__new__(Constraint)
c.thisptr = new PPL_Constraint(constraint)
return c
cdef _wrap_Constraint_System(PPL_Constraint_System constraint_system):
"""
Wrap a C++ ``PPL_Constraint_System`` into a Cython ``Constraint_System``.
"""
cdef Constraint_System cs = Constraint_System.__new__(Constraint_System)
cs.thisptr = new PPL_Constraint_System(constraint_system)
return cs
cdef _wrap_Poly_Con_Relation(PPL_Poly_Con_Relation relation):
"""
Wrap a C++ ``PPL_Poly_Con_Relation`` into a Cython ``Poly_Con_Relation``.
"""
cdef Poly_Con_Relation rel = Poly_Con_Relation(True)
rel.thisptr = new PPL_Poly_Con_Relation(relation)
return rel
pplpy-0.8.9/ppl/generator.pxd 0000664 0000000 0000000 00000000737 14475172214 0016210 0 ustar 00root root 0000000 0000000 from __future__ import absolute_import
from .ppl_decl cimport *
from .linear_algebra cimport *
cdef _wrap_Generator(PPL_Generator generator)
cdef _wrap_Generator_System(PPL_Generator_System generator_system)
cdef PPL_GeneratorType_str(PPL_GeneratorType t)
cdef class Generator(object):
cdef PPL_Generator *thisptr
cdef class Generator_System(object):
cdef PPL_Generator_System *thisptr
cdef class Poly_Gen_Relation(object):
cdef PPL_Poly_Gen_Relation *thisptr
pplpy-0.8.9/ppl/generator.pyx 0000664 0000000 0000000 00000103204 14475172214 0016226 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2010-2014 Volker Braun
# 2011 Simon King
# 2011-2017 Jeroen Demeyer
# 2012 Risan
# 2013 Julien Puydt
# 2013 Travis Scrimshaw
# 2015 André Apitzsch
# 2016 Jori Mäntysalo
# 2016 Matthias Koeppe
# 2016-2017 Frédéric Chapoton
# 2016-2018 Vincent Delecroix
# 2017-2018 Vincent Klein
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from gmpy2 cimport GMPy_MPZ_From_mpz, import_gmpy2
from cython.operator cimport dereference as deref
from .linear_algebra cimport PPL_Coefficient_from_pyobject
# PPL can use floating-point arithmetic to compute integers
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
# initialize gmpy2 C API
import_gmpy2()
# but with PPL's rounding the gsl will be very unhappy; must turn off!
restore_pre_PPL_rounding()
####################################################
cdef class Generator(object):
r"""
Wrapper for PPL's ``Generator`` class.
An object of the class Generator is one of the following:
* a line :math:`\ell = (a_0, \dots, a_{n-1})^T`
* a ray :math:`r = (a_0, \dots, a_{n-1})^T`
* a point :math:`p = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T`
* a closure point :math:`c = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T`
where :math:`n` is the dimension of the space and, for points and
closure points, :math:`d` is the divisor.
INPUT/OUTPUT:
Use the helper functions :func:`line`, :func:`ray`, :func:`point`,
and :func:`closure_point` to construct generators. Analogous class
methods are also available, see :meth:`Generator.line`,
:meth:`Generator.ray`, :meth:`Generator.point`,
:meth:`Generator.closure_point`. Do not attempt to construct
generators manually.
.. NOTE::
The generators are constructed from linear expressions. The
inhomogeneous term is always silently discarded.
Examples:
>>> from ppl import Generator, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> Generator.line(5*x-2*y)
line(5, -2)
>>> Generator.ray(5*x-2*y)
ray(5, -2)
>>> Generator.point(5*x-2*y, 7)
point(5/7, -2/7)
>>> Generator.closure_point(5*x-2*y, 7)
closure_point(5/7, -2/7)
"""
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Variable` for documentation.
Tests:
>>> from ppl import Variable, line
>>> x = Variable(0)
>>> line(x) # indirect doctest
line(1)
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Generators manually!'
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.point())
Traceback (most recent call last):
...
TypeError: Generator unhashable
"""
raise TypeError('Generator unhashable')
@classmethod
def line(cls, expression):
"""
Construct a line.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
OUTPUT:
A new :class:`Generator` representing the line.
Raises a ``ValueError` if the homogeneous part of
``expression`` represents the origin of the vector space.
Examples:
>>> from ppl import Generator, Variable
>>> y = Variable(1)
>>> Generator.line(2*y)
line(0, 1)
>>> Generator.line(y)
line(0, 1)
>>> Generator.line(1)
Traceback (most recent call last):
...
ValueError: PPL::line(e):
e == 0, but the origin cannot be a line.
"""
cdef Linear_Expression e = Linear_Expression(expression)
# This does not work as Cython gets confused by the private default ctor
# return _wrap_Generator(PPL_line(e.thisptr[0]))
# workaround follows
cdef Generator g = Generator(True)
try:
g.thisptr = new PPL_Generator(PPL_line(e.thisptr[0]))
except BaseException:
# g.thisptr must be set to something valid or g.__dealloc__() will segfault
g.thisptr = new PPL_Generator(PPL_point(e.thisptr[0], PPL_Coefficient(1)))
raise
return g
@classmethod
def ray(cls, expression):
"""
Construct a ray.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
OUTPUT:
A new :class:`Generator` representing the ray.
Raises a ``ValueError` if the homogeneous part of
``expression`` represents the origin of the vector space.
Examples:
>>> from ppl import Generator, Variable
>>> y = Variable(1)
>>> Generator.ray(2*y)
ray(0, 1)
>>> Generator.ray(y)
ray(0, 1)
>>> Generator.ray(1)
Traceback (most recent call last):
...
ValueError: PPL::ray(e):
e == 0, but the origin cannot be a ray.
"""
cdef Linear_Expression e = Linear_Expression(expression)
# This does not work as Cython gets confused by the private default ctor
# return _wrap_Generator(PPL_ray(e.thisptr[0]))
# workaround follows
cdef Generator g = Generator(True)
try:
g.thisptr = new PPL_Generator(PPL_ray(e.thisptr[0]))
except BaseException:
# g.thisptr must be set to something valid or g.__dealloc__() will segfault
g.thisptr = new PPL_Generator(PPL_point(e.thisptr[0], PPL_Coefficient(1)))
raise
return g
@classmethod
def point(cls, expression=0, divisor=1):
"""
Construct a point.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
- ``divisor`` -- an integer.
OUTPUT:
A new :class:`Generator` representing the point.
Raises a ``ValueError` if ``divisor==0``.
Examples:
>>> from ppl import Generator, Variable
>>> y = Variable(1)
>>> Generator.point(2*y+7, 3)
point(0/3, 2/3)
>>> Generator.point(y+7, 3)
point(0/3, 1/3)
>>> Generator.point(7, 3)
point()
>>> Generator.point(0, 0)
Traceback (most recent call last):
...
ValueError: PPL::point(e, d):
d == 0.
"""
cdef Linear_Expression e = Linear_Expression(expression)
# This does not work as Cython gets confused by the private default ctor
# return _wrap_Generator(PPL_point(e.thisptr[0], PPL_Coefficient(d.value)))
# workaround follows
cdef Generator g = Generator(True)
try:
g.thisptr = new PPL_Generator(PPL_point(e.thisptr[0], PPL_Coefficient_from_pyobject(divisor)))
except BaseException:
# g.thisptr must be set to something valid or g.__dealloc__() will segfault
g.thisptr = new PPL_Generator(PPL_point(e.thisptr[0], PPL_Coefficient(1)))
raise
return g
@classmethod
def closure_point(cls, expression=0, divisor=1):
"""
Construct a closure point.
A closure point is a point of the topological closure of a
polyhedron that is not a point of the polyhedron itself.
INPUT:
- ``expression`` -- a :class:`Linear_Expression` or something
convertible to it (:class:`Variable` or integer).
- ``divisor`` -- an integer.
OUTPUT:
A new :class:`Generator` representing the point.
Raises a ``ValueError` if ``divisor==0``.
Examples:
>>> from ppl import Generator, Variable
>>> y = Variable(1)
>>> Generator.closure_point(2*y+7, 3)
closure_point(0/3, 2/3)
>>> Generator.closure_point(y+7, 3)
closure_point(0/3, 1/3)
>>> Generator.closure_point(7, 3)
closure_point()
>>> Generator.closure_point(0, 0)
Traceback (most recent call last):
...
ValueError: PPL::closure_point(e, d):
d == 0.
"""
cdef Linear_Expression e = Linear_Expression(expression)
# This does not work as Cython gets confused by the private default ctor
# return _wrap_Generator(PPL_closure_point(e.thisptr[0], PPL_Coefficient(d.value)))
# workaround follows
cdef Generator g = Generator(True)
try:
g.thisptr = new PPL_Generator(PPL_closure_point(e.thisptr[0], PPL_Coefficient_from_pyobject(divisor)))
except BaseException:
# g.thisptr must be set to something valid or g.__dealloc__() will segfault
g.thisptr = new PPL_Generator(PPL_point(e.thisptr[0], PPL_Coefficient(1)))
raise
return g
def __repr__(self):
"""
Return a string representation of the generator.
OUTPUT:
String.
Examples:
>>> from ppl import Generator, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> e = 2*x-y+5
>>> Generator.line(e)
line(2, -1)
>>> Generator.ray(e)
ray(2, -1)
>>> Generator.point(e, 3)
point(2/3, -1/3)
>>> Generator.closure_point(e, 3)
closure_point(2/3, -1/3)
"""
cdef PPL_GeneratorType t = self.thisptr.type()
if t == LINE or t == RAY:
div = ''
elif t == POINT or t == CLOSURE_POINT:
div = '/' + str(self.divisor())
else:
raise RuntimeError
s = ', '.join(str(self.coefficient(Variable(i))) + div for i in range(self.space_dimension()))
return PPL_GeneratorType_str(t) + '(' + s + ')'
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> point(x).space_dimension()
1
>>> point(y).space_dimension()
2
"""
return self.thisptr.space_dimension()
def set_space_dimension(self, size_t n):
r"""
Set the dimension of this generator to ``n``
Examples:
>>> import ppl
>>> p = ppl.point()
>>> p
point()
>>> p.set_space_dimension(5)
>>> p
point(0/1, 0/1, 0/1, 0/1, 0/1)
>>> p = ppl.point(1 * ppl.Variable(0) + 2 * ppl.Variable(1) + 3 * ppl.Variable(2))
>>> p.set_space_dimension(2)
>>> p
point(1/1, 2/1)
"""
self.thisptr.set_space_dimension(n)
def type(self):
r"""
Return the generator type of ``self``.
OUTPUT:
String. One of ``'line'``, ``'ray'``, ``'point'``, or
``'closure_point'``.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).type()
'line'
>>> ray(x).type()
'ray'
>>> point(x,2).type()
'point'
>>> closure_point(x,2).type()
'closure_point'
"""
return PPL_GeneratorType_str(self.thisptr.type())
def is_line(self):
r"""
Test whether ``self`` is a line.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).is_line()
True
>>> ray(x).is_line()
False
>>> point(x,2).is_line()
False
>>> closure_point(x,2).is_line()
False
"""
return self.thisptr.is_line()
def is_ray(self):
r"""
Test whether ``self`` is a ray.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).is_ray()
False
>>> ray(x).is_ray()
True
>>> point(x,2).is_ray()
False
>>> closure_point(x,2).is_ray()
False
"""
return self.thisptr.is_ray()
def is_line_or_ray(self):
r"""
Test whether ``self`` is a line or a ray.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).is_line_or_ray()
True
>>> ray(x).is_line_or_ray()
True
>>> point(x,2).is_line_or_ray()
False
>>> closure_point(x,2).is_line_or_ray()
False
"""
return self.thisptr.is_line_or_ray()
def is_point(self):
r"""
Test whether ``self`` is a point.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).is_point()
False
>>> ray(x).is_point()
False
>>> point(x,2).is_point()
True
>>> closure_point(x,2).is_point()
False
"""
return self.thisptr.is_point()
def is_closure_point(self):
r"""
Test whether ``self`` is a closure point.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line
>>> x = Variable(0)
>>> line(x).is_closure_point()
False
>>> ray(x).is_closure_point()
False
>>> point(x,2).is_closure_point()
False
>>> closure_point(x,2).is_closure_point()
True
"""
return self.thisptr.is_closure_point()
def coefficient(self, Variable v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
An integer.
Examples:
>>> from ppl import Variable, line
>>> x = Variable(0)
>>> line = line(3*x+1)
>>> line
line(1)
>>> line.coefficient(x)
mpz(1)
"""
return GMPy_MPZ_From_mpz(self.thisptr.coefficient(v.thisptr[0]).get_mpz_t())
def coefficients(self):
"""
Return the coefficients of the generator.
See also :meth:`coefficient`.
OUTPUT:
A tuple of integers of length :meth:`space_dimension`.
Examples:
>>> from ppl import Variable, point
>>> x = Variable(0); y = Variable(1)
>>> p = point(3*x+5*y+1, 2); p
point(3/2, 5/2)
>>> p.coefficients()
(mpz(3), mpz(5))
"""
cdef int d = self.space_dimension()
cdef int i
coeffs = []
for i in range(0, d):
coeffs.append(GMPy_MPZ_From_mpz(self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t()))
return tuple(coeffs)
def divisor(self):
"""
If ``self`` is either a point or a closure point, return its
divisor.
OUTPUT:
An integer. If ``self`` is a ray or a line, raises
``ValueError``.
Examples:
>>> from ppl import Generator, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> point = Generator.point(2*x-y+5)
>>> point.divisor()
mpz(1)
>>> line = Generator.line(2*x-y+5)
>>> line.divisor()
Traceback (most recent call last):
...
ValueError: PPL::Generator::divisor():
*this is neither a point nor a closure point.
"""
return GMPy_MPZ_From_mpz(self.thisptr.divisor().get_mpz_t())
def is_equivalent_to(self, Generator g):
r"""
Test whether ``self`` and ``g`` are equivalent.
INPUT:
- ``g`` -- a :class:`Generator`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``g``
are equivalent generators.
Note that generators having different space dimensions are not
equivalent.
Examples:
>>> from ppl import Variable, point, line
>>> x = Variable(0)
>>> y = Variable(1)
>>> point(2*x , 2).is_equivalent_to( point(x) )
True
>>> point(2*x+0*y, 2).is_equivalent_to( point(x) )
False
>>> line(4*x).is_equivalent_to(line(x))
True
"""
return self.thisptr.is_equivalent_to(g.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable, point\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'p = point(3*x+2*y)\n'
>>> cmd += 'p.ascii_dump()\n'
>>> import subprocess
>>> import sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
size 3 1 3 2 ...
"""
self.thisptr.ascii_dump()
def __reduce__(self):
"""
Pickle object.
Tests:
>>> from ppl import Generator, Variable
>>> from pickle import loads, dumps
>>> x = Variable(0); y = Variable(1)
>>> loads(dumps(Generator.point(2*x+7*y, 3)))
point(2/3, 7/3)
>>> loads(dumps(Generator.closure_point(2*x+7*y, 3)))
closure_point(2/3, 7/3)
>>> loads(dumps(Generator.line(2*x+7*y)))
line(2, 7)
>>> loads(dumps(Generator.ray(2*x+7*y)))
ray(2, 7)
"""
le = Linear_Expression(self.coefficients(), 0)
t = self.thisptr.type()
if t == LINE:
return (Generator.line, (le,))
elif t == RAY:
return (Generator.ray, (le,))
elif t == POINT:
return (Generator.point, (le, self.divisor()))
elif t == CLOSURE_POINT:
return (Generator.closure_point, (le, self.divisor()))
else:
raise RuntimeError
def permute_space_dimensions(self, cycle):
r"""
Permute the coordinates according to ``cycle``.
>>> from ppl import Generator, Variable
>>> x = Variable(0); y = Variable(1); z = Variable(2)
>>> p = Generator.point(2*x+7*y-z, 3)
>>> p.permute_space_dimensions([0, 1])
>>> p
point(7/3, 2/3, -1/3)
>>> p.permute_space_dimensions([0, 2, 1])
>>> p
point(2/3, -1/3, 7/3)
"""
cdef cppvector[PPL_Variable] cpp_cycle
cdef int i
for i in cycle:
cpp_cycle.push_back(PPL_Variable(i))
self.thisptr.permute_space_dimensions(cpp_cycle)
####################################################
### Generator_System ##############################
####################################################
####################################################
cdef class Generator_System(object):
"""
Wrapper for PPL's ``Generator_System`` class.
An object of the class Generator_System is a system of generators,
i.e., a multiset of objects of the class Generator (lines, rays,
points and closure points). When inserting generators in a system,
space dimensions are automatically adjusted so that all the
generators in the system are defined on the same vector space. A
system of generators which is meant to define a non-empty
polyhedron must include at least one point: the reason is that
lines, rays and closure points need a supporting point (lines and
rays only specify directions while closure points only specify
points in the topological closure of the NNC polyhedron).
Examples:
>>> from ppl import Generator_System, Variable, line, ray, point, closure_point
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System(line(5*x-2*y))
>>> gs.insert(ray(6*x-3*y))
>>> gs.insert(point(2*x-7*y, 5))
>>> gs.insert(closure_point(9*x-1*y, 2))
>>> gs
Generator_System {line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)}
"""
def __cinit__(self, arg=None):
"""
The Cython constructor.
See :class:`Generator_System` for documentation.
Tests:
>>> from ppl import Generator_System
>>> Generator_System() # indirect doctest
Generator_System {}
"""
if arg is None:
self.thisptr = new PPL_Generator_System()
return
if isinstance(arg, Generator):
g = arg
self.thisptr = new PPL_Generator_System(g.thisptr[0])
return
if isinstance(arg, Generator_System):
gs = arg
self.thisptr = new PPL_Generator_System(gs.thisptr[0])
return
if isinstance(arg, (list, tuple)):
self.thisptr = new PPL_Generator_System()
for generator in arg:
self.insert(generator)
return
raise ValueError('Cannot initialize with '+str(arg)+'.')
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Generator_System())
Traceback (most recent call last):
...
TypeError: Generator_System unhashable
"""
raise TypeError('Generator_System unhashable')
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, Generator_System, point
>>> x = Variable(0)
>>> gs = Generator_System( point(3*x) )
>>> gs.space_dimension()
1
"""
return self.thisptr.space_dimension()
def set_space_dimension(self, size_t n):
r"""
Set the dimension of the vector space enclosing ``self``
Examples:
>>> import ppl
>>> gs = ppl.Generator_System()
>>> gs.insert(ppl.point(ppl.Variable(0) + ppl.Variable(12)))
>>> gs.insert(ppl.point(ppl.Variable(1) + 2*ppl.Variable(3)))
>>> gs.space_dimension()
13
>>> gs.set_space_dimension(25)
>>> gs.space_dimension()
25
>>> gs.set_space_dimension(3)
>>> gs.space_dimension()
3
"""
self.thisptr.set_space_dimension(n)
def clear(self):
r"""
Removes all generators from the generator system and sets its
space dimension to 0.
Examples:
>>> from ppl import Variable, Generator_System, point
>>> x = Variable(0)
>>> gs = Generator_System( point(3*x) ); gs
Generator_System {point(3/1)}
>>> gs.clear()
>>> gs
Generator_System {}
"""
self.thisptr.clear()
def insert(self, Generator g):
"""
Insert ``g`` into the generator system.
The number of space dimensions of ``self`` is increased, if needed.
INPUT:
- ``g`` -- a :class:`Generator`.
Examples:
>>> from ppl import Variable, Generator_System, point
>>> x = Variable(0)
>>> gs = Generator_System( point(3*x) )
>>> gs.insert( point(-3*x) )
>>> gs
Generator_System {point(3/1), point(-3/1)}
"""
self.thisptr.insert(g.thisptr[0])
def empty(self):
"""
Return ``True`` if and only if ``self`` has no generators.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Generator_System, point
>>> x = Variable(0)
>>> gs = Generator_System()
>>> gs.empty()
True
>>> gs.insert( point(-3*x) )
>>> gs.empty()
False
"""
return self.thisptr.empty()
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Generator_System, point, Variable\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'gs = Generator_System( point(3*x+2*y+1) )\n'
>>> cmd += 'gs.ascii_dump()\n'
>>> import subprocess, sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
topology NECESSARILY_CLOSED
...
"""
self.thisptr.ascii_dump()
def __len__(self):
"""
Return the number of generators in the system.
>>> from ppl import Variable, Generator_System, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System()
>>> gs.insert(point(3*x+2*y))
>>> gs.insert(point(x))
>>> gs.insert(point(y))
>>> len(gs)
3
"""
return sum([1 for g in self])
def __iter__(self):
"""
Iterate through the generators of the system.
Examples:
>>> from ppl import Generator_System, Variable, point, ray, line, closure_point
>>> x = Variable(0)
>>> gs = Generator_System(point(3*x))
>>> iter = gs.__iter__()
>>> next(iter)
point(3/1)
>>> next(iter)
Traceback (most recent call last):
...
StopIteration
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System( line(5*x-2*y) )
>>> gs.insert( ray(6*x-3*y) )
>>> gs.insert( point(2*x-7*y, 5) )
>>> gs.insert( closure_point(9*x-1*y, 2) )
>>> next(gs.__iter__())
line(5, -2)
>>> list(gs)
[line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)]
"""
cdef PPL_gs_iterator *gsi_ptr = new PPL_gs_iterator(self.thisptr[0].begin())
try:
while gsi_ptr[0] != self.thisptr[0].end():
yield _wrap_Generator(deref(gsi_ptr[0].inc(1)))
finally:
del gsi_ptr
def __getitem__(self, int k):
"""
Return the ``k``-th generator.
The correct way to read the individual generators is to
iterate over the generator system. This method is for
convenience only.
INPUT:
- ``k`` -- integer. The index of the generator.
OUTPUT:
The ``k``-th constraint of the generator system.
Examples:
>>> from ppl import Generator_System, Variable, point
>>> x = Variable(0)
>>> gs = Generator_System()
>>> gs.insert(point(3*x))
>>> gs.insert(point(-2*x))
>>> gs
Generator_System {point(3/1), point(-2/1)}
>>> gs[0]
point(3/1)
>>> gs[1]
point(-2/1)
"""
if k < 0:
raise IndexError('index must be nonnegative')
iterator = iter(self)
try:
for i in range(k):
next(iterator)
except StopIteration:
raise IndexError('index is past-the-end')
return next(iterator)
def __repr__(self):
r"""
Return a string representation of the generator system.
OUTPUT:
A string.
Examples:
>>> from ppl import Generator_System, Variable, point, ray
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System(point(3*x+2*y+1))
>>> gs.insert(ray(x))
>>> gs.__repr__()
'Generator_System {point(3/1, 2/1), ray(1, 0)}'
"""
s = 'Generator_System {'
s += ', '.join([repr(g) for g in self])
s += '}'
return s
def __reduce__(self):
"""
Pickle object.
Tests:
>>> from ppl import Generator_System, Variable, point, ray
>>> from pickle import loads, dumps
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System((point(3*x+2*y+1), ray(x))); gs
Generator_System {point(3/1, 2/1), ray(1, 0)}
>>> loads(dumps(gs))
Generator_System {point(3/1, 2/1), ray(1, 0)}
"""
return (Generator_System, (tuple(self), ))
cdef PPL_GeneratorType_str(PPL_GeneratorType t):
if t == LINE:
return 'line'
elif t == RAY:
return 'ray'
elif t == POINT:
return 'point'
elif t == CLOSURE_POINT:
return 'closure_point'
else:
raise RuntimeError
cdef _wrap_Generator(PPL_Generator generator):
"""
Wrap a C++ ``PPL_Generator`` into a Cython ``Generator``.
"""
cdef Generator g = Generator(True)
g.thisptr = new PPL_Generator(generator)
return g
cdef _wrap_Generator_System(PPL_Generator_System generator_system):
"""
Wrap a C++ ``PPL_Generator_System`` into a Cython ``Generator_System``.
"""
cdef Generator_System gs = Generator_System()
del gs.thisptr
gs.thisptr = new PPL_Generator_System(generator_system)
return gs
cdef class Poly_Gen_Relation(object):
r"""
Wrapper for PPL's ``Poly_Con_Relation`` class.
INPUT/OUTPUT:
You must not construct :class:`Poly_Gen_Relation` objects
manually. You will usually get them from
:meth:`~sage.libs.ppl.Polyhedron.relation_with`. You can also get
pre-defined relations from the class methods :meth:`nothing` and
:meth:`subsumes`.
Examples:
>>> from ppl import Poly_Gen_Relation
>>> nothing = Poly_Gen_Relation.nothing(); nothing
nothing
>>> subsumes = Poly_Gen_Relation.subsumes(); subsumes
subsumes
>>> nothing.implies( subsumes )
False
>>> subsumes.implies( nothing )
True
"""
def __cinit__(self, do_not_construct_manually=False):
"""
The Cython constructor.
See :class:`Poly_Gen_Relation` for documentation.
Tests:
>>> from ppl import Poly_Gen_Relation
>>> Poly_Gen_Relation.nothing()
nothing
"""
assert(do_not_construct_manually)
self.thisptr = NULL
def __dealloc__(self):
"""
The Cython destructor.
"""
assert self.thisptr!=NULL, 'Do not construct Poly_Gen_Relation objects manually!'
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Poly_Gen_Relation.nothing())
Traceback (most recent call last):
...
TypeError: Poly_Gen_Relation unhashable
"""
raise TypeError('Poly_Gen_Relation unhashable')
def implies(self, Poly_Gen_Relation y):
r"""
Test whether ``self`` implies ``y``.
INPUT:
- ``y`` -- a :class:`Poly_Gen_Relation`.
OUTPUT:
Boolean. ``True`` if and only if ``self`` implies ``y``.
Examples:
>>> from ppl import Poly_Gen_Relation
>>> nothing = Poly_Gen_Relation.nothing()
>>> nothing.implies( nothing )
True
"""
return self.thisptr.implies(y.thisptr[0])
@classmethod
def nothing(cls):
r"""
Return the assertion that says nothing.
OUTPUT:
A :class:`Poly_Gen_Relation`.
Examples:
>>> from ppl import Poly_Gen_Relation
>>> Poly_Gen_Relation.nothing()
nothing
"""
return _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation_nothing())
@classmethod
def subsumes(cls):
r"""
Return the assertion "Adding the generator would not change
the polyhedron".
OUTPUT:
A :class:`Poly_Gen_Relation`.
Examples:
>>> from ppl import Poly_Gen_Relation
>>> Poly_Gen_Relation.subsumes()
subsumes
"""
return _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation_subsumes())
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Poly_Gen_Relation\n'
>>> cmd += 'Poly_Gen_Relation.nothing().ascii_dump()\n'
>>> from subprocess import Popen, PIPE
>>> import sys
>>> proc = Popen([sys.executable, '-c', cmd], stderr=PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
NOTHING
>>> proc.returncode
0
"""
self.thisptr.ascii_dump()
def __repr__(self):
r"""
Return a string representation.
OUTPUT:
String.
Examples:
>>> from ppl import Poly_Gen_Relation
>>> Poly_Gen_Relation.nothing().__repr__()
'nothing'
"""
if self.implies(Poly_Gen_Relation.subsumes()):
return 'subsumes'
else:
return 'nothing'
cdef _wrap_Poly_Gen_Relation(PPL_Poly_Gen_Relation relation):
"""
Wrap a C++ ``PPL_Poly_Gen_Relation`` into a Cython ``Poly_Gen_Relation``.
"""
cdef Poly_Gen_Relation rel = Poly_Gen_Relation(True)
rel.thisptr = new PPL_Poly_Gen_Relation(relation)
return rel
pplpy-0.8.9/ppl/linear_algebra.pxd 0000664 0000000 0000000 00000000524 14475172214 0017143 0 ustar 00root root 0000000 0000000 from __future__ import absolute_import
from .ppl_decl cimport *
cdef class Variable(object):
cdef PPL_Variable *thisptr
cdef class Variables_Set(object):
cdef PPL_Variables_Set *thisptr
cdef class Linear_Expression(object):
cdef PPL_Linear_Expression *thisptr
cdef PPL_Coefficient PPL_Coefficient_from_pyobject(c) except *
pplpy-0.8.9/ppl/linear_algebra.pyx 0000664 0000000 0000000 00000104646 14475172214 0017202 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2010-2014 Volker Braun
# 2011 Simon King
# 2011-2017 Jeroen Demeyer
# 2012 Risan
# 2013 Julien Puydt
# 2013 Travis Scrimshaw
# 2015 André Apitzsch
# 2016 Jori Mäntysalo
# 2016 Matthias Koeppe
# 2016-2017 Frédéric Chapoton
# 2016-2020 Vincent Delecroix
# 2017-2018 Vincent Klein
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
cimport cython
from gmpy2 cimport import_gmpy2, mpz, GMPy_MPZ_From_mpz, MPZ_Check
from .constraint cimport _make_Constraint_from_richcmp
# initialize gmpy2 C API
import_gmpy2()
####################################################
# PPL can use floating-point arithmetic to compute integers
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
# but with PPL's rounding the gsl will be very unhappy; must turn off!
restore_pre_PPL_rounding()
cdef PPL_Coefficient PPL_Coefficient_from_pyobject(c) except *:
cdef mpz coeff
if MPZ_Check(c):
coeff = c
elif isinstance(c, (int, str)):
coeff = mpz(c)
else:
coeff = mpz(c)
if coeff != c or c != coeff:
raise TypeError('ppl coefficients must be integral')
return PPL_Coefficient(coeff.z)
@cython.freelist(128)
cdef class Variable(object):
r"""
Wrapper for PPL's ``Variable`` class.
A dimension of the vector space.
An object of the class Variable represents a dimension of the space, that is
one of the Cartesian axes. Variables are used as basic blocks in order to
build more complex linear expressions. Each variable is identified by a
non-negative integer, representing the index of the corresponding Cartesian
axis (the first axis has index 0). The space dimension of a variable is the
dimension of the vector space made by all the Cartesian axes having an index
less than or equal to that of the considered variable; thus, if a variable
has index `i`, its space dimension is `i+1`.
INPUT:
- ``i`` -- integer. The index of the axis.
OUTPUT:
A :class:`Variable`
Examples:
>>> from ppl import Variable
>>> x = Variable(123)
>>> x.id()
123
>>> x
x123
Note that the "meaning" of an object of the class Variable is completely
specified by the integer index provided to its constructor: be careful not
to be mislead by C++ language variable names. For instance, in the following
example the linear expressions ``e1`` and ``e2`` are equivalent, since the
two variables ``x`` and ``z`` denote the same Cartesian axis:
>>> x = Variable(0)
>>> y = Variable(1)
>>> z = Variable(0)
>>> e1 = x + y; e1
x0+x1
>>> e2 = y + z; e2
x0+x1
>>> e1 - e2
0
"""
def __cinit__(self, PPL_dimension_type i):
"""
The Cython constructor.
See :class:`Variable` for documentation.
Tests:
>>> from ppl import Variable
>>> Variable(123) # indirect doctest
x123
"""
self.thisptr = new PPL_Variable(i)
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Variable(12))
Traceback (most recent call last):
...
TypeError: Variable unhashable
"""
raise TypeError('Variable unhashable')
def id(self):
"""
Return the index of the Cartesian axis associated to the variable.
Examples:
>>> from ppl import Variable
>>> x = Variable(123)
>>> x.id()
123
"""
return self.thisptr.id()
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer. The returned value is ``self.id()+1``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> x.space_dimension()
1
"""
return self.thisptr.space_dimension()
def __repr__(self):
"""
Return a string representation.
OUTPUT:
String.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> x.__repr__()
'x0'
"""
return 'x{0}'.format(self.id())
def __add__(self, other):
r"""
Return the sum ``self`` + ``other``.
INPUT:
- ``self``, ``other`` -- anything convertible to
``Linear_Expression``: An integer, a :class:`Variable`, or a
:class:`Linear_Expression`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` + ``other``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1)
>>> x + 15
x0+15
>>> 15 + y
x1+15
>>> from gmpy2 import mpz
>>> x + mpz(3)
x0+3
>>> mpz(-5) + y
x1-5
>>> x + 1.5
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
>>> 1.5 + x
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
"""
return Linear_Expression(self) + Linear_Expression(other)
def __radd__(self, other):
return Linear_Expression(self) + Linear_Expression(other)
def __sub__(self, other):
r"""
Return the difference ``self`` - ``other``.
INPUT:
- ``self``, ``other`` -- anything convertible to
``Linear_Expression``: An integer, a :class:`Variable`, or a
:class:`Linear_Expression`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` - ``other``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1)
>>> x - 15
x0-15
>>> 15 - y
-x1+15
"""
return Linear_Expression(self) - Linear_Expression(other)
def __rsub__(self, other):
return Linear_Expression(other) - Linear_Expression(self)
def __mul__(self, other):
r"""
Return the product ``self`` * ``other``.
INPUT:
- ``self``, ``other`` -- One must be an integer, the other a
:class:`Variable`.
OUTPUT:
A :class:`Linear_Expression` representing ``self`` * ``other``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1)
>>> x * 15
15*x0
>>> 15 * y
15*x1
>>> 1.5 * x
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
>>> x * 1.5
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
"""
if isinstance(self, Variable):
return Linear_Expression(self) * other
else:
# NOTE: this code path will only be executed when compiled with cython < 3.0.0
return Linear_Expression(other) * self
def __rmul__(self, other):
return Linear_Expression(self) * other
def __pos__(self):
r"""
Return ``self`` as :class:`Linear_Expression`
OUTPUT:
The :class:`Linear_Expression` ``+self``
Examples:
>>> from ppl import Variable
>>> x = Variable(0); x
x0
>>> +x
x0
"""
return Linear_Expression(self)
def __neg__(self):
r"""
Return -``self`` as :class:`Linear_Expression`
OUTPUT:
The :class:`Linear_Expression` ``-self``
Examples:
>>> from ppl import Variable
>>> x = Variable(0); x
x0
>>> -x
-x0
"""
return Linear_Expression(self)*(-1)
def __richcmp__(self, other, op):
"""
Construct :class:`Constraint` from equalities or inequalities.
INPUT:
- ``self``, ``other`` -- anything convertible to a
:class:`Linear_Expression`
- ``op`` -- the operation.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> x < y
-x0+x1>0
>>> x <= 0
-x0>=0
>>> x == y-y
x0==0
>>> x >= -2
x0+2>=0
>>> x > 0
x0>0
>>> 0 == 1 # watch out!
False
>>> 0*x == 1
-1==0
"""
return _make_Constraint_from_richcmp(self, other, op)
####################################################
### Variables_Set ##################################
####################################################
cdef class Variables_Set(object):
r"""
Wrapper for PPL's ``Variables_Set`` class.
A set of variables' indexes.
Examples:
Build the empty set of variable indexes:
>>> from ppl import Variable, Variables_Set
>>> Variables_Set()
Variables_Set of cardinality 0
Build the singleton set of indexes containing the index of the variable:
>>> v123 = Variable(123)
>>> Variables_Set(v123)
Variables_Set of cardinality 1
Build the set of variables' indexes in the range from one variable to
another variable:
>>> v127 = Variable(127)
>>> Variables_Set(v123,v127)
Variables_Set of cardinality 5
You can alternatively use integers:
>>> Variables_Set(23)
Variables_Set of cardinality 1
>>> Variables_Set(10, 14)
Variables_Set of cardinality 5
"""
def __cinit__(self, *args):
"""
The Cython constructor.
See :class:`Variables_Set` for documentation.
Tests:
>>> from ppl import Variable, Variables_Set
>>> Variables_Set()
Variables_Set of cardinality 0
"""
cdef Variable arg0, arg1
if len(args) == 0:
self.thisptr = new PPL_Variables_Set()
elif len(args) == 1:
if type(args[0]) is Variable:
arg0 = args[0]
else:
arg0 = Variable(args[0])
self.thisptr = new PPL_Variables_Set(arg0.thisptr[0])
elif len(args) == 2:
if type(args[0]) is Variable:
arg0 = args[0]
else:
arg0 = Variable(args[0])
if type(args[1]) is Variable:
arg1 = args[1]
else:
arg1 = Variable(args[1])
self.thisptr = new PPL_Variables_Set(arg0.thisptr[0], arg1.thisptr[0])
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Variables_Set())
Traceback (most recent call last):
...
TypeError: Variables_Set unhashable
"""
raise TypeError('Variables_Set unhashable')
def __dealloc__(self):
"""
The Cython destructor
"""
del self.thisptr
def space_dimension(self):
r"""
Returns the dimension of the smallest vector space enclosing all the variables whose indexes are in the set.
OUTPUT:
Integer.
EXAMPLES::
>>> from ppl import Variable, Variables_Set
>>> v123 = Variable(123)
>>> S = Variables_Set(v123)
>>> S.space_dimension()
124
"""
return self.thisptr.space_dimension()
def insert(self, Variable v):
r"""
Inserts the index of variable `v` into the set.
EXAMPLES::
>>> from ppl import Variable, Variables_Set
>>> S = Variables_Set()
>>> v123 = Variable(123)
>>> S.insert(v123)
>>> S.space_dimension()
124
"""
self.thisptr.insert(v.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
TODO: rewrite examples
EXAMPLES::
>>> cmd = 'from ppl import Variable, Variables_Set\n'
>>> cmd += 'v123 = Variable(123)\n'
>>> cmd += 'S = Variables_Set(v123)\n'
>>> cmd += 'S.ascii_dump()\n'
>>> import subprocess
>>> import sys
>>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE)
>>> out, err = proc.communicate()
>>> print(str(err.decode('ascii')))
variables( 1 )
123
"""
self.thisptr.ascii_dump()
def __repr__(self):
"""
Return a string representation.
OUTPUT:
String.
EXAMPLES::
>>> from ppl import Variable, Variables_Set
>>> S = Variables_Set()
>>> S.__repr__()
'Variables_Set of cardinality 0'
"""
return 'Variables_Set of cardinality {}'.format(self.thisptr.size())
####################################################
### Linear_Expression ##############################
####################################################
cdef class Linear_Expression(object):
r"""
Wrapper for PPL's ``PPL_Linear_Expression`` class.
INPUT:
The constructor accepts zero, one, or two arguments.
If there are two arguments ``Linear_Expression(a,b)``, they are
interpreted as
- ``a`` -- either a dictionary whose indices are space dimension and
values are coefficients or an iterable coefficients (e.g. a list or
tuple).
- ``b`` -- an integer. The inhomogeneous term.
A single argument ``Linear_Expression(arg)`` is interpreted as
- ``arg`` -- something that determines a linear
expression. Possibilities are:
* a :class:`Variable`: The linear expression given by that
variable.
* a :class:`Linear_Expression`: The copy constructor.
* an integer: Constructs the constant linear expression.
No argument is the default constructor and returns the zero linear
expression.
OUTPUT:
A :class:`Linear_Expression`
Examples:
>>> from ppl import Variable, Linear_Expression
>>> Linear_Expression({1: -3, 7: 1}, 0)
-3*x1+x7
>>> Linear_Expression([1, 2, 3, 4], 5)
x0+2*x1+3*x2+4*x3+5
>>> Linear_Expression(10)
10
>>> Linear_Expression()
0
>>> Linear_Expression({}, 2)
2
>>> Linear_Expression([], 2)
2
>>> Linear_Expression(10).inhomogeneous_term()
mpz(10)
>>> x = Variable(123)
>>> expr = x+1
>>> expr
x123+1
>>> expr.coefficient(x)
mpz(1)
>>> expr.coefficient(Variable(124))
mpz(0)
>>> from gmpy2 import mpz, mpq
>>> Linear_Expression(mpz(3))
3
>>> Linear_Expression([mpz(5), mpz(2)], mpz(-2))
5*x0+2*x1-2
String, rationals and floating point types are accepted as long as they
represent exact integers:
>>> Linear_Expression(('4', 1), 2)
4*x0+x1+2
>>> Linear_Expression((4, 1.0, mpq('4/2')), 2.0)
4*x0+x1+2*x2+2
>>> Linear_Expression(('1.5',), 0)
Traceback (most recent call last):
...
ValueError: invalid digits
>>> Linear_Expression((mpq('3/2'),), 0)
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
>>> Linear_Expression((1, 2.1, 1), 1)
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
>>> Linear_Expression(mpq('1/2'))
Traceback (most recent call last):
...
TypeError: ppl coefficients must be integral
>>> Linear_Expression('I am a linear expression')
Traceback (most recent call last):
...
ValueError: invalid digits
>>> Linear_Expression(('I','am','a','linear','expression'))
Traceback (most recent call last):
...
TypeError: mpz() requires numeric or string argument
"""
def __init__(self, *args):
"""
The Cython constructor.
See :class:`Linear_Expression` for documentation.
Tests:
>>> from ppl import Linear_Expression
>>> Linear_Expression(10) # indirect doctest
10
"""
cdef size_t i
if len(args) == 2:
a = args[0]
b = args[1]
self.thisptr = new PPL_Linear_Expression()
if isinstance(a, dict):
if a:
self.thisptr.set_space_dimension(1 + max(a))
for i, coeff in a.items():
self.thisptr.set_coefficient(PPL_Variable(i), PPL_Coefficient_from_pyobject(coeff))
else:
self.thisptr.set_space_dimension(len(a))
for i, coeff in enumerate(a):
self.thisptr.set_coefficient(PPL_Variable(i), PPL_Coefficient_from_pyobject(coeff))
self.thisptr.set_inhomogeneous_term(PPL_Coefficient_from_pyobject(b))
return
elif len(args) == 1:
arg = args[0]
if isinstance(arg, Variable):
v = arg
self.thisptr = new PPL_Linear_Expression(v.thisptr[0])
return
if isinstance(arg, Linear_Expression):
e = arg
self.thisptr = new PPL_Linear_Expression(e.thisptr[0])
return
self.thisptr = new PPL_Linear_Expression(PPL_Coefficient_from_pyobject(arg))
elif len(args) == 0:
self.thisptr = new PPL_Linear_Expression()
return
else:
raise ValueError("Cannot initialize with more than 2 arguments.")
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.Linear_Expression(10))
Traceback (most recent call last):
...
TypeError: Linear_Expression unhashable
"""
raise TypeError('Linear_Expression unhashable')
def space_dimension(self):
"""
Return the dimension of the vector space necessary for the
linear expression.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> (x+y+1).space_dimension()
2
>>> (x+y).space_dimension()
2
>>> (y+1).space_dimension()
2
>>> (x+1).space_dimension()
1
>>> (y+1-y).space_dimension()
2
"""
return self.thisptr.space_dimension()
def set_space_dimension(self, PPL_dimension_type n):
r"""
Set the dimension of the ambient space to ``n``
Examples:
>>> import ppl
>>> L = ppl.Variable(0) + ppl.Variable(3)
>>> L.space_dimension()
4
>>> L.set_space_dimension(6)
>>> L.space_dimension()
6
>>> L = ppl.Variable(5) - ppl.Variable(2)
>>> L.set_space_dimension(3)
>>> L
-x2
"""
self.thisptr.set_space_dimension(n)
def swap_space_dimensions(self, v1, v2):
r"""
Swaps the coefficients of ``v1`` and ``v2``.
INPUT:
- ``v1``, ``v2`` - variables or indices of variables
Examples:
>>> import ppl
>>> L = ppl.Variable(1) - 3 * ppl.Variable(3)
>>> L.swap_space_dimensions(ppl.Variable(1), ppl.Variable(3))
>>> L
-3*x1+x3
>>> L = ppl.Variable(1) - 3 * ppl.Variable(3)
>>> L.swap_space_dimensions(1, 3)
>>> L
-3*x1+x3
"""
cdef Variable vv1, vv2
if type(v1) is Variable:
vv1 = v1
else:
vv1 = Variable(v1)
if type(v2) is Variable:
vv2 = v2
else:
vv2 = Variable(v2)
self.thisptr.swap_space_dimensions(vv1.thisptr[0], vv2.thisptr[0])
def shift_space_dimensions(self, v, PPL_dimension_type n):
r"""
Shift by ``n`` the coefficients of variables starting from the
coefficient of ``v``.
This increases the space dimension by ``n``.
Examples:
>>> import ppl
>>> L = ppl.Variable(0) + 13 * ppl.Variable(2) + 5 * ppl.Variable(7)
>>> L
x0+13*x2+5*x7
>>> L.shift_space_dimensions(ppl.Variable(2), 2)
>>> L
x0+13*x4+5*x9
>>> L.shift_space_dimensions(ppl.Variable(7), 3)
>>> L
x0+13*x4+5*x12
"""
cdef Variable vv
if type(v) is Variable:
vv = v
else:
vv = Variable(v)
self.thisptr.shift_space_dimensions(vv.thisptr[0], n)
def remove_space_dimensions(self, Variables_Set V):
r"""
Removes the dimension specified by the set of variables ``V``.
See :class:`Variables_Set` to construct set of variables.
Examples:
>>> import ppl
>>> L = sum(i * ppl.Variable(i) for i in range(10))
>>> L
x1+2*x2+3*x3+4*x4+5*x5+6*x6+7*x7+8*x8+9*x9
>>> L.remove_space_dimensions(ppl.Variables_Set(3,5))
>>> L
x1+2*x2+6*x3+7*x4+8*x5+9*x6
"""
self.thisptr.remove_space_dimensions(V.thisptr[0])
def coefficient(self, v):
"""
Return the coefficient of the variable ``v``.
INPUT:
- ``v`` -- a :class:`Variable`.
OUTPUT:
A gmpy2 integer.
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> e = 3*x+1
>>> e.coefficient(x)
mpz(3)
>>> e.coefficient(Variable(13))
mpz(0)
"""
cdef Variable vv
if type(v) is Variable:
vv = v
else:
vv = Variable(v)
return GMPy_MPZ_From_mpz(self.thisptr.coefficient(vv.thisptr[0]).get_mpz_t())
def coefficients(self):
"""
Return the coefficients of the linear expression.
OUTPUT:
A tuple of gmpy2 integers of length :meth:`space_dimension`.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1)
>>> e = 3*x+5*y+1
>>> e.coefficients()
(mpz(3), mpz(5))
"""
cdef int d = self.space_dimension()
cdef int i
cdef list coeffs = [None]*d
for i in range(d):
coeffs[i] = GMPy_MPZ_From_mpz(self.thisptr.coefficient(PPL_Variable(i)).get_mpz_t())
return tuple(coeffs)
def set_coefficient(self, i, v):
"""
Set the ``i``-th coefficient to ``v``.
INPUT:
- ``i`` - variable or variable index
- ``v`` - integer
Examples:
>>> from ppl import Variable
>>> L = Variable(0) + 3 * Variable(1)
>>> L.set_coefficient(1, -5)
>>> L.set_coefficient(7, 3)
>>> L
x0-5*x1
"""
cdef Variable ii
if type(i) is Variable:
ii = i
else:
ii = Variable(i)
cdef PPL_Coefficient vv = PPL_Coefficient_from_pyobject(v)
self.thisptr.set_coefficient(ii.thisptr[0], vv)
def inhomogeneous_term(self):
"""
Return the inhomogeneous term of the linear expression.
OUTPUT:
Integer.
Examples:
>>> from ppl import Linear_Expression
>>> Linear_Expression(10).inhomogeneous_term()
mpz(10)
"""
return GMPy_MPZ_From_mpz(self.thisptr.inhomogeneous_term().get_mpz_t())
def set_inhomogeneous_term(self, v):
"""
Set the inhomogeneous term of this linear expression.
Examples:
>>> from ppl import Linear_Expression
>>> L = Linear_Expression()
>>> L.set_inhomogeneous_term(-1313958534578713747)
>>> L.inhomogeneous_term()
mpz(-1313958534578713747)
"""
cdef PPL_Coefficient vv = PPL_Coefficient_from_pyobject(v)
self.thisptr.set_inhomogeneous_term(vv)
def is_zero(self):
"""
Test if ``self`` is the zero linear expression.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> Linear_Expression(0).is_zero()
True
>>> Linear_Expression(10).is_zero()
False
"""
return self.thisptr.is_zero()
def all_homogeneous_terms_are_zero(self):
"""
Test if ``self`` is a constant linear expression.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> Linear_Expression(10).all_homogeneous_terms_are_zero()
True
"""
return self.thisptr.all_homogeneous_terms_are_zero()
def is_equal_to(self, Linear_Expression other):
"""
Test equality with another linear expression.
OUTPUT: boolean
Examples:
>>> from ppl import Variable
>>> L1 = Variable(0) + 2 * Variable(3)
>>> L2 = Variable(0) + 2 * Variable(3)
>>> L3 = Variable(0) - Variable(2)
>>> L1.is_equal_to(L2)
True
>>> L1.is_equal_to(L3)
False
"""
return self.thisptr.is_equal_to(other.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'e = 3*x+2*y+1\n'
>>> cmd += 'e.ascii_dump()\n'
>>> from subprocess import Popen, PIPE
>>> import sys
>>> proc = Popen([sys.executable, '-c', cmd], stdout=PIPE, stderr=PIPE)
>>> out, err = proc.communicate()
>>> len(out) == 0
True
>>> len(err) > 0
True
"""
self.thisptr.ascii_dump()
def __repr__(self):
r"""
Return a string representation of the linear expression.
OUTPUT:
A string.
Examples:
>>> from ppl import Linear_Expression, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> x+1
x0+1
>>> x+1-x
1
>>> 2*x
2*x0
>>> x-x-1
-1
>>> x-x
0
"""
s = ''
first = True
for i in range(self.space_dimension()):
x = Variable(i)
coeff = self.coefficient(x)
if coeff == 0:
continue
if first and coeff == 1:
s += '%r' % x
first = False
elif first and coeff == -1:
s += '-%r' % x
first = False
elif first and coeff != 1:
s += '%d*%r' % (coeff, x)
first = False
elif coeff == 1:
s += '+%r' % x
elif coeff == -1:
s += '-%r' % x
else:
s += '%+d*%r' % (coeff, x)
inhomog = self.inhomogeneous_term()
if inhomog != 0:
if first:
s += '%d' % inhomog
first = False
else:
s += '%+d' % inhomog
if first:
s = '0'
return s
def __add__(self, other):
r"""
Add ``self`` and ``other``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The sum as a :class:`Linear_Expression`
Examples:
>>> from ppl import Linear_Expression, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> 9 + x + y + (1 + x) + y + y
2*x0+3*x1+10
>>> from gmpy2 import mpz
>>> mpz(3) + x + mpz(5) + y + mpz(7)
x0+x1+15
>>> from gmpy2 import mpz
>>> x + mpz(5)
x0+5
"""
cdef Linear_Expression lhs, rhs
if isinstance(self, Linear_Expression):
lhs = self
else:
# NOTE: this code path will only be executed when compiled with cython < 3.0.0
lhs = Linear_Expression(self)
if isinstance(other, Linear_Expression):
rhs = other
else:
rhs = Linear_Expression(other)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = lhs.thisptr[0] + rhs.thisptr[0]
return result
def __radd__(self, other):
r"""
Add ``self`` and ``other``.
"""
cdef Linear_Expression lhs, rhs
lhs = self
if isinstance(other, Linear_Expression):
rhs = other
else:
rhs = Linear_Expression(other)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = lhs.thisptr[0] + rhs.thisptr[0]
return result
def __sub__(self, other):
r"""
Subtract ``other`` from ``self``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The difference as a :class:`Linear_Expression`
Examples:
>>> from ppl import Linear_Expression, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> 9-x-y-(1-x)-y-y
-3*x1+8
>>> from gmpy2 import mpz
>>> mpz(5)-x-(mpz(3)-y)-x-mpz(7)
-2*x0+x1-5
"""
cdef Linear_Expression lhs, rhs
if isinstance(self, Linear_Expression):
lhs = self
else:
lhs = Linear_Expression(self)
if isinstance(other, Linear_Expression):
rhs = other
else:
rhs = Linear_Expression(other)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = lhs.thisptr[0] - rhs.thisptr[0]
return result
def __mul__(self, other):
r"""
Multiply ``self`` with ``other``.
INPUT:
- ``self``, ``other`` -- anything that can be used to
construct a :class:`Linear_Expression`. One of them, not
necessarily ``self``, is guaranteed to be a
:class:``Linear_Expression``, otherwise Python would not
have called this method.
OUTPUT:
The product as a :class:`Linear_Expression`
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> 8 * (x + 1)
8*x0+8
>>> y * 8
8*x1
>>> 2**128 * x
340282366920938463463374607431768211456*x0
>>> from gmpy2 import mpz
>>> mpz(3) * x * mpz(5)
15*x0
"""
cdef Linear_Expression e
cdef c
if isinstance(self, Linear_Expression):
e = self
c = other
else:
# NOTE: this code path will only be executed when compiled with cython < 3.0.0
e = other
c = self
cdef PPL_Coefficient cc = PPL_Coefficient_from_pyobject(c)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = e.thisptr[0] * cc
return result
def __rmul__(self, other):
r"""
Multiply ``self`` with ``other``
"""
cdef Linear_Expression e
cdef c
e = self
c = other
cdef PPL_Coefficient cc = PPL_Coefficient_from_pyobject(c)
cdef Linear_Expression result = Linear_Expression()
result.thisptr[0] = e.thisptr[0] * cc
return result
def __pos__(self):
"""
Return ``self``.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> +Linear_Expression(1)
1
>>> x = Variable(0)
>>> +(x+1)
x0+1
"""
return self
def __neg__(self):
"""
Return the negative of ``self``.
Examples:
>>> from ppl import Variable, Linear_Expression
>>> -Linear_Expression(1)
-1
>>> x = Variable(0)
>>> -(x+1)
-x0-1
"""
return self*(-1)
def __richcmp__(self, other, int op):
"""
Construct :class:`Constraint`s
Examples:
>>> from ppl import Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> x+1 < y-2
-x0+x1-3>0
>>> x+1 <= y-2
-x0+x1-3>=0
>>> x+1 == y-2
x0-x1+3==0
>>> x+1 >= y-2
x0-x1+3>=0
>>> x+1 > y-2
x0-x1+3>0
"""
return _make_Constraint_from_richcmp(self, other, op)
def __reduce__(self):
"""
Pickle object
Examples:
>>> from ppl import Linear_Expression
>>> from pickle import loads, dumps
>>> le = loads(dumps(Linear_Expression([1,2,3],4)))
>>> le.coefficients() == (1,2,3)
True
>>> le.inhomogeneous_term() == 4
True
"""
return (Linear_Expression, (self.coefficients(), self.inhomogeneous_term()))
def permute_space_dimensions(self, cycle):
r"""
Permute the coordinates according to ``cycle``.
Examples:
>>> from ppl import Variable
>>> x = Variable(0); y = Variable(1); z = Variable(2)
>>> l = 2*x - y + 3*z
>>> l.permute_space_dimensions([0, 2])
>>> l
3*x0-x1+2*x2
>>> l.permute_space_dimensions([1, 0, 2])
>>> l
-x0+2*x1+3*x2
"""
cdef cppvector[PPL_Variable] cpp_cycle
cdef PPL_dimension_type i
for i in cycle:
cpp_cycle.push_back(PPL_Variable(i))
self.thisptr.permute_space_dimensions(cpp_cycle)
pplpy-0.8.9/ppl/mip_problem.pxd 0000664 0000000 0000000 00000000227 14475172214 0016521 0 ustar 00root root 0000000 0000000 from .linear_algebra cimport *
from .generator cimport *
from .constraint cimport *
cdef class MIP_Problem(object):
cdef PPL_MIP_Problem *thisptr
pplpy-0.8.9/ppl/mip_problem.pyx 0000664 0000000 0000000 00000047647 14475172214 0016567 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2010-2014 Volker Braun
# 2011 Simon King
# 2011-2017 Jeroen Demeyer
# 2012 Risan
# 2013 Julien Puydt
# 2013 Travis Scrimshaw
# 2015 André Apitzsch
# 2016 Jori Mäntysalo
# 2016 Matthias Koeppe
# 2016-2017 Frédéric Chapoton
# 2016-2018 Vincent Delecroix
# 2017-2018 Vincent Klein
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from cysignals.signals cimport sig_on, sig_off
from gmpy2 cimport import_gmpy2, GMPy_MPQ_From_mpz
from cython.operator cimport dereference as deref
# PPL can use floating-point arithmetic to compute integers
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
# initialize gmpy2 C API
import_gmpy2()
# but with PPL's rounding the gsl will be very unhappy; must turn off!
restore_pre_PPL_rounding()
cdef class MIP_Problem(object):
r"""
wrapper for PPL's MIP_Problem class
An object of the class MIP_Problem represents a Mixed Integer
(Linear) Program problem.
INPUT:
- ``dim`` -- integer
- ``args`` -- an array of the defining data of the MIP_Problem.
For each element, any one of the following is accepted:
* A :class:`Constraint_System`.
* A :class:`Linear_Expression`.
OUTPUT:
A :class:`MIP_Problem`.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(y >= 0)
>>> cs.insert(3 * x + 5 * y <= 10)
>>> m = MIP_Problem(2, cs, x + y)
>>> m
MIP Problem (maximization, 2 variables, 3 constraints)
>>> m.optimal_value()
mpq(10,3)
>>> float(_)
3.333333333333333
>>> m.optimizing_point()
point(10/3, 0/3)
"""
def __repr__(self):
"""
String representation of MIP Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m
MIP Problem (maximization, 2 variables, 3 constraints)
"""
dim = self.space_dimension()
ncs = sum(1 for _ in self)
return 'MIP Problem ({}, {} variable{}, {} constraint{})'.format(
self.optimization_mode(),
dim,
's' if dim > 1 else '',
ncs,
's' if ncs > 1 else '')
def __cinit__(self, PPL_dimension_type dim = 0, *args):
"""
The Cython constructor.
Tests:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> MIP_Problem(0)
A MIP_Problem
Maximize: 0
Subject to constraints
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x + y <= 2)
>>> M = MIP_Problem(2, cs, 0)
>>> M = MIP_Problem(2, cs, x)
>>> M = MIP_Problem(2, None, None)
Traceback (most recent call last):
...
TypeError: Cannot convert NoneType to ppl.Constraint_System
>>> M = MIP_Problem(2, cs, 'hey')
Traceback (most recent call last):
...
TypeError: unable to convert 'hey' to an integer
>>> M = MIP_Problem(2, cs, x, 'middle')
Traceback (most recent call last):
...
ValueError: unknown mode 'middle'
"""
if not args:
self.thisptr = new PPL_MIP_Problem(dim)
return
elif len(args) == 1:
raise ValueError('cannot initialize from {}'.format(args))
cdef Constraint_System cs = args[0]
cdef Linear_Expression obj
try:
obj = args[1]
except TypeError:
obj = Linear_Expression(args[1])
cdef PPL_Optimization_Mode mode = MAXIMIZATION
if len(args) == 3:
if args[2] == 'maximization':
mode = MAXIMIZATION
elif args[2] == 'minimization':
mode = MINIMIZATION
else:
raise ValueError('unknown mode {!r}'.format(args[2]))
self.thisptr = new PPL_MIP_Problem(dim, cs.thisptr[0], obj.thisptr[0], mode)
def __dealloc__(self):
"""
The Cython destructor
"""
del self.thisptr
def __iter__(self):
r"""
Iterator through the constraints
Tests:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> M = MIP_Problem(2)
>>> for c in M: print(c)
>>> M.add_constraint(x + y <= 5)
>>> for c in M: print(c)
-x0-x1+5>=0
>>> M.add_constraint(3*x - 18*y >= -2)
>>> for c in M: print(c)
-x0-x1+5>=0
3*x0-18*x1+2>=0
>>> M = MIP_Problem(1)
>>> M.add_constraint(x <= 5)
>>> it = M.__iter__()
>>> next(it)
-x0+5>=0
>>> next(it)
Traceback (most recent call last):
...
StopIteration
"""
cdef PPL_mip_iterator *mip_csi_ptr = new PPL_mip_iterator(self.thisptr[0].constraints_begin())
try:
while mip_csi_ptr[0] != self.thisptr[0].constraints_end():
yield _wrap_Constraint(deref(mip_csi_ptr[0].inc(1)))
finally:
del mip_csi_ptr
def constraints(self):
r"""
Return the constraints of this MIP
The output is an instance of :class:`Constraint_System`.
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> M = MIP_Problem(2)
>>> M.add_constraint(x + y <= 5)
>>> M.add_constraint(3*x - 18*y >= -2)
>>> M.constraints()
Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0}
Note that modifying the output of this method will not modify the
underlying MIP problem object:
>>> cs = M.constraints()
>>> cs.insert(x <= 3)
>>> cs
Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0, -x0+3>=0}
>>> M.constraints()
Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0}
"""
cdef Constraint_System c = Constraint_System(None)
cdef PPL_Constraint_System* cs = new PPL_Constraint_System()
cdef PPL_mip_iterator* mip_it = new PPL_mip_iterator(self.thisptr[0].constraints_begin())
while mip_it[0] != self.thisptr[0].constraints_end():
cs[0].insert(deref(mip_it[0]))
mip_it[0].inc(1)
c.thisptr = cs
del mip_it
return c
def optimization_mode(self):
"""
Return the optimization mode used in the MIP_Problem.
It will return "maximization" if the MIP_Problem was set
to MAXIMIZATION mode, and "minimization" otherwise.
Examples:
>>> from ppl import MIP_Problem
>>> m = MIP_Problem()
>>> m.optimization_mode()
'maximization'
"""
if self.thisptr.optimization_mode() == MAXIMIZATION:
return "maximization"
elif self.thisptr.optimization_mode() == MINIMIZATION:
return "minimization"
def optimal_value(self):
"""
Return the optimal value of the MIP_Problem. ValueError thrown if self does not
have an optimizing point, i.e., if the MIP problem is unbounded or not satisfiable.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m.optimal_value()
mpq(10,3)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> m = MIP_Problem(1, cs, x + x )
>>> m.optimal_value()
Traceback (most recent call last):
...
ValueError: PPL::MIP_Problem::optimizing_point():
*this ... have an optimizing point.
"""
cdef PPL_Coefficient sup_n
cdef PPL_Coefficient sup_d
sig_on()
try:
self.thisptr.optimal_value(sup_n, sup_d)
finally:
sig_off()
return GMPy_MPQ_From_mpz(sup_n.get_mpz_t(), sup_d.get_mpz_t())
def space_dimension(self):
"""
Return the space dimension of the MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0)
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m.space_dimension()
2
"""
return self.thisptr.space_dimension()
def objective_function(self):
"""
Return the optimal value of the MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0)
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m.objective_function()
x0+x1
"""
rc = Linear_Expression()
rc.thisptr[0] = self.thisptr.objective_function()
return rc
def clear(self):
"""
Reset the MIP_Problem to be equal to the trivial MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0)
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m.objective_function()
x0+x1
>>> m.clear()
>>> m.objective_function()
0
"""
self.thisptr.clear()
def add_space_dimensions_and_embed(self, PPL_dimension_type m):
"""
Adds m new space dimensions and embeds the old MIP problem in the new vector space.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0)
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2, cs, x + y)
>>> m.add_space_dimensions_and_embed(5)
>>> m.space_dimension()
7
"""
sig_on()
self.thisptr.add_space_dimensions_and_embed(m)
sig_off()
def add_constraint(self, Constraint c):
"""
Adds a copy of constraint c to the MIP problem.
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.set_objective_function(x + y)
>>> m.optimal_value()
mpq(10,3)
Tests:
>>> z = Variable(2)
>>> m.add_constraint(z >= -3)
Traceback (most recent call last):
...
ValueError: PPL::MIP_Problem::add_constraint(c):
c.space_dimension() == 3 exceeds this->space_dimension == 2.
"""
sig_on()
try:
self.thisptr.add_constraint(c.thisptr[0])
finally:
sig_off()
def add_constraints(self, Constraint_System cs):
"""
Adds a copy of the constraints in cs to the MIP problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(y >= 0)
>>> cs.insert(3 * x + 5 * y <= 10)
>>> m = MIP_Problem(2)
>>> m.set_objective_function(x + y)
>>> m.add_constraints(cs)
>>> m.optimal_value()
mpq(10,3)
Tests:
>>> p = Variable(9)
>>> cs.insert(p >= -3)
>>> m.add_constraints(cs)
Traceback (most recent call last):
...
ValueError: PPL::MIP_Problem::add_constraints(cs):
cs.space_dimension() == 10 exceeds this->space_dimension() == 2.
"""
sig_on()
try:
self.thisptr.add_constraints(cs.thisptr[0])
finally:
sig_off()
def add_to_integer_space_dimensions(self, Variables_Set i_vars):
"""
Sets the variables whose indexes are in set `i_vars` to be integer space dimensions.
Examples:
>>> from ppl import Variable, Variables_Set, Constraint_System, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0)
>>> cs.insert( y >= 0 )
>>> cs.insert( 3 * x + 5 * y <= 10 )
>>> m = MIP_Problem(2)
>>> m.set_objective_function(x + y)
>>> m.add_constraints(cs)
>>> i_vars = Variables_Set(x, y)
>>> m.add_to_integer_space_dimensions(i_vars)
>>> m.optimal_value()
mpq(3,1)
"""
sig_on()
try:
self.thisptr.add_to_integer_space_dimensions(i_vars.thisptr[0])
finally:
sig_off()
def set_objective_function(self, obj):
"""
Sets the objective function to obj.
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.set_objective_function(x + y)
>>> m.optimal_value()
mpq(10,3)
Tests:
>>> z = Variable(2)
>>> m.set_objective_function(x + y + z)
Traceback (most recent call last):
...
ValueError: PPL::MIP_Problem::set_objective_function(obj):
obj.space_dimension() == 3 exceeds this->space_dimension == 2.
>>> M = MIP_Problem(1)
>>> M.set_objective_function(Variable(0))
"""
if isinstance(obj, Variable):
obj = Linear_Expression(obj)
elif not isinstance(obj, Linear_Expression):
raise ValueError('not an objective function')
self.thisptr.set_objective_function(( obj).thisptr[0])
def set_optimization_mode(self, mode):
"""
Sets the optimization mode to mode.
Examples:
>>> from ppl import MIP_Problem
>>> m = MIP_Problem()
>>> m.optimization_mode()
'maximization'
>>> m.set_optimization_mode('minimization')
>>> m.optimization_mode()
'minimization'
Tests:
>>> m.set_optimization_mode('max')
Traceback (most recent call last):
...
ValueError: Unknown value: mode=max.
"""
if mode == 'minimization':
self.thisptr.set_optimization_mode(MINIMIZATION)
elif mode == 'maximization':
self.thisptr.set_optimization_mode(MAXIMIZATION)
else:
raise ValueError('Unknown value: mode='+str(mode)+'.')
def is_satisfiable(self):
"""
Check if the MIP_Problem is satisfiable
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.is_satisfiable()
True
"""
return self.thisptr.is_satisfiable()
def evaluate_objective_function(self, Generator evaluating_point):
"""
Return the result of evaluating the objective function on evaluating_point. ValueError thrown
if self and evaluating_point are dimension-incompatible or if the generator evaluating_point is not a point.
Examples:
>>> from ppl import Variable, MIP_Problem, Generator
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.set_objective_function(x + y)
>>> g = Generator.point(5 * x - 2 * y, 7)
>>> m.evaluate_objective_function(g)
mpq(3,7)
>>> z = Variable(2)
>>> g = Generator.point(5 * x - 2 * z, 7)
>>> m.evaluate_objective_function(g)
Traceback (most recent call last):
...
ValueError: PPL::MIP_Problem::evaluate_objective_function(p, n, d):
*this and p are dimension incompatible.
"""
cdef PPL_Coefficient sup_n
cdef PPL_Coefficient sup_d
sig_on()
try:
self.thisptr.evaluate_objective_function(evaluating_point.thisptr[0], sup_n, sup_d)
finally:
sig_off()
return GMPy_MPQ_From_mpz(sup_n.get_mpz_t(), sup_d.get_mpz_t())
def solve(self):
"""
Optimizes the MIP_Problem
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.set_objective_function(x + y)
>>> m.solve()
{'status': 'optimized'}
"""
sig_on()
try:
tmp = self.thisptr.solve()
finally:
sig_off()
if tmp == UNFEASIBLE_MIP_PROBLEM:
return {'status': 'unfeasible'}
elif tmp == UNBOUNDED_MIP_PROBLEM:
return {'status': 'unbounded'}
else:
return {'status': 'optimized'}
def optimizing_point(self):
"""
Returns an optimal point for the MIP_Problem, if it exists.
Examples:
>>> from ppl import Variable, MIP_Problem
>>> x = Variable(0)
>>> y = Variable(1)
>>> m = MIP_Problem()
>>> m.add_space_dimensions_and_embed(2)
>>> m.add_constraint(x >= 0)
>>> m.add_constraint(y >= 0)
>>> m.add_constraint(3 * x + 5 * y <= 10)
>>> m.set_objective_function(x + y)
>>> m.optimizing_point()
point(10/3, 0/3)
"""
cdef PPL_Generator *g
sig_on()
try:
g = new PPL_Generator(self.thisptr[0].optimizing_point())
finally:
sig_off()
return _wrap_Generator(g[0])
pplpy-0.8.9/ppl/polyhedron.pxd 0000664 0000000 0000000 00000000617 14475172214 0016402 0 ustar 00root root 0000000 0000000 from .ppl_decl cimport PPL_Polyhedron
from .generator cimport Generator
from .constraint cimport Constraint
cdef class Polyhedron(object):
cdef PPL_Polyhedron *thisptr
cdef _relation_with_generator(Polyhedron self, Generator g)
cdef _relation_with_constraint(Polyhedron self, Constraint c)
cdef class C_Polyhedron(Polyhedron):
pass
cdef class NNC_Polyhedron(Polyhedron):
pass
pplpy-0.8.9/ppl/polyhedron.pyx 0000664 0000000 0000000 00000252673 14475172214 0016442 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = gmp gmpxx ppl m
#*****************************************************************************
# Copyright (C) 2010-2014 Volker Braun
# 2011 Simon King
# 2011-2017 Jeroen Demeyer
# 2012 Risan
# 2013 Julien Puydt
# 2013 Travis Scrimshaw
# 2015 André Apitzsch
# 2016 Jori Mäntysalo
# 2016 Matthias Koeppe
# 2016-2017 Frédéric Chapoton
# 2016-2018 Vincent Delecroix
# 2017-2018 Vincent Klein
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 3 of
# the License, or (at youroption) any later version.
# http://www.gnu.org/licenses/
#*****************************************************************************
from cpython.object cimport Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, Py_GE
from cysignals.signals cimport sig_on, sig_off
from gmpy2 cimport GMPy_MPZ_From_mpz, import_gmpy2
from .ppl_decl cimport *
from .constraint cimport Constraint_System, Poly_Con_Relation, _wrap_Constraint_System
from .generator cimport Generator_System, Poly_Gen_Relation, _wrap_Generator_System
from .linear_algebra cimport *
# PPL can use floating-point arithmetic to compute integers
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
cdef void set_rounding_for_PPL()
cdef void restore_pre_PPL_rounding()
# initialize gmpy2 C API
import_gmpy2()
# but with PPL's rounding the gsl will be very unhappy; must turn off!
restore_pre_PPL_rounding()
cdef class Polyhedron(object):
r"""
Wrapper for PPL's ``Polyhedron`` class.
An object of the class Polyhedron represents a convex polyhedron
in the vector space.
A polyhedron can be specified as either a finite system of
constraints or a finite system of generators (see Section
Representations of Convex Polyhedra) and it is always possible to
obtain either representation. That is, if we know the system of
constraints, we can obtain from this the system of generators that
define the same polyhedron and vice versa. These systems can
contain redundant members: in this case we say that they are not
in the minimal form.
INPUT/OUTPUT:
This is an abstract base for :class:`C_Polyhedron` and
:class:`NNC_Polyhedron`. You cannot instantiate this class.
"""
def __init__(self):
r"""
The Python constructor.
See also :class:`C_Polyhedron` and
:class:`NNC_Polyhedron`. You must not instantiate
:class:`Polyhedron` objects.
Tests:
>>> from ppl.polyhedron import Polyhedron
>>> Polyhedron()
Traceback (most recent call last):
...
NotImplementedError: The Polyhedron class is abstract, you must not instantiate it.
"""
raise NotImplementedError('The Polyhedron class is abstract, you must not instantiate it.')
def __hash__(self):
r"""
Tests:
>>> import ppl
>>> hash(ppl.C_Polyhedron(ppl.point()))
Traceback (most recent call last):
...
TypeError: Polyhedron not hashable
>>> cs = ppl.Constraint_System(ppl.Variable(0) > 0)
>>> hash(NNC_Polyhedron(cs))
Traceback (most recent call last):
...
TypeError: Polyhedron not hashable
"""
raise TypeError('Polyhedron not hashable')
def __repr__(self):
"""
Return a string representation.
OUTPUT:
String.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> C_Polyhedron( 5*x-2*y >= x+y-1 ).__repr__()
'A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line'
Special cases::
>>> C_Polyhedron(3, 'empty').__repr__()
'The empty polyhedron in QQ^3'
>>> C_Polyhedron(3, 'universe').__repr__()
'The space-filling polyhedron in QQ^3'
"""
dim = self.affine_dimension()
ambient_dim = self.space_dimension()
gs = self.minimized_generators()
n_points = 0
n_closure_points = 0
n_lines = 0
n_rays = 0
for g in gs:
if g.is_line():
n_lines += 1
elif g.is_ray():
n_rays += 1
elif g.is_point():
n_points += 1
elif g.is_closure_point():
n_closure_points += 1
else:
raise RuntimeError
if self.is_empty():
return 'The empty polyhedron in QQ^'+str(ambient_dim)
if self.is_universe():
return 'The space-filling polyhedron in QQ^'+str(ambient_dim)
desc = 'A ' + str(dim) + '-dimensional polyhedron'
desc += ' in QQ'
desc += '^' + str(ambient_dim)
desc += ' defined as the convex hull of '
first = True
if n_points>0:
if not first:
desc += ", "
first = False
desc += str(n_points)
if n_points == 1:
desc += ' point'
else:
desc += ' points'
if n_closure_points>0:
if not first:
desc += ", "
first = False
desc += str(n_closure_points)
if n_closure_points == 1:
desc += ' closure_point'
else:
desc += ' closure_points'
if n_rays>0:
if not first:
desc += ", "
first = False
desc += str(n_rays)
if n_rays == 1:
desc += ' ray'
else:
desc += ' rays'
if n_lines>0:
if not first:
desc += ", "
first = False
desc += repr(n_lines)
if n_lines == 1:
desc +=' line'
else:
desc +=' lines'
return desc
def space_dimension(self):
r"""
Return the dimension of the vector space enclosing ``self``.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( 5*x-2*y >= x+y-1 )
>>> p.space_dimension()
2
"""
return self.thisptr.space_dimension()
def affine_dimension(self):
r"""
Return the affine dimension of ``self``.
OUTPUT:
An integer. Returns 0 if ``self`` is empty. Otherwise, returns
the affine dimension of ``self``.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( 5*x-2*y == x+y-1 )
>>> p.affine_dimension()
1
"""
sig_on()
cdef size_t dim = self.thisptr.affine_dimension()
sig_off()
return dim
def constraints(self):
r"""
Returns the system of constraints.
See also :meth:`minimized_constraints`.
OUTPUT:
A :class:`Constraint_System`.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(y >= 0)
>>> p.add_constraint(x >= 0)
>>> p.add_constraint(x+y >= 0)
>>> p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
>>> p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
"""
sig_on()
cdef PPL_Constraint_System cs = self.thisptr.constraints()
sig_off()
return _wrap_Constraint_System(cs)
def minimized_constraints(self):
r"""
Returns the minimized system of constraints.
See also :meth:`constraints`.
OUTPUT:
A :class:`Constraint_System`.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(y >= 0)
>>> p.add_constraint(x >= 0)
>>> p.add_constraint(x+y >= 0)
>>> p.constraints()
Constraint_System {x1>=0, x0>=0, x0+x1>=0}
>>> p.minimized_constraints()
Constraint_System {x1>=0, x0>=0}
"""
sig_on()
cdef PPL_Constraint_System cs = self.thisptr.minimized_constraints()
sig_off()
return _wrap_Constraint_System(cs)
def generators(self):
r"""
Returns the system of generators.
See also :meth:`minimized_generators`.
OUTPUT:
A :class:`Generator_System`.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(3,'empty')
>>> p.add_generator(point(-x-y))
>>> p.add_generator(point(0))
>>> p.add_generator(point(+x+y))
>>> p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}
>>> p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
"""
sig_on()
cdef PPL_Generator_System gs = self.thisptr.generators()
sig_off()
return _wrap_Generator_System(gs)
def minimized_generators(self):
r"""
Returns the minimized system of generators.
See also :meth:`generators`.
OUTPUT:
A :class:`Generator_System`.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(3,'empty')
>>> p.add_generator(point(-x-y))
>>> p.add_generator(point(0))
>>> p.add_generator(point(+x+y))
>>> p.generators()
Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)}
>>> p.minimized_generators()
Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
"""
sig_on()
cdef PPL_Generator_System gs = self.thisptr.minimized_generators()
sig_off()
return _wrap_Generator_System(gs)
cdef _relation_with_generator(Polyhedron self, Generator g):
r"""
Helper method for :meth:`relation_with`.
"""
rel = Poly_Gen_Relation(True)
try:
sig_on()
try:
rel.thisptr = new_relation_with(self.thisptr[0], g.thisptr[0])
finally:
sig_off()
except BaseException:
# rel.thisptr must be set to something valid or rel.__dealloc__() will segfault
rel.thisptr = new PPL_Poly_Gen_Relation(PPL_Poly_Gen_Relation_nothing())
raise
return rel
cdef _relation_with_constraint(Polyhedron self, Constraint c):
r"""
Helper method for :meth:`relation_with`.
"""
rel = Poly_Con_Relation(True)
try:
sig_on()
try:
rel.thisptr = new_relation_with(self.thisptr[0], c.thisptr[0])
finally:
sig_off()
except BaseException:
# rel.thisptr must be set to something valid or rel.__dealloc__() will segfault
rel.thisptr = new PPL_Poly_Con_Relation(PPL_Poly_Con_Relation_nothing())
raise
return rel
def relation_with(self, arg):
r"""
Return the relations holding between the polyhedron ``self``
and the generator or constraint ``arg``.
INPUT:
- ``arg`` -- a :class:`Generator` or a :class:`Constraint`.
OUTPUT:
A :class:`Poly_Gen_Relation` or a :class:`Poly_Con_Relation`
according to the type of the input.
Raises ``ValueError`` if ``self`` and the generator/constraint
``arg`` are dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0); y = Variable(1)
>>> p = C_Polyhedron(2, 'empty')
>>> p.add_generator( point(1*x+0*y) )
>>> p.add_generator( point(0*x+1*y) )
>>> p.minimized_constraints()
Constraint_System {x0+x1-1==0, -x1+1>=0, x1>=0}
>>> p.relation_with( point(1*x+1*y) )
nothing
>>> p.relation_with( point(1*x+1*y, 2) )
subsumes
>>> p.relation_with( x+y==-1 )
is_disjoint
>>> p.relation_with( x==y )
strictly_intersects
>>> p.relation_with( x+y<=1 )
is_included, saturates
>>> p.relation_with( x+y<1 )
is_disjoint, saturates
In a Python program you will usually use :meth:`relation_with`
together with :meth:`~ppl.Poly_Gen_Relation.implies`
or :meth:`~ppl.Poly_Con_Relation.implies`, for
example:
>>> from ppl import Poly_Con_Relation
>>> p.relation_with( x+y<1 ).implies(Poly_Con_Relation.saturates())
True
You can only get relations with dimension-compatible
generators or constraints:
>>> z = Variable(2)
>>> p.relation_with( point(x+y+z) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(g):
this->space_dimension() == 2, g.space_dimension() == 3.
>>> p.relation_with( z>0 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::relation_with(c):
this->space_dimension() == 2, c.space_dimension() == 3.
"""
if isinstance(arg, Generator):
return self._relation_with_generator(arg)
if isinstance(arg, Constraint):
return self._relation_with_constraint(arg)
else:
raise TypeError('Argument must be Generator or a Constraint')
def is_empty(self):
"""
Test if ``self`` is an empty polyhedron.
OUTPUT:
Boolean.
Examples:
>>> from ppl import C_Polyhedron
>>> C_Polyhedron(3, 'empty').is_empty()
True
>>> C_Polyhedron(3, 'universe').is_empty()
False
"""
sig_on()
cdef bint result = self.thisptr.is_empty()
sig_off()
return result
def is_universe(self):
"""
Test if ``self`` is a universe (space-filling) polyhedron.
OUTPUT:
Boolean.
Examples:
>>> from ppl import C_Polyhedron
>>> C_Polyhedron(3, 'empty').is_universe()
False
>>> C_Polyhedron(3, 'universe').is_universe()
True
"""
sig_on()
cdef bint result = self.thisptr.is_universe()
sig_off()
return result
def is_topologically_closed(self):
"""
Tests if ``self`` is topologically closed.
OUTPUT:
Returns ``True`` if and only if ``self`` is a topologically
closed subset of the ambient vector space.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron
>>> x = Variable(0); y = Variable(1)
>>> C_Polyhedron(3, 'universe').is_topologically_closed()
True
>>> C_Polyhedron( x>=1 ).is_topologically_closed()
True
>>> NNC_Polyhedron( x>1 ).is_topologically_closed()
False
"""
sig_on()
cdef bint result = self.thisptr.is_topologically_closed()
sig_off()
return result
def is_disjoint_from(self, Polyhedron y):
r"""
Tests whether ``self`` and ``y`` are disjoint.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` and ``y``
are disjoint.
Rayises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron
>>> x = Variable(0); y = Variable(1)
>>> C_Polyhedron(x<=0).is_disjoint_from( C_Polyhedron(x>=1) )
True
This is not allowed:
>>> x = Variable(0); y = Variable(1)
>>> poly_1d = C_Polyhedron(x<=0)
>>> poly_2d = C_Polyhedron(x+0*y>=1)
>>> poly_1d.is_disjoint_from(poly_2d)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
this->space_dimension() == 1, y.space_dimension() == 2.
Nor is this:
>>> x = Variable(0); y = Variable(1)
>>> c_poly = C_Polyhedron( x<=0 )
>>> nnc_poly = NNC_Polyhedron( x >0 )
>>> c_poly.is_disjoint_from(nnc_poly)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
>>> NNC_Polyhedron(c_poly).is_disjoint_from(nnc_poly)
True
"""
cdef bint result
sig_on()
try:
result = self.thisptr.is_disjoint_from(y.thisptr[0])
finally:
sig_off()
return result
def is_discrete(self):
r"""
Test whether ``self`` is discrete.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is discrete.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0); y = Variable(1)
>>> p = C_Polyhedron( point(1*x+2*y) )
>>> p.is_discrete()
True
>>> p.add_generator( point(x) )
>>> p.is_discrete()
False
"""
sig_on()
cdef bint result = self.thisptr.is_discrete()
sig_off()
return result
def is_bounded(self):
r"""
Test whether ``self`` is bounded.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` is a bounded polyhedron.
Examples:
>>> from ppl import Variable, NNC_Polyhedron, point, closure_point, ray
>>> x = Variable(0)
>>> p = NNC_Polyhedron( point(0*x) )
>>> p.add_generator( closure_point(1*x) )
>>> p.is_bounded()
True
>>> p.add_generator( ray(1*x) )
>>> p.is_bounded()
False
"""
sig_on()
cdef bint result = self.thisptr.is_bounded()
sig_off()
return result
def contains_integer_point(self):
r"""
Test whether ``self`` contains an integer point.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains an
integer point.
Examples:
>>> from ppl import Variable, NNC_Polyhedron
>>> x = Variable(0)
>>> p = NNC_Polyhedron(x>0)
>>> p.add_constraint(x<1)
>>> p.contains_integer_point()
False
>>> p.topological_closure_assign()
>>> p.contains_integer_point()
True
"""
sig_on()
cdef bint result = self.thisptr.contains_integer_point()
sig_off()
return result
def constrains(self, Variable var):
r"""
Test whether ``var`` is constrained in ``self``.
INPUT:
- ``var`` -- a :class:`Variable`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``var`` is
constrained in ``self``.
Raises a ``ValueError`` if ``var`` is not a space dimension of
``self``.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> p = C_Polyhedron(1, 'universe')
>>> p.constrains(x)
False
>>> p = C_Polyhedron(x>=0)
>>> p.constrains(x)
True
>>> y = Variable(1)
>>> p.constrains(y)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::constrains(v):
this->space_dimension() == 1, v.space_dimension() == 2.
"""
cdef bint result
sig_on()
try:
result = self.thisptr.constrains(var.thisptr[0])
finally:
sig_off()
return result
def bounds_from_above(self, Linear_Expression expr):
r"""
Test whether the ``expr`` is bounded from above.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`
OUTPUT:
Boolean. Returns ``True`` if and only if ``expr`` is bounded
from above in ``self``.
Raises a ``ValueError`` if ``expr`` and ``this`` are
dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, Linear_Expression
>>> x = Variable(0); y = Variable(1)
>>> p = C_Polyhedron(y<=0)
>>> p.bounds_from_above(x+1)
False
>>> p.bounds_from_above(Linear_Expression(y))
True
>>> p = C_Polyhedron(x<=0)
>>> p.bounds_from_above(y+1)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::bounds_from_above(e):
this->space_dimension() == 1, e.space_dimension() == 2.
"""
cdef bint result
sig_on()
try:
result = self.thisptr.bounds_from_above(expr.thisptr[0])
finally:
sig_off()
return result
def bounds_from_below(self, Linear_Expression expr):
r"""
Test whether the ``expr`` is bounded from above.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`
OUTPUT:
Boolean. Returns ``True`` if and only if ``expr`` is bounded
from above in ``self``.
Raises a ``ValueError`` if ``expr`` and ``this`` are
dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, Linear_Expression
>>> x = Variable(0); y = Variable(1)
>>> p = C_Polyhedron(y>=0)
>>> p.bounds_from_below(x+1)
False
>>> p.bounds_from_below(Linear_Expression(y))
True
>>> p = C_Polyhedron(x<=0)
>>> p.bounds_from_below(y+1)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::bounds_from_below(e):
this->space_dimension() == 1, e.space_dimension() == 2.
"""
cdef bint result
sig_on()
try:
result = self.thisptr.bounds_from_below(expr.thisptr[0])
finally:
sig_off()
return result
def maximize(self, Linear_Expression expr):
r"""
Maximize ``expr``.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`.
OUTPUT:
A dictionary with the following keyword:value pair:
* ``'bounded'``: Boolean. Whether the linear expression
``expr`` is bounded from above on ``self``.
If ``expr`` is bounded from above, the following additional
keyword:value pairs are set to provide information about the
supremum:
* ``'sup_n'``: Integer. The numerator of the supremum value.
* ``'sup_d'``: Non-zero integer. The denominator of the supremum
value.
* ``'maximum'``: Boolean. ``True`` if and only if the supremum
is also the maximum value.
* ``'generator'``: a :class:`Generator`. A point or closure
point where expr reaches its supremum value.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System
>>> x = Variable(0); y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(y >= 0)
>>> cs.insert(3*x+5*y <= 10)
>>> p = C_Polyhedron(cs)
>>> pm = p.maximize(x+y)
>>> for key in sorted(pm):
... print("{} {}".format(key, pm[key]))
bounded True
generator point(10/3, 0/3)
maximum True
sup_d 3
sup_n 10
Unbounded case:
>>> cs = Constraint_System()
>>> cs.insert(x > 0)
>>> p = NNC_Polyhedron(cs)
>>> p.maximize(+x)
{'bounded': False}
>>> pm = p.maximize(-x)
>>> for key in sorted(pm):
... print("{} {}".format(key, pm[key]))
bounded True
generator closure_point(0/1)
maximum False
sup_d 1
sup_n 0
"""
cdef PPL_Coefficient sup_n
cdef PPL_Coefficient sup_d
cdef Generator g = Generator.point()
cdef cppbool maximum
sig_on()
rc = self.thisptr.maximize(expr.thisptr[0], sup_n, sup_d, maximum, g.thisptr[0])
sig_off()
mpz_sup_n = GMPy_MPZ_From_mpz(sup_n.get_mpz_t())
mpz_sup_d = GMPy_MPZ_From_mpz(sup_d.get_mpz_t())
if rc:
return {'bounded': True, 'sup_n': mpz_sup_n, 'sup_d': mpz_sup_d, 'maximum': maximum, 'generator': g}
else:
return {'bounded': False}
def minimize(self, Linear_Expression expr):
r"""
Minimize ``expr``.
INPUT:
- ``expr`` -- a :class:`Linear_Expression`.
OUTPUT:
A dictionary with the following keyword:value pair:
* ``'bounded'``: Boolean. Whether the linear expression
``expr`` is bounded from below on ``self``.
If ``expr`` is bounded from below, the following additional
keyword:value pairs are set to provide information about the
infimum:
* ``'inf_n'``: Integer. The numerator of the infimum value.
* ``'inf_d'``: Non-zero integer. The denominator of the infimum
value.
* ``'minimum'``: Boolean. ``True`` if and only if the infimum
is also the minimum value.
* ``'generator'``: a :class:`Generator`. A point or closure
point where expr reaches its infimum value.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System
>>> x = Variable(0); y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x>=0 )
>>> cs.insert( y>=0 )
>>> cs.insert( 3*x+5*y<=10 )
>>> p = C_Polyhedron(cs)
>>> pm = p.minimize( x+y )
>>> for key in sorted(pm):
... print("{} {}".format(key, pm[key]))
bounded True
generator point(0/1, 0/1)
inf_d 1
inf_n 0
minimum True
Unbounded case:
>>> cs = Constraint_System()
>>> cs.insert(x > 0)
>>> p = NNC_Polyhedron(cs)
>>> pm = p.minimize(+x)
>>> for key in sorted(pm):
... print("{} {}".format(key, pm[key]))
bounded True
generator closure_point(0/1)
inf_d 1
inf_n 0
minimum False
>>> p.minimize( -x )
{'bounded': False}
"""
cdef PPL_Coefficient inf_n
cdef PPL_Coefficient inf_d
cdef Generator g = Generator.point()
cdef cppbool minimum
sig_on()
rc = self.thisptr.minimize(expr.thisptr[0], inf_n, inf_d, minimum, g.thisptr[0])
sig_off()
mpz_inf_n = GMPy_MPZ_From_mpz(inf_n.get_mpz_t())
mpz_inf_d = GMPy_MPZ_From_mpz(inf_d.get_mpz_t())
if rc:
return {'bounded': True, 'inf_n': mpz_inf_n, 'inf_d': mpz_inf_d, 'minimum': minimum, 'generator': g}
else:
return {'bounded': False}
def contains(self, Polyhedron y):
r"""
Test whether ``self`` contains ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains ``y``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p0 = C_Polyhedron( x>=0 )
>>> p1 = C_Polyhedron( x>=1 )
>>> p0.contains(p1)
True
>>> p1.contains(p0)
False
Errors are raised if the dimension or topology is not compatible:
>>> p0.contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
this->space_dimension() == 1, y.space_dimension() == 2.
>>> p0.contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
y is a NNC_Polyhedron.
"""
cdef bint result
sig_on()
try:
result = self.thisptr.contains(y.thisptr[0])
finally:
sig_off()
return result
def strictly_contains(self, Polyhedron y):
r"""
Test whether ``self`` strictly contains ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`.
OUTPUT:
Boolean. Returns ``True`` if and only if ``self`` contains
``y`` and ``self`` does not equal ``y``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p0 = C_Polyhedron( x>=0 )
>>> p1 = C_Polyhedron( x>=1 )
>>> p0.strictly_contains(p1)
True
>>> p1.strictly_contains(p0)
False
Errors are raised if the dimension or topology is not compatible:
>>> p0.strictly_contains(C_Polyhedron(y>=0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
this->space_dimension() == 1, y.space_dimension() == 2.
>>> p0.strictly_contains(NNC_Polyhedron(x>0))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::contains(y):
y is a NNC_Polyhedron.
"""
cdef bint result
sig_on()
try:
result = self.thisptr.strictly_contains(y.thisptr[0])
finally:
sig_off()
return result
def add_constraint(self, Constraint c):
r"""
Add a constraint to the polyhedron.
Adds a copy of constraint ``c`` to the system of constraints
of ``self``, without minimizing the result.
See also :meth:`add_constraints`.
INPUT:
- ``c`` -- the :class:`Constraint` that will be added to the
system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the constraint ``c`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( y>=0 )
>>> p.add_constraint( x>=0 )
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not:
>>> p = C_Polyhedron( x>=0 )
>>> p.add_constraint( y>=0 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_constraint(c):
this->space_dimension() == 1, c.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
:class:`C_Polyhedron` only allows non-strict inequalities:
>>> p = C_Polyhedron( x>=0 )
>>> p.add_constraint( x< 1 )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_constraint(c):
c is a strict inequality.
"""
sig_on()
try:
self.thisptr.add_constraint(c.thisptr[0])
finally:
sig_off()
def add_generator(self, Generator g):
r"""
Add a generator to the polyhedron.
Adds a copy of constraint ``c`` to the system of generators
of ``self``, without minimizing the result.
INPUT:
- ``g`` -- the :class:`Generator` that will be added to the
system of Generators of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the generator ``g``
are topology-incompatible or dimension-incompatible, or if
``self`` is an empty polyhedron and ``g`` is not a point.
Examples:
>>> from ppl import Variable, C_Polyhedron, point, closure_point, ray
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(1, 'empty')
>>> p.add_generator( point(0*x) )
We just added a 1-d generator to a 2-d polyhedron, this is
fine. The other way is not:
>>> p = C_Polyhedron(1, 'empty')
>>> p.add_generator( point(0*y) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
this->space_dimension() == 1, g.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
:class:`C_Polyhedron` does not allow :func:`closure_point`
generators:
>>> p = C_Polyhedron( point(0*x+0*y) )
>>> p.add_generator( closure_point(0*x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
g is a closure point.
Finally, ever non-empty polyhedron must have at least one
point generator:
>>> p = C_Polyhedron(3, 'empty')
>>> p.add_generator( ray(x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_generator(g):
*this is an empty polyhedron and g is not a point.
"""
sig_on()
try:
self.thisptr.add_generator(g.thisptr[0])
finally:
sig_off()
def add_constraints(self, Constraint_System cs):
r"""
Add constraints to the polyhedron.
Adds a copy of constraints in ``cs`` to the system of constraints
of ``self``, without minimizing the result.
See also :meth:`add_constraint`.
INPUT:
- ``cs`` -- the :class:`Constraint_System` that will be added
to the system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and the constraints in
``cs`` are topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x>=0)
>>> cs.insert(y>=0)
>>> p = C_Polyhedron( y<=1 )
>>> p.add_constraints(cs)
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not:
>>> p = C_Polyhedron( x<=1 )
>>> p.add_constraints(cs)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
this->space_dimension() == 1, cs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
:class:`C_Polyhedron` only allows non-strict inequalities:
>>> p = C_Polyhedron( x>=0 )
>>> p.add_constraints( Constraint_System(x<0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs):
cs contains strict inequalities.
"""
sig_on()
try:
self.thisptr.add_constraints(cs.thisptr[0])
finally:
sig_off()
def add_generators(self, Generator_System gs):
r"""
Add generators to the polyhedron.
Adds a copy of the generators in ``gs`` to the system of
generators of ``self``, without minimizing the result.
See also :meth:`add_generator`.
INPUT:
- ``gs`` -- the :class:`Generator_System` that will be added
to the system of constraints of ``self``.
OUTPUT:
This method modifies the polyhedron ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and one of the generators
in ``gs`` are topology-incompatible or dimension-incompatible,
or if ``self`` is an empty polyhedron and ``gs`` does not
contain a point.
Examples:
>>> from ppl import Variable, C_Polyhedron, Generator_System, point, ray, closure_point
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs = Generator_System()
>>> gs.insert(point(0*x+0*y))
>>> gs.insert(point(1*x+1*y))
>>> p = C_Polyhedron(2, 'empty')
>>> p.add_generators(gs)
We just added a 1-d constraint to a 2-d polyhedron, this is
fine. The other way is not:
>>> p = C_Polyhedron(1, 'empty')
>>> p.add_generators(gs)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
this->space_dimension() == 1, gs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
:class:`C_Polyhedron` does not allow :func:`closure_point`
generators:
>>> p = C_Polyhedron( point(0*x+0*y) )
>>> p.add_generators( Generator_System(closure_point(x) ))
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_recycled_generators(gs):
gs contains closure points.
"""
sig_on()
try:
self.thisptr.add_generators(gs.thisptr[0])
finally:
sig_off()
def unconstrain(self, Variable var):
r"""
Compute the cylindrification of ``self`` with respect to space
dimension ``var``.
INPUT:
- ``var`` -- a :class:`Variable`. The space dimension that
will be unconstrained. Exceptions:
OUTPUT:
This method assigns the cylindrification to ``self`` and does
not return anything.
Raises a ``ValueError`` if ``var`` is not a space dimension of
``self``.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( point(x+y) ); p
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
>>> p.unconstrain(x); p
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 line
>>> z = Variable(2)
>>> p.unconstrain(z)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::unconstrain(var):
this->space_dimension() == 2, required space dimension == 3.
"""
sig_on()
try:
self.thisptr.unconstrain(var.thisptr[0])
finally:
sig_off()
def intersection_assign(self, Polyhedron y):
r"""
Assign to ``self`` the intersection of ``self`` and ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the intersection to ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( 1*x+0*y >= 0 )
>>> p.intersection_assign( C_Polyhedron(y>=0) )
>>> p.constraints()
Constraint_System {x0>=0, x1>=0}
>>> z = Variable(2)
>>> p.intersection_assign( C_Polyhedron(z>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
>>> p.intersection_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::intersection_assign(y):
y is a NNC_Polyhedron.
"""
sig_on()
try:
self.thisptr.intersection_assign(y.thisptr[0])
finally:
sig_off()
def poly_hull_assign(self, Polyhedron y):
r"""
Assign to ``self`` the poly-hull of ``self`` and ``y``.
For any pair of NNC polyhedra `P_1` and `P_2`, the convex
polyhedral hull (or poly-hull) of is the smallest NNC
polyhedron that includes both `P_1` and `P_2`. The poly-hull
of any pair of closed polyhedra in is also closed.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the poly-hull to ``self`` and does not
return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron( point(1*x+0*y) )
>>> p.poly_hull_assign(C_Polyhedron( point(0*x+1*y) ))
>>> p.generators()
Generator_System {point(0/1, 1/1), point(1/1, 0/1)}
``self`` and ``y`` must be dimension- and topology-compatible,
or an exception is raised:
>>> z = Variable(2)
>>> p.poly_hull_assign( C_Polyhedron(z>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
>>> p.poly_hull_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_hull_assign(y):
y is a NNC_Polyhedron.
"""
sig_on()
try:
self.thisptr.poly_hull_assign(y.thisptr[0])
finally:
sig_off()
upper_bound_assign = poly_hull_assign
def poly_difference_assign(self, Polyhedron y):
r"""
Assign to ``self`` the poly-difference of ``self`` and ``y``.
For any pair of NNC polyhedra `P_1` and `P_2` the convex
polyhedral difference (or poly-difference) of `P_1` and `P_2`
is defined as the smallest convex polyhedron containing the
set-theoretic difference `P_1\setminus P_2` of `P_1` and
`P_2`.
In general, even if `P_1` and `P_2` are topologically closed
polyhedra, their poly-difference may be a convex polyhedron
that is not topologically closed. For this reason, when
computing the poly-difference of two :class:`C_Polyhedron`,
the library will enforce the topological closure of the
result.
INPUT:
- ``y`` -- a :class:`Polyhedron`
OUTPUT:
This method assigns the poly-difference to ``self`` and does
not return anything.
Raises a ``ValueError`` if ``self`` and and ``y`` are
topology-incompatible or dimension-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron
>>> x = Variable(0)
>>> p = NNC_Polyhedron( point(0*x) )
>>> p.add_generator( point(1*x) )
>>> p.poly_difference_assign(NNC_Polyhedron( point(0*x) ))
>>> p.minimized_constraints()
Constraint_System {-x0+1>=0, x0>0}
The poly-difference of :class:`C_polyhedron` is really its closure:
>>> p = C_Polyhedron( point(0*x) )
>>> p.add_generator( point(1*x) )
>>> p.poly_difference_assign(C_Polyhedron( point(0*x) ))
>>> p.minimized_constraints()
Constraint_System {x0>=0, -x0+1>=0}
``self`` and ``y`` must be dimension- and topology-compatible,
or an exception is raised:
>>> y = Variable(1)
>>> p.poly_difference_assign( C_Polyhedron(y>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
this->space_dimension() == 1, y.space_dimension() == 2.
>>> p.poly_difference_assign( NNC_Polyhedron(x+y<1) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::poly_difference_assign(y):
y is a NNC_Polyhedron.
"""
sig_on()
try:
self.thisptr.poly_difference_assign(y.thisptr[0])
finally:
sig_off()
difference_assign = poly_difference_assign
def drop_some_non_integer_points(self):
r"""
Possibly tighten ``self`` by dropping some points with
non-integer coordinates.
The modified polyhedron satisfies:
* it is (not necessarily strictly) contained in the original
polyhedron.
* integral vertices (generating points with integer
coordinates) of the original polyhedron are not removed.
.. note::
The modified polyhedron is not necessarily a lattice
polyhedron; Some vertices will, in general, still be
rational. Lattice points interior to the polyhedron may be
lost in the process.
Examples:
>>> from ppl import Variable, NNC_Polyhedron, Constraint_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x>=0 )
>>> cs.insert( y>=0 )
>>> cs.insert( 3*x+2*y<5 )
>>> p = NNC_Polyhedron(cs)
>>> p.minimized_generators()
Generator_System {point(0/1, 0/1), closure_point(0/2, 5/2), closure_point(5/3, 0/3)}
>>> p.drop_some_non_integer_points()
>>> p.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 2/1), point(4/3, 0/3)}
"""
sig_on()
self.thisptr.drop_some_non_integer_points()
sig_off()
def topological_closure_assign(self):
r"""
Assign to ``self`` its topological closure.
Examples:
>>> from ppl import Variable, NNC_Polyhedron
>>> x = Variable(0)
>>> p = NNC_Polyhedron(x>0)
>>> p.is_topologically_closed()
False
>>> p.topological_closure_assign()
>>> p.is_topologically_closed()
True
>>> p.minimized_constraints()
Constraint_System {x0>=0}
"""
sig_on()
self.thisptr.topological_closure_assign()
sig_off()
def BHRZ03_widening_assign(self, Polyhedron y, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the `BHRZ03-widening`
between ``self`` and ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
BHRZ03-widening between ``self`` and ``y``. And returns the
new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible.
Examples:
>>> from ppl import NNC_Polyhedron, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> ph1 = NNC_Polyhedron(2)
>>> ph1.add_constraint( y >= 0 )
>>> ph1.add_constraint( x + y > 0 )
>>> ph1.add_constraint( x - y < 1 )
>>> ph2 = NNC_Polyhedron(2)
>>> ph2.add_constraint( y >= 0 )
>>> ph2.add_constraint( x > 0 )
>>> ph2.add_constraint( x < 1 )
>>> tp = ph1.BHRZ03_widening_assign( ph2 )
>>> known_result = NNC_Polyhedron(2)
>>> known_result.add_constraint(y >= 0)
>>> known_result == ph1
True
>>> from ppl import C_Polyhedron, Generator_System, point, ray
>>> gs1 = Generator_System()
>>> gs1.insert(point())
>>> gs1.insert(point( x + 2 * y ))
>>> gs1.insert(ray( x ))
>>> gs1.insert(ray( 2 * x + y ))
>>> ph1 = C_Polyhedron(gs1)
>>> gs2 = Generator_System()
>>> gs2.insert(point())
>>> gs2.insert(point( x + 2 * y ))
>>> gs2.insert(ray( x ))
>>> gs2.insert(ray( x + y ))
>>> ph2 = C_Polyhedron( gs2 )
>>> tp = ph2.BHRZ03_widening_assign( ph1 )
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint( y >= 0 )
>>> known_result.add_constraint( 2 * x - y >= 0 )
>>> ph2 == known_result
True
if this method is going to be called too many times, the
``tp`` parameter allows one to reduce the computation cost by
computing the widening only when ``tp`` is equal to 0,
otherwise the this method will decrement the value of ``tp``
and return it.
>>> from ppl import closure_point
>>> gs1 = Generator_System()
>>> gs1.insert(point( 2 * x ))
>>> gs1.insert(closure_point( x + y ))
>>> gs1.insert(closure_point( 3 * x + y ))
>>> ph1 = NNC_Polyhedron(gs1)
>>> gs2 = Generator_System()
>>> gs2.insert(point( 2 * x ))
>>> gs2.insert(closure_point( y ))
>>> gs2.insert(closure_point( 4 * x + y ))
>>> ph2 = NNC_Polyhedron(gs2)
>>> ph2_copy = NNC_Polyhedron(ph2)
>>> known_result = NNC_Polyhedron(2)
>>> known_result.add_constraint(y >= 0)
>>> known_result.add_constraint(y < 1)
>>> tp = ph2.BHRZ03_widening_assign(ph1, 1)
>>> tp == 0
True
>>> ph2 == ph2_copy
True
>>> tp = ph2.BHRZ03_widening_assign(ph1, 0)
>>> tp == 0
True
>>> ph2 == known_result
True
"""
sig_on()
try:
self.thisptr.BHRZ03_widening_assign(y.thisptr[0], &tp)
finally:
sig_off()
return tp
def limited_BHRZ03_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the limited
extrapolation between ``self`` and ``y`` using the
`BHRZ03-widening` operator.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``cs`` -- a :class:`Constraint_System` used to improve the
widened polyhedron
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
limited extrapolation between ``self`` and ``y`` using the
BHRZ03-widening operator. And returns the new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimesion-incompatible.
Examples:
>>> from ppl import C_Polyhedron, Generator_System, Variable, point, Constraint_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> gs1 = Generator_System()
>>> gs1.insert(point())
>>> gs1.insert(point( x + y ))
>>> gs1.insert(point( x ))
>>> ph1 = C_Polyhedron( gs1 )
>>> gs2 = Generator_System()
>>> gs2.insert(point())
>>> gs2.insert(point( 2 * x ))
>>> gs2.insert(point( 2 * x + 2 * y ))
>>> ph2 = C_Polyhedron( gs2 )
>>> cs = Constraint_System()
>>> cs.insert( x <= 5 )
>>> cs.insert( y <= 4 )
>>> tp = ph2.limited_BHRZ03_extrapolation_assign(ph1, cs)
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint(y >= 0)
>>> known_result.add_constraint(x - y >= 0)
>>> known_result.add_constraint(y <= 4)
>>> known_result.add_constraint(x <= 5)
>>> known_result == ph2
True
"""
sig_on()
try:
self.thisptr.limited_BHRZ03_extrapolation_assign(y.thisptr[0],
cs.thisptr[0],
&tp)
finally:
sig_off()
return tp
def bounded_BHRZ03_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the bounded
extrapolation between ``self`` and ``y`` using the
`BHRZ03-widening` operator.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``cs`` -- a :class:`Constraint_System` used to improve the
widened polyhedron
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
bounded extrapolation between ``self`` and ``y`` using the
BHRZ03-widening operator. And returns the new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimesion-incompatible.
Examples:
>>> from ppl import Variable, Constraint_System, C_Polyhedron
>>> x = Variable(0)
>>> ph1 = C_Polyhedron(1)
>>> ph1.add_constraint( 1 <= x )
>>> ph1.add_constraint( x <= 2 )
>>> ph2 = C_Polyhedron(1)
>>> ph2.add_constraint( 0 <= x )
>>> ph2.add_constraint( x <= 3 )
>>> cs = Constraint_System()
>>> tp = ph2.bounded_BHRZ03_extrapolation_assign(ph1, cs)
>>> known_result = C_Polyhedron(1)
>>> known_result.add_constraint(0 <= x)
>>> known_result == ph2
True
"""
sig_on()
try:
self.thisptr.bounded_BHRZ03_extrapolation_assign(y.thisptr[0],
cs.thisptr[0],
&tp)
finally:
sig_off()
return tp
def H79_widening_assign(self, Polyhedron y, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the `H79-widening`
between ``self`` and ``y``.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
BHRZ03-widening between ``self`` and ``y``. And returns the
new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> ph1 = C_Polyhedron(2)
>>> ph1.add_constraint( x >= 2 )
>>> ph1.add_constraint( y >= 0 )
>>> ph2 = C_Polyhedron(2)
>>> ph2.add_constraint( x >= 0 )
>>> ph2.add_constraint( y >= 0 )
>>> ph2.add_constraint( x-y >= 2 )
>>> tp = ph1.H79_widening_assign(ph2)
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint(y >= 0)
>>> known_result == ph1
True
``self`` and ``y`` must be dimension- and topology-compatible,
or an exception is raised:
>>> z = Variable(2)
>>> ph1.H79_widening_assign( C_Polyhedron(z>=0) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::H79_widening_assign(y):
this->space_dimension() == 2, y.space_dimension() == 3.
if this method is going to be called too many times, the
``tp`` parameter allows one to reduce the computation cost by
computing the widening only when ``tp`` is equal to 0,
otherwise the this method will decrement the value of ``tp``
and return it.
>>> from ppl import point, ray, Generator_System
>>> gs1 = Generator_System()
>>> gs1.insert(point())
>>> gs1.insert(ray( x + y ))
>>> gs1.insert(ray( x ))
>>> ph1 = C_Polyhedron(gs1)
>>> gs2 = Generator_System()
>>> gs2.insert(point())
>>> gs2.insert(ray( x ))
>>> gs2.insert(ray( x + 2 * y ))
>>> ph2 = C_Polyhedron(gs2)
>>> ph2_copy = C_Polyhedron(ph2)
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint(y >= 0)
>>> tp = ph2.H79_widening_assign(ph1, 1)
>>> tp == 0
True
>>> ph2 == ph2_copy
True
>>> tp = ph2.H79_widening_assign(ph1, 0)
>>> tp == 0
True
>>> ph2 == known_result
True
"""
sig_on()
try:
self.thisptr.H79_widening_assign(y.thisptr[0], &tp)
finally:
sig_off()
return tp
widening_assign = H79_widening_assign
def limited_H79_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the limited
extrapolation between ``self`` and ``y`` using the
`H79-widening` operator.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``cs`` -- a :class:`Constraint_System` used to improve the
widened polyhedron
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
limited extrapolation between ``self`` and ``y`` using the
H79-widening operator. And returns the new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimesion-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System, point
>>> x = Variable(0)
>>> y = Variable(1)
>>> ph1 = C_Polyhedron(2)
>>> ph1.add_constraint( x >= 0 )
>>> ph1.add_constraint( x <= 1 )
>>> ph1.add_constraint( y >= 0 )
>>> ph1.add_constraint( x - y >= 0 )
>>> ph2 = C_Polyhedron(2)
>>> ph2.add_constraint( x >= 0 )
>>> ph2.add_constraint( x <= 2 )
>>> ph2.add_constraint( y >= 0 )
>>> ph2.add_constraint( x - y >= 0 )
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> cs.insert( y >= 0 )
>>> cs.insert( x <= 5 )
>>> cs.insert( y <= 5 )
>>> tp = ph2.limited_H79_extrapolation_assign(ph1, cs)
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint( x - y >= 0)
>>> known_result.add_constraint(y >= 0)
>>> known_result.add_constraint(x <= 5)
>>> known_result == ph2
True
>>> ph1 = C_Polyhedron(2)
>>> ph1.add_constraint( x >= 0 )
>>> ph1.add_constraint( x <= 1 )
>>> ph1.add_constraint( y == 0 )
>>> ph2 = C_Polyhedron(2)
>>> ph2.add_constraint( x <= 2 )
>>> ph2.add_constraint( y >= 0 )
>>> ph2.add_constraint( y <= x )
>>> cs = Constraint_System()
>>> cs.insert( x <= 5 )
>>> cs.insert( y <= -1 )
>>> known_result = C_Polyhedron(ph2)
>>> known_result.add_generator(point(5*x))
>>> known_result.add_generator(point(5*x + 5*y))
>>> tp = ph2.limited_H79_extrapolation_assign(ph1, cs)
>>> known_result == ph2
True
"""
sig_on()
try:
self.thisptr.limited_H79_extrapolation_assign(y.thisptr[0],
cs.thisptr[0],
&tp)
finally:
sig_off()
return tp
def bounded_H79_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned tp = 0):
r"""
Assigns to ``self``` the result of computing the bounded
extrapolation between ``self`` and ``y`` using the
`H79-widening` operator.
INPUT:
- ``y`` -- a :class:`Polyhedron` that must be contained in ``self``
- ``cs`` -- a :class:`Constraint_System` used to improve the
widened polyhedron
- ``tp`` -- an optional unsigned variable with the number of
available tokens (to be used when applying the `widening with
tokens` delay technique).
OUTPUT:
This method assigns to ``self`` the result of computing the
bounded extrapolation between ``self`` and ``y`` using the
H79-widening operator. And returns the new value of ``tp``.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or dimesion-incompatible.
Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System
>>> x = Variable(0)
>>> y = Variable(1)
>>> ph1 = C_Polyhedron(2)
>>> ph1.add_constraint( x-3 >= 0 )
>>> ph1.add_constraint( x-3 <= 1 )
>>> ph1.add_constraint( y >= 0 )
>>> ph1.add_constraint( y <= 1 )
>>> ph2 = C_Polyhedron(2)
>>> ph2.add_constraint( 2*x-5 >= 0 )
>>> ph2.add_constraint( x-3 <= 1 )
>>> ph2.add_constraint( 2*y+3 >= 0 )
>>> ph2.add_constraint( 2*y-5 <= 0 )
>>> cs = Constraint_System()
>>> cs.insert( x >= y )
>>> tp = ph2.bounded_H79_extrapolation_assign(ph1, cs)
>>> known_result = C_Polyhedron(2)
>>> known_result.add_constraint( x >= 2 )
>>> known_result.add_constraint( x <= 4 )
>>> known_result.add_constraint( y >= -2 )
>>> known_result.add_constraint( x >= y )
>>> known_result == ph2
True
"""
sig_on()
try:
self.thisptr.bounded_H79_extrapolation_assign(y.thisptr[0],
cs.thisptr[0],
&tp)
finally:
sig_off()
return tp
def add_space_dimensions_and_embed(self, m):
r"""
Add ``m`` new space dimensions and embed ``self`` in the new
vector space.
The new space dimensions will be those having the highest
indexes in the new polyhedron, which is characterized by a
system of constraints in which the variables running through
the new dimensions are not constrained. For instance, when
starting from the polyhedron `P` and adding a third space
dimension, the result will be the polyhedron
.. MATH::
\Big\{
(x,y,z)^T \in \mathbb{R}^3
\Big|
(x,y)^T \in P
\Big\}
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the embedded polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if adding ``m`` new space dimensions
would cause the vector space to exceed dimension
``self.max_space_dimension()``.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0)
>>> p = C_Polyhedron( point(3*x) )
>>> p.add_space_dimensions_and_embed(1)
>>> p.minimized_generators()
Generator_System {line(0, 1), point(3/1, 0/1)}
>>> p.add_space_dimensions_and_embed( p.max_space_dimension() )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_space_dimensions_and_embed(m):
adding m new space dimensions exceeds the maximum allowed space dimension.
"""
m = int(m)
sig_on()
try:
self.thisptr.add_space_dimensions_and_embed(m)
finally:
sig_off()
def add_space_dimensions_and_project(self, m):
r"""
Add ``m`` new space dimensions and embed ``self`` in the new
vector space.
The new space dimensions will be those having the highest
indexes in the new polyhedron, which is characterized by a
system of constraints in which the variables running through
the new dimensions are all constrained to be equal to `0`.
For instance, when starting from the polyhedron `P` and adding
a third space dimension, the result will be the polyhedron
.. MATH::
\Big\{
(x,y,0)^T \in \mathbb{R}^3
\Big|
(x,y)^T \in P
\Big\}
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the projected polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if adding ``m`` new space dimensions
would cause the vector space to exceed dimension
``self.max_space_dimension()``.
Examples:
>>> from ppl import Variable, C_Polyhedron, point
>>> x = Variable(0)
>>> p = C_Polyhedron( point(3*x) )
>>> p.add_space_dimensions_and_project(1)
>>> p.minimized_generators()
Generator_System {point(3/1, 0/1)}
>>> p.add_space_dimensions_and_project( p.max_space_dimension() )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::add_space_dimensions_and_project(m):
adding m new space dimensions exceeds the maximum allowed space dimension.
"""
m = int(m)
sig_on()
try:
self.thisptr.add_space_dimensions_and_project(m)
finally:
sig_off()
def concatenate_assign(self, Polyhedron y):
r"""
Assign to ``self`` the concatenation of ``self`` and ``y``.
This functions returns the Cartesian product of ``self`` and
``y``.
Viewing a polyhedron as a set of tuples (its points), it is
sometimes useful to consider the set of tuples obtained by
concatenating an ordered pair of polyhedra. Formally, the
concatenation of the polyhedra `P` and `Q` (taken in this
order) is the polyhedron such that
.. MATH::
R =
\Big\{
(x_0,\dots,x_{n-1},y_0,\dots,y_{m-1})^T \in \mathbb{R}^{n+m}
\Big|
(x_0,\dots,x_{n-1})^T \in P
,~
(y_0,\dots,y_{m-1})^T \in Q
\Big\}
Another way of seeing it is as follows: first embed polyhedron
`P` into a vector space of dimension `n+m` and then add a
suitably renamed-apart version of the constraints defining
`Q`.
INPUT:
- ``m`` -- integer.
OUTPUT:
This method assigns the concatenated polyhedron to ``self`` and
does not return anything.
Raises a ``ValueError`` if ``self`` and ``y`` are
topology-incompatible or if adding ``y.space_dimension()`` new
space dimensions would cause the vector space to exceed
dimension ``self.max_space_dimension()``.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, point
>>> x = Variable(0)
>>> p1 = C_Polyhedron( point(1*x) )
>>> p2 = C_Polyhedron( point(2*x) )
>>> p1.concatenate_assign(p2)
>>> p1.minimized_generators()
Generator_System {point(1/1, 2/1)}
The polyhedra must be topology-compatible and not exceed the
maximum space dimension:
>>> p1.concatenate_assign( NNC_Polyhedron(1, 'universe') )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::concatenate_assign(y):
y is a NNC_Polyhedron.
>>> p1.concatenate_assign( C_Polyhedron(p1.max_space_dimension(), 'empty') )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::concatenate_assign(y):
concatenation exceeds the maximum allowed space dimension.
"""
sig_on()
try:
self.thisptr.concatenate_assign(y.thisptr[0])
finally:
sig_off()
def remove_higher_space_dimensions(self, new_dimension):
r"""
Remove the higher dimensions of the vector space so that the
resulting space will have dimension ``new_dimension``.
OUTPUT:
This method modifies ``self`` and does not return anything.
Raises a ``ValueError`` if ``new_dimensions`` is greater than
the space dimension of ``self``.
Examples:
>>> from ppl import C_Polyhedron, Variable
>>> x = Variable(0)
>>> y = Variable(1)
>>> p = C_Polyhedron(3*x+0*y==2)
>>> p.remove_higher_space_dimensions(1)
>>> p.minimized_constraints()
Constraint_System {3*x0-2==0}
>>> p.remove_higher_space_dimensions(2)
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::remove_higher_space_dimensions(nd):
this->space_dimension() == 1, required space dimension == 2.
"""
new_dimension = int(new_dimension)
sig_on()
try:
self.thisptr.remove_higher_space_dimensions(new_dimension)
finally:
sig_off()
def affine_image(self, Variable v, Linear_Expression le):
r"""
Set this polyhedron to the image of the map `v -> le`
INPUT:
- ``v`` -- a variable
- ``le`` -- a linear expression
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> gs0 = ppl.Generator_System()
>>> gs0.insert(ppl.point())
>>> gs0.insert(ppl.point(x))
>>> gs0.insert(ppl.point(y))
>>> gs0.insert(ppl.point(x+y))
>>> p0 = ppl.C_Polyhedron(gs0)
>>> gs1 = ppl.Generator_System()
>>> gs1.insert(ppl.point())
>>> gs1.insert(ppl.point(x))
>>> gs1.insert(ppl.point(x+y))
>>> gs1.insert(ppl.point(2*x+y))
>>> p1 = ppl.C_Polyhedron(gs1)
>>> p0 == p1
False
>>> p0.affine_image(x, x+y)
>>> p0 == p1
True
"""
self.thisptr.affine_image(v.thisptr[0], le.thisptr[0])
def affine_preimage(self, Variable v, Linear_Expression le):
r"""
Set this polyhedron to the preimage of the map `v -> le`
INPUT:
- ``v`` -- a variable
- ``le`` -- a linear expression
Examples:
>>> import ppl
>>> x = ppl.Variable(0)
>>> y = ppl.Variable(1)
>>> gs0 = ppl.Generator_System()
>>> gs0.insert(ppl.point())
>>> gs0.insert(ppl.point(x))
>>> gs0.insert(ppl.point(y))
>>> gs0.insert(ppl.point(x+y))
>>> p0 = ppl.C_Polyhedron(gs0)
>>> gs1 = ppl.Generator_System()
>>> gs1.insert(ppl.point())
>>> gs1.insert(ppl.point(x))
>>> gs1.insert(ppl.point(x+y))
>>> gs1.insert(ppl.point(2*x+y))
>>> p1 = ppl.C_Polyhedron(gs1)
>>> p0 == p1
False
>>> p1.affine_preimage(x, x+y)
>>> p0 == p1
True
"""
self.thisptr.affine_preimage(v.thisptr[0], le.thisptr[0])
def ascii_dump(self):
r"""
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import C_Polyhedron, Variable\n'
>>> cmd += 'x = Variable(0)\n'
>>> cmd += 'y = Variable(1)\n'
>>> cmd += 'p = C_Polyhedron(3*x+2*y==1)\n'
>>> cmd += 'p.minimized_generators()\n'
>>> cmd += 'p.ascii_dump()\n'
>>> from subprocess import Popen, PIPE
>>> import sys
>>> proc = Popen([sys.executable, '-c', cmd], stdout=PIPE, stderr=PIPE)
>>> out, err = proc.communicate()
>>> len(out)
0
>>> print(str(err.decode('ascii')))
space_dim 2
...
con_sys (up-to-date)
topology NECESSARILY_CLOSED
...
sat_c
0 x 0
sat_g
2 x 2
0 0
0 1
"""
sig_on()
self.thisptr.ascii_dump()
sig_off()
def max_space_dimension(self):
r"""
Return the maximum space dimension all kinds of Polyhedron can handle.
OUTPUT:
Integer.
Examples:
>>> from ppl import C_Polyhedron
>>> C_Polyhedron(1, 'empty').max_space_dimension() > 2**20
True
"""
return self.thisptr.max_space_dimension()
def hash_code(self):
r"""
Return a hash code
Tests:
>>> from ppl import Constraint_System, Variable, C_Polyhedron
>>> x = Variable(0)
>>> p = C_Polyhedron( 5*x >= 3 )
>>> p.hash_code()
1
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> cs.insert( y >= 0 )
>>> p = C_Polyhedron(cs)
>>> p.hash_code()
2
"""
return self.thisptr[0].hash_code()
def __richcmp__(Polyhedron lhs, Polyhedron rhs, int op):
r"""
Comparison for polyhedra.
INPUT:
- ``lhs``, ``rhs`` -- :class:`Polyhedron`.
- ``op`` -- integer. The comparison operation to be performed.
OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, C_Polyhedron
>>> x = Variable(0)
>>> C_Polyhedron(x >= 0) > C_Polyhedron(x >= 1)
True
"""
cdef result
sig_on()
if op == Py_LT: # < 0
result = rhs.strictly_contains(lhs)
elif op == Py_LE: # <= 1
result = rhs.contains(lhs)
elif op == Py_EQ: # == 2
result = (lhs.thisptr[0] == rhs.thisptr[0])
elif op == Py_GT: # > 4
result = lhs.strictly_contains(rhs)
elif op == Py_GE: # >= 5
result = lhs.contains(rhs)
elif op == Py_NE: # != 3
result = (lhs.thisptr[0] != rhs.thisptr[0])
else:
raise RuntimeError # unreachable
sig_off()
return result
####################################################
### C_Polyhedron ###################################
####################################################
cdef class C_Polyhedron(Polyhedron):
r"""
Wrapper for PPL's ``C_Polyhedron`` class.
An object of the class :class:`C_Polyhedron` represents a
topologically closed convex polyhedron in the vector space. See
:class:`NNC_Polyhedron` for more general (not necessarily closed)
polyhedra.
When building a closed polyhedron starting from a system of
constraints, an exception is thrown if the system contains a
strict inequality constraint. Similarly, an exception is thrown
when building a closed polyhedron starting from a system of
generators containing a closure point.
INPUT:
- ``arg`` -- the defining data of the polyhedron. Any one of the
following is accepted:
* A non-negative integer. Depending on ``degenerate_element``,
either the space-filling or the empty polytope in the given
dimension ``arg`` is constructed.
* A :class:`Constraint_System`.
* A :class:`Generator_System`.
* A single :class:`Constraint`.
* A single :class:`Generator`.
* A :class:`C_Polyhedron`.
- ``degenerate_element`` -- string, either ``'universe'`` or
``'empty'``. Only used if ``arg`` is an integer.
OUTPUT:
A :class:`C_Polyhedron`.
Examples:
>>> from ppl import Constraint_System, Generator_System, Variable, C_Polyhedron, point, ray
>>> x = Variable(0)
>>> y = Variable(1)
>>> C_Polyhedron( 5*x-2*y >= x+y-1 )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line
>>> cs = Constraint_System()
>>> cs.insert( x >= 0 )
>>> cs.insert( y >= 0 )
>>> C_Polyhedron(cs)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 2 rays
>>> C_Polyhedron( point(x+y) )
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
>>> gs = Generator_System()
>>> gs.insert( point(-x-y) )
>>> gs.insert( ray(x) )
>>> C_Polyhedron(gs)
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray
The empty and universe polyhedra are constructed like this:
>>> C_Polyhedron(3, 'empty')
The empty polyhedron in QQ^3
>>> C_Polyhedron(3, 'empty').constraints()
Constraint_System {-1==0}
>>> C_Polyhedron(3, 'universe')
The space-filling polyhedron in QQ^3
>>> C_Polyhedron(3, 'universe').constraints()
Constraint_System {}
Note that, by convention, the generator system of a polyhedron is
either empty or contains at least one point. In particular, if you
define a polyhedron via a non-empty :class:`Generator_System` it
must contain a point (at any position). If you start with a single
generator, this generator must be a point:
>>> C_Polyhedron( ray(x) )
Traceback (most recent call last):
...
ValueError: PPL::C_Polyhedron::C_Polyhedron(gs):
*this is an empty polyhedron and
the non-empty generator system gs contains no points.
"""
def __cinit__(self, arg, degenerate_element='universe'):
"""
The Cython constructor.
See :class:`C_Polyhedron` for documentation.
Tests:
>>> from ppl import C_Polyhedron
>>> C_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
if isinstance(arg, C_Polyhedron):
ph = arg
self.thisptr = new PPL_C_Polyhedron(ph.thisptr[0])
return
if isinstance(arg, Generator):
arg = Generator_System(arg)
if isinstance(arg, Constraint):
arg = Constraint_System(arg)
if isinstance(arg, Generator_System):
gs = arg
self.thisptr = new PPL_C_Polyhedron(gs.thisptr[0])
return
if isinstance(arg, Constraint_System):
cs = arg
self.thisptr = new PPL_C_Polyhedron(cs.thisptr[0])
return
try:
dim = int(arg)
assert dim>=0
except ValueError:
raise ValueError('Cannot initialize C_Polyhedron with '+str(arg)+'.')
degenerate_element = degenerate_element.lower()
if degenerate_element=='universe':
self.thisptr = new PPL_C_Polyhedron(dim, UNIVERSE)
return
elif degenerate_element=='empty':
self.thisptr = new PPL_C_Polyhedron(dim, EMPTY)
return
else:
raise ValueError('Unknown value: degenerate_element='+str(degenerate_element)+'.')
def __init__(self, *args):
"""
The Python destructor.
See :class:`C_Polyhedron` for documentation.
Tests:
>>> from ppl import C_Polyhedron
>>> C_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
# override Polyhedron.__init__
pass
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __reduce__(self):
"""
Pickle object
Tests:
>>> from ppl import C_Polyhedron, Variable
>>> from pickle import loads, dumps
>>> P = C_Polyhedron(3, 'empty')
>>> loads(dumps(P))
The empty polyhedron in QQ^3
>>> Q = C_Polyhedron(5, 'universe')
>>> loads(dumps(Q))
The space-filling polyhedron in QQ^5
>>> x = Variable(0)
>>> y = Variable(1)
>>> H = C_Polyhedron( 5*x-2*y >= x+y-1 )
>>> loads(dumps(H))
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line
"""
if self.is_empty():
return (C_Polyhedron, (self.space_dimension(), 'empty'))
elif self.is_universe():
return (C_Polyhedron, (self.space_dimension(), 'universe'))
else:
return (C_Polyhedron, (self.generators(),))
####################################################
### NNC_Polyhedron ###################################
####################################################
cdef class NNC_Polyhedron(Polyhedron):
r"""
Wrapper for PPL's ``NNC_Polyhedron`` class.
An object of the class ``NNC_Polyhedron`` represents a not
necessarily closed (NNC) convex polyhedron in the vector space.
Note: Since NNC polyhedra are a generalization of closed
polyhedra, any object of the class :class:`C_Polyhedron` can be
(explicitly) converted into an object of the class
:class:`NNC_Polyhedron`. The reason for defining two different
classes is that objects of the class :class:`C_Polyhedron` are
characterized by a more efficient implementation, requiring less
time and memory resources.
INPUT:
- ``arg`` -- the defining data of the polyhedron. Any one of the
following is accepted:
* An non-negative integer. Depending on ``degenerate_element``,
either the space-filling or the empty polytope in the given
dimension ``arg`` is constructed.
* A :class:`Constraint_System`.
* A :class:`Generator_System`.
* A single :class:`Constraint`.
* A single :class:`Generator`.
* A :class:`NNC_Polyhedron`.
* A :class:`C_Polyhedron`.
- ``degenerate_element`` -- string, either ``'universe'`` or
``'empty'``. Only used if ``arg`` is an integer.
OUTPUT:
A :class:`C_Polyhedron`.
Examples:
>>> from ppl import Constraint, Constraint_System, Generator, Generator_System, Variable, NNC_Polyhedron, point, ray, closure_point
>>> x = Variable(0)
>>> y = Variable(1)
>>> NNC_Polyhedron( 5*x-2*y > x+y-1 )
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray, 1 line
>>> cs = Constraint_System()
>>> cs.insert( x > 0 )
>>> cs.insert( y > 0 )
>>> NNC_Polyhedron(cs)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 2 rays
>>> NNC_Polyhedron( point(x+y) )
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point
>>> gs = Generator_System()
>>> gs.insert( point(-y) )
>>> gs.insert( closure_point(-x-y) )
>>> gs.insert( ray(x) )
>>> p = NNC_Polyhedron(gs); p
A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray
>>> p.minimized_constraints()
Constraint_System {x1+1==0, x0+1>0}
Note that, by convention, every polyhedron must contain a point:
>>> NNC_Polyhedron( closure_point(x+y) )
Traceback (most recent call last):
...
ValueError: PPL::NNC_Polyhedron::NNC_Polyhedron(gs):
*this is an empty polyhedron and
the non-empty generator system gs contains no points.
"""
def __cinit__(self, arg, degenerate_element='universe'):
"""
The Cython constructor.
See :class:`NNC_Polyhedron` for documentation.
Tests:
>>> from ppl import NNC_Polyhedron
>>> NNC_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
if isinstance(arg, NNC_Polyhedron):
p_nnc = arg
self.thisptr = new PPL_NNC_Polyhedron(p_nnc.thisptr[0])
return
if isinstance(arg, C_Polyhedron):
p_c = arg
self.thisptr = new PPL_NNC_Polyhedron(p_c.thisptr[0])
return
if isinstance(arg, Generator):
arg = Generator_System(arg)
if isinstance(arg, Constraint):
arg = Constraint_System(arg)
if isinstance(arg, Generator_System):
gs = arg
self.thisptr = new PPL_NNC_Polyhedron(gs.thisptr[0])
return
if isinstance(arg, Constraint_System):
cs = arg
self.thisptr = new PPL_NNC_Polyhedron(cs.thisptr[0])
return
try:
dim = int(arg)
assert dim>=0
except ValueError:
raise ValueError('Cannot initialize NNC_Polyhedron with '+str(arg)+'.')
degenerate_element = degenerate_element.lower()
if degenerate_element=='universe':
self.thisptr = new PPL_NNC_Polyhedron(dim, UNIVERSE)
return
elif degenerate_element=='empty':
self.thisptr = new PPL_NNC_Polyhedron(dim, EMPTY)
return
else:
raise ValueError('Unknown value: degenerate_element='+str(degenerate_element)+'.')
def __init__(self, *args):
"""
The Python destructor.
See :class:`NNC_Polyhedron` for documentation.
Tests:
>>> from ppl import NNC_Polyhedron
>>> NNC_Polyhedron(3, 'empty') # indirect doctest
The empty polyhedron in QQ^3
"""
# override Polyhedron.__init__
pass
def __dealloc__(self):
"""
The Cython destructor.
"""
del self.thisptr
def __reduce__(self):
"""
Pickle object
Tests:
>>> from ppl import NNC_Polyhedron, Variable
>>> from pickle import loads, dumps
>>> P = NNC_Polyhedron(3, 'empty')
>>> loads(dumps(P))
The empty polyhedron in QQ^3
>>> Q = NNC_Polyhedron(5, 'universe')
>>> loads(dumps(Q))
The space-filling polyhedron in QQ^5
>>> x = Variable(0)
>>> y = Variable(1)
>>> H = NNC_Polyhedron( 5*x-2*y > x+y-1 )
>>> loads(dumps(H))
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray, 1 line
"""
if self.is_empty():
return (NNC_Polyhedron, (self.space_dimension(), 'empty'))
elif self.is_universe():
return (NNC_Polyhedron, (self.space_dimension(), 'universe'))
else:
return (NNC_Polyhedron, (self.generators(),))
pplpy-0.8.9/ppl/ppl_decl.pxd 0000664 0000000 0000000 00000051742 14475172214 0016006 0 ustar 00root root 0000000 0000000 from libcpp cimport bool as cppbool
from libcpp.vector cimport vector as cppvector
cdef extern from "gmp.h":
# gmp integer
ctypedef struct __mpz_struct:
pass
ctypedef __mpz_struct mpz_t[1]
ctypedef __mpz_struct *mpz_ptr
ctypedef const __mpz_struct *mpz_srcptr
void mpz_init(mpz_t)
cdef extern from "gmpxx.h":
# gmp integer
cdef cppclass mpz_class:
mpz_class()
mpz_class(int i)
mpz_class(mpz_t z)
mpz_class(mpz_class)
mpz_t get_mpz_t()
mpz_class operator%(mpz_class, mpz_class)
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library::Generator":
ctypedef enum PPL_GeneratorType "Parma_Polyhedra_Library::Generator::Type":
LINE, RAY, POINT, CLOSURE_POINT
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library::Constraint":
ctypedef enum PPL_ConstraintType "Parma_Polyhedra_Library::Constraint::Type":
EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library::MIP_Problem":
ctypedef enum PPL_MIP_Problem_Control_Parameter_Name:
PRICING
ctypedef enum PPL_MIP_Problem_Control_Parameter_Value:
PRICING_STEEPEST_EDGE_FLOAT, PRICING_STEEPEST_EDGE_EXACT, PRICING_TEXTBOOK
cdef extern from "ppl.hh" namespace "Parma_Polyhedra_Library":
ctypedef size_t PPL_dimension_type "Parma_Polyhedra_Library::dimension_type"
ctypedef mpz_class PPL_Coefficient "Parma_Polyhedra_Library::Coefficient"
cdef cppclass PPL_Variable "Parma_Polyhedra_Library::Variable"
cdef cppclass PPL_Variables_Set "Parma_Polyhedra_Library::Variables_Set"
cdef cppclass PPL_Linear_Expression "Parma_Polyhedra_Library::Linear_Expression"
cdef cppclass PPL_Generator "Parma_Polyhedra_Library::Generator"
cdef cppclass PPL_Generator_System "Parma_Polyhedra_Library::Generator_System"
cdef cppclass PPL_Constraint "Parma_Polyhedra_Library::Constraint"
cdef cppclass PPL_Constraint_System "Parma_Polyhedra_Library::Constraint_System"
cdef cppclass PPL_Congruence "Parma_Polyhedra_Library::Congruence"
cdef cppclass PPL_Congruence_System "Parma_Polyhedra_Library::Congruence_System"
cdef cppclass PPL_Polyhedron "Parma_Polyhedra_Library::Polyhedron"
cdef cppclass PPL_C_Polyhedron "Parma_Polyhedra_Library::C_Polyhedron" (PPL_Polyhedron)
cdef cppclass PPL_NNC_Polyhedron "Parma_Polyhedra_Library::NNC_Polyhedron" (PPL_Polyhedron)
cdef cppclass PPL_Poly_Gen_Relation "Parma_Polyhedra_Library::Poly_Gen_Relation"
cdef cppclass PPL_Poly_Con_Relation "Parma_Polyhedra_Library::Poly_Con_Relation"
cdef cppclass PPL_MIP_Problem "Parma_Polyhedra_Library::MIP_Problem"
cdef cppclass PPL_mip_iterator "Parma_Polyhedra_Library::MIP_Problem::const_iterator"
cdef cppclass PPL_gs_iterator "Parma_Polyhedra_Library::Generator_System::const_iterator"
cdef cppclass PPL_Constraint_System_iterator "Parma_Polyhedra_Library::Constraint_System::const_iterator"
cdef cppclass PPL_Congruence_System_iterator "Parma_Polyhedra_Library::Congruence_System::const_iterator"
cdef cppclass PPL_Bit_Row "Parma_Polyhedra_Library::Bit_Row"
cdef cppclass PPL_Bit_Matrix "Parma_Polyhedra_Library::Bit_Matrix"
cdef cppclass PPL_Variable:
PPL_Variable(PPL_dimension_type i)
PPL_dimension_type id()
PPL_dimension_type space_dimension()
cdef cppclass PPL_Variables_Set:
PPL_Variables_Set()
PPL_Variables_Set(PPL_Variable v)
PPL_Variables_Set(PPL_Variable v, PPL_Variable w)
PPL_dimension_type space_dimension()
void insert(PPL_Variable v)
size_t size()
void ascii_dump()
# class Parma_Polyhedra_Library::Linear_Expression
# lines 28238-28879 of ppl.hh
cdef cppclass PPL_Linear_Expression:
PPL_Linear_Expression()
PPL_Linear_Expression(PPL_Linear_Expression &e)
PPL_Linear_Expression(PPL_Coefficient n)
PPL_Linear_Expression(PPL_Variable v)
PPL_dimension_type max_space_dimension()
PPL_dimension_type space_dimension()
void set_space_dimension(PPL_dimension_type d)
PPL_Coefficient coefficient(PPL_Variable v)
void set_coefficient(PPL_Variable v, PPL_Coefficient)
PPL_Coefficient inhomogeneous_term()
void set_inhomogeneous_term(PPL_Coefficient n)
void linear_combine(const PPL_Linear_Expression& y, PPL_Variable v)
void linear_combine(const PPL_Linear_Expression& y, PPL_Coefficient c1, PPL_Coefficient c2)
void linear_combine_lax(const PPL_Linear_Expression& u, PPL_Coefficient c1, PPL_Coefficient c2)
void swap_space_dimensions(PPL_Variable v1, PPL_Variable v2)
void remove_space_dimensions(const PPL_Variables_Set)
void shift_space_dimensions(PPL_Variable v, PPL_dimension_type n)
void permute_space_dimensions(const cppvector[PPL_Variable]& cycle) except +ValueError
bint is_zero()
bint all_homogeneous_terms_are_zero()
bint is_equal_to(PPL_Linear_Expression& x)
bint all_zeroes(const PPL_Variables_Set& v)
void ascii_dump()
#PPL_Linear_Expression operator+=(PPL_Linear_Expression& e)
#PPL_Linear_Expression operator-=(PPL_Linear_Expression& e)
#PPL_Linear_Expression operator*=(PPL_Coefficient n)
#PPL_Linear_Expression operator/=(PPL_Coefficient n)
PPL_Linear_Expression operator+(PPL_Linear_Expression& e)
PPL_Linear_Expression operator-(PPL_Linear_Expression& e)
PPL_Linear_Expression operator*(PPL_Coefficient n)
PPL_Constraint operator> (PPL_Linear_Expression& e)
PPL_Constraint operator>=(PPL_Linear_Expression& e)
PPL_Constraint operator==(PPL_Linear_Expression& e)
PPL_Constraint operator<=(PPL_Linear_Expression& e)
PPL_Constraint operator< (PPL_Linear_Expression& e)
cdef cppclass PPL_Constraint:
PPL_Constraint()
PPL_Constraint(PPL_Constraint &g)
PPL_dimension_type space_dimension()
PPL_ConstraintType type()
bint is_equality()
bint is_inequality()
bint is_nonstrict_inequality()
bint is_strict_inequality()
PPL_Coefficient coefficient(PPL_Variable v)
PPL_Coefficient inhomogeneous_term()
bint is_tautological()
bint is_inconsistent()
bint is_equivalent_to(PPL_Constraint &y)
void ascii_dump()
void permute_space_dimensions(const cppvector[PPL_Variable]& cycle) except +ValueError
cdef cppclass PPL_Generator:
PPL_Generator(PPL_Generator &g)
PPL_dimension_type space_dimension()
void set_space_dimension(PPL_dimension_type n)
PPL_GeneratorType type()
bint is_line()
bint is_ray()
bint is_line_or_ray()
bint is_point()
bint is_closure_point()
PPL_Coefficient coefficient(PPL_Variable v)
PPL_Coefficient divisor() except +
bint is_equivalent_to(PPL_Generator &y)
void ascii_dump()
void permute_space_dimensions(const cppvector[PPL_Variable]& cycle) except +ValueError
cdef cppclass PPL_Congruence:
PPL_Congruence()
PPL_Congruence(const PPL_Congruence &g)
PPL_Congruence(const PPL_Constraint &c) except +ValueError
PPL_dimension_type space_dimension()
# NOTE: curiously, this can raise an error (behavior different from Linear_Expression)
PPL_Coefficient coefficient(PPL_Variable v) except +ValueError
PPL_Coefficient inhomogeneous_term()
PPL_Coefficient modulus()
void set_modulus(PPL_Coefficient& m)
void scale(PPL_Coefficient& m)
bint is_tautological()
bint is_inconsistent()
bint is_proper_congruence()
bint is_equality()
void ascii_dump()
void swap_space_dimension(PPL_Variable v1, PPL_Variable v2)
void set_space_dimension(PPL_dimension_type n)
void shift_space_dimensions(PPL_Variable v, PPL_dimension_type n)
void sign_normalize()
void normalize()
void strong_normalize()
PPL_dimension_type max_space_dimension()
cppbool operator==(const PPL_Congruence &x, const PPL_Congruence &y)
cppbool operator!=(const PPL_Congruence &x, const PPL_Congruence &y)
cdef cppclass PPL_Congruence_System:
PPL_Congruence_System()
PPL_Congruence_System(PPL_Congruence &c)
PPL_Congruence_System(PPL_Congruence_System &cs)
PPL_dimension_type space_dimension()
PPL_Congruence_System_iterator begin()
PPL_Congruence_System_iterator end()
bint has_equalities()
bint has_strict_inequalities()
void clear()
void insert(PPL_Congruence &g)
bint empty()
void ascii_dump()
cdef cppclass PPL_Congruence_System_iterator:
PPL_Congruence_System_iterator()
PPL_Congruence_System_iterator(PPL_Congruence_System_iterator &csi)
PPL_Congruence& operator* ()
PPL_Congruence_System_iterator inc "operator++" (int i)
cppbool operator==(PPL_Congruence_System_iterator& y)
cppbool operator!=(PPL_Congruence_System_iterator& y)
cdef cppclass PPL_Generator_System:
PPL_Generator_System()
PPL_Generator_System(PPL_Generator &g)
PPL_Generator_System(PPL_Generator_System &gs)
PPL_dimension_type space_dimension()
void set_space_dimension(PPL_dimension_type space_dim)
PPL_gs_iterator begin()
PPL_gs_iterator end()
void clear()
void insert(PPL_Generator &g)
bint empty()
void ascii_dump()
cdef cppclass PPL_mip_iterator:
PPL_mip_iterator(PPL_mip_iterator &mipi)
PPL_Constraint& operator* ()
PPL_mip_iterator inc "operator++" (int i)
cppbool operator==(PPL_mip_iterator& y)
cppbool operator!=(PPL_mip_iterator& y)
cdef cppclass PPL_gs_iterator:
PPL_gs_iterator()
PPL_gs_iterator(PPL_gs_iterator &gsi)
PPL_Generator& operator* ()
PPL_gs_iterator inc "operator++" (int i)
cppbool operator==(PPL_gs_iterator& y)
cppbool operator!=(PPL_gs_iterator& y)
cdef cppclass PPL_Constraint_System_iterator:
PPL_Constraint_System_iterator()
PPL_Constraint_System_iterator(PPL_Constraint_System_iterator &csi)
PPL_Constraint& operator* ()
PPL_Constraint_System_iterator inc "operator++" (int i)
cppbool operator==(PPL_Constraint_System_iterator& y)
cppbool operator!=(PPL_Constraint_System_iterator& y)
cdef cppclass PPL_Constraint_System:
PPL_Constraint_System()
PPL_Constraint_System(PPL_Constraint &g)
PPL_Constraint_System(PPL_Constraint_System &gs)
PPL_dimension_type space_dimension()
PPL_Constraint_System_iterator begin()
PPL_Constraint_System_iterator end()
bint has_equalities()
bint has_strict_inequalities()
void clear()
void insert(PPL_Constraint &g)
bint empty()
void ascii_dump()
cdef enum PPL_Degenerate_Element "Parma_Polyhedra_Library::Degenerate_Element":
UNIVERSE, EMPTY
cdef enum PPL_Optimization_Mode "Parma_Polyhedra_Library::Optimization_Mode":
MINIMIZATION, MAXIMIZATION
cdef enum PPL_MIP_Problem_Status "Parma_Polyhedra_Library::MIP_Problem_Status":
UNFEASIBLE_MIP_PROBLEM, UNBOUNDED_MIP_PROBLEM, OPTIMIZED_MIP_PROBLEM
cdef cppclass PPL_Polyhedron:
PPL_dimension_type space_dimension()
PPL_dimension_type affine_dimension()
PPL_Constraint_System& constraints()
PPL_Constraint_System& minimized_constraints()
PPL_Generator_System& generators()
PPL_Generator_System& minimized_generators()
PPL_Poly_Con_Relation relation_with(PPL_Constraint &c) except +ValueError
PPL_Poly_Gen_Relation relation_with(PPL_Generator &g) except +ValueError
bint is_empty()
bint is_universe()
bint is_topologically_closed()
bint is_disjoint_from(PPL_Polyhedron &y) except +ValueError
bint is_discrete()
bint is_bounded()
bint contains_integer_point()
bint constrains(PPL_Variable var) except +ValueError
bint bounds_from_above(PPL_Linear_Expression &expr) except +ValueError
bint bounds_from_below(PPL_Linear_Expression &expr) except +ValueError
bint maximize(PPL_Linear_Expression &expr, PPL_Coefficient &sup_n, PPL_Coefficient &sup_d,
cppbool &maximum)
bint maximize(PPL_Linear_Expression &expr, PPL_Coefficient &sup_n, PPL_Coefficient &sup_d,
cppbool &maximum, PPL_Generator &g)
bint minimize(PPL_Linear_Expression &expr, PPL_Coefficient &inf_n, PPL_Coefficient &inf_d,
cppbool &minimum)
bint minimize(PPL_Linear_Expression &expr, PPL_Coefficient &inf_n, PPL_Coefficient &inf_d,
cppbool &minimum, PPL_Generator &g)
bint frequency(PPL_Linear_Expression &expr, PPL_Coefficient &freq_n, PPL_Coefficient &freq_d,
PPL_Coefficient &val_n, PPL_Coefficient &val_d)
bint contains(PPL_Polyhedron &y) except +ValueError
bint strictly_contains(PPL_Polyhedron &y) except +ValueError
void add_constraint(PPL_Constraint &c) except +ValueError
void add_generator(PPL_Generator &g) except +ValueError
void add_constraints(PPL_Constraint_System &cs) except +ValueError
void add_generators(PPL_Generator_System &gs) except +ValueError
void refine_with_constraint(PPL_Constraint &c) except +ValueError
void refine_with_constraints(PPL_Constraint_System &cs) except +ValueError
void unconstrain(PPL_Variable var) except +ValueError
void intersection_assign(PPL_Polyhedron &y) except +ValueError
void poly_hull_assign(PPL_Polyhedron &y) except +ValueError
void upper_bound_assign(PPL_Polyhedron &y) except +ValueError
void poly_difference_assign(PPL_Polyhedron &y) except +ValueError
void difference_assign(PPL_Polyhedron &y) except +ValueError
void drop_some_non_integer_points()
void topological_closure_assign()
void BHRZ03_widening_assign(PPL_Polyhedron &y, unsigned* tp) except +ValueError
void limited_BHRZ03_extrapolation_assign(PPL_Polyhedron &y, PPL_Constraint_System &cs, unsigned* tp) except +ValueError
void bounded_BHRZ03_extrapolation_assign(PPL_Polyhedron &y, PPL_Constraint_System &cs, unsigned* tp) except +ValueError
void H79_widening_assign(PPL_Polyhedron &y, unsigned* tp) except +ValueError
void widening_assign(PPL_Polyhedron &y, unsigned* tp) except +ValueError
void limited_H79_extrapolation_assign(PPL_Polyhedron &y, PPL_Constraint_System &cs, unsigned* tp) except +ValueError
void bounded_H79_extrapolation_assign(PPL_Polyhedron &y, PPL_Constraint_System &cs, unsigned* tp) except +ValueError
void add_space_dimensions_and_embed(PPL_dimension_type m) except +ValueError
void add_space_dimensions_and_project(PPL_dimension_type m) except +ValueError
void concatenate_assign(PPL_Polyhedron &y) except +ValueError
void remove_higher_space_dimensions(PPL_dimension_type new_dimension) except +ValueError
void affine_image(const PPL_Variable, const PPL_Linear_Expression& expr) except +ValueError
void affine_preimage(const PPL_Variable, const PPL_Linear_Expression& expr) except +ValueError
void ascii_dump()
int hash_code()
PPL_dimension_type max_space_dimension()
bint operator!=(PPL_Polyhedron &y)
bint operator==(PPL_Polyhedron &y)
cdef cppclass PPL_C_Polyhedron(PPL_Polyhedron):
PPL_C_Polyhedron(PPL_dimension_type num_dimensions, PPL_Degenerate_Element)
PPL_C_Polyhedron(PPL_Constraint_System &cs) except +ValueError
PPL_C_Polyhedron(PPL_Generator_System &gs) except +ValueError
PPL_C_Polyhedron(PPL_C_Polyhedron &y)
cdef cppclass PPL_NNC_Polyhedron(PPL_Polyhedron):
PPL_NNC_Polyhedron(PPL_dimension_type num_dimensions, PPL_Degenerate_Element kind)
PPL_NNC_Polyhedron(PPL_Constraint_System &cs) except +ValueError
PPL_NNC_Polyhedron(PPL_Generator_System &gs) except +ValueError
PPL_NNC_Polyhedron(PPL_NNC_Polyhedron &y)
PPL_NNC_Polyhedron(PPL_C_Polyhedron &y)
cdef cppclass PPL_Poly_Gen_Relation:
PPL_Poly_Gen_Relation(PPL_Poly_Gen_Relation &cpy_from)
bint implies(PPL_Poly_Gen_Relation &y)
void ascii_dump()
cdef cppclass PPL_Poly_Con_Relation:
PPL_Poly_Con_Relation(PPL_Poly_Con_Relation &cpy_from)
bint implies(PPL_Poly_Con_Relation &y)
void ascii_dump()
cdef cppclass PPL_MIP_Problem:
PPL_MIP_Problem(PPL_MIP_Problem &cpy_from)
PPL_MIP_Problem(PPL_dimension_type dim) except +ValueError
PPL_MIP_Problem(PPL_dimension_type dim, PPL_Constraint_System &cs, PPL_Linear_Expression &obj, PPL_Optimization_Mode) except +ValueError
PPL_dimension_type space_dimension()
PPL_Linear_Expression& objective_function()
void clear()
void add_space_dimensions_and_embed(PPL_dimension_type m) except +ValueError
void add_constraint(PPL_Constraint &c) except +ValueError
void add_constraints(PPL_Constraint_System &cs) except +ValueError
void add_to_integer_space_dimensions(PPL_Variables_Set &i_vars) except +ValueError
void set_objective_function(PPL_Linear_Expression &obj) except +ValueError
void set_optimization_mode(PPL_Optimization_Mode mode)
PPL_Optimization_Mode optimization_mode()
bint is_satisfiable()
PPL_MIP_Problem_Status solve()
void evaluate_objective_function(PPL_Generator evaluating_point, PPL_Coefficient &num, PPL_Coefficient &den) except +ValueError
PPL_Generator& feasible_point()
PPL_Generator optimizing_point() except +ValueError
void optimal_value(PPL_Coefficient &num, PPL_Coefficient &den) except +ValueError
PPL_MIP_Problem_Control_Parameter_Value get_control_parameter(PPL_MIP_Problem_Control_Parameter_Name name)
void set_control_parameter(PPL_MIP_Problem_Control_Parameter_Value value)
PPL_mip_iterator constraints_begin()
PPL_mip_iterator constraints_end()
cdef cppclass PPL_Bit_Row:
PPL_Bit_Row()
PPL_Bit_Row(const PPL_Bit_Row& y, const PPL_Bit_Row& z)
void set(unsigned long k)
void set_until(unsigned long k)
void clear_from(unsigned long k)
void clear()
void union_assign(const PPL_Bit_Row& x, const PPL_Bit_Row& y)
void intersection_assign(const PPL_Bit_Row& x, const PPL_Bit_Row& y)
void difference_assign(const PPL_Bit_Row&x, const PPL_Bit_Row& y)
unsigned long first()
unsigned long last()
unsigned long prev(unsigned long position)
unsigned long next(unsigned long position)
unsigned long count_ones()
cppbool empty()
cdef cppclass PPL_Bit_Matrix:
PPL_Bit_Matrix()
PPL_Bit_Matrix(PPL_dimension_type n_rows, PPL_dimension_type n_columns)
PPL_Bit_Matrix(const PPL_Bit_Matrix& y)
PPL_Bit_Row& operator[](PPL_dimension_type k)
const PPL_Bit_Row& operator[](PPL_dimension_type k)
void transpose()
void transpose_assign(const PPL_Bit_Matrix& y)
PPL_dimension_type num_columns()
PPL_dimension_type num_rows()
void sort_rows()
cdef extern from "ppl.hh":
PPL_Generator PPL_line "Parma_Polyhedra_Library::line" (PPL_Linear_Expression &e) except +ValueError
PPL_Generator PPL_ray "Parma_Polyhedra_Library::ray" (PPL_Linear_Expression &e) except +ValueError
PPL_Generator PPL_point "Parma_Polyhedra_Library::point" (PPL_Linear_Expression &e, PPL_Coefficient &d) except +ValueError
PPL_Generator PPL_closure_point "Parma_Polyhedra_Library::closure_point" (PPL_Linear_Expression &e, PPL_Coefficient &d) except +ValueError
cdef extern from "ppl.hh":
PPL_Poly_Gen_Relation PPL_Poly_Gen_Relation_nothing "Parma_Polyhedra_Library::Poly_Gen_Relation::nothing" ()
PPL_Poly_Gen_Relation PPL_Poly_Gen_Relation_subsumes "Parma_Polyhedra_Library::Poly_Gen_Relation::subsumes" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_nothing "Parma_Polyhedra_Library::Poly_Con_Relation::nothing" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_is_disjoint "Parma_Polyhedra_Library::Poly_Con_Relation::is_disjoint" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_strictly_intersects "Parma_Polyhedra_Library::Poly_Con_Relation::strictly_intersects" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_is_included "Parma_Polyhedra_Library::Poly_Con_Relation::is_included" ()
PPL_Poly_Con_Relation PPL_Poly_Con_Relation_saturates "Parma_Polyhedra_Library::Poly_Con_Relation::saturates" ()
cdef extern from "ppl_shim.hh":
PPL_Poly_Gen_Relation* new_relation_with(PPL_Polyhedron &p, PPL_Generator &g) except +ValueError
PPL_Poly_Con_Relation* new_relation_with(PPL_Polyhedron &p, PPL_Constraint &c) except +ValueError
PPL_Congruence modulo(const PPL_Linear_Expression &expr, PPL_Coefficient& mod)
pplpy-0.8.9/ppl/ppl_shim.cc 0000664 0000000 0000000 00000000611 14475172214 0015616 0 ustar 00root root 0000000 0000000 #include "ppl_shim.hh"
Poly_Gen_Relation* new_relation_with(const Polyhedron &p, const Generator &g)
{
return new Poly_Gen_Relation(p.relation_with(g));
}
Poly_Con_Relation* new_relation_with(const Polyhedron &p, const Constraint &c)
{
return new Poly_Con_Relation(p.relation_with(c));
}
Congruence modulo(const Linear_Expression &expr, mpz_class mod)
{
return (expr %= 0) / mod;
}
pplpy-0.8.9/ppl/ppl_shim.hh 0000664 0000000 0000000 00000000707 14475172214 0015636 0 ustar 00root root 0000000 0000000 #ifndef PPL_SHIM__H
#define PPL_SHIM__H
#include
using namespace Parma_Polyhedra_Library;
// Poly_Gen_Relation/Poly_Con_Relation have no default constructor
Poly_Gen_Relation* new_relation_with(const Polyhedron &p, const Generator &g);
Poly_Con_Relation* new_relation_with(const Polyhedron &p, const Constraint &c);
// the weird usage of the %= operator confuses Cython
Congruence modulo(const Linear_Expression &e, mpz_class mod);
#endif
pplpy-0.8.9/pyproject.toml 0000664 0000000 0000000 00000000215 14475172214 0015615 0 ustar 00root root 0000000 0000000 [build-system]
requires = ["setuptools", "wheel", "Cython", "cysignals", "sphinx", "gmpy2>=2.1.0b1"]
build-backend = "setuptools.build_meta"
pplpy-0.8.9/setup.cfg 0000664 0000000 0000000 00000001632 14475172214 0014526 0 ustar 00root root 0000000 0000000 [metadata]
name = pplpy
version = 0.8.9
description = Python PPL wrapper
long_description = file: README.rst
author = Vincent Delecroix
author_email = vincent.delecroix@labri.fr
url = https://github.com/sagemath/pplpy
download_url = https://pypi.org/project/pplpy/#files
license = GPL v3
platforms = any
classifiers =
License :: OSI Approved :: GNU General Public License v3 (GPLv3)
Programming Language :: C++
Programming Language :: Python
Development Status :: 5 - Production/Stable
Operating System :: Unix
Intended Audience :: Science/Research
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
keywords =
polyhedron
polytope
convex
mathematics
ppl
milp
linear-programming
[options]
packages = ppl
[options.package_data]
ppl = *.pxd, *.h, *.hh
pplpy-0.8.9/setup.py 0000775 0000000 0000000 00000006443 14475172214 0014427 0 ustar 00root root 0000000 0000000 #!/usr/bin/env python
import os
import sys
from setuptools import setup, Command
from setuptools.extension import Extension
# NOTE: setuptools build_ext does not work properly with Cython code
from distutils.command.build_ext import build_ext as _build_ext
# Adapted from Cython's new_build_ext
class build_ext(_build_ext):
def run(self):
# Check dependencies
try:
from Cython.Build.Dependencies import cythonize
except ImportError as E:
sys.stderr.write("Error: {0}\n".format(E))
sys.stderr.write("The installation of ppl requires Cython\n")
sys.exit(1)
try:
# We need the header files for cysignals at compile-time
import cysignals
except ImportError as E:
sys.stderr.write("Error: {0}\n".format(E))
sys.stderr.write("The installation of ppl requires cysignals\n")
sys.exit(1)
try:
# We need the header files for gmpy2 at compile-time
import gmpy2
except ImportError as E:
sys.stderr.write("Error: {0}\n".format(E))
sys.stderr.write("The installation of ppl requires gmpy2\n")
sys.exit(1)
self.extensions[:] = cythonize(
self.extensions,
include_path=sys.path,
compiler_directives={'embedsignature': True,
'language_level': '3'})
_build_ext.run(self)
class TestCommand(Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
import subprocess, os, tempfile, shutil
old_path = os.getcwd()
tempdir_path = tempfile.mkdtemp()
try:
shutil.copytree('./tests', tempdir_path, dirs_exist_ok=True)
os.chdir(tempdir_path)
if subprocess.call([sys.executable, 'runtests.py']):
raise SystemExit("Doctest failures")
if subprocess.call([sys.executable, 'setup.py', 'build_ext', '--inplace']) or \
subprocess.call([sys.executable, '-c', "import testpplpy; testpplpy.test(); testpplpy.example()"]):
raise SystemExit("Cython test 1 failure")
if subprocess.call([sys.executable, 'setup2.py', 'build_ext', '--inplace']) or \
subprocess.call([sys.executable, '-c', "import testpplpy2; testpplpy2.test(); testpplpy2.example()"]):
raise SystemExit("Cython test 2 failure")
finally:
os.chdir(old_path)
shutil.rmtree(tempdir_path)
extensions = [
Extension('ppl.linear_algebra', sources=['ppl/linear_algebra.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.mip_problem', sources=['ppl/mip_problem.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.polyhedron', sources = ['ppl/polyhedron.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.generator', sources = ['ppl/generator.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.constraint', sources = ['ppl/constraint.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.congruence', sources=['ppl/congruence.pyx', 'ppl/ppl_shim.cc']),
Extension('ppl.bit_arrays', sources = ['ppl/bit_arrays.pyx', 'ppl/ppl_shim.cc']),
]
setup(
ext_modules = extensions,
cmdclass = {'build_ext': build_ext, 'test': TestCommand},
)
pplpy-0.8.9/tests/ 0000775 0000000 0000000 00000000000 14475172214 0014045 5 ustar 00root root 0000000 0000000 pplpy-0.8.9/tests/runtests.py 0000664 0000000 0000000 00000001372 14475172214 0016311 0 ustar 00root root 0000000 0000000 import ppl
import sys
import os
path = os.path.dirname(__file__)
if path:
os.chdir(path)
ans = 0 # set to nonzero if an error is found
print("Running pplpy doctests")
print('-'*80)
import doctest
for mod in [ppl, ppl.linear_algebra, ppl.mip_problem, ppl.polyhedron, ppl.generator, ppl.constraint, ppl.congruence, ppl.bit_arrays]:
res = doctest.testmod(mod, optionflags=doctest.ELLIPSIS | doctest.REPORT_NDIFF | doctest.NORMALIZE_WHITESPACE)
print(mod)
print(res)
print('-'*80)
ans = ans | res[0]
print("Running unittests")
print('-'*80)
import unittest
for mod in ['test_variable', 'test_constraint']:
res = unittest.main(module=mod, exit=False, failfast=False, verbosity=2)
ans = ans | bool(res.result.errors)
sys.exit(ans)
pplpy-0.8.9/tests/setup.py 0000664 0000000 0000000 00000000274 14475172214 0015562 0 ustar 00root root 0000000 0000000 from setuptools import setup
from Cython.Build import cythonize
opts = {
'compiler_directives': {'language_level': '3'}
}
setup(ext_modules=cythonize("testpplpy.pyx", **opts))
pplpy-0.8.9/tests/setup2.py 0000664 0000000 0000000 00000000433 14475172214 0015641 0 ustar 00root root 0000000 0000000 from setuptools import Extension, setup
from Cython.Build import cythonize
extension = Extension("testpplpy2", ["testpplpy2.pyx"], language='c++', libraries=['ppl'])
opts = {
'compiler_directives': {'language_level': '3'}
}
setup(ext_modules=cythonize(extension, *opts))
pplpy-0.8.9/tests/test_constraint.py 0000664 0000000 0000000 00000001765 14475172214 0017653 0 ustar 00root root 0000000 0000000 import unittest
from ppl import Variable, Constraint, Constraint_System
class TestConstraint(unittest.TestCase):
def test_creation_empty(self):
c = Constraint()
self.assertTrue(c.is_tautological())
def test_creation_other(self):
x = Variable(0)
y = Variable(1)
c = x + 3 * y == 1
cc = Constraint(c)
self.assertTrue(c.is_equivalent_to(cc))
def test_creation_invalid(self):
self.assertRaises(TypeError, Constraint, "hello")
class TestConstraint_System(unittest.TestCase):
def test_creation_empty(self):
cs = Constraint_System()
self.assertTrue(cs.empty())
def test_creation_other(self):
x = Variable(0)
y = Variable(1)
cs = Constraint_System(5*x - 2*y > 0)
cs.insert(6 * x < 3 * y)
ccs = Constraint_System(cs)
self.assertTrue(cs[0].is_equivalent_to(ccs[0]))
def test_creation_invalid(self):
self.assertRaises(TypeError, Constraint_System, "hello")
pplpy-0.8.9/tests/test_variable.py 0000664 0000000 0000000 00000000442 14475172214 0017243 0 ustar 00root root 0000000 0000000 import unittest
from ppl import Variable
class TestVariable(unittest.TestCase):
def test_creation_valid(self):
Variable(0)
def test_creation_invalid(self):
self.assertRaises(OverflowError, Variable, -1)
self.assertRaises(TypeError, Variable, "hello")
pplpy-0.8.9/tests/testpplpy.pyx 0000664 0000000 0000000 00000002444 14475172214 0016657 0 ustar 00root root 0000000 0000000 # distutils: language = c++
# distutils: libraries = ppl
"""
The goal of this file is to test cython can use pplpy package properly
In order to do this we do some test with objects from each packages and extension :
ppl
ppl.linear_algebra
ppl.constraint
ppl.mip_problem
"""
from ppl.linear_algebra cimport Variable
from ppl.constraint cimport Constraint_System
from ppl.mip_problem cimport MIP_Problem
from ppl.polyhedron cimport C_Polyhedron
def test():
x = Variable(0)
y = Variable(1)
cs = Constraint_System()
cs.insert( x >= 0)
cs.insert( y >= 0 )
cs.insert( 3 * x + 5 * y <= 10 )
m = MIP_Problem(2, cs, x + y)
m.objective_function()
from ppl import C_Polyhedron
C_Polyhedron( 5*x-2*y >= x+y-1 )
print("-"*80)
print("Cython test 1 OK")
print("-"*80)
def example():
"Cython version of the example from the README"
cdef Variable x = Variable(0)
cdef Variable y = Variable(1)
cdef Variable z = Variable(2)
cdef Constraint_System cs = Constraint_System()
cs.insert(x >= 0)
cs.insert(y >= 0)
cs.insert(x + y + z == 1)
cdef C_Polyhedron poly = C_Polyhedron(cs)
print(poly.minimized_generators())
print('dim = %lu' % poly.thisptr.space_dimension())
print("-"*80)
print("Cython example 1 OK")
print("-"*80)
pplpy-0.8.9/tests/testpplpy2.pyx 0000664 0000000 0000000 00000002376 14475172214 0016745 0 ustar 00root root 0000000 0000000 """
The goal of this file is to test cython can use pplpy package properly
In order to do this we do some test with objects from each packages and extension :
ppl
ppl.linear_algebra
ppl.linear_algebra
ppl.constraint
ppl.mip_problem
"""
from ppl.linear_algebra cimport Variable
from ppl.constraint cimport Constraint_System
from ppl.mip_problem cimport MIP_Problem
from ppl.polyhedron cimport C_Polyhedron
def test():
x = Variable(0)
y = Variable(1)
cs = Constraint_System()
cs.insert( x >= 0)
cs.insert( y >= 0 )
cs.insert( 3 * x + 5 * y <= 10 )
m = MIP_Problem(2, cs, x + y)
m.objective_function()
from ppl import C_Polyhedron
C_Polyhedron( 5*x-2*y >= x+y-1 )
print("-"*80)
print("Cython test 2 OK")
print("-"*80)
def example():
"Cython version of the example from the README"
cdef Variable x = Variable(0)
cdef Variable y = Variable(1)
cdef Variable z = Variable(2)
cdef Constraint_System cs = Constraint_System()
cs.insert(x >= 0)
cs.insert(y >= 0)
cs.insert(x + y + z == 1)
cdef C_Polyhedron poly = C_Polyhedron(cs)
print(poly.minimized_generators())
print('dim = %lu' % poly.thisptr.space_dimension())
print("-"*80)
print("Cython example 2 OK")
print("-"*80)
pplpy-0.8.9/tox.ini 0000664 0000000 0000000 00000000260 14475172214 0014214 0 ustar 00root root 0000000 0000000 [tox]
envlist = py27, py36, py37, py38
skip_missing_interpreters = true
[testenv]
whitelist_externals = make
commands =
{envpython} setup.py test
make -w -C docs html