prover9-manual-2009-02A/0000755000175000017500000000000011151316363014155 5ustar mccunemccuneprover9-manual-2009-02A/actions.html0000644000175000017500000001126411151021064016476 0ustar mccunemccune Prover9 Manual: Actions
Prover9 Manual Version 2009-02A

Actions

Prover9's actions allow the user to change the search strategy during the search. For example, after a certain number of given clauses have been used, the max_weight can be changed.

Actions can be triggered in two ways:

Accepted Actions

The currently accepted actions are exit (which terminates the search) and a subset of the ordinary flags and parameters.

Actions Triggered by Counters

Counter actions are given as a list of rules trigger -> action in the input file. Here are the currently recognized triggers for counter actions. The list must start with list(actions). and end with end_of_list.

Here is an example list of counter actions.

list(actions).

  given=10        -> set(print_kept).
  kept=1000       -> assign(max_weight, 30).
  generated=5000  -> assign(pick_given_ratio, 4).
  level=3         -> exit.

end_of_list.

Actions Triggered by Clauses

Clause actions occur as attributes on clauses, for example,
A * B != B * A  # action(in_proof -> assign(max_weight, 30)).
In this example (which only makes sense if max_proofs > 1), if the clause occurs in a proof, the action is applied.

The only trigger currently recognized for clause actions is in_proof. Others will likely be added.


Next Section: Goals and Denials prover9-manual-2009-02A/andrews.in0000644000175000017500000000044410456772514016165 0ustar mccunemccune formulas(goals). % Andrews challenge problem (stated positively) ( ( (exists x all y (p(x) <-> p(y))) <-> ((exists u q(u)) <-> (all v p(v))) ) <-> ( (exists w all z (q(z) <-> q(w))) <-> ((exists x1 p(x1)) <-> (all x2 q(x2))) ) ). end_of_list. prover9-manual-2009-02A/andrews.out0000644000175000017500000030640011151315475016357 0ustar mccunemccune============================== FOF-Prover9 =========================== FOF-Prover9 (32) version 2009-02A, February 2009. Process 15792 was started by mccune on cleo, Wed Feb 25 12:25:49 2009 The command was "/home/mccune/bin/fof-prover9 -f andrews.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file andrews.in formulas(goals). ((exists x all y (p(x) <-> p(y))) <-> ((exists u q(u)) <-> (all v p(v)))) <-> ((exists w all z (q(z) <-> q(w))) <-> ((exists x1 p(x1)) <-> (all x2 q(x2)))). end_of_list. ============================== end of input ========================== % clear(auto_denials), because it is incompatiable with FOF reduction. Attempting problem reduction; original problem has = <210,16384>. Problem reduction (0.01 sec) gives 32 independent subproblems: ( <38,8> <38,8> <37,10> <39,10> <40,8> <40,8> <39,10> <41,10> <39,10> <39,10> <38,12> <40,12> <39,10> <39,10> <38,12> <40,12> <38,8> <40,8> <39,10> <39,10> <38,8> <40,8> <39,10> <39,10> <37,10> <39,10> <38,12> <38,12> <39,10> <41,10> <40,12> <40,12> ). Max nnf_size of subproblems is 41; max cnf_max is 12. ============================== FOF REDUCTION MULTISEARCH ============= Subproblem 1 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15793 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. p(x). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. p(c4). [assumption]. -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 p(x). [assumption]. kept: 5 -q(c3) | q(x). [assumption]. kept: 6 q(c3) | -q(x). [assumption]. kept: 7 -q(c5). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 3 q(c2). [assumption]. 4 p(x). [assumption]. 5 -q(c3) | q(x). [assumption]. 6 q(c3) | -q(x). [assumption]. 7 -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=2): 3 q(c2). [assumption]. given #2 (I,wt=2): 4 p(x). [assumption]. given #3 (I,wt=4): 5 -q(c3) | q(x). [assumption]. given #4 (I,wt=4): 6 q(c3) | -q(x). [assumption]. given #5 (I,wt=2): 7 -q(c5). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 2. % Maximum clause weight is 4. % Given clauses 5. 3 q(c2). [assumption]. 5 -q(c3) | q(x). [assumption]. 6 q(c3) | -q(x). [assumption]. 7 -q(c5). [assumption]. 8 q(c3). [ur(6,b,3,a)]. 9 -q(c3). [resolve(7,a,5,b)]. 10 $F. [resolve(9,a,8,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=5. Generated=10. Kept=9. proofs=1. Usable=4. Sos=1. Demods=0. Limbo=0, Disabled=11. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=3. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=7. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15793 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 2 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15794 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. p(x). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 p(x). [assumption]. kept: 5 -q(c3) | q(x). [assumption]. kept: 6 q(c3) | -q(x). [assumption]. kept: 7 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 p(x). [assumption]. 7 -p(x). [assumption]. 8 $F. [resolve(7,a,4,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=7. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=6, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15794 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 3 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15795 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. p(x). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 p(x). [assumption]. kept: 5 -q(x) | -q(f2(x)). [assumption]. kept: 6 q(f1(x)) | q(x). [assumption]. kept: 7 q(f1(x)) | -q(f2(x)). [assumption]. kept: 8 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 5 -q(x) | -q(f2(x)). [assumption]. 8 q(x). [assumption]. 9 $F. [back_unit_del(5),unit_del(a,8),unit_del(b,8)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=8. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=1, Disabled=15. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=5. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=9. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15795 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 4 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15796 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. p(x). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 p(x). [assumption]. kept: 5 -q(x) | -q(f2(x)). [assumption]. kept: 6 q(f1(x)) | q(x). [assumption]. kept: 7 q(f1(x)) | -q(f2(x)). [assumption]. 8 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 p(x). [assumption]. 8 -p(x). [assumption]. 9 $F. [copy(8),unit_del(a,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=8. Kept=7. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=7, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15796 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 5 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15797 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. -p(c2). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. p(c4). [assumption]. -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 -p(c2). [assumption]. kept: 5 p(c4). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 3 -q(x). [assumption]. 4 -p(c2). [assumption]. 5 p(c4). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=4): 1 p(c1) | -p(x). [assumption]. given #2 (I,wt=4): 2 -p(c1) | p(x). [assumption]. given #3 (I,wt=2): 3 -q(x). [assumption]. given #4 (I,wt=2): 4 -p(c2). [assumption]. given #5 (I,wt=2): 5 p(c4). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 2. % Maximum clause weight is 4. % Given clauses 5. 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 4 -p(c2). [assumption]. 5 p(c4). [assumption]. 6 -p(c1). [resolve(4,a,2,b)]. 7 p(c1). [ur(1,b,5,a)]. 8 $F. [resolve(7,a,6,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=5. Generated=11. Kept=7. proofs=1. Usable=4. Sos=1. Demods=0. Limbo=0, Disabled=9. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=4. Back_subsumed=1. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=3. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15797 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 6 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15798 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. -p(c2). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 -p(c2). [assumption]. kept: 5 -p(x). [assumption]. kept: 6 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 6 q(x). [assumption]. 7 $F. [resolve(6,a,3,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=8. Kept=6. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15798 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 7 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15799 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. -p(c2). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 -p(c2). [assumption]. 5 q(f1(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. 6 $F. [copy(5),unit_del(a,3),unit_del(b,3)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=6. Kept=4. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=6. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15799 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 8 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15800 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. -p(c2). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 -p(c2). [assumption]. 5 q(f1(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. 6 $F. [copy(5),unit_del(a,3),unit_del(b,3)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=6. Kept=4. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=6. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15800 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 9 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15801 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. -p(c2). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. p(c4). [assumption]. -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 -p(c2). [assumption]. kept: 6 -q(c3) | q(x). [assumption]. kept: 7 q(c3) | -q(x). [assumption]. kept: 8 p(c4). [assumption]. kept: 9 -q(c5). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 1 p(x) | p(f2(x)). [assumption]. 2 -p(f1(x)) | -p(x). [assumption]. 3 -p(f1(x)) | p(f2(x)). [assumption]. 4 q(c1). [assumption]. 5 -p(c2). [assumption]. 6 -q(c3) | q(x). [assumption]. 7 q(c3) | -q(x). [assumption]. 8 p(c4). [assumption]. 9 -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=5): 1 p(x) | p(f2(x)). [assumption]. given #2 (I,wt=5): 2 -p(f1(x)) | -p(x). [assumption]. given #3 (I,wt=6): 3 -p(f1(x)) | p(f2(x)). [assumption]. given #4 (I,wt=2): 4 q(c1). [assumption]. given #5 (I,wt=2): 5 -p(c2). [assumption]. given #6 (I,wt=4): 6 -q(c3) | q(x). [assumption]. given #7 (I,wt=4): 7 q(c3) | -q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 3. % Maximum clause weight is 4. % Given clauses 7. 4 q(c1). [assumption]. 6 -q(c3) | q(x). [assumption]. 7 q(c3) | -q(x). [assumption]. 9 -q(c5). [assumption]. 10 q(c3). [resolve(7,b,4,a)]. 11 q(x). [back_unit_del(6),unit_del(a,10)]. 12 $F. [resolve(11,a,9,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=7. Generated=11. Kept=11. proofs=1. Usable=5. Sos=2. Demods=0. Limbo=1, Disabled=11. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=1. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15801 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 10 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15802 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. -p(c2). [assumption]. -q(c3) | q(x). [assumption]. q(c3) | -q(x). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 -p(c2). [assumption]. kept: 6 -q(c3) | q(x). [assumption]. kept: 7 q(c3) | -q(x). [assumption]. kept: 8 -p(x). [assumption]. kept: 9 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 1 p(x) | p(f2(x)). [assumption]. 8 -p(x). [assumption]. 10 $F. [back_unit_del(1),unit_del(a,8),unit_del(b,8)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=9. proofs=1. Usable=0. Sos=3. Demods=0. Limbo=2, Disabled=13. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=3. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=7. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15802 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 11 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15803 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. -p(c2). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 -p(c2). [assumption]. kept: 6 -q(x) | -q(f4(x)). [assumption]. kept: 7 q(f3(x)) | q(x). [assumption]. kept: 8 q(f3(x)) | -q(f4(x)). [assumption]. kept: 9 p(c3). [assumption]. kept: 10 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 6 -q(x) | -q(f4(x)). [assumption]. 10 q(x). [assumption]. 11 $F. [back_unit_del(6),unit_del(a,10),unit_del(b,10)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=11. Kept=10. proofs=1. Usable=0. Sos=5. Demods=0. Limbo=1, Disabled=14. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=3. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=8. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15803 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 12 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15804 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. -p(c2). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 -p(c2). [assumption]. kept: 6 -q(x) | -q(f4(x)). [assumption]. kept: 7 q(f3(x)) | q(x). [assumption]. kept: 8 q(f3(x)) | -q(f4(x)). [assumption]. kept: 9 -p(x). [assumption]. kept: 10 -q(c3). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 1 p(x) | p(f2(x)). [assumption]. 9 -p(x). [assumption]. 11 $F. [back_unit_del(1),unit_del(a,9),unit_del(b,9)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=11. Kept=10. proofs=1. Usable=0. Sos=4. Demods=0. Limbo=2, Disabled=14. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=3. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=8. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15804 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 13 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15805 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(c1) | q(x). [assumption]. q(c1) | -q(x). [assumption]. p(c2). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 p(x). [assumption]. 6 -q(c1) | q(x). [assumption]. 7 q(c1) | -q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 2 -p(f1(x)) | -p(x). [assumption]. 5 p(x). [assumption]. 8 $F. [back_unit_del(2),unit_del(a,5),unit_del(b,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=5. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=1, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=4. Back_subsumed=2. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=5. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15805 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 14 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15806 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(c1) | q(x). [assumption]. q(c1) | -q(x). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 p(x). [assumption]. 6 -q(c1) | q(x). [assumption]. 7 q(c1) | -q(x). [assumption]. 8 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 5 p(x). [assumption]. 8 -p(x). [assumption]. 9 $F. [copy(8),unit_del(a,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=8. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15806 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 15 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15807 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. p(c1). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 p(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 -q(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. 7 $F. [copy(6),unit_del(a,4),unit_del(b,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15807 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 16 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15808 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. -p(x). [assumption]. -q(c1). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 p(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 -q(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. 7 $F. [copy(6),unit_del(a,4),unit_del(b,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15808 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 17 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15809 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. -p(c3). [assumption]. -q(c4) | q(x). [assumption]. q(c4) | -q(x). [assumption]. p(c5). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 -p(c3). [assumption]. kept: 5 -q(c4) | q(x). [assumption]. kept: 6 q(c4) | -q(x). [assumption]. kept: 7 p(c5). [assumption]. kept: 8 q(x). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 4 -p(c3). [assumption]. 7 p(c5). [assumption]. 8 q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=4): 1 p(c1) | -p(x). [assumption]. given #2 (I,wt=4): 2 -p(c1) | p(x). [assumption]. given #3 (I,wt=2): 4 -p(c3). [assumption]. given #4 (I,wt=2): 7 p(c5). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 2. % Maximum clause weight is 4. % Given clauses 4. 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 4 -p(c3). [assumption]. 7 p(c5). [assumption]. 9 -p(c1). [resolve(4,a,2,b)]. 10 p(c1). [ur(1,b,7,a)]. 11 $F. [resolve(10,a,9,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=4. Generated=11. Kept=10. proofs=1. Usable=3. Sos=2. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=4. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=7. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15809 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 18 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15810 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. -p(c3). [assumption]. -q(c4) | q(x). [assumption]. q(c4) | -q(x). [assumption]. -p(x). [assumption]. -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 -p(c3). [assumption]. kept: 5 -q(c4) | q(x). [assumption]. kept: 6 q(c4) | -q(x). [assumption]. kept: 7 -p(x). [assumption]. kept: 8 -q(c5). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 3 q(c2). [assumption]. 5 -q(c4) | q(x). [assumption]. 6 q(c4) | -q(x). [assumption]. 7 -p(x). [assumption]. 8 -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=2): 3 q(c2). [assumption]. given #2 (I,wt=4): 5 -q(c4) | q(x). [assumption]. given #3 (I,wt=4): 6 q(c4) | -q(x). [assumption]. given #4 (I,wt=2): 7 -p(x). [assumption]. given #5 (I,wt=2): 8 -q(c5). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 2. % Maximum clause weight is 4. % Given clauses 5. 3 q(c2). [assumption]. 5 -q(c4) | q(x). [assumption]. 6 q(c4) | -q(x). [assumption]. 8 -q(c5). [assumption]. 9 q(c4). [ur(6,b,3,a)]. 10 -q(c4). [resolve(8,a,5,b)]. 11 $F. [resolve(10,a,9,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=5. Generated=10. Kept=10. proofs=1. Usable=4. Sos=1. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=4. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=7. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15810 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 19 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15811 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. -p(c3). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. p(c4). [assumption]. -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 -p(c3). [assumption]. kept: 5 -q(x) | -q(f2(x)). [assumption]. kept: 6 q(f1(x)) | q(x). [assumption]. kept: 7 q(f1(x)) | -q(f2(x)). [assumption]. kept: 8 p(c4). [assumption]. kept: 9 -q(c5). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 3 q(c2). [assumption]. 4 -p(c3). [assumption]. 5 -q(x) | -q(f2(x)). [assumption]. 6 q(f1(x)) | q(x). [assumption]. 7 q(f1(x)) | -q(f2(x)). [assumption]. 8 p(c4). [assumption]. 9 -q(c5). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=4): 1 p(c1) | -p(x). [assumption]. given #2 (I,wt=4): 2 -p(c1) | p(x). [assumption]. given #3 (I,wt=2): 3 q(c2). [assumption]. given #4 (I,wt=2): 4 -p(c3). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 7. % Level of proof is 3. % Maximum clause weight is 4. % Given clauses 4. 1 p(c1) | -p(x). [assumption]. 2 -p(c1) | p(x). [assumption]. 4 -p(c3). [assumption]. 8 p(c4). [assumption]. 10 -p(c1). [ur(2,b,4,a)]. 11 -p(x). [back_unit_del(1),unit_del(a,10)]. 12 $F. [resolve(11,a,8,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=4. Generated=11. Kept=11. proofs=1. Usable=2. Sos=5. Demods=0. Limbo=1, Disabled=11. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=1. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15811 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 20 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (exists u q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15812 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. q(c2). [assumption]. -p(c3). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 q(c2). [assumption]. kept: 4 -p(c3). [assumption]. kept: 5 -q(x) | -q(f2(x)). [assumption]. kept: 6 q(f1(x)) | q(x). [assumption]. kept: 7 q(f1(x)) | -q(f2(x)). [assumption]. kept: 8 -p(x). [assumption]. kept: 9 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 5 -q(x) | -q(f2(x)). [assumption]. 9 q(x). [assumption]. 10 $F. [back_unit_del(5),unit_del(a,9),unit_del(b,9)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=9. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=1, Disabled=16. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=6. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=9. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15812 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 21 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15813 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 p(x). [assumption]. kept: 5 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 5 q(x). [assumption]. 6 $F. [resolve(5,a,3,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=8. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=3. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15813 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 22 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15814 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 p(x). [assumption]. kept: 5 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 p(x). [assumption]. 5 -p(x). [assumption]. 6 $F. [resolve(5,a,4,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15814 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 23 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15815 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. p(c2). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 p(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. 6 $F. [copy(5),unit_del(a,3),unit_del(b,3)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=6. Kept=4. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=6. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15815 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 24 of 32 (negated): ((exists x ((p(x) | (all y (- p(y)))) & (- p(x) | (all y (p(y)))))) & (all u - q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15816 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(c1) | -p(x). [assumption]. -p(c1) | p(x). [assumption]. -q(x). [assumption]. p(x). [assumption]. -q(x) | -q(f2(x)). [assumption]. q(f1(x)) | q(x). [assumption]. q(f1(x)) | -q(f2(x)). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(c1) | -p(x). [assumption]. kept: 2 -p(c1) | p(x). [assumption]. kept: 3 -q(x). [assumption]. kept: 4 p(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 3 -q(x). [assumption]. 5 q(f1(x)) | q(x). [assumption]. 6 $F. [copy(5),unit_del(a,3),unit_del(b,3)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=6. Kept=4. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=4, Disabled=6. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.10. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15816 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 25 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15817 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. p(x). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 p(x). [assumption]. kept: 6 -q(c2) | q(x). [assumption]. kept: 7 q(c2) | -q(x). [assumption]. kept: 8 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 2 -p(f1(x)) | -p(x). [assumption]. 5 p(x). [assumption]. 9 $F. [back_unit_del(2),unit_del(a,5),unit_del(b,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=8. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=4, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=2. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=5. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15817 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 26 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15818 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. p(x). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 p(x). [assumption]. kept: 6 -q(c2) | q(x). [assumption]. kept: 7 q(c2) | -q(x). [assumption]. 8 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 5 p(x). [assumption]. 8 -p(x). [assumption]. 9 $F. [copy(8),unit_del(a,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=8. Kept=7. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=7, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15818 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 27 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15819 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. p(x). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. p(c2). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 p(x). [assumption]. kept: 6 -q(x) | -q(f4(x)). [assumption]. kept: 7 q(f3(x)) | q(x). [assumption]. kept: 8 q(f3(x)) | -q(f4(x)). [assumption]. kept: 9 -q(c3). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 2 -p(f1(x)) | -p(x). [assumption]. 5 p(x). [assumption]. 10 $F. [back_unit_del(2),unit_del(a,5),unit_del(b,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=11. Kept=9. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=5, Disabled=13. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=2. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=5. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15819 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 28 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (exists u q(u)) & (all v p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15820 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. q(c1). [assumption]. p(x). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 q(c1). [assumption]. kept: 5 p(x). [assumption]. kept: 6 -q(x) | -q(f4(x)). [assumption]. kept: 7 q(f3(x)) | q(x). [assumption]. kept: 8 q(f3(x)) | -q(f4(x)). [assumption]. 9 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 5 p(x). [assumption]. 9 -p(x). [assumption]. 10 $F. [copy(9),unit_del(a,5)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=9. Kept=8. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=8, Disabled=9. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15820 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 29 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (exists x1 p(x1)) & (all x2 q(x2))). Child search process 15821 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. -p(c1). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. p(c3). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 -p(c1). [assumption]. 6 -q(c2) | q(x). [assumption]. 7 q(c2) | -q(x). [assumption]. kept: 8 p(c3). [assumption]. 9 q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 -q(x). [assumption]. 9 q(x). [assumption]. 10 $F. [copy(9),unit_del(a,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=9. Kept=6. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=6, Disabled=9. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15821 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 30 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (exists w ((- q(w) | (all z (q(z)))) & (q(w) | (all z (- q(z)))))) & (all x1 - p(x1)) & (exists x2 - q(x2))). Child search process 15822 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. -p(c1). [assumption]. -q(c2) | q(x). [assumption]. q(c2) | -q(x). [assumption]. -p(x). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 -p(c1). [assumption]. 6 -q(c2) | q(x). [assumption]. 7 q(c2) | -q(x). [assumption]. kept: 8 -p(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 5. % Given clauses 0. 1 p(x) | p(f2(x)). [assumption]. 8 -p(x). [assumption]. 9 $F. [back_unit_del(1),unit_del(a,8),unit_del(b,8)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=10. Kept=6. proofs=1. Usable=0. Sos=1. Demods=0. Limbo=1, Disabled=13. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=3. Back_subsumed=3. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=1. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=5. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15822 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 31 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (exists x1 p(x1)) & (exists x2 - q(x2))). Child search process 15823 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. -p(c1). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. p(c2). [assumption]. -q(c3). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 -p(c1). [assumption]. 6 q(f3(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 -q(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. 7 $F. [copy(6),unit_del(a,4),unit_del(b,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15823 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== continuing FOF reduction multisearch == Subproblem 32 of 32 (negated): ((all x ((p(x) & (exists y (- p(y)))) | (- p(x) & (exists y (p(y)))))) & (all u - q(u)) & (exists v - p(v)) & (all w ((- q(w) & (exists z (q(z)))) | (q(w) & (exists z (- q(z)))))) & (all x1 - p(x1)) & (all x2 q(x2))). Child search process 15824 started. ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f2(x)). [assumption]. -p(f1(x)) | -p(x). [assumption]. -p(f1(x)) | p(f2(x)). [assumption]. -q(x). [assumption]. -p(c1). [assumption]. -q(x) | -q(f4(x)). [assumption]. q(f3(x)) | q(x). [assumption]. q(f3(x)) | -q(f4(x)). [assumption]. -p(x). [assumption]. q(x). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Term ordering decisions: Predicate symbol precedence: predicate_order([ q, p ]). Function symbol precedence: function_order([ c1, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 1 p(x) | p(f2(x)). [assumption]. kept: 2 -p(f1(x)) | -p(x). [assumption]. kept: 3 -p(f1(x)) | p(f2(x)). [assumption]. kept: 4 -q(x). [assumption]. kept: 5 -p(c1). [assumption]. 6 q(f3(x)) | q(x). [assumption]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 3. % Level of proof is 1. % Maximum clause weight is 2. % Given clauses 0. 4 -q(x). [assumption]. 6 q(f3(x)) | q(x). [assumption]. 7 $F. [copy(6),unit_del(a,4),unit_del(b,4)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=0. Generated=7. Kept=5. proofs=1. Usable=0. Sos=0. Demods=0. Limbo=5, Disabled=7. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=1. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.11. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= Exiting with 1 proof. Process 15824 exit (max_proofs) Wed Feb 25 12:25:49 2009 ============================== end of multisearch ==================== All 32 subproblems have been proved, so we are done. Total user_CPU=0.04, system_CPU=0.02, wall_clock=0. THEOREM PROVED Exiting. Process 15792 exit (max_proofs) Wed Feb 25 12:25:49 2009 prover9-manual-2009-02A/andrews.out20000644000175000017500000051643711151315476016457 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15825 was started by mccune on cleo, Wed Feb 25 12:25:49 2009 The command was "/home/mccune/bin/prover9 -f andrews.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file andrews.in formulas(goals). ((exists x all y (p(x) <-> p(y))) <-> ((exists u q(u)) <-> (all v p(v)))) <-> ((exists w all z (q(z) <-> q(w))) <-> ((exists x1 p(x1)) <-> (all x2 q(x2)))). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 ((exists x all y (p(x) <-> p(y))) <-> ((exists u q(u)) <-> (all v p(v)))) <-> ((exists w all z (q(z) <-> q(w))) <-> ((exists x1 p(x1)) <-> (all x2 q(x2)))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). p(x) | p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w) | q(v5). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | p(c6) | -q(c7). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | -p(w) | q(v5). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | p(c6) | -q(c7). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9) | q(w). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | -p(w) | -q(c10). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9) | q(w). [deny(1)]. p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | -p(w) | -q(c10). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z) | q(u). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | p(c6) | -q(c7). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z) | q(u). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9) | q(z). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -p(z) | -q(c10). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | p(c9) | q(z). [deny(1)]. p(x) | p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -p(z) | -q(c10). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w) | q(v5). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | p(c6) | -q(c7). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | -p(w) | q(v5). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | p(c6) | -q(c7). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9) | q(w). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | -p(w) | -q(c10). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9) | q(w). [deny(1)]. -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | -p(w) | -q(c10). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z) | q(u). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | p(c6) | -q(c7). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z) | q(u). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9) | q(z). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -p(z) | -q(c10). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | p(c9) | q(z). [deny(1)]. -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -p(z) | -q(c10). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. -p(c3) | p(x) | q(c4) | p(y) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. p(c3) | -p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | p(c17) | -q(c18). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | p(c17) | -q(c18). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19) | q(w). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -p(w) | -q(c20). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | p(c19) | q(w). [deny(1)]. -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z) | q(u). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | p(c17) | -q(c18). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | -p(z) | q(u). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | p(c17) | -q(c18). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19) | q(z). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | -p(z) | -q(c20). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19) | q(z). [deny(1)]. -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | p(c17) | -q(c18). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | p(c17) | -q(c18). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19) | q(w). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -p(w) | -q(c20). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | p(c19) | q(w). [deny(1)]. p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z) | q(u). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | p(c17) | -q(c18). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | -p(z) | q(u). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | p(c17) | -q(c18). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19) | q(z). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | -p(z) | -q(c20). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19) | q(z). [deny(1)]. p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ p, q ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, f1, f2, f3, f4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 2 p(x) | p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w) | q(v5). [deny(1)]. kept: 3 p(x) | p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | p(c6) | -q(c7). [deny(1)]. kept: 4 p(x) | p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | -p(w) | q(v5). [deny(1)]. kept: 5 p(x) | p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | p(c6) | -q(c7). [deny(1)]. kept: 6 p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9) | q(w). [deny(1)]. kept: 7 p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | -p(w) | -q(c10). [deny(1)]. kept: 8 p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9) | q(w). [deny(1)]. kept: 9 p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | -p(w) | -q(c10). [deny(1)]. kept: 10 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z) | q(u). [deny(1)]. kept: 11 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z) | q(u). [deny(1)]. kept: 12 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9) | q(z). [deny(1)]. kept: 13 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -p(z) | -q(c10). [deny(1)]. kept: 14 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | p(c9) | q(z). [deny(1)]. kept: 15 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -p(z) | -q(c10). [deny(1)]. kept: 16 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w) | q(v5). [deny(1)]. kept: 17 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | p(c6) | -q(c7). [deny(1)]. kept: 18 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | -p(w) | q(v5). [deny(1)]. kept: 19 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | p(c6) | -q(c7). [deny(1)]. kept: 20 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9) | q(w). [deny(1)]. kept: 21 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | -p(w) | -q(c10). [deny(1)]. kept: 22 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9) | q(w). [deny(1)]. kept: 23 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | -p(w) | -q(c10). [deny(1)]. kept: 24 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z) | q(u). [deny(1)]. kept: 25 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z) | q(u). [deny(1)]. kept: 26 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9) | q(z). [deny(1)]. kept: 27 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -p(z) | -q(c10). [deny(1)]. kept: 28 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | p(c9) | q(z). [deny(1)]. kept: 29 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -p(z) | -q(c10). [deny(1)]. kept: 30 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. kept: 31 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. kept: 32 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. kept: 33 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. kept: 34 -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. kept: 35 -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 36 -p(c3) | p(x) | q(c4) | p(y) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. kept: 37 -p(c3) | p(x) | q(c4) | p(y) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 38 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. kept: 39 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. kept: 40 -p(c3) | p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. kept: 41 -p(c3) | p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. kept: 42 -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. kept: 43 -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 44 -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. kept: 45 -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 46 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. kept: 47 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. kept: 48 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. kept: 49 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. kept: 50 p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. kept: 51 p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 52 p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. kept: 53 p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 54 p(c3) | -p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. kept: 55 p(c3) | -p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | p(c6) | -q(c7). [deny(1)]. kept: 56 p(c3) | -p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | -p(u) | q(w). [deny(1)]. kept: 57 p(c3) | -p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [deny(1)]. kept: 58 p(c3) | -p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. kept: 59 p(c3) | -p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 60 p(c3) | -p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. kept: 61 p(c3) | -p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | -p(u) | -q(c10). [deny(1)]. kept: 62 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. kept: 63 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 64 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. kept: 65 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 66 -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19) | q(w). [deny(1)]. kept: 67 -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -p(w) | -q(c20). [deny(1)]. kept: 68 -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | p(c19) | q(w). [deny(1)]. kept: 69 -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. kept: 70 -p(c11) | p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z) | q(u). [deny(1)]. kept: 71 -p(c11) | p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | -p(z) | q(u). [deny(1)]. kept: 72 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19) | q(z). [deny(1)]. kept: 73 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | -p(z) | -q(c20). [deny(1)]. kept: 74 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19) | q(z). [deny(1)]. kept: 75 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [deny(1)]. kept: 76 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. kept: 77 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 78 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. kept: 79 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 80 p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19) | q(w). [deny(1)]. kept: 81 p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -p(w) | -q(c20). [deny(1)]. kept: 82 p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | p(c19) | q(w). [deny(1)]. kept: 83 p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. kept: 84 p(c11) | -p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z) | q(u). [deny(1)]. kept: 85 p(c11) | -p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | -p(z) | q(u). [deny(1)]. kept: 86 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19) | q(z). [deny(1)]. kept: 87 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | -p(z) | -q(c20). [deny(1)]. kept: 88 p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19) | q(z). [deny(1)]. kept: 89 p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [deny(1)]. kept: 90 p(x) | p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. kept: 91 p(x) | p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 92 p(x) | p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. kept: 93 p(x) | p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 94 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. kept: 95 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. kept: 96 p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. kept: 97 p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. kept: 98 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. kept: 99 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 100 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. kept: 101 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 102 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. kept: 103 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. kept: 104 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. kept: 105 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. kept: 106 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. kept: 107 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 108 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. kept: 109 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 110 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. kept: 111 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. kept: 112 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. kept: 113 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. kept: 114 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. kept: 115 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 116 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. kept: 117 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | p(c17) | -q(c18). [deny(1)]. kept: 118 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. kept: 119 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -p(u) | -q(c20). [deny(1)]. kept: 120 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | p(c19) | q(u). [deny(1)]. kept: 121 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. kept: 122 p(x) | p(f1(x)) | -q(y) | q(f2(z)) | q(z) | -p(u) | q(w). [factor(2,a,d)]. kept: 123 p(x) | p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w). [factor(2,e,h)]. kept: 124 p(x) | p(f1(x)) | -q(y) | q(f2(z)) | q(z) | p(c6) | -q(c7). [factor(3,a,d)]. kept: 125 p(x) | p(f1(x)) | -q(c7) | p(y) | q(f2(z)) | q(z) | p(c6). [factor(3,c,h)]. kept: 126 p(x) | p(f1(x)) | -q(y) | -q(f2(z)) | -q(z) | -p(u) | q(w). [factor(4,a,d)]. kept: 127 p(x) | p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | -p(u) | q(w). [factor(4,c,e)]. kept: 128 p(x) | p(f1(x)) | -q(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [factor(5,a,d)]. kept: 129 p(x) | p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | p(c6) | -q(c7). [factor(5,c,e)]. kept: 130 p(x) | p(f1(x)) | -q(y) | -q(z) | q(c8) | p(c9) | q(u). [factor(6,a,d)]. kept: 131 p(x) | p(f1(x)) | -q(y) | p(z) | q(c8) | p(c9) | q(u). [factor(6,c,e)]. kept: 132 p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9). [factor(6,f,h)]. kept: 133 p(x) | p(f1(x)) | -q(y) | -q(z) | q(c8) | -p(u) | -q(c10). [factor(7,a,d)]. kept: 134 p(x) | p(f1(x)) | -q(y) | p(z) | q(c8) | -p(u) | -q(c10). [factor(7,c,e)]. kept: 135 p(x) | p(f1(x)) | -q(y) | q(z) | -q(c8) | p(c9) | q(u). [factor(8,a,d)]. kept: 136 p(x) | p(f1(x)) | -q(c8) | p(y) | q(z) | p(c9) | q(u). [factor(8,c,f)]. kept: 137 p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9). [factor(8,e,h)]. kept: 138 p(x) | p(f1(x)) | -q(y) | q(z) | -q(c8) | -p(u) | -q(c10). [factor(9,a,d)]. kept: 139 p(x) | p(f1(x)) | -q(c8) | p(y) | q(z) | -p(u) | -q(c10). [factor(9,c,f)]. kept: 140 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | -p(y) | q(z). [factor(10,c,f)]. kept: 141 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z). [factor(10,c,h)]. kept: 142 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | q(z). [factor(10,d,g)]. kept: 143 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z). [factor(11,c,h)]. kept: 144 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | q(z). [factor(11,d,g)]. kept: 145 p(c9) | p(f1(c9)) | q(c1) | -p(c2) | -q(x) | q(c8) | q(y). [factor(12,a,g)]. kept: 146 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9). [factor(12,c,h)]. kept: 147 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -q(c10). [factor(13,d,g)]. kept: 148 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8) | -p(y). [factor(13,e,h)]. kept: 149 p(c9) | p(f1(c9)) | q(c1) | -p(c2) | q(x) | -q(c8) | q(y). [factor(14,a,g)]. kept: 150 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(c8) | p(c9) | q(y). [factor(14,c,e)]. kept: 151 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(c8) | -p(y) | -q(c10). [factor(15,c,e)]. kept: 152 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -q(c10). [factor(15,d,g)]. kept: 153 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | q(w). [factor(16,a,g)]. kept: 154 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u) | -p(w). [factor(16,e,h)]. kept: 155 -p(x) | -p(f1(x)) | -q(c7) | p(y) | q(f2(z)) | q(z) | p(c6). [factor(17,c,h)]. kept: 156 -p(x) | -p(f1(x)) | -q(y) | p(c6) | q(f2(z)) | q(z) | -q(c7). [factor(17,d,g)]. kept: 157 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | q(w). [factor(18,a,g)]. kept: 158 -p(x) | -p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | -p(u) | q(w). [factor(18,c,e)]. kept: 159 -p(x) | -p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | p(c6) | -q(c7). [factor(19,c,e)]. kept: 160 -p(x) | -p(f1(x)) | -q(y) | p(c6) | -q(f2(z)) | -q(z) | -q(c7). [factor(19,d,g)]. kept: 161 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(c8) | p(c9) | q(u). [factor(20,c,e)]. kept: 162 -p(x) | -p(f1(x)) | -q(y) | p(c9) | -q(z) | q(c8) | q(u). [factor(20,d,g)]. kept: 163 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9). [factor(20,f,h)]. kept: 164 -p(x) | -p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | -q(c10). [factor(21,a,g)]. kept: 165 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(c8) | -p(u) | -q(c10). [factor(21,c,e)]. kept: 166 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | p(c9) | q(u). [factor(22,c,f)]. kept: 167 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(z) | -q(c8) | q(u). [factor(22,d,g)]. kept: 168 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9). [factor(22,e,h)]. kept: 169 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | -q(c10). [factor(23,a,g)]. kept: 170 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | -p(u) | -q(c10). [factor(23,c,f)]. kept: 171 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x) | -p(y) | q(z). [factor(24,a,d)]. kept: 172 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | q(z). [factor(24,a,g)]. kept: 173 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | -p(y) | q(z). [factor(24,c,f)]. kept: 174 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z). [factor(24,c,h)]. kept: 175 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x) | -p(y) | q(z). [factor(25,a,d)]. kept: 176 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | q(z). [factor(25,a,g)]. kept: 177 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y) | -p(z). [factor(25,c,h)]. kept: 178 -p(c2) | -p(f1(c2)) | q(c1) | -q(x) | q(c8) | p(c9) | q(y). [factor(26,a,d)]. kept: 179 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | p(c9). [factor(26,c,h)]. kept: 180 -p(c2) | -p(f1(c2)) | q(c1) | -q(x) | q(c8) | -p(y) | -q(c10). [factor(27,a,d)]. kept: 181 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(y) | q(c8) | -q(c10). [factor(27,a,g)]. kept: 182 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8) | -p(y). [factor(27,e,h)]. kept: 183 -p(c2) | -p(f1(c2)) | q(c1) | q(x) | -q(c8) | p(c9) | q(y). [factor(28,a,d)]. kept: 184 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | p(c9) | q(y). [factor(28,c,e)]. kept: 185 -p(c2) | -p(f1(c2)) | q(c1) | q(x) | -q(c8) | -p(y) | -q(c10). [factor(29,a,d)]. kept: 186 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(y) | -q(c8) | -q(c10). [factor(29,a,g)]. kept: 187 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | -p(y) | -q(c10). [factor(29,c,e)]. kept: 188 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | q(u). [factor(30,a,g)]. kept: 189 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y) | -p(z) | q(u). [factor(30,b,d)]. kept: 190 -p(c3) | p(x) | q(c4) | p(y) | q(f2(c4)) | -p(z) | q(u). [factor(30,c,f)]. kept: 191 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u). [factor(30,c,h)]. kept: 192 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y) | p(c6) | -q(c7). [factor(31,b,d)]. kept: 193 -p(c3) | p(x) | q(c4) | p(y) | q(f2(c4)) | p(c6) | -q(c7). [factor(31,c,f)]. kept: 194 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | q(u). [factor(32,a,g)]. kept: 195 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(32,b,d)]. kept: 196 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u). [factor(32,c,h)]. kept: 197 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(33,b,d)]. kept: 198 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(c7)) | -q(c7) | p(c6). [factor(33,f,h)]. kept: 199 -p(c3) | p(x) | q(c4) | -q(y) | q(c8) | p(c9) | q(z). [factor(34,b,d)]. kept: 200 -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9). [factor(34,c,h)]. kept: 201 -p(c3) | p(x) | q(c4) | p(y) | -q(z) | q(c8) | -q(c10). [factor(35,a,g)]. kept: 202 -p(c3) | p(x) | q(c4) | -q(y) | q(c8) | -p(z) | -q(c10). [factor(35,b,d)]. kept: 203 -p(c3) | p(x) | q(c4) | p(y) | -q(c10) | q(c8) | -p(z). [factor(35,e,h)]. kept: 204 -p(c3) | p(x) | q(c4) | q(y) | -q(c8) | p(c9) | q(z). [factor(36,b,d)]. kept: 205 -p(c3) | p(x) | q(c4) | p(y) | -q(c8) | p(c9) | q(z). [factor(36,c,e)]. kept: 206 -p(c3) | p(x) | q(c4) | p(y) | q(z) | -q(c8) | -q(c10). [factor(37,a,g)]. kept: 207 -p(c3) | p(x) | q(c4) | q(y) | -q(c8) | -p(z) | -q(c10). [factor(37,b,d)]. kept: 208 -p(c3) | p(x) | q(c4) | p(y) | -q(c8) | -p(z) | -q(c10). [factor(37,c,e)]. kept: 209 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | q(u). [factor(38,a,g)]. kept: 210 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u). [factor(38,e,h)]. kept: 211 -p(c3) | p(c6) | -q(x) | -p(c5) | q(f2(y)) | q(y) | -q(c7). [factor(39,b,g)]. kept: 212 -p(c3) | p(x) | -q(c7) | -p(c5) | q(f2(y)) | q(y) | p(c6). [factor(39,c,h)]. kept: 213 -p(c3) | p(x) | -q(y) | -p(c5) | -q(f2(z)) | -q(z) | q(u). [factor(40,a,g)]. kept: 214 -p(c3) | p(x) | -q(f2(y)) | -p(c5) | -q(y) | -p(z) | q(u). [factor(40,c,e)]. kept: 215 -p(c3) | p(c6) | -q(x) | -p(c5) | -q(f2(y)) | -q(y) | -q(c7). [factor(41,b,g)]. kept: 216 -p(c3) | p(x) | -q(f2(y)) | -p(c5) | -q(y) | p(c6) | -q(c7). [factor(41,c,e)]. kept: 217 -p(c3) | p(c9) | -q(x) | -p(c5) | -q(y) | q(c8) | q(z). [factor(42,b,g)]. kept: 218 -p(c3) | p(x) | -q(y) | -p(c5) | q(c8) | p(c9) | q(z). [factor(42,c,e)]. kept: 219 -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9). [factor(42,f,h)]. kept: 220 -p(c3) | p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | -q(c10). [factor(43,a,g)]. kept: 221 -p(c3) | p(x) | -q(y) | -p(c5) | q(c8) | -p(z) | -q(c10). [factor(43,c,e)]. kept: 222 -p(c3) | p(c9) | -q(x) | -p(c5) | q(y) | -q(c8) | q(z). [factor(44,b,g)]. kept: 223 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | p(c9) | q(z). [factor(44,c,f)]. kept: 224 -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9). [factor(44,e,h)]. kept: 225 -p(c3) | p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | -q(c10). [factor(45,a,g)]. kept: 226 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | -p(z) | -q(c10). [factor(45,c,f)]. kept: 227 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | -p(z) | q(u). [factor(46,a,d)]. kept: 228 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | q(u). [factor(46,b,g)]. kept: 229 p(c3) | -p(x) | q(c4) | p(y) | q(f2(c4)) | -p(z) | q(u). [factor(46,c,f)]. kept: 230 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u). [factor(46,c,h)]. kept: 231 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | p(c6) | -q(c7). [factor(47,a,d)]. kept: 232 p(c3) | -p(x) | q(c4) | p(y) | q(f2(c4)) | p(c6) | -q(c7). [factor(47,c,f)]. kept: 233 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(48,a,d)]. kept: 234 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | q(u). [factor(48,b,g)]. kept: 235 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z) | -p(u). [factor(48,c,h)]. kept: 236 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(49,a,d)]. kept: 237 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(c7)) | -q(c7) | p(c6). [factor(49,f,h)]. kept: 238 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9) | q(z). [factor(50,a,d)]. kept: 239 p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9). [factor(50,c,h)]. kept: 240 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | -p(z) | -q(c10). [factor(51,a,d)]. kept: 241 p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | -q(c10). [factor(51,b,g)]. kept: 242 p(c3) | -p(x) | q(c4) | p(y) | -q(c10) | q(c8) | -p(z). [factor(51,e,h)]. kept: 243 p(c3) | -p(x) | q(c4) | q(y) | -q(c8) | p(c9) | q(z). [factor(52,a,d)]. kept: 244 p(c3) | -p(x) | q(c4) | p(y) | -q(c8) | p(c9) | q(z). [factor(52,c,e)]. kept: 245 p(c3) | -p(x) | q(c4) | q(y) | -q(c8) | -p(z) | -q(c10). [factor(53,a,d)]. kept: 246 p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | -q(c10). [factor(53,b,g)]. kept: 247 p(c3) | -p(x) | q(c4) | p(y) | -q(c8) | -p(z) | -q(c10). [factor(53,c,e)]. kept: 248 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y) | -p(z) | q(u). [factor(54,b,d)]. kept: 249 p(c3) | -p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z) | -p(u). [factor(54,e,h)]. kept: 250 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y) | p(c6) | -q(c7). [factor(55,b,d)]. kept: 251 p(c3) | -p(x) | -q(c7) | -p(c5) | q(f2(y)) | q(y) | p(c6). [factor(55,c,h)]. kept: 252 p(c3) | -p(c5) | -q(x) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(56,b,d)]. kept: 253 p(c3) | -p(x) | -q(f2(y)) | -p(c5) | -q(y) | -p(z) | q(u). [factor(56,c,e)]. kept: 254 p(c3) | -p(c5) | -q(x) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(57,b,d)]. kept: 255 p(c3) | -p(x) | -q(f2(y)) | -p(c5) | -q(y) | p(c6) | -q(c7). [factor(57,c,e)]. kept: 256 p(c3) | -p(c5) | -q(x) | -q(y) | q(c8) | p(c9) | q(z). [factor(58,b,d)]. kept: 257 p(c3) | -p(x) | -q(y) | -p(c5) | q(c8) | p(c9) | q(z). [factor(58,c,e)]. kept: 258 p(c3) | -p(x) | -q(y) | -p(c5) | -q(z) | q(c8) | p(c9). [factor(58,f,h)]. kept: 259 p(c3) | -p(c5) | -q(x) | -q(y) | q(c8) | -p(z) | -q(c10). [factor(59,b,d)]. kept: 260 p(c3) | -p(x) | -q(y) | -p(c5) | q(c8) | -p(z) | -q(c10). [factor(59,c,e)]. kept: 261 p(c3) | -p(c5) | -q(x) | q(y) | -q(c8) | p(c9) | q(z). [factor(60,b,d)]. kept: 262 p(c3) | -p(x) | -q(c8) | -p(c5) | q(y) | p(c9) | q(z). [factor(60,c,f)]. kept: 263 p(c3) | -p(x) | -q(y) | -p(c5) | q(z) | -q(c8) | p(c9). [factor(60,e,h)]. kept: 264 p(c3) | -p(c5) | -q(x) | q(y) | -q(c8) | -p(z) | -q(c10). [factor(61,b,d)]. kept: 265 p(c3) | -p(x) | -q(c8) | -p(c5) | q(y) | -p(z) | -q(c10). [factor(61,c,f)]. kept: 266 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | q(w). [factor(62,a,g)]. kept: 267 -p(c11) | p(x) | -q(y) | -q(z) | q(c16) | -p(u) | q(w). [factor(62,b,d)]. kept: 268 -p(c11) | p(x) | -q(y) | p(z) | q(c16) | -p(u) | q(w). [factor(62,c,e)]. kept: 269 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w). [factor(62,f,h)]. kept: 270 -p(c11) | p(x) | -q(y) | -q(z) | q(c16) | p(c17) | -q(c18). [factor(63,b,d)]. kept: 271 -p(c11) | p(x) | -q(y) | p(z) | q(c16) | p(c17) | -q(c18). [factor(63,c,e)]. kept: 272 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | q(w). [factor(64,a,g)]. kept: 273 -p(c11) | p(x) | -q(y) | q(z) | -q(c16) | -p(u) | q(w). [factor(64,b,d)]. kept: 274 -p(c11) | p(x) | -q(c16) | p(y) | q(z) | -p(u) | q(w). [factor(64,c,f)]. kept: 275 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w). [factor(64,e,h)]. kept: 276 -p(c11) | p(x) | -q(y) | q(z) | -q(c16) | p(c17) | -q(c18). [factor(65,b,d)]. kept: 277 -p(c11) | p(x) | -q(c16) | p(y) | q(z) | p(c17) | -q(c18). [factor(65,c,f)]. kept: 278 -p(c11) | p(x) | -q(y) | q(f4(z)) | q(z) | p(c19) | q(u). [factor(66,b,d)]. kept: 279 -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19). [factor(66,e,h)]. kept: 280 -p(c11) | p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -q(c20). [factor(67,a,g)]. kept: 281 -p(c11) | p(x) | -q(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [factor(67,b,d)]. kept: 282 -p(c11) | p(x) | -q(c20) | p(y) | q(f4(z)) | q(z) | -p(u). [factor(67,c,h)]. kept: 283 -p(c11) | p(x) | -q(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [factor(68,b,d)]. kept: 284 -p(c11) | p(x) | -q(f4(y)) | p(z) | -q(y) | p(c19) | q(u). [factor(68,c,e)]. kept: 285 -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -q(c20). [factor(69,a,g)]. kept: 286 -p(c11) | p(x) | -q(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [factor(69,b,d)]. kept: 287 -p(c11) | p(x) | -q(f4(y)) | p(z) | -q(y) | -p(u) | -q(c20). [factor(69,c,e)]. kept: 288 -p(c11) | p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | q(z). [factor(70,a,g)]. kept: 289 -p(c11) | p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z). [factor(70,c,h)]. kept: 290 -p(c11) | p(x) | q(c12) | -p(c13) | q(y) | -q(c16) | q(z). [factor(71,a,g)]. kept: 291 -p(c11) | p(x) | q(c12) | -p(c13) | -q(c16) | -p(y) | q(z). [factor(71,c,e)]. kept: 292 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(x)) | q(x) | q(y). [factor(72,b,g)]. kept: 293 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(c12)) | p(c19) | q(y). [factor(72,c,f)]. kept: 294 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19). [factor(72,c,h)]. kept: 295 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | -q(c20). [factor(73,a,g)]. kept: 296 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(c12)) | -p(y) | -q(c20). [factor(73,c,f)]. kept: 297 -p(c11) | p(c19) | q(c12) | -p(c13) | -q(f4(x)) | -q(x) | q(y). [factor(74,b,g)]. kept: 298 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19). [factor(74,c,h)]. kept: 299 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | -q(c20). [factor(75,a,g)]. kept: 300 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(c20)) | -q(c20) | -p(y). [factor(75,f,h)]. kept: 301 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | -p(u) | q(w). [factor(76,a,d)]. kept: 302 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | q(w). [factor(76,b,g)]. kept: 303 p(c11) | -p(x) | -q(y) | p(z) | q(c16) | -p(u) | q(w). [factor(76,c,e)]. kept: 304 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w). [factor(76,f,h)]. kept: 305 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | p(c17) | -q(c18). [factor(77,a,d)]. kept: 306 p(c11) | -p(x) | -q(y) | p(z) | q(c16) | p(c17) | -q(c18). [factor(77,c,e)]. kept: 307 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | -p(u) | q(w). [factor(78,a,d)]. kept: 308 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | q(w). [factor(78,b,g)]. kept: 309 p(c11) | -p(x) | -q(c16) | p(y) | q(z) | -p(u) | q(w). [factor(78,c,f)]. kept: 310 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w). [factor(78,e,h)]. kept: 311 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | p(c17) | -q(c18). [factor(79,a,d)]. kept: 312 p(c11) | -p(x) | -q(c16) | p(y) | q(z) | p(c17) | -q(c18). [factor(79,c,f)]. kept: 313 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | p(c19) | q(u). [factor(80,a,d)]. kept: 314 p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | p(c19). [factor(80,e,h)]. kept: 315 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | -p(u) | -q(c20). [factor(81,a,d)]. kept: 316 p(c11) | -p(x) | -q(y) | p(z) | q(f4(u)) | q(u) | -q(c20). [factor(81,b,g)]. kept: 317 p(c11) | -p(x) | -q(c20) | p(y) | q(f4(z)) | q(z) | -p(u). [factor(81,c,h)]. kept: 318 p(c11) | -p(x) | -q(y) | -q(f4(z)) | -q(z) | p(c19) | q(u). [factor(82,a,d)]. kept: 319 p(c11) | -p(x) | -q(f4(y)) | p(z) | -q(y) | p(c19) | q(u). [factor(82,c,e)]. kept: 320 p(c11) | -p(x) | -q(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [factor(83,a,d)]. kept: 321 p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -q(c20). [factor(83,b,g)]. kept: 322 p(c11) | -p(x) | -q(f4(y)) | p(z) | -q(y) | -p(u) | -q(c20). [factor(83,c,e)]. kept: 323 p(c11) | -p(c13) | q(c12) | -q(x) | q(c16) | -p(y) | q(z). [factor(84,b,d)]. kept: 324 p(c11) | -p(x) | q(c12) | -p(c13) | -q(y) | q(c16) | -p(z). [factor(84,c,h)]. kept: 325 p(c11) | -p(c13) | q(c12) | q(x) | -q(c16) | -p(y) | q(z). [factor(85,b,d)]. kept: 326 p(c11) | -p(x) | q(c12) | -p(c13) | -q(c16) | -p(y) | q(z). [factor(85,c,e)]. kept: 327 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | p(c19) | q(y). [factor(86,b,d)]. kept: 328 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(c12)) | p(c19) | q(y). [factor(86,c,f)]. kept: 329 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(y)) | q(y) | p(c19). [factor(86,c,h)]. kept: 330 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | -p(y) | -q(c20). [factor(87,b,d)]. kept: 331 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(c12)) | -p(y) | -q(c20). [factor(87,c,f)]. kept: 332 p(c11) | -p(c13) | q(c12) | -q(f4(x)) | -q(x) | p(c19) | q(y). [factor(88,b,d)]. kept: 333 p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(y)) | -q(y) | p(c19). [factor(88,c,h)]. kept: 334 p(c11) | -p(c13) | q(c12) | -q(f4(x)) | -q(x) | -p(y) | -q(c20). [factor(89,b,d)]. kept: 335 p(c11) | -p(x) | q(c12) | -p(c13) | -q(f4(c20)) | -q(c20) | -p(y). [factor(89,f,h)]. kept: 336 p(x) | p(f3(x)) | q(c14) | -q(y) | q(c16) | -p(z) | q(u). [factor(90,a,d)]. kept: 337 p(x) | p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u). [factor(90,c,h)]. kept: 338 p(x) | p(f3(x)) | q(c14) | -q(y) | q(c16) | p(c17) | -q(c18). [factor(91,a,d)]. kept: 339 p(x) | p(f3(x)) | q(c14) | p(y) | -q(c18) | q(c16) | p(c17). [factor(91,e,h)]. kept: 340 p(x) | p(f3(x)) | q(c14) | q(y) | -q(c16) | -p(z) | q(u). [factor(92,a,d)]. kept: 341 p(x) | p(f3(x)) | q(c14) | p(y) | -q(c16) | -p(z) | q(u). [factor(92,c,e)]. kept: 342 p(x) | p(f3(x)) | q(c14) | q(y) | -q(c16) | p(c17) | -q(c18). [factor(93,a,d)]. kept: 343 p(x) | p(f3(x)) | q(c14) | p(y) | -q(c16) | p(c17) | -q(c18). [factor(93,c,e)]. kept: 344 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19) | q(z). [factor(94,a,d)]. kept: 345 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | p(c19) | q(z). [factor(94,c,f)]. kept: 346 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19). [factor(94,c,h)]. kept: 347 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | -p(z) | -q(c20). [factor(95,a,d)]. kept: 348 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | -p(z) | -q(c20). [factor(95,c,f)]. kept: 349 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(96,a,d)]. kept: 350 p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19). [factor(96,c,h)]. kept: 351 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(97,a,d)]. kept: 352 p(x) | p(f3(x)) | q(c14) | p(y) | -q(f4(c20)) | -q(c20) | -p(z). [factor(97,f,h)]. kept: 353 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16) | -p(z) | q(u). [factor(98,c,e)]. kept: 354 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | q(u). [factor(98,d,g)]. kept: 355 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u). [factor(98,f,h)]. kept: 356 p(c17) | p(f3(c17)) | -q(x) | -p(c15) | -q(y) | q(c16) | -q(c18). [factor(99,a,g)]. kept: 357 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16) | p(c17) | -q(c18). [factor(99,c,e)]. kept: 358 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y) | -p(z) | q(u). [factor(100,c,f)]. kept: 359 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | q(u). [factor(100,d,g)]. kept: 360 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u). [factor(100,e,h)]. kept: 361 p(c17) | p(f3(c17)) | -q(x) | -p(c15) | q(y) | -q(c16) | -q(c18). [factor(101,a,g)]. kept: 362 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y) | p(c17) | -q(c18). [factor(101,c,f)]. kept: 363 p(c19) | p(f3(c19)) | -q(x) | -p(c15) | q(f4(y)) | q(y) | q(z). [factor(102,a,g)]. kept: 364 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(102,e,h)]. kept: 365 p(x) | p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y) | -p(z). [factor(103,c,h)]. kept: 366 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -q(c20). [factor(103,d,g)]. kept: 367 p(c19) | p(f3(c19)) | -q(x) | -p(c15) | -q(f4(y)) | -q(y) | q(z). [factor(104,a,g)]. kept: 368 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(104,c,e)]. kept: 369 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -p(z) | -q(c20). [factor(105,c,e)]. kept: 370 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -q(c20). [factor(105,d,g)]. kept: 371 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | q(u). [factor(106,a,g)]. kept: 372 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16) | -p(u). [factor(106,c,h)]. kept: 373 -p(x) | -p(f3(x)) | q(c14) | p(c17) | -q(y) | q(c16) | -q(c18). [factor(107,d,g)]. kept: 374 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c18) | q(c16) | p(c17). [factor(107,e,h)]. kept: 375 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(z) | -q(c16) | q(u). [factor(108,a,g)]. kept: 376 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16) | -p(z) | q(u). [factor(108,c,e)]. kept: 377 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16) | p(c17) | -q(c18). [factor(109,c,e)]. kept: 378 -p(x) | -p(f3(x)) | q(c14) | p(c17) | q(y) | -q(c16) | -q(c18). [factor(109,d,g)]. kept: 379 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | p(c19) | q(z). [factor(110,c,f)]. kept: 380 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19). [factor(110,c,h)]. kept: 381 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(y)) | q(y) | q(z). [factor(110,d,g)]. kept: 382 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -q(c20). [factor(111,a,g)]. kept: 383 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | -p(z) | -q(c20). [factor(111,c,f)]. kept: 384 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | p(c19). [factor(112,c,h)]. kept: 385 -p(x) | -p(f3(x)) | q(c14) | p(c19) | -q(f4(y)) | -q(y) | q(z). [factor(112,d,g)]. kept: 386 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(113,a,g)]. kept: 387 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(c20)) | -q(c20) | -p(z). [factor(113,f,h)]. kept: 388 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | -p(z) | q(u). [factor(114,a,d)]. kept: 389 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | q(u). [factor(114,a,g)]. kept: 390 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16) | -p(z) | q(u). [factor(114,c,e)]. kept: 391 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u). [factor(114,f,h)]. kept: 392 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | p(c17) | -q(c18). [factor(115,a,d)]. kept: 393 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16) | p(c17) | -q(c18). [factor(115,c,e)]. kept: 394 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | -p(z) | q(u). [factor(116,a,d)]. kept: 395 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | q(u). [factor(116,a,g)]. kept: 396 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y) | -p(z) | q(u). [factor(116,c,f)]. kept: 397 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u). [factor(116,e,h)]. kept: 398 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | p(c17) | -q(c18). [factor(117,a,d)]. kept: 399 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y) | p(c17) | -q(c18). [factor(117,c,f)]. kept: 400 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | p(c19) | q(z). [factor(118,a,d)]. kept: 401 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(118,e,h)]. kept: 402 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | -p(z) | -q(c20). [factor(119,a,d)]. kept: 403 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | -q(c20). [factor(119,a,g)]. kept: 404 -p(x) | -p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y) | -p(z). [factor(119,c,h)]. kept: 405 -p(c15) | -p(f3(c15)) | -q(x) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(120,a,d)]. kept: 406 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(120,c,e)]. kept: 407 -p(c15) | -p(f3(c15)) | -q(x) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(121,a,d)]. kept: 408 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -q(c20). [factor(121,a,g)]. kept: 409 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -p(z) | -q(c20). [factor(121,c,e)]. kept: 410 p(x) | p(f1(x)) | -q(y) | q(f2(z)) | q(z) | -p(u). [factor(122,d,g)]. kept: 411 p(c6) | p(f1(c6)) | -q(x) | q(f2(y)) | q(y) | -q(c7). [factor(124,a,f)]. kept: 412 p(x) | p(f1(x)) | -q(c7) | q(f2(y)) | q(y) | p(c6). [factor(124,c,g)]. kept: 413 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(126,c,d)]. kept: 414 p(c6) | p(f1(c6)) | -q(x) | -q(f2(y)) | -q(y) | -q(c7). [factor(128,a,f)]. kept: 415 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(128,c,d)]. kept: 416 p(x) | p(f1(x)) | -q(f2(c7)) | p(y) | -q(c7) | p(c6). [factor(129,e,g)]. kept: 417 p(c9) | p(f1(c9)) | -q(x) | -q(y) | q(c8) | q(z). [factor(130,a,f)]. kept: 418 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9) | q(z). [factor(130,c,d)]. kept: 419 p(x) | p(f1(x)) | -q(y) | -q(z) | q(c8) | p(c9). [factor(130,e,g)]. kept: 420 p(x) | p(f1(x)) | -q(y) | p(z) | q(c8) | p(c9). [factor(131,e,g)]. kept: 421 p(x) | p(f1(x)) | -q(y) | q(c8) | -p(z) | -q(c10). [factor(133,c,d)]. kept: 422 p(x) | p(f1(x)) | -q(c10) | p(y) | q(c8) | -p(z). [factor(134,c,g)]. kept: 423 p(c9) | p(f1(c9)) | -q(x) | q(y) | -q(c8) | q(z). [factor(135,a,f)]. kept: 424 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9) | q(z). [factor(135,c,e)]. kept: 425 p(x) | p(f1(x)) | -q(y) | q(z) | -q(c8) | p(c9). [factor(135,d,g)]. kept: 426 p(x) | p(f1(x)) | -q(c8) | p(y) | q(z) | p(c9). [factor(136,e,g)]. kept: 427 p(x) | p(f1(x)) | -q(c8) | q(y) | -p(z) | -q(c10). [factor(138,c,e)]. kept: 428 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | -p(y). [factor(140,c,g)]. kept: 429 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | q(y). [factor(140,d,f)]. kept: 430 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(141,d,g)]. kept: 431 p(c9) | p(f1(c9)) | q(c1) | -p(c2) | -q(x) | q(c8). [factor(145,c,g)]. kept: 432 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8). [factor(147,e,g)]. kept: 433 p(c9) | p(f1(c9)) | q(c1) | -p(c2) | -q(c8) | q(x). [factor(149,c,e)]. kept: 434 p(x) | p(f1(x)) | q(c1) | -p(c2) | -q(c8) | p(c9). [factor(150,c,g)]. kept: 435 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u). [factor(153,e,g)]. kept: 436 -p(x) | -p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | q(u). [factor(157,c,e)]. kept: 437 -p(x) | -p(f1(x)) | -q(f2(y)) | p(c6) | -q(y) | -q(c7). [factor(159,d,f)]. kept: 438 -p(x) | -p(f1(x)) | -q(f2(c7)) | p(y) | -q(c7) | p(c6). [factor(159,e,g)]. kept: 439 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(c8) | q(z). [factor(161,d,f)]. kept: 440 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(c8) | p(c9). [factor(161,e,g)]. kept: 441 -p(x) | -p(f1(x)) | -q(y) | p(c9) | -q(z) | q(c8). [factor(162,f,g)]. kept: 442 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(c8) | -q(c10). [factor(164,c,e)]. kept: 443 -p(x) | -p(f1(x)) | -q(c10) | p(y) | q(c8) | -p(z). [factor(165,c,g)]. kept: 444 -p(x) | -p(f1(x)) | -q(c8) | p(c9) | q(y) | q(z). [factor(166,d,f)]. kept: 445 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | p(c9). [factor(166,e,g)]. kept: 446 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(z) | -q(c8). [factor(167,e,g)]. kept: 447 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | -q(c10). [factor(169,c,f)]. kept: 448 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x) | q(y). [factor(171,a,f)]. kept: 449 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)) | -p(x) | q(y). [factor(171,c,e)]. kept: 450 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x) | -p(y). [factor(171,c,g)]. kept: 451 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | q(y). [factor(172,c,f)]. kept: 452 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(172,c,g)]. kept: 453 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)) | -p(y). [factor(173,c,g)]. kept: 454 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x) | q(y). [factor(175,a,f)]. kept: 455 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x) | -p(y). [factor(175,c,g)]. kept: 456 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y). [factor(176,c,g)]. kept: 457 -p(c2) | -p(f1(c2)) | q(c1) | -q(x) | q(c8) | -q(c10). [factor(180,a,f)]. kept: 458 -p(c2) | -p(f1(c2)) | q(c1) | -q(c10) | q(c8) | -p(x). [factor(180,d,g)]. kept: 459 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8). [factor(181,e,g)]. kept: 460 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | p(c9). [factor(184,c,g)]. kept: 461 -p(c2) | -p(f1(c2)) | q(c1) | q(x) | -q(c8) | -q(c10). [factor(185,a,f)]. kept: 462 -p(c2) | -p(f1(c2)) | q(c1) | -q(c8) | -p(x) | -q(c10). [factor(185,c,d)]. kept: 463 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | -q(c10). [factor(186,c,e)]. kept: 464 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y) | q(z). [factor(188,b,d)]. kept: 465 -p(c3) | p(x) | q(c4) | p(y) | q(f2(c4)) | q(z). [factor(188,c,f)]. kept: 466 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z). [factor(188,c,g)]. kept: 467 -p(c3) | p(x) | q(c4) | q(f2(c4)) | -p(y) | q(z). [factor(189,c,e)]. kept: 468 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y) | -p(z). [factor(189,c,g)]. kept: 469 -p(c3) | p(x) | q(c4) | p(y) | q(f2(c4)) | -p(z). [factor(190,c,g)]. kept: 470 -p(c3) | p(c6) | q(c4) | q(f2(x)) | q(x) | -q(c7). [factor(192,b,f)]. kept: 471 -p(c3) | p(x) | q(c4) | q(f2(c4)) | p(c6) | -q(c7). [factor(192,c,e)]. kept: 472 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y) | q(z). [factor(194,b,d)]. kept: 473 -p(c3) | p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z). [factor(194,c,g)]. kept: 474 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y) | -p(z). [factor(195,c,g)]. kept: 475 -p(c3) | p(c6) | q(c4) | -q(f2(x)) | -q(x) | -q(c7). [factor(197,b,f)]. kept: 476 -p(c3) | p(c9) | q(c4) | -q(x) | q(c8) | q(y). [factor(199,b,f)]. kept: 477 -p(c3) | p(x) | q(c4) | -q(y) | q(c8) | p(c9). [factor(199,c,g)]. kept: 478 -p(c3) | p(x) | q(c4) | -q(y) | q(c8) | -q(c10). [factor(201,b,d)]. kept: 479 -p(c3) | p(x) | q(c4) | p(y) | -q(c10) | q(c8). [factor(201,e,g)]. kept: 480 -p(c3) | p(x) | q(c4) | -q(c10) | q(c8) | -p(y). [factor(202,d,g)]. kept: 481 -p(c3) | p(c9) | q(c4) | q(x) | -q(c8) | q(y). [factor(204,b,f)]. kept: 482 -p(c3) | p(x) | q(c4) | -q(c8) | p(c9) | q(y). [factor(204,c,d)]. kept: 483 -p(c3) | p(x) | q(c4) | p(y) | -q(c8) | p(c9). [factor(205,c,g)]. kept: 484 -p(c3) | p(x) | q(c4) | q(y) | -q(c8) | -q(c10). [factor(206,b,d)]. kept: 485 -p(c3) | p(x) | q(c4) | p(y) | -q(c8) | -q(c10). [factor(206,c,e)]. kept: 486 -p(c3) | p(x) | q(c4) | -q(c8) | -p(y) | -q(c10). [factor(207,c,d)]. kept: 487 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z). [factor(209,e,g)]. kept: 488 -p(c3) | p(x) | -q(f2(y)) | -p(c5) | -q(y) | q(z). [factor(213,c,e)]. kept: 489 -p(c3) | p(c6) | -q(f2(x)) | -p(c5) | -q(x) | -q(c7). [factor(215,c,e)]. kept: 490 -p(c3) | p(x) | -q(f2(c7)) | -p(c5) | -q(c7) | p(c6). [factor(216,e,g)]. kept: 491 -p(c3) | p(c9) | -q(x) | -p(c5) | q(c8) | q(y). [factor(217,c,e)]. kept: 492 -p(c3) | p(c9) | -q(x) | -p(c5) | -q(y) | q(c8). [factor(217,f,g)]. kept: 493 -p(c3) | p(x) | -q(y) | -p(c5) | q(c8) | p(c9). [factor(218,e,g)]. kept: 494 -p(c3) | p(x) | -q(y) | -p(c5) | q(c8) | -q(c10). [factor(220,c,e)]. kept: 495 -p(c3) | p(x) | -q(c10) | -p(c5) | q(c8) | -p(y). [factor(221,c,g)]. kept: 496 -p(c3) | p(c9) | -q(c8) | -p(c5) | q(x) | q(y). [factor(222,c,f)]. kept: 497 -p(c3) | p(c9) | -q(x) | -p(c5) | q(y) | -q(c8). [factor(222,e,g)]. kept: 498 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | p(c9). [factor(223,e,g)]. kept: 499 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | -q(c10). [factor(225,c,f)]. kept: 500 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | q(z). [factor(227,b,f)]. kept: 501 p(c3) | -p(x) | q(c4) | q(f2(c4)) | -p(y) | q(z). [factor(227,c,e)]. kept: 502 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | -p(z). [factor(227,c,g)]. kept: 503 p(c3) | -p(x) | q(c4) | p(y) | q(f2(c4)) | q(z). [factor(228,c,f)]. kept: 504 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z). [factor(228,c,g)]. kept: 505 p(c3) | -p(x) | q(c4) | p(y) | q(f2(c4)) | -p(z). [factor(229,c,g)]. kept: 506 p(c3) | -p(x) | q(c4) | q(f2(c4)) | p(c6) | -q(c7). [factor(231,c,e)]. kept: 507 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y) | q(z). [factor(233,b,f)]. kept: 508 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y) | -p(z). [factor(233,c,g)]. kept: 509 p(c3) | -p(x) | q(c4) | p(y) | -q(f2(z)) | -q(z). [factor(234,c,g)]. kept: 510 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9). [factor(238,c,g)]. kept: 511 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | -q(c10). [factor(240,b,f)]. kept: 512 p(c3) | -p(x) | q(c4) | -q(c10) | q(c8) | -p(y). [factor(240,d,g)]. kept: 513 p(c3) | -p(x) | q(c4) | p(y) | -q(c10) | q(c8). [factor(241,e,g)]. kept: 514 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9) | q(y). [factor(243,c,d)]. kept: 515 p(c3) | -p(x) | q(c4) | p(y) | -q(c8) | p(c9). [factor(244,c,g)]. kept: 516 p(c3) | -p(x) | q(c4) | q(y) | -q(c8) | -q(c10). [factor(245,b,f)]. kept: 517 p(c3) | -p(x) | q(c4) | -q(c8) | -p(y) | -q(c10). [factor(245,c,d)]. kept: 518 p(c3) | -p(x) | q(c4) | p(y) | -q(c8) | -q(c10). [factor(246,c,e)]. kept: 519 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y) | q(z). [factor(248,b,f)]. kept: 520 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y) | -p(z). [factor(248,d,g)]. kept: 521 p(c3) | -p(c5) | -q(c7) | q(f2(x)) | q(x) | p(c6). [factor(250,c,g)]. kept: 522 p(c3) | -p(c5) | -q(x) | -q(f2(y)) | -q(y) | q(z). [factor(252,b,f)]. kept: 523 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | -p(y) | q(z). [factor(252,c,d)]. kept: 524 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | p(c6) | -q(c7). [factor(254,c,d)]. kept: 525 p(c3) | -p(x) | -q(f2(c7)) | -p(c5) | -q(c7) | p(c6). [factor(255,e,g)]. kept: 526 p(c3) | -p(c5) | -q(x) | q(c8) | p(c9) | q(y). [factor(256,c,d)]. kept: 527 p(c3) | -p(c5) | -q(x) | -q(y) | q(c8) | p(c9). [factor(256,e,g)]. kept: 528 p(c3) | -p(x) | -q(y) | -p(c5) | q(c8) | p(c9). [factor(257,e,g)]. kept: 529 p(c3) | -p(c5) | -q(x) | -q(y) | q(c8) | -q(c10). [factor(259,b,f)]. kept: 530 p(c3) | -p(c5) | -q(x) | q(c8) | -p(y) | -q(c10). [factor(259,c,d)]. kept: 531 p(c3) | -p(x) | -q(c10) | -p(c5) | q(c8) | -p(y). [factor(260,c,g)]. kept: 532 p(c3) | -p(c5) | -q(c8) | q(x) | p(c9) | q(y). [factor(261,c,e)]. kept: 533 p(c3) | -p(c5) | -q(x) | q(y) | -q(c8) | p(c9). [factor(261,d,g)]. kept: 534 p(c3) | -p(x) | -q(c8) | -p(c5) | q(y) | p(c9). [factor(262,e,g)]. kept: 535 p(c3) | -p(c5) | -q(x) | q(y) | -q(c8) | -q(c10). [factor(264,b,f)]. kept: 536 p(c3) | -p(c5) | -q(c8) | q(x) | -p(y) | -q(c10). [factor(264,c,e)]. kept: 537 -p(c11) | p(x) | -q(y) | -q(z) | q(c16) | q(u). [factor(266,b,d)]. kept: 538 -p(c11) | p(x) | -q(y) | p(z) | q(c16) | q(u). [factor(266,c,e)]. kept: 539 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16). [factor(266,f,g)]. kept: 540 -p(c11) | p(x) | -q(y) | q(c16) | -p(z) | q(u). [factor(267,c,d)]. kept: 541 -p(c11) | p(x) | -q(y) | -q(z) | q(c16) | -p(u). [factor(267,e,g)]. kept: 542 -p(c11) | p(x) | -q(y) | p(z) | q(c16) | -p(u). [factor(268,e,g)]. kept: 543 -p(c11) | p(c17) | -q(x) | -q(y) | q(c16) | -q(c18). [factor(270,b,f)]. kept: 544 -p(c11) | p(x) | -q(c18) | p(y) | q(c16) | p(c17). [factor(271,c,g)]. kept: 545 -p(c11) | p(x) | -q(y) | q(z) | -q(c16) | q(u). [factor(272,b,d)]. kept: 546 -p(c11) | p(x) | -q(c16) | p(y) | q(z) | q(u). [factor(272,c,f)]. kept: 547 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16). [factor(272,e,g)]. kept: 548 -p(c11) | p(x) | -q(c16) | q(y) | -p(z) | q(u). [factor(273,c,e)]. kept: 549 -p(c11) | p(x) | -q(y) | q(z) | -q(c16) | -p(u). [factor(273,d,g)]. kept: 550 -p(c11) | p(x) | -q(c16) | p(y) | q(z) | -p(u). [factor(274,e,g)]. kept: 551 -p(c11) | p(c17) | -q(x) | q(y) | -q(c16) | -q(c18). [factor(276,b,f)]. kept: 552 -p(c11) | p(c19) | -q(x) | q(f4(y)) | q(y) | q(z). [factor(278,b,f)]. kept: 553 -p(c11) | p(x) | -q(y) | q(f4(z)) | q(z) | p(c19). [factor(278,d,g)]. kept: 554 -p(c11) | p(x) | -q(y) | q(f4(z)) | q(z) | -q(c20). [factor(280,b,d)]. kept: 555 -p(c11) | p(x) | -q(c20) | p(y) | q(f4(z)) | q(z). [factor(280,c,g)]. kept: 556 -p(c11) | p(x) | -q(c20) | q(f4(y)) | q(y) | -p(z). [factor(281,c,g)]. kept: 557 -p(c11) | p(c19) | -q(x) | -q(f4(y)) | -q(y) | q(z). [factor(283,b,f)]. kept: 558 -p(c11) | p(x) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(283,c,d)]. kept: 559 -p(c11) | p(x) | -q(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(285,b,d)]. kept: 560 -p(c11) | p(x) | -q(f4(y)) | p(z) | -q(y) | -q(c20). [factor(285,c,e)]. kept: 561 -p(c11) | p(x) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(286,c,d)]. kept: 562 -p(c11) | p(x) | -q(f4(c20)) | p(y) | -q(c20) | -p(z). [factor(287,e,g)]. kept: 563 -p(c11) | p(x) | q(c12) | -p(c13) | -q(c16) | -p(y). [factor(291,c,g)]. kept: 564 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(c12)) | q(x). [factor(292,c,f)]. kept: 565 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(x)) | q(x). [factor(292,c,g)]. kept: 566 -p(c11) | p(x) | q(c12) | -p(c13) | q(f4(c12)) | p(c19). [factor(293,c,g)]. kept: 567 -p(c11) | p(c19) | q(c12) | -p(c13) | -q(f4(x)) | -q(x). [factor(297,c,g)]. kept: 568 -p(c11) | p(x) | q(c12) | -p(c13) | -q(f4(c20)) | -q(c20). [factor(299,f,g)]. kept: 569 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | q(u). [factor(301,b,f)]. kept: 570 p(c11) | -p(x) | -q(y) | q(c16) | -p(z) | q(u). [factor(301,c,d)]. kept: 571 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | -p(u). [factor(301,e,g)]. kept: 572 p(c11) | -p(x) | -q(y) | p(z) | q(c16) | q(u). [factor(302,c,e)]. kept: 573 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16). [factor(302,f,g)]. kept: 574 p(c11) | -p(x) | -q(y) | p(z) | q(c16) | -p(u). [factor(303,e,g)]. kept: 575 p(c11) | -p(x) | -q(c18) | p(y) | q(c16) | p(c17). [factor(306,c,g)]. kept: 576 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | q(u). [factor(307,b,f)]. kept: 577 p(c11) | -p(x) | -q(c16) | q(y) | -p(z) | q(u). [factor(307,c,e)]. kept: 578 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | -p(u). [factor(307,d,g)]. kept: 579 p(c11) | -p(x) | -q(c16) | p(y) | q(z) | q(u). [factor(308,c,f)]. kept: 580 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16). [factor(308,e,g)]. kept: 581 p(c11) | -p(x) | -q(c16) | p(y) | q(z) | -p(u). [factor(309,e,g)]. kept: 582 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | p(c19). [factor(313,d,g)]. kept: 583 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | -q(c20). [factor(315,b,f)]. kept: 584 p(c11) | -p(x) | -q(c20) | q(f4(y)) | q(y) | -p(z). [factor(315,c,g)]. kept: 585 p(c11) | -p(x) | -q(c20) | p(y) | q(f4(z)) | q(z). [factor(316,c,g)]. kept: 586 p(c11) | -p(x) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(318,c,d)]. kept: 587 p(c11) | -p(x) | -q(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(320,b,f)]. kept: 588 p(c11) | -p(x) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(320,c,d)]. kept: 589 p(c11) | -p(x) | -q(f4(y)) | p(z) | -q(y) | -q(c20). [factor(321,c,e)]. kept: 590 p(c11) | -p(x) | -q(f4(c20)) | p(y) | -q(c20) | -p(z). [factor(322,e,g)]. kept: 591 p(c11) | -p(c13) | q(c12) | -q(x) | q(c16) | q(y). [factor(323,b,f)]. kept: 592 p(c11) | -p(c13) | q(c12) | q(x) | -q(c16) | q(y). [factor(325,b,f)]. kept: 593 p(c11) | -p(x) | q(c12) | -p(c13) | -q(c16) | -p(y). [factor(326,c,g)]. kept: 594 p(c11) | -p(c13) | q(c12) | q(f4(c12)) | p(c19) | q(x). [factor(327,c,e)]. kept: 595 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | p(c19). [factor(327,c,g)]. kept: 596 p(c11) | -p(x) | q(c12) | -p(c13) | q(f4(c12)) | p(c19). [factor(328,c,g)]. kept: 597 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | -q(c20). [factor(330,b,f)]. kept: 598 p(c11) | -p(c13) | q(c12) | -q(f4(x)) | -q(x) | -q(c20). [factor(334,b,f)]. kept: 599 p(c11) | -p(c13) | q(c12) | -q(f4(c20)) | -q(c20) | -p(x). [factor(334,e,g)]. kept: 600 p(x) | p(f3(x)) | q(c14) | -q(y) | q(c16) | -p(z). [factor(336,c,g)]. kept: 601 p(c17) | p(f3(c17)) | q(c14) | -q(x) | q(c16) | -q(c18). [factor(338,a,f)]. kept: 602 p(x) | p(f3(x)) | q(c14) | -q(c18) | q(c16) | p(c17). [factor(338,d,g)]. kept: 603 p(x) | p(f3(x)) | q(c14) | -q(c16) | -p(y) | q(z). [factor(340,c,d)]. kept: 604 p(x) | p(f3(x)) | q(c14) | p(y) | -q(c16) | -p(z). [factor(341,c,g)]. kept: 605 p(c17) | p(f3(c17)) | q(c14) | q(x) | -q(c16) | -q(c18). [factor(342,a,f)]. kept: 606 p(x) | p(f3(x)) | q(c14) | -q(c16) | p(c17) | -q(c18). [factor(342,c,d)]. kept: 607 p(c19) | p(f3(c19)) | q(c14) | q(f4(x)) | q(x) | q(y). [factor(344,a,f)]. kept: 608 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | p(c19) | q(y). [factor(344,c,e)]. kept: 609 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19). [factor(344,c,g)]. kept: 610 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | p(c19). [factor(345,c,g)]. kept: 611 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | -p(y) | -q(c20). [factor(347,c,e)]. kept: 612 p(c19) | p(f3(c19)) | q(c14) | -q(f4(x)) | -q(x) | q(y). [factor(349,a,f)]. kept: 613 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | p(c19). [factor(349,c,g)]. kept: 614 p(x) | p(f3(x)) | q(c14) | -q(f4(c20)) | -q(c20) | -p(y). [factor(351,e,g)]. kept: 615 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16) | q(z). [factor(353,d,f)]. kept: 616 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16) | -p(z). [factor(353,e,g)]. kept: 617 p(x) | p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16). [factor(354,f,g)]. kept: 618 p(x) | p(f3(x)) | -q(c18) | -p(c15) | q(c16) | p(c17). [factor(357,c,g)]. kept: 619 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y) | q(z). [factor(358,d,f)]. kept: 620 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y) | -p(z). [factor(358,e,g)]. kept: 621 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16). [factor(359,e,g)]. kept: 622 p(c19) | p(f3(c19)) | -q(x) | -p(c15) | q(f4(y)) | q(y). [factor(363,e,g)]. kept: 623 p(x) | p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(365,d,g)]. kept: 624 p(c19) | p(f3(c19)) | -q(f4(x)) | -p(c15) | -q(x) | q(y). [factor(367,c,e)]. kept: 625 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(369,d,f)]. kept: 626 p(x) | p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20) | -p(y). [factor(369,e,g)]. kept: 627 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16). [factor(371,c,g)]. kept: 628 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16) | q(z). [factor(375,c,e)]. kept: 629 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16) | -p(z). [factor(376,c,g)]. kept: 630 -p(x) | -p(f3(x)) | q(c14) | p(c17) | -q(c16) | -q(c18). [factor(377,d,f)]. kept: 631 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | p(c19). [factor(379,c,g)]. kept: 632 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(c14)) | q(y). [factor(379,d,f)]. kept: 633 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(y)) | q(y). [factor(380,d,g)]. kept: 634 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | -q(c20). [factor(382,c,f)]. kept: 635 -p(x) | -p(f3(x)) | q(c14) | p(c19) | -q(f4(y)) | -q(y). [factor(384,d,g)]. kept: 636 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(c20)) | -q(c20). [factor(386,f,g)]. kept: 637 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | q(z). [factor(388,a,f)]. kept: 638 -p(c15) | -p(f3(c15)) | -q(x) | q(c16) | -p(y) | q(z). [factor(388,c,d)]. kept: 639 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | -p(z). [factor(388,e,g)]. kept: 640 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16) | q(z). [factor(389,c,e)]. kept: 641 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16). [factor(389,f,g)]. kept: 642 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16) | -p(z). [factor(390,e,g)]. kept: 643 -p(c15) | -p(f3(c15)) | -q(x) | q(c16) | p(c17) | -q(c18). [factor(392,c,d)]. kept: 644 -p(x) | -p(f3(x)) | -q(c18) | -p(c15) | q(c16) | p(c17). [factor(393,c,g)]. kept: 645 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | q(z). [factor(394,a,f)]. kept: 646 -p(c15) | -p(f3(c15)) | -q(c16) | q(x) | -p(y) | q(z). [factor(394,c,e)]. kept: 647 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | -p(z). [factor(394,d,g)]. kept: 648 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y) | q(z). [factor(395,c,f)]. kept: 649 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16). [factor(395,e,g)]. kept: 650 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y) | -p(z). [factor(396,e,g)]. kept: 651 -p(c15) | -p(f3(c15)) | -q(c16) | q(x) | p(c17) | -q(c18). [factor(398,c,e)]. kept: 652 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | p(c19). [factor(400,d,g)]. kept: 653 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | -q(c20). [factor(402,a,f)]. kept: 654 -p(c15) | -p(f3(c15)) | -q(c20) | q(f4(x)) | q(x) | -p(y). [factor(402,c,g)]. kept: 655 -p(x) | -p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(403,c,g)]. kept: 656 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | p(c19) | q(y). [factor(405,c,d)]. kept: 657 -p(c15) | -p(f3(c15)) | -q(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(407,a,f)]. kept: 658 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | -p(y) | -q(c20). [factor(407,c,d)]. kept: 659 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(408,c,e)]. kept: 660 -p(x) | -p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20) | -p(y). [factor(409,e,g)]. kept: 661 p(c6) | p(f1(c6)) | -q(c7) | q(f2(x)) | q(x). [factor(411,c,f)]. kept: 662 p(c6) | p(f1(c6)) | -q(f2(x)) | -q(x) | -q(c7). [factor(414,c,d)]. kept: 663 p(x) | p(f1(x)) | -q(f2(c7)) | -q(c7) | p(c6). [factor(415,d,f)]. kept: 664 p(c9) | p(f1(c9)) | -q(x) | q(c8) | q(y). [factor(417,c,d)]. kept: 665 p(c9) | p(f1(c9)) | -q(x) | -q(y) | q(c8). [factor(417,e,f)]. kept: 666 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9). [factor(418,d,f)]. kept: 667 p(x) | p(f1(x)) | -q(c10) | q(c8) | -p(y). [factor(421,c,f)]. kept: 668 p(c9) | p(f1(c9)) | -q(c8) | q(x) | q(y). [factor(423,c,e)]. kept: 669 p(c9) | p(f1(c9)) | -q(x) | q(y) | -q(c8). [factor(423,d,f)]. kept: 670 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9). [factor(424,d,f)]. kept: 671 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(428,d,f)]. kept: 672 p(c9) | p(f1(c9)) | q(c1) | -p(c2) | -q(c8). [factor(433,c,f)]. kept: 673 -p(x) | -p(f1(x)) | -q(f2(c7)) | p(c6) | -q(c7). [factor(437,e,f)]. kept: 674 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(c8). [factor(439,e,f)]. kept: 675 -p(x) | -p(f1(x)) | -q(c10) | p(y) | q(c8). [factor(442,c,f)]. kept: 676 -p(x) | -p(f1(x)) | -q(c8) | p(c9) | q(y). [factor(444,e,f)]. kept: 677 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)) | q(x). [factor(448,c,e)]. kept: 678 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x). [factor(448,c,f)]. kept: 679 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)) | -p(x). [factor(449,c,f)]. kept: 680 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(451,c,f)]. kept: 681 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x). [factor(454,c,f)]. kept: 682 -p(c2) | -p(f1(c2)) | q(c1) | -q(c10) | q(c8). [factor(457,d,f)]. kept: 683 -p(c2) | -p(f1(c2)) | q(c1) | -q(c8) | -q(c10). [factor(461,c,d)]. kept: 684 -p(c3) | p(x) | q(c4) | q(f2(c4)) | q(y). [factor(464,c,e)]. kept: 685 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y). [factor(464,c,f)]. kept: 686 -p(c3) | p(x) | q(c4) | p(y) | q(f2(c4)). [factor(465,c,f)]. kept: 687 -p(c3) | p(x) | q(c4) | q(f2(c4)) | -p(y). [factor(467,c,f)]. kept: 688 -p(c3) | p(c6) | q(c4) | q(f2(c4)) | -q(c7). [factor(470,c,e)]. kept: 689 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(472,c,f)]. kept: 690 -p(c3) | p(c9) | q(c4) | -q(x) | q(c8). [factor(476,c,f)]. kept: 691 -p(c3) | p(x) | q(c4) | -q(c10) | q(c8). [factor(478,d,f)]. kept: 692 -p(c3) | p(c9) | q(c4) | -q(c8) | q(x). [factor(481,c,d)]. kept: 693 -p(c3) | p(x) | q(c4) | -q(c8) | p(c9). [factor(482,c,f)]. kept: 694 -p(c3) | p(x) | q(c4) | -q(c8) | -q(c10). [factor(484,c,d)]. kept: 695 -p(c3) | p(c6) | -q(f2(c7)) | -p(c5) | -q(c7). [factor(489,e,f)]. kept: 696 -p(c3) | p(c9) | -q(x) | -p(c5) | q(c8). [factor(491,e,f)]. kept: 697 -p(c3) | p(x) | -q(c10) | -p(c5) | q(c8). [factor(494,c,f)]. kept: 698 -p(c3) | p(c9) | -q(c8) | -p(c5) | q(x). [factor(496,e,f)]. kept: 699 p(c3) | -p(x) | q(c4) | q(f2(c4)) | q(y). [factor(500,c,e)]. kept: 700 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y). [factor(500,c,f)]. kept: 701 p(c3) | -p(x) | q(c4) | q(f2(c4)) | -p(y). [factor(501,c,f)]. kept: 702 p(c3) | -p(x) | q(c4) | p(y) | q(f2(c4)). [factor(503,c,f)]. kept: 703 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(507,c,f)]. kept: 704 p(c3) | -p(x) | q(c4) | -q(c10) | q(c8). [factor(511,d,f)]. kept: 705 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9). [factor(514,c,f)]. kept: 706 p(c3) | -p(x) | q(c4) | -q(c8) | -q(c10). [factor(516,c,d)]. kept: 707 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y). [factor(519,d,f)]. kept: 708 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | q(y). [factor(522,c,d)]. kept: 709 p(c3) | -p(c5) | -q(f2(c7)) | -q(c7) | p(c6). [factor(524,d,f)]. kept: 710 p(c3) | -p(c5) | -q(x) | q(c8) | p(c9). [factor(526,d,f)]. kept: 711 p(c3) | -p(c5) | -q(x) | q(c8) | -q(c10). [factor(529,c,d)]. kept: 712 p(c3) | -p(c5) | -q(c10) | q(c8) | -p(x). [factor(530,c,f)]. kept: 713 p(c3) | -p(c5) | -q(c8) | q(x) | p(c9). [factor(532,d,f)]. kept: 714 p(c3) | -p(c5) | -q(c8) | q(x) | -q(c10). [factor(535,c,e)]. kept: 715 -p(c11) | p(x) | -q(y) | q(c16) | q(z). [factor(537,c,d)]. kept: 716 -p(c11) | p(x) | -q(y) | -q(z) | q(c16). [factor(537,e,f)]. kept: 717 -p(c11) | p(x) | -q(y) | p(z) | q(c16). [factor(538,e,f)]. kept: 718 -p(c11) | p(x) | -q(y) | q(c16) | -p(z). [factor(540,d,f)]. kept: 719 -p(c11) | p(x) | -q(c16) | q(y) | q(z). [factor(545,c,e)]. kept: 720 -p(c11) | p(x) | -q(y) | q(z) | -q(c16). [factor(545,d,f)]. kept: 721 -p(c11) | p(x) | -q(c16) | p(y) | q(z). [factor(546,e,f)]. kept: 722 -p(c11) | p(x) | -q(c16) | q(y) | -p(z). [factor(548,d,f)]. kept: 723 -p(c11) | p(c19) | -q(x) | q(f4(y)) | q(y). [factor(552,d,f)]. kept: 724 -p(c11) | p(x) | -q(c20) | q(f4(y)) | q(y). [factor(554,c,f)]. kept: 725 -p(c11) | p(c19) | -q(f4(x)) | -q(x) | q(y). [factor(557,c,d)]. kept: 726 -p(c11) | p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(559,c,d)]. kept: 727 -p(c11) | p(x) | -q(f4(c20)) | p(y) | -q(c20). [factor(560,e,f)]. kept: 728 -p(c11) | p(x) | -q(f4(c20)) | -q(c20) | -p(y). [factor(561,d,f)]. kept: 729 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(c12)). [factor(564,c,f)]. kept: 730 p(c11) | -p(x) | -q(y) | q(c16) | q(z). [factor(569,c,d)]. kept: 731 p(c11) | -p(x) | -q(y) | -q(z) | q(c16). [factor(569,e,f)]. kept: 732 p(c11) | -p(x) | -q(y) | q(c16) | -p(z). [factor(570,d,f)]. kept: 733 p(c11) | -p(x) | -q(y) | p(z) | q(c16). [factor(572,e,f)]. kept: 734 p(c11) | -p(x) | -q(c16) | q(y) | q(z). [factor(576,c,e)]. kept: 735 p(c11) | -p(x) | -q(y) | q(z) | -q(c16). [factor(576,d,f)]. kept: 736 p(c11) | -p(x) | -q(c16) | q(y) | -p(z). [factor(577,d,f)]. kept: 737 p(c11) | -p(x) | -q(c16) | p(y) | q(z). [factor(579,e,f)]. kept: 738 p(c11) | -p(x) | -q(c20) | q(f4(y)) | q(y). [factor(583,c,f)]. kept: 739 p(c11) | -p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(587,c,d)]. kept: 740 p(c11) | -p(x) | -q(f4(c20)) | -q(c20) | -p(y). [factor(588,d,f)]. kept: 741 p(c11) | -p(x) | -q(f4(c20)) | p(y) | -q(c20). [factor(589,e,f)]. kept: 742 p(c11) | -p(c13) | q(c12) | q(f4(c12)) | p(c19). [factor(594,c,f)]. kept: 743 p(c11) | -p(c13) | q(c12) | -q(f4(c20)) | -q(c20). [factor(598,e,f)]. kept: 744 p(c17) | p(f3(c17)) | q(c14) | -q(c18) | q(c16). [factor(601,d,f)]. kept: 745 p(x) | p(f3(x)) | q(c14) | -q(c16) | -p(y). [factor(603,c,f)]. kept: 746 p(c17) | p(f3(c17)) | q(c14) | -q(c16) | -q(c18). [factor(605,c,d)]. kept: 747 p(c19) | p(f3(c19)) | q(c14) | q(f4(c14)) | q(x). [factor(607,c,e)]. kept: 748 p(c19) | p(f3(c19)) | q(c14) | q(f4(x)) | q(x). [factor(607,c,f)]. kept: 749 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | p(c19). [factor(608,c,f)]. kept: 750 p(c19) | p(f3(c19)) | q(c14) | -q(f4(x)) | -q(x). [factor(612,c,f)]. kept: 751 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(615,e,f)]. kept: 752 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(619,e,f)]. kept: 753 p(x) | p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(625,e,f)]. kept: 754 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16). [factor(628,c,f)]. kept: 755 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(c14)). [factor(631,d,f)]. kept: 756 -p(c15) | -p(f3(c15)) | -q(x) | q(c16) | q(y). [factor(637,c,d)]. kept: 757 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16). [factor(637,e,f)]. kept: 758 -p(c15) | -p(f3(c15)) | -q(x) | q(c16) | -p(y). [factor(638,d,f)]. kept: 759 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(640,e,f)]. kept: 760 -p(c15) | -p(f3(c15)) | -q(c18) | q(c16) | p(c17). [factor(643,c,f)]. kept: 761 -p(c15) | -p(f3(c15)) | -q(c16) | q(x) | q(y). [factor(645,c,e)]. kept: 762 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16). [factor(645,d,f)]. kept: 763 -p(c15) | -p(f3(c15)) | -q(c16) | q(x) | -p(y). [factor(646,d,f)]. kept: 764 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(648,e,f)]. kept: 765 -p(c15) | -p(f3(c15)) | -q(c20) | q(f4(x)) | q(x). [factor(653,c,f)]. kept: 766 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | -q(c20). [factor(657,c,d)]. kept: 767 -p(c15) | -p(f3(c15)) | -q(f4(c20)) | -q(c20) | -p(x). [factor(658,d,f)]. kept: 768 -p(x) | -p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(659,e,f)]. kept: 769 p(c6) | p(f1(c6)) | -q(f2(c7)) | -q(c7). [factor(662,d,e)]. kept: 770 p(c9) | p(f1(c9)) | -q(x) | q(c8). [factor(664,d,e)]. kept: 771 p(c9) | p(f1(c9)) | -q(c8) | q(x). [factor(668,d,e)]. kept: 772 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)). [factor(677,c,e)]. kept: 773 -p(c3) | p(x) | q(c4) | q(f2(c4)). [factor(684,c,e)]. kept: 774 -p(c3) | p(c9) | q(c4) | -q(c8). [factor(692,c,e)]. kept: 775 p(c3) | -p(x) | q(c4) | q(f2(c4)). [factor(699,c,e)]. kept: 776 p(c3) | -p(c5) | -q(c10) | q(c8). [factor(711,c,e)]. kept: 777 -p(c11) | p(x) | -q(y) | q(c16). [factor(715,d,e)]. kept: 778 -p(c11) | p(x) | -q(c16) | q(y). [factor(719,d,e)]. kept: 779 -p(c11) | p(x) | -q(f4(c20)) | -q(c20). [factor(726,d,e)]. kept: 780 p(c11) | -p(x) | -q(y) | q(c16). [factor(730,d,e)]. kept: 781 p(c11) | -p(x) | -q(c16) | q(y). [factor(734,d,e)]. kept: 782 p(c11) | -p(x) | -q(f4(c20)) | -q(c20). [factor(739,d,e)]. kept: 783 p(c19) | p(f3(c19)) | q(c14) | q(f4(c14)). [factor(747,c,e)]. kept: 784 -p(c15) | -p(f3(c15)) | -q(x) | q(c16). [factor(756,d,e)]. kept: 785 -p(c15) | -p(f3(c15)) | -q(c16) | q(x). [factor(761,d,e)]. kept: 786 -p(c15) | -p(f3(c15)) | -q(f4(c20)) | -q(c20). [factor(766,d,e)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 347 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | -p(z) | -q(c20). [factor(95,a,d)]. 351 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(97,a,d)]. 364 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(102,e,h)]. 368 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(104,c,e)]. 382 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -q(c20). [factor(111,a,g)]. 386 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(113,a,g)]. 401 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(118,e,h)]. 406 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(120,c,e)]. 410 p(x) | p(f1(x)) | -q(y) | q(f2(z)) | q(z) | -p(u). [factor(122,d,g)]. 412 p(x) | p(f1(x)) | -q(c7) | q(f2(y)) | q(y) | p(c6). [factor(124,c,g)]. 413 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(126,c,d)]. 415 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(128,c,d)]. 427 p(x) | p(f1(x)) | -q(c8) | q(y) | -p(z) | -q(c10). [factor(138,c,e)]. 430 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(141,d,g)]. 435 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u). [factor(153,e,g)]. 436 -p(x) | -p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | q(u). [factor(157,c,e)]. 437 -p(x) | -p(f1(x)) | -q(f2(y)) | p(c6) | -q(y) | -q(c7). [factor(159,d,f)]. 447 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | -q(c10). [factor(169,c,f)]. 452 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(172,c,g)]. 456 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y). [factor(176,c,g)]. 459 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8). [factor(181,e,g)]. 463 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | -q(c10). [factor(186,c,e)]. 487 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z). [factor(209,e,g)]. 488 -p(c3) | p(x) | -q(f2(y)) | -p(c5) | -q(y) | q(z). [factor(213,c,e)]. 489 -p(c3) | p(c6) | -q(f2(x)) | -p(c5) | -q(x) | -q(c7). [factor(215,c,e)]. 499 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | -q(c10). [factor(225,c,f)]. 510 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9). [factor(238,c,g)]. 524 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | p(c6) | -q(c7). [factor(254,c,d)]. 565 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(x)) | q(x). [factor(292,c,g)]. 582 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | p(c19). [factor(313,d,g)]. 586 p(c11) | -p(x) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(318,c,d)]. 595 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | p(c19). [factor(327,c,g)]. 600 p(x) | p(f3(x)) | q(c14) | -q(y) | q(c16) | -p(z). [factor(336,c,g)]. 602 p(x) | p(f3(x)) | q(c14) | -q(c18) | q(c16) | p(c17). [factor(338,d,g)]. 606 p(x) | p(f3(x)) | q(c14) | -q(c16) | p(c17) | -q(c18). [factor(342,c,d)]. 609 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19). [factor(344,c,g)]. 611 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | -p(y) | -q(c20). [factor(347,c,e)]. 613 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | p(c19). [factor(349,c,g)]. 614 p(x) | p(f3(x)) | q(c14) | -q(f4(c20)) | -q(c20) | -p(y). [factor(351,e,g)]. 622 p(c19) | p(f3(c19)) | -q(x) | -p(c15) | q(f4(y)) | q(y). [factor(363,e,g)]. 623 p(x) | p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(365,d,g)]. 624 p(c19) | p(f3(c19)) | -q(f4(x)) | -p(c15) | -q(x) | q(y). [factor(367,c,e)]. 625 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(369,d,f)]. 627 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16). [factor(371,c,g)]. 633 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(y)) | q(y). [factor(380,d,g)]. 634 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | -q(c20). [factor(382,c,f)]. 635 -p(x) | -p(f3(x)) | q(c14) | p(c19) | -q(f4(y)) | -q(y). [factor(384,d,g)]. 636 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(c20)) | -q(c20). [factor(386,f,g)]. 652 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | p(c19). [factor(400,d,g)]. 655 -p(x) | -p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(403,c,g)]. 656 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | p(c19) | q(y). [factor(405,c,d)]. 659 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(408,c,e)]. 661 p(c6) | p(f1(c6)) | -q(c7) | q(f2(x)) | q(x). [factor(411,c,f)]. 662 p(c6) | p(f1(c6)) | -q(f2(x)) | -q(x) | -q(c7). [factor(414,c,d)]. 663 p(x) | p(f1(x)) | -q(f2(c7)) | -q(c7) | p(c6). [factor(415,d,f)]. 666 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9). [factor(418,d,f)]. 667 p(x) | p(f1(x)) | -q(c10) | q(c8) | -p(y). [factor(421,c,f)]. 670 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9). [factor(424,d,f)]. 671 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(428,d,f)]. 673 -p(x) | -p(f1(x)) | -q(f2(c7)) | p(c6) | -q(c7). [factor(437,e,f)]. 674 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(c8). [factor(439,e,f)]. 675 -p(x) | -p(f1(x)) | -q(c10) | p(y) | q(c8). [factor(442,c,f)]. 676 -p(x) | -p(f1(x)) | -q(c8) | p(c9) | q(y). [factor(444,e,f)]. 678 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x). [factor(448,c,f)]. 680 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(451,c,f)]. 681 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x). [factor(454,c,f)]. 682 -p(c2) | -p(f1(c2)) | q(c1) | -q(c10) | q(c8). [factor(457,d,f)]. 683 -p(c2) | -p(f1(c2)) | q(c1) | -q(c8) | -q(c10). [factor(461,c,d)]. 685 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y). [factor(464,c,f)]. 689 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(472,c,f)]. 690 -p(c3) | p(c9) | q(c4) | -q(x) | q(c8). [factor(476,c,f)]. 691 -p(c3) | p(x) | q(c4) | -q(c10) | q(c8). [factor(478,d,f)]. 694 -p(c3) | p(x) | q(c4) | -q(c8) | -q(c10). [factor(484,c,d)]. 695 -p(c3) | p(c6) | -q(f2(c7)) | -p(c5) | -q(c7). [factor(489,e,f)]. 696 -p(c3) | p(c9) | -q(x) | -p(c5) | q(c8). [factor(491,e,f)]. 697 -p(c3) | p(x) | -q(c10) | -p(c5) | q(c8). [factor(494,c,f)]. 698 -p(c3) | p(c9) | -q(c8) | -p(c5) | q(x). [factor(496,e,f)]. 700 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y). [factor(500,c,f)]. 703 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(507,c,f)]. 704 p(c3) | -p(x) | q(c4) | -q(c10) | q(c8). [factor(511,d,f)]. 705 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9). [factor(514,c,f)]. 706 p(c3) | -p(x) | q(c4) | -q(c8) | -q(c10). [factor(516,c,d)]. 707 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y). [factor(519,d,f)]. 708 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | q(y). [factor(522,c,d)]. 709 p(c3) | -p(c5) | -q(f2(c7)) | -q(c7) | p(c6). [factor(524,d,f)]. 710 p(c3) | -p(c5) | -q(x) | q(c8) | p(c9). [factor(526,d,f)]. 713 p(c3) | -p(c5) | -q(c8) | q(x) | p(c9). [factor(532,d,f)]. 714 p(c3) | -p(c5) | -q(c8) | q(x) | -q(c10). [factor(535,c,e)]. 723 -p(c11) | p(c19) | -q(x) | q(f4(y)) | q(y). [factor(552,d,f)]. 724 -p(c11) | p(x) | -q(c20) | q(f4(y)) | q(y). [factor(554,c,f)]. 725 -p(c11) | p(c19) | -q(f4(x)) | -q(x) | q(y). [factor(557,c,d)]. 726 -p(c11) | p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(559,c,d)]. 729 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(c12)). [factor(564,c,f)]. 738 p(c11) | -p(x) | -q(c20) | q(f4(y)) | q(y). [factor(583,c,f)]. 739 p(c11) | -p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(587,c,d)]. 742 p(c11) | -p(c13) | q(c12) | q(f4(c12)) | p(c19). [factor(594,c,f)]. 744 p(c17) | p(f3(c17)) | q(c14) | -q(c18) | q(c16). [factor(601,d,f)]. 745 p(x) | p(f3(x)) | q(c14) | -q(c16) | -p(y). [factor(603,c,f)]. 746 p(c17) | p(f3(c17)) | q(c14) | -q(c16) | -q(c18). [factor(605,c,d)]. 748 p(c19) | p(f3(c19)) | q(c14) | q(f4(x)) | q(x). [factor(607,c,f)]. 749 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | p(c19). [factor(608,c,f)]. 750 p(c19) | p(f3(c19)) | q(c14) | -q(f4(x)) | -q(x). [factor(612,c,f)]. 751 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(615,e,f)]. 752 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(619,e,f)]. 753 p(x) | p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(625,e,f)]. 754 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16). [factor(628,c,f)]. 755 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(c14)). [factor(631,d,f)]. 759 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(640,e,f)]. 764 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(648,e,f)]. 765 -p(c15) | -p(f3(c15)) | -q(c20) | q(f4(x)) | q(x). [factor(653,c,f)]. 766 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | -q(c20). [factor(657,c,d)]. 768 -p(x) | -p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(659,e,f)]. 769 p(c6) | p(f1(c6)) | -q(f2(c7)) | -q(c7). [factor(662,d,e)]. 770 p(c9) | p(f1(c9)) | -q(x) | q(c8). [factor(664,d,e)]. 771 p(c9) | p(f1(c9)) | -q(c8) | q(x). [factor(668,d,e)]. 772 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)). [factor(677,c,e)]. 773 -p(c3) | p(x) | q(c4) | q(f2(c4)). [factor(684,c,e)]. 774 -p(c3) | p(c9) | q(c4) | -q(c8). [factor(692,c,e)]. 775 p(c3) | -p(x) | q(c4) | q(f2(c4)). [factor(699,c,e)]. 776 p(c3) | -p(c5) | -q(c10) | q(c8). [factor(711,c,e)]. 777 -p(c11) | p(x) | -q(y) | q(c16). [factor(715,d,e)]. 778 -p(c11) | p(x) | -q(c16) | q(y). [factor(719,d,e)]. 779 -p(c11) | p(x) | -q(f4(c20)) | -q(c20). [factor(726,d,e)]. 780 p(c11) | -p(x) | -q(y) | q(c16). [factor(730,d,e)]. 781 p(c11) | -p(x) | -q(c16) | q(y). [factor(734,d,e)]. 782 p(c11) | -p(x) | -q(f4(c20)) | -q(c20). [factor(739,d,e)]. 783 p(c19) | p(f3(c19)) | q(c14) | q(f4(c14)). [factor(747,c,e)]. 784 -p(c15) | -p(f3(c15)) | -q(x) | q(c16). [factor(756,d,e)]. 785 -p(c15) | -p(f3(c15)) | -q(c16) | q(x). [factor(761,d,e)]. 786 -p(c15) | -p(f3(c15)) | -q(f4(c20)) | -q(c20). [factor(766,d,e)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.10 seconds. given #1 (I,wt=16): 347 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | -p(z) | -q(c20). [factor(95,a,d)]. given #2 (I,wt=16): 351 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(97,a,d)]. given #3 (I,wt=16): 364 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(102,e,h)]. given #4 (I,wt=16): 368 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(104,c,e)]. given #5 (I,wt=16): 382 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | -q(c20). [factor(111,a,g)]. given #6 (I,wt=16): 386 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(113,a,g)]. given #7 (I,wt=16): 401 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(f4(z)) | q(z) | p(c19). [factor(118,e,h)]. given #8 (I,wt=16): 406 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | p(c19) | q(z). [factor(120,c,e)]. given #9 (I,wt=14): 410 p(x) | p(f1(x)) | -q(y) | q(f2(z)) | q(z) | -p(u). [factor(122,d,g)]. given #10 (I,wt=14): 412 p(x) | p(f1(x)) | -q(c7) | q(f2(y)) | q(y) | p(c6). [factor(124,c,g)]. given #11 (I,wt=14): 413 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | -p(z) | q(u). [factor(126,c,d)]. given #12 (I,wt=14): 415 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(128,c,d)]. given #13 (I,wt=13): 427 p(x) | p(f1(x)) | -q(c8) | q(y) | -p(z) | -q(c10). [factor(138,c,e)]. given #14 (I,wt=14): 430 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(141,d,g)]. given #15 (I,wt=14): 435 -p(x) | -p(f1(x)) | -q(y) | p(z) | q(f2(u)) | q(u). [factor(153,e,g)]. given #16 (I,wt=14): 436 -p(x) | -p(f1(x)) | -q(f2(y)) | p(z) | -q(y) | q(u). [factor(157,c,e)]. given #17 (I,wt=14): 437 -p(x) | -p(f1(x)) | -q(f2(y)) | p(c6) | -q(y) | -q(c7). [factor(159,d,f)]. given #18 (I,wt=13): 447 -p(x) | -p(f1(x)) | -q(c8) | p(y) | q(z) | -q(c10). [factor(169,c,f)]. given #19 (I,wt=14): 452 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y). [factor(172,c,g)]. given #20 (I,wt=14): 456 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(f2(y)) | -q(y). [factor(176,c,g)]. given #21 (I,wt=13): 459 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c10) | q(c8). [factor(181,e,g)]. given #22 (I,wt=13): 463 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | -q(c8) | -q(c10). [factor(186,c,e)]. given #23 (I,wt=13): 487 -p(c3) | p(x) | -q(y) | -p(c5) | q(f2(z)) | q(z). [factor(209,e,g)]. given #24 (I,wt=13): 488 -p(c3) | p(x) | -q(f2(y)) | -p(c5) | -q(y) | q(z). [factor(213,c,e)]. given #25 (I,wt=13): 489 -p(c3) | p(c6) | -q(f2(x)) | -p(c5) | -q(x) | -q(c7). [factor(215,c,e)]. given #26 (I,wt=12): 499 -p(c3) | p(x) | -q(c8) | -p(c5) | q(y) | -q(c10). [factor(225,c,f)]. given #27 (I,wt=12): 510 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9). [factor(238,c,g)]. given #28 (I,wt=13): 524 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | p(c6) | -q(c7). [factor(254,c,d)]. given #29 (I,wt=13): 565 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(x)) | q(x). [factor(292,c,g)]. given #30 (I,wt=13): 582 p(c11) | -p(x) | -q(y) | q(f4(z)) | q(z) | p(c19). [factor(313,d,g)]. given #31 (I,wt=13): 586 p(c11) | -p(x) | -q(f4(y)) | -q(y) | p(c19) | q(z). [factor(318,c,d)]. given #32 (I,wt=13): 595 p(c11) | -p(c13) | q(c12) | q(f4(x)) | q(x) | p(c19). [factor(327,c,g)]. given #33 (I,wt=13): 600 p(x) | p(f3(x)) | q(c14) | -q(y) | q(c16) | -p(z). [factor(336,c,g)]. given #34 (I,wt=13): 602 p(x) | p(f3(x)) | q(c14) | -q(c18) | q(c16) | p(c17). [factor(338,d,g)]. given #35 (I,wt=13): 606 p(x) | p(f3(x)) | q(c14) | -q(c16) | p(c17) | -q(c18). [factor(342,c,d)]. given #36 (I,wt=14): 609 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19). [factor(344,c,g)]. given #37 (I,wt=14): 611 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | -p(y) | -q(c20). [factor(347,c,e)]. given #38 (I,wt=14): 613 p(x) | p(f3(x)) | q(c14) | -q(f4(y)) | -q(y) | p(c19). [factor(349,c,g)]. given #39 (I,wt=14): 614 p(x) | p(f3(x)) | q(c14) | -q(f4(c20)) | -q(c20) | -p(y). [factor(351,e,g)]. given #40 (I,wt=14): 622 p(c19) | p(f3(c19)) | -q(x) | -p(c15) | q(f4(y)) | q(y). [factor(363,e,g)]. given #41 (I,wt=14): 623 p(x) | p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(365,d,g)]. given #42 (I,wt=14): 624 p(c19) | p(f3(c19)) | -q(f4(x)) | -p(c15) | -q(x) | q(y). [factor(367,c,e)]. given #43 (I,wt=14): 625 p(x) | p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(369,d,f)]. given #44 (I,wt=13): 627 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(z) | q(c16). [factor(371,c,g)]. given #45 (I,wt=14): 633 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(y)) | q(y). [factor(380,d,g)]. given #46 (I,wt=14): 634 -p(x) | -p(f3(x)) | q(c14) | p(y) | q(f4(c14)) | -q(c20). [factor(382,c,f)]. given #47 (I,wt=14): 635 -p(x) | -p(f3(x)) | q(c14) | p(c19) | -q(f4(y)) | -q(y). [factor(384,d,g)]. given #48 (I,wt=14): 636 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(f4(c20)) | -q(c20). [factor(386,f,g)]. given #49 (I,wt=14): 652 -p(c15) | -p(f3(c15)) | -q(x) | q(f4(y)) | q(y) | p(c19). [factor(400,d,g)]. given #50 (I,wt=14): 655 -p(x) | -p(f3(x)) | -q(c20) | -p(c15) | q(f4(y)) | q(y). [factor(403,c,g)]. given #51 (I,wt=14): 656 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | p(c19) | q(y). [factor(405,c,d)]. given #52 (I,wt=14): 659 -p(x) | -p(f3(x)) | -q(f4(y)) | -p(c15) | -q(y) | -q(c20). [factor(408,c,e)]. given #53 (I,wt=12): 661 p(c6) | p(f1(c6)) | -q(c7) | q(f2(x)) | q(x). [factor(411,c,f)]. given #54 (I,wt=12): 662 p(c6) | p(f1(c6)) | -q(f2(x)) | -q(x) | -q(c7). [factor(414,c,d)]. given #55 (I,wt=12): 663 p(x) | p(f1(x)) | -q(f2(c7)) | -q(c7) | p(c6). [factor(415,d,f)]. given #56 (I,wt=11): 666 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9). [factor(418,d,f)]. given #57 (I,wt=11): 667 p(x) | p(f1(x)) | -q(c10) | q(c8) | -p(y). [factor(421,c,f)]. given #58 (I,wt=11): 670 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9). [factor(424,d,f)]. given #59 (I,wt=12): 671 p(x) | p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(428,d,f)]. given #60 (I,wt=12): 673 -p(x) | -p(f1(x)) | -q(f2(c7)) | p(c6) | -q(c7). [factor(437,e,f)]. given #61 (I,wt=11): 674 -p(x) | -p(f1(x)) | -q(y) | p(c9) | q(c8). [factor(439,e,f)]. given #62 (I,wt=11): 675 -p(x) | -p(f1(x)) | -q(c10) | p(y) | q(c8). [factor(442,c,f)]. given #63 (I,wt=11): 676 -p(x) | -p(f1(x)) | -q(c8) | p(c9) | q(y). [factor(444,e,f)]. given #64 (I,wt=12): 678 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x). [factor(448,c,f)]. given #65 (I,wt=12): 680 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(c1)). [factor(451,c,f)]. given #66 (I,wt=12): 681 -p(c2) | -p(f1(c2)) | q(c1) | -q(f2(x)) | -q(x). [factor(454,c,f)]. given #67 (I,wt=11): 682 -p(c2) | -p(f1(c2)) | q(c1) | -q(c10) | q(c8). [factor(457,d,f)]. given #68 (I,wt=11): 683 -p(c2) | -p(f1(c2)) | q(c1) | -q(c8) | -q(c10). [factor(461,c,d)]. given #69 (I,wt=11): 685 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y). [factor(464,c,f)]. given #70 (I,wt=11): 689 -p(c3) | p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(472,c,f)]. given #71 (I,wt=10): 690 -p(c3) | p(c9) | q(c4) | -q(x) | q(c8). [factor(476,c,f)]. given #72 (I,wt=10): 691 -p(c3) | p(x) | q(c4) | -q(c10) | q(c8). [factor(478,d,f)]. given #73 (I,wt=10): 694 -p(c3) | p(x) | q(c4) | -q(c8) | -q(c10). [factor(484,c,d)]. given #74 (I,wt=11): 695 -p(c3) | p(c6) | -q(f2(c7)) | -p(c5) | -q(c7). [factor(489,e,f)]. given #75 (I,wt=10): 696 -p(c3) | p(c9) | -q(x) | -p(c5) | q(c8). [factor(491,e,f)]. given #76 (I,wt=10): 697 -p(c3) | p(x) | -q(c10) | -p(c5) | q(c8). [factor(494,c,f)]. given #77 (I,wt=10): 698 -p(c3) | p(c9) | -q(c8) | -p(c5) | q(x). [factor(496,e,f)]. given #78 (I,wt=11): 700 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y). [factor(500,c,f)]. given #79 (I,wt=11): 703 p(c3) | -p(x) | q(c4) | -q(f2(y)) | -q(y). [factor(507,c,f)]. given #80 (I,wt=10): 704 p(c3) | -p(x) | q(c4) | -q(c10) | q(c8). [factor(511,d,f)]. given #81 (I,wt=10): 705 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9). [factor(514,c,f)]. given #82 (I,wt=10): 706 p(c3) | -p(x) | q(c4) | -q(c8) | -q(c10). [factor(516,c,d)]. given #83 (I,wt=11): 707 p(c3) | -p(c5) | -q(x) | q(f2(y)) | q(y). [factor(519,d,f)]. given #84 (I,wt=11): 708 p(c3) | -p(c5) | -q(f2(x)) | -q(x) | q(y). [factor(522,c,d)]. given #85 (I,wt=11): 709 p(c3) | -p(c5) | -q(f2(c7)) | -q(c7) | p(c6). [factor(524,d,f)]. given #86 (I,wt=10): 710 p(c3) | -p(c5) | -q(x) | q(c8) | p(c9). [factor(526,d,f)]. given #87 (I,wt=10): 713 p(c3) | -p(c5) | -q(c8) | q(x) | p(c9). [factor(532,d,f)]. given #88 (I,wt=10): 714 p(c3) | -p(c5) | -q(c8) | q(x) | -q(c10). [factor(535,c,e)]. given #89 (I,wt=11): 723 -p(c11) | p(c19) | -q(x) | q(f4(y)) | q(y). [factor(552,d,f)]. given #90 (I,wt=11): 724 -p(c11) | p(x) | -q(c20) | q(f4(y)) | q(y). [factor(554,c,f)]. given #91 (I,wt=11): 725 -p(c11) | p(c19) | -q(f4(x)) | -q(x) | q(y). [factor(557,c,d)]. given #92 (I,wt=11): 726 -p(c11) | p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(559,c,d)]. given #93 (I,wt=11): 729 -p(c11) | p(c19) | q(c12) | -p(c13) | q(f4(c12)). [factor(564,c,f)]. given #94 (I,wt=11): 738 p(c11) | -p(x) | -q(c20) | q(f4(y)) | q(y). [factor(583,c,f)]. given #95 (I,wt=11): 739 p(c11) | -p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(587,c,d)]. given #96 (I,wt=11): 742 p(c11) | -p(c13) | q(c12) | q(f4(c12)) | p(c19). [factor(594,c,f)]. given #97 (I,wt=11): 744 p(c17) | p(f3(c17)) | q(c14) | -q(c18) | q(c16). [factor(601,d,f)]. given #98 (I,wt=11): 745 p(x) | p(f3(x)) | q(c14) | -q(c16) | -p(y). [factor(603,c,f)]. given #99 (I,wt=11): 746 p(c17) | p(f3(c17)) | q(c14) | -q(c16) | -q(c18). [factor(605,c,d)]. given #100 (I,wt=12): 748 p(c19) | p(f3(c19)) | q(c14) | q(f4(x)) | q(x). [factor(607,c,f)]. given #101 (I,wt=12): 749 p(x) | p(f3(x)) | q(c14) | q(f4(c14)) | p(c19). [factor(608,c,f)]. given #102 (I,wt=12): 750 p(c19) | p(f3(c19)) | q(c14) | -q(f4(x)) | -q(x). [factor(612,c,f)]. given #103 (I,wt=11): 751 p(x) | p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(615,e,f)]. given #104 (I,wt=11): 752 p(x) | p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(619,e,f)]. given #105 (I,wt=12): 753 p(x) | p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(625,e,f)]. given #106 (I,wt=11): 754 -p(x) | -p(f3(x)) | q(c14) | p(y) | -q(c16). [factor(628,c,f)]. given #107 (I,wt=12): 755 -p(x) | -p(f3(x)) | q(c14) | p(c19) | q(f4(c14)). [factor(631,d,f)]. given #108 (I,wt=11): 759 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(c16). [factor(640,e,f)]. given #109 (I,wt=11): 764 -p(x) | -p(f3(x)) | -q(c16) | -p(c15) | q(y). [factor(648,e,f)]. given #110 (I,wt=12): 765 -p(c15) | -p(f3(c15)) | -q(c20) | q(f4(x)) | q(x). [factor(653,c,f)]. given #111 (I,wt=12): 766 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | -q(c20). [factor(657,c,d)]. given #112 (I,wt=12): 768 -p(x) | -p(f3(x)) | -q(f4(c20)) | -p(c15) | -q(c20). [factor(659,e,f)]. given #113 (I,wt=10): 769 p(c6) | p(f1(c6)) | -q(f2(c7)) | -q(c7). [factor(662,d,e)]. given #114 (I,wt=9): 770 p(c9) | p(f1(c9)) | -q(x) | q(c8). [factor(664,d,e)]. given #115 (I,wt=9): 771 p(c9) | p(f1(c9)) | -q(c8) | q(x). [factor(668,d,e)]. given #116 (I,wt=10): 772 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)). [factor(677,c,e)]. given #117 (I,wt=9): 773 -p(c3) | p(x) | q(c4) | q(f2(c4)). [factor(684,c,e)]. given #118 (I,wt=8): 774 -p(c3) | p(c9) | q(c4) | -q(c8). [factor(692,c,e)]. given #119 (I,wt=9): 775 p(c3) | -p(x) | q(c4) | q(f2(c4)). [factor(699,c,e)]. given #120 (I,wt=8): 776 p(c3) | -p(c5) | -q(c10) | q(c8). [factor(711,c,e)]. given #121 (I,wt=8): 777 -p(c11) | p(x) | -q(y) | q(c16). [factor(715,d,e)]. given #122 (I,wt=8): 778 -p(c11) | p(x) | -q(c16) | q(y). [factor(719,d,e)]. given #123 (I,wt=9): 779 -p(c11) | p(x) | -q(f4(c20)) | -q(c20). [factor(726,d,e)]. given #124 (I,wt=8): 780 p(c11) | -p(x) | -q(y) | q(c16). [factor(730,d,e)]. given #125 (I,wt=8): 781 p(c11) | -p(x) | -q(c16) | q(y). [factor(734,d,e)]. given #126 (I,wt=9): 782 p(c11) | -p(x) | -q(f4(c20)) | -q(c20). [factor(739,d,e)]. given #127 (I,wt=10): 783 p(c19) | p(f3(c19)) | q(c14) | q(f4(c14)). [factor(747,c,e)]. given #128 (I,wt=9): 784 -p(c15) | -p(f3(c15)) | -q(x) | q(c16). [factor(756,d,e)]. given #129 (I,wt=9): 785 -p(c15) | -p(f3(c15)) | -q(c16) | q(x). [factor(761,d,e)]. given #130 (I,wt=10): 786 -p(c15) | -p(f3(c15)) | -q(f4(c20)) | -q(c20). [factor(766,d,e)]. given #131 (A,wt=19): 798 p(x) | p(f3(x)) | q(c14) | p(c19) | p(c3) | -p(y) | q(c4) | q(c8) | p(c9). [factor(788,c,d)]. given #132 (T,wt=11): 834 p(c19) | p(f3(c19)) | q(c14) | q(c16) | -p(x). [factor(811,c,d)]. given #133 (T,wt=13): 813 p(x) | p(f3(x)) | q(c14) | p(c19) | q(c16) | -p(y). [factor(793,c,d)]. given #134 (T,wt=14): 849 p(c19) | p(f3(c19)) | q(c14) | -p(c3) | -p(c5) | q(f2(c14)). [factor(835,c,g)]. given #135 (T,wt=14): 878 p(c9) | p(f1(c9)) | q(c8) | p(f3(c9)) | q(c14) | p(c19). [factor(863,c,f)]. given #136 (A,wt=21): 809 p(x) | p(f3(x)) | q(c14) | p(c19) | p(y) | p(f1(y)) | q(f2(z)) | q(z) | -p(u). [factor(791,c,d)]. given #137 (T,wt=12): 924 p(c9) | p(f1(c9)) | q(c8) | p(f3(c9)) | p(c19). [resolve(878,e,770,c),merge(f),merge(g),merge(h)]. given #138 (T,wt=12): 929 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | q(x). [resolve(924,c,771,c),merge(e),merge(f)]. given #139 (T,wt=14): 880 p(c9) | p(f1(c9)) | q(c8) | p(c19) | p(f3(c19)) | q(c14). [factor(865,d,g)]. given #140 (T,wt=12): 946 p(c9) | p(f1(c9)) | q(c8) | p(c19) | p(f3(c19)). [resolve(880,f,770,c),merge(f),merge(g),merge(h)]. given #141 (A,wt=17): 814 p(c19) | p(f3(c19)) | q(c14) | p(c3) | -p(x) | q(c4) | q(c8) | p(c9). [factor(795,c,d)]. given #142 (T,wt=12): 951 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | q(x). [resolve(946,c,771,c),merge(e),merge(f)]. given #143 (T,wt=14): 881 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(c19)) | q(c14). [factor(867,c,g)]. given #144 (T,wt=12): 984 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(c19)). [factor(976,a,f),merge(f)]. given #145 (T,wt=12): 1002 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | q(x). [factor(996,a,e),merge(e)]. given #146 (A,wt=17): 815 p(c3) | p(f3(c3)) | q(c14) | p(c19) | -p(x) | q(c4) | q(c8) | p(c9). [factor(796,c,d)]. given #147 (T,wt=14): 885 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(c9)) | q(c14). [factor(873,d,e)]. given #148 (T,wt=12): 1036 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(c9)). [factor(1026,a,f),merge(f)]. given #149 (T,wt=12): 1056 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | q(x). [factor(1048,a,e),merge(e)]. given #150 (T,wt=14): 911 p(c3) | -p(c5) | q(f2(c14)) | q(c14) | p(f3(c3)) | p(c19). [factor(908,d,f)]. given #151 (A,wt=17): 816 p(c9) | p(f3(c9)) | q(c14) | p(c19) | p(c3) | -p(x) | q(c4) | q(c8). [factor(797,c,d)]. given #152 (T,wt=14): 912 p(c3) | -p(c5) | q(f2(c14)) | q(c14) | p(c19) | p(f3(c19)). [factor(909,e,g)]. given #153 (T,wt=14): 940 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -p(c11) | -q(c20). [factor(932,a,f)]. given #154 (T,wt=12): 1073 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -p(c11). [resolve(940,f,929,e),merge(f),merge(g),merge(h),merge(i)]. given #155 (T,wt=14): 941 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -p(c15) | -q(c20). [factor(935,a,e),merge(e)]. given #156 (A,wt=18): 819 p(x) | p(f3(x)) | q(c14) | p(c19) | -p(c3) | -p(c5) | q(f2(y)) | q(y). [factor(800,c,d)]. given #157 (T,wt=12): 1076 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -p(c15). [resolve(941,f,929,e),merge(f),merge(g),merge(h),merge(i)]. given #158 (T,wt=14): 942 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -q(c7) | p(c6). [factor(939,a,e),merge(e)]. given #159 (T,wt=12): 1079 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | p(c6). [resolve(942,e,929,e),merge(f),merge(g),merge(h),merge(i)]. given #160 (T,wt=14): 962 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | -p(c11) | -q(c20). [factor(954,a,f)]. given #161 (A,wt=19): 823 p(x) | p(f3(x)) | q(c14) | p(c19) | -p(y) | -p(f1(y)) | q(f2(z)) | q(z). [factor(803,c,d)]. given #162 (T,wt=12): 1094 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | -p(c11). [resolve(962,f,951,e),merge(f),merge(g),merge(h),merge(i)]. given #163 (T,wt=14): 964 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | -p(c15) | -q(c20). [factor(957,c,e),merge(e)]. given #164 (T,wt=12): 1096 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | -p(c15). [resolve(964,f,951,e),merge(f),merge(g),merge(h),merge(i)]. given #165 (T,wt=14): 965 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | -q(c7) | p(c6). [factor(961,a,e),merge(e)]. given #166 (A,wt=19): 827 p(c19) | p(f3(c19)) | q(c14) | p(x) | p(f1(x)) | q(f2(y)) | q(y) | -p(z). [factor(805,c,d)]. given #167 (T,wt=12): 1098 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | p(c6). [resolve(965,e,951,e),merge(f),merge(g),merge(h),merge(i)]. given #168 (T,wt=14): 1013 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | -p(c11) | -q(c20). [factor(1005,a,f)]. given #169 (T,wt=12): 1100 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | -p(c11). [resolve(1013,f,1002,e),merge(f),merge(g),merge(h),merge(i)]. given #170 (T,wt=14): 1014 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | -p(c15) | -q(c20). [factor(1008,a,e),merge(e)]. given #171 (A,wt=19): 828 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(x)) | q(f2(y)) | q(y) | -p(z). [factor(806,c,d)]. given #172 (T,wt=12): 1102 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | -p(c15). [resolve(1014,f,1002,e),merge(f),merge(g),merge(h),merge(i)]. given #173 (T,wt=14): 1015 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | -q(c7) | p(c6). [factor(1012,a,e),merge(e)]. given #174 (T,wt=12): 1104 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | p(c6). [resolve(1015,e,1002,e),merge(f),merge(g),merge(h),merge(i)]. given #175 (T,wt=14): 1067 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | -p(c11) | -q(c20). [factor(1059,a,f)]. given #176 (A,wt=20): 829 p(f1(x)) | p(f3(f1(x))) | q(c14) | p(c19) | p(x) | q(f2(y)) | q(y) | -p(z). [factor(807,c,d)]. given #177 (T,wt=12): 1124 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | -p(c11). [resolve(1067,f,1056,e),merge(f),merge(g),merge(h),merge(i)]. given #178 (T,wt=14): 1069 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | -p(c15) | -q(c20). [factor(1062,c,e),merge(e)]. given #179 (T,wt=12): 1125 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | -p(c15). [resolve(1069,f,1056,e),merge(f),merge(g),merge(h),merge(i)]. given #180 (T,wt=14): 1070 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | -q(c7) | p(c6). [factor(1066,a,e),merge(e)]. given #181 (A,wt=20): 831 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(f3(x))) | q(f2(y)) | q(y) | -p(z). [factor(808,c,d)]. given #182 (T,wt=12): 1126 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | p(c6). [resolve(1070,e,1056,e),merge(f),merge(g),merge(h),merge(i)]. given #183 (T,wt=15): 850 p(c19) | p(f3(c19)) | q(c14) | -p(x) | -p(f1(x)) | q(f2(c14)). [factor(838,c,g)]. given #184 (T,wt=15): 851 p(c19) | p(f3(c19)) | q(c14) | p(f1(c19)) | q(f2(c14)) | -p(x). [factor(841,c,f)]. given #185 (T,wt=15): 879 p(c9) | p(f1(c9)) | q(c8) | p(f3(f1(c9))) | q(c14) | p(c19). [factor(864,c,f)]. given #186 (A,wt=19): 832 p(x) | p(f3(x)) | q(c14) | p(c19) | p(y) | p(f1(y)) | q(f2(c14)) | -p(z). [factor(809,c,h)]. given #187 (T,wt=13): 1130 p(c9) | p(f1(c9)) | q(c8) | p(f3(f1(c9))) | p(c19). [resolve(879,e,770,c),merge(f),merge(g),merge(h)]. given #188 (T,wt=13): 1135 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | q(x). [resolve(1130,c,771,c),merge(e),merge(f)]. given #189 (T,wt=15): 882 p(f3(c9)) | p(f1(f3(c9))) | q(c8) | p(c9) | q(c14) | p(c19). [factor(869,d,e)]. given #190 (T,wt=13): 1170 p(f3(c9)) | p(f1(f3(c9))) | q(c8) | p(c9) | p(c19). [factor(1159,a,f),merge(f)]. given #191 (A,wt=19): 833 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(c19)) | q(f2(y)) | q(y) | -p(z). [factor(809,d,e)]. given #192 (T,wt=13): 1191 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | q(x). [factor(1182,a,e),merge(e)]. given #193 (T,wt=15): 883 p(f3(c19)) | p(f1(f3(c19))) | q(c8) | p(c9) | p(c19) | q(c14). [factor(869,e,g)]. given #194 (T,wt=13): 1225 p(f3(c19)) | p(f1(f3(c19))) | q(c8) | p(c9) | p(c19). [factor(1216,a,f),merge(f)]. given #195 (T,wt=13): 1244 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | q(x). [factor(1237,a,e),merge(e)]. given #196 (A,wt=16): 835 p(c19) | p(f3(c19)) | q(c14) | -p(c3) | -p(c5) | q(f2(x)) | q(x). [factor(817,c,d)]. given #197 (T,wt=15): 884 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(f1(c19))) | q(c14). [factor(872,c,g)]. given #198 (T,wt=13): 1279 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(f3(f1(c19))). [factor(1270,a,f),merge(f)]. given #199 (T,wt=13): 1299 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | q(x). [factor(1292,a,e),merge(e)]. given #200 (T,wt=15): 896 -p(c3) | p(c9) | q(c4) | q(c8) | p(f3(c9)) | q(c14) | p(c19). [factor(893,c,g)]. given #201 (A,wt=16): 837 p(x) | p(f3(x)) | q(c14) | p(c19) | -p(c3) | -p(c5) | q(f2(c14)). [factor(819,c,h)]. given #202 (T,wt=15): 897 -p(c3) | p(c9) | q(c4) | q(c8) | p(c19) | p(f3(c19)) | q(c14). [factor(894,e,h)]. given #203 (T,wt=15): 902 -p(c3) | p(c9) | -p(c5) | q(c8) | p(f3(c9)) | q(c14) | p(c19). [factor(899,d,g)]. given #204 (T,wt=15): 903 -p(c3) | p(c9) | -p(c5) | q(c8) | p(c19) | p(f3(c19)) | q(c14). [factor(900,e,h)]. given #205 (T,wt=15): 918 p(c3) | -p(c5) | q(c8) | p(c9) | p(f3(c3)) | q(c14) | p(c19). [factor(914,c,g)]. given #206 (A,wt=17): 838 p(c19) | p(f3(c19)) | q(c14) | -p(x) | -p(f1(x)) | q(f2(y)) | q(y). [factor(821,c,d)]. given #207 (T,wt=15): 919 p(c3) | -p(c5) | q(c8) | p(c9) | p(f3(c9)) | q(c14) | p(c19). [factor(915,d,e)]. given #208 (T,wt=15): 920 p(c3) | -p(c5) | q(c8) | p(c9) | p(c19) | p(f3(c19)) | q(c14). [factor(915,e,h)]. given #209 (T,wt=15): 1146 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | -p(c11) | -q(c20). [factor(1138,a,f)]. given #210 (T,wt=13): 1314 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | -p(c11). [resolve(1146,f,1135,e),merge(f),merge(g),merge(h),merge(i)]. given #211 (A,wt=17): 840 p(x) | p(f3(x)) | q(c14) | p(c19) | -p(y) | -p(f1(y)) | q(f2(c14)). [factor(823,c,h)]. given #212 (T,wt=15): 1147 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | -p(c15) | -q(c20). [factor(1141,b,e),merge(e)]. given #213 (T,wt=13): 1316 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | -p(c15). [resolve(1147,f,1135,e),merge(f),merge(g),merge(h),merge(i)]. given #214 (T,wt=15): 1148 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | -q(c7) | p(c6). [factor(1145,a,e),merge(e)]. given #215 (T,wt=13): 1318 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | p(c6). [resolve(1148,e,1135,e),merge(f),merge(g),merge(h),merge(i)]. given #216 (A,wt=17): 841 p(c19) | p(f3(c19)) | q(c14) | p(f1(c19)) | q(f2(x)) | q(x) | -p(y). [factor(825,c,d)]. given #217 (T,wt=15): 1202 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | -p(c11) | -q(c20). [factor(1194,a,f)]. given #218 (T,wt=13): 1320 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | -p(c11). [resolve(1202,f,1191,e),merge(f),merge(g),merge(h),merge(i)]. given #219 (T,wt=15): 1204 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | -p(c15) | -q(c20). [factor(1197,a,f),merge(e)]. given #220 (T,wt=13): 1322 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | -p(c15). [resolve(1204,f,1191,e),merge(f),merge(g),merge(h),merge(i)]. given #221 (A,wt=18): 842 p(c19) | p(f3(c19)) | q(c14) | p(f1(f3(c19))) | q(f2(x)) | q(x) | -p(y). [factor(826,c,d)]. given #222 (T,wt=15): 1205 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | -q(c7) | p(c6). [factor(1201,a,e),merge(e)]. given #223 (T,wt=13): 1324 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | p(c6). [resolve(1205,e,1191,e),merge(f),merge(g),merge(h),merge(i)]. given #224 (T,wt=13): 1344 p(f3(c9)) | p(c9) | p(c19) | p(c6) | q(c14) | q(c16). [factor(1332,a,f),merge(e)]. given #225 (T,wt=13): 1365 p(f3(c9)) | p(c9) | p(c19) | p(c6) | q(c14) | -p(x). [factor(1355,a,g),merge(f)]. given #226 (A,wt=17): 843 p(c19) | p(f3(c19)) | q(c14) | p(x) | p(f1(x)) | q(f2(c14)) | -p(y). [factor(827,c,g)]. given #227 (T,wt=11): 1366 p(f3(c9)) | p(c9) | p(c19) | p(c6) | q(c14). [resolve(1365,f,1324,b),merge(f),merge(g),merge(h),merge(i)]. given #228 (T,wt=13): 1388 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c11) | q(c16). [factor(1369,a,f)]. given #229 (T,wt=13): 1390 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c15) | q(c16). [factor(1371,a,f),merge(e)]. given #230 (T,wt=14): 1391 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | q(c8). [factor(1378,d,e)]. given #231 (A,wt=17): 844 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(x)) | q(f2(c14)) | -p(y). [factor(828,c,g)]. given #232 (T,wt=14): 1403 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | q(x). [factor(1402,d,f),merge(f)]. given #233 (T,wt=14): 1407 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | -q(c7). [resolve(1403,f,769,c),merge(f),merge(g)]. given #234 (T,wt=12): 1413 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(f1(c6)). [resolve(1407,f,1403,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #235 (T,wt=15): 1255 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | -p(c11) | -q(c20). [factor(1247,a,f)]. given #236 (A,wt=18): 845 p(f1(x)) | p(f3(f1(x))) | q(c14) | p(c19) | p(x) | q(f2(c14)) | -p(y). [factor(829,c,g)]. given #237 (T,wt=13): 1440 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | -p(c11). [resolve(1255,f,1244,e),merge(f),merge(g),merge(h),merge(i)]. given #238 (T,wt=15): 1257 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | -p(c15) | -q(c20). [factor(1250,a,f),merge(e)]. given #239 (T,wt=13): 1441 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | -p(c15). [resolve(1257,f,1244,e),merge(f),merge(g),merge(h),merge(i)]. given #240 (T,wt=15): 1258 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | -q(c7) | p(c6). [factor(1254,a,e),merge(e)]. given #241 (A,wt=18): 846 p(f1(c19)) | p(f3(f1(c19))) | q(c14) | p(c19) | q(f2(x)) | q(x) | -p(y). [factor(829,d,e)]. given #242 (T,wt=13): 1442 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | p(c6). [resolve(1258,e,1244,e),merge(f),merge(g),merge(h),merge(i)]. given #243 (T,wt=13): 1446 p(f3(c19)) | p(c9) | p(c19) | p(c6) | q(c14) | q(c16). [resolve(1442,b,834,e),merge(e),merge(f)]. given #244 (T,wt=13): 1471 p(f3(c19)) | p(c9) | p(c19) | p(c6) | q(c14) | -p(x). [factor(1461,a,g),merge(f)]. given #245 (T,wt=11): 1472 p(f3(c19)) | p(c9) | p(c19) | p(c6) | q(c14). [resolve(1471,f,1442,b),merge(f),merge(g),merge(h),merge(i)]. given #246 (A,wt=18): 847 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(f3(x))) | q(f2(c14)) | -p(y). [factor(831,c,g)]. given #247 (T,wt=13): 1492 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c11) | q(c16). [factor(1475,a,f)]. given #248 (T,wt=13): 1494 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c15) | q(c16). [factor(1477,a,f),merge(e)]. given #249 (T,wt=14): 1495 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | q(c8). [factor(1484,d,e)]. given #250 (T,wt=14): 1505 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | q(x). [factor(1504,d,f),merge(f)]. given #251 (A,wt=17): 848 p(x) | p(f3(x)) | q(c14) | p(c19) | p(f1(c19)) | q(f2(c14)) | -p(y). [factor(832,d,e)]. given #252 (T,wt=14): 1509 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(f1(c6)) | -q(c7). [resolve(1505,f,769,c),merge(f),merge(g)]. given #253 (T,wt=12): 1515 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(f1(c6)). [resolve(1509,f,1505,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #254 (T,wt=15): 1310 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | -p(c11) | -q(c20). [factor(1302,a,f)]. given #255 (T,wt=13): 1516 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | -p(c11). [resolve(1310,f,1299,e),merge(f),merge(g),merge(h),merge(i)]. given #256 (A,wt=16): 852 p(c19) | p(f3(c19)) | q(c14) | p(f1(f3(c19))) | q(f2(c14)) | -p(x). [factor(842,c,f)]. given #257 (T,wt=15): 1311 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | -p(c15) | -q(c20). [factor(1305,b,e),merge(e)]. given #258 (T,wt=13): 1517 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | -p(c15). [resolve(1311,f,1299,e),merge(f),merge(g),merge(h),merge(i)]. given #259 (T,wt=15): 1312 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | -q(c7) | p(c6). [factor(1309,a,e),merge(e)]. given #260 (T,wt=13): 1518 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | p(c6). [resolve(1312,e,1299,e),merge(f),merge(g),merge(h),merge(i)]. given #261 (A,wt=16): 853 p(f1(c19)) | p(f3(f1(c19))) | q(c14) | p(c19) | q(f2(c14)) | -p(x). [factor(845,d,e)]. given #262 (T,wt=15): 1368 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | q(c16). [resolve(1366,e,780,c)]. given #263 (T,wt=13): 1520 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | q(c16). [resolve(1368,f,1324,b),merge(g),merge(h),merge(i),merge(j)]. given #264 (T,wt=15): 1373 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c3) | -p(c5) | q(c8). [resolve(1366,e,710,c),merge(h)]. given #265 (T,wt=15): 1375 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c3) | -p(c5) | q(c8). [resolve(1366,e,696,c),merge(f)]. given #266 (A,wt=18): 860 p(x) | p(f1(x)) | q(c8) | p(c9) | p(y) | p(f3(y)) | q(c14) | p(c19). [factor(854,c,h)]. given #267 (T,wt=14): 1562 p(c9) | p(f1(c9)) | q(c8) | p(x) | p(f3(x)) | p(c19). [factor(1526,a,d),merge(g)]. given #268 (T,wt=14): 1655 p(x) | p(f1(x)) | q(c8) | p(c9) | p(f3(x)) | p(c19). [factor(1609,a,g),merge(g)]. given #269 (T,wt=14): 1657 p(c19) | p(f1(c19)) | q(c8) | p(c9) | p(x) | p(f3(x)). [factor(1611,a,g),merge(g)]. given #270 (T,wt=14): 1659 p(x) | p(f1(x)) | q(c8) | p(c9) | p(f3(c9)) | p(c19). [factor(1612,d,e)]. given #271 (A,wt=18): 888 -p(x) | -p(f1(x)) | p(c9) | q(c8) | p(y) | p(f3(y)) | q(c14) | p(c19). [factor(886,d,h)]. given #272 (T,wt=14): 1660 p(x) | p(f1(x)) | q(c8) | p(c9) | p(c19) | p(f3(c19)). [factor(1612,e,g)]. given #273 (T,wt=14): 1665 p(c9) | p(f1(c9)) | p(x) | p(f3(x)) | p(c19) | q(y). [resolve(1562,c,771,c),merge(f),merge(g)]. given #274 (T,wt=14): 1688 p(x) | p(f1(x)) | p(c9) | p(f3(x)) | p(c19) | q(y). [factor(1677,a,f),merge(f)]. given #275 (T,wt=14): 1710 p(c19) | p(f1(c19)) | p(c9) | p(x) | p(f3(x)) | q(y). [factor(1700,a,f),merge(f)]. given #276 (A,wt=16): 890 -p(x) | -p(f1(x)) | p(c9) | q(c8) | p(f3(c9)) | q(c14) | p(c19). [factor(887,d,g)]. given #277 (T,wt=14): 1735 p(x) | p(f1(x)) | p(c9) | p(f3(c9)) | p(c19) | q(y). [factor(1722,a,f),merge(f)]. given #278 (T,wt=14): 1758 p(x) | p(f1(x)) | p(c9) | p(c19) | p(f3(c19)) | q(y). [factor(1747,a,f),merge(f)]. given #279 (T,wt=14): 1779 p(c9) | p(f1(c9)) | p(c6) | p(f3(c6)) | p(c19) | -q(c7). [factor(1778,c,g)]. given #280 (T,wt=12): 1854 p(c9) | p(f1(c9)) | p(c6) | p(f3(c6)) | p(c19). [factor(1851,c,f),merge(f)]. given #281 (A,wt=16): 891 -p(x) | -p(f1(x)) | p(c9) | q(c8) | p(c19) | p(f3(c19)) | q(c14). [factor(888,e,h)]. given #282 (T,wt=14): 1792 p(c6) | p(f1(c6)) | p(c9) | p(f3(c6)) | p(c19) | -q(c7). [factor(1783,a,f),merge(f)]. given #283 (T,wt=12): 1858 p(c6) | p(f1(c6)) | p(c9) | p(f3(c6)) | p(c19). [factor(1856,a,f),merge(f),merge(g)]. given #284 (T,wt=14): 1816 p(c19) | p(f1(c19)) | p(c9) | p(c6) | p(f3(c6)) | -q(c7). [factor(1815,d,g)]. given #285 (T,wt=12): 1860 p(c19) | p(f1(c19)) | p(c9) | p(c6) | p(f3(c6)). [factor(1859,d,f),merge(f)]. given #286 (A,wt=17): 894 -p(c3) | p(c9) | q(c4) | q(c8) | p(x) | p(f3(x)) | q(c14) | p(c19). [factor(892,c,h)]. given #287 (T,wt=15): 1376 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c3) | q(c4) | q(c8). [resolve(1366,e,690,d),merge(f)]. given #288 (T,wt=15): 1474 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | q(c16). [resolve(1472,e,780,c)]. given #289 (T,wt=13): 1861 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | q(c16). [resolve(1474,f,1442,b),merge(g),merge(h),merge(i),merge(j)]. given #290 (T,wt=15): 1479 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c3) | -p(c5) | q(c8). [resolve(1472,e,710,c),merge(h)]. given #291 (A,wt=17): 900 -p(c3) | p(c9) | -p(c5) | q(c8) | p(x) | p(f3(x)) | q(c14) | p(c19). [factor(898,d,h)]. given #292 (T,wt=15): 1481 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c3) | -p(c5) | q(c8). [resolve(1472,e,696,c),merge(f)]. given #293 (T,wt=15): 1482 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c3) | q(c4) | q(c8). [resolve(1472,e,690,d),merge(f)]. given #294 (T,wt=15): 1522 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | q(y). [resolve(1520,f,781,c),merge(f)]. given #295 (T,wt=13): 1865 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | q(x). [resolve(1522,f,1324,b),merge(g),merge(h),merge(i),merge(j)]. given #296 (A,wt=18): 906 p(c3) | -p(c5) | q(f2(x)) | q(x) | p(y) | p(f3(y)) | q(c14) | p(c19). [factor(904,c,h)]. given #297 (T,wt=15): 1656 p(f3(x)) | p(f1(f3(x))) | q(c8) | p(c9) | p(x) | p(c19). [factor(1610,a,g),merge(g)]. given #298 (T,wt=15): 1658 p(x) | p(f1(x)) | q(c8) | p(c9) | p(f3(f1(x))) | p(c19). [factor(1612,b,e)]. given #299 (T,wt=15): 1863 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | q(y). [resolve(1861,f,781,c),merge(f)]. given #300 (T,wt=13): 1915 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | q(x). [resolve(1863,f,1442,b),merge(g),merge(h),merge(i),merge(j)]. given #301 (A,wt=16): 908 p(c3) | -p(c5) | q(f2(x)) | q(x) | p(f3(c3)) | q(c14) | p(c19). [factor(905,c,g)]. given #302 (T,wt=15): 1867 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | -q(c20). [resolve(1865,f,782,c),merge(f)]. given #303 (T,wt=13): 1922 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x). [resolve(1867,g,1865,f),merge(g),merge(h),merge(i),merge(j),merge(k)]. given #304 (T,wt=11): 1924 p(f3(c9)) | p(c9) | p(c19) | p(c6) | p(c11). [resolve(1922,f,1324,b),merge(f),merge(g),merge(h),merge(i)]. given #305 (T,wt=15): 1892 p(f3(x)) | p(f1(f3(x))) | p(c9) | p(x) | p(c19) | q(y). [factor(1882,a,f),merge(f)]. given #306 (A,wt=16): 909 p(c3) | -p(c5) | q(f2(c14)) | q(c14) | p(x) | p(f3(x)) | p(c19). [factor(906,d,g)]. given #307 (T,wt=15): 1914 p(x) | p(f1(x)) | p(c9) | p(f3(f1(x))) | p(c19) | q(y). [factor(1904,a,f),merge(f)]. given #308 (T,wt=15): 1917 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x) | -q(c20). [resolve(1915,f,782,c),merge(f)]. given #309 (T,wt=13): 1981 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11) | -p(x). [resolve(1917,g,1915,f),merge(g),merge(h),merge(i),merge(j),merge(k)]. given #310 (T,wt=11): 1982 p(f3(c19)) | p(c9) | p(c19) | p(c6) | p(c11). [resolve(1981,f,1924,a),merge(f),merge(g),merge(h),merge(i)]. given #311 (A,wt=16): 910 p(c3) | -p(c5) | q(f2(x)) | q(x) | p(c19) | p(f3(c19)) | q(c14). [factor(906,e,h)]. given #312 (T,wt=15): 1930 p(c9) | p(c19) | p(c6) | p(c11) | p(c3) | q(c4) | q(f2(c4)). [resolve(1924,a,775,b)]. given #313 (T,wt=15): 1935 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c6)) | q(c14) | q(c16). [factor(1927,c,e)]. given #314 (T,wt=15): 1936 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c11)) | q(c14) | q(c16). [factor(1927,d,e)]. given #315 (T,wt=15): 1963 p(f3(c6)) | p(f1(f3(c6))) | p(c9) | p(c6) | p(c19) | -q(c7). [factor(1962,d,g)]. given #316 (A,wt=17): 915 p(c3) | -p(c5) | q(c8) | p(c9) | p(x) | p(f3(x)) | q(c14) | p(c19). [factor(913,c,h)]. given #317 (T,wt=13): 2017 p(f3(c6)) | p(f1(f3(c6))) | p(c9) | p(c6) | p(c19). [factor(2011,a,f),merge(f),merge(g)]. given #318 (T,wt=13): 2028 p(f3(c6)) | p(c9) | p(c6) | p(c19) | q(c14) | q(c16). [factor(2020,a,f),merge(e)]. given #319 (T,wt=13): 2047 p(f3(c6)) | p(c9) | p(c6) | p(c19) | q(c14) | -p(x). [factor(2038,a,g),merge(f)]. given #320 (T,wt=11): 2048 p(f3(c6)) | p(c9) | p(c6) | p(c19) | q(c14). [resolve(2047,f,2017,b),merge(f),merge(g),merge(h),merge(i)]. given #321 (A,wt=16): 931 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | p(c11) | -p(x) | -q(c20). [resolve(929,e,782,c)]. given #322 (T,wt=13): 2068 p(f3(c6)) | p(c9) | p(c6) | p(c19) | -p(c11) | q(c16). [factor(2051,a,f)]. given #323 (T,wt=13): 2070 p(f3(c6)) | p(c9) | p(c6) | p(c19) | -p(c15) | q(c16). [factor(2053,a,f),merge(e)]. given #324 (T,wt=14): 2084 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | p(c11) | -p(x). [resolve(931,g,929,e),merge(g),merge(h),merge(i),merge(j)]. given #325 (T,wt=15): 1976 p(c6) | p(f1(c6)) | p(c9) | p(f3(f1(c6))) | p(c19) | -q(c7). [factor(1967,a,f),merge(f)]. given #326 (A,wt=16): 953 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | p(c11) | -p(x) | -q(c20). [resolve(951,e,782,c)]. given #327 (T,wt=13): 2090 p(c6) | p(f1(c6)) | p(c9) | p(f3(f1(c6))) | p(c19). [factor(2085,a,f),merge(f),merge(g)]. given #328 (T,wt=14): 2098 p(c9) | p(f1(c9)) | p(c19) | p(f3(c19)) | p(c11) | -p(x). [resolve(953,g,951,e),merge(g),merge(h),merge(i),merge(j)]. given #329 (T,wt=15): 2009 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c11)) | q(c14) | -p(x). [factor(2005,f,h)]. given #330 (T,wt=13): 2100 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c11)) | q(c14). [resolve(2009,g,1982,a),merge(g),merge(h),merge(i),merge(j)]. given #331 (A,wt=16): 1004 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | p(c11) | -p(x) | -q(c20). [resolve(1002,e,782,c)]. given #332 (T,wt=14): 2123 p(c19) | p(f1(c19)) | p(c9) | p(f3(c19)) | p(c11) | -p(x). [resolve(1004,g,1002,e),merge(g),merge(h),merge(i),merge(j)]. given #333 (T,wt=15): 2050 p(f3(c6)) | p(c9) | p(c6) | p(c19) | p(c11) | -p(x) | q(c16). [resolve(2048,e,780,c)]. given #334 (T,wt=13): 2124 p(f3(c6)) | p(c9) | p(c6) | p(c19) | p(c11) | q(c16). [resolve(2050,f,2017,b),merge(g),merge(h),merge(i),merge(j)]. given #335 (T,wt=15): 2055 p(f3(c6)) | p(c9) | p(c6) | p(c19) | p(c3) | -p(c5) | q(c8). [resolve(2048,e,710,c),merge(h)]. given #336 (A,wt=16): 1058 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | p(c11) | -p(x) | -q(c20). [resolve(1056,e,782,c)]. given #337 (T,wt=14): 2133 p(c19) | p(f1(c19)) | p(c9) | p(f3(c9)) | p(c11) | -p(x). [resolve(1058,g,1056,e),merge(g),merge(h),merge(i),merge(j)]. given #338 (T,wt=15): 2057 p(f3(c6)) | p(c9) | p(c6) | p(c19) | -p(c3) | -p(c5) | q(c8). [resolve(2048,e,696,c),merge(f)]. given #339 (T,wt=15): 2058 p(f3(c6)) | p(c9) | p(c6) | p(c19) | -p(c3) | q(c4) | q(c8). [resolve(2048,e,690,d),merge(f)]. given #340 (T,wt=15): 2102 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c11)) | -p(x) | q(c16). [resolve(2100,f,780,c),merge(f)]. given #341 (A,wt=16): 1082 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(1079,c,775,b)]. given #342 (T,wt=13): 2135 p(c9) | p(c19) | p(c6) | p(c11) | p(f3(c11)) | q(c16). [resolve(2102,f,1982,a),merge(g),merge(h),merge(i),merge(j)]. given #343 (T,wt=15): 2126 p(f3(c6)) | p(c9) | p(c6) | p(c19) | p(c11) | -p(x) | q(y). [resolve(2124,f,781,c),merge(f)]. given #344 (T,wt=13): 2151 p(f3(c6)) | p(c9) | p(c6) | p(c19) | p(c11) | q(x). [resolve(2126,f,2017,b),merge(g),merge(h),merge(i),merge(j)]. given #345 (T,wt=15): 2138 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(1082,g,770,c),merge(g),merge(h)]. given #346 (A,wt=16): 1108 p(c19) | p(f1(c19)) | p(c9) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(1104,d,775,b)]. given #347 (T,wt=13): 2161 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4). [factor(2159,f,g)]. given #348 (T,wt=13): 2182 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c8). [resolve(2161,f,770,c),merge(f),merge(g)]. given #349 (T,wt=13): 2196 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(x). [resolve(2182,f,771,c),merge(f),merge(g)]. given #350 (T,wt=13): 2206 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | -q(c7). [factor(2204,a,f),merge(f)]. given #351 (A,wt=18): 1109 p(c19) | p(f1(c19)) | p(c9) | p(c6) | p(c3) | q(c4) | q(f2(x)) | q(x). [resolve(1104,d,700,b)]. given #352 (T,wt=11): 2207 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3). [resolve(2206,f,2196,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #353 (T,wt=13): 2213 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2207,b,775,b),merge(e)]. given #354 (T,wt=14): 2230 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | -p(x) | q(c8). [resolve(2213,f,510,d),merge(f),merge(h),merge(j)]. given #355 (T,wt=12): 2244 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(2230,f,2207,b),merge(g),merge(h),merge(i),merge(j)]. given #356 (A,wt=17): 1137 p(c9) | p(f1(c9)) | p(f3(f1(c9))) | p(c19) | p(c11) | -p(x) | -q(c20). [resolve(1135,e,782,c)]. given #357 (T,wt=12): 2246 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | -p(x). [resolve(2244,f,705,d),merge(f),merge(h),merge(i)]. given #358 (T,wt=10): 2261 p(c9) | p(c19) | p(c6) | p(c3) | q(c4). [resolve(2246,f,2207,b),merge(f),merge(g),merge(h),merge(i)]. given #359 (T,wt=12): 2268 p(c9) | p(c19) | p(c6) | p(c3) | -p(c5) | q(c8). [resolve(2261,e,710,c),merge(e),merge(h)]. given #360 (T,wt=12): 2279 p(c9) | p(c19) | p(c6) | p(c3) | -p(c11) | q(c16). [factor(2264,a,f)]. given #361 (A,wt=17): 1193 p(f3(c9)) | p(f1(f3(c9))) | p(c9) | p(c19) | p(c11) | -p(x) | -q(c20). [resolve(1191,e,782,c)]. given #362 (T,wt=13): 2281 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c19)) | q(c8). [factor(2271,b,e)]. given #363 (T,wt=13): 2282 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c6)) | q(c8). [factor(2271,c,e)]. given #364 (T,wt=13): 2283 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | q(c8). [factor(2271,d,e)]. given #365 (T,wt=13): 2298 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c19)) | q(x). [factor(2297,b,f),merge(f)]. given #366 (A,wt=17): 1246 p(f3(c19)) | p(f1(f3(c19))) | p(c9) | p(c19) | p(c11) | -p(x) | -q(c20). [resolve(1244,e,782,c)]. given #367 (T,wt=13): 2302 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c6)) | q(x). [factor(2301,c,f),merge(f)]. given #368 (T,wt=13): 2306 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | q(x). [factor(2305,d,f),merge(f)]. given #369 (T,wt=13): 2316 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c19)) | -q(c7). [factor(2314,b,f),merge(f)]. given #370 (T,wt=11): 2342 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c19)). [resolve(2316,f,2298,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #371 (A,wt=17): 1301 p(c19) | p(f1(c19)) | p(c9) | p(f3(f1(c19))) | p(c11) | -p(x) | -q(c20). [resolve(1299,e,782,c)]. given #372 (T,wt=13): 2324 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c6)) | -q(c7). [resolve(2302,f,769,c),merge(f),merge(g)]. given #373 (T,wt=11): 2348 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c6)). [resolve(2324,f,2302,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #374 (T,wt=13): 2339 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | -q(c7). [factor(2336,d,f),merge(f)]. given #375 (T,wt=11): 2349 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)). [resolve(2339,f,2306,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. given #376 (A,wt=16): 1372 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c11) | q(f4(x)) | q(x). [resolve(1366,e,723,c),merge(f)]. given #377 (T,wt=14): 2263 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2261,e,780,c)]. given #378 (T,wt=12): 2350 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | q(c16). [resolve(2263,f,2349,e),merge(g),merge(h),merge(i),merge(j)]. given #379 (T,wt=14): 2352 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2350,f,781,c),merge(f)]. given #380 (T,wt=12): 2353 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | q(x). [resolve(2352,f,2349,e),merge(g),merge(h),merge(i),merge(j)]. given #381 (A,wt=16): 1377 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(x) | -p(f1(x)) | q(c8). [resolve(1366,e,674,c),merge(g)]. given #382 (T,wt=14): 2355 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2353,f,782,c),merge(f)]. given #383 (T,wt=12): 2360 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x). [resolve(2355,g,2353,f),merge(g),merge(h),merge(i),merge(j),merge(k)]. given #384 (T,wt=10): 2361 p(c9) | p(c19) | p(c6) | p(c3) | p(c11). [resolve(2360,f,2349,e),merge(f),merge(g),merge(h),merge(i)]. given #385 (T,wt=13): 2362 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | q(f2(c4)). [resolve(2361,b,775,b),merge(e)]. given #386 (A,wt=18): 1392 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c3) | -p(c5) | q(f2(x)) | q(x). [factor(1383,a,f)]. given #387 (T,wt=14): 2365 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | -p(x) | q(c16). [resolve(2362,f,780,c),merge(f)]. given #388 (T,wt=12): 2374 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | q(c16). [resolve(2365,f,2361,b),merge(g),merge(h),merge(i),merge(j)]. given #389 (T,wt=12): 2378 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | -p(x). [factor(2376,e,g)]. given #390 (T,wt=10): 2379 p(c9) | p(c6) | p(c3) | p(c11) | q(c4). [resolve(2378,f,2361,b),merge(f),merge(g),merge(h),merge(i)]. given #391 (A,wt=19): 1393 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(x) | -p(f1(x)) | q(f2(y)) | q(y). [factor(1384,a,g)]. given #392 (T,wt=12): 2381 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2379,e,780,c),merge(e)]. given #393 (T,wt=10): 2397 p(c9) | p(c6) | p(c3) | p(c11) | q(c16). [resolve(2381,e,2361,b),merge(f),merge(g),merge(h),merge(i)]. given #394 (T,wt=12): 2399 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2397,e,781,c),merge(e)]. given #395 (T,wt=10): 2400 p(c9) | p(c6) | p(c3) | p(c11) | q(x). [resolve(2399,e,2361,b),merge(f),merge(g),merge(h),merge(i)]. given #396 (A,wt=16): 1396 p(f3(c9)) | p(c9) | p(c19) | p(c6) | -p(c15) | q(f4(x)) | q(x). [factor(1387,a,f),merge(e)]. given #397 (T,wt=12): 2402 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2400,e,782,c),merge(e)]. given #398 (T,wt=10): 2410 p(c9) | p(c6) | p(c3) | p(c11) | -p(x). [resolve(2402,f,2400,e),merge(f),merge(g),merge(h),merge(i)]. given #399 (T,wt=8): 2411 p(c9) | p(c6) | p(c3) | p(c11). [resolve(2410,e,2361,b),merge(e),merge(f),merge(g),merge(h)]. given #400 (T,wt=10): 2412 p(c9) | p(c6) | p(c3) | p(c19) | q(c16). [resolve(2411,d,2279,e),merge(d),merge(f),merge(g)]. given #401 (A,wt=18): 1422 p(c9) | p(c19) | p(c6) | p(f1(c6)) | p(x) | p(f3(x)) | q(c14) | q(c16). [resolve(1413,a,813,f),merge(h)]. given #402 (T,wt=11): 2414 p(c9) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2411,d,775,b),merge(d)]. given #403 (T,wt=12): 2422 p(c9) | p(c6) | p(c3) | p(c19) | -p(c11) | q(x). [factor(2417,a,f)]. given #404 (T,wt=10): 2465 p(c9) | p(c6) | p(c3) | p(c19) | q(x). [resolve(2422,e,2411,d),merge(f),merge(g),merge(h)]. given #405 (T,wt=12): 2454 p(c9) | p(c6) | p(c3) | q(c4) | -p(x) | q(c8). [resolve(2414,e,510,d),merge(e),merge(g),merge(i)]. given #406 (A,wt=19): 1429 p(c9) | p(c19) | p(c6) | p(f1(c6)) | p(x) | p(f3(x)) | q(c14) | q(f2(c14)). [factor(1417,c,h),merge(h)]. given #407 (T,wt=10): 2478 p(c9) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(2454,e,2411,d),merge(f),merge(g),merge(h)]. given #408 (T,wt=10): 2481 p(c9) | p(c6) | p(c3) | q(c4) | -p(x). [resolve(2478,e,705,d),merge(e),merge(g),merge(h)]. given #409 (T,wt=8): 2489 p(c9) | p(c6) | p(c3) | q(c4). [resolve(2481,e,2411,d),merge(e),merge(f),merge(g)]. given #410 (T,wt=10): 2495 p(c9) | p(c6) | p(c3) | -p(c5) | q(c8). [resolve(2489,d,710,c),merge(d),merge(g)]. given #411 (A,wt=21): 1438 p(c9) | p(c19) | p(c6) | p(f1(c6)) | p(x) | p(f3(x)) | q(c14) | q(f2(y)) | q(y). [factor(1423,c,h),merge(h)]. given #412 (T,wt=10): 2503 p(c9) | p(c6) | p(c3) | -p(c11) | q(c16). [factor(2491,a,e)]. given #413 (T,wt=8): 2517 p(c9) | p(c6) | p(c3) | q(c16). [resolve(2503,d,2411,d),merge(e),merge(f),merge(g)]. given #414 (T,wt=10): 2524 p(c9) | p(c6) | p(c3) | -p(c11) | q(x). [factor(2519,a,e)]. given #415 (T,wt=8): 2532 p(c9) | p(c6) | p(c3) | q(x). [resolve(2524,d,2411,d),merge(e),merge(f),merge(g)]. given #416 (A,wt=16): 1478 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c11) | q(f4(x)) | q(x). [resolve(1472,e,723,c),merge(f)]. given #417 (T,wt=10): 2538 p(c9) | p(c6) | p(c3) | -p(c5) | -q(c7). [resolve(2532,d,709,c),merge(d),merge(g)]. given #418 (T,wt=8): 2547 p(c9) | p(c6) | p(c3) | -p(c5). [resolve(2538,e,2532,d),merge(e),merge(f),merge(g)]. given #419 (T,wt=10): 2541 p(c9) | p(c6) | p(c3) | -p(c11) | -q(c20). [factor(2534,a,e)]. given #420 (T,wt=8): 2548 p(c9) | p(c6) | p(c3) | -p(c11). [resolve(2541,e,2532,d),merge(e),merge(f),merge(g)]. given #421 (A,wt=16): 1483 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(x) | -p(f1(x)) | q(c8). [resolve(1472,e,674,c),merge(g)]. given #422 (T,wt=6): 2549 p(c9) | p(c6) | p(c3). [resolve(2548,d,2411,d),merge(d),merge(e),merge(f)]. given #423 (T,wt=9): 2570 p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2549,a,775,b),merge(c)]. given #424 (T,wt=10): 2619 p(c6) | p(c3) | q(c4) | -p(c11) | q(c16). [factor(2608,a,e)]. given #425 (T,wt=11): 2571 p(c6) | p(c3) | q(c4) | q(f2(x)) | q(x). [resolve(2549,a,700,b),merge(c)]. given #426 (A,wt=16): 1486 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c15) | q(f4(x)) | q(x). [resolve(1472,e,622,c),merge(e),merge(f)]. given #427 (T,wt=12): 2607 p(c6) | p(c3) | q(c4) | p(c11) | -p(x) | q(c16). [resolve(2570,d,780,c)]. given #428 (T,wt=10): 2635 p(c6) | p(c3) | q(c4) | p(c11) | q(c16). [resolve(2607,e,2549,a),merge(f),merge(g)]. given #429 (T,wt=10): 2639 p(c6) | p(c3) | q(c4) | p(c11) | -p(x). [factor(2637,c,f)]. given #430 (T,wt=8): 2640 p(c6) | p(c3) | q(c4) | p(c11). [resolve(2639,e,2549,a),merge(e),merge(f)]. given #431 (A,wt=18): 1496 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(c3) | -p(c5) | q(f2(x)) | q(x). [factor(1489,a,f)]. given #432 (T,wt=10): 2642 p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2640,c,780,c),merge(d)]. given #433 (T,wt=8): 2653 p(c6) | p(c3) | p(c11) | q(c16). [resolve(2642,d,2549,a),merge(e),merge(f)]. given #434 (T,wt=10): 2655 p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2653,d,781,c),merge(d)]. given #435 (T,wt=8): 2656 p(c6) | p(c3) | p(c11) | q(x). [resolve(2655,d,2549,a),merge(e),merge(f)]. given #436 (A,wt=19): 1497 p(f3(c19)) | p(c9) | p(c19) | p(c6) | -p(x) | -p(f1(x)) | q(f2(y)) | q(y). [factor(1490,a,g)]. given #437 (T,wt=10): 2658 p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2656,d,782,c),merge(d)]. given #438 (T,wt=8): 2665 p(c6) | p(c3) | p(c11) | -p(x). [resolve(2658,e,2656,d),merge(e),merge(f),merge(g)]. given #439 (T,wt=6): 2666 p(c6) | p(c3) | p(c11). [resolve(2665,d,2549,a),merge(d),merge(e)]. given #440 (T,wt=8): 2667 p(c6) | p(c3) | q(c4) | q(c16). [resolve(2666,c,2619,d),merge(c),merge(d)]. given #441 (A,wt=16): 1612 p(x) | p(f1(x)) | q(c8) | p(c9) | p(y) | p(f3(y)) | p(c19). [factor(1534,a,h),merge(h)]. given #442 (T,wt=8): 2684 p(c6) | p(c3) | q(c4) | -p(c11). [factor(2675,c,e)]. given #443 (T,wt=6): 2712 p(c6) | p(c3) | q(c4). [resolve(2684,d,2666,c),merge(d),merge(e)]. given #444 (T,wt=8): 2727 p(c6) | p(c3) | -p(c11) | q(c16). [factor(2714,a,d)]. given #445 (T,wt=6): 2738 p(c6) | p(c3) | q(c16). [resolve(2727,c,2666,c),merge(d),merge(e)]. given #446 (A,wt=18): 1760 p(c9) | p(f1(c9)) | p(x) | p(f3(x)) | p(c19) | p(c11) | -p(y) | -q(c20). [resolve(1665,f,782,c)]. given #447 (T,wt=8): 2745 p(c6) | p(c3) | -p(c11) | q(x). [factor(2740,a,d)]. given #448 (T,wt=6): 2763 p(c6) | p(c3) | q(x). [resolve(2745,c,2666,c),merge(d),merge(e)]. given #449 (T,wt=8): 2769 p(c6) | p(c3) | -p(c5) | -q(c7). [resolve(2763,c,709,c),merge(c),merge(f)]. given #450 (T,wt=6): 2776 p(c6) | p(c3) | -p(c5). [resolve(2769,d,2763,c),merge(d),merge(e)]. given #451 (A,wt=16): 1770 p(c9) | p(f1(c9)) | p(x) | p(f3(x)) | p(c19) | -p(c11) | -q(c20). [factor(1761,a,g)]. given #452 (T,wt=8): 2772 p(c6) | p(c3) | -p(c11) | -q(c20). [factor(2765,a,d)]. given #453 (T,wt=6): 2787 p(c6) | p(c3) | -p(c11). [resolve(2772,d,2763,c),merge(d),merge(e)]. given #454 (T,wt=4): 2788 p(c6) | p(c3). [resolve(2787,c,2666,c),merge(c),merge(d)]. given #455 (T,wt=7): 2817 p(c3) | q(c4) | q(f2(c4)). [resolve(2788,a,775,b),merge(b)]. given #456 (A,wt=16): 1773 p(c9) | p(f1(c9)) | p(x) | p(f3(x)) | p(c19) | -p(c15) | -q(c20). [factor(1764,c,f),merge(f)]. given #457 (T,wt=8): 2852 p(c3) | q(c4) | -p(c11) | q(c16). [factor(2836,a,d)]. given #458 (T,wt=9): 2818 p(c3) | q(c4) | q(f2(x)) | q(x). [resolve(2788,a,700,b),merge(b)]. given #459 (T,wt=10): 2835 p(c3) | q(c4) | p(c11) | -p(x) | q(c16). [resolve(2817,c,780,c)]. given #460 (T,wt=8): 2875 p(c3) | q(c4) | p(c11) | q(c16). [resolve(2835,d,2788,a),merge(e)]. given #461 (A,wt=16): 1778 p(c9) | p(f1(c9)) | p(x) | p(f3(x)) | p(c19) | -q(c7) | p(c6). [factor(1768,a,f),merge(f)]. given #462 (T,wt=8): 2879 p(c3) | q(c4) | p(c11) | -p(x). [factor(2877,b,e)]. given #463 (T,wt=6): 2890 p(c3) | q(c4) | p(c11). [resolve(2879,d,2788,a),merge(d)]. given #464 (T,wt=8): 2892 p(c3) | p(c11) | -p(x) | q(c16). [resolve(2890,b,780,c),merge(c)]. given #465 (T,wt=6): 2908 p(c3) | p(c11) | q(c16). [resolve(2892,c,2788,a),merge(d)]. given #466 (A,wt=18): 1781 p(x) | p(f1(x)) | p(c9) | p(f3(x)) | p(c19) | p(c11) | -p(y) | -q(c20). [resolve(1688,f,782,c)]. given #467 (T,wt=8): 2910 p(c3) | p(c11) | -p(x) | q(y). [resolve(2908,c,781,c),merge(c)]. given #468 (T,wt=6): 2940 p(c3) | p(c11) | q(x). [resolve(2910,c,2788,a),merge(d)]. given #469 (T,wt=8): 2942 p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2940,c,782,c),merge(c)]. given #470 (T,wt=6): 2943 p(c3) | p(c11) | -p(x). [resolve(2942,d,2940,c),merge(d),merge(e)]. given #471 (A,wt=16): 1791 p(x) | p(f1(x)) | p(c9) | p(f3(x)) | p(c19) | -p(c11) | -q(c20). [factor(1782,a,g)]. given #472 (T,wt=4): 2944 p(c3) | p(c11). [resolve(2943,c,2788,a),merge(c)]. given #473 (T,wt=6): 2963 p(c3) | q(c4) | q(c16). [resolve(2944,b,2852,c),merge(b)]. given #474 (T,wt=6): 2986 p(c3) | q(c4) | -p(c11). [factor(2979,b,d)]. given #475 (T,wt=4): 2988 p(c3) | q(c4). [resolve(2986,c,2944,b),merge(c)]. given #476 (A,wt=16): 1794 p(x) | p(f1(x)) | p(c9) | p(f3(x)) | p(c19) | -p(c15) | -q(c20). [factor(1785,a,f),merge(f)]. given #477 (T,wt=6): 3007 p(c3) | -p(c11) | q(c16). [factor(2990,a,c)]. given #478 (T,wt=4): 3033 p(c3) | q(c16). [resolve(3007,b,2944,b),merge(c)]. given #479 (T,wt=6): 3040 p(c3) | -p(c11) | q(x). [factor(3035,a,c)]. given #480 (T,wt=4): 3044 p(c3) | q(x). [resolve(3040,b,2944,b),merge(c)]. given #481 (A,wt=16): 1796 p(x) | p(f1(x)) | p(c9) | p(f3(x)) | p(c19) | -q(c7) | p(c6). [factor(1789,a,f),merge(f)]. given #482 (T,wt=6): 3049 p(c3) | -p(c11) | -q(c20). [factor(3046,a,c)]. given #483 (T,wt=4): 3071 p(c3) | -p(c11). [resolve(3049,c,3044,b),merge(c)]. given #484 (T,wt=2): 3072 p(c3). [resolve(3071,b,2944,b),merge(b)]. given #485 (T,wt=6): 3093 p(c9) | q(c4) | -q(c8). [back_unit_del(774),unit_del(a,3072)]. given #486 (A,wt=18): 1798 p(c19) | p(f1(c19)) | p(c9) | p(x) | p(f3(x)) | p(c11) | -p(y) | -q(c20). [resolve(1710,f,782,c)]. given #487 (T,wt=7): 3094 p(x) | q(c4) | q(f2(c4)). [back_unit_del(773),unit_del(a,3072)]. given #488 (T,wt=8): 3095 p(c9) | -q(c8) | -p(c5) | q(x). [back_unit_del(698),unit_del(a,3072)]. given #489 (T,wt=8): 3096 p(x) | -q(c10) | -p(c5) | q(c8). [back_unit_del(697),unit_del(a,3072)]. given #490 (T,wt=8): 3097 p(c9) | -q(x) | -p(c5) | q(c8). [back_unit_del(696),unit_del(a,3072)]. given #491 (A,wt=16): 1808 p(c19) | p(f1(c19)) | p(c9) | p(x) | p(f3(x)) | -p(c11) | -q(c20). [factor(1799,a,g)]. given #492 (T,wt=8): 3099 p(x) | q(c4) | -q(c8) | -q(c10). [back_unit_del(694),unit_del(a,3072)]. given #493 (T,wt=8): 3100 p(x) | q(c4) | -q(c10) | q(c8). [back_unit_del(691),unit_del(a,3072)]. given #494 (T,wt=8): 3101 p(c9) | q(c4) | -q(x) | q(c8). [back_unit_del(690),unit_del(a,3072)]. given #495 (T,wt=6): 3191 p(c9) | q(c4) | q(c8). [factor(3190,a,d)]. given #496 (A,wt=16): 1810 p(c19) | p(f1(c19)) | p(c9) | p(x) | p(f3(x)) | -p(c15) | -q(c20). [factor(1802,d,f),merge(f)]. given #497 (T,wt=4): 3193 p(c9) | q(c4). [resolve(3191,c,3093,c),merge(c),merge(d)]. given #498 (T,wt=6): 3200 p(c9) | -p(c5) | q(c8). [resolve(3193,b,3097,b),merge(b)]. given #499 (T,wt=6): 3219 p(c9) | -p(c11) | q(c16). [factor(3203,a,c)]. given #500 (T,wt=7): 3204 p(c9) | p(f1(c9)) | q(c8). [resolve(3193,b,770,c),merge(b)]. given #501 (A,wt=16): 1815 p(c19) | p(f1(c19)) | p(c9) | p(x) | p(f3(x)) | -q(c7) | p(c6). [factor(1806,a,f),merge(f)]. given #502 (T,wt=7): 3227 p(c9) | p(f1(c9)) | q(x). [resolve(3204,c,771,c),merge(c),merge(d)]. given #503 (T,wt=8): 3156 p(c11) | q(c4) | -p(x) | q(c16). [factor(3141,a,c)]. given #504 (T,wt=6): 3246 p(c11) | q(c4) | q(c16). [resolve(3156,c,3072,a)]. given #505 (T,wt=6): 3250 p(c11) | q(c4) | -p(x). [factor(3248,b,d)]. given #506 (A,wt=18): 1818 p(x) | p(f1(x)) | p(c9) | p(f3(c9)) | p(c19) | p(c11) | -p(y) | -q(c20). [resolve(1735,f,782,c)]. given #507 (T,wt=4): 3251 p(c11) | q(c4). [resolve(3250,c,3072,a)]. given #508 (T,wt=6): 3263 p(c11) | -p(x) | q(c16). [resolve(3251,b,780,c),merge(b)]. given #509 (T,wt=4): 3271 p(c11) | q(c16). [resolve(3263,b,3072,a)]. given #510 (T,wt=6): 3273 p(c11) | -p(x) | q(y). [resolve(3271,b,781,c),merge(b)]. given #511 (A,wt=16): 1827 p(x) | p(f1(x)) | p(c9) | p(f3(c9)) | p(c19) | -p(c11) | -q(c20). [factor(1819,a,g)]. given #512 (T,wt=4): 3274 p(c11) | q(x). [resolve(3273,b,3072,a)]. given #513 (T,wt=6): 3284 p(c11) | -p(x) | -q(c20). [resolve(3274,b,782,c),merge(b)]. given #514 (T,wt=4): 3289 p(c11) | -p(x). [resolve(3284,c,3274,b),merge(c)]. given #515 (T,wt=2): 3290 p(c11). [resolve(3289,b,3072,a)]. given #516 (A,wt=16): 1848 p(x) | p(f1(x)) | p(c9) | p(c19) | p(f3(c19)) | -q(c7) | p(c6). [factor(1841,a,f),merge(f)]. given #517 (T,wt=4): 3293 p(c9) | q(c16). [back_unit_del(3219),unit_del(b,3290)]. given #518 (T,wt=6): 3298 p(x) | q(c4) | q(c16). [back_unit_del(3157),unit_del(c,3290)]. given #519 (T,wt=6): 3313 p(x) | -q(c16) | q(y). [back_unit_del(778),unit_del(a,3290)]. given #520 (T,wt=4): 3337 p(c9) | q(x). [factor(3334,a,c)]. given #521 (A,wt=12): 3089 p(c19) | p(f3(c19)) | q(c14) | -p(c5) | q(f2(c14)). [back_unit_del(849),unit_del(d,3072)]. given #522 (T,wt=4): 3338 p(x) | q(c4). [factor(3335,b,c)]. given #523 (T,wt=6): 3314 p(x) | -q(y) | q(c16). [back_unit_del(777),unit_del(a,3290)]. given #524 (T,wt=4): 3351 p(x) | q(c16). [factor(3350,a,c)]. given #525 (T,wt=4): 3355 p(x) | q(y). [factor(3352,a,b)]. given #526 (A,wt=9): 3098 p(c6) | -q(f2(c7)) | -p(c5) | -q(c7). [back_unit_del(695),unit_del(a,3072)]. given #527 (T,wt=6): 3365 p(c6) | -p(c5) | -q(c7). [factor(3364,a,d)]. given #528 (T,wt=4): 3367 p(c6) | -p(c5). [factor(3366,a,c)]. given #529 (T,wt=7): 3292 p(c9) | p(f1(c9)) | -q(c20). [back_unit_del(3242),unit_del(c,3290)]. given #530 (T,wt=5): 3369 p(c9) | p(f1(c9)). [factor(3368,a,c)]. given #531 (A,wt=12): 3291 p(x) | p(f1(x)) | p(c9) | p(f3(c9)) | p(c19). [back_unit_del(3282),unit_del(f,3290)]. given #532 (T,wt=7): 3312 p(x) | -q(f4(c20)) | -q(c20). [back_unit_del(779),unit_del(a,3290)]. given #533 (T,wt=4): 3371 p(x) | -q(c20). [factor(3370,a,c)]. given #534 (T,wt=2): 3373 p(x). [factor(3372,a,b)]. given #535 (T,wt=4): 3375 -q(c16) | q(x). [back_unit_del(785),unit_del(a,3373),unit_del(b,3373)]. given #536 (A,wt=5): 3374 -q(f4(c20)) | -q(c20). [back_unit_del(786),unit_del(a,3373),unit_del(b,3373)]. given #537 (F,wt=7): 3378 -q(f4(x)) | -q(x) | -q(c20). [back_unit_del(766),unit_del(a,3373),unit_del(b,3373)]. given #538 (T,wt=4): 3376 -q(x) | q(c16). [back_unit_del(784),unit_del(a,3373),unit_del(b,3373)]. given #539 (T,wt=5): 3377 q(c1) | q(f2(c1)). [back_unit_del(772),unit_del(a,3373),unit_del(b,3373)]. given #540 (T,wt=4): 3384 q(c1) | q(c16). [resolve(3377,b,3376,a)]. given #541 (T,wt=2): 3386 q(c1). [factor(3385,a,b)]. ============================== PROOF ================================= % Proof 1 at 0.66 (+ 0.00) seconds. % Length of proof is 254. % Level of proof is 157. % Maximum clause weight is 20. % Given clauses 541. 1 ((exists x all y (p(x) <-> p(y))) <-> ((exists u q(u)) <-> (all v p(v)))) <-> ((exists w all z (q(z) <-> q(w))) <-> ((exists x1 p(x1)) <-> (all x2 q(x2)))) # label(non_clause) # label(goal). [goal]. 5 p(x) | p(f1(x)) | -q(y) | p(z) | -q(f2(u)) | -q(u) | p(c6) | -q(c7). [deny(1)]. 6 p(x) | p(f1(x)) | -q(y) | p(z) | -q(u) | q(c8) | p(c9) | q(w). [deny(1)]. 8 p(x) | p(f1(x)) | -q(y) | p(z) | q(u) | -q(c8) | p(c9) | q(w). [deny(1)]. 24 -p(x) | -p(f1(x)) | q(c1) | -p(c2) | q(f2(y)) | q(y) | -p(z) | q(u). [deny(1)]. 30 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. 46 p(c3) | -p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | -p(u) | q(w). [deny(1)]. 50 p(c3) | -p(x) | q(c4) | p(y) | -q(z) | q(c8) | p(c9) | q(u). [deny(1)]. 52 p(c3) | -p(x) | q(c4) | p(y) | q(z) | -q(c8) | p(c9) | q(u). [deny(1)]. 62 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. 64 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. 69 -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. 76 p(c11) | -p(x) | -q(y) | p(z) | -q(u) | q(c16) | -p(w) | q(v5). [deny(1)]. 78 p(c11) | -p(x) | -q(y) | p(z) | q(u) | -q(c16) | -p(w) | q(v5). [deny(1)]. 83 p(c11) | -p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -p(w) | -q(c20). [deny(1)]. 94 p(x) | p(f3(x)) | q(c14) | p(y) | q(f4(z)) | q(z) | p(c19) | q(u). [deny(1)]. 114 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(z) | q(c16) | -p(u) | q(w). [deny(1)]. 116 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | q(z) | -q(c16) | -p(u) | q(w). [deny(1)]. 121 -p(x) | -p(f3(x)) | -q(y) | -p(c15) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [deny(1)]. 128 p(x) | p(f1(x)) | -q(y) | -q(f2(z)) | -q(z) | p(c6) | -q(c7). [factor(5,a,d)]. 130 p(x) | p(f1(x)) | -q(y) | -q(z) | q(c8) | p(c9) | q(u). [factor(6,a,d)]. 135 p(x) | p(f1(x)) | -q(y) | q(z) | -q(c8) | p(c9) | q(u). [factor(8,a,d)]. 171 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x) | -p(y) | q(z). [factor(24,a,d)]. 188 -p(c3) | p(x) | q(c4) | p(y) | q(f2(z)) | q(z) | q(u). [factor(30,a,g)]. 227 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | -p(z) | q(u). [factor(46,a,d)]. 238 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9) | q(z). [factor(50,a,d)]. 243 p(c3) | -p(x) | q(c4) | q(y) | -q(c8) | p(c9) | q(z). [factor(52,a,d)]. 266 -p(c11) | p(x) | -q(y) | p(z) | -q(u) | q(c16) | q(w). [factor(62,a,g)]. 272 -p(c11) | p(x) | -q(y) | p(z) | q(u) | -q(c16) | q(w). [factor(64,a,g)]. 285 -p(c11) | p(x) | -q(y) | p(z) | -q(f4(u)) | -q(u) | -q(c20). [factor(69,a,g)]. 301 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | -p(u) | q(w). [factor(76,a,d)]. 307 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | -p(u) | q(w). [factor(78,a,d)]. 320 p(c11) | -p(x) | -q(y) | -q(f4(z)) | -q(z) | -p(u) | -q(c20). [factor(83,a,d)]. 344 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19) | q(z). [factor(94,a,d)]. 388 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | -p(z) | q(u). [factor(114,a,d)]. 394 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | -p(z) | q(u). [factor(116,a,d)]. 407 -p(c15) | -p(f3(c15)) | -q(x) | -q(f4(y)) | -q(y) | -p(z) | -q(c20). [factor(121,a,d)]. 415 p(x) | p(f1(x)) | -q(f2(y)) | -q(y) | p(c6) | -q(c7). [factor(128,c,d)]. 417 p(c9) | p(f1(c9)) | -q(x) | -q(y) | q(c8) | q(z). [factor(130,a,f)]. 418 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9) | q(z). [factor(130,c,d)]. 423 p(c9) | p(f1(c9)) | -q(x) | q(y) | -q(c8) | q(z). [factor(135,a,f)]. 424 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9) | q(z). [factor(135,c,e)]. 448 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(x)) | q(x) | q(y). [factor(171,a,f)]. 464 -p(c3) | p(x) | q(c4) | q(f2(y)) | q(y) | q(z). [factor(188,b,d)]. 500 p(c3) | -p(x) | q(c4) | q(f2(y)) | q(y) | q(z). [factor(227,b,f)]. 510 p(c3) | -p(x) | q(c4) | -q(y) | q(c8) | p(c9). [factor(238,c,g)]. 514 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9) | q(y). [factor(243,c,d)]. 537 -p(c11) | p(x) | -q(y) | -q(z) | q(c16) | q(u). [factor(266,b,d)]. 545 -p(c11) | p(x) | -q(y) | q(z) | -q(c16) | q(u). [factor(272,b,d)]. 559 -p(c11) | p(x) | -q(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(285,b,d)]. 569 p(c11) | -p(x) | -q(y) | -q(z) | q(c16) | q(u). [factor(301,b,f)]. 576 p(c11) | -p(x) | -q(y) | q(z) | -q(c16) | q(u). [factor(307,b,f)]. 587 p(c11) | -p(x) | -q(y) | -q(f4(z)) | -q(z) | -q(c20). [factor(320,b,f)]. 609 p(x) | p(f3(x)) | q(c14) | q(f4(y)) | q(y) | p(c19). [factor(344,c,g)]. 637 -p(c15) | -p(f3(c15)) | -q(x) | -q(y) | q(c16) | q(z). [factor(388,a,f)]. 645 -p(c15) | -p(f3(c15)) | -q(x) | q(y) | -q(c16) | q(z). [factor(394,a,f)]. 657 -p(c15) | -p(f3(c15)) | -q(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(407,a,f)]. 663 p(x) | p(f1(x)) | -q(f2(c7)) | -q(c7) | p(c6). [factor(415,d,f)]. 664 p(c9) | p(f1(c9)) | -q(x) | q(c8) | q(y). [factor(417,c,d)]. 666 p(x) | p(f1(x)) | -q(y) | q(c8) | p(c9). [factor(418,d,f)]. 668 p(c9) | p(f1(c9)) | -q(c8) | q(x) | q(y). [factor(423,c,e)]. 670 p(x) | p(f1(x)) | -q(c8) | q(y) | p(c9). [factor(424,d,f)]. 677 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)) | q(x). [factor(448,c,e)]. 684 -p(c3) | p(x) | q(c4) | q(f2(c4)) | q(y). [factor(464,c,e)]. 699 p(c3) | -p(x) | q(c4) | q(f2(c4)) | q(y). [factor(500,c,e)]. 705 p(c3) | -p(x) | q(c4) | -q(c8) | p(c9). [factor(514,c,f)]. 715 -p(c11) | p(x) | -q(y) | q(c16) | q(z). [factor(537,c,d)]. 719 -p(c11) | p(x) | -q(c16) | q(y) | q(z). [factor(545,c,e)]. 726 -p(c11) | p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(559,c,d)]. 730 p(c11) | -p(x) | -q(y) | q(c16) | q(z). [factor(569,c,d)]. 734 p(c11) | -p(x) | -q(c16) | q(y) | q(z). [factor(576,c,e)]. 739 p(c11) | -p(x) | -q(f4(y)) | -q(y) | -q(c20). [factor(587,c,d)]. 756 -p(c15) | -p(f3(c15)) | -q(x) | q(c16) | q(y). [factor(637,c,d)]. 761 -p(c15) | -p(f3(c15)) | -q(c16) | q(x) | q(y). [factor(645,c,e)]. 766 -p(c15) | -p(f3(c15)) | -q(f4(x)) | -q(x) | -q(c20). [factor(657,c,d)]. 770 p(c9) | p(f1(c9)) | -q(x) | q(c8). [factor(664,d,e)]. 771 p(c9) | p(f1(c9)) | -q(c8) | q(x). [factor(668,d,e)]. 772 -p(c2) | -p(f1(c2)) | q(c1) | q(f2(c1)). [factor(677,c,e)]. 773 -p(c3) | p(x) | q(c4) | q(f2(c4)). [factor(684,c,e)]. 775 p(c3) | -p(x) | q(c4) | q(f2(c4)). [factor(699,c,e)]. 777 -p(c11) | p(x) | -q(y) | q(c16). [factor(715,d,e)]. 778 -p(c11) | p(x) | -q(c16) | q(y). [factor(719,d,e)]. 779 -p(c11) | p(x) | -q(f4(c20)) | -q(c20). [factor(726,d,e)]. 780 p(c11) | -p(x) | -q(y) | q(c16). [factor(730,d,e)]. 781 p(c11) | -p(x) | -q(c16) | q(y). [factor(734,d,e)]. 782 p(c11) | -p(x) | -q(f4(c20)) | -q(c20). [factor(739,d,e)]. 784 -p(c15) | -p(f3(c15)) | -q(x) | q(c16). [factor(756,d,e)]. 785 -p(c15) | -p(f3(c15)) | -q(c16) | q(x). [factor(761,d,e)]. 854 p(x) | p(f1(x)) | q(c8) | p(c9) | p(y) | p(f3(y)) | q(c14) | q(z) | p(c19). [resolve(666,c,609,d)]. 855 p(c9) | p(f1(c9)) | q(c8) | p(x) | p(f3(x)) | q(c14) | q(y) | p(c19). [factor(854,a,d)]. 863 p(c9) | p(f1(c9)) | q(c8) | p(f3(c9)) | q(c14) | q(x) | p(c19). [factor(855,a,d)]. 878 p(c9) | p(f1(c9)) | q(c8) | p(f3(c9)) | q(c14) | p(c19). [factor(863,c,f)]. 924 p(c9) | p(f1(c9)) | q(c8) | p(f3(c9)) | p(c19). [resolve(878,e,770,c),merge(f),merge(g),merge(h)]. 929 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | q(x). [resolve(924,c,771,c),merge(e),merge(f)]. 939 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | p(x) | p(f1(x)) | -q(c7) | p(c6). [resolve(929,e,663,c)]. 942 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | -q(c7) | p(c6). [factor(939,a,e),merge(e)]. 1079 p(c9) | p(f1(c9)) | p(f3(c9)) | p(c19) | p(c6). [resolve(942,e,929,e),merge(f),merge(g),merge(h),merge(i)]. 1082 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(1079,c,775,b)]. 2138 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(1082,g,770,c),merge(g),merge(h)]. 2159 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4) | q(x). [resolve(2138,g,771,c),merge(g),merge(h)]. 2161 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c4). [factor(2159,f,g)]. 2182 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(c8). [resolve(2161,f,770,c),merge(f),merge(g)]. 2196 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | q(x). [resolve(2182,f,771,c),merge(f),merge(g)]. 2204 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | p(x) | p(f1(x)) | -q(c7). [resolve(2196,f,663,c),merge(i)]. 2206 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3) | -q(c7). [factor(2204,a,f),merge(f)]. 2207 p(c9) | p(f1(c9)) | p(c19) | p(c6) | p(c3). [resolve(2206,f,2196,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. 2213 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2207,b,775,b),merge(e)]. 2230 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | -p(x) | q(c8). [resolve(2213,f,510,d),merge(f),merge(h),merge(j)]. 2244 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(2230,f,2207,b),merge(g),merge(h),merge(i),merge(j)]. 2246 p(c9) | p(c19) | p(c6) | p(c3) | q(c4) | -p(x). [resolve(2244,f,705,d),merge(f),merge(h),merge(i)]. 2261 p(c9) | p(c19) | p(c6) | p(c3) | q(c4). [resolve(2246,f,2207,b),merge(f),merge(g),merge(h),merge(i)]. 2263 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2261,e,780,c)]. 2271 p(c9) | p(c19) | p(c6) | p(c3) | p(x) | p(f1(x)) | q(c8). [resolve(2261,e,666,c),merge(h)]. 2283 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | q(c8). [factor(2271,d,e)]. 2305 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | p(x) | p(f1(x)) | q(y). [resolve(2283,f,670,c),merge(i)]. 2306 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | q(x). [factor(2305,d,f),merge(f)]. 2336 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | p(x) | p(f1(x)) | -q(c7). [resolve(2306,f,663,c),merge(i)]. 2339 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)) | -q(c7). [factor(2336,d,f),merge(f)]. 2349 p(c9) | p(c19) | p(c6) | p(c3) | p(f1(c3)). [resolve(2339,f,2306,f),merge(f),merge(g),merge(h),merge(i),merge(j)]. 2350 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | q(c16). [resolve(2263,f,2349,e),merge(g),merge(h),merge(i),merge(j)]. 2352 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2350,f,781,c),merge(f)]. 2353 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | q(x). [resolve(2352,f,2349,e),merge(g),merge(h),merge(i),merge(j)]. 2355 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2353,f,782,c),merge(f)]. 2360 p(c9) | p(c19) | p(c6) | p(c3) | p(c11) | -p(x). [resolve(2355,g,2353,f),merge(g),merge(h),merge(i),merge(j),merge(k)]. 2361 p(c9) | p(c19) | p(c6) | p(c3) | p(c11). [resolve(2360,f,2349,e),merge(f),merge(g),merge(h),merge(i)]. 2362 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | q(f2(c4)). [resolve(2361,b,775,b),merge(e)]. 2365 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | -p(x) | q(c16). [resolve(2362,f,780,c),merge(f)]. 2374 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | q(c16). [resolve(2365,f,2361,b),merge(g),merge(h),merge(i),merge(j)]. 2376 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | -p(x) | q(y). [resolve(2374,f,781,c),merge(f)]. 2378 p(c9) | p(c6) | p(c3) | p(c11) | q(c4) | -p(x). [factor(2376,e,g)]. 2379 p(c9) | p(c6) | p(c3) | p(c11) | q(c4). [resolve(2378,f,2361,b),merge(f),merge(g),merge(h),merge(i)]. 2381 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2379,e,780,c),merge(e)]. 2397 p(c9) | p(c6) | p(c3) | p(c11) | q(c16). [resolve(2381,e,2361,b),merge(f),merge(g),merge(h),merge(i)]. 2399 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2397,e,781,c),merge(e)]. 2400 p(c9) | p(c6) | p(c3) | p(c11) | q(x). [resolve(2399,e,2361,b),merge(f),merge(g),merge(h),merge(i)]. 2402 p(c9) | p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2400,e,782,c),merge(e)]. 2410 p(c9) | p(c6) | p(c3) | p(c11) | -p(x). [resolve(2402,f,2400,e),merge(f),merge(g),merge(h),merge(i)]. 2411 p(c9) | p(c6) | p(c3) | p(c11). [resolve(2410,e,2361,b),merge(e),merge(f),merge(g),merge(h)]. 2414 p(c9) | p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2411,d,775,b),merge(d)]. 2454 p(c9) | p(c6) | p(c3) | q(c4) | -p(x) | q(c8). [resolve(2414,e,510,d),merge(e),merge(g),merge(i)]. 2478 p(c9) | p(c6) | p(c3) | q(c4) | q(c8). [resolve(2454,e,2411,d),merge(f),merge(g),merge(h)]. 2481 p(c9) | p(c6) | p(c3) | q(c4) | -p(x). [resolve(2478,e,705,d),merge(e),merge(g),merge(h)]. 2489 p(c9) | p(c6) | p(c3) | q(c4). [resolve(2481,e,2411,d),merge(e),merge(f),merge(g)]. 2491 p(c9) | p(c6) | p(c3) | -p(c11) | p(x) | q(c16). [resolve(2489,d,777,c)]. 2503 p(c9) | p(c6) | p(c3) | -p(c11) | q(c16). [factor(2491,a,e)]. 2517 p(c9) | p(c6) | p(c3) | q(c16). [resolve(2503,d,2411,d),merge(e),merge(f),merge(g)]. 2519 p(c9) | p(c6) | p(c3) | -p(c11) | p(x) | q(y). [resolve(2517,d,778,c)]. 2524 p(c9) | p(c6) | p(c3) | -p(c11) | q(x). [factor(2519,a,e)]. 2532 p(c9) | p(c6) | p(c3) | q(x). [resolve(2524,d,2411,d),merge(e),merge(f),merge(g)]. 2534 p(c9) | p(c6) | p(c3) | -p(c11) | p(x) | -q(c20). [resolve(2532,d,779,c)]. 2541 p(c9) | p(c6) | p(c3) | -p(c11) | -q(c20). [factor(2534,a,e)]. 2548 p(c9) | p(c6) | p(c3) | -p(c11). [resolve(2541,e,2532,d),merge(e),merge(f),merge(g)]. 2549 p(c9) | p(c6) | p(c3). [resolve(2548,d,2411,d),merge(d),merge(e),merge(f)]. 2570 p(c6) | p(c3) | q(c4) | q(f2(c4)). [resolve(2549,a,775,b),merge(c)]. 2607 p(c6) | p(c3) | q(c4) | p(c11) | -p(x) | q(c16). [resolve(2570,d,780,c)]. 2608 p(c6) | p(c3) | q(c4) | -p(c11) | p(x) | q(c16). [resolve(2570,d,777,c)]. 2619 p(c6) | p(c3) | q(c4) | -p(c11) | q(c16). [factor(2608,a,e)]. 2635 p(c6) | p(c3) | q(c4) | p(c11) | q(c16). [resolve(2607,e,2549,a),merge(f),merge(g)]. 2637 p(c6) | p(c3) | q(c4) | p(c11) | -p(x) | q(y). [resolve(2635,e,781,c),merge(e)]. 2639 p(c6) | p(c3) | q(c4) | p(c11) | -p(x). [factor(2637,c,f)]. 2640 p(c6) | p(c3) | q(c4) | p(c11). [resolve(2639,e,2549,a),merge(e),merge(f)]. 2642 p(c6) | p(c3) | p(c11) | -p(x) | q(c16). [resolve(2640,c,780,c),merge(d)]. 2653 p(c6) | p(c3) | p(c11) | q(c16). [resolve(2642,d,2549,a),merge(e),merge(f)]. 2655 p(c6) | p(c3) | p(c11) | -p(x) | q(y). [resolve(2653,d,781,c),merge(d)]. 2656 p(c6) | p(c3) | p(c11) | q(x). [resolve(2655,d,2549,a),merge(e),merge(f)]. 2658 p(c6) | p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2656,d,782,c),merge(d)]. 2665 p(c6) | p(c3) | p(c11) | -p(x). [resolve(2658,e,2656,d),merge(e),merge(f),merge(g)]. 2666 p(c6) | p(c3) | p(c11). [resolve(2665,d,2549,a),merge(d),merge(e)]. 2667 p(c6) | p(c3) | q(c4) | q(c16). [resolve(2666,c,2619,d),merge(c),merge(d)]. 2669 p(c6) | p(c3) | q(c4) | -p(c11) | p(x) | q(y). [resolve(2667,d,778,c)]. 2675 p(c6) | p(c3) | q(c4) | -p(c11) | q(x). [factor(2669,a,e)]. 2684 p(c6) | p(c3) | q(c4) | -p(c11). [factor(2675,c,e)]. 2712 p(c6) | p(c3) | q(c4). [resolve(2684,d,2666,c),merge(d),merge(e)]. 2714 p(c6) | p(c3) | -p(c11) | p(x) | q(c16). [resolve(2712,c,777,c)]. 2727 p(c6) | p(c3) | -p(c11) | q(c16). [factor(2714,a,d)]. 2738 p(c6) | p(c3) | q(c16). [resolve(2727,c,2666,c),merge(d),merge(e)]. 2740 p(c6) | p(c3) | -p(c11) | p(x) | q(y). [resolve(2738,c,778,c)]. 2745 p(c6) | p(c3) | -p(c11) | q(x). [factor(2740,a,d)]. 2763 p(c6) | p(c3) | q(x). [resolve(2745,c,2666,c),merge(d),merge(e)]. 2765 p(c6) | p(c3) | -p(c11) | p(x) | -q(c20). [resolve(2763,c,779,c)]. 2772 p(c6) | p(c3) | -p(c11) | -q(c20). [factor(2765,a,d)]. 2787 p(c6) | p(c3) | -p(c11). [resolve(2772,d,2763,c),merge(d),merge(e)]. 2788 p(c6) | p(c3). [resolve(2787,c,2666,c),merge(c),merge(d)]. 2817 p(c3) | q(c4) | q(f2(c4)). [resolve(2788,a,775,b),merge(b)]. 2835 p(c3) | q(c4) | p(c11) | -p(x) | q(c16). [resolve(2817,c,780,c)]. 2836 p(c3) | q(c4) | -p(c11) | p(x) | q(c16). [resolve(2817,c,777,c)]. 2852 p(c3) | q(c4) | -p(c11) | q(c16). [factor(2836,a,d)]. 2875 p(c3) | q(c4) | p(c11) | q(c16). [resolve(2835,d,2788,a),merge(e)]. 2877 p(c3) | q(c4) | p(c11) | -p(x) | q(y). [resolve(2875,d,781,c),merge(d)]. 2879 p(c3) | q(c4) | p(c11) | -p(x). [factor(2877,b,e)]. 2890 p(c3) | q(c4) | p(c11). [resolve(2879,d,2788,a),merge(d)]. 2892 p(c3) | p(c11) | -p(x) | q(c16). [resolve(2890,b,780,c),merge(c)]. 2908 p(c3) | p(c11) | q(c16). [resolve(2892,c,2788,a),merge(d)]. 2910 p(c3) | p(c11) | -p(x) | q(y). [resolve(2908,c,781,c),merge(c)]. 2940 p(c3) | p(c11) | q(x). [resolve(2910,c,2788,a),merge(d)]. 2942 p(c3) | p(c11) | -p(x) | -q(c20). [resolve(2940,c,782,c),merge(c)]. 2943 p(c3) | p(c11) | -p(x). [resolve(2942,d,2940,c),merge(d),merge(e)]. 2944 p(c3) | p(c11). [resolve(2943,c,2788,a),merge(c)]. 2963 p(c3) | q(c4) | q(c16). [resolve(2944,b,2852,c),merge(b)]. 2973 p(c3) | q(c4) | -p(c11) | p(x) | q(y). [resolve(2963,c,778,c)]. 2979 p(c3) | q(c4) | -p(c11) | q(x). [factor(2973,a,d)]. 2986 p(c3) | q(c4) | -p(c11). [factor(2979,b,d)]. 2988 p(c3) | q(c4). [resolve(2986,c,2944,b),merge(c)]. 2990 p(c3) | -p(c11) | p(x) | q(c16). [resolve(2988,b,777,c)]. 3007 p(c3) | -p(c11) | q(c16). [factor(2990,a,c)]. 3033 p(c3) | q(c16). [resolve(3007,b,2944,b),merge(c)]. 3035 p(c3) | -p(c11) | p(x) | q(y). [resolve(3033,b,778,c)]. 3040 p(c3) | -p(c11) | q(x). [factor(3035,a,c)]. 3044 p(c3) | q(x). [resolve(3040,b,2944,b),merge(c)]. 3046 p(c3) | -p(c11) | p(x) | -q(c20). [resolve(3044,b,779,c)]. 3049 p(c3) | -p(c11) | -q(c20). [factor(3046,a,c)]. 3071 p(c3) | -p(c11). [resolve(3049,c,3044,b),merge(c)]. 3072 p(c3). [resolve(3071,b,2944,b),merge(b)]. 3094 p(x) | q(c4) | q(f2(c4)). [back_unit_del(773),unit_del(a,3072)]. 3141 p(x) | q(c4) | p(c11) | -p(y) | q(c16). [resolve(3094,c,780,c)]. 3142 p(x) | q(c4) | -p(c11) | p(y) | q(c16). [resolve(3094,c,777,c)]. 3156 p(c11) | q(c4) | -p(x) | q(c16). [factor(3141,a,c)]. 3157 p(x) | q(c4) | -p(c11) | q(c16). [factor(3142,a,d)]. 3246 p(c11) | q(c4) | q(c16). [resolve(3156,c,3072,a)]. 3248 p(c11) | q(c4) | -p(x) | q(y). [resolve(3246,c,781,c),merge(c)]. 3250 p(c11) | q(c4) | -p(x). [factor(3248,b,d)]. 3251 p(c11) | q(c4). [resolve(3250,c,3072,a)]. 3263 p(c11) | -p(x) | q(c16). [resolve(3251,b,780,c),merge(b)]. 3271 p(c11) | q(c16). [resolve(3263,b,3072,a)]. 3273 p(c11) | -p(x) | q(y). [resolve(3271,b,781,c),merge(b)]. 3274 p(c11) | q(x). [resolve(3273,b,3072,a)]. 3284 p(c11) | -p(x) | -q(c20). [resolve(3274,b,782,c),merge(b)]. 3289 p(c11) | -p(x). [resolve(3284,c,3274,b),merge(c)]. 3290 p(c11). [resolve(3289,b,3072,a)]. 3298 p(x) | q(c4) | q(c16). [back_unit_del(3157),unit_del(c,3290)]. 3312 p(x) | -q(f4(c20)) | -q(c20). [back_unit_del(779),unit_del(a,3290)]. 3313 p(x) | -q(c16) | q(y). [back_unit_del(778),unit_del(a,3290)]. 3314 p(x) | -q(y) | q(c16). [back_unit_del(777),unit_del(a,3290)]. 3333 p(x) | q(y) | p(z) | q(c4). [resolve(3313,b,3298,c)]. 3335 p(x) | q(y) | q(c4). [factor(3333,a,c)]. 3338 p(x) | q(c4). [factor(3335,b,c)]. 3350 p(x) | q(c16) | p(y). [resolve(3314,b,3338,b)]. 3351 p(x) | q(c16). [factor(3350,a,c)]. 3352 p(x) | p(y) | q(z). [resolve(3351,b,3313,b)]. 3355 p(x) | q(y). [factor(3352,a,b)]. 3370 p(x) | -q(c20) | p(y). [resolve(3312,b,3355,b)]. 3371 p(x) | -q(c20). [factor(3370,a,c)]. 3372 p(x) | p(y). [resolve(3371,b,3355,b)]. 3373 p(x). [factor(3372,a,b)]. 3375 -q(c16) | q(x). [back_unit_del(785),unit_del(a,3373),unit_del(b,3373)]. 3376 -q(x) | q(c16). [back_unit_del(784),unit_del(a,3373),unit_del(b,3373)]. 3377 q(c1) | q(f2(c1)). [back_unit_del(772),unit_del(a,3373),unit_del(b,3373)]. 3378 -q(f4(x)) | -q(x) | -q(c20). [back_unit_del(766),unit_del(a,3373),unit_del(b,3373)]. 3384 q(c1) | q(c16). [resolve(3377,b,3376,a)]. 3385 q(c1) | q(x). [resolve(3384,b,3375,a)]. 3386 q(c1). [factor(3385,a,b)]. 3387 q(c16). [resolve(3386,a,3376,a)]. 3388 q(x). [back_unit_del(3375),unit_del(a,3387)]. 3389 $F. [back_unit_del(3378),unit_del(a,3388),unit_del(b,3388),unit_del(c,3388)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=541. Generated=16883. Kept=3387. proofs=1. Usable=2. Sos=0. Demods=0. Limbo=1, Disabled=3512. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=13495. Back_subsumed=3297. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=87. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=19863. Nonunit_bsub_feature_tests=7473. Megabytes=2.21. User_CPU=0.67, System_CPU=0.00, Wall_clock=1. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15825 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/attributes.html0000644000175000017500000000752411151021064017230 0ustar mccunemccune Prover9 Manual: Attributes
Prover9 Manual Version 2009-02A

Attributes

Several kinds of attribute can be attached to input formulas with the # operator, for example,
x * y = y * x              # label(commutativity).
x * c != e                 # answer(x) # label("the denial").
-p(c) | -q(c)              # answer("here it is").
a * b != b * a             # action(in_proof -> exit) # answer(commutativity).
x * (y * z) = y * (x * z)  # bsub_hint_wt(500).
Each attribute has a data type of string, integer, or term. A string attribute is really just a term attribute that is a constant. If a string attribute is not a legal constant, it can be enclosed in double quotes to make it so.

Attributes can be attached only to the top level of a formula; they cannot be attached to proper subformulas. (This restriction might be lifted in future versions of Prover9.)

The accepted attributes are shown in the following table.

Name Type Inheritable Purpose
label string No Comment
answer term Yes Record substitutions and what has been proved
action term No Triggers action when clause is used
bsub_hint_wt integer No Used for hints

Inheritable attributes are passed from parent to child during most inference rules.

Label Attributes

Label attributes are simply comments that can be attached to input clauses, including hint clauses.

Answer Attributes

Answer attributes on clauses are essentially answer literals. They are inherited during application of inference rules, and if they contain variables, the variables are instantiated by the substitution used in the inference.

Answer attributes (like all other attributes) contain exactly one argument. If you wish to record substitutions for more than one variable, you must use a term that contains all of the variables, for example, a list, as in the following clause.

-p(c,x,y,z)  # answer([x,y,z]).
Answer attributes need not contain variables. For example, when there are multiple goals, answer attributes can be used on the goal formulas to identify the goals that are proved.

Answer attributes on non-clausal formulas cannot contain variables. (This restriction might be lifted in future versions of Prover9.)

Action Attributes

Action attributes cause various things to happen when clauses are used in various ways. See the section on Actions.

Bsub_hint_wt Attribute

This attribute can be attached to a hint clause, and it is used to override ordinary weight assigned to clauses that match the hint. That is, if a hint matches a clause, and if the hint has a bsub_hint_wt attribute, the clause gets the value of the attribute as its weight instead of the weight that would be assigned by the ordinary weighting method.
Next Section: Goals and Denials prover9-manual-2009-02A/auto.html0000644000175000017500000002132511151021064016005 0ustar mccunemccune Prover9 Manual: Automatic Modes
Prover9 Manual Version 2009-02A

Automatic Modes

Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.

If you simply give Prover9 a set of clauses and/or formulas, Prover9 will look at the clauses and decide which inference rules and clause-processing operations to use. If you don't like the automatic decisions that Prover9 makes, you can clear the flag auto or any of the secondary auto flags that depend on it. Prover9 output files show in detail the effects of changing these flags.

set(auto).    % default set
clear(auto).
This is the basic automatic mode of Prover9. The only direct effect of this flag is that it changes four secondary auto flags as follows.
  set(auto) -> set(auto_inference).
  set(auto) -> set(auto_process).
  set(auto) -> set(auto_setup).
  set(auto) -> set(auto_limits).
  set(auto) -> set(auto_denials).

  clear(auto) -> clear(auto_inference).
  clear(auto) -> clear(auto_process).
  clear(auto) -> clear(auto_setup).
  clear(auto) -> clear(auto_limits).
  clear(auto) -> clear(auto_denials).
Any of the secondary flags, as well as the entire automatic mode can be cleared by the user.
set(auto_inference).    % default set
clear(auto_inference).
If this flag is set, the input clauses are checked for several syntactic properties such as the presence of equality and non-Horn clauses. Based on the results of the checks, Prover9 decides which inference rules to use.

Unlike ordinary option dependencies, the options that are changed by auto_inference cannot be undone by placing commands in the input file, because they depend on the structure of the clauses.

set(auto_process).    % default set
clear(auto_process).
This flag causes several other flags that affect clause processing to be altered based syntactic properties of the initial clauses.

If all clauses are Horn and there are negative nonunits, the flag back_unit_deletion is automatically set. If there are non-Horn clauses, the flags back_unit_deletion and factor are automatically set.

Unlike ordinary option dependencies, the options that are changed by auto_process cannot be undone by placing commands in the input file, because they depend on the structure of the clauses.

set(auto_setup).    % default set
clear(auto_setup).
The only effect of changing this flag is that two parameters are changed in the following ways.
  set(auto_setup) -> set(predicate_elim).
  set(auto_setup) -> assign(eq_defs, unfold).

  clear(auto_setup) -> clear(predicate_elim).
  clear(auto_setup) -> assign(eq_defs, pass).
set(auto_limits).    % default set
clear(auto_limits).
The only effect of changing this flag is that two parameters are changed in the following ways.
  set(auto_limits) -> assign(max_weight, 100).
  set(auto_limits) -> assign(sos_limit, 10000).

  clear(auto_limits) -> assign(max_weight, INT_MAX).
  clear(auto_limits) -> assign(sos_limit, -1).

An Experimental Automatic Mode

set(auto2).
clear(auto2).    % default clear
This is an enhanced automatic mode, developed in preparation for CASC-2005. The only direct effect of changing this option is that it causes several other options to be changed. See an output file to see the effects of setting this flag.

Automatically Adjusting the sos_limit Parameter

assign(lrs_ticks, n).  % default n=-1, range [-1 .. INT_MAX]
assign(lrs_interval, n).  % default n=50, range [1 .. INT_MAX]
assign(min_sos_limit, n).  % default n=0, range [0 .. INT_MAX]
These three parameters work together and are used to automatically adjust the parameter sos_limit by means of a "limited resource strategy" [RV-lrs]. If lrs_ticks ≥ 0, the method is applied.

This is an experimental feature and is not recommended for general use.

Raw Mode

The default values of the options can interfere with specialized search strategies. To avoid some of those problems, one can start from scratch by setting the following option.
set(raw).
clear(raw).    % default clear
This is a sort of anti-automatic mode, which allows the user to completely specify the search strategy, with less chance of interference from the default settings of various options. For example, to generate all binary resolvents, one can simply set the flags raw and binary_resolution instead of finding and clearing the flags that restrict resolution.

The flag works by making the following changes.

   set(raw) -> clear(auto).
   clear(auto) -> clear(auto_inference).
   clear(auto) -> clear(auto_setup).
   clear(auto_setup) -> clear(predicate_elim).
   clear(auto_setup) -> assign(eq_defs, pass).
   clear(auto) -> clear(auto_limits).
   clear(auto_limits) -> assign(max_weight, 2147483647).
   clear(auto_limits) -> assign(sos_limit, -1).
   clear(auto) -> clear(auto_denials).
   clear(auto) -> clear(auto_process).
   set(raw) -> clear(ordered_res).
   set(raw) -> clear(ordered_para).
   set(raw) -> assign(literal_selection, none).
   set(raw) -> clear(back_demod).
   set(raw) -> clear(cac_redundancy).
   set(raw) -> assign(backsub_check, 2147483647).
   set(raw) -> set(lightest_first).
   set(lightest_first) -> assign(weight_part, 1).
   set(lightest_first) -> assign(age_part, 0).
   set(lightest_first) -> assign(false_part, 0).
   set(lightest_first) -> assign(true_part, 0).
   set(lightest_first) -> assign(random_part, 0).

Next Section: Term Ordering prover9-manual-2009-02A/setup_book0000755000175000017500000000117410667606016016270 0ustar mccunemccune#!/usr/bin/perl # This creates a PDF of Prover9's documentation, using its HTML docs and # the tool "htmldoc". You must install "htmldoc" first. # Quick script by David A. Wheeler. # In directory with "nav.html", run as: # ./setupbook < nav.html > make_book # ./make_book # Produces file "finalbook.pdf". print "htmldoc -f finalbook.pdf --size letter -t pdf14 --webpage --duplex nav.html \\\n"; while (<>) { if (/href="([^"]+)"/) { $filename = $1; if ($filename =~ /\.[Cc][Ss][Ss]/) {next;} # Skip .css files. $filename =~ s/ /\\ /; # Protect spaces in filenames. print "$1 \\\n"; } } print "\n"; prover9-manual-2009-02A/BA-Sheffer.demods0000644000175000017500000000052010456775557017236 0ustar mccunemccune% Note that writing a basis of a variety to another set of operations % does not necessarily give a basis for the variety in the other % set of operations. formulas(demodulators). % Meet, join, and complementation in terms of the Sheffer Stroke. x v y = f(f(x,x),f(y,y)). x ^ y = f(f(x,y),f(x,y)). x' = f(x,x). end_of_list. prover9-manual-2009-02A/BA2.in0000644000175000017500000000111710456772660015066 0ustar mccunemccuneformulas(assumptions). % Modular ortholattice (MOL) in terms of the Sheffer stroke f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))). % A_SS f(f(x,x),f(x,y)) = x. % B_SS f(x,f(x,x)) = f(y,f(y,y)). % ONE_SS f(x,f(y,f(x,f(z,z)))) = f(x,f(z,f(x,f(y,y)))). % MOD_SS % lemmas: f(x,f(x,x)) = 1. f(x,y) = f(y,x). % commutativity end_of_list. formulas(goals). % The following, along with commutitiviy, gives Boolean, % so denying this produces a non-Boolean MOL. f(f(x,y),f(x,f(y,z))) = x # label(Veroff_2). end_of_list. prover9-manual-2009-02A/subset_trans.out0000644000175000017500000001435411151315476017435 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15826 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file subset_trans.in formulas(sos). (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). end_of_list. formulas(goals). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. subset(x,y) | member(f1(x,y),x). [clausify(1)]. subset(x,y) | -member(f1(x,y),y). [clausify(1)]. subset(c1,c2). [deny(2)]. subset(c2,c3). [deny(2)]. -subset(c1,c3). [deny(2)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating subset/2 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. Derived: member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. Derived: -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 6 subset(c1,c2). [deny(2)]. Derived: -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 7 subset(c2,c3). [deny(2)]. Derived: -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 8 -subset(c1,c3). [deny(2)]. Derived: member(f1(c1,c3),c1). [resolve(8,a,3,a)]. Derived: -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ member ]). Function symbol precedence: function_order([ c1, c2, c3, f1 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. kept: 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. kept: 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. kept: 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. kept: 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. kept: 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=11): 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. given #2 (I,wt=11): 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. given #3 (I,wt=6): 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. given #4 (I,wt=6): 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. given #5 (I,wt=5): 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. given #6 (I,wt=5): 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18 $F. [ur(12,b,14,a),unit_del(a,15)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=6. Generated=12. Kept=9. proofs=1. Usable=6. Sos=3. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.03. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15826 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/subset_trans.out20000644000175000017500000001426311151315476017516 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15827 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9". ============================== end of head =========================== ============================== INPUT ================================= formulas(sos). (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). end_of_list. formulas(goals). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. subset(x,y) | member(f1(x,y),x). [clausify(1)]. subset(x,y) | -member(f1(x,y),y). [clausify(1)]. subset(c1,c2). [deny(2)]. subset(c2,c3). [deny(2)]. -subset(c1,c3). [deny(2)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating subset/2 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. Derived: member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. Derived: -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 6 subset(c1,c2). [deny(2)]. Derived: -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 7 subset(c2,c3). [deny(2)]. Derived: -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 8 -subset(c1,c3). [deny(2)]. Derived: member(f1(c1,c3),c1). [resolve(8,a,3,a)]. Derived: -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ member ]). Function symbol precedence: function_order([ c1, c2, c3, f1 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. kept: 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. kept: 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. kept: 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. kept: 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. kept: 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=11): 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. given #2 (I,wt=11): 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. given #3 (I,wt=6): 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. given #4 (I,wt=6): 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. given #5 (I,wt=5): 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. given #6 (I,wt=5): 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18 $F. [ur(12,b,14,a),unit_del(a,15)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=6. Generated=12. Kept=9. proofs=1. Usable=6. Sos=3. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.03. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15827 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/subset_trans.out30000644000175000017500000001441011151315476017511 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15828 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset.in trans.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file subset.in formulas(sos). (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). end_of_list. % Reading from file trans.in formulas(goals). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. subset(x,y) | member(f1(x,y),x). [clausify(1)]. subset(x,y) | -member(f1(x,y),y). [clausify(1)]. subset(c1,c2). [deny(2)]. subset(c2,c3). [deny(2)]. -subset(c1,c3). [deny(2)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating subset/2 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. Derived: member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. Derived: -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 6 subset(c1,c2). [deny(2)]. Derived: -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 7 subset(c2,c3). [deny(2)]. Derived: -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 8 -subset(c1,c3). [deny(2)]. Derived: member(f1(c1,c3),c1). [resolve(8,a,3,a)]. Derived: -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ member ]). Function symbol precedence: function_order([ c1, c2, c3, f1 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. kept: 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. kept: 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. kept: 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. kept: 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. kept: 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=11): 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. given #2 (I,wt=11): 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. given #3 (I,wt=6): 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. given #4 (I,wt=6): 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. given #5 (I,wt=5): 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. given #6 (I,wt=5): 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18 $F. [ur(12,b,14,a),unit_del(a,15)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=6. Generated=12. Kept=9. proofs=1. Usable=6. Sos=3. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.03. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15828 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/LT-82-2.out0000644000175000017500000012143111151315512015610 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15831 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f LT-82-2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file LT-82-2.in assign(order,kbo). assign(max_weight,25). assign(max_seconds,3600). formulas(sos). x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x ^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. end_of_list. formulas(sos). (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). end_of_list. formulas(goals). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). end_of_list. list(interpretations). interpretation(6,[],[function(_ ^ _,[0,0,0,0,0,0,0,1,2,3,4,5,0,2,2,0,0,0,0,3,0,3,5,5,0,4,0,5,4,5,0,5,0,5,5,5]),function(_ v _,[0,1,2,3,4,5,1,1,1,1,1,1,2,1,2,1,1,1,3,1,1,3,1,3,4,1,1,1,4,4,5,1,1,3,4,5])]). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). x v y = y v x. [assumption]. (x v y) v z = x v (y v z). [assumption]. x ^ y = y ^ x. [assumption]. (x ^ y) ^ z = x ^ (y ^ z). [assumption]. x ^ (x v y) = x. [assumption]. x v (x ^ y) = x. [assumption]. (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). [assumption]. c1 ^ (c2 v (c3 ^ ((c1 ^ (c2 v c3)) v (c2 ^ c3)))) != c1 ^ (c2 v (c1 ^ c3)) # label(H2). [deny(1)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label H2 to answer in negative clause Term ordering decisions: Function symbol KB weights: c1=1. c2=1. c3=1. ^=1. v=1. Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ c1, c2, c3, ^, v ]). Skipping inverse_order, because term ordering is KBO. Unfolding symbols: (none). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). % Operation v is commutative; C redundancy checks enabled. kept: 2 x v y = y v x. [assumption]. kept: 3 (x v y) v z = x v (y v z). [assumption]. % Operation ^ is commutative; C redundancy checks enabled. kept: 4 x ^ y = y ^ x. [assumption]. kept: 5 (x ^ y) ^ z = x ^ (y ^ z). [assumption]. kept: 6 x ^ (x v y) = x. [assumption]. kept: 7 x v (x ^ y) = x. [assumption]. 8 (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). [assumption]. kept: 9 x ^ ((y ^ (x v z)) v (z ^ (x v y))) = (x ^ y) v (x ^ z). [copy(8),flip(a)]. 10 c1 ^ (c2 v (c3 ^ ((c1 ^ (c2 v c3)) v (c2 ^ c3)))) != c1 ^ (c2 v (c1 ^ c3)) # label(H2) # answer(H2). [deny(1)]. kept: 11 c1 ^ (c2 v (c3 ^ ((c2 ^ c3) v (c1 ^ (c2 v c3))))) != c1 ^ (c2 v (c1 ^ c3)) # answer(H2). [copy(10),rewrite([2(12)])]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 2 x v y = y v x. [assumption]. 3 (x v y) v z = x v (y v z). [assumption]. 4 x ^ y = y ^ x. [assumption]. 5 (x ^ y) ^ z = x ^ (y ^ z). [assumption]. 6 x ^ (x v y) = x. [assumption]. 7 x v (x ^ y) = x. [assumption]. 9 x ^ ((y ^ (x v z)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [copy(8),flip(a)]. 11 c1 ^ (c2 v (c3 ^ ((c2 ^ c3) v (c1 ^ (c2 v c3))))) != c1 ^ (c2 v (c1 ^ c3)) # answer(H2). [copy(10),rewrite([2(12)])]. end_of_list. formulas(demodulators). 2 x v y = y v x. [assumption]. % (lex-dep) 3 (x v y) v z = x v (y v z). [assumption]. 4 x ^ y = y ^ x. [assumption]. % (lex-dep) 5 (x ^ y) ^ z = x ^ (y ^ z). [assumption]. 6 x ^ (x v y) = x. [assumption]. 7 x v (x ^ y) = x. [assumption]. 9 x ^ ((y ^ (x v z)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [copy(8),flip(a)]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=7): 2 x v y = y v x. [assumption]. given #2 (I,wt=11): 3 (x v y) v z = x v (y v z). [assumption]. % Operation v is associative-commutative; CAC redundancy checks enabled. % back CAC tautology: 12 x v (y v z) = z v (x v y). [para(3(a,1),2(a,1))]. given #3 (I,wt=7): 4 x ^ y = y ^ x. [assumption]. given #4 (I,wt=11): 5 (x ^ y) ^ z = x ^ (y ^ z). [assumption]. % Operation ^ is associative-commutative; CAC redundancy checks enabled. % back CAC tautology: 14 x ^ (y ^ z) = z ^ (x ^ y). [para(5(a,1),4(a,1))]. given #5 (I,wt=7): 6 x ^ (x v y) = x. [assumption]. given #6 (I,wt=7): 7 x v (x ^ y) = x. [assumption]. given #7 (I,wt=21): 9 x ^ ((y ^ (x v z)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [copy(8),flip(a)]. given #8 (I,wt=23): 11 c1 ^ (c2 v (c3 ^ ((c2 ^ c3) v (c1 ^ (c2 v c3))))) != c1 ^ (c2 v (c1 ^ c3)) # answer(H2). [copy(10),rewrite([2(12)])]. given #9 (A,wt=11): 13 x v (y v z) = y v (x v z). [para(2(a,1),3(a,1,1)),rewrite([3(2)])]. given #10 (F,wt=21): 26 x ^ ((y ^ (z v x)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [para(2(a,1),9(a,1,2,1,2))]. given #11 (F,wt=21): 27 x ^ ((y ^ (x v z)) v (z ^ (y v x))) = (x ^ y) v (x ^ z) # label(false). [para(2(a,1),9(a,1,2,2,2))]. given #12 (F,wt=21): 28 x ^ ((y ^ (x v z)) v ((x v y) ^ z)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),9(a,1,2,1)),rewrite([2(5)])]. given #13 (F,wt=21): 33 x ^ ((y ^ (z v x)) v (z ^ (y v x))) = (x ^ y) v (x ^ z) # label(false). [para(2(a,1),26(a,1,2,2,2))]. given #14 (T,wt=5): 24 x ^ x = x. [para(7(a,1),6(a,1,2))]. given #15 (T,wt=5): 25 x v x = x. [para(6(a,1),7(a,1,2))]. given #16 (T,wt=7): 16 x ^ (y v x) = x. [para(2(a,1),6(a,1,2))]. given #17 (T,wt=7): 22 x v (y ^ x) = x. [para(4(a,1),7(a,1,2))]. given #18 (A,wt=11): 15 x ^ (y ^ z) = y ^ (x ^ z). [para(4(a,1),5(a,1,1)),rewrite([5(2)])]. given #19 (F,wt=21): 34 x ^ ((y ^ (x v z)) v ((y v x) ^ z)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),26(a,1,2,1)),rewrite([2(5)])]. given #20 (F,wt=21): 35 x ^ ((y ^ (z v x)) v ((x v y) ^ z)) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),26(a,1,2,2))]. given #21 (F,wt=21): 39 x ^ (((x v y) ^ z) v ((x v z) ^ y)) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),28(a,1,2,1))]. given #22 (F,wt=21): 44 x ^ ((y ^ (z v x)) v ((y v x) ^ z)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),33(a,1,2,1)),rewrite([2(5)])]. given #23 (T,wt=9): 31 x ^ (y v (x v z)) = x. [para(13(a,1),6(a,1,2))]. given #24 (T,wt=9): 46 x ^ (x ^ y) = x ^ y. [para(24(a,1),5(a,1,1)),flip(a)]. given #25 (T,wt=9): 48 x ^ (y ^ x) = y ^ x. [para(24(a,1),5(a,2,2)),rewrite([4(2)])]. given #26 (T,wt=9): 55 x v (x v y) = x v y. [para(25(a,1),3(a,1,1)),flip(a)]. given #27 (A,wt=13): 17 (x v y) ^ (x v (y v z)) = x v y. [para(3(a,1),6(a,1,2))]. given #28 (F,wt=21): 83 x ^ (((x v y) ^ z) v ((z v x) ^ y)) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),34(a,1,2,1))]. given #29 (F,wt=21): 91 x ^ (((y v x) ^ z) v ((x v z) ^ y)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),35(a,1,2,1))]. given #30 (F,wt=21): 103 x ^ (((y v x) ^ z) v ((z v x) ^ y)) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),44(a,1,2,1))]. given #31 (F,wt=25): 127 x ^ (((x v y) ^ z) v (y ^ (x v ((x v y) ^ z)))) = (x ^ z) v (x ^ y) # label(false). [para(46(a,1),28(a,1,2,2)),rewrite([2(7),18(11)])]. given #32 (T,wt=9): 57 x v (y v x) = y v x. [para(25(a,1),3(a,2,2)),rewrite([2(2)])]. given #33 (T,wt=9): 58 x ^ (y v (z v x)) = x. [para(3(a,1),16(a,1,2))]. given #34 (T,wt=9): 68 x v (y ^ (z ^ x)) = x. [para(5(a,1),22(a,1,2))]. given #35 (T,wt=9): 75 x v (y ^ (x ^ z)) = x. [para(15(a,1),7(a,1,2))]. given #36 (A,wt=11): 18 x ^ ((x v y) ^ z) = x ^ z. [para(6(a,1),5(a,1,1)),flip(a)]. given #37 (F,wt=25): 128 x ^ (((y v x) ^ z) v (y ^ (x v ((y v x) ^ z)))) = (x ^ z) v (x ^ y) # label(false). [para(46(a,1),34(a,1,2,2)),rewrite([2(7),59(11)])]. given #38 (F,wt=25): 131 x ^ ((y ^ (x v z)) v (z ^ (x v (y ^ (x v z))))) = (y ^ x) v (x ^ z) # label(false). [para(48(a,1),28(a,1,2,2)),rewrite([2(7),74(11)])]. given #39 (F,wt=25): 132 x ^ ((y ^ (z v x)) v (z ^ (x v (y ^ (z v x))))) = (y ^ x) v (x ^ z) # label(false). [para(48(a,1),34(a,1,2,2)),rewrite([2(7),81(11)])]. given #40 (F,wt=25): 153 x ^ (((y v x) ^ z) v (y ^ (x v ((x v y) ^ z)))) = (x ^ z) v (x ^ y) # label(false). [para(2(a,1),127(a,1,2,1,1))]. given #41 (T,wt=11): 20 x v ((x ^ y) v z) = x v z. [para(7(a,1),3(a,1,1)),flip(a)]. given #42 (T,wt=11): 32 x v (y v (x ^ z)) = y v x. [para(7(a,1),13(a,1,2)),flip(a)]. given #43 (T,wt=11): 59 x ^ ((y v x) ^ z) = x ^ z. [para(16(a,1),5(a,1,1)),flip(a)]. given #44 (T,wt=11): 66 x v ((y ^ x) v z) = x v z. [para(22(a,1),3(a,1,1)),flip(a)]. given #45 (A,wt=13): 19 x ^ (y ^ ((x ^ y) v z)) = x ^ y. [para(6(a,1),5(a,1)),flip(a)]. given #46 (F,wt=25): 154 x ^ (((x v y) ^ z) v (y ^ (x v ((y v x) ^ z)))) = (x ^ z) v (x ^ y) # label(false). [para(2(a,1),127(a,1,2,2,2,2,1))]. given #47 (F,wt=25): 155 x ^ ((y ^ (x v z)) v (z ^ (x v ((x v z) ^ y)))) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),127(a,1,2,1))]. given #48 (F,wt=25): 156 x ^ (((x v y) ^ z) v (y ^ (x v (z ^ (x v y))))) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),127(a,1,2,2,2,2))]. given #49 (F,wt=25): 217 x ^ ((y ^ (z v x)) v (z ^ (x v ((z v x) ^ y)))) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),128(a,1,2,1))]. given #50 (T,wt=11): 70 x v (y v (z ^ x)) = y v x. [para(22(a,1),13(a,1,2)),flip(a)]. given #51 (T,wt=11): 74 x ^ (y ^ (x v z)) = y ^ x. [para(6(a,1),15(a,1,2)),flip(a)]. given #52 (T,wt=11): 81 x ^ (y ^ (z v x)) = y ^ x. [para(16(a,1),15(a,1,2)),flip(a)]. given #53 (T,wt=11): 109 x ^ (y v (z v (x v u))) = x. [para(3(a,1),31(a,1,2))]. given #54 (A,wt=13): 21 x v (y v ((x v y) ^ z)) = x v y. [para(7(a,1),3(a,1)),flip(a)]. given #55 (F,wt=25): 218 x ^ (((y v x) ^ z) v (y ^ (x v (z ^ (y v x))))) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),128(a,1,2,2,2,2))]. given #56 (F,wt=25): 223 x ^ ((y ^ (z v x)) v (z ^ (x v (y ^ (x v z))))) = (y ^ x) v (x ^ z) # label(false). [para(2(a,1),131(a,1,2,1,2))]. given #57 (F,wt=25): 224 x ^ ((y ^ (x v z)) v (z ^ (x v (y ^ (z v x))))) = (y ^ x) v (x ^ z) # label(false). [para(2(a,1),131(a,1,2,2,2,2,2))]. given #58 (F,wt=25): 232 x ^ ((y ^ (z v x)) v (z ^ (x v ((x v z) ^ y)))) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),153(a,1,2,1))]. given #59 (T,wt=11): 164 (x v y) ^ (y v x) = x v y. [para(57(a,1),17(a,1,2))]. given #60 (T,wt=11): 165 x ^ (y v (z v (u v x))) = x. [para(3(a,1),58(a,1,2,2))]. given #61 (T,wt=11): 184 x v (y ^ (z ^ (u ^ x))) = x. [para(5(a,1),68(a,1,2,2))]. given #62 (T,wt=11): 203 x v (y ^ (z ^ (x ^ u))) = x. [para(5(a,1),75(a,1,2))]. given #63 (A,wt=13): 23 (x ^ y) v (x ^ (y ^ z)) = x ^ y. [para(5(a,1),7(a,1,2))]. given #64 (F,wt=25): 233 x ^ (((y v x) ^ z) v (y ^ (x v (z ^ (x v y))))) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),153(a,1,2,2,2,2))]. given #65 (F,wt=25): 280 x ^ ((y ^ (x v z)) v (z ^ (x v ((z v x) ^ y)))) = (x ^ y) v (x ^ z) # label(false). [para(4(a,1),154(a,1,2,1))]. given #66 (F,wt=25): 281 x ^ (((x v y) ^ z) v (y ^ (x v (z ^ (y v x))))) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),154(a,1,2,2,2,2))]. given #67 (T,wt=11): 215 (x v y) ^ (z ^ x) = z ^ x. [para(48(a,1),18(a,2)),rewrite([130(4)])]. given #68 (T,wt=11): 225 (x ^ y) v (y ^ x) = y ^ x. [para(16(a,1),131(a,1,2,1)),rewrite([16(2),16(2),25(1)]),flip(a)]. given #69 (T,wt=11): 241 (x ^ y) v (z v x) = z v x. [para(57(a,1),20(a,2)),rewrite([161(4)])]. given #70 (T,wt=11): 253 (x v y) ^ (z ^ y) = z ^ y. [para(48(a,1),59(a,2)),rewrite([130(4)])]. given #71 (A,wt=25): 29 x ^ (((y ^ (x v z)) v (z ^ (x v y))) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(9(a,1),5(a,1,1)),flip(a)]. given #72 (T,wt=11): 263 (x ^ y) v (z v y) = z v y. [para(57(a,1),66(a,2)),rewrite([161(4)])]. given #73 (T,wt=13): 60 x ^ (y ^ (z v (x ^ y))) = x ^ y. [para(16(a,1),5(a,1)),flip(a)]. given #74 (T,wt=13): 62 (x v y) ^ (x v (z v y)) = x v y. [para(13(a,1),16(a,1,2))]. given #75 (T,wt=13): 67 x v (y v (z ^ (x v y))) = x v y. [para(22(a,1),3(a,1)),flip(a)]. given #76 (A,wt=25): 36 x ^ (((y ^ (z v x)) v (z ^ (x v y))) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(26(a,1),5(a,1,1)),flip(a)]. given #77 (T,wt=13): 82 (x ^ y) v (x ^ (z ^ y)) = x ^ y. [para(15(a,1),22(a,1,2))]. given #78 (T,wt=13): 110 x ^ ((y v (x v z)) ^ u) = x ^ u. [para(31(a,1),5(a,1,1)),flip(a)]. given #79 (T,wt=13): 116 x v (y v (x v z)) = y v (x v z). [para(31(a,1),22(a,1,2)),rewrite([2(3)])]. given #80 (T,wt=13): 117 x ^ (y ^ (z v (x v u))) = y ^ x. [para(31(a,1),15(a,1,2)),flip(a)]. given #81 (A,wt=25): 38 x ^ (((y ^ (x v z)) v (z ^ (y v x))) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(27(a,1),5(a,1,1)),flip(a)]. given #82 (T,wt=13): 126 x ^ (y ^ (x ^ z)) = y ^ (x ^ z). [para(46(a,1),5(a,2,2)),rewrite([15(3),5(2)])]. given #83 (T,wt=13): 130 x ^ (y ^ (z ^ x)) = y ^ (z ^ x). [para(5(a,1),48(a,1,2)),rewrite([5(5)])]. given #84 (T,wt=13): 135 (x v y) ^ (y v (x v z)) = y v x. [para(2(a,1),17(a,1,1))]. given #85 (T,wt=13): 136 (x v y) ^ (y v (z v x)) = x v y. [para(2(a,1),17(a,1,2)),rewrite([3(3)])]. given #86 (A,wt=25): 40 x ^ (((y ^ (x v z)) v ((x v y) ^ z)) ^ u) = ((x ^ z) v (x ^ y)) ^ u. [para(28(a,1),5(a,1,1)),flip(a)]. given #87 (T,wt=13): 161 x v (y v (z v x)) = y v (z v x). [para(3(a,1),57(a,1,2)),rewrite([3(5)])]. given #88 (T,wt=13): 166 x ^ ((y v (z v x)) ^ u) = x ^ u. [para(58(a,1),5(a,1,1)),flip(a)]. given #89 (T,wt=13): 176 x ^ (y ^ (z v (u v x))) = y ^ x. [para(58(a,1),15(a,1,2)),flip(a)]. given #90 (T,wt=13): 182 x v ((y ^ (z ^ x)) v u) = x v u. [para(68(a,1),3(a,1,1)),flip(a)]. given #91 (A,wt=25): 45 x ^ (((y ^ (z v x)) v (z ^ (y v x))) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(33(a,1),5(a,1,1)),flip(a)]. given #92 (T,wt=13): 188 x v (y v (z ^ (u ^ x))) = y v x. [para(68(a,1),13(a,1,2)),flip(a)]. given #93 (T,wt=13): 200 x v ((y ^ (x ^ z)) v u) = x v u. [para(75(a,1),3(a,1,1)),flip(a)]. given #94 (T,wt=13): 204 x v (y ^ ((x ^ z) v (x ^ u))) = x. [para(9(a,1),75(a,1,2,2))]. given #95 (T,wt=13): 205 x v (y v (z ^ (x ^ u))) = y v x. [para(75(a,1),13(a,1,2)),flip(a)]. given #96 (A,wt=17): 51 x ^ ((y ^ x) v (x ^ z)) = (x ^ z) v (x ^ y). [back_rewrite(41),rewrite([46(2)]),flip(a)]. given #97 (T,wt=13): 221 x ^ ((y ^ z) v (y ^ x)) = x ^ y. [para(22(a,1),128(a,1,2,1,1)),rewrite([22(5),51(6),55(6),5(5),54(4),5(6),4(8),48(8),2(8),23(8)])]. given #98 (T,wt=13): 228 x v (y ^ ((z ^ x) v (x ^ u))) = x. [para(131(a,1),75(a,1,2,2))]. given #99 (T,wt=13): 230 x ^ ((y ^ x) v (z ^ y)) = x ^ y. [para(22(a,1),132(a,1,2,1,2)),rewrite([22(5),69(6),57(6),5(5),159(4),4(8),48(8),2(8),22(8)])]. given #100 (T,wt=13): 269 x ^ (y ^ ((y ^ x) v z)) = x ^ y. [para(4(a,1),19(a,1,2,2,1))]. given #101 (A,wt=17): 54 x ^ ((x ^ y) v (x ^ z)) = (x ^ y) v (x ^ z). [back_rewrite(50),rewrite([52(5)])]. given #102 (T,wt=13): 288 (x ^ y) v (z ^ (y ^ x)) = y ^ x. [para(68(a,1),155(a,2)),rewrite([75(3),75(6),7(5),4(4),126(4),229(5)])]. given #103 (T,wt=13): 303 x ^ ((y ^ x) v (y ^ z)) = x ^ y. [para(9(a,1),74(a,1,2)),rewrite([5(6),212(5),74(7)])]. given #104 (T,wt=13): 314 x ^ (y ^ (z v (y ^ x))) = y ^ x. [back_rewrite(106),rewrite([304(5),126(5)])]. given #105 (T,wt=13): 333 x ^ (y v (z v (u v (x v w)))) = x. [para(3(a,1),109(a,1,2,2))]. given #106 (A,wt=17): 69 x ^ ((y ^ x) v (z ^ x)) = (x ^ y) v (z ^ x). [para(22(a,1),9(a,1,2,1,2)),rewrite([5(4),6(3),48(7)])]. given #107 (T,wt=13): 348 x v (y v ((y v x) ^ z)) = x v y. [para(2(a,1),21(a,1,2,2,1))]. given #108 (T,wt=13): 369 x v (y v (z ^ (y v x))) = x v y. [para(164(a,1),68(a,1,2,2)),rewrite([3(4)])]. given #109 (T,wt=13): 370 x ^ (y v (z v (u v (w v x)))) = x. [para(3(a,1),165(a,1,2,2,2))]. given #110 (T,wt=13): 393 x v (y ^ (z ^ (u ^ (w ^ x)))) = x. [para(5(a,1),184(a,1,2,2,2))]. given #111 (A,wt=25): 76 x ^ (y ^ ((z ^ (x v u)) v (u ^ (x v z)))) = y ^ ((x ^ z) v (x ^ u)). [para(9(a,1),15(a,1,2)),flip(a)]. given #112 (T,wt=13): 406 x v (y ^ (z ^ (u ^ (x ^ w)))) = x. [para(184(a,1),20(a,1,2)),rewrite([7(2)]),flip(a)]. given #113 (T,wt=13): 433 (x ^ y) v (y ^ (x ^ z)) = y ^ x. [para(4(a,1),23(a,1,1))]. given #114 (T,wt=13): 434 (x ^ y) v (y ^ (z ^ x)) = x ^ y. [para(4(a,1),23(a,1,2)),rewrite([5(3)])]. given #115 (T,wt=13): 454 (x v (y v z)) ^ (u ^ y) = u ^ y. [para(13(a,1),215(a,1,1))]. given #116 (A,wt=25): 77 x ^ (y ^ ((z ^ (u v x)) v (u ^ (x v z)))) = y ^ ((x ^ z) v (x ^ u)). [para(26(a,1),15(a,1,2)),flip(a)]. given #117 (T,wt=13): 481 (x ^ (y ^ z)) v (u v y) = u v y. [para(15(a,1),241(a,1,1))]. given #118 (T,wt=13): 495 (x v (y v z)) ^ (u ^ z) = u ^ z. [para(3(a,1),253(a,1,1))]. given #119 (T,wt=13): 509 (x v y) ^ (z v (y v x)) = x v y. [para(164(a,1),253(a,1,2)),rewrite([4(4),164(7)])]. given #120 (T,wt=13): 514 x v (((x ^ y) v (x ^ z)) ^ u) = x. [para(29(a,1),7(a,1,2))]. given #121 (A,wt=25): 78 x ^ (y ^ ((z ^ (x v u)) v (u ^ (z v x)))) = y ^ ((x ^ z) v (x ^ u)). [para(27(a,1),15(a,1,2)),flip(a)]. given #122 (T,wt=13): 536 (x ^ (y ^ z)) v (u v z) = u v z. [para(5(a,1),263(a,1,1))]. given #123 (T,wt=13): 849 x v (y ^ ((x ^ z) v (u ^ x))) = x. [para(4(a,1),204(a,1,2,2,2))]. given #124 (T,wt=13): 905 x ^ ((y ^ z) v (z ^ x)) = x ^ z. [para(4(a,1),221(a,1,2,1))]. given #125 (T,wt=13): 906 x ^ ((y ^ z) v (x ^ y)) = x ^ y. [para(4(a,1),221(a,1,2,2))]. given #126 (A,wt=25): 79 x ^ (y ^ ((z ^ (x v u)) v ((x v z) ^ u))) = y ^ ((x ^ u) v (x ^ z)). [para(28(a,1),15(a,1,2)),flip(a)]. given #127 (T,wt=13): 944 x v (y ^ ((z ^ x) v (u ^ x))) = x. [para(4(a,1),228(a,1,2,2,2))]. given #128 (T,wt=13): 945 x v (((y ^ x) v (x ^ z)) ^ u) = x. [para(4(a,1),228(a,1,2))]. given #129 (T,wt=13): 978 x ^ ((x ^ y) v (z ^ y)) = x ^ y. [para(4(a,1),230(a,1,2,1))]. given #130 (T,wt=13): 1086 x ^ ((x ^ y) v (y ^ z)) = x ^ y. [para(4(a,1),303(a,1,2,1))]. given #131 (A,wt=25): 80 x ^ (y ^ ((z ^ (u v x)) v (u ^ (z v x)))) = y ^ ((x ^ z) v (x ^ u)). [para(33(a,1),15(a,1,2)),flip(a)]. given #132 (T,wt=13): 1505 x v (((x ^ y) v (z ^ x)) ^ u) = x. [para(4(a,1),514(a,1,2,1,2))]. given #133 (T,wt=13): 1600 x ^ ((y ^ z) v (x ^ z)) = x ^ z. [para(4(a,1),905(a,1,2,2))]. given #134 (T,wt=13): 1675 x v (((y ^ x) v (z ^ x)) ^ u) = x. [para(4(a,1),944(a,1,2))]. given #135 (T,wt=15): 108 (x v y) ^ (z v (x v (y v u))) = x v y. [para(3(a,1),31(a,1,2,2))]. given #136 (A,wt=25): 84 x ^ (((y ^ (x v z)) v ((y v x) ^ z)) ^ u) = ((x ^ z) v (x ^ y)) ^ u. [para(34(a,1),5(a,1,1)),flip(a)]. given #137 (T,wt=15): 111 x ^ (y ^ (z v ((x ^ y) v u))) = x ^ y. [para(31(a,1),5(a,1)),flip(a)]. given #138 (T,wt=15): 140 (x v y) ^ (x v (z v (y v u))) = x v y. [para(13(a,1),17(a,1,2,2))]. given #139 (T,wt=15): 167 x ^ (y ^ (z v (u v (x ^ y)))) = x ^ y. [para(58(a,1),5(a,1)),flip(a)]. given #140 (T,wt=15): 170 (x v y) ^ (z v (x v (u v y))) = x v y. [para(13(a,1),58(a,1,2,2))]. given #141 (A,wt=25): 90 x ^ (y ^ ((z ^ (x v u)) v ((z v x) ^ u))) = y ^ ((x ^ u) v (x ^ z)). [para(34(a,1),15(a,1,2)),flip(a)]. given #142 (T,wt=15): 183 x v (y v (z ^ (u ^ (x v y)))) = x v y. [para(68(a,1),3(a,1)),flip(a)]. given #143 (T,wt=15): 192 (x ^ y) v (z ^ (x ^ (u ^ y))) = x ^ y. [para(15(a,1),68(a,1,2,2))]. given #144 (T,wt=15): 201 x v (y v (z ^ ((x v y) ^ u))) = x v y. [para(75(a,1),3(a,1)),flip(a)]. given #145 (T,wt=15): 202 (x ^ y) v (z ^ (x ^ (y ^ u))) = x ^ y. [para(5(a,1),75(a,1,2,2))]. given #146 (A,wt=25): 92 x ^ (((y ^ (z v x)) v ((x v y) ^ z)) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(35(a,1),5(a,1,1)),flip(a)]. given #147 (T,wt=15): 213 (x ^ y) v ((x v z) ^ y) = (x v z) ^ y. [para(18(a,1),22(a,1,2)),rewrite([2(4)])]. given #148 (T,wt=15): 214 x ^ (y ^ ((x v z) ^ u)) = y ^ (x ^ u). [para(18(a,1),15(a,1,2)),flip(a)]. given #149 (T,wt=15): 219 x ^ ((y ^ x) v ((y v x) ^ (x v z))) = x. [para(6(a,1),128(a,2,1)),rewrite([115(8),13(8),2(7),213(7),7(8)])]. given #150 (T,wt=15): 220 x ^ ((y ^ x) v ((y v x) ^ (z v x))) = x. [para(16(a,1),128(a,2,1)),rewrite([173(8),13(8),2(7),213(7),7(8)])]. given #151 (A,wt=25): 97 x ^ (y ^ ((z ^ (u v x)) v ((x v z) ^ u))) = y ^ ((x ^ z) v (x ^ u)). [para(35(a,1),15(a,1,2)),flip(a)]. given #152 (T,wt=15): 239 x v (y v ((x ^ z) v u)) = y v (x v u). [para(20(a,1),13(a,1,2)),flip(a)]. given #153 (T,wt=15): 240 (x v y) ^ ((x ^ z) v y) = (x ^ z) v y. [para(20(a,1),16(a,1,2)),rewrite([4(4)])]. given #154 (T,wt=15): 244 x v (y v (z v (x ^ u))) = y v (z v x). [para(3(a,1),32(a,1,2)),rewrite([3(6)])]. given #155 (T,wt=15): 246 (x v y) ^ (x v (y ^ z)) = x v (y ^ z). [para(32(a,1),16(a,1,2)),rewrite([4(4)])]. given #156 (A,wt=25): 98 x ^ ((((x v y) ^ z) v ((x v z) ^ y)) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(39(a,1),5(a,1,1)),flip(a)]. given #157 (T,wt=15): 251 (x ^ y) v ((z v x) ^ y) = (z v x) ^ y. [para(59(a,1),22(a,1,2)),rewrite([2(4)])]. given #158 (T,wt=15): 252 x ^ (y ^ ((z v x) ^ u)) = y ^ (x ^ u). [para(59(a,1),15(a,1,2)),flip(a)]. given #159 (T,wt=15): 258 x ^ ((y ^ x) v ((x v y) ^ (x v z))) = x. [back_rewrite(157),rewrite([251(7)])]. given #160 (T,wt=13): 2410 x ^ (((x v y) ^ (x v z)) v u) = x. [para(258(a,1),215(a,1,2)),rewrite([2394(5),4(5),2394(10),74(9),4(7),6(7)])]. given #161 (A,wt=25): 102 x ^ (y ^ (((x v z) ^ u) v ((x v u) ^ z))) = y ^ ((x ^ z) v (x ^ u)). [para(39(a,1),15(a,1,2)),flip(a)]. given #162 (T,wt=13): 2412 x ^ (y v ((x v z) ^ (x v u))) = x. [para(258(a,1),253(a,1,2)),rewrite([2394(5),4(5),2394(10),74(9),4(7),6(7)])]. given #163 (T,wt=13): 2439 x ^ (((y v x) ^ (x v z)) v u) = x. [para(2(a,1),2410(a,1,2,1,1))]. given #164 (T,wt=13): 2440 x ^ (((x v y) ^ (z v x)) v u) = x. [para(2(a,1),2410(a,1,2,1,2))]. given #165 (T,wt=13): 2484 x ^ (y v ((z v x) ^ (x v u))) = x. [para(2(a,1),2412(a,1,2,2,1))]. given #166 (A,wt=25): 104 x ^ (((y ^ (z v x)) v ((y v x) ^ z)) ^ u) = ((x ^ z) v (x ^ y)) ^ u. [para(44(a,1),5(a,1,1)),flip(a)]. given #167 (T,wt=13): 2485 x ^ (y v ((x v z) ^ (u v x))) = x. [para(2(a,1),2412(a,1,2,2,2))]. given #168 (T,wt=13): 2515 x ^ (((y v x) ^ (z v x)) v u) = x. [para(2(a,1),2439(a,1,2,1,2))]. given #169 (T,wt=13): 2593 x ^ (y v ((z v x) ^ (u v x))) = x. [para(2(a,1),2484(a,1,2,2,2))]. given #170 (T,wt=15): 260 x v (y v ((z ^ x) v u)) = y v (x v u). [para(66(a,1),13(a,1,2)),flip(a)]. given #171 (A,wt=25): 107 x ^ (y ^ ((z ^ (u v x)) v ((z v x) ^ u))) = y ^ ((x ^ u) v (x ^ z)). [para(44(a,1),15(a,1,2)),flip(a)]. given #172 (T,wt=15): 261 (x v y) ^ ((z ^ x) v y) = (z ^ x) v y. [para(66(a,1),16(a,1,2)),rewrite([4(4)])]. given #173 (T,wt=15): 276 x ^ (y ^ (((x v z) ^ y) v u)) = x ^ y. [para(19(a,1),18(a,1,2)),rewrite([18(3)]),flip(a)]. given #174 (T,wt=15): 278 x ^ (y ^ (((z v x) ^ y) v u)) = x ^ y. [para(19(a,1),59(a,1,2)),rewrite([59(3)]),flip(a)]. given #175 (T,wt=15): 292 x v (y v (z v (u ^ x))) = y v (z v x). [para(3(a,1),70(a,1,2)),rewrite([3(6)])]. given #176 (A,wt=19): 113 (x v y) ^ (x v (z ^ (x v y))) = x v ((x v y) ^ z). [para(31(a,1),26(a,1,2,1)),rewrite([2(3),55(3),4(7),6(7)])]. given #177 (T,wt=15): 293 (x v y) ^ (x v (z ^ y)) = x v (z ^ y). [para(70(a,1),16(a,1,2)),rewrite([4(4)])]. given #178 (T,wt=15): 302 x ^ (y ^ (z ^ (x v u))) = y ^ (z ^ x). [para(5(a,1),74(a,1,2)),rewrite([5(6)])]. given #179 (T,wt=15): 304 (x ^ y) v (x ^ (y v z)) = x ^ (y v z). [para(74(a,1),22(a,1,2)),rewrite([2(4)])]. given #180 (T,wt=15): 316 x ^ (y ^ (z ^ (u v x))) = y ^ (z ^ x). [para(5(a,1),81(a,1,2)),rewrite([5(6)])]. given #181 (A,wt=19): 121 (x v y) ^ (x v ((x v y) ^ z)) = x v ((x v y) ^ z). [para(31(a,1),35(a,1,2,1)),rewrite([2(3),55(3),4(7),6(7)])]. given #182 (T,wt=15): 318 (x ^ y) v (x ^ (z v y)) = x ^ (z v y). [para(81(a,1),22(a,1,2)),rewrite([2(4)])]. given #183 (T,wt=13): 3105 x v ((y v x) ^ (y v z)) = x v y. [para(135(a,1),318(a,1,2)),rewrite([2(5),3(5),2093(4),135(8)])]. given #184 (T,wt=13): 3142 x v ((x v y) ^ (y v z)) = x v y. [para(2(a,1),3105(a,1,2,1))]. given #185 (T,wt=13): 3143 x v ((y v x) ^ (z v y)) = x v y. [para(2(a,1),3105(a,1,2,2))]. given #186 (A,wt=19): 137 (x v (y v z)) ^ (x v (y v (z v u))) = x v (y v z). [para(3(a,1),17(a,1,1)),rewrite([3(5),3(8)])]. given #187 (T,wt=13): 3147 x v ((y v z) ^ (y v x)) = x v y. [para(4(a,1),3105(a,1,2))]. given #188 (T,wt=13): 3193 x v ((x v y) ^ (z v y)) = x v y. [para(2(a,1),3142(a,1,2,2))]. given #189 (T,wt=13): 3197 x v ((y v z) ^ (x v y)) = x v y. [para(4(a,1),3142(a,1,2))]. given #190 (T,wt=13): 3223 x v ((y v z) ^ (z v x)) = x v z. [para(4(a,1),3143(a,1,2))]. given #191 (A,wt=17): 138 (x v y) ^ ((x v (y v z)) ^ u) = (x v y) ^ u. [para(17(a,1),5(a,1,1)),flip(a)]. given #192 (T,wt=13): 3357 x v ((y v z) ^ (x v z)) = x v z. [para(4(a,1),3193(a,1,2))]. given #193 (T,wt=15): 334 x ^ ((y v (z v (x v u))) ^ w) = x ^ w. [para(109(a,1),5(a,1,1)),flip(a)]. given #194 (T,wt=15): 341 x ^ (y ^ (z v (u v (x v w)))) = y ^ x. [para(109(a,1),15(a,1,2)),flip(a)]. given #195 (T,wt=15): 353 x v (y v (((x ^ z) v y) ^ u)) = x v y. [para(21(a,1),20(a,1,2)),rewrite([20(3)]),flip(a)]. given #196 (A,wt=19): 139 (x v (y v z)) ^ (y v (x v (z v u))) = y v (x v z). [para(13(a,1),17(a,1,1)),rewrite([3(4)])]. given #197 (T,wt=15): 355 x v (y v (((z ^ x) v y) ^ u)) = x v y. [para(21(a,1),66(a,1,2)),rewrite([66(3)]),flip(a)]. given #198 (T,wt=15): 359 (x ^ y) v (y ^ (x v z)) = y ^ (x v z). [para(31(a,1),223(a,1,2,2,2,2)),rewrite([3(2),6(3),313(5)]),flip(a)]. given #199 (T,wt=15): 360 (x ^ y) v (y ^ (z v x)) = y ^ (z v x). [para(58(a,1),223(a,1,2,2,2,2)),rewrite([3(2),31(3),331(5)]),flip(a)]. given #200 (T,wt=15): 364 (x v y) ^ ((y v x) ^ z) = (x v y) ^ z. [para(164(a,1),5(a,1,1)),flip(a)]. given #201 (A,wt=17): 142 (x v y) ^ (z ^ (x v (y v u))) = z ^ (x v y). [para(17(a,1),15(a,1,2)),flip(a)]. given #202 (T,wt=15): 365 (x v y) ^ (z ^ (y v x)) = z ^ (y v x). [para(164(a,1),5(a,2,2)),rewrite([4(4)])]. given #203 (T,wt=15): 371 x ^ ((y v (z v (u v x))) ^ w) = x ^ w. [para(165(a,1),5(a,1,1)),flip(a)]. given #204 (T,wt=15): 378 x ^ (y ^ (z v (u v (w v x)))) = y ^ x. [para(165(a,1),15(a,1,2)),flip(a)]. given #205 (T,wt=15): 391 x v ((y ^ (z ^ (u ^ x))) v w) = x v w. [para(184(a,1),3(a,1,1)),flip(a)]. given #206 (A,wt=25): 143 x ^ ((((x v y) ^ z) v ((z v x) ^ y)) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(83(a,1),5(a,1,1)),flip(a)]. given #207 (T,wt=15): 395 x v (y v (z ^ (u ^ (w ^ x)))) = y v x. [para(184(a,1),13(a,1,2)),flip(a)]. given #208 (T,wt=15): 414 x v (y v (z ^ (u ^ (y v x)))) = x v y. [para(164(a,1),184(a,1,2,2,2)),rewrite([3(5)])]. given #209 (T,wt=15): 417 x v ((y ^ (z ^ (x ^ u))) v w) = x v w. [para(203(a,1),3(a,1,1)),flip(a)]. given #210 (T,wt=15): 421 x v (y ^ (z ^ ((x ^ u) v (x ^ w)))) = x. [para(9(a,1),203(a,1,2,2,2))]. given #211 (A,wt=25): 147 x ^ (y ^ (((x v z) ^ u) v ((u v x) ^ z))) = y ^ ((x ^ z) v (x ^ u)). [para(83(a,1),15(a,1,2)),flip(a)]. given #212 (T,wt=15): 422 x v (y v (z ^ (u ^ (x ^ w)))) = y v x. [para(203(a,1),13(a,1,2)),flip(a)]. given #213 (T,wt=15): 425 x v (y ^ (z ^ ((u ^ x) v (x ^ w)))) = x. [para(131(a,1),203(a,1,2,2,2))]. given #214 (T,wt=15): 428 (x ^ y) v (z ^ (y ^ (x ^ u))) = y ^ x. [para(203(a,1),155(a,2)),rewrite([5(2),75(4),5(3),5(6),75(8),7(6),4(5),126(5),229(6)])]. given #215 (T,wt=15): 431 (x ^ y) v (z ^ (u ^ (y ^ x))) = y ^ x. [back_rewrite(411),rewrite([424(6)])]. given #216 (A,wt=25): 149 x ^ ((((y v x) ^ z) v ((x v z) ^ y)) ^ u) = ((x ^ z) v (x ^ y)) ^ u. [para(91(a,1),5(a,1,1)),flip(a)]. given #217 (T,wt=15): 439 (x ^ y) v (x ^ (z ^ (y ^ u))) = x ^ y. [para(15(a,1),23(a,1,2,2))]. given #218 (T,wt=15): 450 (x v y) ^ (z ^ (x ^ u)) = z ^ (x ^ u). [para(215(a,1),5(a,1,1)),rewrite([5(2),5(5)]),flip(a)]. given #219 (T,wt=15): 451 (x v y) ^ (z ^ (u ^ x)) = z ^ (u ^ x). [para(5(a,1),215(a,1,2)),rewrite([5(6)])]. given #220 (T,wt=15): 464 x ^ (y ^ ((x ^ (y v z)) v u)) = x ^ y. [para(74(a,1),215(a,1,2)),rewrite([4(5),5(5),74(8)])]. given #221 (A,wt=25): 150 x ^ (y ^ (((z v x) ^ u) v ((x v u) ^ z))) = y ^ ((x ^ u) v (x ^ z)). [para(91(a,1),15(a,1,2)),flip(a)]. given #222 (T,wt=15): 465 x ^ (y ^ ((x ^ (z v y)) v u)) = x ^ y. [para(81(a,1),215(a,1,2)),rewrite([4(5),5(5),81(8)])]. given #223 (T,wt=15): 467 (x ^ y) v ((y v z) ^ x) = (y v z) ^ x. [para(215(a,1),23(a,1,2)),rewrite([2(4)])]. given #224 (T,wt=15): 468 (x ^ y) v ((y ^ x) v z) = (y ^ x) v z. [para(225(a,1),3(a,1,1)),flip(a)]. given #225 (T,wt=15): 469 (x ^ y) v (z v (y ^ x)) = z v (x ^ y). [para(225(a,1),3(a,2,2)),rewrite([2(4)])]. given #226 (A,wt=25): 151 x ^ ((((y v x) ^ z) v ((z v x) ^ y)) ^ u) = ((x ^ y) v (x ^ z)) ^ u. [para(103(a,1),5(a,1,1)),flip(a)]. given #227 (T,wt=15): 474 x ^ (y ^ (z v (u v (y ^ x)))) = x ^ y. [para(225(a,1),109(a,1,2,2,2)),rewrite([5(5)])]. given #228 (T,wt=15): 475 (x ^ y) v (z v (x v u)) = z v (x v u). [para(241(a,1),3(a,1,1)),rewrite([3(2),3(5)]),flip(a)]. given #229 (T,wt=15): 476 (x ^ y) v (z v (u v x)) = z v (u v x). [para(3(a,1),241(a,1,2)),rewrite([3(6)])]. given #230 (T,wt=15): 486 (x v y) ^ ((y ^ z) v x) = (y ^ z) v x. [para(241(a,1),17(a,1,2)),rewrite([4(4)])]. given #231 (A,wt=25): 152 x ^ (y ^ (((z v x) ^ u) v ((u v x) ^ z))) = y ^ ((x ^ z) v (x ^ u)). [para(103(a,1),15(a,1,2)),flip(a)]. given #232 (T,wt=15): 490 x v (y v ((x v (y ^ z)) ^ u)) = x v y. [para(32(a,1),241(a,1,2)),rewrite([2(5),3(5),32(8)])]. given #233 (T,wt=15): 491 x v (y v ((x v (z ^ y)) ^ u)) = x v y. [para(70(a,1),241(a,1,2)),rewrite([2(5),3(5),70(8)])]. given #234 (T,wt=15): 493 (x v y) ^ (z ^ (y ^ u)) = z ^ (y ^ u). [para(241(a,1),215(a,1,1))]. given #235 (T,wt=15): 494 (x ^ y) v (z v (y v u)) = z v (y v u). [para(215(a,1),241(a,1,1))]. given #236 (A,wt=17): 159 x ^ ((x ^ y) v (z ^ x)) = (x ^ y) v (z ^ x). [para(22(a,1),127(a,1,2,1,1)),rewrite([22(4),7(4),4(3),48(3),48(7)])]. given #237 (T,wt=15): 496 (x v y) ^ (z ^ (u ^ y)) = z ^ (u ^ y). [para(5(a,1),253(a,1,2)),rewrite([5(6)])]. given #238 (T,wt=15): 499 x ^ (y ^ (z v ((x v u) ^ y))) = x ^ y. [para(18(a,1),253(a,1,2)),rewrite([4(5),5(5),18(8)])]. given #239 (T,wt=15): 502 x ^ (y ^ (z v ((u v x) ^ y))) = x ^ y. [para(59(a,1),253(a,1,2)),rewrite([4(5),5(5),59(8)])]. given #240 (T,wt=15): 506 x ^ (y ^ (z v (x ^ (y v u)))) = x ^ y. [para(74(a,1),253(a,1,2)),rewrite([4(5),5(5),74(8)])]. given #241 (A,wt=19): 162 (x v y) ^ (y v (z ^ (x v y))) = y v ((x v y) ^ z). [para(57(a,1),26(a,1,2,1,2)),rewrite([3(5),31(6),2(4),4(9),16(9),2(8)])]. given #242 (T,wt=15): 507 x ^ (y ^ (z v (x ^ (u v y)))) = x ^ y. [para(81(a,1),253(a,1,2)),rewrite([4(5),5(5),81(8)])]. given #243 (T,wt=15): 512 (x ^ y) v ((z v y) ^ x) = (z v y) ^ x. [para(253(a,1),23(a,1,2)),rewrite([2(4)])]. given #244 (T,wt=15): 513 (x ^ y) v (z v (u v y)) = z v (u v y). [para(253(a,1),241(a,1,1))]. given #245 (T,wt=15): 521 x v (y ^ (((x ^ z) v (x ^ u)) ^ w)) = x. [para(29(a,1),75(a,1,2,2))]. given #246 (A,wt=19): 163 (x v y) ^ (y v ((x v y) ^ z)) = y v ((x v y) ^ z). [para(57(a,1),34(a,1,2,2,1)),rewrite([3(3),31(4),4(9),16(9),2(8)])]. given #247 (T,wt=15): 540 (x v y) ^ ((z ^ y) v x) = (z ^ y) v x. [para(263(a,1),17(a,1,2)),rewrite([4(4)])]. given #248 (T,wt=15): 542 x v (y v (z ^ ((x ^ u) v y))) = x v y. [para(20(a,1),263(a,1,2)),rewrite([2(5),3(5),20(8)])]. given #249 (T,wt=15): 543 x v (y v (z ^ (x v (y ^ u)))) = x v y. [para(32(a,1),263(a,1,2)),rewrite([2(5),3(5),32(8)])]. given #250 (T,wt=15): 545 x v (y v (z ^ ((u ^ x) v y))) = x v y. [para(66(a,1),263(a,1,2)),rewrite([2(5),3(5),66(8)])]. given #251 (A,wt=21): 185 x ^ ((y ^ x) v (z ^ (u ^ x))) = (x ^ y) v (z ^ (u ^ x)). [para(68(a,1),9(a,1,2,1,2)),rewrite([5(5),5(4),6(3),130(9)])]. given #252 (T,wt=15): 547 x v (y v (z ^ (x v (u ^ y)))) = x v y. [para(70(a,1),263(a,1,2)),rewrite([2(5),3(5),70(8)])]. given #253 (T,wt=15): 564 (x v y) ^ (x v (z v (u v y))) = x v y. [para(3(a,1),62(a,1,2,2))]. given #254 (T,wt=15): 596 (x ^ y) v (x ^ (z ^ (u ^ y))) = x ^ y. [para(5(a,1),82(a,1,2,2))]. given #255 (T,wt=15): 633 x ^ (y v (z v (u v (w v (x v v5))))) = x. [para(165(a,1),110(a,1,2)),rewrite([31(3)]),flip(a)]. given #256 (A,wt=21): 186 x ^ ((y ^ (z ^ x)) v (u ^ x)) = (y ^ (z ^ x)) v (x ^ u). [para(68(a,1),9(a,1,2,2,2)),rewrite([5(4),5(3),6(2),130(8)])]. given #257 (T,wt=15): 638 (x v (y v (z v u))) ^ (w ^ z) = w ^ z. [para(253(a,1),110(a,2)),rewrite([3(3),496(7)])]. given #258 (T,wt=15): 667 (x v (y v (z v u))) ^ (w ^ u) = w ^ u. [para(165(a,1),130(a,1,2,2)),rewrite([165(9)])]. given #259 (T,wt=15): 673 (x v y) ^ (y v (z v (x v u))) = y v x. [para(13(a,1),135(a,1,2,2))]. given #260 (T,wt=15): 678 (x v y) ^ (z v (y v (x v u))) = x v y. [para(135(a,1),110(a,2)),rewrite([3(3),674(8),4(5)])]. given #261 (A,wt=21): 191 x ^ ((y ^ (z ^ x)) v (x ^ u)) = (x ^ u) v (y ^ (z ^ x)). [para(68(a,1),28(a,1,2,2,1)),rewrite([5(4),5(3),6(2),130(9)])]. given #262 (T,wt=15): 680 (x v y) ^ (y v (z v (u v x))) = x v y. [para(3(a,1),136(a,1,2,2))]. given #263 (T,wt=15): 698 (x v y) ^ (z v (y v (u v x))) = x v y. [para(136(a,1),253(a,1,2)),rewrite([4(5),136(9)])]. given #264 (T,wt=15): 715 (x ^ (y ^ (z ^ u))) v (w v u) = w v u. [para(184(a,1),161(a,1,2,2)),rewrite([184(9)])]. given #265 (T,wt=15): 716 (x ^ (y ^ (z ^ u))) v (w v z) = w v z. [para(203(a,1),161(a,1,2,2)),rewrite([203(9)])]. given #266 (A,wt=17): 195 x v (y v (z v (u ^ (x v y)))) = x v (y v z). [para(17(a,1),68(a,1,2,2)),rewrite([3(5),3(4)])]. given #267 (T,wt=15): 730 x ^ (y v (z v (u v (w v (v5 v x))))) = x. [para(165(a,1),166(a,1,2)),rewrite([58(3)]),flip(a)]. given #268 (T,wt=15): 778 x v (y ^ (z ^ (u ^ (w ^ (v5 ^ x))))) = x. [para(184(a,1),182(a,1,2)),rewrite([68(3)]),flip(a)]. given #269 (T,wt=15): 779 x v (y ^ (z ^ (u ^ (w ^ (x ^ v5))))) = x. [para(203(a,1),182(a,1,2)),rewrite([68(3),5(3),5(2)]),flip(a)]. given #270 (T,wt=15): 854 x v (y ^ ((z ^ (x ^ u)) v (x ^ w))) = x. [para(15(a,1),204(a,1,2,2,1))]. given #271 (A,wt=21): 197 x ^ ((x ^ y) v (z ^ (u ^ x))) = (x ^ y) v (z ^ (u ^ x)). [para(68(a,1),127(a,1,2,1,1)),rewrite([68(6),7(5),4(4),130(4),130(9)])]. given #272 (T,wt=15): 855 x v (y ^ ((x ^ z) v (u ^ (x ^ w)))) = x. [para(15(a,1),204(a,1,2,2,2))]. given #273 (T,wt=15): 869 x v (y ^ ((z ^ (u ^ x)) v (x ^ w))) = x. [para(130(a,1),204(a,1,2,2,1))]. given #274 (T,wt=15): 870 x v (y ^ ((x ^ z) v (u ^ (w ^ x)))) = x. [para(130(a,1),204(a,1,2,2,2))]. given #275 (T,wt=15): 911 x ^ ((y ^ (z ^ u)) v (z ^ x)) = x ^ z. [para(15(a,1),221(a,1,2,1))]. given #276 (A,wt=21): 210 x ^ ((x ^ y) v (z ^ (x ^ u))) = (x ^ y) v (z ^ (x ^ u)). [para(75(a,1),127(a,1,2,1,1)),rewrite([75(6),7(5),4(4),126(4),126(9)])]. given #277 (T,wt=15): 914 x ^ ((y ^ z) v (y ^ (x v u))) = x ^ y. [para(221(a,1),18(a,1,2)),rewrite([18(3)]),flip(a)]. given #278 (T,wt=15): 918 x ^ ((y ^ z) v (y ^ (u v x))) = x ^ y. [para(221(a,1),59(a,1,2)),rewrite([59(3)]),flip(a)]. given #279 (T,wt=15): 934 x ^ ((y ^ (z ^ u)) v (u ^ x)) = x ^ u. [para(130(a,1),221(a,1,2,1))]. given #280 (T,wt=15): 951 x v (y ^ ((z ^ x) v (u ^ (x ^ w)))) = x. [para(15(a,1),228(a,1,2,2,2))]. given #281 (A,wt=17): 211 x ^ (y ^ (((x ^ y) v z) ^ u)) = x ^ (y ^ u). [para(18(a,1),5(a,1)),rewrite([5(2)]),flip(a)]. given #282 (T,wt=15): 967 x v (y ^ (((z ^ x) v (x ^ u)) ^ w)) = x. [para(228(a,1),241(a,1,2)),rewrite([5(5),2(6),228(11)])]. given #283 (T,wt=15): 972 x v (y ^ ((z ^ x) v (u ^ (w ^ x)))) = x. [para(130(a,1),228(a,1,2,2,2))]. given #284 (T,wt=15): 982 x ^ ((y ^ x) v (z ^ (u ^ y))) = x ^ y. [para(5(a,1),230(a,1,2,2))]. given #285 (T,wt=15): 983 x ^ (y v ((y v z) ^ x)) = x ^ (y v z). [para(6(a,1),230(a,1,2,2)),rewrite([2(3)])]. given #286 (A,wt=19): 212 (x v y) ^ ((x ^ z) v (x ^ u)) = (x ^ z) v (x ^ u). [para(9(a,1),18(a,2)),rewrite([76(8)])]. given #287 (F,wt=19): 7466 x ^ ((x ^ y) v (z ^ (x v y))) = (x ^ z) v (x ^ y) # label(false). [para(9(a,1),983(a,2)),rewrite([4(8),9(8),13(6),2(5),3742(6)])]. given #288 (F,wt=19): 7467 x ^ ((x ^ y) v (z ^ (y v x))) = (x ^ z) v (x ^ y) # label(false). [para(26(a,1),983(a,2)),rewrite([4(8),26(8),13(6),2(5),3796(6)])]. ============================== PROOF ================================= % Proof 1 at 12.17 (+ 0.07) seconds: H2. % Length of proof is 45. % Level of proof is 9. % Maximum clause weight is 25. % Given clauses 288. 1 x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2) # label(non_clause) # label(goal). [goal]. 2 x v y = y v x. [assumption]. 3 (x v y) v z = x v (y v z). [assumption]. 4 x ^ y = y ^ x. [assumption]. 5 (x ^ y) ^ z = x ^ (y ^ z). [assumption]. 6 x ^ (x v y) = x. [assumption]. 7 x v (x ^ y) = x. [assumption]. 8 (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). [assumption]. 9 x ^ ((y ^ (x v z)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [copy(8),flip(a)]. 10 c1 ^ (c2 v (c3 ^ ((c1 ^ (c2 v c3)) v (c2 ^ c3)))) != c1 ^ (c2 v (c1 ^ c3)) # label(H2) # answer(H2). [deny(1)]. 11 c1 ^ (c2 v (c3 ^ ((c2 ^ c3) v (c1 ^ (c2 v c3))))) != c1 ^ (c2 v (c1 ^ c3)) # answer(H2). [copy(10),rewrite([2(12)])]. 13 x v (y v z) = y v (x v z). [para(2(a,1),3(a,1,1)),rewrite([3(2)])]. 15 x ^ (y ^ z) = y ^ (x ^ z). [para(4(a,1),5(a,1,1)),rewrite([5(2)])]. 16 x ^ (y v x) = x. [para(2(a,1),6(a,1,2))]. 18 x ^ ((x v y) ^ z) = x ^ z. [para(6(a,1),5(a,1,1)),flip(a)]. 22 x v (y ^ x) = x. [para(4(a,1),7(a,1,2))]. 24 x ^ x = x. [para(7(a,1),6(a,1,2))]. 25 x v x = x. [para(6(a,1),7(a,1,2))]. 26 x ^ ((y ^ (z v x)) v (z ^ (x v y))) = (x ^ y) v (x ^ z) # label(false). [para(2(a,1),9(a,1,2,1,2))]. 28 x ^ ((y ^ (x v z)) v ((x v y) ^ z)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),9(a,1,2,1)),rewrite([2(5)])]. 31 x ^ (y v (x v z)) = x. [para(13(a,1),6(a,1,2))]. 32 x v (y v (x ^ z)) = y v x. [para(7(a,1),13(a,1,2)),flip(a)]. 34 x ^ ((y ^ (x v z)) v ((y v x) ^ z)) = (x ^ z) v (x ^ y) # label(false). [para(4(a,1),26(a,1,2,1)),rewrite([2(5)])]. 46 x ^ (x ^ y) = x ^ y. [para(24(a,1),5(a,1,1)),flip(a)]. 48 x ^ (y ^ x) = y ^ x. [para(24(a,1),5(a,2,2)),rewrite([4(2)])]. 57 x v (y v x) = y v x. [para(25(a,1),3(a,2,2)),rewrite([2(2)])]. 58 x ^ (y v (z v x)) = x. [para(3(a,1),16(a,1,2))]. 69 x ^ ((y ^ x) v (z ^ x)) = (x ^ y) v (z ^ x). [para(22(a,1),9(a,1,2,1,2)),rewrite([5(4),6(3),48(7)])]. 74 x ^ (y ^ (x v z)) = y ^ x. [para(6(a,1),15(a,1,2)),flip(a)]. 81 x ^ (y ^ (z v x)) = y ^ x. [para(16(a,1),15(a,1,2)),flip(a)]. 127 x ^ (((x v y) ^ z) v (y ^ (x v ((x v y) ^ z)))) = (x ^ z) v (x ^ y) # label(false). [para(46(a,1),28(a,1,2,2)),rewrite([2(7),18(11)])]. 131 x ^ ((y ^ (x v z)) v (z ^ (x v (y ^ (x v z))))) = (y ^ x) v (x ^ z) # label(false). [para(48(a,1),28(a,1,2,2)),rewrite([2(7),74(11)])]. 132 x ^ ((y ^ (z v x)) v (z ^ (x v (y ^ (z v x))))) = (y ^ x) v (x ^ z) # label(false). [para(48(a,1),34(a,1,2,2)),rewrite([2(7),81(11)])]. 159 x ^ ((x ^ y) v (z ^ x)) = (x ^ y) v (z ^ x). [para(22(a,1),127(a,1,2,1,1)),rewrite([22(4),7(4),4(3),48(3),48(7)])]. 168 x ^ (y v ((z v y) ^ (x v y))) = (x ^ y) v (x ^ (z v y)). [para(58(a,1),9(a,1,2,1))]. 223 x ^ ((y ^ (z v x)) v (z ^ (x v (y ^ (x v z))))) = (y ^ x) v (x ^ z) # label(false). [para(2(a,1),131(a,1,2,1,2))]. 230 x ^ ((y ^ x) v (z ^ y)) = x ^ y. [para(22(a,1),132(a,1,2,1,2)),rewrite([22(5),69(6),57(6),5(5),159(4),4(8),48(8),2(8),22(8)])]. 318 (x ^ y) v (x ^ (z v y)) = x ^ (z v y). [para(81(a,1),22(a,1,2)),rewrite([2(4)])]. 331 x ^ (y v ((z v y) ^ (x v y))) = x ^ (z v y). [back_rewrite(168),rewrite([318(9)])]. 360 (x ^ y) v (y ^ (z v x)) = y ^ (z v x). [para(58(a,1),223(a,1,2,2,2,2)),rewrite([3(2),31(3),331(5)]),flip(a)]. 983 x ^ (y v ((y v z) ^ x)) = x ^ (y v z). [para(6(a,1),230(a,1,2,2)),rewrite([2(3)])]. 3796 (x ^ y) v (z v (y ^ (u v x))) = z v (y ^ (u v x)). [para(360(a,1),13(a,1,2)),flip(a)]. 7467 x ^ ((x ^ y) v (z ^ (y v x))) = (x ^ z) v (x ^ y) # label(false). [para(26(a,1),983(a,2)),rewrite([4(8),26(8),13(6),2(5),3796(6)])]. 7628 x ^ ((y ^ x) v (z ^ (y v x))) = (x ^ z) v (x ^ y). [para(4(a,1),7467(a,1,2,1))]. 7634 $F # answer(H2). [back_rewrite(11),rewrite([7628(13),4(5),4(8),32(10),2(6)]),xx(a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=288. Generated=172640. Kept=7630. proofs=1. Usable=284. Sos=6661. Demods=6951. Limbo=6, Disabled=687. Hints=0. Kept_by_rule=0, Deleted_by_rule=50191. Forward_subsumed=114818. Back_subsumed=212. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=7629 (6 lex), Back_demodulated=465. Back_unit_deleted=0. Demod_attempts=3555313. Demod_rewrites=614472. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=7.47. User_CPU=12.17, System_CPU=0.07, Wall_clock=12. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15831 exit (max_proofs) Wed Feb 25 12:26:02 2009 prover9-manual-2009-02A/BA4.in0000644000175000017500000000026710445526404015064 0ustar mccunemccune% This is a 4-basis for Boolean Algebra x v (y v z) = y v (x v z). % AJ x ^ y = (x' v y')'. % DM x v x' = y v y'. % ONE (x v y') ^ (x v y) = x. % CUT prover9-manual-2009-02A/hard.out0000644000175000017500000012566211151315531015634 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15842 was started by mccune on cleo, Wed Feb 25 12:26:11 2009 The command was "/home/mccune/bin/prover9 -f hard.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file hard.in assign(eq_defs,fold). set(restrict_denials). formulas(assumptions). f(x,y) = f(y,x). f(f(x,y),f(x,f(y,z))) = x. x' = f(x,x). end_of_list. formulas(goals). f(f(x,x),f(x,x)) = x # label(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2). f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). f(x,y) = f(y,x). [assumption]. f(f(x,y),f(x,f(y,z))) = x. [assumption]. x' = f(x,x). [assumption]. f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1). [deny(1)]. f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2). [deny(2)]. f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3). [deny(3)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label Sheffer_1 to answer in negative clause % copying label Sheffer_2 to answer in negative clause % copying label Sheffer_3 to answer in negative clause % assign(max_proofs, 3). % (Horn set with more than one neg. clause) Term ordering decisions: Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, f, ' ]). After inverse_order: (no changes). Folding symbols: '/1. After fold_eq: Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, ', f ]). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). % Operation f is commutative; C redundancy checks enabled. kept: 4 f(x,y) = f(y,x). [assumption]. kept: 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. kept: 7 f(x,x) = x'. [copy(6),flip(a)]. 8 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. kept: 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 10 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. kept: 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 12 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. kept: 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. end_of_list. formulas(sos). 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. end_of_list. formulas(demodulators). 4 f(x,y) = f(y,x). [assumption]. % (lex-dep) 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=7): 4 f(x,y) = f(y,x). [assumption]. given #2 (I,wt=11): 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. given #3 (I,wt=6): 7 f(x,x) = x'. [copy(6),flip(a)]. given #4 (A,wt=11): 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. given #5 (T,wt=10): 19 f(x',f(x,f(x,y))) = x. [para(7(a,1),5(a,1,1))]. given #6 (T,wt=9): 34 f(x,f(x,x')) = x'. [para(19(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: Sheffer_1. % Length of proof is 11. % Level of proof is 5. % Maximum clause weight is 11. % Given clauses 6. 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 8 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 19 f(x',f(x,f(x,y))) = x. [para(7(a,1),5(a,1,1))]. 34 f(x,f(x,x')) = x'. [para(19(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 41 x'' = x. [para(34(a,1),5(a,1,2)),rewrite([7(1),7(3)])]. 42 $F # answer(Sheffer_1). [resolve(41,a,9,a)]. ============================== end of proof ========================== % Redundant proof: 44 $F # answer(Sheffer_1). [back_rewrite(9),rewrite([41(3)]),xx(a)]. % Disable descendants (x means already disabled): 8x 9x given #7 (T,wt=5): 41 x'' = x. [para(34(a,1),5(a,1,2)),rewrite([7(1),7(3)])]. given #8 (T,wt=9): 35 f(x',f(x,x')) = x. [para(7(a,1),19(a,1,2,2))]. given #9 (A,wt=11): 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. given #10 (T,wt=10): 20 f(f(x,y),f(x,y')) = x. [para(7(a,1),5(a,1,2,2))]. given #11 (T,wt=10): 29 f(f(x,y),f(y,x')) = y. [para(7(a,1),14(a,1,2,2))]. given #12 (T,wt=10): 32 f(x',f(x,f(y,x))) = x. [para(4(a,1),19(a,1,2,2))]. given #13 (T,wt=10): 37 f(f(x',y),f(y,x)) = y. [para(19(a,1),14(a,1,2,2))]. given #14 (A,wt=11): 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. given #15 (T,wt=10): 61 f(f(x,y),f(y',x)) = x. [para(4(a,1),20(a,1,2))]. given #16 (T,wt=10): 73 f(f(x,y'),f(y,x)) = x. [para(29(a,1),4(a,1)),flip(a)]. given #17 (T,wt=10): 74 f(f(x,y),f(x',y)) = y. [para(4(a,1),29(a,1,2))]. given #18 (T,wt=10): 87 f(x,f(y,x)') = f(y,x). [para(14(a,1),32(a,1,2)),rewrite([4(3)])]. given #19 (A,wt=17): 17 f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). [para(5(a,1),5(a,1,1))]. given #20 (T,wt=8): 132 f(x',f(x,y)) = x. [para(37(a,1),87(a,1,2,1)),rewrite([4(3),37(7)])]. given #21 (T,wt=8): 136 f(x',f(y,x)) = x. [para(73(a,1),87(a,1,2,1)),rewrite([4(3),73(7)])]. given #22 (T,wt=9): 162 f(x,f(x',y)) = x'. [para(41(a,1),132(a,1,1))]. given #23 (T,wt=9): 164 f(x,f(y,x')) = x'. [para(136(a,1),14(a,1,2)),rewrite([4(3)])]. given #24 (A,wt=11): 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. given #25 (T,wt=10): 92 f(x,f(x,y)') = f(x,y). [para(15(a,1),32(a,1,2)),rewrite([4(3)])]. given #26 (T,wt=11): 22 f(f(x,f(y,z)),f(y,x)) = x. [para(14(a,1),4(a,1)),flip(a)]. given #27 (T,wt=11): 23 f(f(x,y),f(y,f(z,x))) = y. [para(4(a,1),14(a,1,2,2))]. given #28 (T,wt=11): 24 f(f(x,y),f(f(x,z),y)) = y. [para(4(a,1),14(a,1,2))]. given #29 (A,wt=17): 25 f(x,f(f(y,x),f(f(x,f(y,z)),u))) = f(y,x). [para(14(a,1),5(a,1,1))]. given #30 (T,wt=11): 26 f(x,f(x,f(y,x))) = f(y,x). [para(14(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. given #31 (T,wt=11): 28 f(f(f(x,y),z),f(z,x)) = z. [para(5(a,1),14(a,1,2,2))]. given #32 (T,wt=11): 31 f(f(f(x,y),z),f(z,y)) = z. [para(14(a,1),14(a,1,2,2))]. given #33 (T,wt=11): 48 f(f(x,y),f(f(z,y),x)) = x. [para(4(a,1),15(a,1,2))]. given #34 (A,wt=19): 27 f(x,f(f(x,f(y,z)),f(f(x,y),u))) = f(x,f(y,z)). [para(5(a,1),14(a,1,1))]. given #35 (T,wt=11): 106 f(f(x,f(y,z)),f(z,x)) = x. [para(14(a,1),16(a,1,2,1))]. given #36 (T,wt=10): 323 f(x,f(y,f(x,y))) = x'. [para(106(a,1),27(a,1,2)),rewrite([7(1)]),flip(a)]. given #37 (T,wt=10): 325 f(x,f(y,f(y,x))) = x'. [para(4(a,1),323(a,1,2,2))]. given #38 (T,wt=11): 180 f(f(x,y),f(f(z,x),y)) = y. [para(4(a,1),23(a,1,2))]. given #39 (A,wt=19): 30 f(x,f(f(x,f(y,z)),f(f(y,x),u))) = f(x,f(y,z)). [para(14(a,1),14(a,1,1))]. given #40 (T,wt=13): 51 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),15(a,1,2)),rewrite([4(4)])]. given #41 (T,wt=13): 54 f(x,f(f(y,x),f(y,z))) = f(y,x). [para(14(a,1),15(a,1,2)),rewrite([4(4)])]. given #42 (T,wt=13): 60 f(x,f(f(x,y),f(z,y))) = f(x,y). [para(15(a,1),15(a,1,2)),rewrite([4(4)])]. given #43 (T,wt=13): 105 f(x,f(f(y,z),f(x,y))) = f(x,y). [para(16(a,1),14(a,1,2)),rewrite([4(4)])]. given #44 (A,wt=17): 49 f(x,f(f(x,y),f(f(x,f(z,y)),u))) = f(x,y). [para(15(a,1),5(a,1,1))]. given #45 (T,wt=12): 604 f(x,f(x',y)') = f(x,x'). [para(164(a,1),49(a,1,2,2,1)),rewrite([376(5)])]. given #46 (T,wt=12): 644 f(x,f(y,x')') = f(x,x'). [para(4(a,1),604(a,1,2,1))]. given #47 (T,wt=12): 647 f(x',f(x,y)') = f(x,x'). [para(41(a,1),604(a,1,2,1,1)),rewrite([41(7),4(6)])]. ============================== PROOF ================================= % Proof 2 at 0.10 (+ 0.02) seconds: Sheffer_2. % Length of proof is 34. % Level of proof is 12. % Maximum clause weight is 19. % Given clauses 47. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 10 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. 19 f(x',f(x,f(x,y))) = x. [para(7(a,1),5(a,1,1))]. 27 f(x,f(f(x,f(y,z)),f(f(x,y),u))) = f(x,f(y,z)). [para(5(a,1),14(a,1,1))]. 29 f(f(x,y),f(y,x')) = y. [para(7(a,1),14(a,1,2,2))]. 32 f(x',f(x,f(y,x))) = x. [para(4(a,1),19(a,1,2,2))]. 34 f(x,f(x,x')) = x'. [para(19(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 37 f(f(x',y),f(y,x)) = y. [para(19(a,1),14(a,1,2,2))]. 41 x'' = x. [para(34(a,1),5(a,1,2)),rewrite([7(1),7(3)])]. 49 f(x,f(f(x,y),f(f(x,f(z,y)),u))) = f(x,y). [para(15(a,1),5(a,1,1))]. 73 f(f(x,y'),f(y,x)) = x. [para(29(a,1),4(a,1)),flip(a)]. 87 f(x,f(y,x)') = f(y,x). [para(14(a,1),32(a,1,2)),rewrite([4(3)])]. 106 f(f(x,f(y,z)),f(z,x)) = x. [para(14(a,1),16(a,1,2,1))]. 132 f(x',f(x,y)) = x. [para(37(a,1),87(a,1,2,1)),rewrite([4(3),37(7)])]. 136 f(x',f(y,x)) = x. [para(73(a,1),87(a,1,2,1)),rewrite([4(3),73(7)])]. 162 f(x,f(x',y)) = x'. [para(41(a,1),132(a,1,1))]. 164 f(x,f(y,x')) = x'. [para(136(a,1),14(a,1,2)),rewrite([4(3)])]. 323 f(x,f(y,f(x,y))) = x'. [para(106(a,1),27(a,1,2)),rewrite([7(1)]),flip(a)]. 325 f(x,f(y,f(y,x))) = x'. [para(4(a,1),323(a,1,2,2))]. 341 f(x,f(f(y,x),f(y,x)')) = x'. [para(87(a,1),323(a,1,2,2)),rewrite([4(4)])]. 376 f(f(x,x'),f(x',y)) = f(x',y)'. [para(162(a,1),325(a,1,2,2)),rewrite([4(5)])]. 604 f(x,f(x',y)') = f(x,x'). [para(164(a,1),49(a,1,2,2,1)),rewrite([376(5)])]. 647 f(x',f(x,y)') = f(x,x'). [para(41(a,1),604(a,1,2,1,1)),rewrite([41(7),4(6)])]. 711 f(f(x,y),f(x,y)') = f(x,x'). [para(5(a,1),647(a,1,2,1)),rewrite([4(4),647(4)]),flip(a)]. 745 f(x,f(y,y')) = x'. [back_rewrite(341),rewrite([711(4)])]. 746 $F # answer(Sheffer_2). [resolve(745,a,11,a)]. ============================== end of proof ========================== % Redundant proof: 748 $F # answer(Sheffer_2). [back_rewrite(11),rewrite([745(6)]),xx(a)]. % Disable descendants (x means already disabled): 10x 11x given #48 (T,wt=9): 713 f(x,x') = f(y,y'). [para(14(a,1),647(a,1,2,1)),rewrite([4(4),678(4),711(6)])]. given #49 (A,wt=17): 50 f(x,f(f(x,y),f(z,f(x,f(y,u))))) = f(x,y). [para(5(a,1),15(a,1,1))]. given #50 (T,wt=9): 745 f(x,f(y,y')) = x'. [back_rewrite(341),rewrite([711(4)])]. given #51 (T,wt=9): 750 f(f(x,x'),y) = y'. [para(713(a,1),14(a,1,1)),rewrite([132(5)])]. given #52 (T,wt=11): 845 f(x,x')' = f(y,y')'. [para(750(a,1),323(a,1)),rewrite([750(3)])]. given #53 (T,wt=12): 651 f(x,f(f(x',y)',z))' = x. [para(604(a,1),16(a,1,1)),rewrite([4(7),650(8)])]. given #54 (A,wt=19): 52 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(15(a,1),14(a,1,1))]. given #55 (T,wt=12): 662 f(x,f(y,f(x',z)'))' = x. [para(604(a,1),31(a,1,2)),rewrite([4(5),4(8),650(8)])]. given #56 (T,wt=12): 676 f(x,f(f(y,x')',z))' = x. [para(644(a,1),5(a,1,1)),rewrite([650(8)])]. given #57 (T,wt=12): 678 f(x',f(y,x)') = f(x,x'). [para(41(a,1),644(a,1,2,1,2)),rewrite([41(7),4(6)])]. given #58 (T,wt=12): 679 f(x,f(y,f(z,x')'))' = x. [para(644(a,1),15(a,1,1)),rewrite([650(8)])]. given #59 (A,wt=17): 53 f(x,f(f(y,x),f(z,f(x,f(y,u))))) = f(y,x). [para(14(a,1),15(a,1,1))]. given #60 (T,wt=12): 752 f(x,f(y,y')') = f(x,x'). [para(713(a,1),92(a,1,2,1))]. given #61 (T,wt=12): 847 f(f(x,x')',y) = f(x,x'). [para(750(a,1),647(a,1,2,1)),rewrite([41(5),737(10)])]. given #62 (T,wt=12): 848 f(x,f(f(x',y)',z)) = x'. [para(651(a,1),41(a,1,1)),flip(a)]. given #63 (T,wt=11): 995 f(x',f(f(x,y)',z)) = x. [para(41(a,1),848(a,1,2,1,1,1)),rewrite([41(7)])]. given #64 (A,wt=17): 59 f(x,f(f(x,y),f(z,f(x,f(u,y))))) = f(x,y). [para(15(a,1),15(a,1,1))]. given #65 (T,wt=10): 1039 f(x',y) = f(y,f(x,y)). [back_rewrite(123),rewrite([1020(5)]),flip(a)]. given #66 (T,wt=10): 1113 f(x,f(y,x)) = f(x,y'). [para(1039(a,1),4(a,1))]. given #67 (T,wt=10): 1132 f(x,f(x,y)) = f(x,y'). [para(1039(a,2),18(a,1,2,2)),rewrite([1113(3),41(2),1113(4)])]. given #68 (T,wt=11): 1018 f(x',f(f(y,x)',z)) = x. [para(4(a,1),995(a,1,2,1,1))]. given #69 (A,wt=16): 62 f(x,f(f(x,y),f(f(x,y'),z))) = f(x,y). [para(20(a,1),5(a,1,1))]. given #70 (T,wt=11): 1019 f(x',f(y,f(x,z)')) = x. [para(4(a,1),995(a,1,2))]. given #71 (T,wt=11): 1287 f(x',f(y,f(z,x)')) = x. [para(4(a,1),1018(a,1,2))]. given #72 (T,wt=12): 918 f(x,f(y,f(x',z)')) = x'. [para(662(a,1),41(a,1,1)),flip(a)]. given #73 (T,wt=12): 920 f(x,f(f(y,x')',z)) = x'. [para(676(a,1),41(a,1,1)),flip(a)]. given #74 (A,wt=17): 64 f(x,f(f(x,y'),f(f(x,y),z))) = f(x,y'). [para(20(a,1),14(a,1,1))]. given #75 (T,wt=12): 937 f(x,f(y,f(z,x')')) = x'. [para(679(a,1),41(a,1,1)),flip(a)]. given #76 (T,wt=12): 993 f(x,f(y,y')') = f(y,y'). [para(752(a,1),87(a,1,2,1)),rewrite([751(7),737(6)]),flip(a)]. given #77 (T,wt=12): 1155 f(f(x,y),f(y,x)) = f(x,y)'. [para(1039(a,2),325(a,1,2,2)),rewrite([1113(4),41(3)])]. given #78 (T,wt=13): 184 f(x,f(f(y,z),f(y,x))) = f(y,x). [para(14(a,1),23(a,1,2)),rewrite([4(4)])]. given #79 (A,wt=16): 69 f(x,f(f(x,y),f(z,f(x,y')))) = f(x,y). [para(20(a,1),15(a,1,1))]. given #80 (T,wt=13): 186 f(x,f(f(y,x),f(z,y))) = f(y,x). [para(23(a,1),15(a,1,2)),rewrite([4(4)])]. given #81 (T,wt=13): 188 f(x,f(f(y,z),f(x,z))) = f(x,z). [para(15(a,1),23(a,1,2)),rewrite([4(4)])]. given #82 (T,wt=13): 204 f(x,f(f(y,z),f(z,x))) = f(z,x). [para(23(a,1),23(a,1,2)),rewrite([4(4)])]. given #83 (T,wt=13): 1020 f(f(x,y)',f(x',z)) = f(x,y). [para(5(a,1),995(a,1,2,1,1))]. given #84 (A,wt=16): 75 f(x,f(f(y,x),f(f(x,y'),z))) = f(y,x). [para(29(a,1),5(a,1,1))]. given #85 (T,wt=13): 1022 f(f(x,y)',f(y',z)) = f(x,y). [para(14(a,1),995(a,1,2,1,1))]. given #86 (T,wt=13): 1338 f(f(x,y)',f(z,x')) = f(x,y). [para(5(a,1),1019(a,1,2,2,1))]. given #87 (T,wt=13): 1340 f(f(x,y)',f(z,y')) = f(x,y). [para(14(a,1),1019(a,1,2,2,1))]. given #88 (T,wt=13): 1446 f(f(x,y)',f(y,x)') = f(y,x). [para(1155(a,1),74(a,1,1)),rewrite([1132(7)])]. given #89 (A,wt=17): 77 f(x,f(f(x,y'),f(f(y,x),z))) = f(x,y'). [para(29(a,1),14(a,1,1))]. given #90 (T,wt=13): 1462 f(f(x,y)',f(y,x)) = f(y,y'). [para(1155(a,1),678(a,1,2,1)),rewrite([41(5),1165(8),7(8),678(8)])]. given #91 (T,wt=13): 1663 f(f(x',y),f(x,z)') = f(x,z). [para(1020(a,1),4(a,1)),flip(a)]. given #92 (T,wt=13): 1743 f(f(x',y),f(z,x)') = f(z,x). [para(1022(a,1),4(a,1)),flip(a)]. given #93 (T,wt=13): 1780 f(f(x,y'),f(y,z)') = f(y,z). [para(1338(a,1),4(a,1)),flip(a)]. given #94 (A,wt=16): 79 f(x,f(f(y,x),f(z,f(x,y')))) = f(y,x). [para(29(a,1),15(a,1,1))]. given #95 (T,wt=13): 1805 f(f(x,y'),f(z,y)') = f(z,y). [para(1340(a,1),4(a,1)),flip(a)]. given #96 (T,wt=14): 161 f(x,f(f(x,y),f(x',z))) = f(x,y). [para(132(a,1),14(a,1,1))]. given #97 (T,wt=14): 163 f(x,f(f(y,x),f(x',z))) = f(y,x). [para(136(a,1),14(a,1,1))]. given #98 (T,wt=14): 199 f(x,f(f(x,y),f(z,x'))) = f(x,y). [para(132(a,1),23(a,1,1))]. given #99 (A,wt=17): 94 f(x,f(f(y',x),f(f(x,y),z))) = f(y',x). [para(37(a,1),5(a,1,1))]. given #100 (T,wt=14): 200 f(x,f(f(y,x),f(z,x'))) = f(y,x). [para(136(a,1),23(a,1,1))]. given #101 (T,wt=14): 217 f(x,f(f(x',y),f(x,z))) = f(x,z). [para(132(a,1),24(a,1,1))]. given #102 (T,wt=14): 218 f(x,f(f(x',y),f(z,x))) = f(z,x). [para(136(a,1),24(a,1,1))]. given #103 (T,wt=14): 404 f(x,f(f(y,x'),f(x,z))) = f(x,z). [para(132(a,1),180(a,1,1))]. given #104 (A,wt=16): 95 f(x,f(f(x,y),f(f(y',x),z))) = f(x,y). [para(37(a,1),14(a,1,1))]. given #105 (T,wt=14): 405 f(x,f(f(y,x'),f(z,x))) = f(z,x). [para(136(a,1),180(a,1,1))]. given #106 (T,wt=14): 462 f(f(x,y),f(x,f(f(x,y'),z))) = x. [para(20(a,1),51(a,1,2,1)),rewrite([20(10)])]. given #107 (T,wt=14): 464 f(f(x,y),f(y,f(f(y,x'),z))) = y. [para(29(a,1),51(a,1,2,1)),rewrite([29(10)])]. given #108 (T,wt=14): 466 f(f(x',y),f(y,f(f(y,x),z))) = y. [para(37(a,1),51(a,1,2,1)),rewrite([37(10)])]. given #109 (A,wt=17): 97 f(x,f(f(y',x),f(z,f(x,y)))) = f(y',x). [para(37(a,1),15(a,1,1))]. given #110 (T,wt=14): 469 f(f(x,y),f(x,f(f(y',x),z))) = x. [para(61(a,1),51(a,1,2,1)),rewrite([61(10)])]. given #111 (T,wt=14): 470 f(f(x,y'),f(x,f(f(y,x),z))) = x. [para(73(a,1),51(a,1,2,1)),rewrite([73(10)])]. given #112 (T,wt=14): 471 f(f(x,y),f(y,f(f(x',y),z))) = y. [para(74(a,1),51(a,1,2,1)),rewrite([74(10)])]. given #113 (T,wt=14): 497 f(f(x,y'),f(x,f(f(x,y),z))) = x. [para(20(a,1),54(a,1,2,1)),rewrite([20(10)])]. given #114 (A,wt=17): 103 f(x,f(f(x,y),f(f(f(y,z),x),u))) = f(x,y). [para(16(a,1),5(a,1,1))]. given #115 (T,wt=14): 501 f(f(x',y),f(y,f(f(x,y),z))) = y. [para(74(a,1),54(a,1,2,1)),rewrite([74(10)])]. given #116 (T,wt=14): 526 f(f(x,y),f(x,f(z,f(x,y')))) = x. [para(20(a,1),60(a,1,2,1)),rewrite([20(10)])]. given #117 (T,wt=14): 528 f(f(x,y),f(y,f(z,f(y,x')))) = y. [para(29(a,1),60(a,1,2,1)),rewrite([29(10)])]. given #118 (T,wt=14): 530 f(f(x',y),f(y,f(z,f(y,x)))) = y. [para(37(a,1),60(a,1,2,1)),rewrite([37(10)])]. given #119 (A,wt=19): 104 f(x,f(f(f(y,z),x),f(f(x,y),u))) = f(f(y,z),x). [para(16(a,1),14(a,1,1))]. given #120 (T,wt=14): 533 f(f(x,y),f(x,f(z,f(y',x)))) = x. [para(61(a,1),60(a,1,2,1)),rewrite([61(10)])]. given #121 (T,wt=14): 534 f(f(x,y'),f(x,f(z,f(y,x)))) = x. [para(73(a,1),60(a,1,2,1)),rewrite([73(10)])]. given #122 (T,wt=14): 535 f(f(x,y),f(y,f(z,f(x',y)))) = y. [para(74(a,1),60(a,1,2,1)),rewrite([74(10)])]. given #123 (T,wt=14): 1023 f(f(x,y),f(x,f(f(y,z)',u))) = x. [para(995(a,1),15(a,1,2,2)),rewrite([4(6)])]. given #124 (A,wt=15): 107 f(x,f(y,f(x,f(y,z)))) = f(x,f(y,z)). [para(14(a,1),16(a,1,2)),rewrite([4(3),4(4)])]. given #125 (T,wt=14): 1025 f(f(f(f(x,y)',z),u),f(u,x)) = u. [para(995(a,1),23(a,1,2,2))]. given #126 (T,wt=14): 1029 f(f(x,y),f(y,f(f(x,z)',u))) = y. [para(995(a,1),31(a,1,1,1))]. given #127 (T,wt=14): 1030 f(f(x,f(f(y,z)',u)),f(y,x)) = x. [para(995(a,1),48(a,1,2,1))]. given #128 (T,wt=13): 3457 f(x,f(y,f(f(x,y),z)')) = x'. [para(1030(a,1),52(a,1,2)),rewrite([7(1),4(5)]),flip(a)]. given #129 (A,wt=17): 109 f(x,f(f(x,y),f(z,f(f(y,u),x)))) = f(x,y). [para(16(a,1),15(a,1,1))]. given #130 (T,wt=13): 3471 f(x,f(y,f(f(y,x),z)')) = x'. [para(4(a,1),3457(a,1,2,2,1,1))]. given #131 (T,wt=13): 3472 f(x,f(y,f(z,f(x,y))')) = x'. [para(4(a,1),3457(a,1,2,2,1))]. given #132 (T,wt=13): 3548 f(x,f(y,f(x,f(y',z)))) = x'. [para(1743(a,1),3457(a,1,2)),rewrite([4(4)])]. given #133 (T,wt=13): 3551 f(x,f(y,f(x,f(z,y')))) = x'. [para(1805(a,1),3457(a,1,2)),rewrite([4(4)])]. given #134 (A,wt=16): 114 f(x,f(f(x,y),f(z,f(y',x)))) = f(x,y). [para(61(a,1),15(a,1,1))]. given #135 (T,wt=13): 3705 f(x,f(y,f(z,f(y,x))')) = x'. [para(4(a,1),3471(a,1,2,2,1))]. given #136 (T,wt=13): 3765 f(x,f(y,f(f(y',z),x))) = x'. [para(1743(a,1),3471(a,1,2)),rewrite([4(4)])]. given #137 (T,wt=13): 3768 f(x,f(y,f(f(z,y'),x))) = x'. [para(1805(a,1),3471(a,1,2)),rewrite([4(4)])]. given #138 (T,wt=13): 3936 f(x,f(y',f(x,f(y,z)))) = x'. [para(41(a,1),3548(a,1,2,2,2,1))]. given #139 (A,wt=17): 116 f(x,f(f(x,y'),f(z,f(y,x)))) = f(x,y'). [para(73(a,1),15(a,1,1))]. given #140 (T,wt=13): 3977 f(x,f(y,f(x',z))') = f(x,y). [para(3548(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1019(7),4(6)]),flip(a)]. given #141 (T,wt=13): 3981 f(x,f(y,f(x',z))) = f(x,y'). [para(3548(a,1),107(a,1,2)),flip(a)]. given #142 (T,wt=13): 4009 f(x,f(y',f(x,f(z,y)))) = x'. [para(41(a,1),3551(a,1,2,2,2,2))]. given #143 (T,wt=13): 4043 f(x,f(y,f(z,x'))') = f(x,y). [para(3551(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1019(7),4(6)]),flip(a)]. given #144 (A,wt=16): 118 f(x,f(f(y,x),f(f(y',x),z))) = f(y,x). [para(74(a,1),5(a,1,1))]. given #145 (T,wt=13): 4046 f(x,f(y,f(z,x'))) = f(x,y'). [para(3551(a,1),107(a,1,2)),flip(a)]. given #146 (T,wt=13): 4260 f(x,f(y',f(f(y,z),x))) = x'. [para(41(a,1),3765(a,1,2,2,1,1))]. given #147 (T,wt=13): 4326 f(x,f(f(x',y),z)') = f(x,z). [para(3765(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1287(7),4(6)]),flip(a)]. given #148 (T,wt=13): 4348 f(x,f(y',f(f(z,y),x))) = x'. [para(41(a,1),3768(a,1,2,2,1,2))]. given #149 (A,wt=17): 119 f(x,f(f(y',x),f(f(y,x),z))) = f(y',x). [para(74(a,1),14(a,1,1))]. given #150 (T,wt=13): 4413 f(x,f(f(y,x'),z)') = f(x,z). [para(3768(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1287(7),4(6)]),flip(a)]. given #151 (T,wt=13): 4433 f(x,f(f(y,z)',f(x,y))) = x'. [para(5(a,1),3936(a,1,2,2,2))]. given #152 (T,wt=13): 4435 f(x,f(f(y,z)',f(x,z))) = x'. [para(14(a,1),3936(a,1,2,2,2))]. given #153 (T,wt=13): 4467 f(x,f(f(y,z)',f(y,x))) = x'. [para(184(a,1),3936(a,1,2,2))]. given #154 (A,wt=16): 121 f(x,f(f(y,x),f(z,f(y',x)))) = f(y,x). [para(74(a,1),15(a,1,1))]. given #155 (T,wt=13): 4469 f(x,f(f(y,z)',f(z,x))) = x'. [para(204(a,1),3936(a,1,2,2))]. given #156 (T,wt=13): 4684 f(x,f(f(x',y),z)) = f(x,z'). [para(4(a,1),3981(a,1,2))]. given #157 (T,wt=13): 5074 f(x,f(f(y,x'),z)) = f(x,z'). [para(31(a,1),4043(a,1,2,1)),flip(a)]. given #158 (T,wt=14): 1031 f(f(x,y),f(f(f(y,z)',u),x)) = x. [para(995(a,1),106(a,1,1,2))]. given #159 (A,wt=15): 143 f(f(x,y),f(x,f(f(x,f(y,z)),u))) = x. [para(17(a,1),15(a,1,2)),rewrite([4(6)])]. given #160 (T,wt=14): 1033 f(f(x,y),f(f(f(x,z)',u),y)) = y. [para(995(a,1),180(a,1,2,1)),rewrite([4(6)])]. given #161 (T,wt=14): 1117 f(f(x',y),f(y,f(z,f(x,y)))) = y. [para(1039(a,2),15(a,1,1))]. given #162 (T,wt=14): 1146 f(f(x,f(y,f(z,x))),f(z',x)) = x. [para(1039(a,2),31(a,1,2)),rewrite([4(3)])]. given #163 (T,wt=14): 1221 f(f(x,f(y,z)),f(x,f(z,y'))) = x. [para(1113(a,1),15(a,1,2,2))]. given #164 (A,wt=23): 153 f(f(x,y),f(f(f(x,y),f(y,z)),f(x,u))) = f(f(x,y),f(y,z)). [para(16(a,1),17(a,1,2,2,1))]. given #165 (T,wt=14): 1247 f(f(x,y'),f(x,f(z,f(x,y)))) = x. [para(1132(a,1),15(a,1,1))]. given #166 (T,wt=14): 1248 f(f(x,f(y,z)),f(x,f(y,z'))) = x. [para(1132(a,1),15(a,1,2,2))]. given #167 (T,wt=14): 1289 f(f(x,y),f(x,f(f(z,y)',u))) = x. [para(1018(a,1),15(a,1,2,2)),rewrite([4(6)])]. given #168 (T,wt=14): 1291 f(f(x',y)',f(x,z)) = f(x',y). [para(162(a,1),1018(a,1,2,1,1)),rewrite([41(5)])]. given #169 (A,wt=20): 168 f(f(x,y)',f(x,f(z,f(x,y)'))) = f(z,f(x,y)'). [para(164(a,1),16(a,1,2)),rewrite([4(4),4(7)])]. given #170 (T,wt=14): 1292 f(f(x,y')',f(y,z)) = f(x,y'). [para(164(a,1),1018(a,1,2,1,1)),rewrite([41(5)])]. given #171 (T,wt=14): 1298 f(f(x,f(f(y,z)',u)),f(z,x)) = x. [para(1018(a,1),48(a,1,2,1))]. given #172 (T,wt=14): 1299 f(f(x,y),f(f(f(z,y)',u),x)) = x. [para(1018(a,1),106(a,1,1,2))]. given #173 (T,wt=14): 1341 f(f(x,y),f(x,f(z,f(y,u)'))) = x. [para(1019(a,1),15(a,1,2,2)),rewrite([4(6)])]. given #174 (A,wt=19): 176 f(x,f(f(x,f(y,z)),f(u,f(y,x)))) = f(x,f(y,z)). [para(22(a,1),15(a,1,1))]. given #175 (T,wt=14): 1348 f(f(x,f(y,f(z,u)')),f(z,x)) = x. [para(1019(a,1),48(a,1,2,1))]. given #176 (T,wt=14): 1349 f(f(x,y),f(f(z,f(y,u)'),x)) = x. [para(1019(a,1),106(a,1,1,2))]. given #177 (T,wt=14): 1360 f(f(x,y),f(x,f(z,f(u,y)'))) = x. [para(1287(a,1),15(a,1,2,2)),rewrite([4(6)])]. given #178 (T,wt=14): 1362 f(f(x',y)',f(z,x)) = f(x',y). [para(162(a,1),1287(a,1,2,2,1)),rewrite([41(5)])]. given #179 (A,wt=19): 177 f(x,f(f(f(y,x),z),f(x,f(y,u)))) = f(x,f(y,u)). [para(22(a,1),16(a,1,1))]. given #180 (T,wt=14): 1363 f(f(x,y')',f(z,y)) = f(x,y'). [para(164(a,1),1287(a,1,2,2,1)),rewrite([41(5)])]. given #181 (T,wt=14): 1369 f(f(x,f(y,f(z,u)')),f(u,x)) = x. [para(1287(a,1),48(a,1,2,1))]. given #182 (T,wt=14): 1370 f(f(x,y),f(f(z,f(u,y)'),x)) = x. [para(1287(a,1),106(a,1,1,2))]. given #183 (T,wt=14): 1445 f(f(x,f(y,z)),f(x,f(z,y)')) = x. [para(1155(a,1),15(a,1,2,2))]. given #184 (A,wt=25): 179 f(f(x,f(y,z)),f(f(y,f(x,f(y,z))),f(x,u))) = f(y,f(x,f(y,z))). [para(22(a,1),17(a,1,2,2,1)),rewrite([4(5),4(11)])]. given #185 (T,wt=14): 1452 f(f(x,f(y,z)),f(f(z,y)',x)) = x. [para(1155(a,1),48(a,1,2,1))]. given #186 (T,wt=14): 1453 f(f(x,f(y,z)'),f(f(z,y),x)) = x. [para(1155(a,1),106(a,1,1,2))]. given #187 (T,wt=13): 9682 f(x,f(y,z)') = f(z,f(x,y)'). [back_rewrite(271),rewrite([9590(6),1136(5)]),flip(a)]. given #188 (T,wt=13): 9736 f(f(x,y)',z) = f(x,f(y,z)'). [para(9682(a,2),4(a,1)),flip(a)]. given #189 (A,wt=17): 181 f(x,f(f(y,x),f(f(x,f(z,y)),u))) = f(y,x). [para(23(a,1),5(a,1,1))]. given #190 (T,wt=13): 9737 f(x,f(y,z)') = f(y,f(x,z)'). [para(4(a,1),9682(a,1,2,1))]. given #191 (T,wt=13): 9738 f(x,f(y,z)') = f(z,f(y,x)'). [para(4(a,1),9682(a,2,2,1))]. given #192 (T,wt=14): 1665 f(f(x,f(y',z)),f(x,f(y,u))) = x. [para(1020(a,1),15(a,1,2,2))]. given #193 (T,wt=14): 1666 f(f(x,y),f(x',z)') = f(x',z). [para(1020(a,1),29(a,1,1)),rewrite([41(6),1113(6)])]. given #194 (A,wt=18): 240 f(f(x,y),f(x,f(f(f(x,y),f(x',z)),u))) = x. [para(132(a,1),25(a,1,2,1)),rewrite([132(11)])]. given #195 (T,wt=14): 1672 f(f(x,f(y',z)),f(f(y,u),x)) = x. [para(1020(a,1),48(a,1,2,1))]. given #196 (T,wt=14): 1673 f(f(x,f(y,z)),f(f(y',u),x)) = x. [para(1020(a,1),106(a,1,1,2))]. given #197 (T,wt=14): 1745 f(f(x,f(y',z)),f(x,f(u,y))) = x. [para(1022(a,1),15(a,1,2,2))]. given #198 (T,wt=14): 1746 f(f(x,y),f(y',z)') = f(y',z). [para(1022(a,1),29(a,1,1)),rewrite([41(6),1113(6)])]. given #199 (A,wt=21): 242 f(f(x',y),f(x',f(f(f(x',y),f(x,z)),u))) = x'. [para(162(a,1),25(a,1,2,1)),rewrite([162(13)])]. given #200 (T,wt=14): 1752 f(f(x,f(y',z)),f(f(u,y),x)) = x. [para(1022(a,1),48(a,1,2,1))]. given #201 (T,wt=14): 1753 f(f(x,f(y,z)),f(f(z',u),x)) = x. [para(1022(a,1),106(a,1,1,2))]. given #202 (T,wt=14): 1782 f(f(x,f(y,z')),f(x,f(z,u))) = x. [para(1338(a,1),15(a,1,2,2))]. given #203 (T,wt=14): 1783 f(f(x,y),f(z,x')') = f(z,x'). [para(1338(a,1),29(a,1,1)),rewrite([41(6),1113(6)])]. given #204 (A,wt=23): 246 f(f(x,f(y,z)),f(x,f(f(f(x,f(y,z)),f(f(z,x),u)),w))) = x. [para(23(a,1),25(a,1,2,1)),rewrite([23(14)])]. given #205 (T,wt=14): 1789 f(f(x,f(y,z')),f(f(z,u),x)) = x. [para(1338(a,1),48(a,1,2,1))]. given #206 (T,wt=14): 1790 f(f(x,f(y,z)),f(f(u,y'),x)) = x. [para(1338(a,1),106(a,1,1,2))]. given #207 (T,wt=14): 1807 f(f(x,f(y,z')),f(x,f(u,z))) = x. [para(1340(a,1),15(a,1,2,2))]. given #208 (T,wt=14): 1808 f(f(x,y),f(z,y')') = f(z,y'). [para(1340(a,1),29(a,1,1)),rewrite([41(6),1113(6)])]. given #209 (A,wt=21): 275 f(f(x,y),f(x,f(f(f(x,y),f(f(f(z,y),x),u)),w))) = x. [para(31(a,1),25(a,1,2,1)),rewrite([31(13)])]. given #210 (T,wt=14): 1814 f(f(x,f(y,z')),f(f(u,z),x)) = x. [para(1340(a,1),48(a,1,2,1))]. given #211 (T,wt=14): 1815 f(f(x,f(y,z)),f(f(u,z'),x)) = x. [para(1340(a,1),106(a,1,1,2))]. given #212 (T,wt=14): 1828 f(x',f(y,f(z,f(x,u)')')) = x. [para(1019(a,1),1340(a,1,1,1)),rewrite([1019(12)])]. given #213 (T,wt=14): 1830 f(x',f(y,f(z,f(u,x)')')) = x. [para(1287(a,1),1340(a,1,1,1)),rewrite([1287(12)])]. given #214 (A,wt=17): 432 f(f(x,y),f(x,f(f(f(y,z),f(x,y)),u))) = x. [para(16(a,1),30(a,1,2,1)),rewrite([16(11)])]. given #215 (T,wt=14): 1844 f(f(x,f(y,z)'),f(x,f(z,y))) = x. [para(1446(a,1),5(a,1,2,2))]. given #216 (T,wt=14): 1933 f(f(x,f(y,z)),f(z,y)') = f(z,y). [para(1446(a,1),1780(a,1,2,1)),rewrite([41(3),1446(10)])]. given #217 (T,wt=14): 3075 f(f(x,f(y,z)),f(x,f(y',u))) = x. [para(5(a,1),1023(a,1,2,2,1,1))]. given #218 (T,wt=14): 3077 f(f(x,f(y,z)),f(x,f(z',u))) = x. [para(14(a,1),1023(a,1,2,2,1,1))]. given #219 (A,wt=29): 507 f(f(f(x,y),f(x,z)),f(f(x,y),f(f(f(f(x,y),f(x,z)),f(y,u)),w))) = f(x,y). [para(54(a,1),25(a,1,2,1)),rewrite([54(16)])]. ============================== PROOF ================================= % Proof 3 at 5.54 (+ 0.04) seconds: Sheffer_3. % Length of proof is 157. % Level of proof is 31. % Maximum clause weight is 35. % Given clauses 219. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 12 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. 17 f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). [para(5(a,1),5(a,1,1))]. 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 19 f(x',f(x,f(x,y))) = x. [para(7(a,1),5(a,1,1))]. 20 f(f(x,y),f(x,y')) = x. [para(7(a,1),5(a,1,2,2))]. 23 f(f(x,y),f(y,f(z,x))) = y. [para(4(a,1),14(a,1,2,2))]. 25 f(x,f(f(y,x),f(f(x,f(y,z)),u))) = f(y,x). [para(14(a,1),5(a,1,1))]. 27 f(x,f(f(x,f(y,z)),f(f(x,y),u))) = f(x,f(y,z)). [para(5(a,1),14(a,1,1))]. 29 f(f(x,y),f(y,x')) = y. [para(7(a,1),14(a,1,2,2))]. 31 f(f(f(x,y),z),f(z,y)) = z. [para(14(a,1),14(a,1,2,2))]. 32 f(x',f(x,f(y,x))) = x. [para(4(a,1),19(a,1,2,2))]. 34 f(x,f(x,x')) = x'. [para(19(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 37 f(f(x',y),f(y,x)) = y. [para(19(a,1),14(a,1,2,2))]. 41 x'' = x. [para(34(a,1),5(a,1,2)),rewrite([7(1),7(3)])]. 48 f(f(x,y),f(f(z,y),x)) = x. [para(4(a,1),15(a,1,2))]. 49 f(x,f(f(x,y),f(f(x,f(z,y)),u))) = f(x,y). [para(15(a,1),5(a,1,1))]. 51 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),15(a,1,2)),rewrite([4(4)])]. 52 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(15(a,1),14(a,1,1))]. 54 f(x,f(f(y,x),f(y,z))) = f(y,x). [para(14(a,1),15(a,1,2)),rewrite([4(4)])]. 60 f(x,f(f(x,y),f(z,y))) = f(x,y). [para(15(a,1),15(a,1,2)),rewrite([4(4)])]. 64 f(x,f(f(x,y'),f(f(x,y),z))) = f(x,y'). [para(20(a,1),14(a,1,1))]. 69 f(x,f(f(x,y),f(z,f(x,y')))) = f(x,y). [para(20(a,1),15(a,1,1))]. 73 f(f(x,y'),f(y,x)) = x. [para(29(a,1),4(a,1)),flip(a)]. 74 f(f(x,y),f(x',y)) = y. [para(4(a,1),29(a,1,2))]. 77 f(x,f(f(x,y'),f(f(y,x),z))) = f(x,y'). [para(29(a,1),14(a,1,1))]. 87 f(x,f(y,x)') = f(y,x). [para(14(a,1),32(a,1,2)),rewrite([4(3)])]. 92 f(x,f(x,y)') = f(x,y). [para(15(a,1),32(a,1,2)),rewrite([4(3)])]. 97 f(x,f(f(y',x),f(z,f(x,y)))) = f(y',x). [para(37(a,1),15(a,1,1))]. 105 f(x,f(f(y,z),f(x,y))) = f(x,y). [para(16(a,1),14(a,1,2)),rewrite([4(4)])]. 106 f(f(x,f(y,z)),f(z,x)) = x. [para(14(a,1),16(a,1,2,1))]. 107 f(x,f(y,f(x,f(y,z)))) = f(x,f(y,z)). [para(14(a,1),16(a,1,2)),rewrite([4(3),4(4)])]. 123 f(x,f(f(y,x)',f(y',x))) = f(y',x). [para(74(a,1),29(a,1,1)),rewrite([4(5)])]. 132 f(x',f(x,y)) = x. [para(37(a,1),87(a,1,2,1)),rewrite([4(3),37(7)])]. 136 f(x',f(y,x)) = x. [para(73(a,1),87(a,1,2,1)),rewrite([4(3),73(7)])]. 153 f(f(x,y),f(f(f(x,y),f(y,z)),f(x,u))) = f(f(x,y),f(y,z)). [para(16(a,1),17(a,1,2,2,1))]. 162 f(x,f(x',y)) = x'. [para(41(a,1),132(a,1,1))]. 164 f(x,f(y,x')) = x'. [para(136(a,1),14(a,1,2)),rewrite([4(3)])]. 184 f(x,f(f(y,z),f(y,x))) = f(y,x). [para(14(a,1),23(a,1,2)),rewrite([4(4)])]. 186 f(x,f(f(y,x),f(z,y))) = f(y,x). [para(23(a,1),15(a,1,2)),rewrite([4(4)])]. 204 f(x,f(f(y,z),f(z,x))) = f(z,x). [para(23(a,1),23(a,1,2)),rewrite([4(4)])]. 271 f(f(x,y)',f(y,f(z,f(x,y)'))) = f(z,f(x,y)'). [para(164(a,1),31(a,1,1)),rewrite([4(6)])]. 323 f(x,f(y,f(x,y))) = x'. [para(106(a,1),27(a,1,2)),rewrite([7(1)]),flip(a)]. 325 f(x,f(y,f(y,x))) = x'. [para(4(a,1),323(a,1,2,2))]. 376 f(f(x,x'),f(x',y)) = f(x',y)'. [para(162(a,1),325(a,1,2,2)),rewrite([4(5)])]. 463 f(f(x,y),f(x',f(f(x,y),f(y,z)))) = f(f(x,y),f(y,z)). [para(51(a,1),29(a,1,1)),rewrite([4(6)])]. 466 f(f(x',y),f(y,f(f(y,x),z))) = y. [para(37(a,1),51(a,1,2,1)),rewrite([37(10)])]. 488 f(f(x,f(x,y)),f(f(x,y),f(y,z))) = f(f(x,y),f(y,z))'. [para(51(a,1),325(a,1,2,2)),rewrite([4(6)])]. 501 f(f(x',y),f(y,f(f(x,y),z))) = y. [para(74(a,1),54(a,1,2,1)),rewrite([74(10)])]. 507 f(f(f(x,y),f(x,z)),f(f(x,y),f(f(f(f(x,y),f(x,z)),f(y,u)),w))) = f(x,y). [para(54(a,1),25(a,1,2,1)),rewrite([54(16)])]. 513 f(f(x,f(y,x)),f(f(y,x),f(y,z))) = f(f(y,x),f(y,z))'. [para(54(a,1),325(a,1,2,2)),rewrite([4(6)])]. 526 f(f(x,y),f(x,f(z,f(x,y')))) = x. [para(20(a,1),60(a,1,2,1)),rewrite([20(10)])]. 530 f(f(x',y),f(y,f(z,f(y,x)))) = y. [para(37(a,1),60(a,1,2,1)),rewrite([37(10)])]. 581 f(f(x,y),f(x,f(f(x,y),z))) = f(x,f(f(x,y),z))'. [para(51(a,1),105(a,1,2)),rewrite([4(3),4(6),7(7),4(7),4(9)]),flip(a)]. 604 f(x,f(x',y)') = f(x,x'). [para(164(a,1),49(a,1,2,2,1)),rewrite([376(5)])]. 650 f(f(x,x'),f(x,y)) = f(x,y)'. [para(604(a,1),37(a,1,1)),rewrite([41(3),4(2),41(4),4(5),92(5),41(6)])]. 651 f(x,f(f(x',y)',z))' = x. [para(604(a,1),16(a,1,1)),rewrite([4(7),650(8)])]. 848 f(x,f(f(x',y)',z)) = x'. [para(651(a,1),41(a,1,1)),flip(a)]. 995 f(x',f(f(x,y)',z)) = x. [para(41(a,1),848(a,1,2,1,1,1)),rewrite([41(7)])]. 1018 f(x',f(f(y,x)',z)) = x. [para(4(a,1),995(a,1,2,1,1))]. 1019 f(x',f(y,f(x,z)')) = x. [para(4(a,1),995(a,1,2))]. 1020 f(f(x,y)',f(x',z)) = f(x,y). [para(5(a,1),995(a,1,2,1,1))]. 1022 f(f(x,y)',f(y',z)) = f(x,y). [para(14(a,1),995(a,1,2,1,1))]. 1030 f(f(x,f(f(y,z)',u)),f(y,x)) = x. [para(995(a,1),48(a,1,2,1))]. 1039 f(x',y) = f(y,f(x,y)). [back_rewrite(123),rewrite([1020(5)]),flip(a)]. 1113 f(x,f(y,x)) = f(x,y'). [para(1039(a,1),4(a,1))]. 1124 f(f(x,y)',f(f(y,z),x)) = f(x,f(y,z)'). [para(16(a,1),1039(a,2,2)),rewrite([4(8),1113(8)])]. 1132 f(x,f(x,y)) = f(x,y'). [para(1039(a,2),18(a,1,2,2)),rewrite([1113(3),41(2),1113(4)])]. 1136 f(f(x,y)',f(y,f(z,x))) = f(y,f(z,x)'). [para(23(a,1),1039(a,2,2)),rewrite([4(8),1132(8)])]. 1155 f(f(x,y),f(y,x)) = f(x,y)'. [para(1039(a,2),325(a,1,2,2)),rewrite([1113(4),41(3)])]. 1162 f(f(x,y),f(y,z)') = f(x',f(f(x,y),f(y,z))). [para(51(a,1),1039(a,2,2)),rewrite([4(10),1132(10)]),flip(a)]. 1165 f(f(x,y),f(x,z)') = f(y',f(f(x,y),f(x,z))). [para(54(a,1),1039(a,2,2)),rewrite([4(10),1132(10)]),flip(a)]. 1189 f(f(x,y'),f(f(y,x),f(y,z))) = f(f(y,x),f(y,z))'. [back_rewrite(513),rewrite([1113(2)])]. 1215 f(f(x,y'),f(f(x,y),f(y,z))) = f(f(x,y),f(y,z))'. [back_rewrite(488),rewrite([1132(2)])]. 1248 f(f(x,f(y,z)),f(x,f(y,z'))) = x. [para(1132(a,1),15(a,1,2,2))]. 1287 f(x',f(y,f(z,x)')) = x. [para(4(a,1),1018(a,1,2))]. 1340 f(f(x,y)',f(z,y')) = f(x,y). [para(14(a,1),1019(a,1,2,2,1))]. 1362 f(f(x',y)',f(z,x)) = f(x',y). [para(162(a,1),1287(a,1,2,2,1)),rewrite([41(5)])]. 1411 f(f(x,y'),f(x',f(f(x,y'),f(f(x,y),z)))) = f(f(x,y'),f(f(x,y),z)). [para(64(a,1),29(a,1,1)),rewrite([4(9)])]. 1453 f(f(x,f(y,z)'),f(f(z,y),x)) = x. [para(1155(a,1),106(a,1,1,2))]. 1576 f(f(x,y),f(z,x)') = f(y',f(f(x,y),f(z,x))). [para(186(a,1),1113(a,1,2)),rewrite([4(5),1132(5),4(9)])]. 1743 f(f(x',y),f(z,x)') = f(z,x). [para(1022(a,1),4(a,1)),flip(a)]. 1805 f(f(x,y'),f(z,y)') = f(z,y). [para(1340(a,1),4(a,1)),flip(a)]. 1856 f(f(x,y'),f(x',f(f(x,y'),f(f(y,x),z)))) = f(f(x,y'),f(f(y,x),z)). [para(77(a,1),29(a,1,1)),rewrite([4(9)])]. 2337 f(x,f(y',f(x,f(f(x,y),z)))) = f(x,f(f(x,y),z)). [para(466(a,1),16(a,1,2)),rewrite([4(5),4(6)])]. 2800 f(f(x',y),f(f(f(x',y),f(y,z)),f(u,f(x,f(f(x',y),f(y,z)))))) = f(f(x',y),f(y,z)). [para(51(a,1),530(a,1,1)),rewrite([4(11)])]. 2838 f(f(f(x',y)',f(y,f(z,f(y,x)))),f(f(y,f(z,f(y,x))),f(y,u))) = f(y,f(z,f(y,x))). [para(530(a,1),501(a,1,2,2,1))]. 3185 f(f(x',f(y,z)),f(x,f(y,f(x',f(y,z))))) = f(y,f(x',f(y,z))). [para(107(a,1),37(a,1,1)),rewrite([4(8)])]. 3457 f(x,f(y,f(f(x,y),z)')) = x'. [para(1030(a,1),52(a,1,2)),rewrite([7(1),4(5)]),flip(a)]. 3471 f(x,f(y,f(f(y,x),z)')) = x'. [para(4(a,1),3457(a,1,2,2,1,1))]. 3472 f(x,f(y,f(z,f(x,y))')) = x'. [para(4(a,1),3457(a,1,2,2,1))]. 3548 f(x,f(y,f(x,f(y',z)))) = x'. [para(1743(a,1),3457(a,1,2)),rewrite([4(4)])]. 3551 f(x,f(y,f(x,f(z,y')))) = x'. [para(1805(a,1),3457(a,1,2)),rewrite([4(4)])]. 3705 f(x,f(y,f(z,f(y,x))')) = x'. [para(4(a,1),3471(a,1,2,2,1))]. 3765 f(x,f(y,f(f(y',z),x))) = x'. [para(1743(a,1),3471(a,1,2)),rewrite([4(4)])]. 3768 f(x,f(y,f(f(z,y'),x))) = x'. [para(1805(a,1),3471(a,1,2)),rewrite([4(4)])]. 3799 f(f(x,f(y,f(x,z))),f(z,f(f(z',x),f(x,u)))) = f(x,f(y,f(x,z)))'. [para(530(a,1),3471(a,1,2,2,1,1)),rewrite([1162(8),41(5)])]. 3879 f(f(x,y)',f(z,f(x,y'))') = f(x,f(z,f(x,y'))'). [para(3472(a,1),184(a,1,2)),rewrite([4(2),1132(2),4(7),4(9),1132(9)])]. 3886 f(f(x,f(y,z'))',f(z,y)') = f(y,f(x,f(y,z'))'). [para(3472(a,1),204(a,1,2)),rewrite([4(2),1113(2),4(9),1113(9)])]. 3936 f(x,f(y',f(x,f(y,z)))) = x'. [para(41(a,1),3548(a,1,2,2,2,1))]. 3977 f(x,f(y,f(x',z))') = f(x,y). [para(3548(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1019(7),4(6)]),flip(a)]. 3981 f(x,f(y,f(x',z))) = f(x,y'). [para(3548(a,1),107(a,1,2)),flip(a)]. 3991 f(f(x,y'),f(x',f(y,z))) = f(y,f(x',f(y,z))). [back_rewrite(3185),rewrite([3981(8),4(6)])]. 4043 f(x,f(y,f(z,x'))') = f(x,y). [para(3551(a,1),97(a,1,2,2)),rewrite([4(5),4(7),1019(7),4(6)]),flip(a)]. 4162 f(x',f(y,f(z,f(y,x))')') = f(y,f(z,f(y,x))'). [para(3705(a,1),29(a,1,1)),rewrite([4(7),1132(8)])]. 4260 f(x,f(y',f(f(y,z),x))) = x'. [para(41(a,1),3765(a,1,2,2,1,1))]. 4348 f(x,f(y',f(f(z,y),x))) = x'. [para(41(a,1),3768(a,1,2,2,1,2))]. 4433 f(x,f(f(y,z)',f(x,y))) = x'. [para(5(a,1),3936(a,1,2,2,2))]. 4610 f(f(x,y),f(x',f(y,f(x',z))')) = f(y,f(x',z))'. [para(3977(a,1),29(a,1,1)),rewrite([4(7)])]. 4684 f(x,f(f(x',y),z)) = f(x,z'). [para(4(a,1),3981(a,1,2))]. 4808 f(f(x,f(y,f(x,z))),f(z,f(x,u)')) = f(x,f(y,f(x,z)))'. [back_rewrite(3799),rewrite([4684(8)])]. 4845 f(f(x',y),f(f(f(x',y),f(y,z)),f(u,f(x,f(y,z)')))) = f(f(x',y),f(y,z)). [back_rewrite(2800),rewrite([4684(11)])]. 5074 f(x,f(f(y,x'),z)) = f(x,z'). [para(31(a,1),4043(a,1,2,1)),flip(a)]. 5418 f(x',f(f(x,y),z)') = f(x',z). [para(4260(a,1),97(a,1,2,2)),rewrite([4(6),4(8),1287(8),4(7)]),flip(a)]. 5626 f(x',f(f(y,x),z)') = f(x',z). [para(4348(a,1),97(a,1,2,2)),rewrite([4(6),4(8),1287(8),4(7)]),flip(a)]. 5935 f(f(x,y)',f(z,x)) = f(f(x,y)',z'). [para(4433(a,1),107(a,1,2)),flip(a)]. 5989 f(f(x,y)',f(y,z)') = f(x,f(y,z)'). [back_rewrite(1124),rewrite([5935(5)])]. 6425 f(x',f(f(x,y),z)) = f(x',z'). [para(41(a,1),4684(a,1,2,1,1))]. 6733 f(f(x,y'),f(f(y,x),z)) = f(f(x,y'),f(x',z)). [back_rewrite(1856),rewrite([6425(9),5626(7)]),flip(a)]. 6749 f(f(x,y'),f(f(x,y),z)) = f(f(x,y'),f(x',z)). [back_rewrite(1411),rewrite([6425(9),5418(7)]),flip(a)]. 6758 f(f(x,y),f(y,z)') = f(x',f(y,z)'). [back_rewrite(1162),rewrite([6425(9)])]. 6766 f(f(x,y),f(x',f(y,z)')) = f(f(x,y),f(y,z)). [back_rewrite(463),rewrite([6425(6)])]. 6788 f(f(x,y),f(x,z))' = f(x,f(y',f(x,z))). [back_rewrite(1189),rewrite([6733(6),3991(6)]),flip(a)]. 6794 f(f(x,y),f(y,z))' = f(y,f(x',f(y,z))). [back_rewrite(1215),rewrite([6749(6),3991(6)]),flip(a)]. 6808 f(f(x,y),f(y,f(x',z))) = f(y,f(x',z))'. [back_rewrite(4610),rewrite([6766(8)])]. 6862 f(x',f(f(y,x),z)) = f(x',z'). [para(41(a,1),5074(a,1,2,1,2))]. 7142 f(f(x,y),f(z,x)') = f(y',f(z,x)'). [back_rewrite(1576),rewrite([6862(9)])]. 7145 f(f(x,y),f(x,z)') = f(y',f(x,z)'). [back_rewrite(1165),rewrite([6862(9)])]. 7482 f(f(x,y),f(y,z)) = f(y,f(x',f(y,z)))'. [para(164(a,1),153(a,1,2)),rewrite([6794(5),6808(6)]),flip(a)]. 7755 f(f(x',y),f(f(y,f(x,f(y,z)))',f(u,f(x,f(y,z)')))) = f(y,f(x,f(y,z)))'. [back_rewrite(4845),rewrite([7482(6),41(4),7482(16),41(14)])]. 7859 f(f(x,f(y,f(x,z))),f(f(z',x),f(f(x,f(y,f(x,z))),f(x,u))))' = f(x,f(y,f(x,z))). [back_rewrite(2838),rewrite([7482(13),41(7)])]. 8136 f(x,f(y,f(x,z'))') = f(y,f(x,z)'). [para(1248(a,1),1132(a,1,2)),rewrite([4(3),1132(3),7145(10),3879(10)]),flip(a)]. 8152 f(f(x,f(y,z'))',f(z,y)') = f(x,f(y,z)'). [back_rewrite(3886),rewrite([8136(12)])]. 9590 f(x,f(y,f(z,x)')) = f(x,f(y,z)). [para(15(a,1),1453(a,1,2)),rewrite([7142(5),5989(5),4(4)])]. 9631 f(x,f(y,f(x,z'))) = f(x,f(y,f(x,z)')). [para(526(a,1),1453(a,1,2)),rewrite([7142(7),8152(7),4(4)]),flip(a)]. 9682 f(x,f(y,z)') = f(z,f(x,y)'). [back_rewrite(271),rewrite([9590(6),1136(5)]),flip(a)]. 9736 f(f(x,y)',z) = f(x,f(y,z)'). [para(9682(a,2),4(a,1)),flip(a)]. 9737 f(x,f(y,z)') = f(y,f(x,z)'). [para(4(a,1),9682(a,1,2,1))]. 10012 f(x',f(y,f(z,f(u,x))')') = f(y,f(z,x')'). [para(9682(a,2),1362(a,2)),rewrite([9736(7),9736(5)])]. 10421 f(x,f(y,f(x,f(f(y,f(x,z)),f(u,f(y,f(x,z)'))))'))' = f(x,f(y,f(x,z)))'. [back_rewrite(7755),rewrite([9736(11),7482(12),41(2),9631(11)])]. 10865 f(x,f(y,f(x,z))') = f(x,f(y,z')'). [back_rewrite(4162),rewrite([10012(7)]),flip(a)]. 11744 f(x,f(y,f(f(x,z),f(u,f(x,z'))))') = f(y,f(x,z)'). [para(69(a,1),9737(a,1,2,1)),flip(a)]. 11843 f(x,f(y,f(x,z)))' = f(x,f(y,z'))'. [back_rewrite(10421),rewrite([11744(10),10865(4),1132(5),41(4)]),flip(a)]. 12042 f(x,f(y,f(x,z))) = f(x,f(y,z')). [back_rewrite(7859),rewrite([11843(13),6758(8),41(5),4808(7),11843(4),41(5)]),flip(a)]. 12297 f(f(x,y),f(x,z))' = f(x,f(y',z')). [back_rewrite(6788),rewrite([12042(8)])]. 12365 f(x,f(f(x,y),z)) = f(x,f(y',z)). [back_rewrite(2337),rewrite([12042(6),5626(5)]),flip(a)]. 12401 f(f(x,y),f(x,f(y',z))) = f(x,f(y',z))'. [back_rewrite(581),rewrite([12365(4),12365(8)])]. 13505 f(f(x,y),f(x,z)) = f(x,f(y',z'))'. [para(507(a,1),132(a,1,2)),rewrite([12297(4),4(6),12401(6)]),flip(a)]. 14077 $F # answer(Sheffer_3). [back_rewrite(13),rewrite([13505(9),41(4),41(5)]),xx(a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=219. Generated=90082. Kept=14065. proofs=3. Usable=67. Sos=2637. Demods=3099. Limbo=572, Disabled=10795. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=76014. Back_subsumed=427. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=13597 (1 lex), Back_demodulated=10362. Back_unit_deleted=0. Demod_attempts=1425632. Demod_rewrites=230843. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=11.74. User_CPU=5.54, System_CPU=0.04, Wall_clock=6. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 3 proofs. Process 15842 exit (max_proofs) Wed Feb 25 12:26:17 2009 prover9-manual-2009-02A/bool-ring.demods0000644000175000017500000000103110622666371017246 0ustar mccunemccune% Assume right association for both operations. % + has higher precedence, e.g., a+b*c is a+(b*c). op(400, infix_right, +). op(390, infix_right, *). % Both operations are associative and commutative (AC). % These commands tell rewriter to assume AC. assoc_comm(+). assoc_comm(*). formulas(demodulators). % These rules can be used to canonicalize Boolean ring % expressions. Both operations are assumed to be AC. x + 0 = x. x + x = 0. x * 0 = 0. x * 1 = x. x * x = x. x * (y + z) = (x * y) + (x * z). end_of_list. prover9-manual-2009-02A/bool-ring.in0000644000175000017500000000166710445527137016417 0ustar mccunemccune% A Boolean ring expression from a very old hardware analysis project. (a2+b2+1+a2*b2)+ (a3+b3)+1+ (a0+b0+1+a0*b0)* (1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)* (cin+1)+ (a0+b0+1+a0*b0)* (1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (1+a2*b2)* (cin+1)+ (a0+b0+1+a0*b0)* (1+a0*b0)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)* (cin+1)+ (a0+b0+1+a0*b0)* (1+a0*b0)* (1+a1*b1)* (1+a2*b2)* (cin+1)+ (a0+b0+1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (1+a2*b2)+ (a0+b0+1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)+ (a0+b0+1+a0*b0)* (1+a1*b1)* (1+a2*b2)+ (a0+b0+1+a0*b0)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)+ (1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)* (cin+1)+ (1+a0*b0)* (a1+b1+1+a1*b1)* (1+a1*b1)* (1+a2*b2)* (cin+1)+ (1+a0*b0)* (1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2)* (cin+1)+ (1+a0*b0)* (1+a1*b1)* (1+a2*b2)* (cin+1)+ (a1+b1+1+a1*b1)* (1+a2*b2)+ (a1+b1+1+a1*b1)* (a2+b2+1+a2*b2)* (1+a2*b2). prover9-manual-2009-02A/temp0000644000175000017500000000636311135653002015051 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-01A, January 2009. Process 17151 was started by mccune on cleo, Wed Jan 21 10:06:10 2009 The command was "/home/mccune/LADR/bin/mace4 -n8 -f queens2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file queens2.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. formulas(assumptions). (all x exists y Q(x,y)). Q(x,y1) & Q(x,y2) -> y1 = y2. Q(x1,y) & Q(x2,y) -> x1 = x2. Q(x1,y1) & Q(x2,y2) & x2 + -x1 = y2 + -y1 -> x1 = x2 & y1 = y2. Q(x1,y1) & Q(x2,y2) & x1 + -x2 = y2 + -y1 -> x1 = x2 & y1 = y2. end_of_list. % assign(domain_size, 8) -> assign(start_size, 8). % assign(domain_size, 8) -> assign(end_size, 8). % From the command line: assign(domain_size, 8). ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x exists y Q(x,y)) # label(non_clause). [assumption]. 2 Q(x,y1) & Q(x,y2) -> y1 = y2 # label(non_clause). [assumption]. 3 Q(x1,y) & Q(x2,y) -> x1 = x2 # label(non_clause). [assumption]. 4 Q(x1,y1) & Q(x2,y2) & x2 + -x1 = y2 + -y1 -> x1 = x2 & y1 = y2 # label(non_clause). [assumption]. 5 Q(x1,y1) & Q(x2,y2) & x1 + -x2 = y2 + -y1 -> x1 = x2 & y1 = y2 # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). Q(x,f1(x)). -Q(x,y) | -Q(x,z) | z = y. -Q(x,y) | -Q(z,y) | z = x. -Q(x,y) | -Q(z,u) | z + -x != u + -y | z = x. -Q(x,y) | -Q(z,u) | z + -x != u + -y | u = y. -Q(x,y) | -Q(z,u) | x + -z != u + -y | z = x. -Q(x,y) | -Q(z,u) | x + -z != u + -y | u = y. end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 8 ========================= ============================== MODEL ================================= interpretation( 8, [number=1, seconds=0], [ function(f1(_), [ 0, 4, 7, 5, 2, 6, 1, 3 ]), relation(Q(_,_), [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 8. Current CPU time: 0.00 seconds (total CPU time: 0.06 seconds). Ground clauses: seen=17416, kept=2024. Selections=18, assignments=132, propagations=531, current_models=1. Rewrite_terms=193, rewrite_bools=9165, indexes=79. Rules_from_neg_clauses=61, cross_offs=258. ============================== end of statistics ===================== User_CPU=0.06, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 17151 exit (max_models) Wed Jan 21 10:06:10 2009 The process finished Wed Jan 21 10:06:10 2009 prover9-manual-2009-02A/go0000755000175000017500000000655311150607112014513 0ustar mccunemccune#!/bin/csh if ($#argv != 1) then echo "need 1 arg: bin-directory" exit(1) endif set d=$1 $d/fof-prover9 -f andrews.in > andrews.out $d/prover9 -f andrews.in > andrews.out2 $d/prover9 -f subset_trans.in > subset_trans.out $d/prover9 < subset_trans.in > subset_trans.out2 $d/prover9 -f subset.in trans.in > subset_trans.out3 $d/prover9 -t 10 -f subset_trans.in > subset_trans.out4 $d/prover9 -f subset_trans_expand.in > subset_trans_expand.out $d/prover9 -f LT-82-2.in > LT-82-2.out $d/prover9 -f weight_test.in | grep 'given #' > weight_test.out $d/prover9 -f x2.in > x2.prover9.out $d/prover9 -f olsax.in > olsax.out $d/prover9 -f redeclare.in > redeclare.out $d/prover9 -f hard.in > hard.out $d/prover9 -f easy.in > easy.out $d/prooftrans hints -f easy.out > easy.hints $d/prover9 -f hard.in easy.hints > hard-hints.out $d/mace4 -c -f x2.in > x2.mace4.out $d/mace4 -N10 -f LT-82-2-interp.in > LT-82-2-interp.out $d/mace4 -f ring41.in > ring41.out $d/prooftrans -f subset_trans.out > subset_trans.proof1 $d/prooftrans renumber -f subset_trans.out > subset_trans.proof2 $d/prooftrans parents_only -f subset_trans.out > subset_trans.proof3 $d/prooftrans expand -f subset_trans.out > subset_trans.proof4 $d/prooftrans xml -f subset_trans.out > subset_trans.proof5.xml $d/prooftrans ivy -f subset_trans.out > subset_trans.proof6 $d/prooftrans hints -f subset_trans.out > subset_trans.proof7 $d/prooftrans hints -label "job8" -f subset_trans.out > subset_trans.proof8 $d/interpformat standard -f x2.mace4.out > x2.standard $d/interpformat standard2 -f x2.mace4.out > x2.standard2 $d/interpformat portable -f x2.mace4.out > x2.portable $d/interpformat tabular -f x2.mace4.out > x2.tabular $d/interpformat raw -f x2.mace4.out > x2.raw $d/interpformat cooked -f x2.mace4.out > x2.cooked $d/interpformat xml -f x2.mace4.out > x2.xml $d/interpformat tex -f x2.mace4.out > x2.tex $d/mace4 -c -f LT-port.in | $d/interpformat portable > LT-port.out $d/clausefilter non-MOL-OML.interps false_in_all < MOL-cand.296 > MOL-cand.238 $d/clausetester uc-18.interps < uc-hunt.clauses > uc-hunt.out $d/interpfilter assoc-comm.clauses all_true < qg4.interps > qg4-ac.interps $d/mace4 -N6 -m -1 -f BA2.in | $d/interpformat standard > BA2.interps $d/isofilter < BA2.interps > BA2.interps2 $d/isofilter ignore_constants < BA2.interps > BA2.interps3 $d/mace4 -N6 -m -1 -f MOL.in | $d/interpformat standard > MOL.interps $d/isofilter check '^ v' output '^ v' < MOL.interps > MOL.interps2 $d/isofilter ignore_constants wrap < BA2.interps > BA2.interps4 $d/mace4 -N6 -m -1 -f BA2.in | $d/interpformat standard | $d/isofilter ignore_constants wrap > BA2.interps5 $d/rewriter group.demods < group-terms.in > group-terms.out $d/rewriter bool-ring.demods < bool-ring.in > bool-ring.out $d/rewriter BA-Sheffer.demods < BA4.in > BA4.out $d/tptp_to_ladr < PUZ031-1.tptp > PUZ031-1.in $d/prover9 -f PUZ031-1.in > PUZ031-1.out $d/tptp_to_ladr < PUZ031-1.tptp | $d/prover9 > PUZ031-1.out2 $d/ladr_to_tptp < RBA-2.in > RBA-2.tptp $d/ladr_to_tptp -q < RBA-2.in > RBA-2q.tptp $d/mace4 -n8 -f queens1.in > queens1.out $d/mace4 -n8 -f queens2.in > queens2.out $d/mace4 -f kenken6.in > kenken6.out $d/mace4 -f send-money.in > send-money.out $d/mace4 -f zebra2.in > zebra2.out $d/prover9 -f queens3.in > queens3.out $d/prover9 -f list.in > list.out $d/prover9 -f cabbages.in > cabbages.out $d/prover9 -f jugs.in > jugs.out $d/prover9 -f 2inverter.in > 2inverter.out prover9-manual-2009-02A/checked-jobs/0000755000175000017500000000000011151316357016501 5ustar mccunemccuneprover9-manual-2009-02A/dependencies0000644000175000017500000001057110421167513016532 0ustar mccunemccune flag_flag_dependency(p->paramodulation, TRUE, p->back_demod, TRUE); flag_parm_dependency(p->para_units_only, TRUE, p->para_lit_limit, 1); flag_flag_dependency(p->back_unit_deletion, TRUE, p->unit_deletion, TRUE); flag_flag_dependency(p->ur_resolution, TRUE, p->pos_ur_resolution, TRUE); flag_flag_dependency(p->ur_resolution, TRUE, p->neg_ur_resolution, TRUE); flag_parm_dependency(p->lex_dep_demod, FALSE, p->lex_dep_demod_lim, 0); flag_parm_dependency(p->lex_dep_demod, TRUE, p->lex_dep_demod_lim, INT_MAX); flag_parm_dependency(p->breadth_first, TRUE, p->age_part, 1); flag_parm_dependency(p->breadth_first, TRUE, p->true_part, 0); flag_parm_dependency(p->breadth_first, TRUE, p->false_part, 0); flag_parm_dependency(p->unfold_eq, TRUE, p->unfold_eq_limit, INT_MAX); flag_parm_dependency(p->unfold_eq, FALSE, p->unfold_eq_limit, -1); flag_flag_dependency(p->unfold_eq, TRUE, p->fold_eq, FALSE); flag_flag_dependency(p->fold_eq, TRUE, p->unfold_eq, FALSE); parm_parm_dependency(p->pick_given_ratio, p->age_part, 1); parm_parm_dependency(p->pick_given_ratio, p->true_part, INT_MIN); // copy parm_parm_dependency(p->pick_given_ratio, p->false_part, 0); flag_flag_dependency(p->default_output, TRUE, p->quiet, FALSE); flag_flag_dependency(p->default_output, TRUE, p->echo_input, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_initial_clauses,TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_given, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_subproblems, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_proofs, TRUE); flag_stringparm_dependency(p->default_output, TRUE, p->stats, "lots"); flag_flag_dependency(p->default_output, TRUE, p->print_kept, FALSE); flag_flag_dependency(p->default_output, TRUE, p->print_gen, FALSE); flag_flag_dependency(p->automatic, TRUE, p->auto1, TRUE); flag_flag_dependency(p->auto1, TRUE, p->auto_inference, TRUE); flag_flag_dependency(p->auto1, TRUE, p->predicate_elimination, TRUE); flag_flag_dependency(p->auto1, TRUE, p->unfold_eq, TRUE); flag_flag_dependency(p->auto1, TRUE, p->inverse_order, TRUE); flag_parm_dependency(p->auto1, TRUE, p->lex_dep_demod_lim, 11); flag_flag_dependency(p->auto1, TRUE, p->lex_dep_demod_sane, TRUE); flag_parm_dependency(p->auto1, TRUE, p->max_weight, 100); flag_parm_dependency(p->auto1, TRUE, p->age_part, 1); flag_parm_dependency(p->auto1, TRUE, p->true_part, 2); flag_parm_dependency(p->auto1, TRUE, p->false_part, 2); flag_parm_dependency(p->auto1, TRUE, p->sos_limit, 10000); flag_stringparm_dependency(p->auto1, TRUE, p->stats, "lots"); flag_parm_dependency(p->auto1, TRUE, p->max_megs, 200); flag_flag_dependency(p->auto1, TRUE, clocks_id(), FALSE); flag_flag_dependency(p->auto2, TRUE, p->auto1, TRUE); flag_flag_dependency(p->auto2, TRUE, p->fof_reduction, TRUE); flag_parm_dependency(p->auto2, TRUE, p->new_constants, 1); flag_parm_dependency(p->auto2, TRUE, p->fold_denial_max, 3); flag_parm_dependency(p->auto2, TRUE, p->max_weight, 200); flag_parm_dependency(p->auto2, TRUE, p->nest_penalty, 1); flag_parm_dependency(p->auto2, TRUE, p->skolem_penalty, 3); flag_parm_dependency(p->auto2, TRUE, p->sk_constant_weight, 0); flag_parm_dependency(p->auto2, TRUE, p->prop_atom_weight, 5); flag_flag_dependency(p->auto2, TRUE, p->sort_initial_sos, TRUE); flag_parm_dependency(p->auto2, TRUE, p->sos_limit, INT_MAX); flag_parm_dependency(p->auto2, TRUE, p->lrs_ticks, 3000); flag_parm_dependency(p->auto2, TRUE, p->max_megs, 400); flag_stringparm_dependency(p->auto2, TRUE, p->stats, "some"); flag_flag_dependency(p->auto2, TRUE, p->echo_input, FALSE); flag_flag_dependency(p->auto2, TRUE, p->quiet, TRUE); flag_flag_dependency(p->auto2, TRUE, p->print_subproblems, FALSE); flag_flag_dependency(p->auto2, TRUE, p->print_initial_clauses, FALSE); flag_flag_dependency(p->auto2, TRUE, p->print_given, FALSE); prover9-manual-2009-02A/olsax.out0000644000175000017500000032061211151315523016035 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15838 was started by mccune on cleo, Wed Feb 25 12:26:02 2009 The command was "/home/mccune/bin/prover9 -f olsax.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file olsax.in assign(new_constants,1). lex([',^,v,f]). assign(pick_given_ratio,5). % assign(pick_given_ratio, 5) -> assign(age_part, 1). % assign(pick_given_ratio, 5) -> assign(weight_part, 5). % assign(pick_given_ratio, 5) -> assign(false_part, 0). % assign(pick_given_ratio, 5) -> assign(true_part, 0). % assign(pick_given_ratio, 5) -> assign(random_part, 0). set(restrict_denials). assign(max_weight,40). formulas(assumptions). f(f(f(f(y,x),f(x,z)),u),f(x,f(f(x,f(f(y,y),y)),z))) = x # label(OL_Sh). x v y = f(f(x,x),f(y,y)) # label(definition_join). x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). x' = f(x,x) # label(definition_complementation). end_of_list. formulas(goals). f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) # answer(assoc). f(f(x,x),f(x,y)) = x # answer(absorb). f(x,f(x,x)) = f(y,f(y,y)) # answer(one). f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) & f(f(x,x),f(x,y)) = x & f(x,f(x,x)) = f(y,f(y,y)) # answer(combined). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) # answer(assoc) # label(non_clause) # label(goal). [goal]. 2 f(f(x,x),f(x,y)) = x # answer(absorb) # label(non_clause) # label(goal). [goal]. 3 f(x,f(x,x)) = f(y,f(y,y)) # answer(one) # label(non_clause) # label(goal). [goal]. 4 f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) & f(f(x,x),f(x,y)) = x & f(x,f(x,x)) = f(y,f(y,y)) # answer(combined) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. x' = f(x,x) # label(definition_complementation). [assumption]. f(c1,f(f(c2,c3),f(c2,c3))) != f(c2,f(f(c1,c3),f(c1,c3))) # answer(assoc). [deny(1)]. f(f(c4,c4),f(c4,c5)) != c4 # answer(absorb). [deny(2)]. f(c6,f(c6,c6)) != f(c7,f(c7,c7)) # answer(one). [deny(3)]. f(c8,f(f(c9,c10),f(c9,c10))) != f(c9,f(f(c8,c10),f(c8,c10))) | f(f(c8,c8),f(c8,c9)) != c8 | f(c8,f(c8,c8)) != f(c9,f(c9,c9)) # answer(combined). [deny(4)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % assign(max_proofs, 4). % (Horn set with more than one neg. clause) Term ordering decisions: Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, ', ^, v, f ]). Skipping inverse_order, because there is a function_order (lex) command. Skipping unfold_eq, because there is a function_order (lex) command. Auto_inference settings: % set(paramodulation). % (positive equality literals) % set(hyper_resolution). % (nonunit Horn with equality) % set(hyper_resolution) -> set(pos_hyper_resolution). % set(neg_ur_resolution). % (nonunit Horn with equality) % assign(para_lit_limit, 3). % (nonunit Horn with equality) Auto_process settings: % set(unit_deletion). % (Horn set with negative nonunits) kept: 5 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. 6 x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. kept: 7 f(f(x,x),f(y,y)) = x v y. [copy(6),flip(a)]. 8 x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. kept: 9 f(f(x,y),f(x,y)) = x ^ y. [copy(8),flip(a)]. 10 x' = f(x,x) # label(definition_complementation). [assumption]. kept: 11 f(x,x) = x'. [copy(10),flip(a)]. 12 f(c1,f(f(c2,c3),f(c2,c3))) != f(c2,f(f(c1,c3),f(c1,c3))) # answer(assoc). [deny(1)]. kept: 13 f(c2,f(c1,c3)') != f(c1,f(c2,c3)') # answer(assoc). [copy(12),rewrite([11(8),11(14)]),flip(a)]. 14 f(f(c4,c4),f(c4,c5)) != c4 # answer(absorb). [deny(2)]. kept: 15 f(c4',f(c4,c5)) != c4 # answer(absorb). [copy(14),rewrite([11(3)])]. 16 f(c6,f(c6,c6)) != f(c7,f(c7,c7)) # answer(one). [deny(3)]. kept: 17 f(c7,c7') != f(c6,c6') # answer(one). [copy(16),rewrite([11(4),11(8)]),flip(a)]. 18 f(c8,f(f(c9,c10),f(c9,c10))) != f(c9,f(f(c8,c10),f(c8,c10))) | f(f(c8,c8),f(c8,c9)) != c8 | f(c8,f(c8,c8)) != f(c9,f(c9,c9)) # answer(combined). [deny(4)]. kept: 19 f(c9,f(c8,c10)') != f(c8,f(c9,c10)') | f(c8',f(c8,c9)) != c8 | f(c9,c9') != f(c8,c8') # answer(combined). [copy(18),rewrite([11(8),11(14),11(16),11(25),11(29)]),flip(a),flip(c)]. kept: 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. kept: 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. kept: 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. kept: 23 f(c9,c8 ^ c10) != f(c8,c9 ^ c10) | f(c8',f(c8,c9)) != c8 | f(c9,c9') != f(c8,c8') # answer(combined). [back_rewrite(19),rewrite([20(5),20(10)])]. kept: 24 f(c2,c1 ^ c3) != f(c1,c2 ^ c3) # answer(assoc). [back_rewrite(13),rewrite([20(5),20(10)])]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 15 f(c4',f(c4,c5)) != c4 # answer(absorb). [copy(14),rewrite([11(3)])]. 17 f(c7,c7') != f(c6,c6') # answer(one). [copy(16),rewrite([11(4),11(8)]),flip(a)]. 23 f(c9,c8 ^ c10) != f(c8,c9 ^ c10) | f(c8',f(c8,c9)) != c8 | f(c9,c9') != f(c8,c8') # answer(combined). [back_rewrite(19),rewrite([20(5),20(10)])]. 24 f(c2,c1 ^ c3) != f(c1,c2 ^ c3) # answer(assoc). [back_rewrite(13),rewrite([20(5),20(10)])]. end_of_list. formulas(sos). 11 f(x,x) = x'. [copy(10),flip(a)]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. end_of_list. formulas(demodulators). 11 f(x,x) = x'. [copy(10),flip(a)]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=6): 11 f(x,x) = x'. [copy(10),flip(a)]. given #2 (I,wt=8): 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. given #3 (I,wt=9): 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. given #4 (I,wt=22): 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. given #5 (A,wt=7): 25 x ^ x = x''. [para(11(a,1),20(a,1,1)),flip(a)]. given #6 (W,wt=7): 26 x v x = x''. [para(21(a,1),11(a,1))]. given #7 (W,wt=10): 27 (x v y)' = x' ^ y'. [para(21(a,1),20(a,1,1))]. given #8 (W,wt=12): 28 f(x ^ y,z') = f(x,y) v z. [para(20(a,1),21(a,1,1))]. given #9 (W,wt=12): 29 f(x',y ^ z) = x v f(y,z). [para(20(a,1),21(a,1,2))]. given #10 (W,wt=14): 43 f(x',y' ^ z') = x v (y v z). [para(27(a,1),21(a,1,2))]. given #11 (A,wt=21): 30 f(f(f(x',f(x,y)),z),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),22(a,1,1,1,1))]. given #12 (W,wt=15): 45 f(x ^ y,z ^ u) = f(x,y) v f(z,u). [para(20(a,1),28(a,1,2))]. given #13 (W,wt=16): 53 f(x',y ^ z) v u = (x v f(y,z)) v u. [para(29(a,1),28(a,2,1)),rewrite([28(5)])]. given #14 (W,wt=17): 48 f(x ^ y,z' ^ u') = f(x,y) v (z v u). [para(27(a,1),28(a,1,2))]. given #15 (W,wt=17): 52 f(x' ^ y',z ^ u) = (x v y) v f(z,u). [para(27(a,1),29(a,1,1))]. given #16 (W,wt=17): 54 f(x',(y ^ z) ^ u') = x v (f(y,z) v u). [para(28(a,1),29(a,2,2))]. given #17 (A,wt=21): 31 f(f(f(f(x,y),y'),z),f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),22(a,1,1,1,2))]. given #18 (W,wt=17): 55 f(x',y' ^ (z ^ u)) = x v (y v f(z,u)). [para(29(a,1),29(a,2,2))]. given #19 (W,wt=16): 149 x v f(y',z ^ u) = x v (y v f(z,u)). [para(55(a,1),29(a,1)),flip(a)]. given #20 (W,wt=18): 32 f(f(x'',y),f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),22(a,1,1,1)),rewrite([11(1)])]. given #21 (W,wt=17): 181 f(x''',f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),32(a,1,1))]. given #22 (W,wt=17): 184 f(x' v y,f(x,f(f(x,f(x',x)),x))) = x. [para(21(a,1),32(a,1,1))]. given #23 (A,wt=20): 33 f(f(x,y) ^ f(y,z),f(y,f(f(y,f(x',x)),z))) = y. [para(11(a,1),22(a,1,1)),rewrite([20(4)])]. given #24 (W,wt=17): 190 f(x,f(x',f(f(x',x' v x),y))) = x'. [para(32(a,1),30(a,1,1)),rewrite([21(6)])]. given #25 (W,wt=12): 236 f(x',f(x'',x)) = x''. [para(32(a,1),190(a,1,2,2))]. given #26 (W,wt=13): 238 x' ^ f(x'',x) = x'''. [para(236(a,1),20(a,1,1)),flip(a)]. given #27 (W,wt=14): 240 f(x'',x'' v x) = x'''. [para(21(a,1),236(a,1,2))]. given #28 (W,wt=15): 229 f(x,f(x',x' ^ (x' v x))) = x'. [para(11(a,1),190(a,1,2,2)),rewrite([20(6)])]. given #29 (A,wt=32): 34 f(f(f(f(x,f(x',x)),f(f(x',x),y)),z),f(f(x',x),f(x' ^ x,y))) = f(x',x). [para(11(a,1),22(a,1,2,2,1)),rewrite([20(13)])]. given #30 (W,wt=14): 267 f(x,x v f(x',x' v x)) = x'. [para(29(a,1),229(a,1,2))]. given #31 (W,wt=15): 253 x'' ^ (x'' v x) = x''''. [para(21(a,1),238(a,1,2))]. given #32 (W,wt=15): 281 x ^ (x v f(x',x' v x)) = x''. [para(267(a,1),20(a,1,1)),flip(a)]. given #33 (W,wt=16): 263 x ^ f(x',x' ^ (x' v x)) = x''. [para(229(a,1),20(a,1,1)),flip(a)]. given #34 (W,wt=17): 239 f(x ^ y,f((x ^ y)',f(x,y))) = (x ^ y)'. [para(20(a,1),236(a,1,1)),rewrite([20(3),20(8)])]. given #35 (A,wt=25): 35 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,y ^ f(x',x))) = y. [para(11(a,1),22(a,1,2,2)),rewrite([20(11)])]. given #36 (W,wt=18): 192 x''' ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(181(a,1),20(a,1,1)),flip(a)]. given #37 (W,wt=18): 197 (x' v y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(184(a,1),20(a,1,1)),flip(a)]. given #38 (W,wt=18): 230 x ^ f(x',f(f(x',x' v x),y)) = x''. [para(190(a,1),20(a,1,1)),flip(a)]. given #39 (W,wt=18): 252 (x ^ y) ^ f((x ^ y)',f(x,y)) = (x ^ y)''. [para(20(a,1),238(a,1,1)),rewrite([20(3),20(8)])]. given #40 (W,wt=18): 326 f(x,f(f(x,y),f(x,y) ^ (x' v x))) = f(x,y). [para(30(a,1),35(a,1,1)),rewrite([21(6)])]. given #41 (A,wt=23): 36 f(f(f(x,y),f(y,z)),u) ^ f(y,f(f(y,f(x',x)),z)) = y'. [para(22(a,1),20(a,1,1)),flip(a)]. given #42 (W,wt=12): 375 f(x,f(x',x' v x)) = x'. [para(326(a,1),190(a,1,2))]. given #43 (W,wt=13): 376 x ^ f(x',x' v x) = x''. [para(326(a,1),230(a,1,2))]. given #44 (W,wt=18): 328 f(x,f(x',x' ^ f(y ^ x,f(y,x)))) = x'. [para(31(a,1),35(a,1,1)),rewrite([20(4)])]. given #45 (W,wt=17): 444 f(x,x v f(x',f(y ^ x,f(y,x)))) = x'. [para(29(a,1),328(a,1,2))]. given #46 (W,wt=18): 348 x ^ f(f(x,y),f(x,y) ^ (x' v x)) = x ^ y. [para(326(a,1),20(a,1,1)),rewrite([20(2)]),flip(a)]. given #47 (A,wt=27): 37 f(f(f(f(f(x,y),z),f(z,u)),w),f(z,f(f(z,f(x ^ y,f(x,y))),u))) = z. [para(20(a,1),22(a,1,2,2,1,2,1))]. given #48 (W,wt=18): 454 x ^ (x v f(x',f(y ^ x,f(y,x)))) = x''. [para(444(a,1),20(a,1,1)),flip(a)]. given #49 (W,wt=19): 59 f(x',(y' ^ z') ^ u') = x v ((y v z) v u). [para(27(a,1),43(a,1,2,1))]. given #50 (W,wt=19): 60 f(x',y' ^ (z' ^ u')) = x v (y v (z v u)). [para(27(a,1),43(a,1,2,2))]. given #51 (W,wt=19): 61 f(x' ^ f(x,y),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),30(a,1,1)),rewrite([20(4)])]. given #52 (W,wt=19): 76 f(x ^ y,z ^ u) v w = (f(x,y) v f(z,u)) v w. [para(45(a,1),28(a,2,1)),rewrite([28(5)])]. given #53 (A,wt=26): 38 f(f(f(x v y,f(y',z)),u),f(y',f(f(y',x' v x),z))) = y'. [para(21(a,1),22(a,1,1,1,1)),rewrite([21(11)])]. given #54 (W,wt=19): 129 f(f(x,y) ^ y',f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),31(a,1,1)),rewrite([20(4)])]. given #55 (W,wt=19): 167 x v f(y ^ z,u ^ w) = x v (f(y,z) v f(u,w)). [para(20(a,1),149(a,1,2,1))]. given #56 (W,wt=19): 182 f(x'',y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(32(a,1),20(a,1,1)),flip(a)]. given #57 (W,wt=19): 244 f((x ^ y)',(x ^ y)' v f(x,y)) = (x ^ y)''. [para(29(a,1),236(a,1,2))]. given #58 (W,wt=19): 415 f(f(x,y),f(x ^ y,(x ^ y) v f(x,y))) = x ^ y. [para(20(a,1),375(a,1,2,1)),rewrite([20(4),20(9)])]. given #59 (A,wt=27): 39 f(f(f(f(x,y'),y v z),u),f(y',f(f(y',f(x',x)),z'))) = y'. [para(21(a,1),22(a,1,1,1,2))]. given #60 (W,wt=19): 437 x ^ f(x',x' ^ f(y ^ x,f(y,x))) = x''. [para(328(a,1),20(a,1,1)),flip(a)]. given #61 (W,wt=20): 68 f(x,f(f(x,y),f(f(f(x,y),x' v x),z))) = f(x,y). [para(30(a,1),22(a,1,1)),rewrite([21(6)])]. given #62 (W,wt=14): 764 f(x,f(f(x,y),x' v x)) = f(x,y). [para(326(a,1),68(a,1,2))]. given #63 (W,wt=14): 776 x ^ f(f(x,y),x' v x) = x ^ y. [para(764(a,1),20(a,1,1)),rewrite([20(2)]),flip(a)]. given #64 (W,wt=17): 778 f(x',f(x v y,x'' v x')) = x v y. [para(21(a,1),764(a,1,2,1)),rewrite([21(11)])]. given #65 (A,wt=23): 40 f(f(f(f(x',y),f(y,z)),u),f(y,f(f(y,x' v x),z))) = y. [para(21(a,1),22(a,1,2,2,1,2))]. given #66 (W,wt=18): 749 f(x',f(f(x',f(x,y)),x)) = f(x',f(x,y)). [para(30(a,1),68(a,1,2,2))]. given #67 (W,wt=18): 806 f(x' ^ f(x,x' v x),f(x,f(x',x))) = x. [para(764(a,1),61(a,1,2))]. given #68 (W,wt=18): 863 x' ^ f(f(x',f(x,y)),x) = x' ^ f(x,y). [para(749(a,1),20(a,1,1)),rewrite([20(4)]),flip(a)]. given #69 (W,wt=19): 755 f(f(x,y),f(f(f(x,y),y'),y)) = f(f(x,y),y'). [para(31(a,1),68(a,1,2,2))]. given #70 (W,wt=19): 795 f(x''',f(x,x'''' v x''')) = x. [para(181(a,1),764(a,1,2,1)),rewrite([181(22)])]. given #71 (A,wt=34): 41 f(f(x,y),f(x,f(f(x,f(f(z,x) ^ f(x,u),f(f(z,x),f(x,u)))),f(f(x,f(z',z)),u)))) = x. [para(22(a,1),22(a,1,1,1)),rewrite([20(5)])]. given #72 (W,wt=8): 959 f(x,x'') = x'. [para(41(a,1),190(a,1,2,2)),rewrite([11(3)])]. given #73 (W,wt=9): 963 x ^ x'' = x''. [para(41(a,1),230(a,1,2,2)),rewrite([11(3)])]. given #74 (W,wt=9): 974 f(x,x ^ y) = f(x,y). [para(41(a,1),68(a,1,2,2)),rewrite([11(3),20(2)])]. given #75 (W,wt=7): 1099 x'' v x = x. [para(181(a,1),974(a,2)),rewrite([192(12),21(5)])]. ============================== PROOF ================================= % Proof 1 at 0.32 (+ 0.01) seconds: absorb. % Length of proof is 77. % Level of proof is 20. % Maximum clause weight is 34. % Given clauses 75. 2 f(f(x,x),f(x,y)) = x # answer(absorb) # label(non_clause) # label(goal). [goal]. 5 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. 6 x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. 7 f(f(x,x),f(y,y)) = x v y. [copy(6),flip(a)]. 8 x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. 9 f(f(x,y),f(x,y)) = x ^ y. [copy(8),flip(a)]. 10 x' = f(x,x) # label(definition_complementation). [assumption]. 11 f(x,x) = x'. [copy(10),flip(a)]. 14 f(f(c4,c4),f(c4,c5)) != c4 # answer(absorb). [deny(2)]. 15 f(c4',f(c4,c5)) != c4 # answer(absorb). [copy(14),rewrite([11(3)])]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. 25 x ^ x = x''. [para(11(a,1),20(a,1,1)),flip(a)]. 27 (x v y)' = x' ^ y'. [para(21(a,1),20(a,1,1))]. 28 f(x ^ y,z') = f(x,y) v z. [para(20(a,1),21(a,1,1))]. 29 f(x',y ^ z) = x v f(y,z). [para(20(a,1),21(a,1,2))]. 30 f(f(f(x',f(x,y)),z),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),22(a,1,1,1,1))]. 31 f(f(f(f(x,y),y'),z),f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),22(a,1,1,1,2))]. 32 f(f(x'',y),f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),22(a,1,1,1)),rewrite([11(1)])]. 35 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,y ^ f(x',x))) = y. [para(11(a,1),22(a,1,2,2)),rewrite([20(11)])]. 41 f(f(x,y),f(x,f(f(x,f(f(z,x) ^ f(x,u),f(f(z,x),f(x,u)))),f(f(x,f(z',z)),u)))) = x. [para(22(a,1),22(a,1,1,1)),rewrite([20(5)])]. 43 f(x',y' ^ z') = x v (y v z). [para(27(a,1),21(a,1,2))]. 48 f(x ^ y,z' ^ u') = f(x,y) v (z v u). [para(27(a,1),28(a,1,2))]. 61 f(x' ^ f(x,y),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),30(a,1,1)),rewrite([20(4)])]. 68 f(x,f(f(x,y),f(f(f(x,y),x' v x),z))) = f(x,y). [para(30(a,1),22(a,1,1)),rewrite([21(6)])]. 129 f(f(x,y) ^ y',f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),31(a,1,1)),rewrite([20(4)])]. 181 f(x''',f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),32(a,1,1))]. 182 f(x'',y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(32(a,1),20(a,1,1)),flip(a)]. 190 f(x,f(x',f(f(x',x' v x),y))) = x'. [para(32(a,1),30(a,1,1)),rewrite([21(6)])]. 192 x''' ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(181(a,1),20(a,1,1)),flip(a)]. 230 x ^ f(x',f(f(x',x' v x),y)) = x''. [para(190(a,1),20(a,1,1)),flip(a)]. 236 f(x',f(x'',x)) = x''. [para(32(a,1),190(a,1,2,2))]. 238 x' ^ f(x'',x) = x'''. [para(236(a,1),20(a,1,1)),flip(a)]. 240 f(x'',x'' v x) = x'''. [para(21(a,1),236(a,1,2))]. 253 x'' ^ (x'' v x) = x''''. [para(21(a,1),238(a,1,2))]. 561 (x' ^ f(x,y)) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(61(a,1),20(a,1,1)),flip(a)]. 749 f(x',f(f(x',f(x,y)),x)) = f(x',f(x,y)). [para(30(a,1),68(a,1,2,2))]. 863 x' ^ f(f(x',f(x,y)),x) = x' ^ f(x,y). [para(749(a,1),20(a,1,1)),rewrite([20(4)]),flip(a)]. 865 f(x'',f(f(x'',x v y),x')) = f(x'',x v y). [para(21(a,1),749(a,1,2,1,2)),rewrite([21(14)])]. 959 f(x,x'') = x'. [para(41(a,1),190(a,1,2,2)),rewrite([11(3)])]. 963 x ^ x'' = x''. [para(41(a,1),230(a,1,2,2)),rewrite([11(3)])]. 974 f(x,x ^ y) = f(x,y). [para(41(a,1),68(a,1,2,2)),rewrite([11(3),20(2)])]. 979 (x ^ y) ^ f(f(x ^ y,x),f(x,y)) = (x ^ y) ^ x. [para(41(a,1),863(a,1,2,1,2)),rewrite([20(2),20(3),20(8),41(23)])]. 1043 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,f(x',x))) = y. [back_rewrite(35),rewrite([974(11)])]. 1044 f(f(x,y),(x ^ y)') = x ^ y. [para(20(a,1),959(a,1,2,1)),rewrite([20(6)])]. 1048 f(f(f(f(x,y),f(y,(y ^ f(x',x))')),z),f(y,f(x',x))) = y. [para(959(a,1),22(a,1,2,2)),rewrite([20(5),20(12),974(12)])]. 1049 f(x v y,(x' ^ y')') = x' ^ y'. [para(27(a,1),959(a,1,2,1)),rewrite([27(8)])]. 1050 f(x,y) v (x ^ y)' = (x ^ y)'. [para(959(a,1),28(a,1)),flip(a)]. 1071 f(x''',f(x'',f(f(x'',f(x',x)),x''))) = x''. [para(959(a,1),129(a,1,1,1)),rewrite([963(5)])]. 1098 f(f(x'',y),x') = x. [para(32(a,1),974(a,2)),rewrite([182(12)])]. 1099 x'' v x = x. [para(181(a,1),974(a,2)),rewrite([192(12),21(5)])]. 1105 f(x'',x) = x'''. [para(240(a,1),974(a,2)),rewrite([1099(7),974(6)])]. 1118 f(x',f(x,y)) v x = x. [para(61(a,1),974(a,2)),rewrite([561(12),28(5)])]. 1145 f(x'',x v y) = x'''. [back_rewrite(865),rewrite([1098(8),1105(3)]),flip(a)]. 1156 x'' ^ x = x''''. [back_rewrite(253),rewrite([1099(5)])]. 1194 x''''' = x'. [para(1099(a,1),27(a,1,1)),rewrite([1156(6)]),flip(a)]. 1196 f(x,y) = (x ^ y)'''. [para(1099(a,1),29(a,2)),rewrite([20(2),1105(5)]),flip(a)]. 1197 x v y = (x' ^ y')'''. [para(1099(a,1),43(a,2,2)),rewrite([1156(6),1194(6),1196(3)]),flip(a)]. 1198 ((x ^ y)'''' ^ z')''' = ((x ^ y) ^ z')'''. [para(1099(a,1),48(a,2,2)),rewrite([1156(6),1194(6),1196(3),1196(7),1197(11)]),flip(a)]. 1215 (x'' ^ (x' ^ y')''')''' = x'''. [back_rewrite(1145),rewrite([1197(3),1196(9)])]. 1221 ((x' ^ (x ^ y)''') ^ x')''' = x. [back_rewrite(1118),rewrite([1196(2),1196(6),1197(10),1198(15)])]. 1226 ((x'' ^ y)''' ^ x')''' = x. [back_rewrite(1098),rewrite([1196(3),1196(8)])]. 1232 x'''' = x''. [back_rewrite(1071),rewrite([1196(9),1196(13),1196(19),1196(23),1196(27),1215(30)])]. 1238 (x ^ y)''' = (x ^ y)'. [back_rewrite(1050),rewrite([1196(1),1197(7),1232(5),25(7),1232(5),1232(5)])]. 1239 (x' ^ y')'' = x' ^ y'. [back_rewrite(1049),rewrite([1197(1),1238(6),11(9)])]. 1240 ((((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')')' = y. [back_rewrite(1048),rewrite([1196(1),1238(4),1196(4),1238(7),1196(8),1238(11),1196(10),1239(12),1196(12),1238(15),1196(15),1238(18),1196(17),1238(20),1196(19),1239(21)])]. 1243 (x ^ y)'' = x ^ y. [back_rewrite(1044),rewrite([1196(1),1238(4),11(5)])]. 1244 x'' = x. [back_rewrite(1043),rewrite([1196(1),1243(3),1196(4),1243(6),1196(6),1243(8),1196(8),1243(10),1196(10),1243(12),1196(12),1243(14),1196(15),1243(17),1196(17),1243(19),1196(19),1240(20)])]. 1270 (x ^ y) ^ (((x ^ y) ^ x)' ^ (x ^ y)')' = (x ^ y) ^ x. [back_rewrite(979),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9)])]. 1388 (c4' ^ (c4 ^ c5)')' != c4 # answer(absorb). [back_rewrite(15),rewrite([1196(5),1244(7),1196(7),1244(9)])]. 1397 ((x ^ y)' ^ x')' = x. [back_rewrite(1226),rewrite([1244(2),1244(3),1244(6)])]. 1400 ((x' ^ (x ^ y)') ^ x')' = x. [back_rewrite(1221),rewrite([1244(4),1244(8)])]. 1405 x ^ x = x. [back_rewrite(25),rewrite([1244(3)])]. 1409 (x ^ y) ^ x = x ^ y. [back_rewrite(1270),rewrite([1397(8),1405(3)]),flip(a)]. 1411 (x' ^ (x ^ y)')' = x. [back_rewrite(1400),rewrite([1409(6)])]. 1412 $F # answer(absorb). [resolve(1411,a,1388,a)]. ============================== end of proof ========================== % Redundant proof: 1418 $F # answer(absorb). [back_rewrite(1388),rewrite([1411(8)]),xx(a)]. % Disable descendants (x means already disabled): 14x 15x 1388x given #76 (W,wt=5): 1244 x'' = x. [back_rewrite(1043),rewrite([1196(1),1243(3),1196(4),1243(6),1196(6),1243(8),1196(8),1243(10),1196(10),1243(12),1196(12),1243(14),1196(15),1243(17),1196(17),1243(19),1196(19),1240(20)])]. given #77 (A,wt=9): 1084 x ^ (x ^ y) = x ^ y. [para(974(a,1),20(a,1,1)),rewrite([20(2)]),flip(a)]. given #78 (W,wt=5): 1405 x ^ x = x. [back_rewrite(25),rewrite([1244(3)])]. given #79 (W,wt=8): 1404 f(x,y) = (x ^ y)'. [back_rewrite(1196),rewrite([1244(4)])]. given #80 (W,wt=9): 1409 (x ^ y) ^ x = x ^ y. [back_rewrite(1270),rewrite([1397(8),1405(3)]),flip(a)]. given #81 (W,wt=9): 1421 (x' ^ y)' ^ x = x. [back_rewrite(1320),rewrite([1411(10),1411(9)])]. given #82 (W,wt=9): 1428 x ^ (x' ^ y)' = x. [para(1421(a,1),1409(a,1,1)),rewrite([1421(8)])]. given #83 (A,wt=28): 1246 (((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')') ^ (y ^ (x' ^ x)')')' = y. [back_rewrite(1041),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(12),1244(14),1196(14),1244(16),1196(16),1244(18)])]. given #84 (W,wt=10): 1403 x v y = (x' ^ y')'. [back_rewrite(1197),rewrite([1244(6)])]. given #85 (W,wt=10): 1420 (x ^ y)' ^ x' = x'. [back_rewrite(1383),rewrite([1411(5),1416(7),1416(7)])]. given #86 (W,wt=10): 1424 x' ^ (x ^ y)' = x'. [back_rewrite(1289),rewrite([1411(6),1405(2),1405(3)]),flip(a)]. given #87 (W,wt=13): 1402 (((x ^ y)' ^ y') ^ y')' = y. [back_rewrite(1218),rewrite([1244(3),1244(8)])]. given #88 (W,wt=13): 1433 ((x ^ y)' ^ y') ^ y' = y'. [para(1402(a,1),1244(a,1,1)),flip(a)]. given #89 (A,wt=32): 1247 (((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')' = y'. [back_rewrite(1039),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(10),1244(12),1196(12),1244(14),1196(15),1244(17),1196(17),1244(19)])]. given #90 (W,wt=10): 1453 (x ^ y)' ^ y' = y'. [back_rewrite(1446),rewrite([1449(7)])]. given #91 (W,wt=9): 1465 (x ^ y')' ^ y = y. [para(1244(a,1),1453(a,1,2)),rewrite([1244(6)])]. given #92 (W,wt=9): 1467 x ^ (y ^ x) = y ^ x. [para(1453(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. given #93 (W,wt=9): 1468 (x ^ y) ^ y = x ^ y. [para(1453(a,1),1428(a,1,2,1)),rewrite([1244(3)])]. given #94 (W,wt=9): 1471 x ^ (y ^ x')' = x. [para(1465(a,1),1409(a,1,1)),rewrite([1465(8)])]. given #95 (A,wt=23): 1250 (x ^ ((x ^ y)' ^ ((z ^ x) ^ (z ^ x)')')')' = (x ^ y)'. [back_rewrite(1035),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(10),1244(12),1196(12),1244(14)])]. given #96 (W,wt=10): 1466 x' ^ (y ^ x)' = x'. [para(1453(a,1),1409(a,1,1)),rewrite([1453(8)])]. given #97 (W,wt=11): 1449 (x ^ (y' ^ y)')' = x'. [para(1247(a,1),1433(a,1,1)),rewrite([1424(7)]),flip(a)]. given #98 (W,wt=9): 1479 x ^ (y' ^ y)' = x. [para(1449(a,1),1244(a,1,1)),rewrite([1244(2)]),flip(a)]. given #99 (W,wt=9): 1487 x ^ (y ^ y')' = x. [para(1244(a,1),1479(a,1,2,1,1))]. given #100 (W,wt=9): 1488 (x' ^ x)' ^ y = y. [para(1479(a,1),1467(a,1,2)),rewrite([1479(8)])]. NOTE: New constant: (x' ^ x)' = c_0. [new_symbol(1494)]. NOTE: New Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c_0, ', ^, v, f ]). ============================== PROOF ================================= % Proof 2 at 0.35 (+ 0.02) seconds: one. % Length of proof is 101. % Level of proof is 28. % Maximum clause weight is 34. % Given clauses 100. 3 f(x,f(x,x)) = f(y,f(y,y)) # answer(one) # label(non_clause) # label(goal). [goal]. 5 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. 6 x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. 7 f(f(x,x),f(y,y)) = x v y. [copy(6),flip(a)]. 8 x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. 9 f(f(x,y),f(x,y)) = x ^ y. [copy(8),flip(a)]. 10 x' = f(x,x) # label(definition_complementation). [assumption]. 11 f(x,x) = x'. [copy(10),flip(a)]. 16 f(c6,f(c6,c6)) != f(c7,f(c7,c7)) # answer(one). [deny(3)]. 17 f(c7,c7') != f(c6,c6') # answer(one). [copy(16),rewrite([11(4),11(8)]),flip(a)]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. 25 x ^ x = x''. [para(11(a,1),20(a,1,1)),flip(a)]. 27 (x v y)' = x' ^ y'. [para(21(a,1),20(a,1,1))]. 28 f(x ^ y,z') = f(x,y) v z. [para(20(a,1),21(a,1,1))]. 29 f(x',y ^ z) = x v f(y,z). [para(20(a,1),21(a,1,2))]. 30 f(f(f(x',f(x,y)),z),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),22(a,1,1,1,1))]. 31 f(f(f(f(x,y),y'),z),f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),22(a,1,1,1,2))]. 32 f(f(x'',y),f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),22(a,1,1,1)),rewrite([11(1)])]. 35 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,y ^ f(x',x))) = y. [para(11(a,1),22(a,1,2,2)),rewrite([20(11)])]. 41 f(f(x,y),f(x,f(f(x,f(f(z,x) ^ f(x,u),f(f(z,x),f(x,u)))),f(f(x,f(z',z)),u)))) = x. [para(22(a,1),22(a,1,1,1)),rewrite([20(5)])]. 43 f(x',y' ^ z') = x v (y v z). [para(27(a,1),21(a,1,2))]. 48 f(x ^ y,z' ^ u') = f(x,y) v (z v u). [para(27(a,1),28(a,1,2))]. 61 f(x' ^ f(x,y),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),30(a,1,1)),rewrite([20(4)])]. 68 f(x,f(f(x,y),f(f(f(x,y),x' v x),z))) = f(x,y). [para(30(a,1),22(a,1,1)),rewrite([21(6)])]. 129 f(f(x,y) ^ y',f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),31(a,1,1)),rewrite([20(4)])]. 181 f(x''',f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),32(a,1,1))]. 182 f(x'',y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(32(a,1),20(a,1,1)),flip(a)]. 190 f(x,f(x',f(f(x',x' v x),y))) = x'. [para(32(a,1),30(a,1,1)),rewrite([21(6)])]. 192 x''' ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(181(a,1),20(a,1,1)),flip(a)]. 230 x ^ f(x',f(f(x',x' v x),y)) = x''. [para(190(a,1),20(a,1,1)),flip(a)]. 236 f(x',f(x'',x)) = x''. [para(32(a,1),190(a,1,2,2))]. 238 x' ^ f(x'',x) = x'''. [para(236(a,1),20(a,1,1)),flip(a)]. 240 f(x'',x'' v x) = x'''. [para(21(a,1),236(a,1,2))]. 253 x'' ^ (x'' v x) = x''''. [para(21(a,1),238(a,1,2))]. 314 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,y ^ f(x',x)) = y'. [para(35(a,1),20(a,1,1)),flip(a)]. 561 (x' ^ f(x,y)) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(61(a,1),20(a,1,1)),flip(a)]. 650 (f(x,y) ^ y') ^ f(y,f(f(y,f(x',x)),y)) = y'. [para(129(a,1),20(a,1,1)),flip(a)]. 702 f(x''',y) ^ f(x',f(f(x',x' v x),x')) = x''. [para(21(a,1),182(a,1,2,2,1,2))]. 749 f(x',f(f(x',f(x,y)),x)) = f(x',f(x,y)). [para(30(a,1),68(a,1,2,2))]. 863 x' ^ f(f(x',f(x,y)),x) = x' ^ f(x,y). [para(749(a,1),20(a,1,1)),rewrite([20(4)]),flip(a)]. 865 f(x'',f(f(x'',x v y),x')) = f(x'',x v y). [para(21(a,1),749(a,1,2,1,2)),rewrite([21(14)])]. 959 f(x,x'') = x'. [para(41(a,1),190(a,1,2,2)),rewrite([11(3)])]. 963 x ^ x'' = x''. [para(41(a,1),230(a,1,2,2)),rewrite([11(3)])]. 974 f(x,x ^ y) = f(x,y). [para(41(a,1),68(a,1,2,2)),rewrite([11(3),20(2)])]. 979 (x ^ y) ^ f(f(x ^ y,x),f(x,y)) = (x ^ y) ^ x. [para(41(a,1),863(a,1,2,1,2)),rewrite([20(2),20(3),20(8),41(23)])]. 1039 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,f(x',x)) = y'. [back_rewrite(314),rewrite([974(11)])]. 1043 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,f(x',x))) = y. [back_rewrite(35),rewrite([974(11)])]. 1044 f(f(x,y),(x ^ y)') = x ^ y. [para(20(a,1),959(a,1,2,1)),rewrite([20(6)])]. 1048 f(f(f(f(x,y),f(y,(y ^ f(x',x))')),z),f(y,f(x',x))) = y. [para(959(a,1),22(a,1,2,2)),rewrite([20(5),20(12),974(12)])]. 1049 f(x v y,(x' ^ y')') = x' ^ y'. [para(27(a,1),959(a,1,2,1)),rewrite([27(8)])]. 1050 f(x,y) v (x ^ y)' = (x ^ y)'. [para(959(a,1),28(a,1)),flip(a)]. 1071 f(x''',f(x'',f(f(x'',f(x',x)),x''))) = x''. [para(959(a,1),129(a,1,1,1)),rewrite([963(5)])]. 1098 f(f(x'',y),x') = x. [para(32(a,1),974(a,2)),rewrite([182(12)])]. 1099 x'' v x = x. [para(181(a,1),974(a,2)),rewrite([192(12),21(5)])]. 1105 f(x'',x) = x'''. [para(240(a,1),974(a,2)),rewrite([1099(7),974(6)])]. 1118 f(x',f(x,y)) v x = x. [para(61(a,1),974(a,2)),rewrite([561(12),28(5)])]. 1123 f(f(x,y),y') v y = y. [para(129(a,1),974(a,2)),rewrite([650(12),28(5)])]. 1145 f(x'',x v y) = x'''. [back_rewrite(865),rewrite([1098(8),1105(3)]),flip(a)]. 1156 x'' ^ x = x''''. [back_rewrite(253),rewrite([1099(5)])]. 1194 x''''' = x'. [para(1099(a,1),27(a,1,1)),rewrite([1156(6)]),flip(a)]. 1196 f(x,y) = (x ^ y)'''. [para(1099(a,1),29(a,2)),rewrite([20(2),1105(5)]),flip(a)]. 1197 x v y = (x' ^ y')'''. [para(1099(a,1),43(a,2,2)),rewrite([1156(6),1194(6),1196(3)]),flip(a)]. 1198 ((x ^ y)'''' ^ z')''' = ((x ^ y) ^ z')'''. [para(1099(a,1),48(a,2,2)),rewrite([1156(6),1194(6),1196(3),1196(7),1197(11)]),flip(a)]. 1215 (x'' ^ (x' ^ y')''')''' = x'''. [back_rewrite(1145),rewrite([1197(3),1196(9)])]. 1218 (((x ^ y)''' ^ y') ^ y')''' = y. [back_rewrite(1123),rewrite([1196(1),1196(6),1197(10),1198(15)])]. 1221 ((x' ^ (x ^ y)''') ^ x')''' = x. [back_rewrite(1118),rewrite([1196(2),1196(6),1197(10),1198(15)])]. 1226 ((x'' ^ y)''' ^ x')''' = x. [back_rewrite(1098),rewrite([1196(3),1196(8)])]. 1232 x'''' = x''. [back_rewrite(1071),rewrite([1196(9),1196(13),1196(19),1196(23),1196(27),1215(30)])]. 1238 (x ^ y)''' = (x ^ y)'. [back_rewrite(1050),rewrite([1196(1),1197(7),1232(5),25(7),1232(5),1232(5)])]. 1239 (x' ^ y')'' = x' ^ y'. [back_rewrite(1049),rewrite([1197(1),1238(6),11(9)])]. 1240 ((((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')')' = y. [back_rewrite(1048),rewrite([1196(1),1238(4),1196(4),1238(7),1196(8),1238(11),1196(10),1239(12),1196(12),1238(15),1196(15),1238(18),1196(17),1238(20),1196(19),1239(21)])]. 1243 (x ^ y)'' = x ^ y. [back_rewrite(1044),rewrite([1196(1),1238(4),11(5)])]. 1244 x'' = x. [back_rewrite(1043),rewrite([1196(1),1243(3),1196(4),1243(6),1196(6),1243(8),1196(8),1243(10),1196(10),1243(12),1196(12),1243(14),1196(15),1243(17),1196(17),1243(19),1196(19),1240(20)])]. 1247 (((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')' = y'. [back_rewrite(1039),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(10),1244(12),1196(12),1244(14),1196(15),1244(17),1196(17),1244(19)])]. 1270 (x ^ y) ^ (((x ^ y) ^ x)' ^ (x ^ y)')' = (x ^ y) ^ x. [back_rewrite(979),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9)])]. 1289 x' ^ ((x' ^ (x ^ y)')' ^ x)' = x' ^ (x ^ y)'. [back_rewrite(863),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(11),1244(13)])]. 1320 (x' ^ y)' ^ (x' ^ ((x' ^ (x ^ x')')' ^ x')')' = x. [back_rewrite(702),rewrite([1244(2),1196(2),1244(4),1197(7),1244(7),1244(9),1196(9),1244(11),1196(12),1244(14),1196(14),1244(16),1244(18)])]. 1387 (c7 ^ c7')' != (c6 ^ c6')' # answer(one). [back_rewrite(17),rewrite([1196(4),1244(6),1196(9),1244(11)])]. 1397 ((x ^ y)' ^ x')' = x. [back_rewrite(1226),rewrite([1244(2),1244(3),1244(6)])]. 1400 ((x' ^ (x ^ y)') ^ x')' = x. [back_rewrite(1221),rewrite([1244(4),1244(8)])]. 1402 (((x ^ y)' ^ y') ^ y')' = y. [back_rewrite(1218),rewrite([1244(3),1244(8)])]. 1405 x ^ x = x. [back_rewrite(25),rewrite([1244(3)])]. 1409 (x ^ y) ^ x = x ^ y. [back_rewrite(1270),rewrite([1397(8),1405(3)]),flip(a)]. 1411 (x' ^ (x ^ y)')' = x. [back_rewrite(1400),rewrite([1409(6)])]. 1421 (x' ^ y)' ^ x = x. [back_rewrite(1320),rewrite([1411(10),1411(9)])]. 1424 x' ^ (x ^ y)' = x'. [back_rewrite(1289),rewrite([1411(6),1405(2),1405(3)]),flip(a)]. 1433 ((x ^ y)' ^ y') ^ y' = y'. [para(1402(a,1),1244(a,1,1)),flip(a)]. 1446 (x ^ y)' ^ (y ^ (x' ^ x)')' = y'. [para(1421(a,1),1247(a,1,1,1))]. 1449 (x ^ (y' ^ y)')' = x'. [para(1247(a,1),1433(a,1,1)),rewrite([1424(7)]),flip(a)]. 1453 (x ^ y)' ^ y' = y'. [back_rewrite(1446),rewrite([1449(7)])]. 1467 x ^ (y ^ x) = y ^ x. [para(1453(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. 1479 x ^ (y' ^ y)' = x. [para(1449(a,1),1244(a,1,1)),rewrite([1244(2)]),flip(a)]. 1487 x ^ (y ^ y')' = x. [para(1244(a,1),1479(a,1,2,1,1))]. 1488 (x' ^ x)' ^ y = y. [para(1479(a,1),1467(a,1,2)),rewrite([1479(8)])]. 1494 (x' ^ x)' = (y' ^ y)'. [para(1488(a,1),1479(a,1))]. 1495 (x' ^ x)' = (y ^ y')'. [para(1488(a,1),1487(a,1)),flip(a)]. 1496 (x' ^ x)' = c_0. [new_symbol(1494)]. 1497 (x ^ x')' = c_0. [back_rewrite(1495),rewrite([1496(3)]),flip(a)]. 1503 $F # answer(one). [back_rewrite(1387),rewrite([1497(5),1497(6)]),xx(a)]. ============================== end of proof ========================== % Disable descendants (x means already disabled): 16x 17x 1387x given #101 (A,wt=30): 1316 ((x ^ y)' ^ (((x ^ y)' ^ (y ^ z)')' ^ y)')' = ((x ^ y)' ^ (y ^ z)')'. [back_rewrite(740),rewrite([1196(1),1244(3),1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(9),1244(11),1196(11),1244(13),1196(13),1244(15),1196(15),1244(17),1196(17),1244(19)])]. given #102 (W,wt=5): 1498 c_0 ^ x = x. [back_rewrite(1488),rewrite([1496(3)])]. given #103 (W,wt=5): 1499 x ^ c_0 = x. [back_rewrite(1479),rewrite([1496(3)])]. given #104 (W,wt=7): 1496 (x' ^ x)' = c_0. [new_symbol(1494)]. given #105 (W,wt=7): 1497 (x ^ x')' = c_0. [back_rewrite(1495),rewrite([1496(3)]),flip(a)]. given #106 (W,wt=7): 1517 x' ^ x = c_0'. [para(1496(a,1),1244(a,1,1)),flip(a)]. given #107 (A,wt=19): 1460 (((x ^ y)' ^ (y ^ z)')' ^ u)' ^ y' = y'. [back_rewrite(1384),rewrite([1449(13),1428(12)])]. given #108 (W,wt=7): 1518 x ^ c_0' = c_0'. [back_rewrite(1482),rewrite([1517(2),1517(5)])]. given #109 (W,wt=7): 1519 c_0' ^ x = c_0'. [back_rewrite(1470),rewrite([1517(2),1517(5)])]. given #110 (W,wt=7): 1520 x ^ x' = c_0'. [para(1497(a,1),1244(a,1,1)),flip(a)]. given #111 (W,wt=11): 1536 ((x ^ y') ^ z)' ^ y = y. [para(1517(a,1),1460(a,1,1,1,1,1,2,1)),rewrite([1244(6),1499(5),1244(4),1244(6),1244(7)])]. given #112 (W,wt=11): 1537 ((x' ^ y) ^ z)' ^ x = x. [para(1520(a,1),1460(a,1,1,1,1,1,1,1)),rewrite([1244(3),1498(5),1244(4),1244(6),1244(7)])]. given #113 (A,wt=15): 1462 ((x ^ y)' ^ (y ^ z)') ^ y' = y'. [back_rewrite(1372),rewrite([1449(10),1428(9)])]. given #114 (W,wt=11): 1538 x ^ ((y ^ x') ^ z)' = x. [para(1536(a,1),1409(a,1,1)),rewrite([1536(10)])]. given #115 (W,wt=11): 1542 (x ^ (y ^ z'))' ^ z = z. [para(1467(a,1),1536(a,1,1,1))]. given #116 (W,wt=11): 1546 x ^ ((x' ^ y) ^ z)' = x. [para(1537(a,1),1409(a,1,1)),rewrite([1537(10)])]. given #117 (W,wt=11): 1549 (x ^ (y' ^ z))' ^ y = y. [para(1467(a,1),1537(a,1,1,1))]. given #118 (W,wt=11): 1573 x ^ (y ^ (z ^ x'))' = x. [para(1467(a,1),1538(a,1,2,1))]. given #119 (A,wt=12): 1483 x' ^ ((y ^ x) ^ z)' = x'. [back_rewrite(1455),rewrite([1480(8),1244(4)])]. given #120 (W,wt=11): 1591 x ^ (y ^ (x' ^ z))' = x. [para(1467(a,1),1546(a,1,2,1))]. given #121 (W,wt=12): 1484 ((x ^ y) ^ z)' ^ x' = x'. [back_rewrite(1454),rewrite([1480(7),1244(3)])]. given #122 (W,wt=12): 1534 ((x ^ y) ^ z)' ^ y' = y'. [para(1471(a,1),1460(a,1,1,1,1,1)),rewrite([1244(3)])]. given #123 (W,wt=12): 1579 (x ^ (y ^ z))' ^ z' = z'. [para(1244(a,1),1542(a,1,1,1,2,2))]. given #124 (W,wt=12): 1590 x' ^ ((x ^ y) ^ z)' = x'. [para(1244(a,1),1546(a,1,2,1,1,1))]. given #125 (A,wt=13): 1485 (x' ^ y)' ^ (x ^ z) = x ^ z. [back_rewrite(1448),rewrite([1480(9),1244(5),1479(6),1480(10),1244(6)])]. given #126 (W,wt=12): 1598 (x ^ (y ^ z))' ^ y' = y'. [para(1244(a,1),1549(a,1,1,1,2,1))]. given #127 (W,wt=12): 1608 x' ^ (y ^ (z ^ x))' = x'. [para(1244(a,1),1573(a,1,2,1,2,2))]. given #128 (W,wt=12): 1626 x' ^ (y ^ (x ^ z))' = x'. [para(1244(a,1),1591(a,1,2,1,2,1))]. given #129 (W,wt=13): 1544 (x' ^ y)' ^ (z ^ x) = z ^ x. [para(1466(a,1),1536(a,1,1,1,1))]. given #130 (W,wt=13): 1572 (x ^ y) ^ (x' ^ z)' = x ^ y. [para(1424(a,1),1538(a,1,2,1,1))]. given #131 (A,wt=30): 1505 ((x ^ y)' ^ (((x ^ y)' ^ (x ^ z)')' ^ x)')' = ((x ^ y)' ^ (x ^ z)')'. [para(1409(a,1),1316(a,1,1,1,1)),rewrite([1409(4),1409(14)])]. given #132 (W,wt=13): 1575 (x ^ y) ^ (y' ^ z)' = x ^ y. [para(1466(a,1),1538(a,1,2,1,1))]. given #133 (W,wt=13): 1583 (x ^ y')' ^ (y ^ z) = y ^ z. [para(1424(a,1),1542(a,1,1,1,2))]. given #134 (W,wt=13): 1585 (x ^ y')' ^ (z ^ y) = z ^ y. [para(1466(a,1),1542(a,1,1,1,2))]. given #135 (W,wt=13): 1610 (x ^ y) ^ (z ^ x')' = x ^ y. [para(1424(a,1),1573(a,1,2,1,2))]. given #136 (W,wt=13): 1612 (x ^ y) ^ (z ^ y')' = x ^ y. [para(1466(a,1),1573(a,1,2,1,2))]. given #137 (A,wt=36): 1507 ((x ^ (y ^ z)')' ^ (((x ^ (y ^ z)')' ^ y)' ^ (y ^ z)')')' = ((x ^ (y ^ z)')' ^ y)'. [para(1420(a,1),1316(a,1,1,2,1,1,1,2,1)),rewrite([1244(10),1420(24),1244(22)])]. given #138 (W,wt=13): 1618 x ^ ((y ^ x) ^ z) = (y ^ x) ^ z. [para(1483(a,1),1453(a,1,1,1)),rewrite([1244(2),1244(4),1244(7)])]. given #139 (W,wt=13): 1619 ((x ^ y) ^ z) ^ y = (x ^ y) ^ z. [para(1483(a,1),1471(a,1,2,1)),rewrite([1244(4)])]. given #140 (W,wt=13): 1631 x ^ ((x ^ y) ^ z) = (x ^ y) ^ z. [para(1484(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. given #141 (W,wt=13): 1632 ((x ^ y) ^ z) ^ x = (x ^ y) ^ z. [para(1484(a,1),1428(a,1,2,1)),rewrite([1244(4)])]. given #142 (W,wt=13): 1642 x ^ (y ^ (z ^ x)) = y ^ (z ^ x). [para(1579(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. given #143 (A,wt=30): 1508 (x ^ ((x ^ ((x ^ y)' ^ z)')' ^ (x ^ y)')')' = (x ^ ((x ^ y)' ^ z)')'. [para(1424(a,1),1316(a,1,1,1,1)),rewrite([1244(2),1424(4),1244(2),1424(16),1244(14)])]. given #144 (W,wt=13): 1643 (x ^ (y ^ z)) ^ z = x ^ (y ^ z). [para(1579(a,1),1428(a,1,2,1)),rewrite([1244(4)])]. given #145 (W,wt=13): 1657 (((x ^ y') ^ z) ^ u)' ^ y = y. [para(1536(a,1),1485(a,1,2)),rewrite([1244(5),1536(11)])]. given #146 (W,wt=13): 1660 (((x' ^ y) ^ z) ^ u)' ^ x = x. [para(1537(a,1),1485(a,1,2)),rewrite([1244(5),1537(11)])]. given #147 (W,wt=13): 1663 ((x ^ (y ^ z')) ^ u)' ^ z = z. [para(1542(a,1),1485(a,1,2)),rewrite([1244(5),1542(11)])]. given #148 (W,wt=13): 1667 ((x ^ (y' ^ z)) ^ u)' ^ y = y. [para(1549(a,1),1485(a,1,2)),rewrite([1244(5),1549(11)])]. given #149 (A,wt=36): 1509 ((x ^ (y ^ z)')' ^ (((x ^ (y ^ z)')' ^ z)' ^ (y ^ z)')')' = ((x ^ (y ^ z)')' ^ z)'. [para(1453(a,1),1316(a,1,1,2,1,1,1,2,1)),rewrite([1244(10),1453(24),1244(22)])]. given #150 (W,wt=13): 1676 x ^ (y ^ (x ^ z)) = y ^ (x ^ z). [para(1598(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. given #151 (W,wt=13): 1677 (x ^ (y ^ z)) ^ y = x ^ (y ^ z). [para(1598(a,1),1428(a,1,2,1)),rewrite([1244(4)])]. given #152 (W,wt=13): 1711 x ^ (((y ^ x') ^ z) ^ u)' = x. [para(1536(a,1),1572(a,1,1)),rewrite([1244(5),1536(11)])]. given #153 (W,wt=13): 1713 x ^ (((x' ^ y) ^ z) ^ u)' = x. [para(1537(a,1),1572(a,1,1)),rewrite([1244(5),1537(11)])]. given #154 (W,wt=13): 1716 x ^ ((y ^ (z ^ x')) ^ u)' = x. [para(1542(a,1),1572(a,1,1)),rewrite([1244(5),1542(11)])]. given #155 (A,wt=30): 1510 ((x ^ y)' ^ (((x ^ y)' ^ (z ^ y)')' ^ y)')' = ((x ^ y)' ^ (z ^ y)')'. [para(1467(a,1),1316(a,1,1,2,1,1,1,2,1)),rewrite([1467(16)])]. given #156 (W,wt=13): 1718 x ^ ((y ^ (x' ^ z)) ^ u)' = x. [para(1549(a,1),1572(a,1,1)),rewrite([1244(5),1549(11)])]. given #157 (W,wt=13): 1751 (x ^ ((y ^ z') ^ u))' ^ z = z. [para(1536(a,1),1583(a,1,2)),rewrite([1244(5),1536(11)])]. given #158 (W,wt=13): 1753 (x ^ ((y' ^ z) ^ u))' ^ y = y. [para(1537(a,1),1583(a,1,2)),rewrite([1244(5),1537(11)])]. given #159 (W,wt=13): 1755 (x ^ (y ^ (z ^ u')))' ^ u = u. [para(1542(a,1),1583(a,1,2)),rewrite([1244(5),1542(11)])]. given #160 (W,wt=13): 1758 (x ^ (y ^ (z' ^ u)))' ^ z = z. [para(1549(a,1),1583(a,1,2)),rewrite([1244(5),1549(11)])]. given #161 (A,wt=30): 1512 (x ^ ((x ^ ((y ^ x)' ^ z)')' ^ (y ^ x)')')' = (x ^ ((y ^ x)' ^ z)')'. [para(1466(a,1),1316(a,1,1,1,1)),rewrite([1244(2),1466(4),1244(2),1466(16),1244(14)])]. given #162 (W,wt=13): 1780 x ^ (y ^ ((z ^ x') ^ u))' = x. [para(1536(a,1),1610(a,1,1)),rewrite([1244(5),1536(11)])]. given #163 (W,wt=13): 1781 x ^ (y ^ ((x' ^ z) ^ u))' = x. [para(1537(a,1),1610(a,1,1)),rewrite([1244(5),1537(11)])]. given #164 (W,wt=13): 1784 x ^ (y ^ (z ^ (u ^ x')))' = x. [para(1542(a,1),1610(a,1,1)),rewrite([1244(5),1542(11)])]. given #165 (W,wt=13): 1785 x ^ (y ^ (z ^ (x' ^ u)))' = x. [para(1549(a,1),1610(a,1,1)),rewrite([1244(5),1549(11)])]. given #166 (W,wt=14): 1541 (x ^ y)' ^ (x' ^ z) = x' ^ z. [para(1428(a,1),1536(a,1,1,1,1))]. given #167 (A,wt=19): 1521 (((x ^ y')' ^ (y' ^ z)')' ^ u)' ^ y = y. [para(1244(a,1),1460(a,1,2)),rewrite([1244(13)])]. given #168 (W,wt=14): 1543 (x ^ y)' ^ (z ^ x') = z ^ x'. [para(1471(a,1),1536(a,1,1,1,1))]. given #169 (W,wt=14): 1571 (x' ^ y) ^ (x ^ z)' = x' ^ y. [para(1428(a,1),1538(a,1,2,1,1))]. given #170 (W,wt=14): 1574 (x ^ y') ^ (y ^ z)' = x ^ y'. [para(1471(a,1),1538(a,1,2,1,1))]. given #171 (W,wt=14): 1582 (x ^ y)' ^ (y' ^ z) = y' ^ z. [para(1428(a,1),1542(a,1,1,1,2))]. given #172 (W,wt=14): 1584 (x ^ y)' ^ (z ^ y') = z ^ y'. [para(1471(a,1),1542(a,1,1,1,2))]. given #173 (A,wt=19): 1522 x' ^ (((y ^ x)' ^ (x ^ z)')' ^ u)' = x'. [para(1460(a,1),1409(a,1,1)),rewrite([1460(20)])]. given #174 (W,wt=14): 1609 (x' ^ y) ^ (z ^ x)' = x' ^ y. [para(1428(a,1),1573(a,1,2,1,2))]. given #175 (W,wt=14): 1611 (x ^ y') ^ (z ^ y)' = x ^ y'. [para(1471(a,1),1573(a,1,2,1,2))]. given #176 (W,wt=14): 1670 (((x ^ y) ^ z) ^ u)' ^ x' = x'. [para(1484(a,1),1485(a,1,2)),rewrite([1244(4),1484(11)])]. given #177 (W,wt=14): 1672 (((x ^ y) ^ z) ^ u)' ^ y' = y'. [para(1534(a,1),1485(a,1,2)),rewrite([1244(4),1534(11)])]. given #178 (W,wt=14): 1674 ((x ^ (y ^ z)) ^ u)' ^ z' = z'. [para(1579(a,1),1485(a,1,2)),rewrite([1244(4),1579(11)])]. given #179 (A,wt=19): 1523 (((x ^ y)' ^ (x ^ z)')' ^ u)' ^ x' = x'. [para(1409(a,1),1460(a,1,1,1,1,1,1,1))]. given #180 (W,wt=14): 1686 ((x ^ (y ^ z)) ^ u)' ^ y' = y'. [para(1598(a,1),1485(a,1,2)),rewrite([1244(4),1598(11)])]. given #181 (W,wt=14): 1720 x' ^ (((x ^ y) ^ z) ^ u)' = x'. [para(1484(a,1),1572(a,1,1)),rewrite([1244(5),1484(11)])]. given #182 (W,wt=14): 1722 x' ^ (((y ^ x) ^ z) ^ u)' = x'. [para(1534(a,1),1572(a,1,1)),rewrite([1244(5),1534(11)])]. given #183 (W,wt=14): 1724 x' ^ ((y ^ (z ^ x)) ^ u)' = x'. [para(1579(a,1),1572(a,1,1)),rewrite([1244(5),1579(11)])]. given #184 (W,wt=14): 1727 x' ^ ((y ^ (x ^ z)) ^ u)' = x'. [para(1598(a,1),1572(a,1,1)),rewrite([1244(5),1598(11)])]. given #185 (A,wt=27): 1524 x ^ (((y ^ x)' ^ (x ^ z)')' ^ u) = ((y ^ x)' ^ (x ^ z)')' ^ u. [para(1460(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. given #186 (W,wt=14): 1760 (x ^ ((y ^ z) ^ u))' ^ y' = y'. [para(1484(a,1),1583(a,1,2)),rewrite([1244(4),1484(11)])]. given #187 (W,wt=14): 1761 (x ^ ((y ^ z) ^ u))' ^ z' = z'. [para(1534(a,1),1583(a,1,2)),rewrite([1244(4),1534(11)])]. given #188 (W,wt=14): 1762 (x ^ (y ^ (z ^ u)))' ^ u' = u'. [para(1579(a,1),1583(a,1,2)),rewrite([1244(4),1579(11)])]. given #189 (W,wt=14): 1765 (x ^ (y ^ (z ^ u)))' ^ z' = z'. [para(1598(a,1),1583(a,1,2)),rewrite([1244(4),1598(11)])]. given #190 (W,wt=14): 1786 x' ^ (y ^ ((x ^ z) ^ u))' = x'. [para(1484(a,1),1610(a,1,1)),rewrite([1244(5),1484(11)])]. given #191 (A,wt=27): 1526 (((x ^ y)' ^ (y ^ z)')' ^ u) ^ y = ((x ^ y)' ^ (y ^ z)')' ^ u. [para(1460(a,1),1428(a,1,2,1)),rewrite([1244(9)])]. given #192 (W,wt=14): 1787 x' ^ (y ^ ((z ^ x) ^ u))' = x'. [para(1534(a,1),1610(a,1,1)),rewrite([1244(5),1534(11)])]. given #193 (W,wt=14): 1788 x' ^ (y ^ (z ^ (u ^ x)))' = x'. [para(1579(a,1),1610(a,1,1)),rewrite([1244(5),1579(11)])]. given #194 (W,wt=14): 1790 x' ^ (y ^ (z ^ (x ^ u)))' = x'. [para(1598(a,1),1610(a,1,1)),rewrite([1244(5),1598(11)])]. given #195 (W,wt=15): 1554 ((x ^ y')' ^ (y' ^ z)') ^ y = y. [para(1244(a,1),1462(a,1,2)),rewrite([1244(10)])]. given #196 (W,wt=15): 1555 x' ^ ((y ^ x)' ^ (x ^ z)') = x'. [para(1462(a,1),1409(a,1,1)),rewrite([1462(14)])]. given #197 (A,wt=21): 1528 (((x ^ (y ^ z)')' ^ y)' ^ u)' ^ (y ^ z) = y ^ z. [para(1420(a,1),1460(a,1,1,1,1,1,2,1)),rewrite([1244(6),1244(11),1244(13)])]. given #198 (W,wt=15): 1556 ((x ^ y)' ^ (x ^ z)') ^ x' = x'. [para(1409(a,1),1462(a,1,1,1,1))]. given #199 (W,wt=15): 1564 ((x ^ y)' ^ (z ^ y)') ^ y' = y'. [para(1467(a,1),1462(a,1,1,2,1))]. given #200 (W,wt=15): 1675 ((x' ^ y) ^ z)' ^ (x ^ u) = x ^ u. [para(1485(a,1),1485(a,1,2)),rewrite([1244(4),1485(11)])]. given #201 (W,wt=15): 1706 ((x' ^ y) ^ z)' ^ (u ^ x) = u ^ x. [para(1544(a,1),1485(a,1,2)),rewrite([1244(4),1544(11)])]. given #202 (W,wt=9): 3182 (x' ^ y) ^ x = c_0'. [para(1706(a,1),1517(a,1))]. given #203 (A,wt=21): 1529 ((x ^ ((x ^ y)' ^ z)')' ^ u)' ^ (x ^ y) = x ^ y. [para(1424(a,1),1460(a,1,1,1,1,1,1,1)),rewrite([1244(2),1244(11),1244(13)])]. given #204 (W,wt=9): 3223 (x ^ y) ^ x' = c_0'. [para(1244(a,1),3182(a,1,1,1))]. given #205 (W,wt=9): 3224 x ^ (x' ^ y) = c_0'. [para(1421(a,1),3182(a,1,1))]. given #206 (W,wt=9): 3225 x' ^ (x ^ y) = c_0'. [para(1420(a,1),3182(a,1,1))]. given #207 (W,wt=9): 3226 x' ^ (y ^ x) = c_0'. [para(1453(a,1),3182(a,1,1))]. given #208 (W,wt=9): 3227 x ^ (y ^ x') = c_0'. [para(1465(a,1),3182(a,1,1))]. given #209 (A,wt=21): 1530 (((x ^ (y ^ z)')' ^ z)' ^ u)' ^ (y ^ z) = y ^ z. [para(1453(a,1),1460(a,1,1,1,1,1,2,1)),rewrite([1244(6),1244(11),1244(13)])]. given #210 (W,wt=9): 3228 (x ^ y') ^ y = c_0'. [para(1467(a,1),3182(a,1,1))]. given #211 (W,wt=9): 3259 (x ^ y) ^ y' = c_0'. [para(3182(a,1),1611(a,1)),rewrite([1244(5)]),flip(a)]. given #212 (W,wt=11): 3230 x ^ ((y ^ x') ^ z) = c_0'. [para(1536(a,1),3182(a,1,1))]. given #213 (W,wt=11): 3231 x ^ ((x' ^ y) ^ z) = c_0'. [para(1537(a,1),3182(a,1,1))]. given #214 (W,wt=11): 3232 x ^ (y ^ (z ^ x')) = c_0'. [para(1542(a,1),3182(a,1,1))]. given #215 (A,wt=19): 1531 (((x ^ y)' ^ (z ^ y)')' ^ u)' ^ y' = y'. [para(1467(a,1),1460(a,1,1,1,1,1,2,1))]. given #216 (W,wt=11): 3233 x ^ (y ^ (x' ^ z)) = c_0'. [para(1549(a,1),3182(a,1,1))]. given #217 (W,wt=11): 3234 x' ^ ((x ^ y) ^ z) = c_0'. [para(1484(a,1),3182(a,1,1))]. given #218 (W,wt=11): 3235 x' ^ ((y ^ x) ^ z) = c_0'. [para(1534(a,1),3182(a,1,1))]. given #219 (W,wt=11): 3236 x' ^ (y ^ (z ^ x)) = c_0'. [para(1579(a,1),3182(a,1,1))]. given #220 (W,wt=11): 3237 (x ^ y) ^ (x' ^ z) = c_0'. [para(1485(a,1),3182(a,1,1))]. given #221 (A,wt=19): 1532 (x ^ ((y ^ z)' ^ (z ^ u)')')' ^ z' = z'. [para(1467(a,1),1460(a,1,1,1))]. given #222 (W,wt=11): 3238 x' ^ (y ^ (x ^ z)) = c_0'. [para(1598(a,1),3182(a,1,1))]. given #223 (W,wt=11): 3239 (x ^ y) ^ (y' ^ z) = c_0'. [para(1544(a,1),3182(a,1,1))]. given #224 (W,wt=11): 3240 (x ^ y) ^ (z ^ x') = c_0'. [para(1583(a,1),3182(a,1,1))]. given #225 (W,wt=11): 3241 (x ^ y) ^ (z ^ y') = c_0'. [para(1585(a,1),3182(a,1,1))]. given #226 (W,wt=11): 3242 ((x ^ y') ^ z) ^ y = c_0'. [para(1618(a,1),3182(a,1,1))]. given #227 (A,wt=21): 1535 ((x ^ ((y ^ x)' ^ z)')' ^ u)' ^ (y ^ x) = y ^ x. [para(1466(a,1),1460(a,1,1,1,1,1,1,1)),rewrite([1244(2),1244(11),1244(13)])]. given #228 (W,wt=11): 3243 ((x' ^ y) ^ z) ^ x = c_0'. [para(1631(a,1),3182(a,1,1))]. given #229 (W,wt=11): 3244 (x ^ (y ^ z')) ^ z = c_0'. [para(1642(a,1),3182(a,1,1))]. given #230 (W,wt=11): 3249 (x ^ (y' ^ z)) ^ y = c_0'. [para(1676(a,1),3182(a,1,1))]. given #231 (W,wt=11): 3254 (x' ^ y) ^ (x ^ z) = c_0'. [para(1541(a,1),3182(a,1,1))]. given #232 (W,wt=11): 3256 (x ^ y') ^ (y ^ z) = c_0'. [para(1543(a,1),3182(a,1,1))]. given #233 (A,wt=31): 1551 (x' ^ y)' ^ (((z ^ x)' ^ (x ^ u)')' ^ w) = ((z ^ x)' ^ (x ^ u)')' ^ w. [para(1460(a,1),1537(a,1,1,1,1))]. given #234 (W,wt=11): 3257 (x' ^ y) ^ (z ^ x) = c_0'. [para(1582(a,1),3182(a,1,1))]. given #235 (W,wt=11): 3258 (x ^ y') ^ (z ^ y) = c_0'. [para(1584(a,1),3182(a,1,1))]. given #236 (W,wt=11): 3354 ((x ^ y) ^ z) ^ y' = c_0'. [para(1618(a,1),3223(a,1,1))]. given #237 (W,wt=11): 3355 ((x ^ y) ^ z) ^ x' = c_0'. [para(1631(a,1),3223(a,1,1))]. given #238 (W,wt=11): 3356 (x ^ (y ^ z)) ^ z' = c_0'. [para(1642(a,1),3223(a,1,1))]. given #239 (A,wt=18): 1552 (x ^ y)' ^ ((z ^ x') ^ u) = (z ^ x') ^ u. [para(1536(a,1),1537(a,1,1,1,1))]. given #240 (W,wt=11): 3357 (x ^ (y ^ z)) ^ y' = c_0'. [para(1676(a,1),3223(a,1,1))]. given #241 (W,wt=13): 3245 x ^ (((y ^ x') ^ z) ^ u) = c_0'. [para(1657(a,1),3182(a,1,1))]. given #242 (W,wt=13): 3246 x ^ (((x' ^ y) ^ z) ^ u) = c_0'. [para(1660(a,1),3182(a,1,1))]. given #243 (W,wt=13): 3247 x ^ ((y ^ (z ^ x')) ^ u) = c_0'. [para(1663(a,1),3182(a,1,1))]. given #244 (W,wt=13): 3248 x ^ ((y ^ (x' ^ z)) ^ u) = c_0'. [para(1667(a,1),3182(a,1,1))]. given #245 (A,wt=18): 1553 (x ^ y)' ^ ((x' ^ z) ^ u) = (x' ^ z) ^ u. [para(1537(a,1),1537(a,1,1,1,1))]. given #246 (W,wt=13): 3250 x ^ (y ^ ((z ^ x') ^ u)) = c_0'. [para(1751(a,1),3182(a,1,1))]. given #247 (W,wt=13): 3251 x ^ (y ^ ((x' ^ z) ^ u)) = c_0'. [para(1753(a,1),3182(a,1,1))]. given #248 (W,wt=13): 3252 x ^ (y ^ (z ^ (u ^ x'))) = c_0'. [para(1755(a,1),3182(a,1,1))]. given #249 (W,wt=13): 3253 x ^ (y ^ (z ^ (x' ^ u))) = c_0'. [para(1758(a,1),3182(a,1,1))]. given #250 (W,wt=13): 3260 x' ^ (((x ^ y) ^ z) ^ u) = c_0'. [para(1670(a,1),3182(a,1,1))]. given #251 (A,wt=23): 1559 x ^ ((y ^ x)' ^ (x ^ z)')' = ((y ^ x)' ^ (x ^ z)')'. [para(1462(a,1),1420(a,1,1,1)),rewrite([1244(2)])]. given #252 (W,wt=13): 3261 x' ^ (((y ^ x) ^ z) ^ u) = c_0'. [para(1672(a,1),3182(a,1,1))]. given #253 (W,wt=13): 3262 x' ^ ((y ^ (z ^ x)) ^ u) = c_0'. [para(1674(a,1),3182(a,1,1))]. given #254 (W,wt=13): 3264 x' ^ ((y ^ (x ^ z)) ^ u) = c_0'. [para(1686(a,1),3182(a,1,1))]. given #255 (W,wt=13): 3266 x' ^ (y ^ ((x ^ z) ^ u)) = c_0'. [para(1760(a,1),3182(a,1,1))]. given #256 (W,wt=13): 3267 x' ^ (y ^ ((z ^ x) ^ u)) = c_0'. [para(1761(a,1),3182(a,1,1))]. given #257 (A,wt=17): 1560 ((x ^ (y ^ z)')' ^ y) ^ (y ^ z) = y ^ z. [para(1420(a,1),1462(a,1,1,2,1)),rewrite([1244(6),1244(8),1244(10)])]. given #258 (W,wt=11): 4478 (x ^ y) ^ (y ^ x) = y ^ x. [para(1466(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. % Operation ^ is commutative; C redundancy checks enabled. given #259 (W,wt=7): 4564 x ^ y = y ^ x. [para(4478(a,1),1409(a,1,1)),rewrite([4478(3),4478(4)])]. given #260 (W,wt=11): 4587 (x ^ y) ^ (y ^ x)' = c_0'. [para(4478(a,1),3223(a,1,1))]. given #261 (W,wt=11): 4588 (x ^ y)' ^ (y ^ x) = c_0'. [para(4478(a,1),3225(a,1,2))]. given #262 (W,wt=13): 3268 x' ^ (y ^ (z ^ (u ^ x))) = c_0'. [para(1762(a,1),3182(a,1,1))]. given #263 (A,wt=18): 1578 ((x ^ y') ^ z) ^ (y ^ u)' = (x ^ y') ^ z. [para(1538(a,1),1538(a,1,2,1,1))]. given #264 (W,wt=13): 3269 x' ^ (y ^ (z ^ (x ^ u))) = c_0'. [para(1765(a,1),3182(a,1,1))]. given #265 (W,wt=13): 3271 (x ^ y) ^ ((x' ^ z) ^ u) = c_0'. [para(1675(a,1),3182(a,1,1))]. given #266 (W,wt=13): 3272 (x ^ y) ^ ((y' ^ z) ^ u) = c_0'. [para(1706(a,1),3182(a,1,1))]. given #267 (W,wt=13): 3380 ((x' ^ y) ^ z) ^ (x ^ u) = c_0'. [para(1675(a,1),3224(a,1,2))]. given #268 (W,wt=13): 3381 ((x' ^ y) ^ z) ^ (u ^ x) = c_0'. [para(1706(a,1),3224(a,1,2))]. given #269 (A,wt=18): 1587 (x ^ y)' ^ (z ^ (u ^ x')) = z ^ (u ^ x'). [para(1542(a,1),1537(a,1,1,1,1))]. given #270 (W,wt=13): 3444 ((x ^ y') ^ z) ^ (y ^ u) = c_0'. [para(1538(a,1),3230(a,1,2,1))]. given #271 (W,wt=13): 3445 (x ^ (y ^ z')) ^ (z ^ u) = c_0'. [para(1573(a,1),3230(a,1,2,1))]. given #272 (W,wt=13): 3446 ((x ^ y) ^ z) ^ (y' ^ u) = c_0'. [para(1483(a,1),3230(a,1,2,1))]. given #273 (W,wt=13): 3447 (x ^ (y' ^ z)) ^ (y ^ u) = c_0'. [para(1591(a,1),3230(a,1,2,1))]. given #274 (W,wt=13): 3448 ((x ^ y) ^ z) ^ (x' ^ u) = c_0'. [para(1590(a,1),3230(a,1,2,1))]. given #275 (A,wt=18): 1589 (x ^ y)' ^ ((z ^ y') ^ u) = (z ^ y') ^ u. [para(1538(a,1),1542(a,1,1,1,2))]. given #276 (W,wt=13): 3449 (x ^ (y ^ z)) ^ (z' ^ u) = c_0'. [para(1608(a,1),3230(a,1,2,1))]. given #277 (W,wt=13): 3450 (x ^ (y ^ z)) ^ (y' ^ u) = c_0'. [para(1626(a,1),3230(a,1,2,1))]. given #278 (W,wt=13): 3451 (x' ^ y) ^ ((x ^ z) ^ u) = c_0'. [para(1572(a,1),3230(a,1,2,1))]. given #279 (W,wt=13): 3452 (x' ^ y) ^ ((z ^ x) ^ u) = c_0'. [para(1575(a,1),3230(a,1,2,1))]. given #280 (W,wt=13): 3453 (x ^ y') ^ ((y ^ z) ^ u) = c_0'. [para(1610(a,1),3230(a,1,2,1))]. given #281 (A,wt=31): 1593 (((x ^ y)' ^ (y ^ z)')' ^ u) ^ (y' ^ w)' = ((x ^ y)' ^ (y ^ z)')' ^ u. [para(1460(a,1),1546(a,1,2,1,1))]. given #282 (W,wt=13): 3454 (x ^ y') ^ ((z ^ y) ^ u) = c_0'. [para(1612(a,1),3230(a,1,2,1))]. given #283 (W,wt=13): 3463 (x ^ y) ^ ((z ^ x') ^ u) = c_0'. [para(1574(a,1),3230(a,1,2,1))]. given #284 (W,wt=13): 3465 (x ^ y) ^ ((z ^ y') ^ u) = c_0'. [para(1611(a,1),3230(a,1,2,1))]. given #285 (W,wt=13): 3484 ((x ^ y') ^ z) ^ (u ^ y) = c_0'. [para(1538(a,1),3232(a,1,2,2))]. given #286 (W,wt=13): 3485 (x ^ (y ^ z')) ^ (u ^ z) = c_0'. [para(1573(a,1),3232(a,1,2,2))]. given #287 (A,wt=18): 1594 ((x' ^ y) ^ z) ^ (x ^ u)' = (x' ^ y) ^ z. [para(1537(a,1),1546(a,1,2,1,1))]. given #288 (W,wt=13): 3486 ((x ^ y) ^ z) ^ (u ^ y') = c_0'. [para(1483(a,1),3232(a,1,2,2))]. given #289 (W,wt=13): 3487 (x ^ (y' ^ z)) ^ (u ^ y) = c_0'. [para(1591(a,1),3232(a,1,2,2))]. given #290 (W,wt=13): 3488 ((x ^ y) ^ z) ^ (u ^ x') = c_0'. [para(1590(a,1),3232(a,1,2,2))]. given #291 (W,wt=13): 3489 (x ^ (y ^ z)) ^ (u ^ z') = c_0'. [para(1608(a,1),3232(a,1,2,2))]. given #292 (W,wt=13): 3490 (x ^ (y ^ z)) ^ (u ^ y') = c_0'. [para(1626(a,1),3232(a,1,2,2))]. given #293 (A,wt=18): 1596 (x ^ y)' ^ ((y' ^ z) ^ u) = (y' ^ z) ^ u. [para(1546(a,1),1542(a,1,1,1,2))]. given #294 (W,wt=13): 3491 (x' ^ y) ^ (z ^ (x ^ u)) = c_0'. [para(1572(a,1),3232(a,1,2,2))]. given #295 (W,wt=13): 3492 (x' ^ y) ^ (z ^ (u ^ x)) = c_0'. [para(1575(a,1),3232(a,1,2,2))]. given #296 (W,wt=13): 3493 (x ^ y') ^ (z ^ (y ^ u)) = c_0'. [para(1610(a,1),3232(a,1,2,2))]. given #297 (W,wt=13): 3494 (x ^ y') ^ (z ^ (u ^ y)) = c_0'. [para(1612(a,1),3232(a,1,2,2))]. given #298 (W,wt=13): 3503 (x ^ y) ^ (z ^ (x' ^ u)) = c_0'. [para(1571(a,1),3232(a,1,2,2))]. given #299 (A,wt=18): 1597 (x ^ (y ^ z')) ^ (z ^ u)' = x ^ (y ^ z'). [para(1542(a,1),1546(a,1,2,1,1))]. given #300 (W,wt=13): 3504 (x ^ y) ^ (z ^ (u ^ x')) = c_0'. [para(1574(a,1),3232(a,1,2,2))]. given #301 (W,wt=13): 3506 (x ^ y) ^ (z ^ (y' ^ u)) = c_0'. [para(1609(a,1),3232(a,1,2,2))]. given #302 (W,wt=13): 3507 (x ^ y) ^ (z ^ (u ^ y')) = c_0'. [para(1611(a,1),3232(a,1,2,2))]. given #303 (W,wt=13): 4590 (x ^ y)' ^ ((y ^ x) ^ z) = c_0'. [para(4478(a,1),3234(a,1,2,1))]. given #304 (W,wt=13): 4591 (x ^ y) ^ ((y ^ x)' ^ z) = c_0'. [para(4478(a,1),3237(a,1,1))]. given #305 (A,wt=31): 1602 (x ^ y')' ^ (((z ^ y)' ^ (y ^ u)')' ^ w) = ((z ^ y)' ^ (y ^ u)')' ^ w. [para(1460(a,1),1549(a,1,1,1,2))]. given #306 (W,wt=13): 4592 (x ^ y)' ^ (z ^ (y ^ x)) = c_0'. [para(4478(a,1),3238(a,1,2,2))]. given #307 (W,wt=13): 4593 (x ^ y) ^ (z ^ (y ^ x)') = c_0'. [para(4478(a,1),3240(a,1,1))]. given #308 (W,wt=13): 4594 (x ^ (y ^ z)') ^ (z ^ y) = c_0'. [para(4478(a,1),3256(a,1,2))]. given #309 (W,wt=13): 4597 (x ^ (y ^ z)) ^ (z ^ y)' = c_0'. [para(4478(a,1),3357(a,1,1,2))]. given #310 (W,wt=14): 4565 (x ^ y)' ^ (y ^ x)' = (y ^ x)'. [para(4478(a,1),1420(a,1,1,1))]. given #311 (A,wt=18): 1603 (x ^ y)' ^ (z ^ (x' ^ u)) = z ^ (x' ^ u). [para(1549(a,1),1537(a,1,1,1,1))]. given #312 (W,wt=15): 1726 (x ^ y) ^ ((x' ^ z) ^ u)' = x ^ y. [para(1485(a,1),1572(a,1,1)),rewrite([1244(5),1485(11)])]. given #313 (W,wt=15): 1729 (x ^ y) ^ ((y' ^ z) ^ u)' = x ^ y. [para(1544(a,1),1572(a,1,1)),rewrite([1244(5),1544(11)])]. given #314 (W,wt=15): 1763 ((x ^ y') ^ z)' ^ (y ^ u) = y ^ u. [para(1583(a,1),1485(a,1,2)),rewrite([1244(4),1583(11)])]. given #315 (W,wt=15): 1764 (x ^ (y' ^ z))' ^ (y ^ u) = y ^ u. [para(1485(a,1),1583(a,1,2)),rewrite([1244(4),1485(11)])]. given #316 (W,wt=15): 1766 (x ^ (y' ^ z))' ^ (u ^ y) = u ^ y. [para(1544(a,1),1583(a,1,2)),rewrite([1244(4),1544(11)])]. given #317 (A,wt=18): 1605 (x ^ y)' ^ (z ^ (u ^ y')) = z ^ (u ^ y'). [para(1542(a,1),1549(a,1,1,1,2))]. given #318 (W,wt=15): 1767 (x ^ y) ^ ((z ^ x') ^ u)' = x ^ y. [para(1583(a,1),1572(a,1,1)),rewrite([1244(5),1583(11)])]. given #319 (W,wt=15): 1768 (x ^ (y ^ z'))' ^ (z ^ u) = z ^ u. [para(1583(a,1),1583(a,1,2)),rewrite([1244(4),1583(11)])]. given #320 (W,wt=15): 1775 ((x ^ y') ^ z)' ^ (u ^ y) = u ^ y. [para(1585(a,1),1485(a,1,2)),rewrite([1244(4),1585(11)])]. given #321 (W,wt=15): 1776 (x ^ y) ^ ((z ^ y') ^ u)' = x ^ y. [para(1585(a,1),1572(a,1,1)),rewrite([1244(5),1585(11)])]. given #322 (W,wt=15): 1777 (x ^ (y ^ z'))' ^ (u ^ z) = u ^ z. [para(1585(a,1),1583(a,1,2)),rewrite([1244(4),1585(11)])]. given #323 (A,wt=18): 1606 (x ^ (y' ^ z)) ^ (y ^ u)' = x ^ (y' ^ z). [para(1549(a,1),1546(a,1,2,1,1))]. given #324 (W,wt=15): 1789 (x ^ y) ^ (z ^ (x' ^ u))' = x ^ y. [para(1485(a,1),1610(a,1,1)),rewrite([1244(5),1485(11)])]. given #325 (W,wt=15): 1791 (x ^ y) ^ (z ^ (y' ^ u))' = x ^ y. [para(1544(a,1),1610(a,1,1)),rewrite([1244(5),1544(11)])]. given #326 (W,wt=15): 1792 (x ^ y) ^ (z ^ (u ^ x'))' = x ^ y. [para(1583(a,1),1610(a,1,1)),rewrite([1244(5),1583(11)])]. given #327 (W,wt=15): 1793 (x ^ y) ^ (z ^ (u ^ y'))' = x ^ y. [para(1585(a,1),1610(a,1,1)),rewrite([1244(5),1585(11)])]. given #328 (W,wt=15): 1864 x ^ ((((y ^ x') ^ z) ^ u) ^ w)' = x. [para(1657(a,1),1572(a,1,1)),rewrite([1244(6),1657(13)])]. given #329 (A,wt=18): 1607 (x ^ y)' ^ (z ^ (y' ^ u)) = z ^ (y' ^ u). [para(1549(a,1),1549(a,1,1,1,2))]. given #330 (W,wt=15): 1870 x ^ (y ^ (((z ^ x') ^ u) ^ w))' = x. [para(1657(a,1),1610(a,1,1)),rewrite([1244(6),1657(13)])]. given #331 (W,wt=15): 1889 x ^ ((((x' ^ y) ^ z) ^ u) ^ w)' = x. [para(1660(a,1),1572(a,1,1)),rewrite([1244(6),1660(13)])]. given #332 (W,wt=15): 1893 x ^ (y ^ (((x' ^ z) ^ u) ^ w))' = x. [para(1660(a,1),1610(a,1,1)),rewrite([1244(6),1660(13)])]. given #333 (W,wt=15): 1918 x ^ (((y ^ (z ^ x')) ^ u) ^ w)' = x. [para(1663(a,1),1572(a,1,1)),rewrite([1244(6),1663(13)])]. given #334 (W,wt=15): 1924 x ^ (y ^ ((z ^ (u ^ x')) ^ w))' = x. [para(1663(a,1),1610(a,1,1)),rewrite([1244(6),1663(13)])]. given #335 (A,wt=18): 1615 ((x ^ y') ^ z) ^ (u ^ y)' = (x ^ y') ^ z. [para(1538(a,1),1573(a,1,2,1,2))]. given #336 (W,wt=15): 1940 x ^ (((y ^ (x' ^ z)) ^ u) ^ w)' = x. [para(1667(a,1),1572(a,1,1)),rewrite([1244(6),1667(13)])]. given #337 (W,wt=15): 1944 x ^ (y ^ ((z ^ (x' ^ u)) ^ w))' = x. [para(1667(a,1),1610(a,1,1)),rewrite([1244(6),1667(13)])]. given #338 (W,wt=15): 1990 x ^ ((y ^ ((z ^ x') ^ u)) ^ w)' = x. [para(1618(a,1),1711(a,1,2,1))]. given #339 (W,wt=15): 1991 x ^ ((y ^ (z ^ (u ^ x'))) ^ w)' = x. [para(1642(a,1),1711(a,1,2,1,1))]. given #340 (W,wt=15): 1992 x ^ (y ^ (z ^ ((u ^ x') ^ w)))' = x. [para(1642(a,1),1711(a,1,2,1))]. given #341 (A,wt=18): 1616 ((x' ^ y) ^ z) ^ (u ^ x)' = (x' ^ y) ^ z. [para(1546(a,1),1573(a,1,2,1,2))]. given #342 (W,wt=15): 1997 x ^ ((y ^ ((x' ^ z) ^ u)) ^ w)' = x. [para(1618(a,1),1713(a,1,2,1))]. given #343 (W,wt=15): 1998 x ^ ((y ^ (z ^ (x' ^ u))) ^ w)' = x. [para(1642(a,1),1713(a,1,2,1,1))]. given #344 (W,wt=15): 1999 x ^ (y ^ (z ^ ((x' ^ u) ^ w)))' = x. [para(1642(a,1),1713(a,1,2,1))]. given #345 (W,wt=15): 2017 x ^ (y ^ (z ^ (u ^ (w ^ x'))))' = x. [para(1642(a,1),1716(a,1,2,1))]. given #346 (W,wt=15): 2035 x ^ (y ^ (z ^ (u ^ (x' ^ w))))' = x. [para(1642(a,1),1718(a,1,2,1))]. given #347 (A,wt=18): 1617 (x ^ (y ^ z')) ^ (u ^ z)' = x ^ (y ^ z'). [para(1573(a,1),1573(a,1,2,1,2))]. given #348 (W,wt=15): 2781 x ^ ((y ^ x')' ^ (x' ^ z)') = x. [para(1554(a,1),1409(a,1,1)),rewrite([1554(16)])]. given #349 (W,wt=15): 2811 x' ^ ((x ^ y)' ^ (x ^ z)') = x'. [para(1409(a,1),1555(a,1,2,1,1))]. given #350 (W,wt=15): 2817 x' ^ ((y ^ x)' ^ (z ^ x)') = x'. [para(1467(a,1),1555(a,1,2,2,1))]. given #351 (W,wt=15): 3455 (((x ^ y') ^ z) ^ u) ^ (y ^ w) = c_0'. [para(1711(a,1),3230(a,1,2,1))]. given #352 (W,wt=15): 3456 (((x' ^ y) ^ z) ^ u) ^ (x ^ w) = c_0'. [para(1713(a,1),3230(a,1,2,1))]. given #353 (A,wt=17): 1621 (x' ^ y)' ^ ((z ^ x) ^ u) = (z ^ x) ^ u. [para(1483(a,1),1536(a,1,1,1,1))]. given #354 (W,wt=15): 3457 ((x ^ (y ^ z')) ^ u) ^ (z ^ w) = c_0'. [para(1716(a,1),3230(a,1,2,1))]. given #355 (W,wt=15): 3458 ((x ^ (y' ^ z)) ^ u) ^ (y ^ w) = c_0'. [para(1718(a,1),3230(a,1,2,1))]. given #356 (W,wt=15): 3459 (x ^ ((y ^ z') ^ u)) ^ (z ^ w) = c_0'. [para(1780(a,1),3230(a,1,2,1))]. given #357 (W,wt=15): 3460 (x ^ ((y' ^ z) ^ u)) ^ (y ^ w) = c_0'. [para(1781(a,1),3230(a,1,2,1))]. given #358 (W,wt=15): 3461 (x ^ (y ^ (z ^ u'))) ^ (u ^ w) = c_0'. [para(1784(a,1),3230(a,1,2,1))]. given #359 (A,wt=17): 1623 ((x ^ y) ^ z) ^ (y' ^ u)' = (x ^ y) ^ z. [para(1483(a,1),1538(a,1,2,1,1))]. given #360 (W,wt=15): 3462 (x ^ (y ^ (z' ^ u))) ^ (z ^ w) = c_0'. [para(1785(a,1),3230(a,1,2,1))]. given #361 (W,wt=15): 3466 (((x ^ y) ^ z) ^ u) ^ (x' ^ w) = c_0'. [para(1720(a,1),3230(a,1,2,1))]. given #362 (W,wt=15): 3467 (((x ^ y) ^ z) ^ u) ^ (y' ^ w) = c_0'. [para(1722(a,1),3230(a,1,2,1))]. given #363 (W,wt=15): 3468 ((x ^ (y ^ z)) ^ u) ^ (z' ^ w) = c_0'. [para(1724(a,1),3230(a,1,2,1))]. given #364 (W,wt=15): 3469 ((x ^ (y ^ z)) ^ u) ^ (y' ^ w) = c_0'. [para(1727(a,1),3230(a,1,2,1))]. given #365 (A,wt=17): 1624 (x ^ y')' ^ ((z ^ y) ^ u) = (z ^ y) ^ u. [para(1483(a,1),1542(a,1,1,1,2))]. given #366 (W,wt=15): 3471 (x ^ ((y ^ z) ^ u)) ^ (y' ^ w) = c_0'. [para(1786(a,1),3230(a,1,2,1))]. given #367 (W,wt=15): 3473 (x ^ ((y ^ z) ^ u)) ^ (z' ^ w) = c_0'. [para(1787(a,1),3230(a,1,2,1))]. given #368 (W,wt=15): 3474 (x ^ (y ^ (z ^ u))) ^ (u' ^ w) = c_0'. [para(1788(a,1),3230(a,1,2,1))]. given #369 (W,wt=15): 3475 (x ^ (y ^ (z ^ u))) ^ (z' ^ w) = c_0'. [para(1790(a,1),3230(a,1,2,1))]. given #370 (W,wt=15): 3480 ((x' ^ y) ^ z) ^ ((x ^ u) ^ w) = c_0'. [para(1675(a,1),3231(a,1,2,1))]. given #371 (A,wt=17): 1625 ((x ^ y) ^ z) ^ (u ^ y')' = (x ^ y) ^ z. [para(1483(a,1),1573(a,1,2,1,2))]. given #372 (W,wt=15): 3481 ((x' ^ y) ^ z) ^ ((u ^ x) ^ w) = c_0'. [para(1706(a,1),3231(a,1,2,1))]. given #373 (W,wt=15): 3495 (((x ^ y') ^ z) ^ u) ^ (w ^ y) = c_0'. [para(1711(a,1),3232(a,1,2,2))]. given #374 (W,wt=15): 3496 (((x' ^ y) ^ z) ^ u) ^ (w ^ x) = c_0'. [para(1713(a,1),3232(a,1,2,2))]. given #375 (W,wt=15): 3497 ((x ^ (y ^ z')) ^ u) ^ (w ^ z) = c_0'. [para(1716(a,1),3232(a,1,2,2))]. given #376 (W,wt=15): 3498 ((x ^ (y' ^ z)) ^ u) ^ (w ^ y) = c_0'. [para(1718(a,1),3232(a,1,2,2))]. given #377 (A,wt=31): 1628 (((x ^ y)' ^ (y ^ z)')' ^ u) ^ (w ^ y')' = ((x ^ y)' ^ (y ^ z)')' ^ u. [para(1460(a,1),1591(a,1,2,1,2))]. given #378 (W,wt=15): 3499 (x ^ ((y ^ z') ^ u)) ^ (w ^ z) = c_0'. [para(1780(a,1),3232(a,1,2,2))]. given #379 (W,wt=15): 3500 (x ^ ((y' ^ z) ^ u)) ^ (w ^ y) = c_0'. [para(1781(a,1),3232(a,1,2,2))]. given #380 (W,wt=15): 3501 (x ^ (y ^ (z ^ u'))) ^ (w ^ u) = c_0'. [para(1784(a,1),3232(a,1,2,2))]. given #381 (W,wt=15): 3502 (x ^ (y ^ (z' ^ u))) ^ (w ^ z) = c_0'. [para(1785(a,1),3232(a,1,2,2))]. given #382 (W,wt=15): 3508 (((x ^ y) ^ z) ^ u) ^ (w ^ x') = c_0'. [para(1720(a,1),3232(a,1,2,2))]. given #383 (A,wt=18): 1630 (x ^ (y' ^ z)) ^ (u ^ y)' = x ^ (y' ^ z). [para(1549(a,1),1591(a,1,2,1,2))]. given #384 (W,wt=15): 3509 (((x ^ y) ^ z) ^ u) ^ (w ^ y') = c_0'. [para(1722(a,1),3232(a,1,2,2))]. given #385 (W,wt=15): 3510 ((x ^ (y ^ z)) ^ u) ^ (w ^ z') = c_0'. [para(1724(a,1),3232(a,1,2,2))]. given #386 (W,wt=15): 3511 ((x ^ (y ^ z)) ^ u) ^ (w ^ y') = c_0'. [para(1727(a,1),3232(a,1,2,2))]. given #387 (W,wt=15): 3513 (x ^ ((y ^ z) ^ u)) ^ (w ^ y') = c_0'. [para(1786(a,1),3232(a,1,2,2))]. given #388 (W,wt=15): 3515 (x ^ ((y ^ z) ^ u)) ^ (w ^ z') = c_0'. [para(1787(a,1),3232(a,1,2,2))]. given #389 (A,wt=17): 1634 (x' ^ y)' ^ ((x ^ z) ^ u) = (x ^ z) ^ u. [para(1484(a,1),1537(a,1,1,1,1))]. given #390 (W,wt=15): 3516 (x ^ (y ^ (z ^ u))) ^ (w ^ u') = c_0'. [para(1788(a,1),3232(a,1,2,2))]. given #391 (W,wt=15): 3517 (x ^ (y ^ (z ^ u))) ^ (w ^ z') = c_0'. [para(1790(a,1),3232(a,1,2,2))]. given #392 (W,wt=15): 3596 ((x' ^ y) ^ z) ^ (u ^ (x ^ w)) = c_0'. [para(1675(a,1),3233(a,1,2,2))]. given #393 (W,wt=15): 3597 ((x' ^ y) ^ z) ^ (u ^ (w ^ x)) = c_0'. [para(1706(a,1),3233(a,1,2,2))]. given #394 (W,wt=15): 3610 x ^ ((((y ^ x') ^ z) ^ u) ^ w) = c_0'. [para(1657(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #395 (A,wt=27): 1636 (x' ^ y)' ^ ((z ^ x)' ^ (x ^ u)')' = ((z ^ x)' ^ (x ^ u)')'. [para(1462(a,1),1484(a,1,1,1,1))]. given #396 (W,wt=15): 3612 x ^ ((((x' ^ y) ^ z) ^ u) ^ w) = c_0'. [para(1660(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #397 (W,wt=15): 3614 x ^ (((y ^ (z ^ x')) ^ u) ^ w) = c_0'. [para(1663(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #398 (W,wt=15): 3616 x ^ (((y ^ (x' ^ z)) ^ u) ^ w) = c_0'. [para(1667(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #399 (W,wt=15): 3618 x ^ ((y ^ ((z ^ x') ^ u)) ^ w) = c_0'. [para(1751(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #400 (W,wt=15): 3620 x ^ ((y ^ ((x' ^ z) ^ u)) ^ w) = c_0'. [para(1753(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #401 (A,wt=17): 1637 ((x ^ y) ^ z) ^ (x' ^ u)' = (x ^ y) ^ z. [para(1484(a,1),1546(a,1,2,1,1))]. given #402 (W,wt=15): 3622 x ^ ((y ^ (z ^ (u ^ x'))) ^ w) = c_0'. [para(1755(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #403 (W,wt=15): 3624 x ^ ((y ^ (z ^ (x' ^ u))) ^ w) = c_0'. [para(1758(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #404 (W,wt=15): 3627 x' ^ ((((x ^ y) ^ z) ^ u) ^ w) = c_0'. [para(1670(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #405 (W,wt=15): 3629 x' ^ ((((y ^ x) ^ z) ^ u) ^ w) = c_0'. [para(1672(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #406 (W,wt=15): 3631 x' ^ (((y ^ (z ^ x)) ^ u) ^ w) = c_0'. [para(1674(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #407 (A,wt=17): 1638 (x ^ y')' ^ ((y ^ z) ^ u) = (y ^ z) ^ u. [para(1484(a,1),1549(a,1,1,1,2))]. given #408 (W,wt=15): 3635 x' ^ (((y ^ (x ^ z)) ^ u) ^ w) = c_0'. [para(1686(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #409 (W,wt=15): 3638 x' ^ ((y ^ ((x ^ z) ^ u)) ^ w) = c_0'. [para(1760(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #410 (W,wt=15): 3640 x' ^ ((y ^ ((z ^ x) ^ u)) ^ w) = c_0'. [para(1761(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #411 (W,wt=15): 3642 x' ^ ((y ^ (z ^ (u ^ x))) ^ w) = c_0'. [para(1762(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #412 (W,wt=15): 3644 x' ^ ((y ^ (z ^ (x ^ u))) ^ w) = c_0'. [para(1765(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #413 (A,wt=17): 1639 ((x ^ y) ^ z) ^ (u ^ x')' = (x ^ y) ^ z. [para(1484(a,1),1591(a,1,2,1,2))]. given #414 (W,wt=15): 3648 (x ^ y) ^ (((x' ^ z) ^ u) ^ w) = c_0'. [para(1675(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #415 (W,wt=15): 3649 (x ^ y) ^ (((y' ^ z) ^ u) ^ w) = c_0'. [para(1706(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #416 (W,wt=15): 3794 x ^ (y ^ (((z ^ x') ^ u) ^ w)) = c_0'. [para(1657(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #417 (W,wt=15): 3795 x ^ (y ^ (((x' ^ z) ^ u) ^ w)) = c_0'. [para(1660(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #418 (W,wt=15): 3796 x ^ (y ^ ((z ^ (u ^ x')) ^ w)) = c_0'. [para(1663(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #419 (A,wt=17): 1645 (x' ^ y)' ^ (z ^ (u ^ x)) = z ^ (u ^ x). [para(1579(a,1),1537(a,1,1,1,1))]. given #420 (W,wt=15): 3797 x ^ (y ^ ((z ^ (x' ^ u)) ^ w)) = c_0'. [para(1667(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #421 (W,wt=15): 3798 x ^ (y ^ (z ^ ((u ^ x') ^ w))) = c_0'. [para(1751(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #422 (W,wt=15): 3799 x ^ (y ^ (z ^ ((x' ^ u) ^ w))) = c_0'. [para(1753(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #423 (W,wt=15): 3800 x ^ (y ^ (z ^ (u ^ (w ^ x')))) = c_0'. [para(1755(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #424 (W,wt=15): 3801 x ^ (y ^ (z ^ (u ^ (x' ^ w)))) = c_0'. [para(1758(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #425 (A,wt=17): 1647 (x ^ (y ^ z)) ^ (z' ^ u)' = x ^ (y ^ z). [para(1579(a,1),1546(a,1,2,1,1))]. given #426 (W,wt=15): 3802 x' ^ (y ^ (((x ^ z) ^ u) ^ w)) = c_0'. [para(1670(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #427 (W,wt=15): 3803 x' ^ (y ^ (((z ^ x) ^ u) ^ w)) = c_0'. [para(1672(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #428 (W,wt=15): 3804 x' ^ (y ^ ((z ^ (u ^ x)) ^ w)) = c_0'. [para(1674(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #429 (W,wt=15): 3806 x' ^ (y ^ ((z ^ (x ^ u)) ^ w)) = c_0'. [para(1686(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #430 (W,wt=15): 3808 x' ^ (y ^ (z ^ ((x ^ u) ^ w))) = c_0'. [para(1760(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #431 (A,wt=17): 1648 (x ^ y')' ^ (z ^ (u ^ y)) = z ^ (u ^ y). [para(1579(a,1),1549(a,1,1,1,2))]. given #432 (W,wt=15): 3809 x' ^ (y ^ (z ^ ((u ^ x) ^ w))) = c_0'. [para(1761(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #433 (W,wt=15): 3810 x' ^ (y ^ (z ^ (u ^ (w ^ x)))) = c_0'. [para(1762(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #434 (W,wt=15): 3811 x' ^ (y ^ (z ^ (u ^ (x ^ w)))) = c_0'. [para(1765(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #435 (W,wt=15): 3816 (x ^ y) ^ (z ^ ((x' ^ u) ^ w)) = c_0'. [para(1675(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #436 (W,wt=15): 3817 (x ^ y) ^ (z ^ ((y' ^ u) ^ w)) = c_0'. [para(1706(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #437 (A,wt=17): 1649 (x ^ (y ^ z)) ^ (u ^ z')' = x ^ (y ^ z). [para(1579(a,1),1591(a,1,2,1,2))]. given #438 (W,wt=15): 3824 (x ^ y) ^ (((z ^ x') ^ u) ^ w) = c_0'. [para(1711(a,1),3242(a,1,1,1))]. given #439 (W,wt=15): 3825 (x ^ y) ^ ((z ^ (u ^ x')) ^ w) = c_0'. [para(1716(a,1),3242(a,1,1,1))]. given #440 (W,wt=15): 3826 (x ^ y) ^ ((z ^ (x' ^ u)) ^ w) = c_0'. [para(1718(a,1),3242(a,1,1,1))]. given #441 (W,wt=15): 3827 (x ^ y) ^ (z ^ ((u ^ x') ^ w)) = c_0'. [para(1780(a,1),3242(a,1,1,1))]. given #442 (W,wt=15): 3828 (x ^ y) ^ (z ^ (u ^ (w ^ x'))) = c_0'. [para(1784(a,1),3242(a,1,1,1))]. given #443 (A,wt=27): 1652 ((x ^ y)' ^ (y ^ z)')' ^ (y' ^ u)' = ((x ^ y)' ^ (y ^ z)')'. [para(1462(a,1),1590(a,1,2,1,1))]. given #444 (W,wt=15): 3829 (x ^ y) ^ (z ^ (u ^ (x' ^ w))) = c_0'. [para(1785(a,1),3242(a,1,1,1))]. given #445 (W,wt=15): 3831 (x' ^ y) ^ (((x ^ z) ^ u) ^ w) = c_0'. [para(1720(a,1),3242(a,1,1,1))]. given #446 (W,wt=15): 3832 (x' ^ y) ^ (((z ^ x) ^ u) ^ w) = c_0'. [para(1722(a,1),3242(a,1,1,1))]. given #447 (W,wt=15): 3833 (x' ^ y) ^ ((z ^ (u ^ x)) ^ w) = c_0'. [para(1724(a,1),3242(a,1,1,1))]. given #448 (W,wt=15): 3834 (x' ^ y) ^ ((z ^ (x ^ u)) ^ w) = c_0'. [para(1727(a,1),3242(a,1,1,1))]. given #449 (A,wt=31): 1654 x ^ ((((y ^ x)' ^ (x ^ z)')' ^ u) ^ w) = (((y ^ x)' ^ (x ^ z)')' ^ u) ^ w. [para(1460(a,1),1485(a,1,1,1)),rewrite([1244(2)])]. given #450 (W,wt=15): 3836 (x' ^ y) ^ (z ^ ((x ^ u) ^ w)) = c_0'. [para(1786(a,1),3242(a,1,1,1))]. given #451 (W,wt=15): 3837 (x' ^ y) ^ (z ^ ((u ^ x) ^ w)) = c_0'. [para(1787(a,1),3242(a,1,1,1))]. given #452 (W,wt=15): 3838 (x' ^ y) ^ (z ^ (u ^ (w ^ x))) = c_0'. [para(1788(a,1),3242(a,1,1,1))]. given #453 (W,wt=15): 3839 (x' ^ y) ^ (z ^ (u ^ (x ^ w))) = c_0'. [para(1790(a,1),3242(a,1,1,1))]. given #454 (W,wt=15): 3917 ((x ^ y) ^ z) ^ ((x' ^ u) ^ w) = c_0'. [para(1675(a,1),3243(a,1,1,1))]. given #455 (A,wt=16): 1658 ((x ^ y) ^ z)' ^ (x' ^ u) = x' ^ u. [para(1485(a,1),1537(a,1,1,1,1))]. given #456 (W,wt=15): 3918 ((x ^ y) ^ z) ^ ((y' ^ u) ^ w) = c_0'. [para(1706(a,1),3243(a,1,1,1))]. given #457 (W,wt=15): 3924 (x ^ y) ^ (((z ^ y') ^ u) ^ w) = c_0'. [para(1711(a,1),3244(a,1,1,2))]. given #458 (W,wt=15): 3925 (x ^ y) ^ ((z ^ (u ^ y')) ^ w) = c_0'. [para(1716(a,1),3244(a,1,1,2))]. given #459 (W,wt=15): 3926 (x ^ y) ^ ((z ^ (y' ^ u)) ^ w) = c_0'. [para(1718(a,1),3244(a,1,1,2))]. given #460 (W,wt=15): 3927 (x ^ y) ^ (z ^ ((u ^ y') ^ w)) = c_0'. [para(1780(a,1),3244(a,1,1,2))]. given #461 (A,wt=16): 1664 (x' ^ y) ^ ((x ^ z) ^ u)' = x' ^ y. [para(1485(a,1),1546(a,1,2,1,1))]. given #462 (W,wt=15): 3928 (x ^ y) ^ (z ^ (u ^ (w ^ y'))) = c_0'. [para(1784(a,1),3244(a,1,1,2))]. given #463 (W,wt=15): 3929 (x ^ y) ^ (z ^ (u ^ (y' ^ w))) = c_0'. [para(1785(a,1),3244(a,1,1,2))]. given #464 (W,wt=15): 3931 (x ^ y') ^ (((y ^ z) ^ u) ^ w) = c_0'. [para(1720(a,1),3244(a,1,1,2))]. given #465 (W,wt=15): 3932 (x ^ y') ^ (((z ^ y) ^ u) ^ w) = c_0'. [para(1722(a,1),3244(a,1,1,2))]. given #466 (W,wt=15): 3933 (x ^ y') ^ ((z ^ (u ^ y)) ^ w) = c_0'. [para(1724(a,1),3244(a,1,1,2))]. given #467 (A,wt=16): 1665 (x ^ (y ^ z))' ^ (y' ^ u) = y' ^ u. [para(1485(a,1),1549(a,1,1,1,2))]. given #468 (W,wt=15): 3934 (x ^ y') ^ ((z ^ (y ^ u)) ^ w) = c_0'. [para(1727(a,1),3244(a,1,1,2))]. given #469 (W,wt=15): 3935 (x ^ y') ^ (z ^ ((y ^ u) ^ w)) = c_0'. [para(1786(a,1),3244(a,1,1,2))]. given #470 (W,wt=15): 3936 (x ^ y') ^ (z ^ ((u ^ y) ^ w)) = c_0'. [para(1787(a,1),3244(a,1,1,2))]. given #471 (W,wt=15): 3937 (x ^ y') ^ (z ^ (u ^ (w ^ y))) = c_0'. [para(1788(a,1),3244(a,1,1,2))]. given #472 (W,wt=15): 3938 (x ^ y') ^ (z ^ (u ^ (y ^ w))) = c_0'. [para(1790(a,1),3244(a,1,1,2))]. given #473 (A,wt=16): 1668 (x' ^ y) ^ (z ^ (x ^ u))' = x' ^ y. [para(1485(a,1),1591(a,1,2,1,2))]. given #474 (W,wt=15): 3941 (x ^ (y ^ z)) ^ ((y' ^ u) ^ w) = c_0'. [para(1675(a,1),3249(a,1,1,2))]. given #475 (W,wt=15): 3942 (x ^ (y ^ z)) ^ ((z' ^ u) ^ w) = c_0'. [para(1706(a,1),3249(a,1,1,2))]. given #476 (W,wt=15): 4087 ((x ^ y') ^ z) ^ ((y ^ u) ^ w) = c_0'. [para(1552(a,1),3237(a,1,1)),rewrite([1244(6)])]. given #477 (W,wt=15): 4088 ((x ^ y) ^ z) ^ ((u ^ x') ^ w) = c_0'. [para(1552(a,1),3237(a,1,2))]. given #478 (W,wt=15): 4091 (x ^ (y ^ z)) ^ ((u ^ y') ^ w) = c_0'. [para(1552(a,1),3239(a,1,2))]. given #479 (A,wt=17): 1669 x ^ (((x ^ y) ^ z) ^ u) = ((x ^ y) ^ z) ^ u. [para(1484(a,1),1485(a,1,1,1)),rewrite([1244(2)])]. given #480 (W,wt=15): 4092 ((x ^ y') ^ z) ^ (u ^ (y ^ w)) = c_0'. [para(1552(a,1),3240(a,1,1)),rewrite([1244(6)])]. given #481 (W,wt=15): 4099 (x ^ (y ^ z')) ^ ((z ^ u) ^ w) = c_0'. [para(1573(a,1),3245(a,1,2,1,1))]. given #482 (W,wt=15): 4100 (x ^ (y' ^ z)) ^ ((y ^ u) ^ w) = c_0'. [para(1591(a,1),3245(a,1,2,1,1))]. given #483 (W,wt=15): 4134 ((x ^ y') ^ z) ^ ((u ^ y) ^ w) = c_0'. [para(1538(a,1),3247(a,1,2,1,2))]. given #484 (W,wt=15): 4135 (x ^ (y ^ z')) ^ ((u ^ z) ^ w) = c_0'. [para(1573(a,1),3247(a,1,2,1,2))]. given #485 (A,wt=17): 1671 x ^ (((y ^ x) ^ z) ^ u) = ((y ^ x) ^ z) ^ u. [para(1534(a,1),1485(a,1,1,1)),rewrite([1244(2)])]. given #486 (W,wt=15): 4136 ((x ^ y) ^ z) ^ ((u ^ y') ^ w) = c_0'. [para(1483(a,1),3247(a,1,2,1,2))]. given #487 (W,wt=15): 4137 (x ^ (y' ^ z)) ^ ((u ^ y) ^ w) = c_0'. [para(1591(a,1),3247(a,1,2,1,2))]. given #488 (W,wt=15): 4138 (x ^ (y ^ z)) ^ ((u ^ z') ^ w) = c_0'. [para(1608(a,1),3247(a,1,2,1,2))]. given #489 (W,wt=15): 4224 (x ^ (y ^ z')) ^ (u ^ (z ^ w)) = c_0'. [para(1573(a,1),3250(a,1,2,2,1))]. given #490 (W,wt=15): 4225 ((x ^ y) ^ z) ^ (u ^ (y' ^ w)) = c_0'. [para(1483(a,1),3250(a,1,2,2,1))]. given #491 (A,wt=17): 1673 x ^ ((y ^ (z ^ x)) ^ u) = (y ^ (z ^ x)) ^ u. [para(1579(a,1),1485(a,1,1,1)),rewrite([1244(2)])]. given #492 (W,wt=15): 4226 (x ^ (y' ^ z)) ^ (u ^ (y ^ w)) = c_0'. [para(1591(a,1),3250(a,1,2,2,1))]. given #493 (W,wt=15): 4227 ((x ^ y) ^ z) ^ (u ^ (x' ^ w)) = c_0'. [para(1590(a,1),3250(a,1,2,2,1))]. given #494 (W,wt=15): 4228 (x ^ (y ^ z)) ^ (u ^ (z' ^ w)) = c_0'. [para(1608(a,1),3250(a,1,2,2,1))]. given #495 (W,wt=15): 4229 (x ^ (y ^ z)) ^ (u ^ (y' ^ w)) = c_0'. [para(1626(a,1),3250(a,1,2,2,1))]. given #496 (W,wt=15): 4265 ((x ^ y') ^ z) ^ (u ^ (w ^ y)) = c_0'. [para(1538(a,1),3252(a,1,2,2,2))]. given #497 (A,wt=17): 1679 (x' ^ y)' ^ (z ^ (x ^ u)) = z ^ (x ^ u). [para(1598(a,1),1537(a,1,1,1,1))]. given #498 (W,wt=15): 4266 (x ^ (y ^ z')) ^ (u ^ (w ^ z)) = c_0'. [para(1573(a,1),3252(a,1,2,2,2))]. given #499 (W,wt=15): 4267 ((x ^ y) ^ z) ^ (u ^ (w ^ y')) = c_0'. [para(1483(a,1),3252(a,1,2,2,2))]. NOTE: Back_subsumption disabled, ratio of kept to back_subsumed is 23 (0.00 of 6.37 sec). given #500 (W,wt=15): 4268 (x ^ (y' ^ z)) ^ (u ^ (w ^ y)) = c_0'. [para(1591(a,1),3252(a,1,2,2,2))]. given #501 (W,wt=15): 4269 ((x ^ y) ^ z) ^ (u ^ (w ^ x')) = c_0'. [para(1590(a,1),3252(a,1,2,2,2))]. given #502 (W,wt=15): 4270 (x ^ (y ^ z)) ^ (u ^ (w ^ z')) = c_0'. [para(1608(a,1),3252(a,1,2,2,2))]. given #503 (A,wt=27): 1681 (x ^ y')' ^ ((z ^ y)' ^ (y ^ u)')' = ((z ^ y)' ^ (y ^ u)')'. [para(1462(a,1),1598(a,1,1,1,2))]. given #504 (W,wt=15): 4271 (x ^ (y ^ z)) ^ (u ^ (w ^ y')) = c_0'. [para(1626(a,1),3252(a,1,2,2,2))]. given #505 (W,wt=15): 4485 (x ^ y) ^ (y ^ (z ^ x)) = y ^ (z ^ x). [para(1608(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. given #506 (W,wt=11): 10232 x ^ (y ^ (y ^ x)') = c_0'. [para(4485(a,1),3233(a,1)),rewrite([4564(3)])]. given #507 (W,wt=11): 10422 x ^ (y ^ (x ^ y)') = c_0'. [para(4564(a,1),10232(a,1,2,2,1))]. given #508 (W,wt=13): 10231 (x ^ y)' ^ (y ^ (z ^ x)) = c_0'. [para(4485(a,1),3225(a,1,2))]. given #509 (A,wt=17): 1682 (x ^ (y ^ z)) ^ (y' ^ u)' = x ^ (y ^ z). [para(1598(a,1),1546(a,1,2,1,1))]. given #510 (W,wt=13): 10244 x ^ (y ^ (z ^ (y ^ x)')) = c_0'. [para(4485(a,1),3250(a,1)),rewrite([4564(4)])]. given #511 (W,wt=13): 10245 x ^ (y ^ ((y ^ x)' ^ z)) = c_0'. [para(4485(a,1),3251(a,1)),rewrite([4564(4)])]. given #512 (W,wt=13): 10280 (x ^ y)' ^ (x ^ (z ^ y)) = c_0'. [para(4485(a,1),4590(a,1,2))]. given #513 (W,wt=13): 10421 (x ^ y) ^ (y ^ z) = z ^ (x ^ y). [para(4485(a,1),4485(a,1,2)),rewrite([10250(6),4485(7)])]. given #514 (W,wt=11): 10927 x ^ (y ^ z) = z ^ (x ^ y). [back_rewrite(10792),rewrite([10924(3)])]. % Operation ^ is associative-commutative; CAC redundancy checks enabled. ============================== PROOF ================================= % Proof 3 at 8.81 (+ 0.11) seconds: combined. % Length of proof is 147. % Level of proof is 39. % Maximum clause weight is 40. % Given clauses 514. 4 f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) & f(f(x,x),f(x,y)) = x & f(x,f(x,x)) = f(y,f(y,y)) # answer(combined) # label(non_clause) # label(goal). [goal]. 5 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. 6 x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. 7 f(f(x,x),f(y,y)) = x v y. [copy(6),flip(a)]. 8 x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. 9 f(f(x,y),f(x,y)) = x ^ y. [copy(8),flip(a)]. 10 x' = f(x,x) # label(definition_complementation). [assumption]. 11 f(x,x) = x'. [copy(10),flip(a)]. 18 f(c8,f(f(c9,c10),f(c9,c10))) != f(c9,f(f(c8,c10),f(c8,c10))) | f(f(c8,c8),f(c8,c9)) != c8 | f(c8,f(c8,c8)) != f(c9,f(c9,c9)) # answer(combined). [deny(4)]. 19 f(c9,f(c8,c10)') != f(c8,f(c9,c10)') | f(c8',f(c8,c9)) != c8 | f(c9,c9') != f(c8,c8') # answer(combined). [copy(18),rewrite([11(8),11(14),11(16),11(25),11(29)]),flip(a),flip(c)]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. 23 f(c9,c8 ^ c10) != f(c8,c9 ^ c10) | f(c8',f(c8,c9)) != c8 | f(c9,c9') != f(c8,c8') # answer(combined). [back_rewrite(19),rewrite([20(5),20(10)])]. 25 x ^ x = x''. [para(11(a,1),20(a,1,1)),flip(a)]. 27 (x v y)' = x' ^ y'. [para(21(a,1),20(a,1,1))]. 28 f(x ^ y,z') = f(x,y) v z. [para(20(a,1),21(a,1,1))]. 29 f(x',y ^ z) = x v f(y,z). [para(20(a,1),21(a,1,2))]. 30 f(f(f(x',f(x,y)),z),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),22(a,1,1,1,1))]. 31 f(f(f(f(x,y),y'),z),f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),22(a,1,1,1,2))]. 32 f(f(x'',y),f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),22(a,1,1,1)),rewrite([11(1)])]. 33 f(f(x,y) ^ f(y,z),f(y,f(f(y,f(x',x)),z))) = y. [para(11(a,1),22(a,1,1)),rewrite([20(4)])]. 35 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,y ^ f(x',x))) = y. [para(11(a,1),22(a,1,2,2)),rewrite([20(11)])]. 36 f(f(f(x,y),f(y,z)),u) ^ f(y,f(f(y,f(x',x)),z)) = y'. [para(22(a,1),20(a,1,1)),flip(a)]. 41 f(f(x,y),f(x,f(f(x,f(f(z,x) ^ f(x,u),f(f(z,x),f(x,u)))),f(f(x,f(z',z)),u)))) = x. [para(22(a,1),22(a,1,1,1)),rewrite([20(5)])]. 43 f(x',y' ^ z') = x v (y v z). [para(27(a,1),21(a,1,2))]. 48 f(x ^ y,z' ^ u') = f(x,y) v (z v u). [para(27(a,1),28(a,1,2))]. 61 f(x' ^ f(x,y),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),30(a,1,1)),rewrite([20(4)])]. 63 f(f(x',f(x,y)),z) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(30(a,1),20(a,1,1)),flip(a)]. 68 f(x,f(f(x,y),f(f(f(x,y),x' v x),z))) = f(x,y). [para(30(a,1),22(a,1,1)),rewrite([21(6)])]. 129 f(f(x,y) ^ y',f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),31(a,1,1)),rewrite([20(4)])]. 181 f(x''',f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),32(a,1,1))]. 182 f(x'',y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(32(a,1),20(a,1,1)),flip(a)]. 190 f(x,f(x',f(f(x',x' v x),y))) = x'. [para(32(a,1),30(a,1,1)),rewrite([21(6)])]. 192 x''' ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(181(a,1),20(a,1,1)),flip(a)]. 204 (f(x,y) ^ f(y,z)) ^ f(y,f(f(y,f(x',x)),z)) = y'. [para(33(a,1),20(a,1,1)),flip(a)]. 230 x ^ f(x',f(f(x',x' v x),y)) = x''. [para(190(a,1),20(a,1,1)),flip(a)]. 236 f(x',f(x'',x)) = x''. [para(32(a,1),190(a,1,2,2))]. 238 x' ^ f(x'',x) = x'''. [para(236(a,1),20(a,1,1)),flip(a)]. 240 f(x'',x'' v x) = x'''. [para(21(a,1),236(a,1,2))]. 250 f(x'' ^ f(f(x'',x),y),f(f(x'',x),f(f(f(x'',x),x' v x),y))) = f(x'',x). [para(236(a,1),33(a,1,1,1)),rewrite([21(17)])]. 253 x'' ^ (x'' v x) = x''''. [para(21(a,1),238(a,1,2))]. 314 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,y ^ f(x',x)) = y'. [para(35(a,1),20(a,1,1)),flip(a)]. 561 (x' ^ f(x,y)) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(61(a,1),20(a,1,1)),flip(a)]. 650 (f(x,y) ^ y') ^ f(y,f(f(y,f(x',x)),y)) = y'. [para(129(a,1),20(a,1,1)),flip(a)]. 702 f(x''',y) ^ f(x',f(f(x',x' v x),x')) = x''. [para(21(a,1),182(a,1,2,2,1,2))]. 749 f(x',f(f(x',f(x,y)),x)) = f(x',f(x,y)). [para(30(a,1),68(a,1,2,2))]. 863 x' ^ f(f(x',f(x,y)),x) = x' ^ f(x,y). [para(749(a,1),20(a,1,1)),rewrite([20(4)]),flip(a)]. 865 f(x'',f(f(x'',x v y),x')) = f(x'',x v y). [para(21(a,1),749(a,1,2,1,2)),rewrite([21(14)])]. 959 f(x,x'') = x'. [para(41(a,1),190(a,1,2,2)),rewrite([11(3)])]. 963 x ^ x'' = x''. [para(41(a,1),230(a,1,2,2)),rewrite([11(3)])]. 974 f(x,x ^ y) = f(x,y). [para(41(a,1),68(a,1,2,2)),rewrite([11(3),20(2)])]. 979 (x ^ y) ^ f(f(x ^ y,x),f(x,y)) = (x ^ y) ^ x. [para(41(a,1),863(a,1,2,1,2)),rewrite([20(2),20(3),20(8),41(23)])]. 1039 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,f(x',x)) = y'. [back_rewrite(314),rewrite([974(11)])]. 1043 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,f(x',x))) = y. [back_rewrite(35),rewrite([974(11)])]. 1044 f(f(x,y),(x ^ y)') = x ^ y. [para(20(a,1),959(a,1,2,1)),rewrite([20(6)])]. 1048 f(f(f(f(x,y),f(y,(y ^ f(x',x))')),z),f(y,f(x',x))) = y. [para(959(a,1),22(a,1,2,2)),rewrite([20(5),20(12),974(12)])]. 1049 f(x v y,(x' ^ y')') = x' ^ y'. [para(27(a,1),959(a,1,2,1)),rewrite([27(8)])]. 1050 f(x,y) v (x ^ y)' = (x ^ y)'. [para(959(a,1),28(a,1)),flip(a)]. 1071 f(x''',f(x'',f(f(x'',f(x',x)),x''))) = x''. [para(959(a,1),129(a,1,1,1)),rewrite([963(5)])]. 1084 x ^ (x ^ y) = x ^ y. [para(974(a,1),20(a,1,1)),rewrite([20(2)]),flip(a)]. 1098 f(f(x'',y),x') = x. [para(32(a,1),974(a,2)),rewrite([182(12)])]. 1099 x'' v x = x. [para(181(a,1),974(a,2)),rewrite([192(12),21(5)])]. 1105 f(x'',x) = x'''. [para(240(a,1),974(a,2)),rewrite([1099(7),974(6)])]. 1118 f(x',f(x,y)) v x = x. [para(61(a,1),974(a,2)),rewrite([561(12),28(5)])]. 1123 f(f(x,y),y') v y = y. [para(129(a,1),974(a,2)),rewrite([650(12),28(5)])]. 1145 f(x'',x v y) = x'''. [back_rewrite(865),rewrite([1098(8),1105(3)]),flip(a)]. 1156 x'' ^ x = x''''. [back_rewrite(253),rewrite([1099(5)])]. 1161 f(x'' ^ f(x''',y),f(x''',f(x'''',y))) = x'''. [back_rewrite(250),rewrite([1105(5),1105(10),1105(13),1145(16),1105(20)])]. 1194 x''''' = x'. [para(1099(a,1),27(a,1,1)),rewrite([1156(6)]),flip(a)]. 1196 f(x,y) = (x ^ y)'''. [para(1099(a,1),29(a,2)),rewrite([20(2),1105(5)]),flip(a)]. 1197 x v y = (x' ^ y')'''. [para(1099(a,1),43(a,2,2)),rewrite([1156(6),1194(6),1196(3)]),flip(a)]. 1198 ((x ^ y)'''' ^ z')''' = ((x ^ y) ^ z')'''. [para(1099(a,1),48(a,2,2)),rewrite([1156(6),1194(6),1196(3),1196(7),1197(11)]),flip(a)]. 1213 ((x'' ^ (x''' ^ y)''') ^ (x''' ^ (x'''' ^ y)''')''')''' = x'''. [back_rewrite(1161),rewrite([1196(6),1196(18),1196(22),1196(26)])]. 1215 (x'' ^ (x' ^ y')''')''' = x'''. [back_rewrite(1145),rewrite([1197(3),1196(9)])]. 1218 (((x ^ y)''' ^ y') ^ y')''' = y. [back_rewrite(1123),rewrite([1196(1),1196(6),1197(10),1198(15)])]. 1221 ((x' ^ (x ^ y)''') ^ x')''' = x. [back_rewrite(1118),rewrite([1196(2),1196(6),1197(10),1198(15)])]. 1226 ((x'' ^ y)''' ^ x')''' = x. [back_rewrite(1098),rewrite([1196(3),1196(8)])]. 1232 x'''' = x''. [back_rewrite(1071),rewrite([1196(9),1196(13),1196(19),1196(23),1196(27),1215(30)])]. 1238 (x ^ y)''' = (x ^ y)'. [back_rewrite(1050),rewrite([1196(1),1197(7),1232(5),25(7),1232(5),1232(5)])]. 1239 (x' ^ y')'' = x' ^ y'. [back_rewrite(1049),rewrite([1197(1),1238(6),11(9)])]. 1240 ((((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')')' = y. [back_rewrite(1048),rewrite([1196(1),1238(4),1196(4),1238(7),1196(8),1238(11),1196(10),1239(12),1196(12),1238(15),1196(15),1238(18),1196(17),1238(20),1196(19),1239(21)])]. 1243 (x ^ y)'' = x ^ y. [back_rewrite(1044),rewrite([1196(1),1238(4),11(5)])]. 1244 x'' = x. [back_rewrite(1043),rewrite([1196(1),1243(3),1196(4),1243(6),1196(6),1243(8),1196(8),1243(10),1196(10),1243(12),1196(12),1243(14),1196(15),1243(17),1196(17),1243(19),1196(19),1240(20)])]. 1247 (((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')' = y'. [back_rewrite(1039),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(10),1244(12),1196(12),1244(14),1196(15),1244(17),1196(17),1244(19)])]. 1270 (x ^ y) ^ (((x ^ y) ^ x)' ^ (x ^ y)')' = (x ^ y) ^ x. [back_rewrite(979),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9)])]. 1289 x' ^ ((x' ^ (x ^ y)')' ^ x)' = x' ^ (x ^ y)'. [back_rewrite(863),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(11),1244(13)])]. 1320 (x' ^ y)' ^ (x' ^ ((x' ^ (x ^ x')')' ^ x')')' = x. [back_rewrite(702),rewrite([1244(2),1196(2),1244(4),1197(7),1244(7),1244(9),1196(9),1244(11),1196(12),1244(14),1196(14),1244(16),1244(18)])]. 1372 ((x ^ y)' ^ (y ^ z)') ^ (y ^ ((y ^ (x' ^ x)')' ^ z)')' = y'. [back_rewrite(204),rewrite([1196(1),1244(3),1196(3),1244(5),1196(7),1244(9),1196(9),1244(11),1196(11),1244(13),1196(13),1244(15)])]. 1383 ((x' ^ (x ^ y)')' ^ z)' ^ (x ^ ((x ^ (x' ^ x)')' ^ y)')' = x'. [back_rewrite(63),rewrite([1196(2),1244(4),1196(4),1244(6),1196(6),1244(8),1196(9),1244(11),1196(11),1244(13),1196(13),1244(15),1196(15),1244(17)])]. 1384 (((x ^ y)' ^ (y ^ z)')' ^ u)' ^ (y ^ ((y ^ (x' ^ x)')' ^ z)')' = y'. [back_rewrite(36),rewrite([1196(1),1244(3),1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(10),1244(12),1196(12),1244(14),1196(14),1244(16),1196(16),1244(18)])]. 1386 (c9 ^ (c8 ^ c10))' != (c8 ^ (c9 ^ c10))' | (c8' ^ (c8 ^ c9)')' != c8 | (c9 ^ c9')' != (c8 ^ c8')' # answer(combined). [back_rewrite(23),rewrite([1196(5),1244(7),1196(11),1244(13),1196(18),1244(20),1196(20),1244(22),1196(27),1244(29),1196(32),1244(34)])]. 1392 ((x ^ (x' ^ y)') ^ (x' ^ (x ^ y)')')' = x'. [back_rewrite(1213),rewrite([1244(2),1244(2),1244(4),1244(6),1244(7),1244(7),1244(8),1244(10),1244(12),1244(13)])]. 1397 ((x ^ y)' ^ x')' = x. [back_rewrite(1226),rewrite([1244(2),1244(3),1244(6)])]. 1400 ((x' ^ (x ^ y)') ^ x')' = x. [back_rewrite(1221),rewrite([1244(4),1244(8)])]. 1402 (((x ^ y)' ^ y') ^ y')' = y. [back_rewrite(1218),rewrite([1244(3),1244(8)])]. 1405 x ^ x = x. [back_rewrite(25),rewrite([1244(3)])]. 1409 (x ^ y) ^ x = x ^ y. [back_rewrite(1270),rewrite([1397(8),1405(3)]),flip(a)]. 1411 (x' ^ (x ^ y)')' = x. [back_rewrite(1400),rewrite([1409(6)])]. 1416 (x ^ (x' ^ y)')' = x'. [back_rewrite(1392),rewrite([1411(9),1409(5)])]. 1419 (c9 ^ (c8 ^ c10))' != (c8 ^ (c9 ^ c10))' | (c9 ^ c9')' != (c8 ^ c8')' # answer(combined). [back_rewrite(1386),rewrite([1411(21)]),xx(b)]. 1420 (x ^ y)' ^ x' = x'. [back_rewrite(1383),rewrite([1411(5),1416(7),1416(7)])]. 1421 (x' ^ y)' ^ x = x. [back_rewrite(1320),rewrite([1411(10),1411(9)])]. 1424 x' ^ (x ^ y)' = x'. [back_rewrite(1289),rewrite([1411(6),1405(2),1405(3)]),flip(a)]. 1428 x ^ (x' ^ y)' = x. [para(1421(a,1),1409(a,1,1)),rewrite([1421(8)])]. 1433 ((x ^ y)' ^ y') ^ y' = y'. [para(1402(a,1),1244(a,1,1)),flip(a)]. 1446 (x ^ y)' ^ (y ^ (x' ^ x)')' = y'. [para(1421(a,1),1247(a,1,1,1))]. 1449 (x ^ (y' ^ y)')' = x'. [para(1247(a,1),1433(a,1,1)),rewrite([1424(7)]),flip(a)]. 1453 (x ^ y)' ^ y' = y'. [back_rewrite(1446),rewrite([1449(7)])]. 1460 (((x ^ y)' ^ (y ^ z)')' ^ u)' ^ y' = y'. [back_rewrite(1384),rewrite([1449(13),1428(12)])]. 1462 ((x ^ y)' ^ (y ^ z)') ^ y' = y'. [back_rewrite(1372),rewrite([1449(10),1428(9)])]. 1466 x' ^ (y ^ x)' = x'. [para(1453(a,1),1409(a,1,1)),rewrite([1453(8)])]. 1467 x ^ (y ^ x) = y ^ x. [para(1453(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. 1479 x ^ (y' ^ y)' = x. [para(1449(a,1),1244(a,1,1)),rewrite([1244(2)]),flip(a)]. 1487 x ^ (y ^ y')' = x. [para(1244(a,1),1479(a,1,2,1,1))]. 1488 (x' ^ x)' ^ y = y. [para(1479(a,1),1467(a,1,2)),rewrite([1479(8)])]. 1494 (x' ^ x)' = (y' ^ y)'. [para(1488(a,1),1479(a,1))]. 1495 (x' ^ x)' = (y ^ y')'. [para(1488(a,1),1487(a,1)),flip(a)]. 1496 (x' ^ x)' = c_0. [new_symbol(1494)]. 1497 (x ^ x')' = c_0. [back_rewrite(1495),rewrite([1496(3)]),flip(a)]. 1498 c_0 ^ x = x. [back_rewrite(1488),rewrite([1496(3)])]. 1499 x ^ c_0 = x. [back_rewrite(1479),rewrite([1496(3)])]. 1502 (c9 ^ (c8 ^ c10))' != (c8 ^ (c9 ^ c10))' # answer(combined). [back_rewrite(1419),rewrite([1497(18),1497(19)]),xx(b)]. 1517 x' ^ x = c_0'. [para(1496(a,1),1244(a,1,1)),flip(a)]. 1520 x ^ x' = c_0'. [para(1497(a,1),1244(a,1,1)),flip(a)]. 1536 ((x ^ y') ^ z)' ^ y = y. [para(1517(a,1),1460(a,1,1,1,1,1,2,1)),rewrite([1244(6),1499(5),1244(4),1244(6),1244(7)])]. 1537 ((x' ^ y) ^ z)' ^ x = x. [para(1520(a,1),1460(a,1,1,1,1,1,1,1)),rewrite([1244(3),1498(5),1244(4),1244(6),1244(7)])]. 1538 x ^ ((y ^ x') ^ z)' = x. [para(1536(a,1),1409(a,1,1)),rewrite([1536(10)])]. 1546 x ^ ((x' ^ y) ^ z)' = x. [para(1537(a,1),1409(a,1,1)),rewrite([1537(10)])]. 1560 ((x ^ (y ^ z)')' ^ y) ^ (y ^ z) = y ^ z. [para(1420(a,1),1462(a,1,1,2,1)),rewrite([1244(6),1244(8),1244(10)])]. 1573 x ^ (y ^ (z ^ x'))' = x. [para(1467(a,1),1538(a,1,2,1))]. 1591 x ^ (y ^ (x' ^ z))' = x. [para(1467(a,1),1546(a,1,2,1))]. 1608 x' ^ (y ^ (z ^ x))' = x'. [para(1244(a,1),1573(a,1,2,1,2,2))]. 1626 x' ^ (y ^ (x ^ z))' = x'. [para(1244(a,1),1591(a,1,2,1,2,1))]. 4478 (x ^ y) ^ (y ^ x) = y ^ x. [para(1466(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4485 (x ^ y) ^ (y ^ (z ^ x)) = y ^ (z ^ x). [para(1608(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4487 (x ^ y) ^ (y ^ (x ^ z)) = y ^ (x ^ z). [para(1626(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4564 x ^ y = y ^ x. [para(4478(a,1),1409(a,1,1)),rewrite([4478(3),4478(4)])]. 10250 (x ^ (y ^ z)) ^ (z ^ x) = x ^ (y ^ z). [para(4485(a,1),4478(a,1,2)),rewrite([4564(7),1084(7),4485(8)])]. 10251 (x ^ y) ^ (x ^ (z ^ y)) = x ^ (z ^ y). [para(4564(a,1),4485(a,1,1))]. 10421 (x ^ y) ^ (y ^ z) = z ^ (x ^ y). [para(4485(a,1),4485(a,1,2)),rewrite([10250(6),4485(7)])]. 10790 (x ^ y) ^ (y ^ z) = (x ^ y) ^ z. [para(10421(a,2),4478(a,1,1)),rewrite([4564(6),10251(6)])]. 10792 (x ^ y) ^ (x ^ z) = z ^ (y ^ x). [para(4564(a,1),10421(a,1,1))]. 10924 (x ^ y) ^ (x ^ z) = y ^ (x ^ z). [back_rewrite(4487),rewrite([10790(4)])]. 10927 x ^ (y ^ z) = z ^ (x ^ y). [back_rewrite(10792),rewrite([10924(3)])]. 11188 x ^ (y ^ z) = y ^ (x ^ z). [para(4564(a,1),10927(a,1,2))]. 12489 $F # answer(combined). [back_rewrite(1502),rewrite([11188(5)]),xx(a)]. ============================== end of proof ========================== ============================== PROOF ================================= % Proof 4 at 8.82 (+ 0.11) seconds: assoc. % Length of proof is 145. % Level of proof is 39. % Maximum clause weight is 40. % Given clauses 514. 1 f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) # answer(assoc) # label(non_clause) # label(goal). [goal]. 5 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(f(x,x),x)),z))) = y # label(OL_Sh). [assumption]. 6 x v y = f(f(x,x),f(y,y)) # label(definition_join). [assumption]. 7 f(f(x,x),f(y,y)) = x v y. [copy(6),flip(a)]. 8 x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). [assumption]. 9 f(f(x,y),f(x,y)) = x ^ y. [copy(8),flip(a)]. 10 x' = f(x,x) # label(definition_complementation). [assumption]. 11 f(x,x) = x'. [copy(10),flip(a)]. 12 f(c1,f(f(c2,c3),f(c2,c3))) != f(c2,f(f(c1,c3),f(c1,c3))) # answer(assoc). [deny(1)]. 13 f(c2,f(c1,c3)') != f(c1,f(c2,c3)') # answer(assoc). [copy(12),rewrite([11(8),11(14)]),flip(a)]. 20 f(x,y)' = x ^ y. [back_rewrite(9),rewrite([11(3)])]. 21 f(x',y') = x v y. [back_rewrite(7),rewrite([11(1),11(2)])]. 22 f(f(f(f(x,y),f(y,z)),u),f(y,f(f(y,f(x',x)),z))) = y. [back_rewrite(5),rewrite([11(5)])]. 24 f(c2,c1 ^ c3) != f(c1,c2 ^ c3) # answer(assoc). [back_rewrite(13),rewrite([20(5),20(10)])]. 25 x ^ x = x''. [para(11(a,1),20(a,1,1)),flip(a)]. 27 (x v y)' = x' ^ y'. [para(21(a,1),20(a,1,1))]. 28 f(x ^ y,z') = f(x,y) v z. [para(20(a,1),21(a,1,1))]. 29 f(x',y ^ z) = x v f(y,z). [para(20(a,1),21(a,1,2))]. 30 f(f(f(x',f(x,y)),z),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),22(a,1,1,1,1))]. 31 f(f(f(f(x,y),y'),z),f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),22(a,1,1,1,2))]. 32 f(f(x'',y),f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),22(a,1,1,1)),rewrite([11(1)])]. 33 f(f(x,y) ^ f(y,z),f(y,f(f(y,f(x',x)),z))) = y. [para(11(a,1),22(a,1,1)),rewrite([20(4)])]. 35 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,y ^ f(x',x))) = y. [para(11(a,1),22(a,1,2,2)),rewrite([20(11)])]. 36 f(f(f(x,y),f(y,z)),u) ^ f(y,f(f(y,f(x',x)),z)) = y'. [para(22(a,1),20(a,1,1)),flip(a)]. 41 f(f(x,y),f(x,f(f(x,f(f(z,x) ^ f(x,u),f(f(z,x),f(x,u)))),f(f(x,f(z',z)),u)))) = x. [para(22(a,1),22(a,1,1,1)),rewrite([20(5)])]. 43 f(x',y' ^ z') = x v (y v z). [para(27(a,1),21(a,1,2))]. 48 f(x ^ y,z' ^ u') = f(x,y) v (z v u). [para(27(a,1),28(a,1,2))]. 61 f(x' ^ f(x,y),f(x,f(f(x,f(x',x)),y))) = x. [para(11(a,1),30(a,1,1)),rewrite([20(4)])]. 63 f(f(x',f(x,y)),z) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(30(a,1),20(a,1,1)),flip(a)]. 68 f(x,f(f(x,y),f(f(f(x,y),x' v x),z))) = f(x,y). [para(30(a,1),22(a,1,1)),rewrite([21(6)])]. 129 f(f(x,y) ^ y',f(y,f(f(y,f(x',x)),y))) = y. [para(11(a,1),31(a,1,1)),rewrite([20(4)])]. 181 f(x''',f(x,f(f(x,f(x',x)),x))) = x. [para(11(a,1),32(a,1,1))]. 182 f(x'',y) ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(32(a,1),20(a,1,1)),flip(a)]. 190 f(x,f(x',f(f(x',x' v x),y))) = x'. [para(32(a,1),30(a,1,1)),rewrite([21(6)])]. 192 x''' ^ f(x,f(f(x,f(x',x)),x)) = x'. [para(181(a,1),20(a,1,1)),flip(a)]. 204 (f(x,y) ^ f(y,z)) ^ f(y,f(f(y,f(x',x)),z)) = y'. [para(33(a,1),20(a,1,1)),flip(a)]. 230 x ^ f(x',f(f(x',x' v x),y)) = x''. [para(190(a,1),20(a,1,1)),flip(a)]. 236 f(x',f(x'',x)) = x''. [para(32(a,1),190(a,1,2,2))]. 238 x' ^ f(x'',x) = x'''. [para(236(a,1),20(a,1,1)),flip(a)]. 240 f(x'',x'' v x) = x'''. [para(21(a,1),236(a,1,2))]. 250 f(x'' ^ f(f(x'',x),y),f(f(x'',x),f(f(f(x'',x),x' v x),y))) = f(x'',x). [para(236(a,1),33(a,1,1,1)),rewrite([21(17)])]. 253 x'' ^ (x'' v x) = x''''. [para(21(a,1),238(a,1,2))]. 314 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,y ^ f(x',x)) = y'. [para(35(a,1),20(a,1,1)),flip(a)]. 561 (x' ^ f(x,y)) ^ f(x,f(f(x,f(x',x)),y)) = x'. [para(61(a,1),20(a,1,1)),flip(a)]. 650 (f(x,y) ^ y') ^ f(y,f(f(y,f(x',x)),y)) = y'. [para(129(a,1),20(a,1,1)),flip(a)]. 702 f(x''',y) ^ f(x',f(f(x',x' v x),x')) = x''. [para(21(a,1),182(a,1,2,2,1,2))]. 749 f(x',f(f(x',f(x,y)),x)) = f(x',f(x,y)). [para(30(a,1),68(a,1,2,2))]. 863 x' ^ f(f(x',f(x,y)),x) = x' ^ f(x,y). [para(749(a,1),20(a,1,1)),rewrite([20(4)]),flip(a)]. 865 f(x'',f(f(x'',x v y),x')) = f(x'',x v y). [para(21(a,1),749(a,1,2,1,2)),rewrite([21(14)])]. 959 f(x,x'') = x'. [para(41(a,1),190(a,1,2,2)),rewrite([11(3)])]. 963 x ^ x'' = x''. [para(41(a,1),230(a,1,2,2)),rewrite([11(3)])]. 974 f(x,x ^ y) = f(x,y). [para(41(a,1),68(a,1,2,2)),rewrite([11(3),20(2)])]. 979 (x ^ y) ^ f(f(x ^ y,x),f(x,y)) = (x ^ y) ^ x. [para(41(a,1),863(a,1,2,1,2)),rewrite([20(2),20(3),20(8),41(23)])]. 1039 f(f(f(x,y),f(y,f(y,f(x',x)))),z) ^ f(y,f(x',x)) = y'. [back_rewrite(314),rewrite([974(11)])]. 1043 f(f(f(f(x,y),f(y,f(y,f(x',x)))),z),f(y,f(x',x))) = y. [back_rewrite(35),rewrite([974(11)])]. 1044 f(f(x,y),(x ^ y)') = x ^ y. [para(20(a,1),959(a,1,2,1)),rewrite([20(6)])]. 1048 f(f(f(f(x,y),f(y,(y ^ f(x',x))')),z),f(y,f(x',x))) = y. [para(959(a,1),22(a,1,2,2)),rewrite([20(5),20(12),974(12)])]. 1049 f(x v y,(x' ^ y')') = x' ^ y'. [para(27(a,1),959(a,1,2,1)),rewrite([27(8)])]. 1050 f(x,y) v (x ^ y)' = (x ^ y)'. [para(959(a,1),28(a,1)),flip(a)]. 1071 f(x''',f(x'',f(f(x'',f(x',x)),x''))) = x''. [para(959(a,1),129(a,1,1,1)),rewrite([963(5)])]. 1084 x ^ (x ^ y) = x ^ y. [para(974(a,1),20(a,1,1)),rewrite([20(2)]),flip(a)]. 1098 f(f(x'',y),x') = x. [para(32(a,1),974(a,2)),rewrite([182(12)])]. 1099 x'' v x = x. [para(181(a,1),974(a,2)),rewrite([192(12),21(5)])]. 1105 f(x'',x) = x'''. [para(240(a,1),974(a,2)),rewrite([1099(7),974(6)])]. 1118 f(x',f(x,y)) v x = x. [para(61(a,1),974(a,2)),rewrite([561(12),28(5)])]. 1123 f(f(x,y),y') v y = y. [para(129(a,1),974(a,2)),rewrite([650(12),28(5)])]. 1145 f(x'',x v y) = x'''. [back_rewrite(865),rewrite([1098(8),1105(3)]),flip(a)]. 1156 x'' ^ x = x''''. [back_rewrite(253),rewrite([1099(5)])]. 1161 f(x'' ^ f(x''',y),f(x''',f(x'''',y))) = x'''. [back_rewrite(250),rewrite([1105(5),1105(10),1105(13),1145(16),1105(20)])]. 1194 x''''' = x'. [para(1099(a,1),27(a,1,1)),rewrite([1156(6)]),flip(a)]. 1196 f(x,y) = (x ^ y)'''. [para(1099(a,1),29(a,2)),rewrite([20(2),1105(5)]),flip(a)]. 1197 x v y = (x' ^ y')'''. [para(1099(a,1),43(a,2,2)),rewrite([1156(6),1194(6),1196(3)]),flip(a)]. 1198 ((x ^ y)'''' ^ z')''' = ((x ^ y) ^ z')'''. [para(1099(a,1),48(a,2,2)),rewrite([1156(6),1194(6),1196(3),1196(7),1197(11)]),flip(a)]. 1213 ((x'' ^ (x''' ^ y)''') ^ (x''' ^ (x'''' ^ y)''')''')''' = x'''. [back_rewrite(1161),rewrite([1196(6),1196(18),1196(22),1196(26)])]. 1215 (x'' ^ (x' ^ y')''')''' = x'''. [back_rewrite(1145),rewrite([1197(3),1196(9)])]. 1218 (((x ^ y)''' ^ y') ^ y')''' = y. [back_rewrite(1123),rewrite([1196(1),1196(6),1197(10),1198(15)])]. 1221 ((x' ^ (x ^ y)''') ^ x')''' = x. [back_rewrite(1118),rewrite([1196(2),1196(6),1197(10),1198(15)])]. 1226 ((x'' ^ y)''' ^ x')''' = x. [back_rewrite(1098),rewrite([1196(3),1196(8)])]. 1232 x'''' = x''. [back_rewrite(1071),rewrite([1196(9),1196(13),1196(19),1196(23),1196(27),1215(30)])]. 1238 (x ^ y)''' = (x ^ y)'. [back_rewrite(1050),rewrite([1196(1),1197(7),1232(5),25(7),1232(5),1232(5)])]. 1239 (x' ^ y')'' = x' ^ y'. [back_rewrite(1049),rewrite([1197(1),1238(6),11(9)])]. 1240 ((((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')')' = y. [back_rewrite(1048),rewrite([1196(1),1238(4),1196(4),1238(7),1196(8),1238(11),1196(10),1239(12),1196(12),1238(15),1196(15),1238(18),1196(17),1238(20),1196(19),1239(21)])]. 1243 (x ^ y)'' = x ^ y. [back_rewrite(1044),rewrite([1196(1),1238(4),11(5)])]. 1244 x'' = x. [back_rewrite(1043),rewrite([1196(1),1243(3),1196(4),1243(6),1196(6),1243(8),1196(8),1243(10),1196(10),1243(12),1196(12),1243(14),1196(15),1243(17),1196(17),1243(19),1196(19),1240(20)])]. 1247 (((x ^ y)' ^ (y ^ (y ^ (x' ^ x)')')')' ^ z)' ^ (y ^ (x' ^ x)')' = y'. [back_rewrite(1039),rewrite([1196(1),1244(3),1196(4),1244(6),1196(6),1244(8),1196(8),1244(10),1196(10),1244(12),1196(12),1244(14),1196(15),1244(17),1196(17),1244(19)])]. 1270 (x ^ y) ^ (((x ^ y) ^ x)' ^ (x ^ y)')' = (x ^ y) ^ x. [back_rewrite(979),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9)])]. 1289 x' ^ ((x' ^ (x ^ y)')' ^ x)' = x' ^ (x ^ y)'. [back_rewrite(863),rewrite([1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(11),1244(13)])]. 1320 (x' ^ y)' ^ (x' ^ ((x' ^ (x ^ x')')' ^ x')')' = x. [back_rewrite(702),rewrite([1244(2),1196(2),1244(4),1197(7),1244(7),1244(9),1196(9),1244(11),1196(12),1244(14),1196(14),1244(16),1244(18)])]. 1372 ((x ^ y)' ^ (y ^ z)') ^ (y ^ ((y ^ (x' ^ x)')' ^ z)')' = y'. [back_rewrite(204),rewrite([1196(1),1244(3),1196(3),1244(5),1196(7),1244(9),1196(9),1244(11),1196(11),1244(13),1196(13),1244(15)])]. 1383 ((x' ^ (x ^ y)')' ^ z)' ^ (x ^ ((x ^ (x' ^ x)')' ^ y)')' = x'. [back_rewrite(63),rewrite([1196(2),1244(4),1196(4),1244(6),1196(6),1244(8),1196(9),1244(11),1196(11),1244(13),1196(13),1244(15),1196(15),1244(17)])]. 1384 (((x ^ y)' ^ (y ^ z)')' ^ u)' ^ (y ^ ((y ^ (x' ^ x)')' ^ z)')' = y'. [back_rewrite(36),rewrite([1196(1),1244(3),1196(3),1244(5),1196(5),1244(7),1196(7),1244(9),1196(10),1244(12),1196(12),1244(14),1196(14),1244(16),1196(16),1244(18)])]. 1385 (c2 ^ (c1 ^ c3))' != (c1 ^ (c2 ^ c3))' # answer(assoc). [back_rewrite(24),rewrite([1196(5),1244(7),1196(11),1244(13)])]. 1392 ((x ^ (x' ^ y)') ^ (x' ^ (x ^ y)')')' = x'. [back_rewrite(1213),rewrite([1244(2),1244(2),1244(4),1244(6),1244(7),1244(7),1244(8),1244(10),1244(12),1244(13)])]. 1397 ((x ^ y)' ^ x')' = x. [back_rewrite(1226),rewrite([1244(2),1244(3),1244(6)])]. 1400 ((x' ^ (x ^ y)') ^ x')' = x. [back_rewrite(1221),rewrite([1244(4),1244(8)])]. 1402 (((x ^ y)' ^ y') ^ y')' = y. [back_rewrite(1218),rewrite([1244(3),1244(8)])]. 1405 x ^ x = x. [back_rewrite(25),rewrite([1244(3)])]. 1409 (x ^ y) ^ x = x ^ y. [back_rewrite(1270),rewrite([1397(8),1405(3)]),flip(a)]. 1411 (x' ^ (x ^ y)')' = x. [back_rewrite(1400),rewrite([1409(6)])]. 1416 (x ^ (x' ^ y)')' = x'. [back_rewrite(1392),rewrite([1411(9),1409(5)])]. 1420 (x ^ y)' ^ x' = x'. [back_rewrite(1383),rewrite([1411(5),1416(7),1416(7)])]. 1421 (x' ^ y)' ^ x = x. [back_rewrite(1320),rewrite([1411(10),1411(9)])]. 1424 x' ^ (x ^ y)' = x'. [back_rewrite(1289),rewrite([1411(6),1405(2),1405(3)]),flip(a)]. 1428 x ^ (x' ^ y)' = x. [para(1421(a,1),1409(a,1,1)),rewrite([1421(8)])]. 1433 ((x ^ y)' ^ y') ^ y' = y'. [para(1402(a,1),1244(a,1,1)),flip(a)]. 1446 (x ^ y)' ^ (y ^ (x' ^ x)')' = y'. [para(1421(a,1),1247(a,1,1,1))]. 1449 (x ^ (y' ^ y)')' = x'. [para(1247(a,1),1433(a,1,1)),rewrite([1424(7)]),flip(a)]. 1453 (x ^ y)' ^ y' = y'. [back_rewrite(1446),rewrite([1449(7)])]. 1460 (((x ^ y)' ^ (y ^ z)')' ^ u)' ^ y' = y'. [back_rewrite(1384),rewrite([1449(13),1428(12)])]. 1462 ((x ^ y)' ^ (y ^ z)') ^ y' = y'. [back_rewrite(1372),rewrite([1449(10),1428(9)])]. 1466 x' ^ (y ^ x)' = x'. [para(1453(a,1),1409(a,1,1)),rewrite([1453(8)])]. 1467 x ^ (y ^ x) = y ^ x. [para(1453(a,1),1421(a,1,1,1)),rewrite([1244(2)])]. 1479 x ^ (y' ^ y)' = x. [para(1449(a,1),1244(a,1,1)),rewrite([1244(2)]),flip(a)]. 1487 x ^ (y ^ y')' = x. [para(1244(a,1),1479(a,1,2,1,1))]. 1488 (x' ^ x)' ^ y = y. [para(1479(a,1),1467(a,1,2)),rewrite([1479(8)])]. 1494 (x' ^ x)' = (y' ^ y)'. [para(1488(a,1),1479(a,1))]. 1495 (x' ^ x)' = (y ^ y')'. [para(1488(a,1),1487(a,1)),flip(a)]. 1496 (x' ^ x)' = c_0. [new_symbol(1494)]. 1497 (x ^ x')' = c_0. [back_rewrite(1495),rewrite([1496(3)]),flip(a)]. 1498 c_0 ^ x = x. [back_rewrite(1488),rewrite([1496(3)])]. 1499 x ^ c_0 = x. [back_rewrite(1479),rewrite([1496(3)])]. 1517 x' ^ x = c_0'. [para(1496(a,1),1244(a,1,1)),flip(a)]. 1520 x ^ x' = c_0'. [para(1497(a,1),1244(a,1,1)),flip(a)]. 1536 ((x ^ y') ^ z)' ^ y = y. [para(1517(a,1),1460(a,1,1,1,1,1,2,1)),rewrite([1244(6),1499(5),1244(4),1244(6),1244(7)])]. 1537 ((x' ^ y) ^ z)' ^ x = x. [para(1520(a,1),1460(a,1,1,1,1,1,1,1)),rewrite([1244(3),1498(5),1244(4),1244(6),1244(7)])]. 1538 x ^ ((y ^ x') ^ z)' = x. [para(1536(a,1),1409(a,1,1)),rewrite([1536(10)])]. 1546 x ^ ((x' ^ y) ^ z)' = x. [para(1537(a,1),1409(a,1,1)),rewrite([1537(10)])]. 1560 ((x ^ (y ^ z)')' ^ y) ^ (y ^ z) = y ^ z. [para(1420(a,1),1462(a,1,1,2,1)),rewrite([1244(6),1244(8),1244(10)])]. 1573 x ^ (y ^ (z ^ x'))' = x. [para(1467(a,1),1538(a,1,2,1))]. 1591 x ^ (y ^ (x' ^ z))' = x. [para(1467(a,1),1546(a,1,2,1))]. 1608 x' ^ (y ^ (z ^ x))' = x'. [para(1244(a,1),1573(a,1,2,1,2,2))]. 1626 x' ^ (y ^ (x ^ z))' = x'. [para(1244(a,1),1591(a,1,2,1,2,1))]. 4478 (x ^ y) ^ (y ^ x) = y ^ x. [para(1466(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4485 (x ^ y) ^ (y ^ (z ^ x)) = y ^ (z ^ x). [para(1608(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4487 (x ^ y) ^ (y ^ (x ^ z)) = y ^ (x ^ z). [para(1626(a,1),1560(a,1,1,1,1)),rewrite([1244(2)])]. 4564 x ^ y = y ^ x. [para(4478(a,1),1409(a,1,1)),rewrite([4478(3),4478(4)])]. 10250 (x ^ (y ^ z)) ^ (z ^ x) = x ^ (y ^ z). [para(4485(a,1),4478(a,1,2)),rewrite([4564(7),1084(7),4485(8)])]. 10251 (x ^ y) ^ (x ^ (z ^ y)) = x ^ (z ^ y). [para(4564(a,1),4485(a,1,1))]. 10421 (x ^ y) ^ (y ^ z) = z ^ (x ^ y). [para(4485(a,1),4485(a,1,2)),rewrite([10250(6),4485(7)])]. 10790 (x ^ y) ^ (y ^ z) = (x ^ y) ^ z. [para(10421(a,2),4478(a,1,1)),rewrite([4564(6),10251(6)])]. 10792 (x ^ y) ^ (x ^ z) = z ^ (y ^ x). [para(4564(a,1),10421(a,1,1))]. 10924 (x ^ y) ^ (x ^ z) = y ^ (x ^ z). [back_rewrite(4487),rewrite([10790(4)])]. 10927 x ^ (y ^ z) = z ^ (x ^ y). [back_rewrite(10792),rewrite([10924(3)])]. 11188 x ^ (y ^ z) = y ^ (x ^ z). [para(4564(a,1),10927(a,1,2))]. 12491 $F # answer(assoc). [back_rewrite(1385),rewrite([11188(5)]),xx(a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=514. Generated=385506. Kept=12475. proofs=4. Usable=64. Sos=647. Demods=1814. Limbo=1302, Disabled=10470. Hints=0. Kept_by_rule=0, Deleted_by_rule=4798. Forward_subsumed=368229. Back_subsumed=430. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=11900 (5 lex), Back_demodulated=10032. Back_unit_deleted=0. Demod_attempts=5967716. Demod_rewrites=958654. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=4. Megabytes=12.65. User_CPU=8.82, System_CPU=0.11, Wall_clock=9. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 4 proofs. Process 15838 exit (max_proofs) Wed Feb 25 12:26:11 2009 prover9-manual-2009-02A/easy.in0000644000175000017500000000135110571121153015442 0ustar mccunemccune% assign(new_constants, 1). assign(eq_defs, fold). set(restrict_denials). formulas(assumptions). % Veroff's 2-basis for BA in terms of the Sheffer stroke. f(x,y) = f(y,x). f(f(x,y),f(x,f(y,z))) = x. f(x,f(y,f(x',z))) = f(x,y'). % extra assumption % Define a new operation (which turns out to be complement). % The "assign(eq_defs, fold)" above causes this definition to be % oriented as a rewrite rule so that the operation is introduced % whenever possible. x' = f(x,x). end_of_list. formulas(goals). % Sheffer basis for Boolean Algebra f(f(x,x),f(x,x)) = x # label(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2). f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3). end_of_list. prover9-manual-2009-02A/easy.out0000644000175000017500000005470111151315532015653 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15844 was started by mccune on cleo, Wed Feb 25 12:26:17 2009 The command was "/home/mccune/bin/prover9 -f easy.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file easy.in assign(eq_defs,fold). set(restrict_denials). formulas(assumptions). f(x,y) = f(y,x). f(f(x,y),f(x,f(y,z))) = x. f(x,f(y,f(x',z))) = f(x,y'). x' = f(x,x). end_of_list. formulas(goals). f(f(x,x),f(x,x)) = x # label(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2). f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). f(x,y) = f(y,x). [assumption]. f(f(x,y),f(x,f(y,z))) = x. [assumption]. f(x,f(y,f(x',z))) = f(x,y'). [assumption]. x' = f(x,x). [assumption]. f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1). [deny(1)]. f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2). [deny(2)]. f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3). [deny(3)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label Sheffer_1 to answer in negative clause % copying label Sheffer_2 to answer in negative clause % copying label Sheffer_3 to answer in negative clause % assign(max_proofs, 3). % (Horn set with more than one neg. clause) Term ordering decisions: Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, f, ' ]). After inverse_order: (no changes). Folding symbols: '/1. After fold_eq: Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, ', f ]). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). % Operation f is commutative; C redundancy checks enabled. kept: 4 f(x,y) = f(y,x). [assumption]. kept: 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. kept: 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 7 x' = f(x,x). [assumption]. kept: 8 f(x,x) = x'. [copy(7),flip(a)]. 9 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. kept: 10 c1'' != c1 # answer(Sheffer_1). [copy(9),rewrite([8(3),8(5),8(5)])]. 11 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. kept: 12 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(11),rewrite([8(5),8(9)])]. 13 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. kept: 14 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(13),rewrite([8(3),4(4),8(7),4(8),8(20)])]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 10 c1'' != c1 # answer(Sheffer_1). [copy(9),rewrite([8(3),8(5),8(5)])]. 12 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(11),rewrite([8(5),8(9)])]. 14 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(13),rewrite([8(3),4(4),8(7),4(8),8(20)])]. end_of_list. formulas(sos). 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 8 f(x,x) = x'. [copy(7),flip(a)]. end_of_list. formulas(demodulators). 4 f(x,y) = f(y,x). [assumption]. % (lex-dep) 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 8 f(x,x) = x'. [copy(7),flip(a)]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=7): 4 f(x,y) = f(y,x). [assumption]. given #2 (I,wt=11): 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. given #3 (I,wt=13): 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. given #4 (I,wt=6): 8 f(x,x) = x'. [copy(7),flip(a)]. given #5 (A,wt=11): 15 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. given #6 (T,wt=10): 23 f(f(x,y),f(x,y')) = x. [para(6(a,1),5(a,1,2))]. given #7 (T,wt=9): 44 f(x',f(x,x')) = x. [para(8(a,1),23(a,1,1))]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: Sheffer_1. % Length of proof is 12. % Level of proof is 5. % Maximum clause weight is 13. % Given clauses 7. 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 7 x' = f(x,x). [assumption]. 8 f(x,x) = x'. [copy(7),flip(a)]. 9 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. 10 c1'' != c1 # answer(Sheffer_1). [copy(9),rewrite([8(3),8(5),8(5)])]. 23 f(f(x,y),f(x,y')) = x. [para(6(a,1),5(a,1,2))]. 44 f(x',f(x,x')) = x. [para(8(a,1),23(a,1,1))]. 51 f(x,f(y,x)) = f(x,y'). [para(44(a,1),6(a,1,2,2))]. 55 x'' = x. [back_rewrite(44),rewrite([51(4),8(3)])]. 56 $F # answer(Sheffer_1). [resolve(55,a,10,a)]. ============================== end of proof ========================== % Redundant proof: 58 $F # answer(Sheffer_1). [back_rewrite(10),rewrite([55(3)]),xx(a)]. % Disable descendants (x means already disabled): 9x 10x given #8 (T,wt=5): 55 x'' = x. [back_rewrite(44),rewrite([51(4),8(3)])]. given #9 (T,wt=9): 50 f(x,f(x,x')) = x'. [para(44(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. given #10 (A,wt=11): 16 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. given #11 (T,wt=8): 66 f(x',f(x,y)) = x. [para(16(a,1),6(a,1)),rewrite([4(3)]),flip(a)]. given #12 (T,wt=8): 79 f(x',f(y,x)) = x. [para(4(a,1),66(a,1,2))]. given #13 (T,wt=9): 84 f(x,f(x',y)) = x'. [para(55(a,1),66(a,1,1))]. given #14 (T,wt=9): 86 f(x,f(y,x')) = x'. [para(79(a,1),15(a,1,2)),rewrite([4(3)])]. given #15 (A,wt=11): 17 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. given #16 (T,wt=10): 37 f(f(x,y),f(y,x')) = y. [para(6(a,1),15(a,1,2))]. given #17 (T,wt=10): 40 f(f(x,y),f(y',x)) = x. [para(4(a,1),23(a,1,2))]. given #18 (T,wt=10): 51 f(x,f(y,x)) = f(x,y'). [para(44(a,1),6(a,1,2,2))]. given #19 (T,wt=10): 53 f(f(x',y),f(y,x)) = y. [para(44(a,1),15(a,1,2,2))]. given #20 (A,wt=17): 18 f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). [para(5(a,1),5(a,1,1))]. given #21 (T,wt=10): 81 f(x,f(x,y)') = f(x,y). [para(5(a,1),66(a,1,2)),rewrite([4(3)])]. given #22 (T,wt=10): 82 f(x,f(y,x)') = f(y,x). [para(15(a,1),66(a,1,2)),rewrite([4(3)])]. given #23 (T,wt=10): 95 f(f(x,y'),f(y,x)) = x. [para(66(a,1),17(a,1,2,1))]. given #24 (T,wt=10): 99 f(f(x,y),f(x',y)) = y. [para(4(a,1),37(a,1,2))]. given #25 (A,wt=13): 20 f(x,f(y,f(z,x'))) = f(x,y'). [para(4(a,1),6(a,1,2,2))]. given #26 (T,wt=10): 121 f(x,f(x,y)) = f(x,y'). [para(4(a,1),51(a,1,2))]. given #27 (T,wt=9): 214 f(x,x') = f(y,y'). [back_rewrite(168),rewrite([207(4),206(6)])]. ============================== PROOF ================================= % Proof 2 at 0.03 (+ 0.00) seconds: Sheffer_2. % Length of proof is 26. % Level of proof is 8. % Maximum clause weight is 16. % Given clauses 27. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 7 x' = f(x,x). [assumption]. 8 f(x,x) = x'. [copy(7),flip(a)]. 11 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. 12 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(11),rewrite([8(5),8(9)])]. 15 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 16 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 23 f(f(x,y),f(x,y')) = x. [para(6(a,1),5(a,1,2))]. 44 f(x',f(x,x')) = x. [para(8(a,1),23(a,1,1))]. 51 f(x,f(y,x)) = f(x,y'). [para(44(a,1),6(a,1,2,2))]. 55 x'' = x. [back_rewrite(44),rewrite([51(4),8(3)])]. 66 f(x',f(x,y)) = x. [para(16(a,1),6(a,1)),rewrite([4(3)]),flip(a)]. 79 f(x',f(y,x)) = x. [para(4(a,1),66(a,1,2))]. 81 f(x,f(x,y)') = f(x,y). [para(5(a,1),66(a,1,2)),rewrite([4(3)])]. 82 f(x,f(y,x)') = f(y,x). [para(15(a,1),66(a,1,2)),rewrite([4(3)])]. 121 f(x,f(x,y)) = f(x,y'). [para(4(a,1),51(a,1,2))]. 164 f(f(x,y),f(x,y)') = f(x',f(x,y)'). [para(81(a,1),51(a,1,2)),rewrite([4(4),4(8)])]. 168 f(x',f(y,x)') = f(y',f(y,x)'). [para(82(a,1),51(a,1,2)),rewrite([4(4),164(4),4(8)]),flip(a)]. 206 f(x',f(x,y)') = f(x,x'). [para(66(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. 207 f(x',f(y,x)') = f(x,x'). [para(79(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. 214 f(x,x') = f(y,y'). [back_rewrite(168),rewrite([207(4),206(6)])]. 220 f(x,f(y,y')) = x'. [para(214(a,1),79(a,1,2)),rewrite([55(2)])]. 221 $F # answer(Sheffer_2). [resolve(220,a,12,a)]. ============================== end of proof ========================== % Redundant proof: 224 $F # answer(Sheffer_2). [back_rewrite(12),rewrite([220(6)]),xx(a)]. % Disable descendants (x means already disabled): 11x 12x given #28 (T,wt=9): 218 f(f(x,x'),y) = y'. [para(214(a,1),15(a,1,1)),rewrite([66(5)])]. given #29 (T,wt=9): 220 f(x,f(y,y')) = x'. [para(214(a,1),79(a,1,2)),rewrite([55(2)])]. given #30 (A,wt=13): 21 f(x,f(f(x',y),z)) = f(x,z'). [para(4(a,1),6(a,1,2))]. given #31 (T,wt=11): 28 f(f(x,f(y,z)),f(y,x)) = x. [para(15(a,1),4(a,1)),flip(a)]. given #32 (T,wt=11): 29 f(f(x,y),f(y,f(z,x))) = y. [para(4(a,1),15(a,1,2,2))]. given #33 (T,wt=11): 30 f(f(x,y),f(f(x,z),y)) = y. [para(4(a,1),15(a,1,2))]. given #34 (T,wt=11): 34 f(f(f(x,y),z),f(z,x)) = z. [para(5(a,1),15(a,1,2,2))]. given #35 (A,wt=17): 22 f(f(x,y'),f(x,f(f(y,f(x',z)),u))) = x. [para(6(a,1),5(a,1,1))]. given #36 (T,wt=11): 39 f(f(f(x,y),z),f(z,y)) = z. [para(15(a,1),15(a,1,2,2))]. given #37 (T,wt=11): 62 f(f(x,y),f(f(z,y),x)) = x. [para(4(a,1),16(a,1,2))]. given #38 (T,wt=11): 91 f(f(x,f(y,z)),f(z,x)) = x. [para(15(a,1),17(a,1,2,1))]. given #39 (T,wt=11): 231 f(x,x')' = f(y,y')'. [para(220(a,1),218(a,1))]. given #40 (A,wt=12): 24 f(x,f(x',y)') = f(x,x'). [para(5(a,1),6(a,1,2)),flip(a)]. given #41 (T,wt=11): 260 f(f(x,y),f(f(z,x),y)) = y. [para(4(a,1),29(a,1,2))]. given #42 (T,wt=12): 35 f(x,f(y,x')') = f(x,x'). [para(15(a,1),6(a,1,2)),flip(a)]. given #43 (T,wt=12): 206 f(x',f(x,y)') = f(x,x'). [para(66(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. given #44 (T,wt=12): 207 f(x',f(y,x)') = f(x,x'). [para(79(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. given #45 (A,wt=17): 31 f(x,f(f(y,x),f(f(x,f(y,z)),u))) = f(y,x). [para(15(a,1),5(a,1,1))]. given #46 (T,wt=12): 222 f(x,f(y,y')') = f(x,x'). [para(214(a,1),81(a,1,2,1))]. given #47 (T,wt=12): 398 f(x,f(f(x',y)',z)) = x'. [para(24(a,1),21(a,1,2)),rewrite([220(7),55(7)]),flip(a)]. given #48 (T,wt=11): 513 f(x',f(f(x,y)',z)) = x. [para(55(a,1),398(a,1,2,1,1,1)),rewrite([55(7)])]. given #49 (T,wt=11): 526 f(x',f(f(y,x)',z)) = x. [para(4(a,1),513(a,1,2,1,1))]. given #50 (A,wt=19): 33 f(x,f(f(x,f(y,z)),f(f(x,y),u))) = f(x,f(y,z)). [para(5(a,1),15(a,1,1))]. given #51 (T,wt=11): 527 f(x',f(y,f(x,z)')) = x. [para(4(a,1),513(a,1,2))]. given #52 (T,wt=11): 538 f(x',f(y,f(z,x)')) = x. [para(4(a,1),526(a,1,2))]. given #53 (T,wt=12): 440 f(x,f(y,f(x',z)')) = x'. [para(35(a,1),21(a,1,2)),rewrite([220(7),55(7)]),flip(a)]. given #54 (T,wt=12): 451 f(f(x,x')',y) = f(x,x'). [para(218(a,1),206(a,1,2,1)),rewrite([55(5),218(10),55(8)])]. given #55 (A,wt=22): 36 f(f(x,y'),f(f(y,f(x',z)),f(x,u))) = f(y,f(x',z)). [para(6(a,1),15(a,1,1))]. given #56 (T,wt=12): 510 f(x,f(y,y')') = f(y,y'). [para(222(a,1),82(a,1,2,1)),rewrite([223(7),218(6),55(4)]),flip(a)]. given #57 (T,wt=12): 511 f(x,f(f(y,x')',z)) = x'. [para(4(a,1),398(a,1,2,1,1))]. given #58 (T,wt=12): 626 f(x,f(y,f(z,x')')) = x'. [para(55(a,1),538(a,1,1))]. given #59 (T,wt=13): 65 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),16(a,1,2)),rewrite([4(4)])]. given #60 (A,wt=19): 38 f(x,f(f(x,f(y,z)),f(f(y,x),u))) = f(x,f(y,z)). [para(15(a,1),15(a,1,1))]. given #61 (T,wt=13): 70 f(f(x,y'),f(y,x)') = f(y,x). [para(8(a,1),16(a,1,2)),rewrite([4(2),51(2)])]. given #62 (T,wt=13): 73 f(x,f(f(y,x),f(y,z))) = f(y,x). [para(15(a,1),16(a,1,2)),rewrite([4(4)])]. given #63 (T,wt=13): 78 f(x,f(f(x,y),f(z,y))) = f(x,y). [para(16(a,1),16(a,1,2)),rewrite([4(4)])]. given #64 (T,wt=13): 90 f(x,f(f(y,z),f(x,y))) = f(x,y). [para(17(a,1),15(a,1,2)),rewrite([4(4)])]. given #65 (A,wt=16): 41 f(x,f(f(x,y),f(f(x,y'),z))) = f(x,y). [para(23(a,1),5(a,1,1))]. given #66 (T,wt=13): 183 f(x,f(f(y,x'),z)) = f(x,z'). [para(4(a,1),20(a,1,2))]. given #67 (T,wt=13): 200 f(x,f(y,f(x',z))') = f(x,y). [para(6(a,1),121(a,1,2)),rewrite([121(3),55(2)]),flip(a)]. given #68 (T,wt=13): 213 f(x,f(y,f(z,x'))') = f(x,y). [para(20(a,1),121(a,1,2)),rewrite([121(3),55(2)]),flip(a)]. given #69 (T,wt=13): 250 f(x,f(f(x',y),z)') = f(x,z). [para(21(a,1),121(a,1,2)),rewrite([121(3),55(2)]),flip(a)]. given #70 (A,wt=17): 46 f(x,f(f(x,y'),f(f(x,y),z))) = f(x,y'). [para(23(a,1),15(a,1,1))]. given #71 (T,wt=13): 266 f(x,f(f(y,z),f(y,x))) = f(y,x). [para(15(a,1),29(a,1,2)),rewrite([4(4)])]. given #72 (T,wt=13): 270 f(x,f(f(y,x),f(z,y))) = f(y,x). [para(29(a,1),16(a,1,2)),rewrite([4(4)])]. given #73 (T,wt=13): 272 f(x,f(f(y,z),f(x,z))) = f(x,z). [para(16(a,1),29(a,1,2)),rewrite([4(4)])]. given #74 (T,wt=13): 292 f(x,f(f(y,z),f(z,x))) = f(z,x). [para(29(a,1),29(a,1,2)),rewrite([4(4)])]. given #75 (A,wt=14): 59 f(x',f(y,f(x,z))) = f(x',y'). [para(55(a,1),6(a,1,2,2,1))]. given #76 (T,wt=13): 361 f(x,f(f(y,x'),z)') = f(x,z). [para(39(a,1),20(a,1,2)),flip(a)]. given #77 (T,wt=13): 1394 f(f(x,y)',z) = f(y,f(x,z)'). [back_rewrite(303),rewrite([1357(5),1366(5)])]. given #78 (T,wt=13): 1396 f(f(x,y'),f(y,z)') = f(y,z). [back_rewrite(1069),rewrite([1394(7),82(5)])]. given #79 (T,wt=13): 1397 f(f(x',y),f(x,z)') = f(x,z). [back_rewrite(1032),rewrite([1394(7),82(5)])]. given #80 (A,wt=17): 63 f(x,f(f(x,y),f(f(x,f(z,y)),u))) = f(x,y). [para(16(a,1),5(a,1,1))]. given #81 (T,wt=13): 1399 f(x,f(y,z)') = f(z,f(x,y)'). [back_rewrite(750),rewrite([1394(5),82(3)]),flip(a)]. given #82 (T,wt=13): 1400 f(x,f(y,z)') = f(z,f(y,x)'). [back_rewrite(1287),rewrite([1394(5),81(3)])]. given #83 (T,wt=13): 1403 f(x,f(y,z)') = f(y,f(x,z)'). [back_rewrite(747),rewrite([1394(5),625(5)])]. given #84 (T,wt=13): 1652 f(f(x,y'),f(z,y)') = f(y,z). [para(4(a,1),1396(a,1,2,1))]. given #85 (A,wt=17): 64 f(x,f(f(x,y),f(z,f(x,f(y,u))))) = f(x,y). [para(5(a,1),16(a,1,1))]. given #86 (T,wt=12): 2050 f(f(x,y),f(y,x)) = f(x,y)'. [para(1652(a,1),79(a,1,2)),rewrite([55(3)])]. given #87 (T,wt=13): 1675 f(f(x',y),f(z,x)') = f(x,z). [para(4(a,1),1397(a,1,2,1))]. given #88 (T,wt=14): 122 f(f(x,y'),f(x,f(f(y,x),z))) = x. [para(51(a,1),5(a,1,1))]. given #89 (T,wt=14): 128 f(f(x,y'),f(x,f(z,f(y,x)))) = x. [para(51(a,1),16(a,1,1))]. given #90 (A,wt=17): 67 f(f(x,y'),f(x,f(z,f(y,f(x',u))))) = x. [para(6(a,1),16(a,1,1))]. given #91 (T,wt=14): 187 f(x',f(y,f(z,x))) = f(x',y'). [para(55(a,1),20(a,1,2,2,2))]. given #92 (T,wt=14): 198 f(f(x,y'),f(x,f(f(x,y),z))) = x. [para(121(a,1),5(a,1,1))]. given #93 (T,wt=14): 203 f(f(x,y'),f(x,f(z,f(x,y)))) = x. [para(121(a,1),16(a,1,1))]. given #94 (T,wt=14): 236 f(x',f(f(x,y),z)) = f(x',z'). [para(55(a,1),21(a,1,2,1,1))]. given #95 (A,wt=16): 125 f(f(x,y'),f(f(y,x),f(x,z))) = f(y,x). [para(51(a,1),15(a,1,1))]. given #96 (T,wt=14): 383 f(f(x,f(y,z)),f(f(y,z'),x)) = x. [para(121(a,1),62(a,1,2,1))]. given #97 (T,wt=14): 391 f(f(x,f(y,z')),f(f(y,z),x)) = x. [para(121(a,1),91(a,1,1,2))]. given #98 (T,wt=14): 615 f(f(x,y),f(x,f(z,f(y,u)'))) = x. [para(527(a,1),16(a,1,2,2)),rewrite([4(6)])]. given #99 (T,wt=14): 619 f(f(x,f(y,f(z,u)')),f(z,x)) = x. [para(527(a,1),62(a,1,2,1))]. given #100 (A,wt=17): 145 f(f(x,y),f(f(y,x'),f(y,z))) = f(y,x'). [para(15(a,1),18(a,1,2,2,1)),rewrite([4(3),51(3),4(8),51(8)])]. ============================== PROOF ================================= % Proof 3 at 0.64 (+ 0.01) seconds: Sheffer_3. % Length of proof is 66. % Level of proof is 19. % Maximum clause weight is 19. % Given clauses 100. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 f(x,f(y,f(x',z))) = f(x,y'). [assumption]. 7 x' = f(x,x). [assumption]. 8 f(x,x) = x'. [copy(7),flip(a)]. 13 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. 14 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(13),rewrite([8(3),4(4),8(7),4(8),8(20)])]. 15 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 16 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 17 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. 18 f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). [para(5(a,1),5(a,1,1))]. 20 f(x,f(y,f(z,x'))) = f(x,y'). [para(4(a,1),6(a,1,2,2))]. 21 f(x,f(f(x',y),z)) = f(x,z'). [para(4(a,1),6(a,1,2))]. 23 f(f(x,y),f(x,y')) = x. [para(6(a,1),5(a,1,2))]. 24 f(x,f(x',y)') = f(x,x'). [para(5(a,1),6(a,1,2)),flip(a)]. 30 f(f(x,y),f(f(x,z),y)) = y. [para(4(a,1),15(a,1,2))]. 37 f(f(x,y),f(y,x')) = y. [para(6(a,1),15(a,1,2))]. 39 f(f(f(x,y),z),f(z,y)) = z. [para(15(a,1),15(a,1,2,2))]. 44 f(x',f(x,x')) = x. [para(8(a,1),23(a,1,1))]. 51 f(x,f(y,x)) = f(x,y'). [para(44(a,1),6(a,1,2,2))]. 55 x'' = x. [back_rewrite(44),rewrite([51(4),8(3)])]. 59 f(x',f(y,f(x,z))) = f(x',y'). [para(55(a,1),6(a,1,2,2,1))]. 62 f(f(x,y),f(f(z,y),x)) = x. [para(4(a,1),16(a,1,2))]. 65 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),16(a,1,2)),rewrite([4(4)])]. 66 f(x',f(x,y)) = x. [para(16(a,1),6(a,1)),rewrite([4(3)]),flip(a)]. 71 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(16(a,1),15(a,1,1))]. 79 f(x',f(y,x)) = x. [para(4(a,1),66(a,1,2))]. 81 f(x,f(x,y)') = f(x,y). [para(5(a,1),66(a,1,2)),rewrite([4(3)])]. 82 f(x,f(y,x)') = f(y,x). [para(15(a,1),66(a,1,2)),rewrite([4(3)])]. 91 f(f(x,f(y,z)),f(z,x)) = x. [para(15(a,1),17(a,1,2,1))]. 121 f(x,f(x,y)) = f(x,y'). [para(4(a,1),51(a,1,2))]. 145 f(f(x,y),f(f(y,x'),f(y,z))) = f(y,x'). [para(15(a,1),18(a,1,2,2,1)),rewrite([4(3),51(3),4(8),51(8)])]. 164 f(f(x,y),f(x,y)') = f(x',f(x,y)'). [para(81(a,1),51(a,1,2)),rewrite([4(4),4(8)])]. 168 f(x',f(y,x)') = f(y',f(y,x)'). [para(82(a,1),51(a,1,2)),rewrite([4(4),164(4),4(8)]),flip(a)]. 198 f(f(x,y'),f(x,f(f(x,y),z))) = x. [para(121(a,1),5(a,1,1))]. 203 f(f(x,y'),f(x,f(z,f(x,y)))) = x. [para(121(a,1),16(a,1,1))]. 206 f(x',f(x,y)') = f(x,x'). [para(66(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. 207 f(x',f(y,x)') = f(x,x'). [para(79(a,1),121(a,1,2)),rewrite([4(2)]),flip(a)]. 214 f(x,x') = f(y,y'). [back_rewrite(168),rewrite([207(4),206(6)])]. 220 f(x,f(y,y')) = x'. [para(214(a,1),79(a,1,2)),rewrite([55(2)])]. 236 f(x',f(f(x,y),z)) = f(x',z'). [para(55(a,1),21(a,1,2,1,1))]. 303 f(f(x,y)',f(f(x,z),y)) = f(y,f(x,z)'). [para(30(a,1),51(a,1,2)),rewrite([4(3),51(3),4(8)]),flip(a)]. 361 f(x,f(f(y,x'),z)') = f(x,z). [para(39(a,1),20(a,1,2)),flip(a)]. 364 f(f(f(x,y),z),f(z,y)') = f(z,f(x,y)'). [para(39(a,1),121(a,1,2)),rewrite([4(3),51(3)]),flip(a)]. 391 f(f(x,f(y,z')),f(f(y,z),x)) = x. [para(121(a,1),91(a,1,1,2))]. 398 f(x,f(f(x',y)',z)) = x'. [para(24(a,1),21(a,1,2)),rewrite([220(7),55(7)]),flip(a)]. 513 f(x',f(f(x,y)',z)) = x. [para(55(a,1),398(a,1,2,1,1,1)),rewrite([55(7)])]. 526 f(x',f(f(y,x)',z)) = x. [para(4(a,1),513(a,1,2,1,1))]. 538 f(x',f(y,f(z,x)')) = x. [para(4(a,1),526(a,1,2))]. 625 f(x,f(y,f(z,x)')') = f(y,f(z,x)'). [para(538(a,1),15(a,1,1)),rewrite([6(7)])]. 718 f(f(x,y),f(y,z)') = f(x',f(y,z)'). [para(65(a,1),51(a,1,2)),rewrite([4(5),121(5),4(9),236(9)])]. 747 f(f(x,y)',f(z,y)') = f(z,f(x,y)'). [back_rewrite(364),rewrite([718(5)])]. 1357 f(f(x,y)',f(z,y)) = f(f(x,y)',z'). [para(15(a,1),59(a,1,2,2))]. 1366 f(f(x,y)',f(x,z)') = f(f(x,y)',z). [para(30(a,1),59(a,1,2)),flip(a)]. 1394 f(f(x,y)',z) = f(y,f(x,z)'). [back_rewrite(303),rewrite([1357(5),1366(5)])]. 1403 f(x,f(y,z)') = f(y,f(x,z)'). [back_rewrite(747),rewrite([1394(5),625(5)])]. 1477 f(x',f(f(y,x),z)') = f(x',z). [para(55(a,1),361(a,1,2,1,1,2))]. 1971 f(f(x,y),f(z,f(x,y'))') = f(z,x'). [para(23(a,1),1403(a,1,2,1)),flip(a)]. 1989 f(x,f(y,f(x,z)')) = f(x,f(y,z)). [para(1403(a,1),121(a,1,2)),rewrite([55(7)])]. 2384 f(x,f(f(x,y),z)) = f(x,f(y',z)). [para(198(a,1),37(a,1,1)),rewrite([4(7),1394(7),121(5),1989(8),1477(5)]),flip(a)]. 2528 f(x,f(y,f(z,f(f(x,y),u))')) = f(x,f(z,y)). [back_rewrite(71),rewrite([2384(6),1394(5)])]. 2529 f(x,f(y,f(x,z))) = f(x,f(y,z')). [para(203(a,1),15(a,1,1)),rewrite([2384(8),1394(7),2384(8),2528(8)]),flip(a)]. 2793 f(f(x,y'),f(x,f(y,z))) = f(x,f(y,z))'. [para(82(a,1),391(a,1,2)),rewrite([1394(6),1971(6)])]. 2899 f(f(x,y'),f(x,z)) = f(x,f(y,z'))'. [para(145(a,1),62(a,1,2)),rewrite([4(5),2529(5),2384(5),55(2),4(6),2793(6)]),flip(a)]. 2983 $F # answer(Sheffer_3). [back_rewrite(14),rewrite([2899(9),55(5)]),xx(a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=100. Generated=20126. Kept=2971. proofs=3. Usable=57. Sos=1090. Demods=1066. Limbo=84, Disabled=1747. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=17152. Back_subsumed=108. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=2657 (1 lex), Back_demodulated=1632. Back_unit_deleted=0. Demod_attempts=272134. Demod_rewrites=48654. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=2.33. User_CPU=0.64, System_CPU=0.01, Wall_clock=1. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 3 proofs. Process 15844 exit (max_proofs) Wed Feb 25 12:26:18 2009 prover9-manual-2009-02A/flag0000644000175000017500000000025610426424551015017 0ustar mccunemccune
set(??).    % default set
clear(??).    % default clear
prover9-manual-2009-02A/fof-prover9.html0000644000175000017500000000453611151021064017220 0ustar mccunemccune Prover9 Manual: FOF-Prover9
Prover9 Manual Version 2009-02A

FOF-Prover9

FOF (First-Order Formula) reduction is a method of attempting to simplify a problem by reducing it to an equivalent set of independent subproblems. A trivial example is to reduce the conjecture A <-> B to the pair of problems A -> B and B -> A.

The problem reduction uses a miniscope method [Champeaux-miniscope] that is quite powerful in some cases, but it can easily blow up on complex formulas. Therefore, if the reduction procedure fails to terminate within a few seconds, or if the subproblems it produces are more complex than the original problem, the reduction attempt is aborted (and the user may wish to try the ordinary Prover9 program instead). If the reduction succeeds, each subproblem is given to the ordinary Prover9 search module.

Input files accepted by FOF-Prover9 are the same as those accepted by Prover9, and when FOF-Prover9 runs the search module on a subproblem, is uses all of the options given in the input file.

An Example of FOF Reduction

This example was given by Peter Andrews as a challenge problem for resolution systems in the 1970s. FOF-Prover9's miniscope procedure reduces it to 32 trivial subproblems. (More powerful miniscope methods can solve the problem by reducing it to 0 subproblems.)
fof-prover9 -f andrews.in > andrews.out
Here is the same input run with ordinary Prover9.
prover9 -f andrews.in > andrews.out2
The preceding example is artificial and seems tailor-made for FOF reduction. Other, more realistic examples can be found in the standard set of Prover9 examples.
Next Section: More Programs prover9-manual-2009-02A/glossary.html0000644000175000017500000005532611151021064016710 0ustar mccunemccune Prover9 Manual: Glossary
Prover9 Manual Version 2009-02A

Glossary

Under construction. (Send suggestions of terms to include.)

Terms, Clauses, Formulas, Interpretations

These definitions apply to first-order unsorted logic. See a book on first-order logic for more formal definitions of these concepts.
Term
A recursive definition of first-order unsorted terms.
  • A variable is a term,
  • a constant is a term, and
  • an n-ary function symbol applied to n terms is a term.

Atomic Formula
An n-ary predicate symbol applied to n terms is an atomic formula.

Formula
  • An atomic formula is a formula,
  • if F and G are formulas, then the following are formulas.
    • (-F)
    • (F | G)
    • (F & G)
    • (F -> G)
    • (F <-> G)
  • if F is a formula and x is a variable, then the following are formulas.
    • (all x F)
    • (exists x F)
When writing formulas for Prover9, many of the parentheses can be omitted; see the page
Clauses and Formulas tor the parsing rules.

Free Variables
A free variable is a variable not bound by any quantifier. A closed formula has no free variables. An open formula has at least one free variable.

Prover9's default rule for distinguishing free variables from constants is that free varaibles start with (lower case) 'u' through 'z'.


Literal
A literal is either an atomic formula or the negation of an atomic formula.

Clause
A clause is a formula consisting of a disjunction of literals. All variables in a clause are assumed to be universally quantified.

Interpretation
An interpretation of a first-order language consists of
  • of a set of objects called the domain,
  • an n-ary function over the domain into the domain for each n-ary function symbol in the language,
  • an n-ary relation over the domain for each n-ary predicate symbol in the language.
Given an interpretation, each term in the language evaluates to a member of the domain, and each clause or closed formula in the language evaluates to TRUE or to FALSE.

Types of Clause


Unit Clause
A unit clause has exactly one literal.

Positive Clause, Negative Clause, Mixed Clause
A positive clause has no negative literals. A negative clause has no positive literals. Note that the empty clause is both positive and negative. A mixed clause has at least one literal of each sign.

Horn Clause, Horn Set
A Horn clause has at most one positive literal. A Horn set is a set of Horn clauses.

Definite Clause
A definite clause has exactly one positive literal.


Logic Transformations


Negation Normal Form (NNF)
A formula is in negation normal form if the only logic connectives are negation, conjunction, disjunction, quantification (universal or existential), and if all negation operations are applied directly to atomic formulas.

Conjunctive Normal Form (CNF)
This definition applies to quantifier-free formulas.

A formula is in conjunctive normal form if (1) the only logic connectives are negation, conjunction, and disjunction, (2) no negation is applied to a conjunction or a disjunction, and (3) no disjunction is applied to a conjunction.

Alternate definition: A formula is in CNF if it is a clause or a conjunction of clauses.


Skolemization
Skolemization is the process of replacing existentially quantified variables in a formula with new constants (called Skolem constants) or functions (called Skolem functions). If an existential quantifier is in the scope of some universal quantifiers, the new symbol is a function of the corresponding universally quantified variables. The result of Skolemization is not, strictly speaking, equivalent to the original formula, because new symbols may have been introduced, but the result is inconsistent iff the the original formula is inconsistent.

Clausification
Clausification is the process of translating a formula into a conjunction of clauses. A standard way is NNF conversion, Skolemization, moving universal quantifiers to the top (renaming bound variables if necessary), CNF conversion, and finally removing universal quantifiers. The variables in each resulting clause are implicitly universally quantified.

Each step produces an equivalent formula, except for Skolemization, which produces an equiconsistent formula, so the result of Clausification is inconsistent iff the original formula is inconsistent.


Universal Closure
The universal closure of a formula is constructed by universally quantifying, at the top of the formula, all free variables in the formula.


Term Ordering Terminology


Knuth-Bendix Ordering (KBO)

Lexicographic Path Ordering (LPO)

Recursive Path Ordering (RPO)

Maximal Literal
A literal is maximal in a clause, with respect to some term ordering, if no literal in the clause is greater. The terms orderings used by Prover9 (LPO, KBO, RPO) are, in general, only partial, so clauses do not necessarily have greatest literals.


Inference and Simplification Rules


Completeness
An inference system is complete if it is capable (given enough time and memory) of proving any theorem (in the language of the inference system).

Binary Resolution
The inference rule binary resolution takes two clauses containing unifiable literals of opposite sign and produces a clause consisting of the remaining literals to which the most general unifying substitution has been applied. The rule can be viewed as a generalization of modus ponens.

Restrictions on Binary Resolution.

  • Positive resolution: one of the parents is is a positive clause.
  • Negative resolution: one of the parents is is a negative clause.
  • Unit resolution: one of the parents is is a unit clause.

Ordered Inference, Literal Selection
Ordered Inference is a restriction of resolution or paramdulation based on literal ordering. In some cases, inferences can be restricted to maximal literals.

Literal selection is a restriction of resolution or paramdulation. In each clause, some subset of the negative literals are marked as selected (the selection may be arbitrary), and in some cases inferences can be restricted to selected literals.


Factoring
The inference rule factoring takes one clause containing two or more literals (of the same sign) that all unify. The most general unifying substitution is applied to the parent, and the unified literals become identical and are merged into one.

Factoring in Prover9 is binary, operating on two literals at a time.


Hyperresolution
The hyperresolution inference rule (also called positive hyperresolution) takes a non-positive clause (called the nucleus) and simultaneously resolves each of its negative literals with positive clauses (called the satellites), producing a positive clause. Hyperresolution can be viewed as a sequence of positive binary resolution steps ending with a positive clause.

Negative hyperresolution is similar to hyperresolution but with the signs reversed.


UR-Resolution
The UR-resolution (unit-resulting resolution) inference rule takes a nonunit clause (called the nucleus) and resolves all but one of its literals with unit clauses (called the satellites), producing a unit clause.

Positive UR-resolution is UR-resolution with the constraint that the result must be a positive unit clause.

Negative UR-resolution is UR-resolution with the constraint that the result must be a negative unit clause.


"From" and "Into" in Paramodulation
A paramodulation inference consists of two parents and a child. The parent containing the equality used for the replacement is the from parent or the from clause, the equality is the from literal, and the side of the equality that unifies with the term being replaced is the from term.

The replaced term is the into term, the literal containing the replaced term is the into literal, and the parent containing the replaced term is the into parent or into clause.

Superposition is a restricted form of paramodulation in which substitution is not allowed into the lighter side of an equation.


Positive Paramodulation
Positive paramodulation is a restriction of paramodulation in which the "from" clause is positive, and if the "into" literal is positive, the "into" clause is also positive.

Demodulation, Back Demodulation
Demodulation (also called rewriting) is the process of using a set of oriented equations (demodulators) to rewrite (simplify, canonicalize) terms. If the demodulators have good properties, demodulation terminates.

Forward demodulation (or just demodulation) is the process of using a set of demodulators to rewrite newly generated clauses.

Back demodulation is the process of using a new demodulator to simplify previously stored clauses.


Unit Deletion, Back Unit Deletion
Unit deletion is analogous to demodulation. The difference is that unit clauses, rather than equations, are used for simplification.

Unit deletion is the process of using unit clauses to remove literals from newly generated clauses.

Back unit deletion is the process of using a new unit clause to remove literals from previously stored clauses.


Subsumption, Forward and Backward Subsumption
Clause C subsumes clause D if the variables of C can be instantiated in such a way that it becomes a subclause of D. If C subsumes D, then D can be discarded, because it is weaker than or equivalent to C. (There are some proof procedures that require retention of subsumed clauses.)

Forward subsumption (or just subsumption) is the process of deleting a newly derived clause if it is subsumed by some previously stored clause.

Back subsumption is the process of deleting all previously stored clauses that are subsumed by a newly derived clause.


Unit Conflict
Unit Conflict is an inference rule that derives a contradiction from unit clauses, for example, from P(a,b) and -P(x,b).


Prover9 Terminology


Given Clause
The given clause loop drives the inference process int Prover9. At each iteration of the loop, a given clause is selected from the sos list, moved the the usable list, and then inferences are made using the given clause and other clauses in the usable list.

Sos List, Assumptions List, Usable List
During the search, the usable list is the list of clauses that are available for making inferences with the given clause, and the sos list is the list of clauses that are waiting to be selected as given clauses. Clauses in the sos list are not available for making primary inferences, but they can be used to simplify inferred clauses by demodulation and unit deletion.

The assumptions list is identical to the sos list; that is, "assumptions" is a synonym for "sos".

Prover9 also accepts non-clausal formulas in lists named usable or sos. Such formulas are transformed to clauses which are placed in the clause list of the same name.

The name "sos" is used because it can be employed to achieve the set-of-support strategy, which requires that all lines of reasoning start with a subset of the input clauses called the set of support. The clauses or formulas in the initial set of support are placed the sos list, and the rest of the clauses or formulas are placed in the usable list.


Goal, Goals List
A goal is the conclusion of a conjecture, stated in positive form. Each goals is transformed to clauses by constructing its universal closure, negation, then clausification.

If there is more than one goal, Prover9 may impose restrictions on the structure of the goals.


Hint, Hints List
Hints are clauses that are intended to guide Prover9 toward proofs. Hints are not part of the problem specification; that is, they are not used for making inferences. They are used only as a component of the weighting function for selecting given clauses.

Initial Clause
A clause is an initial clause if it exists at the time when the first given clause is selected. Initial clauses are not necessarily input clauses, because they may be created during preprocessing, for example, by rewriting or clausification.

Denial
In Prover9 terminology, a negative clause in a Horn set is called a denial, because such clauses usually come from the negation of a conclusion. (The term does not apply to non-Horn sets, because a proof of a non-Horn set may require more than one negative clause.)

FOF Reduction
FOF (First-Order Formula) reduction is a method of attempting to simplify a problem by reducing it to an equivalent set of independent subproblems. A trivial example is to reduce the conjecture A <-> B to the pair of problems A -> B and B -> A.

Lex-Dependent Demodulator
A lex-dependent demodulator is one that cannot be oriented by the primary term ordering (LPO or KBO). An example is commutativity of a binary operation. During demodulation, a lex-dependent demodulator is applied only if it produces a term that is smaller in the primary term ordering.

Depth of Term, Atom, Literal, Clause
  • depth of variable, constant, or propositional atom: 0;
  • depth of term or atom with arguments: one more than the maximum argument depth;
  • depth of literal: depth of its atom (negation signs don't count);
  • depth of clause: maximum of depths of literals;
For example, p(x) | -p(f(x)) has depth 2.

Relational Definition
A relational definition for an n-ary relation (say P with n=3) is a closed formula of the form (using Prover9 syntax)
all x all y all z (P(x,y,z) <-> f)
for some formula f that does not contain the symbol P.

Equational Definition
An equational definition for an n-ary function (say f with n=3) is an equation (using Prover9 syntax)
f(x,y,z) = t
for some term t that does not contain the symbol f and that does not contain free variables other than x, y, and z.

Next Section:
References prover9-manual-2009-02A/err0000644000175000017500000001576111150635673014711 0ustar mccunemccune-------- Proof 1 -------- ------ process 1478 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1479 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1480 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1481 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1482 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1483 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1484 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1485 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1486 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1487 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1488 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1489 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1490 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1491 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1492 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1493 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1494 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1495 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1496 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1497 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1498 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1499 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1500 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1501 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1502 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1503 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1504 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1505 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1506 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1507 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1508 exit (max_proofs) ------ -------- Proof 1 -------- ------ process 1509 exit (max_proofs) ------  THEOREM PROVED ------ process 1477 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1510 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1511 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1512 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1513 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1514 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1515 exit (max_proofs) ------ -------- Proof 1 -------- H2. THEOREM PROVED ------ process 1516 exit (max_proofs) ------  WARNING: clear(process_initial_sos) is not well tested. We usually recommend against using it. SEARCH FAILED ------ process 1521 exit (sos_empty) ------  SEARCH FAILED ------ process 1523 exit (sos_empty) ------ -------- Proof 1 -------- absorb. -------- Proof 2 -------- one. -------- Proof 3 -------- combined. -------- Proof 4 -------- assoc. THEOREM PROVED ------ process 1524 exit (max_proofs) ------ -------- Proof 1 -------- right_cancellation. THEOREM PROVED ------ process 1527 exit (max_proofs) ------ -------- Proof 1 -------- Sheffer_1. -------- Proof 2 -------- Sheffer_2. -------- Proof 3 -------- Sheffer_3. THEOREM PROVED ------ process 1528 exit (max_proofs) ------ -------- Proof 1 -------- Sheffer_1. -------- Proof 2 -------- Sheffer_2. -------- Proof 3 -------- Sheffer_3. THEOREM PROVED ------ process 1530 exit (max_proofs) ------ -------- Proof 1 -------- Sheffer_1. -------- Proof 2 -------- Sheffer_2. -------- Proof 3 -------- Sheffer_3. THEOREM PROVED ------ process 1533 exit (max_proofs) ------  === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 6. === ------ process 1534 exit (max_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 6. === ------ process 1535 exit (max_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 7. === === Mace4 starting on domain size 11. === === Mace4 starting on domain size 13. === === Mace4 starting on domain size 17. === === Mace4 starting on domain size 19. === ------ process 1536 exit (max_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === ------ process 1554 exit (max_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 6. === ------ process 1560 exit (all_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 6. === ------ process 1564 exit (all_models) ------ === Mace4 starting on domain size 2. === === Mace4 starting on domain size 3. === === Mace4 starting on domain size 4. === === Mace4 starting on domain size 5. === === Mace4 starting on domain size 6. === ------ process 1568 exit (all_models) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1575 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1577 exit (max_proofs) ------  === Mace4 starting on domain size 8. === ------ process 1580 exit (max_models) ------ === Mace4 starting on domain size 8. === ------ process 1581 exit (max_models) ------ === Mace4 starting on domain size 6. === ------ process 1582 exit (all_models) ------ === Mace4 starting on domain size 10. === ------ process 1583 exit (max_models) ------ === Mace4 starting on domain size 5. === ------ process 1585 exit (max_models) ------ -------- Proof 1 -------- [5,7,2,6,3,1,4,8]. THEOREM PROVED ------ process 1586 exit (max_proofs) ------  SEARCH FAILED ------ process 1587 exit (sos_empty) ------ -------- Proof 1 -------- goat # none # wolf # goat # cabbage # none # goat. THEOREM PROVED ------ process 1588 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1589 exit (max_proofs) ------ -------- Proof 1 -------- THEOREM PROVED ------ process 1590 exit (max_proofs) ------ See the files checked-jobs/*.diffs prover9-manual-2009-02A/go.options0000755000175000017500000000042610467124007016205 0ustar mccunemccune#!/bin/csh foreach i (*.html) sed -n '/start option/,/end option/p' $i\ | egrep '^(set|clear|assign)\(.*default' \ | sed -e '/^set/s/)\..*/ TRUE/'\ | sed -e '/^clear/s/)\..*/ FALSE/'\ | sed -e '/^assign/s/,.*=/ /' -e 's/,.*//'\ | sed -e 's/.*(//' end prover9-manual-2009-02A/go.outputs0000644000175000017500000000103410467503043016227 0ustar mccunemccuneandrews.out andrews.out2 subset_trans.out subset_trans.out2 subset_trans.out3 subset_trans.out4 LT-82-2.out weight_test.out x2.prover9.out olsax.out x2.mace4.out LT-82-2-interp.out subset_trans.proof1 subset_trans.proof2 subset_trans.proof3 subset_trans.proof4 subset_trans.proof5.xml subset_trans.proof6 subset_trans.proof7 subset_trans.proof8 x2.portable x2.portable2 x2.tabular x2.raw x2.cooked x2.xml x2.tex MOL-cand.238 uc-hunt.out BA2.interps BA2.interps2 BA2.interps3 BA2.interps4 BA2.interps5 group-terms.out bool-ring.out BA4.out prover9-manual-2009-02A/goals.html0000644000175000017500000002115111151021064016137 0ustar mccunemccune Prover9 Manual: Goals and Denials
Prover9 Manual Version 2009-02A

Goals and Denials

This section shows how the conclusion(s) of a conjecture can be stated in positive form, how one can search for direct proofs as opposed to bidirectional proofs, and how multiple conclusions are stated and handled.

Terminology

Goals: Stating Conclusions in Positive Form

In Otter, the conclusions are always stated in negated form.
Prover9 allows the user to state conclusions in positive form by using the list formulas(goals). However, Prover9 always works by refutation, so the clauses or formulas in the goals lists are negated as described below, and the results are appended to the sos clause list before the search starts. In other words, goals are "syntactic sugar" for input, and have nothing to do with the way Prover9 conducts its search for refutations.

When the conclusion is given in positive form, the user has no control over the Skolem symbols (if any) that Prover9 introduces. If the user needs some control of the Skolem symbols, for example, to insert them into the symbol precedence at a particular spot, or to include them in the weighting function, the user should do the Skolemizing and give the conclusion in negated form.

If there is just one formula in formulas(goals), the meaning is clear: the formula is processed by first taking its universal closure, then negating. The formula is then handled exactly as if it had been input in formulas(sos), that is, by Skolemizing and transforming to clauses.

Multiple Goals

If there is more than one formula in formulas(goals), the meaning is not clear. Is the conclusion the disjunction of those formulas? Or the conjunction? The answer: disjunction: if any goal is proved, the proof is reported, printed, and counted.

Multiple complex goals are not allowed, because the quantification of free variables can be very confusing. Therefore Prover9 enforces the following rule.

If there is more than one formula in the goals list, each must be a positive universal conjunctive formula, that is a formula constructed from atomic formulas, universal quantification, and conjunction only.
To avoid this restriction, one can always write the conclusion clearly as a single goal formula containing any of the logic connectives and quantification. However, if the conjecture involves multiple complex conclusions, we recommend, for search efficiency, separate Prover9 searches.

If there are multiple goals, each is processed separately by applying universal closure, negation, and transformation to clauses. After this processing, Prover9 forgets that there were multiple goals and simply searches for refutations.

When there are multiple goals, and when the user wishes to prove more than one goal, the parameter max_proofs should be set to an appropriate value. (The flag auto_denials (default set) can do so automatically.)

Multiple Proofs

assign(max_proofs, n).  % default n=1, range [-1 .. INT_MAX]
This parameter tells Prover9 to stop searching when the n-th proof has been found.

Denials: Negative Clauses in Horn Sets

Denial clauses (negative clauses in Horn sets) can be derived from goals, or they can be input directly as negative clauses.

Multiple Proofs of the Same Conclusion

set(reuse_denials).
clear(reuse_denials).    % default clear
If this flag is set, when a denial clause (a negative clause in a Horn set) is used in a proof, and when max_proofs says to search for more proofs, subsequent proofs may be of the same conclusion. (Multiple proofs of the same conclusion may be useful when one is searching for short proofs.)

If this flag is clear, then when a proof is found, the denial and all of its descendants are disabled so that they will not appear in subsequent proofs.

This flag is independent of the flag restrict_denials.

Auto_denials

set(auto_denials).    % default set
clear(auto_denials).
If this flag is set (the default), negative clauses in Horn sets receive some special initial processing.

If a Horn set has more than one denial (negative) clause, we assume they correspond to separate conclusions, and the user wishes to have a separate proof of each conclusion. Therefore, if max_proofs has not been changed from its default value of 1, we assign to max_proofs the number of negative clauses. (Note that when reuse_denials is clear (the default), Prover9 prevents multiple proofs of the same conclusion.)

Also, if a negative clause in a Horn set has label attribute but no answer attribute, the clause is given an answer attribute corresponding to the first label attribute. This saves the user from changing "label" to "answer" when moving formulas from the sos list to the goals list.

Forward or Direct Proofs

The following flag restricts the use of negative clauses, with the aim of finding proofs that are more direct; that is, proofs that go forward from the hypotheses to the conclusion rather than proofs that reason backward from the conclusion.

Ordinarily, the term denial refers to a negative clause in a Horn set. Here, we use it for any negative clause. Originally, the flag restrict_denials applied only to Horn sets, but we eliminated that restriction when we realized that it can be useful for non-Horn sets. However, its use has been well analyzed for non-Horn sets.

set(restrict_denials).
clear(restrict_denials).    % default clear

If the flag is set, negative clauses (clauses in which all literals are negative) are referred to as restricted denials and are given special treatment.

The inference rules (i.e., paramodulation and the resolution rules) will not be applied to restricted denials. However, restricted denials will be simplified by back demodulation and back unit deletion.

In addition, restricted denials will not be deleted if they are over the weight limit (max_weight).

The effect of setting restrict_denials is that proofs will usually be more forward or direct. This option can speed up proofs, it can delay proofs, and it can block all proofs.

An Example

The following example illustrates multiple goals (including a goal that is a combination of other goals), auto_denials, and restrict_denials.
prover9 -f olsax.in > olsax.out

Next Section: Production Mode prover9-manual-2009-02A/group-terms.in0000644000175000017500000000030610445522505016772 0ustar mccunemccune% The stream of objects to be rewritten can include % terms, clauses, and formulas. They are parsed % as Prover9/LADR "terms". (a' * b) * (a' * b)'. y * (z * (((w * w') * (x * z)') * y))' = x. prover9-manual-2009-02A/weight_test.out0000644000175000017500000000013211151315512017223 0ustar mccunemccunegiven #1 (I,wt=4): 1 p(a). [assumption]. given #2 (I,wt=155): 2 p(a * b). [assumption]. prover9-manual-2009-02A/group.demods0000644000175000017500000000047310456775540016527 0ustar mccunemccuneformulas(demodulators). % This is the complete set of reductions for free groups. % It can be used to canonicalize group terms. (x * y) * z = x * (y * z). e * x = x. x * e = x. x' * x = e. x * x' = e. x' ' = x. e' = e. x * (x' * y) = y. x' * (x * y) = y. (x * y)' = y' * x'. end_of_list. prover9-manual-2009-02A/x2.prover9.out0000644000175000017500000001135311151315512016642 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15837 was started by mccune on cleo, Wed Feb 25 12:26:02 2009 The command was "/home/mccune/bin/prover9 -f x2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file x2.in assign(max_seconds,5). formulas(sos). (x * y) * z = x * (y * z). x * e = x. x * x' = e. end_of_list. formulas(goals). x * y = y * x. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 x * y = y * x # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). (x * y) * z = x * (y * z). [assumption]. x * e = x. [assumption]. x * x' = e. [assumption]. c2 * c1 != c1 * c2. [deny(1)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: (no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ e, c1, c2, *, ' ]). After inverse_order: Function symbol precedence: function_order([ e, c1, c2, *, ' ]). Unfolding symbols: (none). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). kept: 2 (x * y) * z = x * (y * z). [assumption]. kept: 3 x * e = x. [assumption]. kept: 4 x * x' = e. [assumption]. kept: 5 c2 * c1 != c1 * c2. [deny(1)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 2 (x * y) * z = x * (y * z). [assumption]. 3 x * e = x. [assumption]. 4 x * x' = e. [assumption]. 5 c2 * c1 != c1 * c2. [deny(1)]. end_of_list. formulas(demodulators). 2 (x * y) * z = x * (y * z). [assumption]. 3 x * e = x. [assumption]. 4 x * x' = e. [assumption]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=11): 2 (x * y) * z = x * (y * z). [assumption]. given #2 (I,wt=5): 3 x * e = x. [assumption]. given #3 (I,wt=6): 4 x * x' = e. [assumption]. given #4 (I,wt=7): 5 c2 * c1 != c1 * c2. [deny(1)]. given #5 (A,wt=9): 6 x * (e * y) = x * y. [para(3(a,1),2(a,1,1)),flip(a)]. given #6 (T,wt=6): 9 x * e' = x. [para(4(a,1),6(a,1,2)),rewrite([3(2)]),flip(a)]. given #7 (T,wt=10): 7 x * (x' * y) = e * y. [para(4(a,1),2(a,1,1)),flip(a)]. given #8 (T,wt=7): 12 e * x'' = x. [para(4(a,1),7(a,1,2)),rewrite([3(2)]),flip(a)]. given #9 (T,wt=5): 15 e * x = x. [para(12(a,1),6(a,2)),rewrite([14(5),6(4)])]. given #10 (A,wt=10): 8 x * (y * (x * y)') = e. [para(4(a,1),2(a,1)),flip(a)]. given #11 (T,wt=4): 19 e' = e. [para(15(a,1),4(a,1))]. given #12 (T,wt=8): 18 x * (x' * y) = y. [back_rewrite(7),rewrite([15(5)])]. given #13 (T,wt=5): 21 x'' = x. [para(4(a,1),18(a,1,2)),rewrite([3(2)]),flip(a)]. given #14 (T,wt=6): 23 x' * x = e. [para(21(a,1),4(a,1,2))]. given #15 (A,wt=12): 17 x * (y * ((x * y)' * z)) = z. [back_rewrite(11),rewrite([15(7)])]. given #16 (T,wt=8): 24 x' * (x * y) = y. [para(21(a,1),18(a,1,2,1))]. given #17 (T,wt=9): 29 x * (y * x)' = y'. [para(8(a,1),24(a,1,2)),rewrite([3(3)]),flip(a)]. given #18 (T,wt=10): 34 (x * y)' = y' * x'. [para(29(a,1),24(a,1,2)),flip(a)]. ============================== STATISTICS ============================ Given=18. Generated=232. Kept=33. proofs=0. Usable=11. Sos=0. Demods=10. Limbo=0, Disabled=26. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=199. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=32 (0 lex), Back_demodulated=22. Back_unit_deleted=0. Demod_attempts=1806. Demod_rewrites=419. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.04. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= SEARCH FAILED Exiting with failure. Process 15837 exit (sos_empty) Wed Feb 25 12:26:02 2009 prover9-manual-2009-02A/hard.in0000644000175000017500000000126710571121153015425 0ustar mccunemccune% assign(new_constants, 1). assign(eq_defs, fold). set(restrict_denials). formulas(assumptions). % Veroff's 2-basis for BA in terms of the Sheffer stroke. f(x,y) = f(y,x). f(f(x,y),f(x,f(y,z))) = x. % Define a new operation (which turns out to be complement). % The "assign(eq_defs, fold)" above causes this definition to be % oriented as a rewrite rule so that the operation is introduced % whenever possible. x' = f(x,x). end_of_list. formulas(goals). % Sheffer basis for Boolean Algebra f(f(x,x),f(x,x)) = x # label(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2). f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3). end_of_list. prover9-manual-2009-02A/x2.raw0000644000175000017500000000047011151315541015217 0ustar mccunemccune% number = 1 % seconds = 0 % Interpretation of size 6 % Function * / 2 : 0 1 2 3 4 5 1 0 3 2 5 4 2 4 0 5 1 3 3 5 1 4 0 2 4 2 5 0 3 1 5 3 4 1 2 0 % Function ' / 1 : 0 1 2 4 3 5 % Function e / 0 : 0 % Function c1 / 0 : 1 % Function c2 / 0 : 2 prover9-manual-2009-02A/hints.html0000644000175000017500000002330211151021064016157 0ustar mccunemccune Prover9 Manual: Hints
Prover9 Manual Version 2009-02A

Hints

Hint clauses can be used to help guide Prover9's search. Prover9's input can contain any number of hint lists (which are simply concatenated by Prover9).

Each list of hint clauses must start with formulas(hints). and end with end_of_list. Any clause is acceptable as a hint. For example (the label attributes are optional),

formulas(hints).
    x ' * (x * y) = y       # label(6).
    x * (x * y) = y         # label(7).
    x * (y * (x * y)) = e   # label(8).
    x ' ' * e = x           # label(9).
    x ' * e = x             # label(10).
    x ' = x                 # label(11).
    x * e = x               # label(12).
    x * (y * x) = y         # label(13).
    x * y = y * x           # label(14).
end_of_list.

A derived clause matches a hint if it subsumes the hint. If a clause matches more than one hint, the first matching hint is used.

In Otter, "matching a hint" can mean (depending on the parameter settings) subsumes, subsumed by, or equivalent to. These other types of matching may be added to Prover9 if there is any demand for them.

Hints are used primarily when selecting given clauses. The mechanism for doing this is the given-clause selection procedure. In short, the default value of the hints_part parameter says to select clauses that match hints (lightest first) whenever any are available.

Hints are also used when deciding to keep a new clause. Clauses that match hints are not deleted by any of the parameters max_weight, max_vars, max_literals, or max_depth.

Where do Hints Come From?

Hints frequently consist of proofs, perhaps many, of related theorems.

Bob Veroff developed the concept, installing code for hints in an early version of Otter, to experiment with his method of proof sketches [Veroff-hints, Veroff-sketches]. In the proof sketches method, a difficult conjecture is attacked by first proving several (or many) weakened variants of the conjecture, and using those proofs as hints to guide searches for a proof of the original conjecture.

The program Prooftrans, which is distributed along with Prover9, can be used to extract proofs from a Prover9 output file and transform the proofs to lists of hints suitable for input to subsequent Prover9 jobs.

An Example

This example consists of four jobs. The first is a proof of a nontrivial theorem called "hard". The other three jobs prove the hard theorem indirectly by first proving an easier theorem (in this case, the easier theorem simply the harder theorem with an extra assumption); then using the proof of the easier theorem as hints to help prove the hard theorem.
  1. A Prover9 job that proves the hard theorem.
    prover9 -f hard.in > hard.out
    
  2. A proof of the easier thorem.
    prover9 -f easy.in > easy.out
    
  3. A Prooftrans job converts the proof of the easier theorem into a list of hints.
    prooftrans hints -f easy.out > easy.hints
    
  4. A Prover9 job that uses the hints to prove the harder theorem.
    prover9 -f hard.in easy.hints  > hard-hints.out
    
Proving the hard theorem indirectly (jobs 2,3,4) takes about 1/4 the time as proving it directly (job 1). Of course the difficult and interesting part of working this way is finding good "easy" theorems.

Special Weight Assignments

When the given clause selection procedure calls for a clause that matches a hint, the lightest such clause is chosen. Ordinarily, clauses that match hints are weighed just as any other clause is weighed. However, if one believes some hints are more important that others, one can, in effect, say "any clause that matches this hint gets a specific weight". This is accomplished by attaching a bsub_hint_wt attribute to the hint, as in the following example.
formulas(hints).
  x ' * (x * y) = y     # label("very important hint") # bsub_hint_wt(-100).
end_of_list.
Another way to assign a special weight is with the following flag.
set(breadth_first_hints).
clear(breadth_first_hints).    % default clear
Setting this flag causes all clauses that match hints to receive weight 0. The effect is as if each hint had the attribute bsub_hint_wt(0). This causes clauses that match hints to be selected in the order they are generated.

The weight assigned by any of the preceding methods may be modified if the flag degrade_hints is set.

Hint Degradation

In many searches that use hints, a given hint can match many different derived clauses. As a hint matches more and more clauses, we wish its influence to diminish. This is the idea behind Veroff's hint degradation method.
set(degrade_hints).    % default set
clear(degrade_hints).
If this flag is set, a weight penalty is added to clauses that match hints that have been previously matched. The following procedure is used. Given a newly derived clause, say C, assume we find a hint that matches the clause; let n be the number of times the hint has already been matched; then the weight of C is increased by (n * 1000). In other words, 1000 is added for each previous match of the hint.

The effect of this procedure is (usually) that clauses matching hints are selected in the following order: clauses matching hints that have not been matched before, clauses matching hints that have been matched once before, and so on.

Keeping/Limiting Clauses the Match Hints

Ordinarily, when a clause matching a hint is derived, the clause will be retained even if it violates limits such as
max_weight. Setting the following flag will cause those limits to be applied to such clauses, and it may be useful with trying to simplify known proofs.
set(limit_hint_matchers).
clear(limit_hint_matchers).    % default clear
If this flag is set, the parameters max_weight, max_literals, max_depth, and max_vars will be applied to clauses that match hints (as well as to clauses that don't match hints).

Otherwise (the default), those limits will not be applied to clauses that match hints.

Back Demodulation of Hints

When hints come from proofs in which equality and rewriting play a major role, they may have trouble guiding a search, because the rewriting may occur in different ways in the new search. In particular, a hint may fail to match a clause, because the clause has been rewritten and the hint has not. This is the motivation for the following feature.
set(back_demod_hints).    % default set
clear(back_demod_hints).
If this flag is set, hints are back demodulated. That is, they are kept simplified with respect to the current set of demodulators.

Labels on Hints

Label attributes on hint clauses get special treatment. When a hint containing a label matches a clause, the label attribute is copied to the clause.

The following flag addresses the situation in which the input contains sets of equivalent hints. (This situation frequently occurs when the hints contain many proofs of similar theorems.)

set(collect_hint_labels).
clear(collect_hint_labels).    % default clear
If this flag is set, and the hints list contains a set of equivalent hints, only the first copy of the hint is retained. However, the labels from all of the other equivalent hints are collected and put on the retained copy. When a clause matches the retained hint, it gets copies of all of the labels from the equivalent hints.

If this flag is clear, when a clause matches a set of equivalent hints, it receives the label (if any) from the first copy only.


Next Section:
Semantics prover9-manual-2009-02A/README.util0000644000175000017500000000117410606455225016021 0ustar mccunemccuneutil/options-make > temp This extracts all of the options from the various html files and sends them to stdout. These should be placed in the file options.html. It also installs links back to the option defs. It also creates a file sed.option-refs that can be used to create links to the option defs wherever the option name is enclosed in . rewrite-files sed.option-refs *.html ------------------------- util/glossary.py glossary.html This creates a file sed.glossary that can be used to create links to the glossary for each term enclosed in . rewrite-files sed.glossary *.html prover9-manual-2009-02A/index.html0000644000175000017500000000031011151021064016133 0ustar mccunemccune Prover9 Manual prover9-manual-2009-02A/inf-rules.html0000644000175000017500000005107111151021064016742 0ustar mccunemccune Prover9 Manual: Inference Rules
Prover9 Manual Version 2009-02A

Inference Rules

When a given clause is selected, all of the enabled inference rules are applied to it. For each inference, one of the parents is the given clause, and all other parents must be in the usable list.

Most inference rules distinguish the parents by the roles they play in the inference, e.g., positive or negative literal for binary resolution, nucleus or satellite for hyper rules, and from and into for paramodulation. The given clause can play any role in the inference.

After an inference rule generates a new clause, the clause is processed, which includes simplification operations such as demodulation and unit_deletion, and retention tests, such as max_weight. Processing also includes several operations that might be considered inference rules, such as factor and new_constants.

Prover9 uses ordered resolution and paramodulation with literal selection. These methods restrict the literals that are eligible for inference. The resolution and paramodulation inference rules are intended to be complete (exceptions are given in the descriptions of the options below), but we have not done a rigorous analysis of the algorithms, so users should not make any assumptions about completeness. For an overview of ordered inference with literal selection, see the section Ordered Inference below.

Binary Resolution Rules and Options

set(binary_resolution).
clear(binary_resolution).    % default clear
If this flag is set, binary resolution will be applied to the given clause. The options literal_selection, ordered_res, and check_res_instances determine eligible literals.
set(neg_binary_resolution).
clear(neg_binary_resolution).    % default clear
If this flag is set, negative binary resolution is applied to the given clause. That is, the negative resolved literal must be in a clause in which all literals are negative. The options ordered_res, and check_res_instances are also used to determine eligible literals.

Note that there is no inference rule "pos_binary_resolution". Positive binary resolution can be achieved by using the parameter literal_selection so that at least one negative literal is always selected. Positive binary resolution is not the dual of neg_binary_resolution, because the literal_selection technique is not symmetric between positive and negative literals; in particular, selected literals are always negative. The literal_selection parameter is always ignored for negative binary resolution.

set(ordered_res).    % default set
clear(ordered_res).
This option puts restrictions on the binary and hyperresolution inference rules (but not on UR-resolution). It says that resolved literals in one or more of the parents must be maximal in the clause.

See the section Ordered Inference below.

set(check_res_instances).
clear(check_res_instances).    % default clear
This flag applies to the binary and hyperresolution inference rules if the flag ordered_res is also set. If check_res_instances is set, the ordered_res test is is applied after the substitution for the inference has been applied to the parents.
assign(literal_selection, string).  % default string=max_negative, range [max_negative, all_negative, none]
This parameter affects to the inference rules binary_res and paramodulation. It determines which literals are eligible for inference. Here are the accepted values. If at least one negative literal is always selected (e.g., max_negative or all_negative), binary resolution will be positive binary resolution, and paramodulation will be positive paramodulation.

Literal selection is ordinarily used with ordered inference (flags ordered_res and ordered_para), but it can be used without ordered inference.

Hyper and UR Resolution Rules and Options

The Hyper and UR resultion rules can resolve more than one literal of one of the parent clauses (the nucleus) with other parent clauses (the satellites), all in one step. An application of one of these inference rules can be viewed as a sequence of binary resolution steps.
set(pos_hyper_resolution).
clear(pos_hyper_resolution).    % default clear
If this flag is set, positive hyperresolution (usually called simply hyperresolution) is applied to the given clause. If the flag ordered_res is set, the resolved literals in the satellites (positive parents) must be maximal. If the flags ordered_res and check_res_instances are both set, the maximality check is done after the substitution for the inference has been applied to the parents. Literal selection is not applied to hyperresolution.
set(hyper_resolution).
clear(hyper_resolution).    % default clear
This flag is a synonym for pos_hyper_resolution. The only effect of changing this flag is to make the corresponding change to the flag pos_hyper_resolution.
set(neg_hyper_resolution).
clear(neg_hyper_resolution).    % default clear
If this flag is set, negative hyperresolution is applied to the given clause. If the flag ordered_res is set, the resolved literals in the satellites (negative parents) must be maximal. If the flags ordered_res and check_res_instances are both set, the maximality check is done after the substitution for the inference has been applied to the parents. Literal selection is not applied to hyperresolution.
set(ur_resolution).
clear(ur_resolution).    % default clear
If this flag is set, UR resolution (unit-resulting resolution) is applied to the given clause. In fact, the only effect of this flag is that it automatically sets the flags pos_ur_resolution and neg_ur_resolution

UR resolution may be incomplete when there are non-Horn clauses.

set(pos_ur_resolution).
clear(pos_ur_resolution).    % default clear
If this flag is set, positive UR resolution is applied to the given clause. That is, the resulting unit clause is a positive clause. Neither ordering constraints nor literal selection is applied to UR resolution.
set(neg_ur_resolution).
clear(neg_ur_resolution).    % default clear
If this flag is set, negative UR resolution is applied to the given clause. That is, the resulting unit clause is a negative clause. Neither ordering constraints nor literal selection is applied to UR resolution.
set(initial_nuclei).
clear(initial_nuclei).    % default clear
This flag puts a restriction on the nucleus for the hyperresolution and UR-resolution inference rules. It says that each nucleus must be an input clause (more precisely, an initial clause).

Setting this flag may cause incompleteness of the inference system.

assign(ur_nucleus_limit, n).  % default n=-1, range [-1 .. INT_MAX]
If n != -1, then the nucleus for each UR-resolution inference can have at most n literals.

This option may cause incompleteness of the inference system.

Paramodulation Rules and Options

set(paramodulation).
clear(paramodulation).    % default clear
If this flag is set, paramodulation is applied to the given clause. If the from literal is oriented (oriented equalities are always heavy=light), the paramodulation is applied left-to-right. If the from literal cannot be oriented Prover9 attempts to paramodulate from both sides of it. Unlike the inference rule superposition, this inference rule goes into "light" sides of equations.

If the flag ordered_para is also set, ordered paramodulation is used.

If paramodulation involves non-unit clauses, literal_selection is used to determine eligible literals.

Note that the flag back_demod set set by default, so that derived equations can be used to rewrite older clauses.

set(ordered_para).    % default set
clear(ordered_para).
This flag places a restrictions on the paramodulation inference rule, based on maximal literals. See the section Ordered Inference.
set(check_para_instances).
clear(check_para_instances).    % default clear
This flag applies to the paramodulation inference rule and is analogous to the flag check_res_instances for binary_resolution. It says to apply the ordering tests after the substitution for the inference has been applied to the parent claues.
set(para_from_vars).    % default set
clear(para_from_vars).
This flag says that paramodulation may occur from variables. That is, a literal x=t, in which x does not ocur in t, may be used as the from literal, unifying arbitrary terms with x, and replacing them with t.

For (unit) equational problems, this flag is nearly always irrelevant.

Clearing this flag may cause incompleteness of the inference system.

set(para_from_small).
clear(para_from_small).    % default clear
This flag says that paramodulation may occur from smaller sides of equality literals. That is, paramodulation may interoduce larger terms. Roughly speaking, given a literal s=t, in which s > t in the term ordering, the term t may be unified with some other term, which is then replaced with the corresponding instance of s.
assign(para_lit_limit, n).  % default n=-1, range [-1 .. INT_MAX]
If n ≠ -1, each parent in paramodulation can have at most n literals. This option may cause incompleteness of the inference system.
set(para_units_only).
clear(para_units_only).    % default clear
This flag says that both parents for paramodulation must be unit clauses. The only effect of this flag is to assign 1 to the parameter para_lit_limit.

Setting this flag may cause incompleteness of the inference system.

set(basic_paramodulation).
clear(basic_paramodulation).    % default clear
This option hasn't been implemented yet.

Ordered Inference

This section contains a practical overview of ordered inference as implemented in Prover9. For theoretical presentations, see [
Bachmair-Ganzinger-res] and [Nieuwenhuis-Rubio-para].

Prover9 uses ordered inference with literal selection.

Ordered inference and literal selection are typically used together, but each can be used without the other, by changing the options ordered_res and literal_selection. In the following, if ordered_res is disabled, simply assume all literals are maximal. The setting assign(literal_selection, none) has the effect of disabling literal selection.

Ordered Binary Resolution with Literal Selection

A positive literal PL in a clause C is eligible for resolution if
  no literal is selected in C, and PL is maximal in C.

A negative literal NL in a clause C is eligible for resolution if
  (1) NL is selected in C, or
  (2) no literal is selected in C, and NL is maximal in C.
Note that if at least one negative literals is selected in every clause, we have a version of positive binary resolution, because no literal may be selected in the clause containing the positive resolved literal.

Ordered Factoring

Prover9 does not do ordered factoring. Instead, if factoring is enabled (see flag factor), factoring is applied as much as possible to all newly kept clauses. In theory, factoring can be restricted to maximal literals without losing completeness, but we believe applying it eagerly is more practical.

Ordered Paramodulation with Selection

For ordered paramodulation with selection, literal eligibility for the "from" literal is that same as eligibilty of the positive literal for ordered resolution with selection.

Literal eligibility for positive "into" literals is that same as eligibilty of the positive literal for ordered resolution with selection.

Literal eligibility for negative "into" literals is the same as eligibilty of the negative literal for ordered resolution with selection.

In other words,

A positive literal PL in a clause C is eligible for paramodularion 
  (as the "from" or the "into" parent) if no literal is selected in C,
  and PL is maximal in C.

A negative literal NL in a clause C is eligible for paramodulation if
  (1) NL is selected in C, or
  (2) no literal is selected in C, and NL is maximal in C.

Negative Ordered Binary Resolution

A positive literal NL in a clause C is eligible for resolution if
  NL is maximal among the positive literals of C.

A negative literal NL in a clause C is eligible for resolution if
  C has no positive literals, and NL is maximal in C.
Note that negative ordered binary resolution is not the dual of positive ordered binary resolution, because the negative version ignores literal selection.
Next Section: Process Inferred prover9-manual-2009-02A/input.html0000644000175000017500000001700211151021064016171 0ustar mccunemccune Prover9 Manual: Input Files
Prover9 Manual Version 2009-02A

Prover9 Input Files

Prover9 takes its input from one or more (usually one) files. If there is more than one input file, lists of objects (formulas, weighting rules, etc.) cannot be split across more than one file. The page Running Prover9 shows how to specify the files in the commands to run Prover9.

Comments and Whitespace

There are two kinds of comment:

Comments are not echoed to the output file. Clauses can have label attributes which can serve as different kind of comment which does appear in the output file.

Whitespace (spaces, newlines, tabs, etc.) is optional in most places. The important exception is that whitespace is required around some operations in clauses and formulas (see the page Clauses and Formulas).

A Simple Example

The most basic kind of input file consists of list of clauses named "sos" representing the negation of the conjecture, as in the following example.
formulas(sos).           % clauses to be placed in the sos list
  -man(x) | mortal(x).
  man(george).
  -mortal(george).
end_of_list.
Prover9 will take the clauses, use its automatic mode to decide on the inference rules, and then search for a refutation.

The preceding example can also be stated in a more natural way by using a non-clausal formula for the man-implies-mortal rule and the goals list for the conclusion, as follows.

formulas(assumptions).   % synonym for formulas(sos).
  man(x) -> mortal(x).   % open formula with free variable x
  man(george).
end_of_list.

formulas(goals).         % to be negated and placed in the sos list
  mortal(george).
end_of_list.
Prover9 will transform the formulas in this input to the same clauses as in the basic input above before starting the search for a refutation.
In Otter and in earlier versions of Prover9, "clauses" and "formulas" were distinct types of object, and formulas could not have free variables. Now, clauses are a subset of formulas, and Prover9 decides which formulas are non-clausal and takes the appropriate actions to transform them to clauses.

Types of Input

Prover9 input consists of lists of objects (formulas or terms) and commands.

Lists of Objects

Lists of objects start with a type (formulas or terms) and name (sos, goals, weights, etc.), and end with end_of_list. The following display show an example of each type of accepted list, with one object in each list.
formulas(sos).           p(x).     end_of_list.   % the primary input list
formulas(assumptions).   p(x).     end_of_list.   % synonym for formulas(sos)
formulas(goals).         p(x).     end_of_list.   % some restrictions (see Goals)
formulas(usable).        p(x).     end_of_list.   % seldom used
formulas(demodulators).  f(x)=x.   end_of_list.   % seldom used, must be equalities
formulas(hints).         p(x).     end_of_list.   % should be used more often  (see Hints)

list(weights).         weight(a) = 10.                         end_of_list. % see Weighting
list(kbo_weights).     a = 3.                                  end_of_list. % see Term Ordering
list(actions).         given = 100 -> set(print_kept).         end_of_list. % see Actions
list(interpretations). interpretation(2,[],[relation(p,[1])]). end_of_list. % see Semantics
If the input contains more than one list of a particular type/name, the lists are simply concatenated by Prover9 as they are read.

Commands

Eleven types of command are accepted. Here is an example of each.
op(400, infix_right, ["+", "--"]). % declare parse precedence and type (see Clauses and Formulas)

redeclare(negation, "~"]).         % change the negation symbol (see Clauses and Formulas)

set(print_kept).                   % set a flag

clear(auto_inference).             % clear a flag

assign(max_weight, 40).            % integer parameter

assign(stats, some).               % string parameter

assoc_comm(*).                     % not currently used for Prover9

commutative(g).                    % not currently used for Prover9

predicate_order([=,<=,P,Q).        % predicate symbol precedence (see Term Ordering)

function_order([0,1,a,b,f,g,*,+]). % function symbol precedence (see Term Ordering)

lex([0,1,a,b,f,g,*,+]).            % synonym for "function_order"

skolem([a,b,f,g]).                 % declare symbols to be Skolem functions (rarely used)

Order of Commands and Lists of Objects

For the most part, the order of things in the input file(s) is irrelevant. For example, commands can usually be mixed with lists of objects. The situations in which order matters are listed here. Note that changing the order of clauses or formulas within a list, changing the order of literals in a clause, or changing the order of subformulas in a formula can change the search, occasionally in substantial ways.

Conditional Inclusion

Many input files can be used for multiple programs (e.g., Prover9 and Mace4). The following construct says to include the enclosed input for the given program only.
if(program-name).
   ... conditionally-included input ...
end_if.
For example, to specify that Mace4 and Prover9 have different time limits, one can write
if(Mace4).
  assign(max_seconds, 30).
end_if.

if(Prover9).
  assign(max_seconds, 3600).
end_if.
The conditional-inclusion construct cannot occur within a list of objects (formulas, weighting rules, etc.).
Next Section: Clauses & Formulas prover9-manual-2009-02A/options.html0000644000175000017500000005534311151021064016537 0ustar mccunemccune Prover9 Manual: Options
Prover9 Manual Version 2009-02A

Prover9 Options

There are three kinds of options:

Option Dependencies

Several of the flags and parameters cause other flags and parameters to be changed. In some cases, that is the only direct effect they have. For example, if you clear(auto), you will see the following in the output.
clear(auto).
    % clear(auto) -> clear(auto_inference).
    % clear(auto_inference) -> clear(predicate_elim).
    % clear(auto_inference) -> assign(eq_defs, pass).
    % clear(auto) -> clear(auto_limits).
    % clear(auto_limits) -> assign(max_weight, 2147483647).
    % clear(auto_limits) -> assign(sos_limit, -1).
The lines starting with "%" are the dependent options that are changed in behalf of clear(auto). Note the sub-dependencies in this example.

The option dependencies can be undone by simply changing the dependent option afterward, as in the following example input.

clear(auto).
set(predicate_elim).

Option Listing

The option names below are links to the sections containing the descriptions.

From Page Clauses and Formulas

set(prolog_style_variables).
clear(prolog_style_variables).    % default clear

From Page Automatic Modes

set(auto).    % default set
clear(auto).
set(auto_inference).    % default set
clear(auto_inference).
set(auto_process).    % default set
clear(auto_process).
set(auto_setup).    % default set
clear(auto_setup).
set(auto_limits).    % default set
clear(auto_limits).
set(auto2).
clear(auto2).    % default clear
assign(lrs_ticks, n).  % default n=-1, range [-1 .. INT_MAX]
assign(lrs_interval, n).  % default n=50, range [1 .. INT_MAX]
assign(min_sos_limit, n).  % default n=0, range [0 .. INT_MAX]
set(raw).
clear(raw).    % default clear

From Page Term Ordering

assign(order, string).  % default string=lpo, range [lpo,rpo,kbo]
set(inverse_order).    % default set
clear(inverse_order).
assign(eq_defs, string).  % default string=unfold, range [unfold,fold,pass]

From Page More Search Prep

set(expand_relational_defs).
clear(expand_relational_defs).    % default clear
set(predicate_elim).    % default set
clear(predicate_elim).
assign(fold_denial_max, n).  % default n=0, range [-1 .. INT_MAX]
set(sort_initial_sos).
clear(sort_initial_sos).    % default clear
set(process_initial_sos).    % default set
clear(process_initial_sos).

From Page Search Limits

assign(sos_limit, n).  % default n=20000, range [-1 .. INT_MAX]
assign(max_given, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_kept, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_megs, n).  % default n=200, range [-1 .. INT_MAX]
assign(max_seconds, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_minutes, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_hours, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_days, n).  % default n=-1, range [-1 .. INT_MAX]

From Page Selecting the Given Clause

assign(age_part, n).     % default n=1, range [0 .. INT_MAX]
assign(weight_part, n).  % default n=0, range [0 .. INT_MAX]
assign(false_part, n).   % default n=4, range [0 .. INT_MAX]
assign(true_part, n).    % default n=4, range [0 .. INT_MAX]
assign(random_part, n).  % default n=0, range [0 .. INT_MAX]
assign(hints_part, n).   % default n=INT_MAX, range [0 .. INT_MAX]
set(default_parts).      % default set
clear(default_parts).
assign(pick_given_ratio, n).  % default n=0, range [0 .. INT_MAX]
set(lightest_first).
clear(lightest_first).    % default clear
set(breadth_first).
clear(breadth_first).    % default clear
set(random_given).
clear(random_given).    % default clear
assign(random_seed, n).  % default n=0, range [-1 .. INT_MAX]
set(input_sos_first).    % default set
clear(input_sos_first).

From Page Inference Rules

set(binary_resolution).
clear(binary_resolution).    % default clear
set(neg_binary_resolution).
clear(neg_binary_resolution).    % default clear
set(ordered_res).    % default set
clear(ordered_res).
set(check_res_instances).
clear(check_res_instances).    % default clear
assign(literal_selection, string).  % default string=max_negative, range [max_negative, all_negative, none]
set(pos_hyper_resolution).
clear(pos_hyper_resolution).    % default clear
set(hyper_resolution).
clear(hyper_resolution).    % default clear
set(neg_hyper_resolution).
clear(neg_hyper_resolution).    % default clear
set(ur_resolution).
clear(ur_resolution).    % default clear
set(pos_ur_resolution).
clear(pos_ur_resolution).    % default clear
set(neg_ur_resolution).
clear(neg_ur_resolution).    % default clear
set(initial_nuclei).
clear(initial_nuclei).    % default clear
assign(ur_nucleus_limit, n).  % default n=-1, range [-1 .. INT_MAX]
set(paramodulation).
clear(paramodulation).    % default clear
set(ordered_para).    % default set
clear(ordered_para).
set(check_para_instances).
clear(check_para_instances).    % default clear
set(para_from_vars).    % default set
clear(para_from_vars).
assign(para_lit_limit, n).  % default n=-1, range [-1 .. INT_MAX]
set(para_units_only).
clear(para_units_only).    % default clear
set(basic_paramodulation).
clear(basic_paramodulation).    % default clear

From Page Processing Inferred Clauses

set(lex_order_vars).
clear(lex_order_vars).    % default clear
assign(demod_step_limit, n).  % default n=1000, range [-1 .. INT_MAX]
assign(demod_increase_limit, n).  % default n=1000, range [-1 .. INT_MAX]
set(back_demod).      % default set
clear(back_demod).
set(lex_dep_demod).    % default set
clear(lex_dep_demod).
assign(lex_dep_demod_lim, n).  % default n=11, range [-1 .. INT_MAX]
set(lex_dep_demod_sane).    % default set
clear(lex_dep_demod_sane).
set(unit_deletion).
clear(unit_deletion).    % default clear
set(cac_redundancy).    % default set
clear(cac_redundancy).
assign(max_literals, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_depth, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_vars, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_weight, n).  % default n=100, range [INT_MIN .. INT_MAX]
set(safe_unit_conflict).
clear(safe_unit_conflict).    % default clear
set(factor).
clear(factor).    % default clear
assign(new_constants, n).  % default n=0, range [-1 .. INT_MAX]
set(back_subsume).    % default set
clear(back_subsume).
assign(backsub_check, n).  % default n=500, range [-1 .. INT_MAX]

From Page Output Files

set(echo_input).    % default set
clear(echo_input).
set(quiet).
clear(quiet).    % default clear
set(print_initial_clauses).    % default set
clear(print_initial_clauses).
set(print_given).    % default set
clear(print_given).
set(print_gen).
clear(print_gen).    % default clear
set(print_kept).
clear(print_kept).    % default clear
set(print_labeled).
clear(print_labeled).    % default clear
set(print_clause_properties).
clear(print_clause_properties).    % default clear
set(print_proofs).    % default set
clear(print_proofs).
set(default_output).    % default set
clear(default_output).
assign(report, n).  % default n=-1, range [-1 .. INT_MAX]
assign(stats, string).  % default string=lots, range [none,some,lots,all]
set(clocks).
clear(clocks).    % default clear
set(bell).    % default set
clear(bell).

From Page Weighting

assign(constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(sk_constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(variable_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(not_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(or_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(prop_atom_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(nest_penalty, n).  % default n=0, range [0 .. INT_MAX]
assign(depth_penalty, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(var_penalty, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(default_weight, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]

From Page Goals and Denials

assign(max_proofs, n).  % default n=1, range [-1 .. INT_MAX]
set(reuse_denials).
clear(reuse_denials).    % default clear
set(auto_denials).    % default set
clear(auto_denials).
set(restrict_denials).
clear(restrict_denials).    % default clear

From Page Hints

set(breadth_first_hints).
clear(breadth_first_hints).    % default clear
set(degrade_hints).    % default set
clear(degrade_hints).
set(limit_hint_matchers).
clear(limit_hint_matchers).    % default clear
set(back_demod_hints).    % default set
clear(back_demod_hints).
set(collect_hint_labels).
clear(collect_hint_labels).    % default clear

From Page Semantic Guidance

assign(multiple_interps, string).  % default string=false_in_all, range [false_in_all, false_in_some]
assign(eval_limit, n).  % default n=1024, range [-1 .. INT_MAX]

Next Section: Glossary prover9-manual-2009-02A/install.html0000644000175000017500000000264311151021064016505 0ustar mccunemccune Prover9 Manual: Installation
Prover9 Manual Version 2009-02A

Installing Prover9, Mace4, and Friends

Unix-like Systems

Here is a quick example for Unix-like systems, including Linux and Macintosh OS X. Visit the Prover9 Web page and download the current version of LADR. The filename should be something like LADR-June-2006A.tar.gz; make sure that file is in your current directory. Run the following commands.
% zcat LADR-June-2006A.tar.gz | tar xvf -
% cd LADR-June-2006A
% make all

Prover9, Mace4, Prooftrans, and several other programs should now be in the directory LADR-June-2006A/bin. You can either include that directory in your search path or copy those programs to some directory that is already in your search path.

Microsoft Windows

For now, see that the Prover9 Web page.
Next Section: Running Prover9 prover9-manual-2009-02A/interp3.dtd0000644000175000017500000000245610441372161016244 0ustar mccunemccune prover9-manual-2009-02A/interp3.xsl0000644000175000017500000000733410441372161016277 0ustar mccunemccune

Mace4 Job

  
  

This page was generated from file .


Constraints

  
  
=

Interpretation , =

Constant =

Unary

Binary

-ary

tuplevalue
prover9-manual-2009-02A/intro.html0000644000175000017500000000777411151021064016204 0ustar mccunemccune Prover9 Manual
Prover9 Manual Version 2009-02A

Introduction

Prover9 is a resolution/paramodulation automated theorem prover for first-order and equational logic. Prover9 is a successor of the Otter Prover [McCune-Otter33].

Getting Started

Prover9 has a fully automatic mode in which the user simply gives it formulas representing the problem. See the Section Clauses and Formulas.

An good way to learn about Prover9 is to browse and study the example input and output files. Users are encouraged to contribute examples from their own work with Prover9 (and Mace4).

Related Programs

Several programs come bundled with Prover9. The most important is Mace4, which looks for finite models and counterexamples. Mace4 can help avoid wasting time searching for a proof with Prover9 by first finding a counterexample or by first helping to debug logical specifications.

Another useful program is Prooftrans, which can transform proofs found by Prover9 in various ways, including producing more detailed proofs, simplifying the justifications, renumbering the steps, producing proofs in XML, and producing proofs for input to other programs.

Terms of Use

Prover9, Mace4, related programs, and the LADR libraries (with which they were all constructed) are distributed under the terms of the GNU General Public License (v2).

Other Theorem Provers

Format Conventions for this Manual

Many parts of this manual are displayed in boxes with different background colors.

A display like the following indicates part of an input or output file.

formulas(sos).
  all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
  all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.
A display like the following indicates a job that is run on a command line, for example, a command to run a Prover9 job.
prover9 -f subset_trans.in > subset_trans.out
A display like the following indicates some output that appears on the computer screen, for example, a message from Prover9.
-------- Proof 1 -------- 
THEOREM PROVED
------ process 3666 exit (max_proofs) ------
Displays like the following contain algorithms.
Simplify clause (c):
    demodulate c
    merge identical literals
A display like the following notes an important difference between Prover9 and Otter.
Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.

Next Section: Installation prover9-manual-2009-02A/JA.in0000644000175000017500000000055010537310347015002 0ustar mccunemccuneformulas(theory). % Abundant Semigroups (x * y) * z = x * (y * z). % associativity R(u,v) <-> (x * u = y * u <-> x * v = y * v). L(u,v) <-> (u * x = u * y <-> v * x = v * y). all x exists y (y * y = y & R(x,y)). all x exists y (y * y = y & L(x,y)). end_of_list. formulas(goals). % Regular Semigroups all x exists y ( (x * y) * x = x). end_of_list. prover9-manual-2009-02A/limits.html0000644000175000017500000000751111151021064016337 0ustar mccunemccune Prover9 Manual: Search Limits
Prover9 Manual Version 2009-02A

Search Limits

assign(sos_limit, n).  % default n=20000, range [-1 .. INT_MAX]
This parameter imposes a limit on the size of the sos list (n=-1 means there is no limit). It also activates a method for deleting clauses (in addition to, and after, application of the max_weight parameter).

This is a little bit tricky (and sometimes too clever for its own good). When the sos is half full, it starts being selective about keeping clauses, and as it fills up, it gradually becomes more selective. When it is full, it is very selective about keeping clauses. (The method is not applied to clauses that match hints.) When it decides to keep a clause, and the sos is already full, the "worst" clause in sos is deleted to make room for the new clause.

More details will be added later.

assign(max_given, n).  % default n=-1, range [-1 .. INT_MAX]
This parameter will stop the search after n given clauses have been used. A value of -1 means that there is no limit.
assign(max_kept, n).  % default n=-1, range [-1 .. INT_MAX]
The search will stop when more than n clauses have been retained.
assign(max_megs, n).  % default n=200, range [-1 .. INT_MAX]
The search will stop when about n megabytes of memory have been used.
assign(max_seconds, n).  % default n=-1, range [-1 .. INT_MAX]
The search will stop at about n seconds. For UNIX-like systems, the "user CPU" time is used.
assign(max_minutes, n).  % default n=-1, range [-1 .. INT_MAX]
Changing this parameter simply changes max_seconds to the corresponding value.
assign(max_hours, n).  % default n=-1, range [-1 .. INT_MAX]
Changing this parameter simply changes max_seconds to the corresponding value.
assign(max_days, n).  % default n=-1, range [-1 .. INT_MAX]
Changing this parameter simply changes max_seconds to the corresponding value.

Next Section: The Loop prover9-manual-2009-02A/loop.html0000644000175000017500000000545111151021064016010 0ustar mccunemccune Prover9 Manual: The Inference Loop
Prover9 Manual Version 2009-02A

The Inference Loop

The main loop for inferring and processing clauses and searching for a proof is sometimes called the given clause algorithm. It operates mainly on the sos and usable lists.
While the sos list is not empty:
    1. Select a given clause from sos and move it to the usable list;
    2. Infer new clauses using the inference rules in effect;
       each new clause must have the given clause as one of its
       parents and members of the usable list as its other parents;
    3. process each new clause;
    4. append new clauses that pass the retention tests to the sos list.
end of while loop.

Two Frequently Asked Questions

At some point in the search, Prover9 has all of the clauses needed to make an important inference, and one of the potential parents is selected as the given clause. But Prover9 fails to make the inference. Why is that?
Why do all parents have to be in the usable list?
The answer to both questions is the same, and it has to do with redundancy. Assume According to the algorithm, C is not derived until B has also been selected. Otherwise, C would be derived twice from A and B.

Variations of the Loop

There are two common versions of the given clause algorithm that differ in how and when simplification (i.e., rewriting) occurs.

In the Otter loop, which Prover9 uses, clauses in the sos list can simplify new clauses, and new simplifiers are applied immediately to all clauses, including sos clauses.

In the Discount loop, clauses in the sos list (also called the passive list) cannot simplify or be simplified until they are selected as given clauses.

The tradeoff between the two versions is straightforward --- the Otter loop spends much more time simplifying with the possible benefit of making an important simplification sooner.


Next Section: Select Given prover9-manual-2009-02A/mace4.html0000644000175000017500000000630611151021064016030 0ustar mccunemccune Prover9 Manual: Mace4
Prover9 Manual Version 2009-02A

Mace4 (Models And CounterExamples)

The program Mace4 [McCune-Mace4] searches for finite structures satisfying first-order and equational statements (the same kind of statement that Prover9 accepts). If the statement is the denial of some conjecture, any structures found by Mace4 are counterexamples to the conjecture.

Mace4 can be a valuable complement to Prover9, looking for counterexamples before (or at the same time as) using Prover9 to search for a proof. It can also be used to help debug input clauses and formulas for Prover9.

For the most part, Mace4 accepts the same input files as Prover9. If the input file contains commands that Mace4 does not understand, then the argument "-c" must be given to tell Mace4 to ignore those commands.

For example, say we're learning group theory, and we're wondering whether all groups are commutative. We can run the following two jobs in parallel, with Prover9 looking for a proof, and Mace4 looking for a counterexample.

prover9  -f x2.in > x2.prover9.out
mace4 -c -f x2.in > x2.mace4.out

Most of the options accepted by Mace4 can be given either on the command line or in the input file. The following command lists the command-line options accepted by Mace4.

mace4 -help

Terminology. We use the terms interpretation, model, and structure for the objects that Mace4 produces. From a logic point of view, Mace4 produces interpretations which are models of the input formulas. From a math point of view, Mace4 produces structures satisfying the input formulas.

What Mace4 Does

Mace4 searches for unsorted finite structures only. That is, a structure (model) has one underlying finite set, called the domain (the members are always 0,1,...,n-1 for a set of size n), and structures are functions and relations (tables) over the domain, corresponding to the operations and relation symbols in the specification.

By default, Mace4 starts searching for a structure of domain size 2, and then it increments the size until it succeeds or reaches some limit.

The Original Mace4 Manual

The original Mace4 manual [McCune-Mace4] (PDF) is out of date with respect to features and options, but it contains useful information on the history of Mace4, details on the search methods, and the differences between Mace2 and Mace4.


Next Section: Mace4 Input prover9-manual-2009-02A/LT-82-2-interp.in0000644000175000017500000000076610456772765016745 0ustar mccunemccuneformulas(sos). % lattice theory x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. % This input is for Mace4, so we can include the following, % because finite lattices always have 0 and 1. x v 0 = x. x ^ 1 = x. end_of_list. formulas(sos). end_of_list. % We want the following to be false, so we put it in the goals list. formulas(goals). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). end_of_list. prover9-manual-2009-02A/subset_trans.out40000644000175000017500000001444511151315476017522 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15829 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -t 10 -f subset_trans.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file subset_trans.in formulas(sos). (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). end_of_list. formulas(goals). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). end_of_list. ============================== end of input ========================== % From the command line: assign(max_seconds, 10). ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. subset(x,y) | member(f1(x,y),x). [clausify(1)]. subset(x,y) | -member(f1(x,y),y). [clausify(1)]. subset(c1,c2). [deny(2)]. subset(c2,c3). [deny(2)]. -subset(c1,c3). [deny(2)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating subset/2 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. Derived: member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. Derived: -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 6 subset(c1,c2). [deny(2)]. Derived: -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 7 subset(c2,c3). [deny(2)]. Derived: -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 8 -subset(c1,c3). [deny(2)]. Derived: member(f1(c1,c3),c1). [resolve(8,a,3,a)]. Derived: -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ member ]). Function symbol precedence: function_order([ c1, c2, c3, f1 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. kept: 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. kept: 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. kept: 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. kept: 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. kept: 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=11): 9 member(f1(x,y),x) | -member(z,x) | member(z,y). [resolve(3,a,4,a)]. given #2 (I,wt=11): 10 -member(f1(x,y),y) | -member(z,x) | member(z,y). [resolve(5,a,4,a)]. given #3 (I,wt=6): 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. given #4 (I,wt=6): 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. given #5 (I,wt=5): 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. given #6 (I,wt=5): 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.01) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18 $F. [ur(12,b,14,a),unit_del(a,15)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=6. Generated=12. Kept=9. proofs=1. Usable=6. Sos=3. Demods=0. Limbo=0, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=6. Megabytes=0.03. User_CPU=0.00, System_CPU=0.01, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15829 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/LT-82-2-x.in0000644000175000017500000000067510456772765015712 0ustar mccunemccuneassign(order, kbo). assign(max_weight, 25). assign(max_seconds, 3600). formulas(sos). % lattice theory x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. end_of_list. formulas(sos). (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). end_of_list. formulas(goals). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). end_of_list. prover9-manual-2009-02A/LT-82-2.in0000644000175000017500000000154110456772765015436 0ustar mccunemccuneassign(order, kbo). assign(max_weight, 25). assign(max_seconds, 3600). formulas(sos). % lattice theory x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. end_of_list. formulas(sos). (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). end_of_list. formulas(goals). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). end_of_list. list(interpretations). % This is the smallest lattice in which H2 is false. interpretation(6, [], [ function(^(_,_), [ 0,0,0,0,0,0, 0,1,2,3,4,5, 0,2,2,0,0,0, 0,3,0,3,5,5, 0,4,0,5,4,5, 0,5,0,5,5,5]), function(v(_,_), [ 0,1,2,3,4,5, 1,1,1,1,1,1, 2,1,2,1,1,1, 3,1,1,3,1,3, 4,1,1,1,4,4, 5,1,1,3,4,5])]). end_of_list. prover9-manual-2009-02A/easy.hints0000644000175000017500000000476011151315532016171 0ustar mccunemccune formulas(hints). % 72 hints from 3 proof(s) in file easy.out, Wed Feb 25 12:26:18 2009 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). f(f(x,y),f(x,f(y,z))) = x. f(x,f(y,f(x',z))) = f(x,y'). x' = f(x,x). f(x,x) = x'. f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). c1'' != c1 # answer(Sheffer_1). f(f(x,y),f(x,y')) = x. f(x',f(x,x')) = x. f(x,f(y,x)) = f(x,y'). x'' = x. $F # answer(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). f(x,y) = f(y,x). f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). f(f(x,y),f(y,f(x,z))) = y. f(f(x,y),f(x,f(z,y))) = x. f(x',f(x,y)) = x. f(x',f(y,x)) = x. f(x,f(x,y)') = f(x,y). f(x,f(y,x)') = f(y,x). f(x,f(x,y)) = f(x,y'). f(f(x,y),f(x,y)') = f(x',f(x,y)'). f(x',f(y,x)') = f(y',f(y,x)'). f(x',f(x,y)') = f(x,x'). f(x',f(y,x)') = f(x,x'). f(x,x') = f(y,y'). f(x,f(y,y')) = x'. f(f(f(x,x),y),f(f(z,z),y)) = f(f(y,f(x,z)),f(y,f(x,z))) # label(Sheffer_3) # label(non_clause) # label(goal). f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). f(f(x,y),f(f(y,z),x)) = x. f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). f(x,f(y,f(z,x'))) = f(x,y'). f(x,f(f(x',y),z)) = f(x,z'). f(x,f(x',y)') = f(x,x'). f(f(x,y),f(f(x,z),y)) = y. f(f(x,y),f(y,x')) = y. f(f(f(x,y),z),f(z,y)) = z. f(x',f(y,f(x,z))) = f(x',y'). f(f(x,y),f(f(z,y),x)) = x. f(x,f(f(x,y),f(y,z))) = f(x,y). f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). f(f(x,f(y,z)),f(z,x)) = x. f(f(x,y),f(f(y,x'),f(y,z))) = f(y,x'). f(f(x,y'),f(x,f(f(x,y),z))) = x. f(f(x,y'),f(x,f(z,f(x,y)))) = x. f(x',f(f(x,y),z)) = f(x',z'). f(f(x,y)',f(f(x,z),y)) = f(y,f(x,z)'). f(x,f(f(y,x'),z)') = f(x,z). f(f(f(x,y),z),f(z,y)') = f(z,f(x,y)'). f(f(x,f(y,z')),f(f(y,z),x)) = x. f(x,f(f(x',y)',z)) = x'. f(x',f(f(x,y)',z)) = x. f(x',f(f(y,x)',z)) = x. f(x',f(y,f(z,x)')) = x. f(x,f(y,f(z,x)')') = f(y,f(z,x)'). f(f(x,y),f(y,z)') = f(x',f(y,z)'). f(f(x,y)',f(z,y)') = f(z,f(x,y)'). f(f(x,y)',f(z,y)) = f(f(x,y)',z'). f(f(x,y)',f(x,z)') = f(f(x,y)',z). f(f(x,y)',z) = f(y,f(x,z)'). f(x,f(y,z)') = f(y,f(x,z)'). f(x',f(f(y,x),z)') = f(x',z). f(f(x,y),f(z,f(x,y'))') = f(z,x'). f(x,f(y,f(x,z)')) = f(x,f(y,z)). f(x,f(f(x,y),z)) = f(x,f(y',z)). f(x,f(y,f(z,f(f(x,y),u))')) = f(x,f(z,y)). f(x,f(y,f(x,z))) = f(x,f(y,z')). f(f(x,y'),f(x,f(y,z))) = f(x,f(y,z))'. f(f(x,y'),f(x,z)) = f(x,f(y,z'))'. end_of_list. prover9-manual-2009-02A/m4-input.html0000644000175000017500000001065511151021064016516 0ustar mccunemccune Prover9 Manual: Mace4 Input
Prover9 Manual Version 2009-02A

Mace4 Input

Mace4 has been designed so that it accepts most Prover9 input files. This allows users to prepare one input file which can be used by Prover9 (to search for proofs) and by Mace4 (to search for counterexamples).

Mace4 Options

Mace4 and Prover9 accept different sets of flags and parameters. In order to use the same input files for both programs, we let Mace4 take its options from the command line instead of from the input file. If Mace4 is given a Prover9 input file, along with the command-line option -c, it will ignore any unrecognized (e.g., Prover9) options in the input file. The Mace4 options are described on the next page.

Formulas (including Clauses)

Mace4 accepts the same formulas and clauses as Prover9. See the page Prover9 Clauses and Formulas.

A Caveat: Domain Elements

In one important case, formulas have different meanings in Prover9 and Mace4:
If a formula contains constants that are natural-numbers, {0,1,...}, Mace4 assumes they are members of the domain of some structure, that is, they are distinct objects; in effect, Mace4 operates under the assumptions 0 ≠ 1, 0 ≠ 2, ... .

To Prover9, natural numbers are just ordinary constants. For example, to Prover9 the statement 0=1 is satisfiable, and to Mace4 it is unsatisfiable.

Because Mace4 assumes that natural-number constants are members of the domain, if a formula contains a natural number that is out of range (≥ n), when searching for a structure of size n), Mace4 will terminate its search for size n (and continue with larger sizes if the specification says to do so).

An Exception. When the flag arithmetic is set, natural numbers outside of {0,1,...,n-1} can occur.

Lists of Formulas (including Clauses)

Prover9 accepts a fixed set of lists of formulas (e.g., assumptions, usable, goals, hints).

Mace4 accepts any lists of formulas. All are treated as ordinary formulas except the following two lists.

formulas(goals)

Prover9 has several restrictions on the goals it accepts (see Prover9 Goals and Denials), and Mace4 has the same restrictions. Mace4 negates goals and translates them to clauses in the same way as Prover9. (The term "goal" might seem to be bad teminology for Mace4 users, because Mace4 does not prove theorems; however, one can think of Mace4 as searching for a counterexample to the goal.)

When there are multiple goals, Mace handles them the same as Prover9. For example, consider the following goals.

formulas(goals).
  x * y = y * x              # label(commutativity).
  (x * y) * z = x * (y * z)  # label(associativity).
end_of_list.
Logically, this is a disjunction: Prover9 gives a proof if either goal is proved, and Mace4 gives a counterexample if both are falsified. In particular, this pair of goals is equivalent (for both Prover9 and Mace4) to the following pair of assumptions.
formulas(assumptions).
  exists x exists y (x * y != y * x).
  exists x exists y exists z (x * y) * z != x * (y * z).
end_of_list.

Distinct Objects

Mace4 accepts a shorthand method for stating that sets of objects are distinct. Here is an example of two sets of distinct objects.
list(distinct).
[a,b,c].     % equivalent to (a!=b & a!=c & b!=c).
[d,e,f(a)].  % equivalent to (d!=e & d!=f(a) & e!=f(a)).
end_of_list.
Although list(distinct) will probably be used mostly for constants and other ground terms, terms with variables can occur.
Next Section: Mace4 Options prover9-manual-2009-02A/m4-interpformat.html0000644000175000017500000001447711151021064020077 0ustar mccunemccune Prover9 Manual: Interpformat
Prover9 Manual Version 2009-02A

Interpformat

The models (structures) in Mace4 output files can be transformed in various ways with the program Interpformat.

The transformations are listed here.

Examples

The following Mace4 job creates an output file containing one model in "standard" (the default) format.

mace4 -c -f x2.in > x2.mace4.out
The following Interpformat jobs take the Mace4 output file, extract the model, and transform it as described above.
interpformat standard  -f x2.mace4.out > x2.standard
interpformat standard2 -f x2.mace4.out > x2.standard2
interpformat portable  -f x2.mace4.out > x2.portable
interpformat tabular   -f x2.mace4.out > x2.tabular
interpformat raw       -f x2.mace4.out > x2.raw
interpformat cooked    -f x2.mace4.out > x2.cooked
interpformat xml       -f x2.mace4.out > x2.xml
interpformat tex       -f x2.mace4.out > x2.tex

Portable Format

The portable format for interpretations can be parsed by several scriping languages including Python and GAP. Here is a counterexample on ternary relations in lattice theory. The result contains one interpretation of size 4 containing two binary functions (meet and join), one binary relation (less-or-equal), two ternary relations, and three constants.
mace4 -c -f LT-port.in | interpformat portable > LT-port.out
The result is a list of interpretations:

Here is a simple Python script that reads a list of portable interpretations and prints them in a different form.

port.py < LT-port.out > LT-port.out2

Here is a simple GAP session that reads and prints a list of portable interpretations.

% gap -b
GAP4, Version: 4.4.7 of 17-Mar-2006, i486-pc-linux-gnu-i486-linux-gnu-gcc
gap> interpretations := EvalString(StringFile("LT-port.out"));;
gap> interpretations;
[ [ 4, [ "=(number,1)", "=(seconds,0)" ], 
      [ [ "relation", "<=", 2, [ [ 1, 1, 1, 1 ], [ 0, 1, 0, 0 ], 
                  [ 0, 1, 1, 0 ], [ 0, 1, 0, 1 ] ] ], 
          [ "function", "^", 2, [ [ 0, 0, 0, 0 ], [ 0, 1, 2, 3 ], 
                  [ 0, 2, 2, 0 ], [ 0, 3, 0, 3 ] ] ], 
          [ "function", "v", 2, [ [ 0, 1, 2, 3 ], [ 1, 1, 1, 1 ], 
                  [ 2, 1, 2, 1 ], [ 3, 1, 1, 3 ] ] ], 
          [ "function", "c1", 0, 2 ], [ "function", "c2", 0, 0 ], 
          [ "function", "c3", 0, 3 ], 
          [ "relation", "A", 3, [ [ [ 1, 1, 1, 1 ], [ 0, 1, 0, 0 ], 
                      [ 0, 1, 1, 0 ], [ 0, 1, 0, 1 ] ], 
                  [ [ 1, 0, 0, 0 ], [ 1, 1, 1, 1 ], [ 1, 0, 1, 0 ], 
                      [ 1, 0, 0, 1 ] ], 
                  [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 1, 1, 1, 0 ], 
                      [ 0, 0, 0, 0 ] ], 
                  [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 0, 0 ], 
                      [ 1, 1, 0, 1 ] ] ] ], 
          [ "relation", "B", 3, [ [ [ 1, 1, 1, 1 ], [ 0, 1, 0, 0 ], 
                      [ 0, 1, 1, 0 ], [ 0, 1, 0, 1 ] ], 
                  [ [ 1, 0, 0, 0 ], [ 1, 1, 1, 1 ], [ 1, 0, 1, 0 ], 
                      [ 1, 0, 0, 1 ] ], 
                  [ [ 1, 0, 0, 1 ], [ 0, 1, 0, 1 ], [ 1, 1, 1, 1 ], 
                      [ 0, 0, 0, 1 ] ], 
                  [ [ 1, 0, 1, 0 ], [ 0, 1, 1, 0 ], [ 0, 0, 1, 0 ], 
                      [ 1, 1, 1, 1 ] ] ] ] ] ] ]
gap>

Next Section: Isofilter prover9-manual-2009-02A/m4-isofilter.html0000644000175000017500000000765611151021064017366 0ustar mccunemccune Prover9 Manual: Isofilter
Prover9 Manual Version 2009-02A

Isofilter

If Mace4 produces more than one structure, some of them are very likely to be isomorphic to others. The program Isofilter can be used to remove isomorphic structures.

Determining whether two structures are isomorphic is a hard problem in general, but isofilter can cope with some large structures in reasonable time. It depends on the type of the strucure. For example, quasigroups usually take more time than lattices.

Isofilter accepts structures in LADR standard format, which is the default format produced by Mace4. However, the Mace4 output contains a lot of extraneous information, which can be stripped out with the command interpformat standard. Isofilter also accepts the following command-line arguments, which are described in the examples below.

Examples

We start with a Mace4 job and extract the interpretations; then we run Isofilter.
mace4 -N6 -m -1 -f BA2.in | interpformat standard > BA2.interps 
isofilter < BA2.interps > BA2.interps2 
Note that the two models in BA2.interps2 differ only in one of the constants. In this case the constants come from existentially quantified variables in the goal, and all we really care about is the lattice. We can tell Isofilter to ignore differences in constants by giving it the argument ignore_constants as in the following command.
isofilter ignore_constants < BA2.interps > BA2.interps3 
Another way to use only a subset of the operations is the check argument, which us used to specify exactly which operations to test for isomorphism. In the following example, only the meet and join operations are checked. (If there is more than one operation, or if the operation may be interpreted by the shell, they should be enclosed in single quotes.)
mace4 -N6 -m -1 -f MOL.in | interpformat standard > MOL.interps 
isofilter check '^ v' output '^ v' < MOL.interps > MOL.interps2 
The output of isofilter is frequently used as input to a program that expects the interpretations to be in a list of interpretations; we can tell isofilter to put the output in that form by giving it the argument wrap as in the following command.
isofilter ignore_constants wrap < BA2.interps > BA2.interps4 
Finally, we can string together some of the preceding commands as follows.
mace4 -N6 -m -1 -f BA2.in | interpformat standard | isofilter ignore_constants wrap > BA2.interps5 

Next Section: Prooftrans prover9-manual-2009-02A/m4-options.html0000644000175000017500000002537611151021064017060 0ustar mccunemccune Prover9 Manual: Mace4 Options
Prover9 Manual Version 2009-02A

Mace4 Options

Mace4 accepts set, clear, and assign commands in the input file. Several of these are in common with Prover9 (e.g., assign(max_seconds, 30)), but most are specifically for Mace4.

If Mace4 is called with the command-line option -c (compatability mode), it will ignore any set, clear, and assign that it does not recognize, assuming they are meant for some other program (Prover9).

Most Mace4 options can be specified on the command line instead of in the input file. When Mace4 options are specified on the command line, single-character codes are used. For example, the command-line option -t 30 means the same as assign(max_second, 30) in the input file. If an option is given in both places, the one on the command line takes precedence. Command-line options for Boolean-valued options (flags) always take an argument: 1 means "set", and 0 means "clear". For example, -V 1 means set(prolog_style_vaiables, and -V 0 means clear(prolog_style_variables).

The command "mace4 -help" shows the correspondence between the command-line codes and the option names, and it shows the default values.

Symbol Ordering

Like Prover9, Mace4 accepts function_order and relation_order commands that specify an order on the symbols in the problem. The syntax of the commands is the same as in Prover9, for example,
predicate_order([=, <=, P, Q]).          % = < P < Q
function_order([a, b, c, +, *, h, g]).   % a < b < c < + < * < h < g
Mace4's the default symbol order is the same as Prover9's. As in Prover9, function symbols are always less than predicate symbols.

The symbol order can have a big effect on the time it takes to find a model or exhaust a domain size, because it determines the order in which Mace4 tries to fill in the function and relation tables. Unfortunately, we do not know of any general-purpose heuristics for selecting a good symbol order. If Mace4 takes too long to go through a particular domain size, we suggest trying a different symbol order.

Option Listing

Basic Options

assign(start_size, n).  % default n=2, range [2 .. INT_MAX]  % command-line -n n
assign(end_size, n).  % default n=-1, range [-1 .. INT_MAX]  % command-line -N n
assign(increment, n).  % default n=1, range [1 .. INT_MAX]  % command-line -i n
These three parameter work together to determine the domain sizes to be searched. The search starts for structures of size start_size; if that search fails, the size is incremented, and another search starts. This continues up through the value end_size (or until some other limit terminates the process). If end_size is -1, there is no limit. (Also see the iterate parameter below.)

For example, the command-line options "-n 5 -N 11 -i 2" say to try domain sizes 5,7,9,11.

assign(domain_size, n).  % default n=0, range [0 .. INT_MAX]  % command-line -n n
This parameter says to search only the given size. This (meta-) parameter works simply by making the following changes.
  assign(domain_size, n) -> assign(start_size, n).
  assign(domain_size, n) -> assign(end_size, n).
assign(iterate, string).  % default string=all, range [all,evens,odds,primes,nonprimes]
The iterate parameter can be used to add an additional constraint to the domain sizes. It can be used together with the increment parameter. The iterate parameter cannot be specified on the command line.
assign(max_models, n).  % default n=1, range [-1 .. INT_MAX]  % command-line -m n
The parameter max_models says to stop searching when the n-th structure has been found. A value of -1 means there is no limit.
assign(max_seconds, n).  % default n=-1, range [-1 .. INT_MAX]  % command-line -t n
The parameter max_seconds says to stop searching after n seconds. A value of -1 means there is no limit.
assign(max_seconds_per, n).  % default n=-1, range [-1 .. INT_MAX]  % command-line -s n
The parameter allows at most n seconds for each domain size. The parameter max_seconds can be used (together with max_seconds_per) to given an overall time limit. A value of -1 means there is no limit.
assign(max_megs, n).  % default n=200, range [-1 .. INT_MAX]  % command-line -b n
The parameter max_megs says to stop searching when (about) n megabytes of memory have been used. A value of -1 means there is no limit.
set(prolog_style_variables).                       % command-line -V 1
clear(prolog_style_variables).    % default clear  % command-line -V 0
A rule is needed for distinguishing variables from constants in clauses and formulas with free variables. If this flag is clear, variables start with (lower case) 'u' through 'z'. If this flag is set, variables in clauses start with (upper case) 'A' through 'Z' or '_'.
set(print_models).      % default set    % command-line -P 1
clear(print_models).                     % command-line -P 0
If this flag is set, all structures that are found are printed in "standard" form, which means they are suitable as input to other LADR programs such as isofilter and interpformat.
set(print_models_tabular).                       % command-line -p 1
clear(print_models_tabular).    % default clear  % command-line -p 0
If this flag is set, and if is clear, all structures that are found are printed in a tabular form. If both print_models and print_models_standard are set, the last one in the input takes effect.
set(integer_ring).                       % command-line -R 1
clear(integer_ring).    % default clear  % command-line -R 0
If this flag is set, a ring structure is is applied to the search. The operations {+,-,*} are assumed to be the ring of integers (mod domain_size). This method puts a tight constraint on the search, allowing much larger structures to be investigated. Here is an example.
mace4 -f ring41.in > ring41.out
For further information on the integer_ring flag, see slides from a workshop presentation.
set(order_domain).
clear(order_domain).        % default clear
If this flag is set, the relations < and <= are fixed as order relations on the domain in the obvious way.
set(arithmetic).
clear(arithmetic).        % default clear
If this flag is set, several function and relation symbols understood by Mace4 as operations and relations on the integers, and evaluation of terms involving those symbols occurs during the search for models. See the page Arithmetic for Mace4.
set(verbose).                       % command-line -v 1
clear(verbose).    % default clear  % command-line -v 0
If the verbose flag is set, the output file receives information about the search, including the initial partial model (the part of the model that can be determined before backtracking starts) and timing and other statistics for each domain size. (It does not give a trace of the backtracking, so it does not consume a lot of file space.)
set(trace).                       % command-line -T 1
clear(trace).    % default clear  % command-line -T 0
If the trace flag is set, detailed information about the search, including a trace of all assignments and backtracking, is printed to the standard output. This flag causes a lot of output, so it should be used only on small searches.

Advanced Options

These options are used for experimentation with search methods. They can be ignored by nearly all users. For descriptions of most of these options, see the original Mace4 manual [McCune-Mace4] (PDF).
set(lnh).      % default set    % command-line -L 1
clear(lnh).                     % command-line -L 0
assign(selection_order, n).  % default n=2, range [0 .. 2]  % command-line -O n
assign(selection_measure, n).  % default n=4, range [0 .. 4]  % command-line -M n
set(negprop).      % default set    % command-line -G 1
clear(negprop).                     % command-line -G 0
set(neg_assign).      % default set    % command-line -H 1
clear(neg_assign).                     % command-line -H 0
set(neg_assign_near).      % default set    % command-line -I 1
clear(neg_assign_near).                     % command-line -I 0
set(neg_elim).      % default set    % command-line -J 1
clear(neg_elim).                     % command-line -J 0
set(neg_elim_near).      % default set    % command-line -K 1
clear(neg_elim_near).                     % command-line -K 0
set(skolems_last).                       % command-line -S 1
clear(skolems_last).    % default clear  % command-line -S 0

Next Section: Interpformat prover9-manual-2009-02A/nav.html0000644000175000017500000000500711151021064015620 0ustar mccunemccune Prover9 Manual prover9-manual-2009-02A/manual.css0000644000175000017500000000551010726154312016146 0ustar mccunemccune/* margins and padding: top right bottom left */ div.header { font-style: italic; text-align: right; margin: 1em 0 0 0; } body { background-color: #ffeebb; padding-left: 3em; padding-right: 5em; } ul.navbar { padding: 0; margin: 0; position: relative; top: .5em; left: -2.5em; width: 10em; } ul.navbar a:hover {background-color:white} ul.navbar li.first { background-color: #ffeebb; border-right: 0; border-bottom: 0; border-left: 0; border-top: 0; text-align: center; } ul.navbar li { background: #ffe491; list-style-type: none; margin: 0.1em 0; padding: 0.1em; border-right: 2px solid #ff6c1c; border-bottom: 2px solid #ff6c1c; border-left: 2px solid white; border-top: 2px solid white; } ul.navbar ul { padding: 0 0 0 1em; /* inner lists */ } ul.navbar2 li { list-style-type: none; font-size: 80% ; padding: 0 ; margin: 0 ; border-right: none; border-bottom: none; border-left: none; border-top: none; } ul.navbar a { text-decoration: none; } pre.my_file { background-color : white; font : small/1.0 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_option { background-color : white; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_job { background-color : #d9e1eb; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_screen { background-color : #a8e7a8; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_code { background-color : #f7c9b5; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } blockquote.otter_diff { background-color : #ffffaa; font-style: italic; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } dl.references dt { padding: 1em 0 0 0; } i.g { color : #D80700; } prover9-manual-2009-02A/redeclare.out0000644000175000017500000001713411151315523016637 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15841 was started by mccune on cleo, Wed Feb 25 12:26:11 2009 The command was "/home/mccune/bin/prover9 -f redeclare.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file redeclare.in redeclare(true,TRUE). redeclare(false,FALSE). redeclare(negation,~). % op(350, prefix, ~). % copying parse/print properties from - to ~ redeclare(disjunction,OR). % op(790, infix_right, OR). % copying parse/print properties from | to OR redeclare(conjunction,AND). % op(780, infix_right, AND). % copying parse/print properties from & to AND redeclare(implication,IMPLIES). % op(800, infix, IMPLIES). % copying parse/print properties from -> to IMPLIES redeclare(backward_implication,"<--"). % op(800, infix, <--). % copying parse/print properties from <- to <-- redeclare(equivalence,IFF). % op(800, infix, IFF). % copying parse/print properties from <-> to IFF redeclare(universal_quantification,ALL). redeclare(existential_quantification,EXISTS). redeclare(equality,"=="). % op(700, infix, ==). % copying parse/print properties from = to == redeclare(negated_equality,"=/="). % op(700, infix, =/=). % copying parse/print properties from != to =/= redeclare(attribute,@). % op(810, infix_right, @). % copying parse/print properties from # to @ formulas(assumptions). (x * y) * z == z * (y * z) @ label(associativity). (EXISTS e ((ALL x e * x == x) AND (ALL x EXISTS y y * x == e))) @ label(left_identity_inverse). end_of_list. formulas(goals). x * y == x * z IMPLIES y == z @ label(right_cancellation). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (EXISTS e ((ALL x e * x == x) AND (ALL x EXISTS y y * x == e))) @ label(left_identity_inverse) @ label(non_clause). [assumption]. 2 x * y == x * z IMPLIES y == z @ label(right_cancellation) @ label(non_clause) @ label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). (x * y) * z == z * (y * z) @ label(associativity). [assumption]. c1 * x == x @ label(left_identity_inverse). [clausify(1)]. f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. c4 =/= c3 @ label(right_cancellation). [deny(2)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label right_cancellation to answer in negative clause Term ordering decisions: Predicate symbol precedence: predicate_order([ == ]). Function symbol precedence: function_order([ c1, c2, c3, c4, *, f1 ]). After inverse_order: Function symbol precedence: function_order([ c1, c2, c3, c4, *, f1 ]). Unfolding symbols: (none). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). kept: 3 (x * y) * z == z * (y * z) @ label(associativity). [assumption]. kept: 4 c1 * x == x @ label(left_identity_inverse). [clausify(1)]. kept: 5 f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. kept: 6 c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. kept: 7 c4 =/= c3 @ label(right_cancellation) @ answer(right_cancellation). [deny(2)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 3 (x * y) * z == z * (y * z) @ label(associativity). [assumption]. 4 c1 * x == x @ label(left_identity_inverse). [clausify(1)]. 5 f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. 6 c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. 7 c4 =/= c3 @ label(right_cancellation) @ answer(right_cancellation). [deny(2)]. end_of_list. formulas(demodulators). 3 (x * y) * z == z * (y * z) @ label(associativity). [assumption]. % (lex-dep) 4 c1 * x == x @ label(left_identity_inverse). [clausify(1)]. 5 f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. 6 c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=11): 3 (x * y) * z == z * (y * z) @ label(associativity). [assumption]. given #2 (I,wt=5): 4 c1 * x == x @ label(left_identity_inverse). [clausify(1)]. given #3 (I,wt=6): 5 f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. given #4 (I,wt=7): 6 c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. given #5 (I,wt=3): 7 c4 =/= c3 @ label(right_cancellation) @ answer(right_cancellation). [deny(2)]. given #6 (A,wt=9): 14 x * (y * x) == y * x. [para(4(a,1),3(a,1,1)),flip(a)]. given #7 (T,wt=5): 20 x * x == x. [back_rewrite(15),rewrite([18(3),4(2)]),flip(a)]. given #8 (T,wt=5): 21 x * c1 == c1. [para(5(a,1),14(a,1,2)),rewrite([5(4)])]. given #9 (T,wt=9): 18 (x * y) * z == y * z. [back_rewrite(8),rewrite([14(2),14(4)])]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: right_cancellation. % Length of proof is 13. % Level of proof is 6. % Maximum clause weight is 13. % Given clauses 9. 1 (EXISTS e ((ALL x e * x == x) AND (ALL x EXISTS y y * x == e))) @ label(left_identity_inverse) @ label(non_clause). [assumption]. 2 x * y == x * z IMPLIES y == z @ label(right_cancellation) @ label(non_clause) @ label(goal). [goal]. 3 (x * y) * z == z * (y * z) @ label(associativity). [assumption]. 4 c1 * x == x @ label(left_identity_inverse). [clausify(1)]. 5 f1(x) * x == c1 @ label(left_identity_inverse). [clausify(1)]. 6 c2 * c4 == c2 * c3 @ label(right_cancellation). [deny(2)]. 7 c4 =/= c3 @ label(right_cancellation) @ answer(right_cancellation). [deny(2)]. 8 (x * (y * x)) * z == z * (x * z). [para(3(a,1),3(a,1,1))]. 14 x * (y * x) == y * x. [para(4(a,1),3(a,1,1)),flip(a)]. 18 (x * y) * z == y * z. [back_rewrite(8),rewrite([14(2),14(4)])]. 23 x * y == y. [para(5(a,1),18(a,1,1)),rewrite([4(2)]),flip(a)]. 25 c4 == c3. [para(6(a,1),18(a,2)),rewrite([23(2),23(3),23(4)])]. 26 FALSE @ answer(right_cancellation). [resolve(25,a,7,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=9. Generated=61. Kept=23. proofs=1. Usable=8. Sos=2. Demods=10. Limbo=2, Disabled=15. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=38. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=12 (1 lex), Back_demodulated=10. Back_unit_deleted=0. Demod_attempts=383. Demod_rewrites=58. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.04. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15841 exit (max_proofs) Wed Feb 25 12:26:11 2009 prover9-manual-2009-02A/MOL-cand.2960000644000175000017500000003604007744033771015770 0ustar mccunemccunef(f(f(f(f(x,z),y),y),z),f(f(f(x,z),f(y,z)),x)) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,x),f(z,y)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(y,z),f(z,x)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(x,z),f(z,y)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,z),f(z,y)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,z),f(z,x)))) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(y,z),f(z,y)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,x),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(f(x,z),f(z,x)),x),f(z,f(f(f(z,x),y),y))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(f(z,y),x),x))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(f(y,z),x),x))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(f(z,x),y),y))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(f(x,z),y),y))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(f(z,y),x),x))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(f(y,z),x),x))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(f(x,z),y),y))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(f(z,y),x),x))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(f(y,z),x),x))) = z. f(f(f(f(x,z),f(z,x)),x),f(z,f(f(y,f(z,x)),y))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(x,f(y,z)),x))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(y,f(x,z)),y))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(x,f(z,y)),x))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(x,f(y,z)),x))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(y,f(z,x)),y))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(x,f(z,y)),x))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(x,f(y,z)),x))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(y,f(f(z,x),y)))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(x,f(f(z,y),x)))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(x,f(f(y,z),x)))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(y,f(f(z,x),y)))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(x,f(f(z,y),x)))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(x,f(f(y,z),x)))) = z. f(f(f(f(x,z),f(z,z)),x),f(z,f(y,f(f(z,x),y)))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(y,f(y,f(z,x))))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(x,f(x,f(z,y))))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(x,f(x,f(z,y))))) = z. f(f(f(f(x,z),f(z,z)),x),f(z,f(y,f(y,f(z,x))))) = z. f(f(f(x,f(f(z,y),x)),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(x,f(f(z,y),x)),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(y,z),f(z,y)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(y,z),f(z,x)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,x),f(z,y)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(x,f(x,f(z,y))),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(y,z),f(z,y)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,x),f(z,y)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(y,z),f(z,x)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(x,f(f(z,x),f(z,x))),f(z,f(f(f(x,z),y),y))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(f(z,x),y),y))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(f(x,z),y),y))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(f(z,x),y),y))) = z. f(f(x,f(f(z,x),f(z,x))),f(z,f(f(y,f(z,x)),y))) = z. f(f(x,f(f(z,x),f(z,x))),f(z,f(f(y,f(x,z)),y))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(y,f(z,x)),y))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(y,f(z,x)),y))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(y,f(x,z)),y))) = z. f(f(x,f(f(z,x),f(z,x))),f(z,f(y,f(f(z,x),y)))) = z. f(f(x,f(f(z,x),f(z,x))),f(z,f(y,f(f(x,z),y)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(y,f(f(z,x),y)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(y,f(f(x,z),y)))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(y,f(f(z,x),y)))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(y,f(f(x,z),y)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(y,f(y,f(z,x))))) = z. f(f(f(x,f(z,z)),z),f(f(f(f(y,x),x),f(y,z)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(f(x,y),x),f(y,z)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(x,f(y,x)),f(y,z)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(f(y,x),x)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(f(x,y),x)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(x,f(y,x))),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(x,f(x,y))),y)) = z. f(f(f(x,f(z,z)),z),f(y,f(f(f(x,y),x),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(x,f(y,x)),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(x,f(x,y)),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(f(y,x),x)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(f(x,y),x)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(f(y,x),x)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(f(x,y),x)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(x,f(y,x))))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(x,f(x,y))))) = z. f(f(f(x,z),z),f(f(f(z,y),f(x,z)),f(f(x,x),y))) = z. f(f(f(x,z),z),f(f(f(y,z),f(x,z)),f(y,f(x,x)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(z,y),f(z,x)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(x,z),f(z,y)))) = z. f(f(f(x,f(x,z)),x),f(z,f(z,f(f(y,x),f(u,x))))) = z. f(f(f(x,f(x,z)),x),f(z,f(z,f(f(y,x),f(x,u))))) = z. f(f(f(x,f(x,z)),x),f(z,f(z,f(f(x,y),f(u,x))))) = z. f(f(f(x,f(x,z)),x),f(z,f(z,f(f(x,y),f(x,u))))) = z. f(f(x,f(x,f(z,x))),f(z,f(z,f(f(y,x),f(u,x))))) = z. f(f(x,f(x,f(z,x))),f(z,f(z,f(f(y,x),f(x,u))))) = z. f(f(x,f(x,f(z,x))),f(z,f(z,f(f(x,y),f(u,x))))) = z. f(f(x,f(x,f(z,x))),f(z,f(z,f(f(x,y),f(x,u))))) = z. f(f(x,f(x,f(x,z))),f(z,f(z,f(f(y,x),f(u,x))))) = z. f(f(x,f(x,f(x,z))),f(z,f(z,f(f(y,x),f(x,u))))) = z. f(f(x,f(x,f(x,z))),f(z,f(z,f(f(x,y),f(u,x))))) = z. f(f(x,f(x,f(x,z))),f(z,f(z,f(f(x,y),f(x,u))))) = z. f(f(f(f(f(x,z),y),y),z),f(f(f(u,z),f(x,z)),x)) = z. f(f(f(f(f(x,z),y),y),z),f(f(f(z,u),f(x,z)),x)) = z. f(f(f(f(f(x,z),y),y),z),f(f(f(x,z),f(u,z)),x)) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(u,z),f(z,x)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,u),f(z,x)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,x),f(z,u)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(x,z),f(z,u)))) = z. f(f(f(f(f(x,z),y),y),z),f(x,f(f(z,z),f(z,u)))) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(f(x,f(z,y)),x),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(f(z,y),u),u))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(f(y,z),u),u))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(f(z,x),u),u))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(f(x,z),u),u))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(f(z,y),u),u))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(f(y,z),u),u))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(f(z,x),u),u))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(f(x,z),u),u))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(f(z,y),u),u))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(f(y,z),u),u))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(u,f(z,y)),u))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(f(u,f(y,z)),u))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(u,f(z,x)),u))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(f(u,f(x,z)),u))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(u,f(z,y)),u))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(f(u,f(y,z)),u))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(u,f(z,x)),u))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(f(u,f(x,z)),u))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(u,f(z,y)),u))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(f(u,f(y,z)),u))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(u,f(f(z,y),u)))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(u,f(f(y,z),u)))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(u,f(f(z,x),u)))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(u,f(f(x,z),u)))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(u,f(f(z,y),u)))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(u,f(f(y,z),u)))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(u,f(f(z,x),u)))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(u,f(f(x,z),u)))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(u,f(f(z,y),u)))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(u,f(f(y,z),u)))) = z. f(f(f(f(x,z),f(z,y)),y),f(z,f(u,f(u,f(z,y))))) = z. f(f(f(f(x,z),f(z,y)),x),f(z,f(u,f(u,f(z,x))))) = z. f(f(f(f(x,z),f(y,z)),y),f(z,f(u,f(u,f(z,y))))) = z. f(f(f(f(x,z),f(y,z)),x),f(z,f(u,f(u,f(z,x))))) = z. f(f(f(f(x,z),f(z,z)),y),f(z,f(u,f(u,f(z,y))))) = z. f(f(f(x,f(f(z,y),x)),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(f(z,y),x)),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(f(z,y),x)),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(f(z,y),x)),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(x,f(x,f(z,y))),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(x,f(z,y))),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(x,f(z,y))),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(x,f(z,y))),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(f(z,x),u),u))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(f(x,z),u),u))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(f(z,x),u),u))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(f(x,z),u),u))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(f(f(z,x),u),u))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(f(f(x,z),u),u))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(u,f(z,x)),u))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(f(u,f(x,z)),u))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(u,f(z,x)),u))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(f(u,f(x,z)),u))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(f(u,f(z,x)),u))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(f(u,f(x,z)),u))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(u,f(f(z,x),u)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(u,f(f(x,z),u)))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(u,f(f(z,x),u)))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(u,f(f(x,z),u)))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(u,f(f(z,x),u)))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(u,f(f(x,z),u)))) = z. f(f(x,f(f(z,y),f(z,x))),f(z,f(u,f(u,f(z,x))))) = z. f(f(x,f(f(z,x),f(z,y))),f(z,f(u,f(u,f(z,x))))) = z. f(f(x,f(f(z,x),f(y,z))),f(z,f(u,f(u,f(z,x))))) = z. f(f(f(x,f(z,z)),z),f(f(f(f(y,u),u),f(y,z)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(f(y,u),y),f(u,z)),u)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,f(u,y)),f(u,z)),u)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,f(y,u)),f(u,z)),u)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(f(u,y),u)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(f(y,u),u)),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(u,f(u,y))),y)) = z. f(f(f(x,f(z,z)),z),f(f(f(y,z),f(u,f(y,u))),y)) = z. f(f(f(x,f(z,z)),z),f(y,f(f(f(u,y),u),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(f(y,u),u),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(u,f(u,y)),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(u,f(y,u)),f(z,y)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(f(u,y),u)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(f(y,u),u)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(f(u,y),u)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(f(y,u),u)))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(u,f(u,y))))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(z,y),f(u,f(y,u))))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(u,f(u,y))))) = z. f(f(f(x,f(z,z)),z),f(y,f(f(y,z),f(u,f(y,u))))) = z. f(f(f(x,z),z),f(f(f(f(f(x,x),y),z),f(u,z)),x)) = z. f(f(f(x,z),z),f(f(f(f(y,f(x,x)),z),f(u,z)),x)) = z. f(f(f(x,z),z),f(f(f(z,y),f(f(f(x,x),u),z)),x)) = z. f(f(f(x,z),z),f(f(f(y,z),f(f(f(x,x),u),z)),x)) = z. f(f(f(x,z),z),f(f(f(z,y),f(f(u,f(x,x)),z)),x)) = z. f(f(f(x,z),z),f(f(f(y,z),f(f(u,f(x,x)),z)),x)) = z. f(f(f(x,z),z),f(f(f(z,y),f(x,z)),f(f(x,x),u))) = z. f(f(f(x,z),z),f(f(f(y,z),f(x,z)),f(f(x,x),u))) = z. f(f(f(x,z),z),f(f(f(x,z),f(y,z)),f(f(x,x),u))) = z. f(f(f(x,z),z),f(f(f(z,y),f(x,z)),f(f(z,z),u))) = z. f(f(f(x,z),z),f(f(f(y,z),f(x,z)),f(f(z,z),u))) = z. f(f(f(x,z),z),f(f(f(x,z),f(y,z)),f(f(z,z),u))) = z. f(f(f(x,z),z),f(f(f(z,y),f(x,z)),f(u,f(x,x)))) = z. f(f(f(x,z),z),f(f(f(y,z),f(x,z)),f(u,f(x,x)))) = z. f(f(f(x,z),z),f(f(f(x,z),f(y,z)),f(u,f(x,x)))) = z. f(f(f(x,z),z),f(f(f(x,x),y),f(f(u,z),f(z,x)))) = z. f(f(f(x,z),z),f(f(f(x,x),y),f(f(z,u),f(z,x)))) = z. f(f(f(x,z),z),f(f(f(x,x),y),f(f(z,x),f(z,u)))) = z. f(f(f(x,z),z),f(f(f(x,x),y),f(f(x,z),f(z,u)))) = z. f(f(f(x,z),z),f(f(f(z,z),y),f(f(u,z),f(z,x)))) = z. f(f(f(x,z),z),f(f(f(z,z),y),f(f(x,z),f(z,u)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(u,z),f(z,x)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(z,u),f(z,x)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(z,x),f(z,u)))) = z. f(f(f(x,z),z),f(f(y,f(x,x)),f(f(x,z),f(z,u)))) = z. f(f(f(x,z),z),f(x,f(f(f(f(x,x),y),z),f(z,u)))) = z. f(f(f(x,z),z),f(x,f(f(f(y,f(x,x)),z),f(z,u)))) = z. f(f(f(x,z),z),f(x,f(f(z,f(f(x,x),y)),f(z,u)))) = z. f(f(f(x,z),z),f(x,f(f(z,f(y,f(x,x))),f(z,u)))) = z. f(f(f(x,z),z),f(x,f(f(z,y),f(z,f(f(x,x),u))))) = z. f(f(f(x,z),z),f(x,f(f(y,z),f(z,f(f(x,x),u))))) = z. f(f(f(x,z),z),f(x,f(f(z,y),f(z,f(u,f(x,x)))))) = z. f(f(f(x,z),z),f(x,f(f(y,z),f(z,f(u,f(x,x)))))) = z. f(f(x,z),f(f(f(f(z,x),z),f(y,z)),f(f(z,z),u))) = z. f(f(x,z),f(f(f(f(x,z),z),f(y,z)),f(f(z,z),u))) = z. f(f(x,z),f(f(f(z,f(z,x)),f(y,z)),f(f(z,z),u))) = z. f(f(x,z),f(f(f(z,f(x,z)),f(y,z)),f(f(z,z),u))) = z. f(f(x,z),f(f(f(z,z),y),f(f(f(z,x),z),f(z,u)))) = z. f(f(x,z),f(f(f(z,z),y),f(f(f(x,z),z),f(z,u)))) = z. f(f(x,z),f(f(f(z,z),y),f(f(z,f(z,x)),f(z,u)))) = z. f(f(x,z),f(f(f(z,z),y),f(f(z,f(x,z)),f(z,u)))) = z. f(f(x,z),f(f(f(z,z),y),f(f(z,u),f(z,f(z,x))))) = z. prover9-manual-2009-02A/MOL.in0000644000175000017500000000053110537311223015130 0ustar mccunemccune formulas(assumptions). x v (y v z) = y v (x v z). % AJ x v (x ^ y) = x. % B1 x ^ y = (x' v y')'. % DM x'' = x. % CC x v x' = y v y'. % ONE x v (y ^ (x v z)) = x v (z ^ (x v y)). % MOD end_of_list. formulas(goals). x ^ (y v z) = (x ^ y) v (x ^ z). end_of_list. prover9-manual-2009-02A/subset_trans_expand.out0000644000175000017500000001236511151315476020774 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15830 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans_expand.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file subset_trans_expand.in set(expand_relational_defs). formulas(assumptions). (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). end_of_list. formulas(goals). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). end_of_list. ============================== end of input ========================== ============================== EXPAND RELATIONAL DEFINITIONS ========= % Relational Definitions: 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))). [assumption]. % Formulas Being Expanded: 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))). [goal]. ============================== end of expand relational definitions == ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 3 (all x0 all x1 all x2 ((all z (member(z,x0) -> member(z,x1))) & (all z (member(z,x1) -> member(z,x2))) -> (all z (member(z,x0) -> member(z,x2))))) # label(non_clause) # label(goal). [expand_def(2,1)]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -member(x,c1) | member(x,c2). [deny(3)]. -member(x,c2) | member(x,c3). [deny(3)]. member(c4,c1). [deny(3)]. -member(c4,c3). [deny(3)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: (no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ member ]). Function symbol precedence: function_order([ c1, c2, c3, c4 ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=0) % clear(ordered_res). % (HNE depth_diff=0) % set(ur_resolution). % (HNE depth_diff=0) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 4 -member(x,c1) | member(x,c2). [deny(3)]. kept: 5 -member(x,c2) | member(x,c3). [deny(3)]. kept: 6 member(c4,c1). [deny(3)]. kept: 7 -member(c4,c3). [deny(3)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 4 -member(x,c1) | member(x,c2). [deny(3)]. 5 -member(x,c2) | member(x,c3). [deny(3)]. 6 member(c4,c1). [deny(3)]. 7 -member(c4,c3). [deny(3)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=6): 4 -member(x,c1) | member(x,c2). [deny(3)]. given #2 (I,wt=6): 5 -member(x,c2) | member(x,c3). [deny(3)]. given #3 (I,wt=3): 6 member(c4,c1). [deny(3)]. given #4 (I,wt=3): 7 -member(c4,c3). [deny(3)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 10. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 4. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause). [goal]. 3 (all x0 all x1 all x2 ((all z (member(z,x0) -> member(z,x1))) & (all z (member(z,x1) -> member(z,x2))) -> (all z (member(z,x0) -> member(z,x2))))) # label(non_clause) # label(goal). [expand_def(2,1)]. 4 -member(x,c1) | member(x,c2). [deny(3)]. 5 -member(x,c2) | member(x,c3). [deny(3)]. 6 member(c4,c1). [deny(3)]. 7 -member(c4,c3). [deny(3)]. 8 member(c4,c2). [ur(4,a,6,a)]. 9 -member(c4,c2). [resolve(7,a,5,b)]. 10 $F. [resolve(9,a,8,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=4. Generated=6. Kept=6. proofs=1. Usable=4. Sos=1. Demods=0. Limbo=0, Disabled=4. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=2. Megabytes=0.03. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15830 exit (max_proofs) Wed Feb 25 12:25:50 2009 prover9-manual-2009-02A/more-prep.html0000644000175000017500000001173711151021064016751 0ustar mccunemccune Prover9 Manual: More Search Prep
Prover9 Manual Version 2009-02A

More Search Prep

set(expand_relational_defs).
clear(expand_relational_defs).    % default clear
If this flag is set, Prover9 looks for relational definitions in the assumptions and uses them to rewrite all occurrences of the defined relations elsewhere in the input, before the start of the search. The expansion steps are detailed in the output file and appear in proofs with the justification expand_def.

Relational definitions must be closed formulas for example,

formulas(assumptions).
  all x all y all z (A(x,y,z) <-> ((x <= y & y <= z) | (z <= y & y <= x))).
end_of_list.

If there are circular definitions, Prover9 will immediately exit with a fatal error.

This flag eliminates predicate symbols, and its effects overlap somewhat with the flag predicate_elim.

Here is a trivial example, using the transitivity-of-subset problem.

prover9 -f subset_trans_expand.in > subset_trans_expand.out
For more examples using this flag, see the problem set "Ternary Relations in Lattices", which is available from the Prover9 Web page.
set(predicate_elim).    % default set
clear(predicate_elim).
If this flag is set, Prover9 applies a procedure that attempts to eliminate predicate symbols from the problem before the start of the search. The eliminations occur by resolution, and those steps show up as ordinary resolution inferences in any proofs that are found. The procedure works by selecting an eliminable predicate symbol, say P, then doing some set of resolution inferences on P, then removing all clauses that contain P. The procedure is intended to preserve the existence of proofs; however, if there are multiple goals, predicate elimination may prevent multiple proofs.

The effects of this flag overlap somewhat with expand_relational_defs, which also eliminates predicate symbols.

assign(fold_denial_max, n).  % default n=0, range [-1 .. INT_MAX]
This parameter applies to negated ground input equalities in which neither side is a constant, say f(a,b) != f(b,a). If the left-hand side has fewer than n symbols, a new constant is introduced and set equal to the left-hand side. This operation is applied to at most one clause in the input sos list.
set(sort_initial_sos).
clear(sort_initial_sos).    % default clear
If this flag is set, the sos list is sorted just before the start of the search. The order (somewhat arbitrary) is
  • positive clauses < negative clauses < mixed clauses;
  • fewer symbols < more symbols;
  • fewer literals < more literals;
  • shallower < deeper.
set(process_initial_sos).    % default set
clear(process_initial_sos).
If this flag is set, clauses in the initial sos list will be handled (with a few exceptions) as if they were inferred. For example, demodulation, subsumption, and the check for unit conflict will be applied. The exceptions are that none of max_weight, max_vars, max_depth, or max_literals will be applied. (These four parameters are never applied before the first given clause is selected.)

This flag should be cleared only in very rare circumstances.


Next Section: Search Limits prover9-manual-2009-02A/others.html0000644000175000017500000001670511151021064016347 0ustar mccunemccune Prover9 Manual: Other LADR Prograns
Prover9 Manual Version 2009-02A

Other LADR Prograns

The page describes several other programs that have constructed with the same code base (LADR) as Prover9, Prooftrans, Mace4, and Interpformat.

When we write that a program takes a "stream" of objects, we mean that it reads them from the standard input, and the objects are not enclosed in objects(..) and end_of_list.

When we write that a program takes a "set" of objects, we mean that the filename containing the objects is an argument to the program, and the objects are not enclosed in objects(..) and end_of_list.

When we write that a program takes a "list" of objects, we mean that the filename containing the objects is an argument to the program, and the objects are enclosed in objects(..) and end_of_list.

Contents


Clausefilter

Given a set of interpretations, a test to perform, and a stream of formulas, this program outputs the formulas that pass the test. (If non-clausal formulas with free variables are given, their universal closures are used and output.)

The accepted tests are true_in_all, true_in_some, false_in_all, and false_in_some.

Example: given a set of non-modular orthomodular lattices and a stream of identities, print the identities that are false in all of the lattices. This job was used when searching for modular ortholattice (MOL) single axioms: any MOL single axiom is false in all non MOLs.

clausefilter non-MOL-OML.interps false_in_all < MOL-cand.296 > MOL-cand.238 

Clausetester

This program takes a set of interpretations and stream of formulas. For each formula, the interpretations in which the formula is true are shown, and at the end the number of formulas true in each interpretation is shown. (If non-clausal formulas with free variables are given, their universal closures are used and output.)

Example:

clausetester uc-18.interps < uc-hunt.clauses > uc-hunt.out 

Interpfilter

Given a set of formulas, a test to perform, and a stream of interpretations, this program outputs the interpretations that pass the test. (If non-clausal formulas with free variables are given, their universal closures are used.)

The accepted tests are all_true, some_true, all_false, and some_false.

Example: from a list of quasigroups, extract the associative-commutaive ones.

interpfilter assoc-comm.clauses all_true < qg4.interps > qg4-ac.interps 

Rewriter

Rewrite a stream of terms with a list of demodulators. The demodulators are used left-to-right as given, and they are not checked for termination.

Basic example that canonicalizes group expressions:

rewriter group.demods < group-terms.in > group-terms.out
This example canonicalizes Boolean ring expressions. It uses associative-commutative (AC) operations and the op command to change the parsing rules.
rewriter bool-ring.demods < bool-ring.in > bool-ring.out
This example rewrites identities in terms of {meet,join,complementation} into the Sheffer stroke.
rewriter BA-Sheffer.demods < BA4.in > BA4.out 

TPTP Translators

The TPTP Problem Library contains thousands of problems for theorem provers, and the TPTP Language is widely used in the community. LADR has two programs to translate between the LADR and TPTP languages. These programs are new and experimenal, and they do not support all of the language features.

TPTP_to_LADR

This program takes a TPTP problem file and produces a bare input file suitable for input to Prover9 or Mace4. For example,
tptp_to_ladr < PUZ031-1.tptp > PUZ031-1.in
prover9 -f PUZ031-1.in > PUZ031-1.out
If you prefer, those two processes can be piped together:
tptp_to_ladr < PUZ031-1.tptp | prover9 > PUZ031-1.out2
Some of the TPTP language features that are not yet supported are comment blocks, system comments, real numbers, natural numbers as distinct objects, and distinct objects with double quotes.

Some future version of LADR will likely support direct input of TPTP files to Prover9 and Mace4, without having to invoke a translator.

LADR_to_TPTP

This program takes a Prover9 input file and produces a TPTP problem file. A difficulty with this kind of translation is that TPTP accepts a more restriced class of function and predicate symbols. When the translator sees symbols that are not accepted by TPTP, it introduces new symbols, and it gives the symbol mapping as comments in the output. Ordinary TPTP constant, function, and predicate symbols must start with lower case a-z, and any remaining characters must be alphanumeric or _ (underscore). That is, they must match the (Unix-style) regular expression "[a-z][a-zA-Z0-9_]*".

Here is an example that contains several unacceptable symbols.

ladr_to_tptp < RBA-2.in > RBA-2.tptp
Instead of introducing new symbols such as tptp0, you can tell ladr_to_tptp to put single quotes around unacceptable symbols by using the command-line option -q. See the following example.
ladr_to_tptp -q < RBA-2.in > RBA-2q.tptp

Next Section: All Options prover9-manual-2009-02A/output.html0000644000175000017500000003417711151021064016406 0ustar mccunemccune Prover9 Manual: Output Files
Prover9 Manual Version 2009-02A

Output Files

Even when Prover9 fails to find a proof, its output file usually has lots of valuable information about the search. The output file can suggest many ways of improving the search for subsequent jobs as in the following examples.

Basic Structure of Output Files

Prover9 output files are divided into sections and subsections so the users (people and programs) can find what they are looking for. The delimiters are self-explanatory. A few comments about the sections are given here. For a specific example, see the output file subset_trans.out.
============================== Prover9 ===============================
    Version, date, host computer, command.
============================== end of head ===========================

============================== INPUT =================================
    Echo of the input.  Everything in this section that is not
    in the input is commented with "%", so copy-and-paste can be
    done on this section to create a new input file.
============================== end of input ==========================

============================== PROCESS GOALS =========================
    The search is always by refutation, and this section shows
    how goals are negated in preparation for the search.
============================== end of process goals ==================

============================== PROCESS INITIAL CLAUSES ===============
    This section shows the starting clauses (after Skomemization,
    if applicable) and then some of what Prover9 does in preparation
    for the search.  This includes predicate_elim, term ordering
    decisions, and auto_inference settings.  At this stage, clauses
    may be deleted by subsumption and equations may be copied to the
    list demodulators.  See the flag process_initial_sos.
============================== end of process initial clauses ========

============================== CLAUSES FOR SEARCH ====================
    This section shows the clauses just before the start of the
    search, that is, just before selection of the first given clause.
    
============================== end of clauses for search =============

============================== SEARCH ================================
    This section typically shows the sequence of given clauses,
    and it may also include PROOF and STATISTICS sections.

============================== PROOF =================================
    A proof in standard form.
============================== end of proof ==========================

============================== STATISTICS ============================
    We encourage users to look at statistics!
============================== end of statistics =====================

============================== end of search =========================

Clause Justifications

After the initial stage of the output, each clause in the file has an integer identifier (ID) and a justification that may refer to IDs of other clauses. A justification is a list consisting of one primary step and some number of secondary steps. Most primary steps are inference rules applied to given clauses, and most secondary steps consist of simplification, rewriting, or orienting equalities.

Many of the types of step refer to positions of literals or terms in the parent clauses. Literals are identified by the characters 'a' (first literal), 'b' (second literal), etc. Terms are identified by the literal identifier followed by a sequence of integers giving the position of the term within the literal. For example, the position 'c,1,3,2' means third literal, first argument, third argument, second argument. Negation signs on literals are not included in the sequence.

Primary Steps.

Secondary Steps (each assumes a working clause, which is either the result of a primary step or a previous secondary step).

Standard Proofs

Prover9 proofs may be transformed by separate programs, e.g., by Prooftrans.

Options That Say What Goes To the Output File

set(echo_input).    % default set
clear(echo_input).
Clearing this flag suppresses printing of clauses, formulas, weighting rules (and everything else that ends with end_of_list) that would ordinarily appear in the INPUT section of the output file.
set(quiet).
clear(quiet).    % default clear
Setting this flag causes most messages to the standard error file (usually the user's screen) to be suppressed. These messages include notifications about proofs and statistics reports, and warnings about demodulation limits. Setting this flag also suppresses several messages to the ordinary output file, and it clears the bell flag.
set(print_initial_clauses).    % default set
clear(print_initial_clauses).
If this flag is set, clauses are printed in the PROCESS INITIAL CLAUSES and CLAUSES FOR SEARCH sections of the output file.
set(print_given).    % default set
clear(print_given).
Clearing this flag prevents given clauses from being printed to the output file.
set(print_gen).
clear(print_gen).    % default clear
Setting this flag causes all generated clauses to be printed to the the output file. In addition, some other information about the processing of each generated clause is printed. This flag can be output files to be really huge.
set(print_kept).
clear(print_kept).    % default clear
Setting this flag causes all kept clauses to be printed to the the output file. In addition, some other information on the processing of kept clauses is printed.
set(print_labeled).
clear(print_labeled).    % default clear
Setting this flag causes kept clauses containing label attributes to be printed, even when the flag print_kept is clear. This flag is useful when using the hints strategy, because when a clause matches a hint containing a label, the label is copied to the clause. That is, clauses matching labeled hints will be printed.
set(print_clause_properties).
clear(print_clause_properties).    % default clear
Setting this flag causes several properties of clauses to be printed as "props" attributes on the clauses. The properties include which literals are maximal (counting from 1), which literals are maximal among literals of the same sign, and which literals are selected for application of inference rules.
set(print_proofs).    % default set
clear(print_proofs).
Clearing this flag prevents proofs from being printed to the output file. The proof message still goes to the standard error file (usually the user's screen), unless the flag quiet has been set.
set(default_output).    % default set
clear(default_output).
Setting this flag restores most of the output flags and parameters to their default values. Clearing this flag does nothing.
assign(report, n).  % default n=-1, range [-1 .. INT_MAX]
If n > 0, statistics are sent to the output file approximately every n seconds. (On Unix-like systems, one can also tell Prover9 to print statistics to the output file by sending the signal USR1 to a running Prover9 process, e.g., kill -USR1 4223.)
assign(stats, string).  % default string=lots, range [none,some,lots,all]
This parameter determines how many statistics are sent to the output file.
set(clocks).
clear(clocks).    % default clear
If this flag is set, various operations during the Prover9 job are timed (e.g., inference, demodulation, and subsumption), and timing reports are sent to the output file.

Timing the operations can be expensive, especially in Solaris and Macintosh systems. On Linux systems, set(clocks) typically adds 5% -- 10% to the run time.

set(bell).    % default set
clear(bell).
If this flag is set, Prover9 beeps when important things happen, such as proofs and warnings. Some users run searches that find hundreds of proofs, and they clear this flag to prevent all of the beeping.

Next Section:
Weighting prover9-manual-2009-02A/navbar-version/0000755000175000017500000000000010457721476017126 5ustar mccunemccuneprover9-manual-2009-02A/navbar-version/actions.html0000644000175000017500000000740210442157520021442 0ustar mccunemccune Prover9 Manual: Actions
Prover9 Manual Version June-2006

Actions

Prover9's actions allow the user to change the search strategy during the search. For example, after a certain number of given clauses have been used, the max_weight can be changed.

Actions can be triggered in two ways:

Accepted Actions

The currently accepted actions are exit (which terminates the search) and a subset of the ordinary flags and parameters.

Author: list the subset here!

Actions Triggered by Statistics

Statistic actions are given as a list of rules trigger -> action in the input file. Here are the currently recognized triggers for statistic actions. The list must start with terms(actions). and end with end_of_list.

Here is an example list of statistic action rules.

terms(actions).

  given=10        -> set(print_kept).
  kept=1000       -> assign(max_weight, 30).
  generated=5000  -> assign(pick_given_ratio, 4).
  level=3         -> exit.

end_of_list.

Actions Triggered by Clauses

Clause actions occur as attributes on clauses, for example,
A * B != B * A  # action(in_proof -> assign(max_weight, 30)).
In this example (which only makes sense if max_proofs > 1), if the clause occurs in a proof, the action is applied.

The only trigger currently recognized for clause actions is in_proof. Others will likely be added. prover9-manual-2009-02A/navbar-version/attributes.html0000644000175000017500000001135610442157520022173 0ustar mccunemccune Prover9 Manual: Attributes

Prover9 Manual Version June-2006

Attributes

Several kinds of attribute can be attached to input clauses with the # operator, for example,
x * y = y * x              # label(commutativity).
x * c != e                 # answer(x) # label("the denial").
-p(c) | -q(c)              # answer("here it is").
a * b != b * a             # action(in_proof -> exit) # answer(commutativity).
x * (y * z) = y * (x * z)  # bsub_hint_wt(500).
Each attribute has a data type of string, integer, or term. A string attribute is really just a term attribute that is a constant. If a string attribute is not a legal constant, it can be enclosed in double quotes to make it so.

The accepted attributes are shown in the following table.

Name Type Inheritable Purpose
label string No Comment
answer term Yes Record substitutions and what has been proved
action term No Triggers action when clause is used
bsub_hint_add_wt integer No Used for hints
bsub_hint_wt integer No Used for hints

Inheritable attributes are passed from parent to child during most inference rules.

Label Attributes

Label attributes are simply comments that can be attached to input clauses, including hint clauses.

Answer Attributes

Answer attributes are essentially answer literals. They are inherited during application of inference rules, and if they contain variables, the variables are instantiated by the substitution used in the inference.

Answer attributes (like all other attributes) contain exactly one argument. If you wish to record substitutions for more than one variable, you must use a term that contains all of the variables, for example, a list, as in the following clause.

-p(c,x,y,z)  # answer([x,y,z]).

Action Attributes

Action attributes cause various things to happen when clauses are used in various ways. See the section on Actions.

Bsub_hint_wt and Bsub_hint_add_wt Attributes

The hint attributes are attached to hint clauses, and they are used to override the settings of the corresponding parameters. That is, if a hint matches a clause, and if the hint has a bsub_hint_wt attribute, the value of the attribute is used to calculate the weight of the clause instead of the ordinary bsub_hint_wt parameter. prover9-manual-2009-02A/navbar-version/auto.html0000644000175000017500000001430210442157520020747 0ustar mccunemccune Prover9 Manual: Automatic Modes
Prover9 Manual Version June-2006

Automatic Modes

Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.

If you simply give Prover9 a set of clauses and/or formulas, Prover9 will look at the clauses and decide which inference rules to use. In addition, it will use two default limits (max_weight and sos_limit) that, although good in practice, can prevent proofs from being found.

If don't like the inference rules that Prover9 selects, you can clear the flag auto_inference and select your own rules. If you wish to remove the limits max_weight and sos_limit, you can clear the flag auto_limits. If you wish to do both, you can clear the flag auto. Prover9 output files show the effects of changing these flags.

set(auto).    % default set
clear(auto).
This is the basic automatic mode of Prover9.
set(auto_inference).    % default set
clear(auto_inference).
If this flag is set, the input clauses are checked for several syntactic properties such as the presence of equality and non-Horn clauses. Based on the results of the checks, Prover9 decides which inference rules to use. In addition, changing this flag causes the following changes.
  set(auto_inference) -> set(predicate_elim).
  set(auto_inference) -> assign(eq_defs, unfold).
  clear(auto_inference) -> clear(predicate_elim).
  clear(auto_inference) -> assign(eq_defs, pass).
set(auto_limits).    % default set
clear(auto_limits).
The only effect of changing this flag is that two parameters are changed in the following ways.
  set(auto_limits) -> assign(max_weight, 100).
  set(auto_limits) -> assign(sos_limit, 10000).
  clear(auto_limits) -> assign(max_weight, INT_MAX).
  clear(auto_limits) -> assign(sos_limit, -1).

An Experimental Automatic Mode

set(auto2).
clear(auto2).    % default clear
This is an enhanced automatic mode, developed in preparation for CASC-2005. The only direct effect of changing this option is that it causes several other options to be changed. See an output file to see the effects of setting this flag.

Automatically Adjusting the sos List

assign(lrs_ticks, n).  % default n=-1, range [-1 .. INT_MAX]
assign(lrs_interval, n).  % default n=50, range [1 .. INT_MAX]
assign(min_sos_limit, n).  % default n=0, range [0 .. INT_MAX]
These three parameters work together and are used to automatically adjust the parameter sos_limit by means of a "limited resource strategy" [RV-lrs]. If lrs_ticks ≥ 0, the method is applied.

This is an experimental feature and is not recommended for general use.

prover9-manual-2009-02A/navbar-version/fof-reduction.html0000644000175000017500000001021210442157520022537 0ustar mccunemccune Prover9 Manual: FOF Reduction
Prover9 Manual Version June-2006

FOF Reduction

FOF (First-Order Formula) reduction is a method of attempting to simplify a problem by reducing it to an equivalent set of independent subproblems. A trivial example is to reduce the conjecture A <-> B to the pair of problems A -> B and B -> A.

Flags for FOF Reduction

set(fof_reduction).
clear(fof_reduction).    % default clear
If this flag is set, and if the logical specification is all formulas (rather than clauses), Prover9 will attempt to transform the problem into a set of independent subproblems. The problem reduction uses a miniscope method [Champeaux-miniscope], and it can easily blow up on complex formulas. Therefore, if the reduction procedure fails to terminate within a few seconds, or if the subproblems it produces are more complex than the original problem, the reduction attempt is aborted, and Prover9 reverts to standard clausification. If the reduction succeeds, each subproblem is given to the ordinary Prover9 search procedure.
set(print_subproblems).    % default set
clear(print_subproblems).
This flag is consulted when the FOF reduction procedure is in use. If the flag is set, each subproblem is printed just before search starts on that subproblem.

An Example of FOF Reduction

This example was given by Peter Andrews as a challenge problem for resolution systems in the 1970s. Prover9's miniscope procedure reduces it to 32 trivial subproblems. (More powerful miniscope methods can solve the problem by reducing it to 0 subproblems.)
prover9 -f andrews.in > andrews.out
Here is the same problem without FOF reduction.
prover9 -f andrews2.in > andrews2.out
The preceding example is artificial and seems tailor-made for FOF reduction. Other, more realistic examples can be found in the standard set of Prover9 examples. prover9-manual-2009-02A/navbar-version/glossary.html0000644000175000017500000001743310442157520021652 0ustar mccunemccune Prover9 Manual: Glossary
Prover9 Manual Version June-2006

Glossary

Not done yet.

Terms, Clauses, Formulas, Interpretations

These definitions apply to first-order unsorted logic. See any book on first-order logic for more formal definitions of these concepts.
Term
A recursive definition of first-order unsorted terms.
  • A variable is a term,
  • a constant is a term, and
  • an n-ary function symbol applied to n terms is a term.

Atomic Formula
An n-ary predicate symbol applied to n terms is an atomic formula.

Literal
A literal is an atomic formula or the negation of an atomic formula.

Clause
A clause is a disjunction of literals. All variables in a clause are assumed to be universally quantified.

Formula
This is a standard definition of formula. Prover9 has a more restricted notion of formula that excludes formulas with free variables.
  • An atomic formula is a formula,
  • if F and G are formulas, then the following are formulas.
    • (-F)
    • (F | G)
    • (F & G)
    • (F -> G)
    • (F <-> G)
  • if F is a formula and x is a variable, then the following are formulas.
    • (all x F)
    • (exists x F)

Interpretation
An interpretation of a first-order language consists of
  • of a set of objects called the domain,
  • an n-ary function over the domain into the domain for each n-ary function symbol in the language,
  • an n-ary relation over the domain for each n-ary predicate symbol in the language.
Given an interpretation, each term in the language evaluates to a member of the domain, and each formula in the language evaluates to TRUE or to FALSE.

Logic Transformations


Negation Normal Form (NNF)
A formula is in negation normal form if the only logic connectives are negation, conjunction, disjunction, quantification (universal or existential), and if all negation operations are applied directly to atomic formulas.

Conjunctive Normal Form (CNF)
This definition applies to quantifier-free formulas.

A formula is in conjunctive normal form if (1) the only logic connectives are negation, conjunction, and disjunction, (2) no negation is applied to a conjunction or a disjunction, and (3) no disjunction is applied to a conjunction.

Alternate definition: A formula is in CNF if it is a clause or a conjunction of clauses.


Skolemization
Skolemization is the process of replacing existentially quantified variables in a formula with new constants (called Skolem constants) or functions (called Skolem functions). If an existential quantifier is in the scope of some universal quantifiers, the new symbol is a function of the corresponding universally quantified variables. The result of Skolemization is not, strictly speaking, equivalent to the original formula, because new symbols may have been introduced, but the result is inconsistent iff the the original formula is inconsistent.

Clausification
Clausification is the process of translating a formula into a conjunction of clauses. A standard way is NNF conversion, Skolemization, moving universal quantifiers to the top (renaming bound variables if necessary), CNF conversion, and finally removing universal quantifiers. The variables in each resulting clause are implicitly universally quantified.

Each step produces an equivalent formula, except for Skolemization, which produces an eqconsistent formula, so the result of Clausification is inconsistent iff the original formula is inconsistent.



Term Ordering Terminology


Maximal Literal
A literal is maximal in a clause, with respect to some term ordering, if no literal in the clause is greater. The terms orderings used by Prover9 (LPO, KBO, RPO) are, in general, only partial, so clauses do not necessarily have maximum literals.


Inference and Simplification Rules


"From" and "Into" Clauses and Literals
A paramodulation inference consists of two parents and a child. The parent containing the equality used for the replacement is the from parent or the from clause, the equality is the from literal, and the side of the equality that unifies with the term being replaced is the from term.

The replaced term is the into term, the literal containing the replaced term is the into literal, and the parent containing the replaced term is the into parent or into clause.



Prover9 Terminology

prover9-manual-2009-02A/navbar-version/goals.html0000644000175000017500000001762110442157520021113 0ustar mccunemccune Prover9 Manual: Goals
Prover9 Manual Version June-2006

Goals

This section shows how the conclusion(s) of a conjecture can be stated in positive form, how one can search for direct proofs as opposed to bidirectional proofs, and how multiple conclusions are stated and handled.

Stating Conclusions in Positive Form

In Otter, the conclusions are always stated in negated form.
Prover9 allows the user to state conclusions in positive form by using the lists clauses(goals) and formulas(goals). However, Prover9 always works by refutation, so the clauses or formulas in the goals lists are negated as described below, and the results are appended to the sos clause list before the search starts.

If there is just one clause in clauses(goals), the meaning is clear, and the clause is processed by taking first taking universal closure, then negating. The formula is then handled exactly as if it had been input in formulas(sos), that is, by Skolemizing and transforming to clauses.

If there is just one formula in formulas(goals), the meaning is clear, and it is simply negated and then Skolemized as usual.

If there is more than one clause in clauses(goals) or more than one formula in formulas(goals), the meaning is not clear. For example, if there are two clauses in clauses(goals), is the conclusion the disjunction or the conjunction of those clauses? What does a list of goal clauses mean if some of them are non-units or non-positive?

To simplify the meanings of multiple goals, the following restrictions are in place.

To avoid any of these restrictions, one can always write the conclusions clearly as a single formula for formulas(goals).

When there are multiple goals in clauses(goals), should the proofs of the goals be presented together as one proof or as separate proofs? We have chosen the latter for the simple reason that if any goal is proved, we wish to have a proof.

Forward or Direct Proofs

This subsection refers to the negative clauses that exist at the start of the search. These include ones that are input, ones that are derived from ordinary Skolemization, and those that are derived from clauses(goals) and formulas(goals).

The following flag restricts the use of negative clauses, with the aim of finding proofs that are more direct. That is, proofs that go forward from the hypotheses to the conclusion rather than proofs that reason backward from the conclusion. The secondary effect of this flag is that when there are multiple conclusions, Prover9 will not give more than one proof of the same conclusion.

set(restrict_denials).
clear(restrict_denials).    % default clear

If this flag is set, negative clauses (clauses in which all literals are negative) are given special treatment. At the start of the search, they are moved to a list denials, and during the search, only a subset of the ordinary operations are applied to them.

The clauses will not be selected as given clauses, so the ordinary inference rules of the search will not be applied to them. The following operations will be applied to the clauses: back demodulation, back unit deletion, unit conflict.

The effect of setting restrict_denials is that proofs will usually be more forward or direct. This option can speed up proofs, it can delay proofs, and it can block all proofs.

In addition, when a clause in list denials is used in a proof, it is disabled (unless the flag reuse_denials is set). When multiple proofs are sought (see max_proofs), this prevents more than one proof of the same theorem.

Handling Multiple Conclusions

assign(max_proofs, n).  % default n=1, range [-1 .. INT_MAX]
This parameter tells Prover9 to stop searching when the n-th proof has been found. If the user asks for more than one proof by changing this parameter, the flag restrict_denials will be automatically set. This option dependency prevents multiple proofs of the same theorem.

Note that the flag restrict_denials can substantially alter the search, so one must be aware of situations like the following. One runs a job that finds a quick proof of a single goal; then a second job is run, containing a second goal and also assign(max_proofs,2); the first goal may no longer be proved, because the first proof has bidirectional reasoning which is not allowed by restrict_denials.

Of course, the option dependency can be undone with clear(restrict_denials).

Multiple Proofs of the Same Conclusion

If the flag restrict_denials is set, and if there are multiple denials, then by default, when a denial is refuted, it is disabled so that it is not refuted again later in the search. The following flag allows for multiple refutations using the same denial.
set(reuse_denials).
clear(reuse_denials).    % default clear
If this flag is set, when a clause in list denials (which gets there by flag restrict_denials), occurs in a proof, it is not disabled, allowing it to occur in subsequent proofs.
prover9-manual-2009-02A/navbar-version/hints.html0000644000175000017500000002060210442157520021124 0ustar mccunemccune Prover9 Manual: Hints
Prover9 Manual Version June-2006

Hints

Hint clauses can be used to help guide Prover9's search. Prover9's input can contain any number of hint lists (which are simply concatenated by Prover9).

Each list of hint clauses must start with clauses(hints). and end with end_of_list. Any clause is acceptable as a hint. For example (the labels attributes are optional),

clauses(hints).
    x ' * (x * y) = y       # label(6).
    x * (x * y) = y         # label(7).
    x * (y * (x * y)) = e   # label(8).
    x ' ' * e = x           # label(9).
    x ' * e = x             # label(10).
    x ' = x                 # label(11).
    x * e = x               # label(12).
    x * (y * x) = y         # label(13).
    x * y = y * x           # label(14).
end_of_list.

Hints are used when selecting given clauses. The mechanism for doing this is that when a derived clause matches a hint, its weight is adjusted so that it is selected sooner (or maybe later, if the hint is for avoiding paths) as the given clause.

A derived clause matches a hint if it subsumes the hint. If a clause matches more than one hint, the first matching hint is used.

In Otter, "matching a hint" can mean (depending on the parameter settings) subsumes, subsumed by, or equivalent to. These other types of matching may be added to Prover9 if there is any demand for them.

Where do Hints Come From?

Hints frequently consist of proofs, perhaps many, of related theorems.

Bob Veroff developed the concept, installing code for hints in an early version of Otter, to experiment with his method of proof sketches [Veroff-hints, Veroff-sketches]. In the proof sketches method, a difficult conjecture is attacked by first proving several (or many) weakened variants of the conjecture, and using those proofs as hints to guide searches for a proof of the original conjecture.

The program Prooftrans, which is distributed along with Prover9, can be used to extract proofs from a Prover9 output file and transform the proofs to lists of hints suitable for input to subsequent Prover9 jobs.

An Example

This example consists of three jobs (Author: make up an example):
  1. a Prover9 job that proves an easy theorem,
    prover9 -f easy.in > easy.out
    
  2. a Prooftrans job that converts the proof to a list of hints,
    prooftrans hints -f easy.out > easy.hints
    
  3. and a Prover9 job that uses the hints to prove a more difficult theorem.
    prover9 -f hard.in easy.hints  > hard.out
    

Weight Adjustment with Hints

When a clause matches a hint, the weight of the clause can be adjusted in two ways: (1) by assigning a fixed weight, or (2) by adding some value to the ordinary weight. These two methods are determined by the following two parameters.
assign(bsub_hint_wt, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]
If the clause being weighed matches a hint and n != INT_MAX, the clause receives n as its weight.
assign(bsub_hint_add_wt, n).  % default n=-1000, range [INT_MIN .. INT_MAX]
First the clause is weighed with the weighting rules. Then, if the clause matches a hint and n != INT_MAX, the value n added to the weight of the clause. The typical use of this parameter is to subtract weight from the clause (to make it more preferable); that is, n is negative.

The preceding two parameters can be overridden for specific hints by including attributes on those hints. The attribute names correspond to the two parameter names. For example, consider the following hints.

clauses(hints).
    x ' * (x * y) = y       # label(6) # bsub_hint_wt(-50).
    x * (x * y) = y         # label(7) # bsub_hint_add_wt(-500).
    x * (y * (x * y)) = e   # label(8).
    x ' ' * e = x           # label(9).
    x ' * e = x             # label(10).
end_of_list.
If a clause matches either of the first two hints, the attributes are used to adjust the weight of the clause. If a clause matches any of the other hints, the ordinary parameters are used.

Hint Degradation

In many searches that use hints, a given hint can match many different derived clauses. As a hint matches more ane more clauses, we wish its influence to diminish. This is the idea behind hint degradation [
Veroff-hints].
set(degrade_hints).    % default set
clear(degrade_hints).
If this flag is set, then every time a hint matches a clause, the value of its bsub_hint_add_wt is cut in half. This parameter applies regardless of whether the bsub_hint_add_wt is determined by the ordinary parameter of by an attribute on the clause.

Labels on Hints

Label attributes on hint clauses get special treatment. When a hint containing a label matches a clause, the label attribute is copied to the clause.

The following flag addresses the situation in which the input contains sets of equivalent hints. (This situation frequently occurs when the hints contain many proofs of similar theorems.)

set(collect_hint_labels).
clear(collect_hint_labels).    % default clear
If this flag is set, and the hints list contains a set of equivalent hints, only the first copy of the hint is retained. However, the labels from all of the other equivalent hints are collected and put on the retained copy. When a clause matches the retained hint, it gets copies of all of the labels from the equivalent hints.

If this flag is clear, when a clause matches a set of equivalent hints, it receives the label (if any) from the first copy only.

prover9-manual-2009-02A/navbar-version/index.html0000644000175000017500000001213210442157520021105 0ustar mccunemccune Prover9 Manual
Prover9 Manual Version June-2006

Prover9 Manual

Introduction

Prover9 is a resolution/paramodulation automated theorem prover for first-order and equational logic. Prover9 is a successor of the Otter Prover [McCune-Otter33].

Getting Started

Prover9 has a fully automatic mode in which the user simply gives it clauses or formulas representing the problem. See the Section Clauses and Formulas.

An important way to learn about Prover9 is to browse and study the example input and output files that are available. Users are encouraged to contribute examples from their own work with Prover9 (and Mace4).

Related Programs

Several useful programs come bundled with Prover9. The most important is Mace4, which looks for finite models and counterexamples. Mace4 can help avoid wasting time searching for a proof with Prover9 by first finding a counterexample or by first helping to debug logical specifications.

Another useful program is Prooftrans, which can transform proofs found by Prover9 in various ways, including producing more detailed proofs, simplifying the justifications, renumbering the steps, producing proofs in XML, and producing proofs for input to other programs.

Other Theorem Provers

Format Conventions for this Manual

Many parts of this manual are displayed in boxes with different background colors.

A display like the following indicates part of an input or output file.

formulas(sos).
  all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
  all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.
A display like the following indicates a job that is run on a command line, for example, a command to run a Prover9 job.
prover9 -f subset_trans.in > subset_trans.out
A display like the following indicates some output that appears on the computer screen, for example, a message from Prover9.
-------- Proof 1 -------- 
THEOREM PROVED
------ process 3666 exit (max_proofs) ------
Displays like the following contain algorithms.
Simplify clause (c):
    demodulate c
    merge identical literals
A display like the following notes an important difference between Prover9 and Otter.
Prover9's automatic mode is set by default. Otter's automatic mode must be explicitly set.
prover9-manual-2009-02A/navbar-version/inf-rules.html0000644000175000017500000003407710442157520021716 0ustar mccunemccune Prover9 Manual: Inference Rules
Prover9 Manual Version June-2006

Inference Rules

When a given clause is selected, all of the inference rules in effect are applied to it. For each inference, one of the parents is the given clause, and all other parents must be in the usable list.

Most inference rules distinguish the parents by the roles they play in the inference, e.g., positive and nonpositive for binary resolution, nucleus and satellite for hyper rules, and from and into for paramodulation. The given clause can play any role in the inference.

After an inference rule generates a new clause, the clause is processed, which includes simplification operations such as demodulation and unit_deletion, and retention tests, such as max_weight. Processing also includes several operations that might be considered inference rules, such as factor and new_constants.

Binary Resolution Rules and Options

set(binary_resolution).
clear(binary_resolution).    % default clear
If this flag is set, positive binary resolution will be applied to the given clause.

If the flag ordered_res is set, there are additional restrictions on both parents: the literal resolved in the positive parent must be maximal, and the literal in the nonpositive parent must satisfy the literal_selection parameter.

If the flags check_res_instances and ordered_res aren both set, then the ordering tests described in the preceding paragraphs are applied after the substitution for the inference has been applied to the parent clauses.

set(neg_binary_resolution).
clear(neg_binary_resolution).    % default clear
If this flag is set, negative binary resolution will be applied to the given clause.

If the flag ordered_res is set, there are additional restrictions on both parents: the literal resolved in the negative parent must be maximal, and the literal in the nonnegative parent must satisfy the literal_selection parameter.

If the flags check_res_instances and ordered_res aren both set, then the ordering tests described in the preceding paratgraphs are applied after the substitution for the inference has been applied to the parent clauses.

assign(literal_selection, string).  % default string=maximal, range [maximal, first_maximal, all, first]
This parameters applies to the binary resolution inference rules, and it determines which literals of the "other" parent are eligible for resolution. That is, for binary_resolution, it applies to the nonpositive parent, and for neg_binary_resolution, it applies to the nonnegative parent. Here are the accepted values.

Hyper and UR Resolution Rules and Options

set(hyper_resolution).
clear(hyper_resolution).    % default clear
If this flag is set, positive hyperresolution will be applied to the given clause. If the flag ordered_res is set, the resolved literals in the satellites (positive parents) must be maximal. If the flags ordered_res and check_res_instances are both set, the maximality check is done after the substitution for the inference has been applied to the parents.
set(neg_hyper_resolution).
clear(neg_hyper_resolution).    % default clear
If this flag is set, negative hyperresolution will be applied to the given clause. If the flag ordered_res is set, the resolved literals in the satellites (negative parents) must be maximal. If the flags ordered_res and check_res_instances are both set, the maximality check is done after the substitution for the inference has been applied to the parents.
set(ur_resolution).
clear(ur_resolution).    % default clear
If this flag is set, UR resolution (unit-resulting resolution) will be applied to the given clause. In fact, the only effect of this flag is that it automatically sets the flags pos_ur_resolution and neg_ur_resolution
set(pos_ur_resolution).
clear(pos_ur_resolution).    % default clear
If this flag is set, positive UR resolution is applied to the given clause. That is, the resulting unit clause is a positive clause. Ordering constraints are not applied to UR resolution.
set(neg_ur_resolution).
clear(neg_ur_resolution).    % default clear
If this flag is set, negative UR resolution is applied to the given clause. That is, the resulting unit clause is a negative clause. Ordering constraints are not applied to UR resolution.
set(initial_nuclei).
clear(initial_nuclei).    % default clear
This flag puts a restriction on the nucleus for the hyperresolution and UR-resolution inference rules. It says that each nucleus must be an input clauses (more precisely, an initial clause).
assign(ur_nucleus_limit, n).  % default n=-1, range [-1 .. INT_MAX]
If n != -1, then the nucleus for each UR-resolution inference can have at most n literals.
set(ordered_res).    % default set
clear(ordered_res).
This option puts restrictions on the binary and hyperresolution inference rules (but not on UR-resolution). It says that resolved literals in one or more of the parents must be maximal in the clause. For binary_resolution and hyper_resolution, the resolved literals in the positive parents must be maximal, and for neg_binary_resolution and neg_hyper_resolution, the resolved literals in the negative parents must be maximal.
set(check_res_instances).
clear(check_res_instances).    % default clear
This flag applies to the binary and hyperresolution inference rules if the flag ordered_res is also set. If check_res_instances is set, the ordered_res test is is applied after the substitution for the inference has been applied to the parents.

Paramodulation Rules and Options

set(paramodulation).
clear(paramodulation).    % default clear
If this flag is set, paramodulation is applied to the given clause. If the from literal is oriented (oriented equalities are always heavy=light), the paramodulation is applied left-to-right. If the from literal cannot be oriented Prover9 attempts to paramodulate from both sides of it according to the flag check_para_instances.

If the flag ordered_para is also set, the from clause must be positive, and equality literal that is used in the from clause must be maximal. If the flag check_para_instances is also set, the equality

Setting this flag causes the flag back_demod to be automatically set. Back demodulation can be disabled by placing clear(back_demod) after set(paramodulation) in the input file.

set(para_units_only).
clear(para_units_only).    % default clear
This flag says that both parents for paramodulation must be unit clauses. The only effect of this flag is to assign 1 to the parameter para_lit_limit.
assign(para_lit_limit, n).  % default n=-1, range [-1 .. INT_MAX]
If n != -1, each parent in paramodulation can have at most literals.
set(basic_paramodulation).
clear(basic_paramodulation).    % default clear
This option hasn't been implemented yet.
set(ordered_para).    % default set
clear(ordered_para).
This flag places a restrictions on the paramodulation inference rule. It says that the from parent must be positive and the from literal must be maximal.
set(check_para_instances).
clear(check_para_instances).    % default clear
This flag applies to the paramodulation inference rule when the from literal cannot be oriented.

If this flag is set and the from literal cannot be oriented, Prover9 applies the substitution for the inference to the from literal to determine if the instance can be oriented. If so, it will not apply the paramodulation backward (light-to-heavy).

If this flag is clear, paramodulation occurs from both sides of nonorientedable equality literals.

prover9-manual-2009-02A/navbar-version/input.html0000644000175000017500000001761010442157520021143 0ustar mccunemccune Prover9 Manual: Input Files
Prover9 Manual Version June-2006

Prover9 Input Files

Prover9 takes its input from one or more (usually one) files. If there is more than one input file, lists of objects (clauses, formulas, weighting rules, etc.) cannot be split across more than one file. The page Running Prover9 shows how to specify the files in the commands to run Prover9.

The difference between clauses and formulas is a frequent source of confusion for Prover9 (and Otter) users. The page Clauses and Formulas describes the differences. For now, simply note that clauses and formulas are different types of objects; either or both can be used to state the logical specification of the problem.

Comments and Whitespace

Everything from the first % (percent sign) on a line through the end of the line is treated as a comment and ignored. In particular, comments are not echoed to the output file. (Clauses can have label attributes which can serve as different kind of comment which does appear in the output file.)

Whitespace (spaces, newlines, tabs, etc.) is optional in most situations. The important exception is that whitespace is required around some operations in clauses and formulas (see the page Clauses and Formulas).

A Simple Example

The most basic kind of input file consists of list of clauses named "sos" representing the negation of the conjecture, as in the following example.
clauses(sos).   % clauses to be placed in the sos list
  -man(x) | mortal(x).
  man(george).
  -mortal(george).
end_of_list.
Prover9 will take the clauses, use its automatic mode to decide on the inference rules, and then search for a refutation.

The preceding example can also be stated in a positive form by usine the goals list, as follows.

clauses(sos).   % clauses to be placed in the sos list
  -man(x) | mortal(x).
  man(george).
end_of_list.

clauses(goals).  % positive units to be negated and placed in the sos list
  mortal(george).
end_of_list.

A third way of stating the conjecture uses formulas instead of clauses. Note that a clause without variables is also a formula, with the same meaning.

formulas(sos).   % formulas to be translated to clauses and placed in the sos list
  all x (man(x) -> mortal(x)).
  man(george).
end_of_list.

formulas(goals).  % formulas to be negated, translated to clauses, placed in sos
  mortal(george).
end_of_list.
The searches for the the three preceding inputs should all be similar, but they are not guaranteed to be identical, because clause order and symbols may be different.

Types of Input

Prover9 input consists of lists of objects (clauses, formulas, or terms) and commands.

Lists of Objects

Lists of objects start with a type (clauses, formulas, or terms) and name (sos, goals, weights, etc.), and end with end_of_list. The following display show an example of each type of accepted list, with one object in each list.
clauses(sos).           p(x).     end_of_list.   % heavily used
clauses(goals).         p(x).     end_of_list.   % must be positive units (see Goals)
clauses(usable).        p(x).     end_of_list.   % seldom used
clauses(demodulators).  f(x)=x.   end_of_list.   % seldom used, must be equalities
clauses(hints).         p(x).     end_of_list.   % should be used more often  (see Hints)

formulas(sos).          all x p(x).   end_of_list.   % heavily used
formulas(goals).        all x p(x).   end_of_list.   % at most one formula (see Goals)
formulas(usable).       all x p(x).   end_of_list.   % seldom used

terms(weights).         weight(a) = 10.                         end_of_list. % see Weighting
terms(kb_weights).      a = 3.                                  end_of_list. % see Term Ordering
terms(actions).         given = 100 -> set(print_kept).         end_of_list. % see Actions
terms(interpretations). interpretation(2,[],[relation(p,[1])]). end_of_list. % see Semantics
If the input contains morethan one list of a particular type/name, the lists are simply concatenated by Prover9 as they are read.

Commands

Eight types of command are accepted. Here is an example of each.
op(400, infix_right, [+, --]). % declare parse precedence and type (see Clauses and Formulas)

set(fof_reduction).            % set a flag

clear(auto_inference).         % clear a flag

assign(sos_limit, 20000).      % integer parameter

assign(stats, some).           % string parameter

assoc_comm(*).                 % not currently used

commutative(g).                % not currently used

lex([0,1,a,b,f,g,*,+]).        % symbol precedence (see Term Ordering)

skolem([a,b,f,g]).             % declare symbols to be Skolem function (rarely used)

Order of Commands and Lists of Objects

For the most part, the order of things in the input file(s) is irrelevant. For example, commands can usually be mixed with lists of objects. The situations in which order matters are listed here. Note that changing the order of clauses or formulas within a list, changing the order of literals in a clause, or changing the order of subformulas in a formula can change the search, occasionally in profound ways. prover9-manual-2009-02A/navbar-version/install.html0000644000175000017500000000545210442157520021453 0ustar mccunemccune Prover9 Manual: Installation
Prover9 Manual Version June-2006

Installing Prover9, Mace4, and Friends

Unix-like Systems

Here is a quick example for Unix-like systems, including Linux and Macintosh OS X. Visit the Prover9 Web page and download the current version of LADR. The filename should be something like LADR-June-2006A.tar.gz; make sure that file is in your current directory. Run the following commands.
% zcat LADR-June-2006A.tar.gz | tar xvf -
% cd LADR-June-2006A
% make all

Prover9, mace4, prooftrans, and several other programs should now be in the directory LADR-June-2006A/bin. You can either include that directory in your search path or copy those programs to some directory that is already in your search path.

Microsoft Windows

Get a new hard drive, install Linux, then see the preceding section. Just kidding---there is a Windows version. For now, see that the Prover9 Web page. prover9-manual-2009-02A/navbar-version/limits.html0000644000175000017500000000774410442157520021314 0ustar mccunemccune Prover9 Manual: Search Limits
Prover9 Manual Version June-2006

Search Limits

assign(sos_limit, n).  % default n=10000, range [-1 .. INT_MAX]
This parameter imposes a limit on the size of the sos list (n=-1 means there is no limit). It also activates a method for deleting clauses (in addition to, and after, application of the max_weight parameter).

This is a little bit tricky (and sometimes too clever for its own good). When the sos is half full, it starts being selective about keeping clauses, and as it fills up, it gradually becomes more selective. When it is full, it is very selective about keeping clauses. When it decides to keep a clause, and the sos is already full, the "worst" clause in sos is deleted to make room for the new clause.

More details will be added later.

assign(max_given, n).  % default n=-1, range [-1 .. INT_MAX]
This parameter will stop the search after n given clauses have been used. A value of -1 means that there is no limit.
assign(max_kept, n).  % default n=-1, range [-1 .. INT_MAX]
The search will stop when more than n clauses have been retained.
assign(max_megs, n).  % default n=200, range [-1 .. INT_MAX]
The search will stop when about n megabytes of memory have been used.
assign(max_seconds, n).  % default n=-1, range [-1 .. INT_MAX]
The search will stop at about n seconds. For UNIX-like systems, the "user CPU" time is used.
prover9-manual-2009-02A/navbar-version/loop.html0000644000175000017500000001021710442157520020751 0ustar mccunemccune Prover9 Manual: The Inference Loop
Prover9 Manual Version June-2006

Prover9 Manual: The Inference Loop

The main loop for inferring and processing clauses and searching for a proof is sometimes called the given clause algorithm. It operates mainly on the sos and usable lists.
While the sos list is not empty:
    1. Select a given clause from sos and move it to the usable list;
    2. Infer new clauses using the inference rules in effect;
       each new clause must have the given clause as one of its
       parents and members of the usable list as its other parents;
    3. process each new clause;
    4. append new clauses that pass the retention tests to the sos list.
end of while loop.

Two Frequently Asked Questions

At some point in the search, Prover9 has all of the clauses needed to make an important inference, and one of the potential parents is selected as the given clause. But Prover9 fails to make the inference. Why is that?
Why do all parents have to be in the usable list?
The answer to both questions is the same, and it has to do with redundancy. Assume According to the algorithm, C is not derived until B has also been selected. Otherwise, C would be derived twice from A and B.

Variations of the Loop

There are two common versions of the given clause algorithm that differ in how newly inferred clauses are processed, in particular, what clauses can operate on (rewrite, simplify) newly generated clauses.

In the Otter loop, which Prover9 uses, clauses in the sos list can operate on new clauses. In the Discount loop, clauses in the sos list (also called the passive list) cannot operate on new clauses. The tradeoff between the two versions is straightforward --- the Otter loop spends more time simplifying new clauses with the possible benefit of making an important simplification sooner. Some experimental analysis of the tradeoff has been done [Voronkov-loop???]. prover9-manual-2009-02A/navbar-version/mace4.html0000644000175000017500000001011710442157520020770 0ustar mccunemccune Prover9 Manual: Mace4

Prover9 Manual Version June-2006

Mace4

The program Mace4 [McCune-Mace4] searches for finite models of first-order and equational statements, the same kind of statement that Prover9 accepts. If the statement is the denial of some conjecture, any models found by Mace4 are counterexamples to the conjecture.

Mace4 can be a valuable complement to Prover9, looking for counterexamples before (or at the same time as) using Prover9 to search for a proof. It can also be used to help debug input clauses and formulas for Prover9.

For the most part, Mace4 accepts the same input files as Prover9. If the input file contains commands that Mace4 does not understand, then the argument "-c" must be given to tell Mace4 to ignore those commands.

For example, say you've just invented group theory, and you're wondering if all groups are commutative. You can run the following two jobs in parallel, with Prover9 looking for a proof, and Mace4 looking for a counterexample.

prover9  -f x2.in > x2.prover9.out
mace4 -c -N10 -f x2.in > x2.mace4.out
The following command is helpful.

mace4 -help

The models in Mace4 output files can be transformed in various ways with the program Interpformat. Here are examples.

interpformat portable -f x2.mace4.out > x2.portable
interpformat portable2 -f x2.mace4.out > x2.portable2
interpformat tabular -f x2.mace4.out > x2.tabular
interpformat raw -f x2.mace4.out > x2.raw
interpformat cooked -f x2.mace4.out > x2.cooked
interpformat xml -f x2.mace4.out > x2.xml
interpformat tex -f x2.mace4.out > x2.tex

For further information see the Mace4 Web page. (The PDF manual on the Mace4 Web page is somewhat out of date.) prover9-manual-2009-02A/navbar-version/manual-index.html0000644000175000017500000000350410442157520022363 0ustar mccunemccune Prover9 Manual: Index

Prover9 Manual Version June-2006

Index

Not done yet. prover9-manual-2009-02A/navbar-version/manual.css0000644000175000017500000000513110442157520021100 0ustar mccunemccune/* margins and padding: top right bottom left */ div.header { text-align: right; margin: 1em 0 0 0; } body { background-color: #ffeebb; padding-left: 12em; padding-right: 5em; } ul.navbar { padding: 0; margin: 0; position: fixed; top: .5em; left: 1em; width: 10em; } ul.navbar li { background: #ffdd75; list-style-type: none; margin: 0.1em 0; padding: 0.1em; border-right: 2px solid darkred; border-bottom: 2px solid darkred; border-left: 2px solid white; border-top: 2px solid white; } ul.navbar ul { padding: 0 0 0 1em; /* inner lists */ } ul.navbar2 li { list-style-type: none; font-size: 80% ; padding: 0 ; margin: 0 ; border-right: none; border-bottom: none; border-left: none; border-top: none; } ul.navbar a { text-decoration: none; } pre.my_file { background-color : white; font : small/1.0 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_job { background-color : #d9e1eb; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_screen { background-color : #a8e7a8; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_code { background-color : #f7c9b5; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } pre.my_option { background-color : white; font : small/1.2 "Courier New", courier, monospace; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } blockquote.otter_diff { background-color : #ffffaa; font-style: italic; text-align : left; border : 2px solid; border-color : darkred; vertical-align : middle; padding : 5px; /* within box, all 4 sides */ margin : 10px; /* outside of box, all 4 sides */ overflow : auto; } dl.references dt { padding: 1em 0 0 0; } prover9-manual-2009-02A/navbar-version/more-prep.html0000644000175000017500000001156710442157520021717 0ustar mccunemccune Prover9 Manual: More Search Prep
Prover9 Manual Version June-2006

More Search Prep

set(predicate_elim).    % default set
clear(predicate_elim).
If this flag is set, Prover9 applies a procedure that attempts to eliminate predicate symbols from the problem before the start of the search. The eliminations occur by resolution, and those steps show up as ordinary resolution inferences in any proofs that are found. The procedure works by selecting an eliminable predicate symbol, say P, then doing some set of resolution inferences on P, then removing all clauses that contain P. The procedure is intended to preserve unsatisfiability.
assign(fold_denial_max, n).  % default n=0, range [-1 .. INT_MAX]
This parameter applies to negated ground input equalities in which neither side is a constant, say f(a,b) != f(b,a). If the left-hand side has fewer than n symbols, a new constant is introduced and set equal to the left-hand side. This operation is applied to at most one clause in the input sos list.
set(sort_initial_sos).
clear(sort_initial_sos).    % default clear
If this flag is set, the sos list is sorted just before the start of the search. The order (somewhat arbitrary) is
  • positive clauses < negative clauses < mixed clauses;
  • fewer symbols < more symbols;
  • fewer literals < more literals;
  • shallower < deeper.
set(hands_off_options).
clear(hands_off_options).    % default clear
If this flag is clear, a few other options may be automatically changed, based on the structure of the clauses. For example, factoring, back unit deletion, will be enabled if any non-Horn clauses are present.

A message will be sent to the output file if any changes are mode. This flag is independent of any of the "auto" flags.

set(process_initial_sos).    % default set
clear(process_initial_sos).
If this flag is set, clauses in the initial sos list will be handled (with a few exceptions) as if they were inferred. For example, demodulation, subsumption, and the check for unit conflict will be applied. The exceptions are that max_weight, max_vars, and max_literals will not be applied.

This flag should be cleared only in very rare circumstances.

prover9-manual-2009-02A/navbar-version/options.html0000644000175000017500000004743410442157520021506 0ustar mccunemccune Prover9 Manual: Options
Prover9 Manual Version June-2006

Options

There are three kinds of options:

Option Dependencies

Several of the flags and parameters cause other flags and parameters to be changed. In some cases, that is the only direct effect they have. For example, if you clear(auto), you will see the following in the output.
clear(auto).
    % clear(auto) -> clear(auto_inference).
    % clear(auto_inference) -> clear(predicate_elim).
    % clear(auto_inference) -> assign(eq_defs, pass).
    % clear(auto) -> clear(auto_limits).
    % clear(auto_limits) -> assign(max_weight, 2147483647).
    % clear(auto_limits) -> assign(sos_limit, -1).
The lines starting with "%" are the dependent options that are changed in behalf of clear(auto). Note the sub-dependencies in this example.

The option dependencies can be undone by simply changing the dependent option afterward, as in the following example input.

clear(auto).
set(predicate_elim).

Option Listing

The option names below are links to the sections containing the descriptions.

From Page Clauses and Formulas

set(prolog_style_variables).
clear(prolog_style_variables).    % default clear

From Page Automatic Modes

set(auto).    % default set
clear(auto).
set(auto_inference).    % default set
clear(auto_inference).
set(auto_limits).    % default set
clear(auto_limits).
set(auto2).
clear(auto2).    % default clear
assign(lrs_ticks, n).  % default n=-1, range [-1 .. INT_MAX]
assign(lrs_interval, n).  % default n=50, range [1 .. INT_MAX]
assign(min_sos_limit, n).  % default n=0, range [0 .. INT_MAX]

From Page Term Ordering

assign(order, string).  % default string=lpo, range [lpo,rpo,kbo]
set(inverse_order).    % default set
clear(inverse_order).
assign(eq_defs, string).  % default string=unfold, range [unfold,fold,pass]
set(dont_flip_input).
clear(dont_flip_input).    % default clear

From Page More Search Prep

set(predicate_elim).    % default set
clear(predicate_elim).
assign(fold_denial_max, n).  % default n=0, range [-1 .. INT_MAX]
set(sort_initial_sos).
clear(sort_initial_sos).    % default clear
set(hands_off_options).
clear(hands_off_options).    % default clear
set(process_initial_sos).    % default set
clear(process_initial_sos).

From Page Search Limits

assign(sos_limit, n).  % default n=10000, range [-1 .. INT_MAX]
assign(max_given, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_kept, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_megs, n).  % default n=200, range [-1 .. INT_MAX]
assign(max_seconds, n).  % default n=-1, range [-1 .. INT_MAX]

From Page Selecting the Given Clause

assign(age_part, n).    % default n=1, range [0 .. INT_MAX]
assign(true_part, n).   % default n=2, range [0 .. INT_MAX]
assign(false_part, n).  % default n=2, range [0 .. INT_MAX]
assign(pick_given_ratio, n).  % default n=0, range [0 .. INT_MAX]
set(breadth_first).
clear(breadth_first).    % default clear
set(input_sos_first).    % default set
clear(input_sos_first).

From Page Inference Rules

set(binary_resolution).
clear(binary_resolution).    % default clear
set(neg_binary_resolution).
clear(neg_binary_resolution).    % default clear
assign(literal_selection, string).  % default string=maximal, range [maximal, first_maximal, all, first]
set(hyper_resolution).
clear(hyper_resolution).    % default clear
set(neg_hyper_resolution).
clear(neg_hyper_resolution).    % default clear
set(ur_resolution).
clear(ur_resolution).    % default clear
set(pos_ur_resolution).
clear(pos_ur_resolution).    % default clear
set(neg_ur_resolution).
clear(neg_ur_resolution).    % default clear
set(initial_nuclei).
clear(initial_nuclei).    % default clear
assign(ur_nucleus_limit, n).  % default n=-1, range [-1 .. INT_MAX]
set(paramodulation).
clear(paramodulation).    % default clear
set(basic_paramodulation).
clear(basic_paramodulation).    % default clear
set(para_units_only).
clear(para_units_only).    % default clear
assign(para_lit_limit, n).  % default n=-1, range [-1 .. INT_MAX]
set(ordered_inference).    % default set
clear(ordered_inference).
set(ordered_instance).
clear(ordered_instance).    % default clear

From Page Processing Inferred Clauses

assign(max_weight, n).  % default n=100, range [INT_MIN .. INT_MAX]
assign(max_literals, n).  % default n=-1, range [-1 .. INT_MAX]
assign(max_vars, n).  % default n=-1, range [-1 .. INT_MAX]
set(back_demod).
clear(back_demod).    % default clear
set(lex_dep_demod).    % default set
clear(lex_dep_demod).
set(lex_dep_demod_sane).    % default set
clear(lex_dep_demod_sane).
set(lex_order_vars).
clear(lex_order_vars).    % default clear
assign(demod_step_limit, n).  % default n=1000, range [-1 .. INT_MAX]
assign(demod_size_limit, n).  % default n=1000, range [-1 .. INT_MAX]
set(safe_unit_conflict).
clear(safe_unit_conflict).    % default clear
set(back_subsume).    % default set
clear(back_subsume).
set(cac_redundancy).    % default set
clear(cac_redundancy).
set(unit_deletion).
clear(unit_deletion).    % default clear
set(back_unit_deletion).
clear(back_unit_deletion).    % default clear
set(factor).
clear(factor).    % default clear
assign(new_constants, n).  % default n=0, range [-1 .. INT_MAX]

From Page Output Files

set(echo_input).    % default set
clear(echo_input).
set(quiet).
clear(quiet).    % default clear
set(print_initial_clauses).    % default set
clear(print_initial_clauses).
set(print_given).    % default set
clear(print_given).
set(print_gen).
clear(print_gen).    % default clear
set(print_kept).
clear(print_kept).    % default clear
set(print_labeled).
clear(print_labeled).    % default clear
set(print_proofs).    % default set
clear(print_proofs).
set(default_output).    % default set
clear(default_output).
assign(report, n).  % default n=-1, range [-1 .. INT_MAX]
assign(stats, string).  % default string=lots, range [none,some,lots,all]
set(clocks).
clear(clocks).    % default clear

From Page Weighting

assign(constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(variable_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(not_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(or_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
assign(prop_atom_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
assign(nest_penalty, n).  % default n=0, range [0 .. INT_MAX]
assign(skolem_penalty, n).  % default n=1, range [0 .. INT_MAX]
assign(default_weight, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]

From Page FOF Reduction

set(fof_reduction).
clear(fof_reduction).    % default clear
set(print_subproblems).    % default set
clear(print_subproblems).

From Page Goals

set(restrict_denials).
clear(restrict_denials).    % default clear
assign(max_proofs, n).  % default n=1, range [-1 .. INT_MAX]
set(reuse_denials).
clear(reuse_denials).    % default clear

From Page Hints

assign(bsub_hint_wt, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]
assign(bsub_hint_add_wt, n).  % default n=-1000, range [INT_MIN .. INT_MAX]
set(degrade_hints).    % default set
clear(degrade_hints).
set(collect_hint_labels).
clear(collect_hint_labels).    % default clear

From Page Semantic Guidance

assign(eval_limit, n).  % default n=1024, range [-1 .. INT_MAX]
prover9-manual-2009-02A/navbar-version/output.html0000644000175000017500000003421710442157520021346 0ustar mccunemccune Prover9 Manual: Output Files
Prover9 Manual Version June-2006

Output Files

Even when Prover9 fails to find a proof, its output file usually has lots of valuable information about the search. The output file can suggest many ways of improving the search for subsequent jobs as in the following examples.

Basic Structure of Output Files

Prover9 output files are divided into sections and subsections so the users (people and programs) can find what they are looking for. The delimiters are self-explanatory. A few comments about the sections are given here. For a specific example, see the output file subset_trans.out.
============================== Prover9 ===============================
    Version, date, host computer, command.
============================== end of head ===========================

============================== INPUT =================================
    Echo of the input.  Everything in this section that is not
    in the input is commented with "%", so copy-and-paste can be
    done on this section to create a new input file.
============================== end of input ==========================

============================== PROCESS GOALS =========================
    The search is always by refutation, and this section shows
    how goals are negated in preparation for the search.
============================== end of process goals ==================

============================== PROCESS INITIAL CLAUSES ===============
    This section shows the starting clauses (after Skomemization,
    if applicable) and then some of what Prover9 does in preparation
    for the search.  This includes predicate_elim, term ordering
    decisions, and auto_inference settings.  At this stage, clauses
    may be deleted by subsumption and equations may be copied to the
    list demodulators.  See the flag process_initial_sos.
============================== end of process initial clauses ========

============================== CLAUSES FOR SEARCH ====================
    This section shows the clauses just before the start of the
    search, that is, just before selection of the first given clause.
    
============================== end of clauses for search =============

============================== SEARCH ================================
    This section typically shows the sequence of given clauses,
    and it may also include PROOF and STATISTICS sections.

============================== PROOF =================================
    A proof in standard form.
============================== end of proof ==========================

============================== STATISTICS ============================
    We encourage users to look at statistics!
============================== end of statistics =====================

============================== end of search =========================

Clause Justifications

After the initial stage of the output, each clause in the file has an integer identifier (ID) and a justification that may refer to IDs of other clauses. A justification is a list consisting of one primary step and some number of secondary steps. Most primary steps are inference rules applied to given clauses, and most secondary steps consist of simplification, rewriting, or orienting equalities.

Many of the types of step refer to positions of literals or terms in the parent clauses. Literals are identified by the characters 'a' (first literal), 'b' (second literal), etc. Terms are identified by the literal identifier followed by a sequence of integers giving the position of the term within the literal. For example, the position 'c,1,3,2' means third literal, first argument, third argument, second argument. Negation signs on literals are not included in the sequence.

Primary Steps.

Secondary Steps (each assumes a working clause, which is either the result of a primary step or a previous secondary step).

Standard Proofs

Prover9 proofs may be transformed by separate programs, e.g., by Prooftrans.

Options That Say What Goes To the Output File

set(echo_input).    % default set
clear(echo_input).
Clearing this flag suppresses printing of clauses, formulas, weighting rules (and everything else that ends with end_of_list) that would ordinarily appear in the INPUT section of the output file.
set(quiet).
clear(quiet).    % default clear
Setting this flag causes most messages to the standard error file (usually the user's screen) to be suppressed. These messages include notifications about proofs and statistics reports, and warnings about demodulation limits. This flag also suppresses several messages to the ordinary output file.
set(print_initial_clauses).    % default set
clear(print_initial_clauses).
If this flag is set, clauses are printed in the PROCESS INITIAL CLAUSES and CLAUSES FOR SEARCH sections of the output file.
set(print_given).    % default set
clear(print_given).
Clearing this flag prevents given clauses from being printed to the output file.
set(print_gen).
clear(print_gen).    % default clear
Setting this flag causes all generated clauses to be printed to the the output file. This can be output files to be really huge.
set(print_kept).
clear(print_kept).    % default clear
Setting this flag causes all kept clauses to be printed to the the output file.
set(print_labeled).
clear(print_labeled).    % default clear
Setting this flag causes kept clauses containing label attributes to be printed, even when the flag print_kept is clear. This flag is useful when using the hints strategy, because when a clause matches a hint containing a label, the label is copied to the clause. That is, clauses matching labeled hints will be printed.
set(print_proofs).    % default set
clear(print_proofs).
Clearing this flag prevents proofs from being printed to the output file. The proof message still goes to the standard error file (usually the user's screen), unless the flag quiet has been set.
set(default_output).    % default set
clear(default_output).
Setting this flag restores most of the output flags and parameters to their default values. (I don't remember the purpose of this.) Clearing this flag does nothing.
assign(report, n).  % default n=-1, range [-1 .. INT_MAX]
If n > 0, statistics are sent to the output file approximately every n seconds. (On Unix-like systems, one can also tell Prover9 to print statistics to the output file by sending the signal USR1 to a running Prover9 process, e.g., kill -USR1 4223.)
assign(stats, string).  % default string=lots, range [none,some,lots,all]
This parameter determines how many statistics are sent to the output file.
set(clocks).
clear(clocks).    % default clear
If this flag is set, various operations during the Prover9 job are timed (e.g., inference, demodulation, and subsumption), and timing reports are sent to the output file.

Timing the operations can be expensive, especially in Solaris and Macintosh systems. On Linux systems, set(clocks) typically adds 5% -- 10% to the run time.

prover9-manual-2009-02A/navbar-version/process-inf.html0000644000175000017500000004114410442157520022233 0ustar mccunemccune Prover9 Manual: Processing Inferred Clauses
Prover9 Manual Version June-2006

Processing Inferred Clauses

Processing of inferred clauses is separated into two stages: (1) simplifying the clause and deciding whether to keep it, and if it is kept, (2) using the clause to operate on other clauses.

Processing Initial Clauses

Initial clauses in the sos list are processed, for the most part, as if they were derived by some inference rule. This process helps to ensure that Prover9's working set of clauses starts out in a good state, in particular, that no clause subsumes another, and that all clauses are simplified according the the working set of demodulators. Note the following exceptions.

Processing Denials

If the flag restrict_denials has been set, initial negative sos clauses are moved to the special list denials. Processing of clauses in the denials list is restricted to simplification, and after processing, clauses are replaced in the denials list.

The options back_demod and back_unit_deletion are applied to clauses in the denials list; in fact, these operations are often the keys to the success of the denials list.

Algorithms for Processing Clauses

Processing initial and inferred clauses.
Start with clause c:
    1.  Simplify c:
        1a.  demodulate
	1b.  orient equalities
	1c.  simplify literals
        1d.  merge identical literals
	1e.  unit_deletion
	1f.  cac_redundancy
    2.  max_literals check
    3.  max_vars check
    4.  safe_unit_conflict check
    5.  max_weight check
    6.  subsumption check (forward)
    7.  assign an ID and keep the clause
    8.  unsafe unit conflict check
    9.  check if the clause should be a demodulator
    ---- (the following steps are delayed until finished with the given clause) ---
    15. factor c
    16. apply new_constants to c
    17. apply back_subsume with c
    18. apply back_demod with c
    19. apply back_unit_deletion with c
    20. move c to the sos list
Processing clauses in denials, both initial clauses and clauses from back_demod and back_unit_deletion.
Start with clause c:
    1.  Simplify c:
        1a.  demodulate
	1b.  orient equalities
	1c.  simplify literals
        1d.  merge identical literals
	1e.  unit_deletion
	1f.  cac_redundancy
    2.  unit conflict check
    3.  append c to the denials list

Options for Processing Inferred Clauses

Demodulation Options

Dedmodulation is the process of using equations (demodulators) to rewrite terms. If a demodulator is oriented by the term ordering in effect (KBO, LPO, or RPO), it is applied unconditionally, heavy-to-light. If a demodulator is not oriented, it is applied only if the instance that would be used is oriented.
set(lex_order_vars).
clear(lex_order_vars).    % default clear
This flag allows an exception to the rule for applying nonorientable demodulators. If the flag is set, variables are treated as constants when comparing terms, with the precedence

lex([x,y,z,u,v,w,v6,v7,v8, ...]).

For example, with the (nonorientable) demodulator x*y = y*x, the term v7*v6 can be rewritten to v6*v7. Setting this flag can easily block proofs, but it can also drastically reduce the search space and still allow some proofs to be found.

assign(demod_step_limit, n).  % default n=1000, range [-1 .. INT_MAX]
This parameter limits the number of rewrite steps that are applied to a clause during demodulation. If n=-1, there is no limit.
assign(demod_size_limit, n).  % default n=1000, range [-1 .. INT_MAX]
This parameter limits the size (measured as symbol count) of terms as they are demodulated. If any term being demodulated has more than n symbols, demodulation of the clause stops. If n=-1, there is no limit.
set(back_demod).
clear(back_demod).    % default clear
If this flag is set, back demodulation is applied. If an orientable equation is derived, it is appended to the demodulators list. Non-orientable equations are appended based on the settings of the flags lex_dep_demod and lex_dep_demod_sane and the parameter lex_dep_demod_lim.

If an equation is added to demodulators, Then each clause in usable or sos that can be rewritten with the equation is copied and deleted, then the copy is treated as if it were generated by an inference rule. In particular, it will be processed, including demodulation, which will apply the new demodulator. Clauses in denials will also be back demodulated and reprocessed, but if they are kept, they will be placed back in denials instead of in sos.

set(lex_dep_demod).    % default set
clear(lex_dep_demod).
If this flag is set, then non-orientable equations can become demodulators (via the flag back_demod).
assign(lex_dep_demod_lim, n).  % default n=11, range [-1 .. INT_MAX]
This parameter is a limit on the flag lex_dep_demod. A non-orientable equation cannot become a demodulator if it has more than n symbols. (The equation (x*y)*z=x*(y*z) has 11 symbols.) If n = -1, there is no limit.
set(lex_dep_demod_sane).    % default set
clear(lex_dep_demod_sane).
This flag is a restriction on the flag lex_dep_demod. If set, a non-orientable equation can become a demodulator only if its two sides have the same number of symbols.
set(unit_deletion).
clear(unit_deletion).    % default clear
This flag extends demodulation to include rewriting of literals with unit clauses. For example, if we have the unit clause p(x,a), then we can use it to remove instances of -p(x,a) from generated clauses. This process is like using the unit clause as the demodulator p(x,a) = TRUE. (Unit deletion is not actually implemented as demodulation.)
set(back_unit_deletion).
clear(back_unit_deletion).    % default clear
This flag is analogous to back demodulation. If set, then each time a unit clause is kept, it is used to apply unit deletion to all clauses in sos, usable, and denials in the same way that back_demodulation works.

Simplifying and Deciding Whether to Keep Clauses

The options in this section appear in the order in which they are applied.
set(cac_redundancy).    % default set
clear(cac_redundancy).
If this flag is set, then an equational redundancy criterion is applied. If Prover9 finds that a binary operation is commutative or associative-commutative, it makes a note and uses that information to simplify clauses that are derived later in the search.

If a derived clause contains an equality alpha=beta, in which alpha and beta are equal with respect to commutativity or associativity-commutativity of the the previously noted operations, the equality is simplified to TRUE.

For example, if Prover9 notes that x*y=y*x, and then some time later a clause containing the literal g(u*v)=g(v*u) is derived, that literal will be simplified to TRUE and the clause will be deleted. (Demodulation will not rewrite the two sides to the same term unless the flag lex_dep_demod is set.)

assign(max_literals, n).  % default n=-1, range [-1 .. INT_MAX]
Clauses containing more than n literals will be deleted. If = -1, there is no limit. This parameter is never applied to initial clauses.
assign(max_vars, n).  % default n=-1, range [-1 .. INT_MAX]
Clauses containing more than n (distinct) variables will be deleted. If = -1, there is no limit. This parameter is never applied to initial clauses.
set(safe_unit_conflict).
clear(safe_unit_conflict).    % default clear
This flag provides for a safe, but more expensive, unit conflict test. If set, the unit conflict test will be done before the max_weight test is applied. If the flag is clear, the test will be done after the max_weight test is applied, allowing the possibility that a proof will be missed, because the final step was deleted by the max_weight parameter.
assign(max_weight, n).  % default n=100, range [INT_MIN .. INT_MAX]
Derived clauses with weight greater then n will be discarded. If = -1, there is no limit. This parameter is never applied to initial clauses.

Performing Operations with the New Clause

The options in this section appear in the order in which they are applied.
set(factor).
clear(factor).    % default clear
If this flag is set, binary factoring is applied to newly-kept clauses.
assign(new_constants, n).  % default n=0, range [-1 .. INT_MAX]
If this parameter is greater than 0, then Prover9 will apply a rule that introduces a new constant when it derives an equation that shows the existence of a constant. In particular, if a derived equation has the property that each side has variables and the two sides share no variables, a new constant will be introduced and set equal to one side of the equation. (Back demodulation will derive that the constant is equal to the other side.)

For example, if x' * x = y * y' is derived, the equation x' * x = c is produced, where the constant c does not occur anywhere else.

The value of the parameter limits the number of new constants that can be introduced by this rule.

(There is an extension to this rule that introduces (non-constant) function symbols based on the intersection of the variables of the two sides. We have not found the extension to be useful in practice, so we have not included it in Prover9.)

set(back_subsume).    % default set
clear(back_subsume).
If this flag is set, then back subsumption is applied with all new clauses. That is, when a new clause is kept, each clause subsumed by the new clause is deleted.
prover9-manual-2009-02A/navbar-version/prooftrans.html0000644000175000017500000002263210442157520022201 0ustar mccunemccune Prover9 Manual: Prooftrans
Prover9 Manual Version June-2006

Prooftrans

When Prover9 proves a theorem, it sends the proof to its output file in a standard form. The standard form contains, for each step, justifications with enough detail to reconstruct or check the proof without any search.

An Exception: Prover9 proofs start with clauses. If the theorem was given to Prover9 as (non-clausal) formulas, the original formulas and the clausification steps are not included in the printed proofs; the proofs start with the clauses produced by clausification, and those clauses have the justification "clausify" instead of "input". See the proof in following example

prover9 -f subset_trans.in > subset_trans.out

Prooftrans can extract proofs from Prover9 output files and transform them in various ways, including the following.

Prooftrans is part of the LADR/Prover9/Mace4 package. When the package is installed, the Prooftrans program should be in the same directory as Prover9 and Mace4.

Using Prooftrans

The Prover9 output file containing the proof(s) is usually given to Prooftrans with the argument "-f <filename>". If there is no "-f <filename>" argument, Prooftrans takes its input from the standard input.

The arguments that tell Prooftrans what to do with the proof(s) are described in the following sections, using the output file subset_trans.out as a running example.

If there is more than one proof in the file, the transformations will be applied to each proof. The hints transformation collects all of the clauses in the proof(s) into one list of hints. The other transformations produce one proof for each proof in the input file.

Here is a synopsis of the Prooftrans command; the arguments in square brackets are optional.

prooftrans [parents_only] [expand] [renumber] [-f file]
prooftrans xml            [expand] [renumber] [-f file]
prooftrans ivy                                [-f file]
prooftrans hints [-label label] [expand]    [-f file]
Note that more than one transformation can be applied in several cases.

Unfortunately, the output of Prooftrans usually cannot be used as the input to another Prooftrans job, because Prooftrans expects its input to have specific keywords and standard-form proofs.


No Transformation

If no additional argument is given, Prooftrans simply extracts the proof from the Prover9 output file.
prooftrans -f subset_trans.out > subset_trans.proof1

Renumber the Steps

The argument renumber tells Prooftrans to renumber the steps of each proof consecutively, starting with step 1. The expand, parents_only, and xml transformations can be used with the renumber transformation.
prooftrans renumber -f subset_trans.out > subset_trans.proof2

Simplify Justifications

The argument parents_only tells Prooftrans list only the parents in the justifications, not the details about inference rules or positions. The expand and renumber transformations can be used with the parents_only transformation.
prooftrans parents_only -f subset_trans.out > subset_trans.proof3

Expand Steps

The argument expand tells Prooftrans to produce more detailed proofs in which Note to author: this is a bad example, because only one step gets expanded.
prooftrans expand -f subset_trans.out > subset_trans.proof4
Note that when a step is expanded (step 22 in this example), the new steps are identified by appending 'A', 'B', etc. to the number of the original step.

The renumber, parents_only, and hints transformations can be used with the expand transformation.


XML Proofs

The options xml or XML tell Prooftrans to produce proofs in XML. The options expand and renumber can be used with the XML transformation.
prooftrans xml -f subset_trans.out > subset_trans.proof5.xml
The preceding output is displayed by your browser not as XML, but as some transformation of the XML, because the XML refers to an XML stylesheet, telling the browser how to transform the XML into HTML.

To see the XML source, click "View -> Page Source" (or something like that) in your browser while viewing the proof.

Here is the DTD for Prover9 XML proofs. (If you get an error, click "View -> Page Source".)


IVY Proofs

The options ivy or IVY tell Prooftrans to produce very detailed proofs that can be checked with the Ivy proof checker.
prooftrans ivy -f subset_trans.out > subset_trans.proof6

Ivy proofs have a only 5 types of step: input, propositional, new_symbol, flip, instantiate, resolve, and paramod. The resolve and paramod do not involve unification; instances are generated first as separate steps, and then resolve or paramod are applied to identical atomic formulas or terms.

The Ivy proof checker cannot check steps justified by new_symbol.


Proofs to Hints

The option hints tells Prooftrans to take all of the proofs in the file and produce one list of hints that can be given to Prover9 to guide subsequent searches for related conjectures.
prooftrans hints -f subset_trans.out > subset_trans.proof7
If there is more than one proof in the file, the proofs will probably share many steps. The list of hints that Prooftrans produces will be the union of the steps in the proofs; that is, the duplicate steps will be removed.

The expand transformation can be used with the hints transformation.

Note that the hints clauses that are produced have label attributes consisting of a unique integer identifiers. A string, say "job8" can be prepended to each identifier with the arguments -label "job8" as in the following example.

prooftrans hints -label "job8" -f subset_trans.out > subset_trans.proof8
prover9-manual-2009-02A/navbar-version/references.html0000644000175000017500000000645310442157520022130 0ustar mccunemccune Prover9 Manual: References
Prover9 Manual Version June-2006

References

Not done yet.
[Champeaux-miniscope]
D. Champeaux. Sub-problem finder and instance checker, two cooperating modules for theorem provers. J. ACM, 33(4):633--657, 1986.
[Dershowitz-termination]
N. Dershowitz. Termination of rewriting. J. Symbolic Computation, 3:69-116, 1987.
[McCune-Otter33]
W. McCune. Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
[McCune-Mace4]
W. McCune. Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
[RV-lrs]
A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem proving. J. Symbolic Computation, 36(1-2):101-115, 2003.
[Veroff-hints]
R. Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case studies. J. Automated Reasoning, 16(3):223--239, 1996.
[Veroff-sketches]
R. Veroff. Solving open questions and other challenge problems using proof sketches. J. Automated Reasoning, 27(2):157--174, 2001.
prover9-manual-2009-02A/navbar-version/running.html0000644000175000017500000001521710442157520021465 0ustar mccunemccune Prover9 Manual: Running Prover9
Prover9 Manual Version June-2006

Running Prover9

The standard way of running Prover9 is to (1) prepare an input file containing the logical specification of a conjecture and the search parameters, (2) issue a command that runs Prover9 on the input file and produces an output file, (3) look at the output, and (4) maybe run Prover9 again with different search parameters.

A graphical user interface (GUI) for Prover9 is under development, but it is not described in this manual. Nearly all of the information in this manual applies also when using the GUI.

An Input File

Here is an input file; assume it is named subset_trans.in.
(Use a plain text editor, not a word processor, to create input files.)
formulas(sos).
  all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
  all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

A Basic Prover9 Command

Here is a command to run Prover9 on the preceding file and send the output to a file called subset_trans.out.
prover9 -f subset_trans.in > subset_trans.out
When you run the preceding command, a message like the following should appear immediately on your screen.
-------- Proof 1 -------- 
THEOREM PROVED
------ process 3666 exit (max_proofs) ------
The output file subset_trans.out should contain the proof (and a lot of other information about the job).

Taking Input from Standard Input

Prover9 jobs can be run in a slightly different way, taking input from "standard input" instead of a named file, as follows.

prover9 < subset_trans.in > subset_trans.out2
The disadvantage of using this method is that the name of the input file is not given in the output file.

More Than One Input File

The input can occur in more than one file:

prover9 -f subset.in trans.in > subset_trans.out3
All arguments after the "-f" are taken as input filenames, and there can be as many as you like. When multiple filnames are given on the command line, a list of objects (clauses, formulas, or terms) cannot be split across more than one file.

Time Limit on the Command Line

Prover9 also accepts a time limit, in seconds, on the command line. The following command limits the job to about 10 seconds.
prover9 -t 10 -f subset_trans.in > subset_trans.out4
If "-t" and "-f" are both in the command, the "-t" must occur first.

Getting Statistics During the Search

This section applies to Unix-like systems only.

If a Prover9 process is running in the background, one can tell it to send search statistics (without killing the job) to the output file sending a "USR1" signal to the process. For example,

% prover9 -f p3a.in > p3a.outb &
    [1] 31613
% kill -USR1 31613
    A report (17.75 seconds) has been sent to the output.

Calling Prover9 From Another Program

If Prover9 is called from another program (e.g., a shell script, a Perl script, or a Python script), Prover9's exit codes can tell the other program the reason Prover9 terminates. The following table shows the exit codes.
Exit CodeReason for Termination
0 (MAX_PROOFS) The specified number of proofs (max_proofs) was found.
1 (FATAL) A fatal error occurred (user's syntax error or Prover9's bug).
2 (SOS_EMPTY) Prover9 ran out of things to do (sos list exhausted).
3 (MAX_MEGS) The max_megs (memory limit) parameter was exceeded.
4 (MAX_SECONDS) The max_seconds parameter was exceeded.
5 (MAX_GIVEN) The max_given parameter was exceeded.
6 (MAX_KEPT) The max_kept parameter was exceeded.
7 (ACTION) A Prover9 action terminated the search.
101 (SIGINT) Prover9 received an interrupt signal.
102 (SIGSEGV) Prover9 crashed, most probably due to a bug.

The calling program will probably want to look in Prover9's output, for example, to extract a proof. See the page on Prover9 output files. prover9-manual-2009-02A/navbar-version/sed.navbar0000644000175000017500000000343210441320642021055 0ustar mccunemccune# insert new stuff /-- Site navigation menu --/i\ \ \

\ \
Prover9 Manual Version June-2006
\ \ # get rid of old stuff /-- Site navigation menu --/,/-- Main content --/d prover9-manual-2009-02A/navbar-version/select.html0000644000175000017500000001515310442157520021263 0ustar mccunemccune Prover9 Manual: Selecting the Given Clause
Prover9 Manual Version June-2006

Selecting the Given Clause

At each iteration of the main loop, Prover9 selects a given clause from the sos list, moves it to the usable list, and makes inferences from it and other clauses in the usable list.

A basic way to select the given clause is to always select the lightest clause in sos. Otter has the ability to mix two methods of selecting the given clause in a ratio determined by a parameter --- selecting the lightest clause and selecting the oldest clause. This method adds a breadth-first component to the search. See the pick_given_ratio parameter below.

Prover9 uses three components, dividing the "lightest" component into two components based on semantics. The following options are used.

assign(age_part, n).    % default n=1, range [0 .. INT_MAX]
assign(true_part, n).   % default n=2, range [0 .. INT_MAX]
assign(false_part, n).  % default n=2, range [0 .. INT_MAX]
These three parameters work together to specify a 3-way ratio for selection of the given clauses: The true/false distinction is determined by a set of interpretations. The default interpretation is that non-negative clauses are true, and negative clauses are false. To use explicit interpretations, see the section on semantic guidance.

Under the default interpretation, for example, if age_part = 1, true_part = 2, and false_part = 3, given clauses will be selected in a cycle of size six: one clause by lowest ID, then two clauses because they are the lightest non-negative (i.e., true) clauses, then three clauses because they are the lightest negative (i.e., false) clauses. And so on.

Anomalies:

Other Options

assign(pick_given_ratio, n).  % default n=0, range [0 .. INT_MAX]
If n>0, the given clauses are chosen in the ratio one part by age, and n parts by weight. The false/true distinction is ignored. This parameter works by making the following changes.
  assign(pick_given_ratio, n) -> assign(age_part, 1).
  assign(pick_given_ratio, n) -> assign(true_part, n).
  assign(pick_given_ratio, n) -> assign(false_part, 0).
set(breadth_first).
clear(breadth_first).    % default clear
If this flag is set, the sos list operates as a queue, giving a breadth-first search. That is, the oldest clause is always selected as the given clause. This flag operates by making the following changes.
  set(breadth_first) -> assign(age_part, 1).
  set(breadth_first) -> assign(true_part, 0).
  set(breadth_first) -> assign(false_part, 0).
set(input_sos_first).    % default set
clear(input_sos_first).
If this flag is set, the clauses in the initial sos list are selected as given clauses (in the order in which they occur in the sos list) before any derived clauses are selected. This flag is useful if the input contains heavy clauses that should enter the search right away.
prover9-manual-2009-02A/navbar-version/semantics.html0000644000175000017500000002012610442157520021766 0ustar mccunemccune Prover9 Manual: Semantic Guidance
Prover9 Manual Version June-2006

Semantic Guidance

Prover9 has a method of using finite interpretations to guide the search for a proof; in particular, to help select the given clause.

To use semantic guidance the user gives one or more interpretations along with the ordinary Prover9 input. All clauses (input and derived) that are eligible to be selected as given clauses are evaluated in the interpretations. If a clause is false in any of the interpretations, it is marked as "false" and given the attribute label(false); if it is true in all of the interpretations, it is marked as "true". (There is an exception: see the parameter eval_limit below.)

If a clause being evaluated contains a symbol that is not in an interpretation, a warning message is given, and the clause receives the value "true".

When selecting the given clause, Prover9 always uses the parameters age_part, true_part,and false_part, as described on the page Selecting the Given Clause. With semantic guidance (explicit interpretations), the "true_part" and "false_part" refer simply to clauses marked as "true" and "false" with respect to the interpretations.

Format of Interpretations for Semantic Guidance

The interpretations are finite and must be in the format produced by Mace4. They must appear in a list that starts with terms(interpretations). and ends with and_of_list. The following example is a lattice in terms of the meet and join operations.

terms(interpretations).
interpretation(6, [], [
    function(^(_,_), [
        0,0,0,0,0,0,
        0,1,2,3,4,5,
        0,2,2,0,0,0,
        0,3,0,3,5,5,
        0,4,0,5,4,5,
        0,5,0,5,5,5]),
    function(v(_,_), [
        0,1,2,3,4,5,
        1,1,1,1,1,1,
        2,1,2,1,1,1,
        3,1,1,3,1,3,
        4,1,1,1,4,4,
        5,1,1,3,4,5])]).
end_of_list.

An Example of Semantic Guidance

Here a job that uses the preceding interpretation for semantic guidance.

prover9 -f LT-82-2.in > LT-82-2.out
Notes about the preceding job.

Advice on Selecting Interpretations

If the conjecture formulates naturally as
theory, hypotheses -> conclusion,
a good first step is to try the smallest model of the theory in which the hypothesis and conclusion are both false. The preceding example has that form, and the interpretation used in the that example can be easily found with the following Mace4 job.
mace4 -N10 -f LT-82-2-interp.in > LT-82-2-interp.out
If the conjecture formulates naturally as
theory -> conclusion,
with no obvious hypothesis, one can try to slightly weaken the theory in some way that relates to the conclusion, and use a model of the weakened theory in which the conclusion is false.

Options for Semantic Guidance

Aside from the parameters age_part, true_part,and false_part, which used regardless of whether semantic guidance is in effect, there is just one option, eval_limit, to control semantic guidance.

If an interpretation is large, or if a clause being evaluated has many variables, evaluation can take too long, because it must consider each instance of the clause over the domain of the interpretation. That is if an interpretation has size d, and a clause has v variables, evaluation has to consider dv instances of the clause to determine that it is true. The following parameter causes large evaluations to be skipped.

assign(eval_limit, n).  % default n=1024, range [-1 .. INT_MAX]
This parameter applies when explicit interpretations are being used to select the given clause. When a clause is being evaluated in an interpretation, if the number of ground instances the would be considered is greater than n, the evaluation is skipped and the clause is assigned the value true.

The default value of 1024 allows

  • clauses with up to 3 variables to be evaluated in interpretations up to size 10,
  • clauses with up to 4 variables to be evaluated in interpretations up to size 5,
  • clauses with up to 5 variables to be evaluated in interpretations up to size 4,
  • clauses with up to 6 variables to be evaluated in interpretations up to size 3, and
  • clauses with up to 10 variables to be evaluated in interpretations of size 2.
prover9-manual-2009-02A/navbar-version/syntax.html0000644000175000017500000004065610442157520021340 0ustar mccunemccune Prover9 Manual: Clauses and Formulas
Prover9 Manual Version June-2006

Clauses and Formulas

The Glossary Page contains definitions of term, atomic formula, literal, clause, and formula from a logical point of view. This page contains descriptions of how those kinds of things are parsed and printed, and we refer to them collectively as objects.

The Difference Between Clauses and Formulas

When speaking about formulas in Prover9 input, we mean a restricted kind of first-order formula in which all variables are explicitly quantified; that is, closed formulas. Variables in clauses are not explicitly quantified, so clauses with variables are not Prover9 formulas.

The distinction between clauses and formulas is a frequent source of confusion for Prover9 (and Otter) users. When writing logical specifications for Prover9, we urge users to be careful, because clauses go in one kind of list, and formulas go into another. Here are the important points.

Parsing and Printing Objects

The prefix standard form of an object with an n-ary symbol, say f, at the root is
f( argument_1, ..., argument_n )
Whitespace (spaces, tabs, newline, etc.) is accepted anywhere except within symbols.

Prover9 will accept any term, clause, or formula written prefix standard form. However, clauses, formulas, and many terms can be written in more convenient ways, for example, "a=b | a!=c'" instead of "|(=(a,b),-(=(a,'(c))))".

Prover9 uses a general mechanism in which binary and unary symbols can have special parsing properties such as "infix", "infix-right-associated", "postfix". In addition, each of those symbols has a precedence so that many parentheses can be omitted. (The mechanism is similar to those used by most Prolog systems.)

Many symbols have built-in parsing properties (see the table below), and the user can declare parsing properties for other symbols with the "op" command.

Clauses and formulas make extensive use of the built-in parsing properties for the equality relation and the logic connectives. Instead of first presenting the general mechanism, we will present the syntax for clauses and formulas under the assumption of the built-in parsing properties. The general mechanism is described below in the section Infix, Prefix, and Postfix Declarations.

Symbols

Symbols include variables, constants, function symbols, predicate symbols, logic connectives. Symbols do not include parentheses or commas.

Prover9 recognizes several kinds of symbol.

The reason for separating ordinary and special symbols is so that objects like a+b; that is, +(a,b), can be written without any whitespace around the +.

Objects (terms, clauses, and formulas) are constructed from symbols, parentheses, and commas.

Overloaded Symbols

In most cases, symbol overloading is not allowed. For example a symbol cannot be both a function symbol and a predicate symbol, or both a constant and a binary function symbol. There are a few exceptions.

Prover9 is much more strict about overloading symbols than Otter is.

Terms

In the context of a clause, a rule is needed for distinguishing variables from constants, because variables do not have explicit quantifiers. The default rule is that a symbol is a variable iff it starts with (lower case) 'u' through 'z'. (Setting the flag prolog_style_variables changes the rule so that symbols starting with upper case letters are variables.)

As a special case, Prolog-style list notation can be used to write terms that represent lists.
Term Internal Representation What it Is
[] $nil the empty list
[a,b,c] $cons(a,$cons(b,$cons(c,$nil))) list of three objects
[a|b] $cons(a,b) first, rest
[a,b|c] $cons(a,$cons(b,c)) first, second, rest
Lists are frequently used in Prover9 commands such as the "lex" command, and they are sometimes also used in clauses and formulas.

Atomic Formulas

Equality is a built-in special case. The binary predicate symbol = is usually written as an infix relation. The binary symbol != is an abbreviation for "not equal"; that is, the formula a!=b stands for -(a=b), or more precisely, -(=(a,b)). From the semantics point of view, the binary predicate symbol = is the one and only equality symbol for the inference rules that use equality.

Clauses

The disjunction symbol is |, and the negation symbol is -. If the negation symbol follows the disjunction symbol, some whitespace must separate them; otherwise |- would be parsed as one symbol. The disjunction symbol has higher precedence than the equality symbol, so equations in clauses do not need parentheses. Every clause ends with a period. Examples of clauses with minimum whitespace follow (Prover9 adds some extra space when printing clauses).
clauses(sos).
p| -q|r.
a=b|c!=d.
f(x)!=f(y)|x=y.
end_of_list.

Formulas

Meaning Connective Example
negation - (-p)
disjunction | (p | q | r)
conjunction & (p & q & r)
implication -> (p -> q)
backward implication <- (p <- q)
equivalence <-> (p <-> q)
universal quantification all (all x all y p(x,y))
existential quantification exists (exists x exists y p(x,y))
When writing formulas, the built-in parsing declarations allow many parentheses to be omitted. For example, the following two formulas are really the same formula.
formulas(sos).
 all x  all y (p <->   -q  |  r &  -s)     .
(all x (all y (p <-> ((-q) | (r & (-s)))))).
end_of_list.
For Prover9 formulas, each quantified variable must have its own quantifier; Otter allows quantifiers to be omitted in a sequence of quantified variables with the same quantifier. For example, Otter allows (all x y z p(x,y,z)), and Prover9 requires (all x all y all z p(x,y,z)).

Infix, Prefix, and Postfix Declarations

Several symbols are understood by Prover9 as having special parsing properties that determine how terms involving those symbols can be arranged. In addition, the user can declare additional symbols to have special parsing properties.

Parsing Declarations

The "op" command is used to declare parse types and precedences.
op( precedence, type, symbols(s) ).  % declare parse type and precedence
  • 1 ≤ precedence ≤ 998.
  • type is one of { infix, infix_left, infix_right, prefix, prefix_paren, postfix, postfix_paren, clear }.
  • symbol(s) is either a symbol or a list of symbols.

The following table shows an example of each type of parsing property (and ignores precedence).

Type Example Standard Prefix Comment
infix a*(b*c) *(a,*(b,c))
infix_left a*b*c *(*(a,b),c)
infix_right a*b*c *(a,*(b,c))
prefix - -p -(-(p)) space required in - -p
prefix_paren -(-p) -(-(p))
postfix a' ' '('(a)) space required in a' '
postfix_paren (a')' '('(a))
clear *(a,b) *(a,b) takes away parsing properties

Higher precedence means closer to the root of the object, and lower precedence means the the symbol binds more closely. For example, assume that the following declarations are in effect.

op(790, infix_right,  | ).  % disjunction in formulas or clauses
op(780, infix_right,  & ).  % conjunction in formulas
Then the object a & b | c is an abbreviation for (a & b) | c.

The built-in parsing declarations are shown in the following box. The ones with comments have built-in meanings; the others are for general use as function or predicate symbols.

op(810, infix_right,  # ).  % for attaching attributes to clauses
	    
op(800, infix,      <-> ).  % equivalence in formulas
op(800, infix,       -> ).  % implication in formulas
op(800, infix,       <- ).  % backward implication in formulas
op(790, infix_right,  | ).  % disjunction in formulas or clauses
op(780, infix_right,  & ).  % conjunction in formulas
	    
op(700, infix,        = ).  % equal in atomic formulas
op(700, infix,       != ).  % not equal in atomic formulas
op(700, infix,       == ).  
op(700, infix,        < ).
op(700, infix,       <= ).
op(700, infix,        > ).
op(700, infix,       >= ).
	    
op(500, infix,        + ).
op(500, infix,        * ).
op(500, infix,        @ ).
op(500, infix,        / ).
op(500, infix,        \ ).
op(500, infix,        ^ ).
op(500, infix,        v ).

op(400, prefix,       - ).  % logical negation in formulas or clauses, arithmetic minus in terms
op(300, postfix,      ' ).

The built-in parsing declarations can be overridden with ordinary "op" comands. Be careful, however, when overriding parsing declarations for symbols with built-in meanings. For example, say you wish to use "#" as an infix function symbol and give the following the declaration.

op(500, infix, #).
Then clauses with attributes might have be written with more parentheses, for example, as
(p(a) | q(a)) # (label(a) # label(b)).

If you wish to use one of the symbols with built-in parsing declarations as an ordinary prefix symbol, you can undo the declaration by giving an "op" command with type "clear". The following example clears the parse types for two symbols.

op(1, clear, [*,+]).  % the precedence is irrelevant for type "clear"

Finally, the following example shows that parsing declarations can be changed anywhere in the input, with immediate effect. This can be useful for example, if lists of clauses come from different sources.

op(400,infix_left,*).  % assume left association for following clauses

clauses(sos).
  P(a * b * c).
end_of_list.

op(400,infix_right,*). % assume right association for following clauses

clauses(sos).
  Q(d * e * f).
end_of_list.

op(400,infix,*).  % from here on, include all parentheses (input and output)
An excerpt from the output of the preceding example shows how the clauses are printed after the last "op" command.
clauses(sos).
1 P((a * b) * c).  [input].
2 Q(d * (e * f)).  [input].
end_of_list.

Prolog-Style Variables

set(prolog_style_variables).
clear(prolog_style_variables).    % default clear
A rule is needed for distinguishing variables from constants in clauses. If this flag is clear, variables in clauses start with (lower case) 'u' through 'z'. If this flag is set, variables in clauses start with (upper case) 'A' through 'Z' or '_'.

No such rule is needed for variables in quantified formulas, because all variables are explicitly quantified.

Changing prolog_style_variables after some clauses have already been read file is allowed, but strongly discouraged. In such situations, Prover9 can print a clause P(A,A) in which the first A is a constant and the second is a variable. Prover9 will (happily and correctly) make deductions with clauses like that, but the user will go crazy.

prover9-manual-2009-02A/navbar-version/term-order.html0000644000175000017500000002762110442157520022067 0ustar mccunemccune Prover9 Manual: Term Ordering
Prover9 Manual Version June-2006

Term Ordering

Prover9's term ordering procedures and options are simpler than Otter's, but somewhat less flexible. We recommend that those who use Otter's "ad hoc" ordering try Prover9's KBO ordering.

Prover9 has available several methods for comparing terms. (Although atomic formulas, literals, and clauses are not, strictly speaking, terms, the term orderings we write about here apply to those objects as well.)

The term orderings are partial (and sometimes total on ground terms), and they are used in two ways.

For many problems, especially those involving equality, a good term ordering can determine the difference between success and failure. The default settings work well in many cases, but many difficult problems require adjustments to the term ordering.

The primary choice (via parameter order) is type of ordering: LPO, RPO, or KBO. Each of those types uses a symbol precedence (see the lex command), and KBO also uses a symbol weighting function (see the terms(kb_weights) command). In addition, the options eq_defs and inverse_order cause changes to the term ordering.

See [Dershowitz-termination] for a survey on term ordering.

The Primary Choice

The symbol precedence is is a total order on function and predicate symbols (including constants). The symbol weighting function maps symbols to nonnegative integers.

KBO is perhaps the most natural of the three, because it it based on weights of symbols, but it is more cumbersome to specify because it is determined both by the symbol weights and by the symbol precedence. However, if one of the two terms being compared has more occurrences of a variable, it cannot be smaller. For example, the distributivity equation cannot be oriented so that it distributes (expands) terms.

LPO is perhaps the most powerful of the three, because it can usually orient more equations. However, it allows rewrite rules that expand terms in explosive ways, for example (this is from a real problem),

(x * y) * z rewrites to E * (x * (E * (x * (E * (y * (E * (x * (E * (x * (E * z))))))))))

RPO is perhaps the least useful of the three, because it is not necessarily total on ground terms. That is, not all ground equations can be oriented. Also, see the sections on demodulation options and on inference rules.

The reasonable choice is usually between LPO (the default) and KBO. For many problems, either one is good. The main reason LPO is the the default is that it is a bit faster than KBO.

Here is the primary option.

assign(order, string).  % default string=lpo, range [lpo,rpo,kbo]
This option is used to select the primary term ordering to be used for orienting equalities and for determining maximal literals in clauses. The choices are lpo (Lexicographic Path Ordering), rpo (Recursive Path Ordering), and kbo (Knuth-Bendix Ordering).

Termination of Demodulation

If each member of a set of demodulators (rewrite rules) is oriented with respect to the current ordering (LPO, RPO, or KBO), then demodulation (term rewriting) is guaranteed to terminate (in theory) on all terms, regardless of the the order in which the demodulators are applied or the order in which the subject terms are demodulated. However, there are sets of demodulators that are intractable in practice.

The Default Term Ordering

The default symbol precedence (for LPO, RPO, and KBO) is given by the following rules (in order).
  • function symbols < negation symbol < non-equality predicate symbols < equality symbol;
  • if the term ordering is KBO, and if there is exactly one unary function in the problem, that function is greater than all other functions;
  • arity-0 < arity-2 < arity-1 < arity-3 < arity-4 ... (note the position of arity-1);
  • non-Skolem symbols < Skolem symbols;
  • for Skolem symbols, the lower index is the lesser;
  • for non-Skolem symbols, more occurrences < fewer occurrences;
  • the lexical ASCII ordering (UNIX strcmp() function).
The specific symbol precedence for a problem is given in the output file in the section PROCESS INPUT.

The default symbol-weighting function for KBO is given by the following rules.

  • Variables have weight 1;
  • if there is exactly one unary function in the problem, it has weight 0;
  • all other symbols have weight 1.

Adjustments to the Term Ordering

The Lex Command

The lex command is used to assign a symbol precedence. It contains a list of symbols ordered by increasing precedence. For example,
lex([a, b, c, +, *, h, g]).   % a < b < c < + < * < h < g
If there are symbols in the problem that do not appear in the lex command, a warning is issued, and Prover9 will complete the precedence inserting the missing symbols at the beginning of the precedence using its default rules. In these cases, the user should check that Prover9 has constructed a reasonable precedence.

Note that Skolem symbols cannot appear in a lex command, because Skolem symbols do not exits at the time the lex command is written. If there is a lex command, and if Skolem symbols are generated, they will handled as missing symbols, as described in the preceding paragraph.

Otter's lex command has a syntax that shows the arities of the symbols; Prover9's lex command lists only the symbols. The arities are not necessary for Prover9, because a string cannot represent two symbols with different arities.

The KBO Weights

If the term ordering is KBO, assign(order, kbo), the user can change the default symbol-weighting function. For example,
terms(kbo_weights).
  a = 3.
  b = 2.
  * = 5.
  j = 22.
end_of_list.
(This has no relationship to the term-weighting function for selecting the given clause and discarding inferred clauses.)

If any symbols are absent from the list, they retain their default KBO weights of 1. The symbol weights must be greater than 0, with the exception that there may be one unary symbol of weight 0. (The definition of KBO allows for one unary symbol of weight 0 which must also be greatest in the precedence. This special case allows an such as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown and used as a rewrite rule.)

Term Ordering Options

set(inverse_order).    % default set
clear(inverse_order).
If this flag is set, if there is no lex command (which defines the symbol precedence), and if the term ordering is LPO or RPO, then Prover9 will attempt to adjust the default symbol precedence if there are any input equations that specify an inverse operation. For example, if f(x,g(x)) = c is input, g will be placed after f in the precedence. This allows an equation such as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown for demodulation and paramodulation. If this flag is set, the PROCESS INPUT section of the output file shows how the flag changes the symbol precedence.
assign(eq_defs, string).  % default string=unfold, range [unfold,fold,pass]
If string=unfold, and if the input contains an equational definition, say j(x,y) = f(f(x,x),f(y,y)), the defined symbol j will be eliminated from the problem before the search starts. This procedure works by adjusting the symbol precedence so that the defining equation becomes a demodulator. If there is more than one equational definition, cycles are avoided by choosing a cycle-free subset of the definitions. If the primary term ordering is KBO, this option may admit demodulators that do not satisfy the KBO ordering, because a variable may have more variables on the right-hand side. However, this exception is safe (does not cause non-termination).

If string=fold, and if the input contains an equational definition, say j(x,y) = f(f(x,x),f(y,y)), the term ordering will be adjusted so that equation is flipped and becomes a demodulator which introduces the defined symbol whenever possible during the search.

If string=pass, nothing special happens. In this case, functions may still be unfolded or folded if the term ordering and symbol precedence happen to arrange the demodulators to do so.

prover9-manual-2009-02A/navbar-version/weight.html0000644000175000017500000002216210442157520021271 0ustar mccunemccune Prover9 Manual: Weighting
Prover9 Manual Version June-2006

Weighting

Prover9's weighting function maps clauses to integers, and it is used primarily for two purposes:
Otter accepts two weighting functions, one for selecting the given clause, and the other for discarding inferred clauses. Prover9 always uses the same weighting function for both purposes.
In Otter's weighting rules, a variable matches any variable and only variables. The role is similar to the anonymous variables "_" in Prover9's weighting rules.
Prover9 does not (yet) have anything analogous to Otter's $DOTS weighting feature.

Default Weights

The default weight of a clause is its symbol count, excluding commas, parentheses, negation symbols, and disjunction symbols. That is,

Weighting Rules

The weighting function can be modified by giving a list of rules in the input file. The list must start with terms(weights). and end with end_of_list. Here is an example.
terms(weights).

  weight(a) = 3.                               % the weight of the constant a is 3
  weight(f(a,x) = 5 * weight(x).               % weight( f(a,term) ) = 5 * weight( term )
  weight(f(a,_) = -1.                          % _ matches any variable
  weight(x | y) = 2 + (weight(x) + weight(y)). % add 2 for each "or" symbol

end_of_list.
Here is a summary of the weighting language. Weighting rules are applied to a clause as follows.

Modifying the Default Weight

assign(constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
This parameter specifies the default weight of constants. It can be overridden with weighting rules for individual constants.
assign(variable_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
This parameter specifies the default weight of variables.
assign(not_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
The negation symbols on literals do not ordinarily contribute any weight to clauses. This parameter says that each negation symbol has weight n.
assign(or_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
The disjunction symbols between literals do not ordinarily contribute any weight to clauses. This parameter says that each disjunction symbol has weight n.
assign(prop_atom_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
This parameter specifies the default weight for propositional atoms, that is, predicate symbols of arity 0. They ordinarily have weight 1.
assign(nest_penalty, n).  % default n=0, range [0 .. INT_MAX]
This parameter is used to penalize terms containing nested function symbols. If no weighting rule applies to a term t, then for each argument with the same function symbol as t, the value n is added to the weight of t. If n=0, there is no penalty.
assign(skolem_penalty, n).  % default n=1, range [0 .. INT_MAX]
This parameter is used to penalize terms containing non-constant Skolem function. If no weighting rule applies to a term t, then for each argument that contains a non-constant Skolem function, its weight is multiplied by n. If n=1, there is no penalty.

Adjustments to Clause Weight

The final weight of a clause is calculated in three steps. First, the weighting rules are applied. Second, if the clause matches a hint, the weight is adjusted by the parameters
bsub_hint_wt and then bsub_hint_add_wt. Third, if the weight is between default_weight and max_weight, the weight is reset to default_weight.
assign(default_weight, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]
That is, all clauses with weight between default_weight and max_weight are treated equally.

Debugging Weighting Rules and Options

Here is an example of using Prover9 to test weighting rules and parameters.
prover9 -f weight_test.in | grep 'given #' > weight_test.out
prover9-manual-2009-02A/non-MOL-OML.interps0000644000175000017500000003225110445536762017446 0ustar mccunemccune% These are all of the nonmodular OMLs up through size 16. interpretation(10, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,3,1,1,3,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,5,1,1,1,4,5,1,8,8,4,6,1,1,1,1,1,6,1,1,1,7,1,2,1,1,8,1,7,8,2,8,1,1,1,1,8,1,8,8,1,9,1,2,1,4,4,1,2,1,9]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,0,2,2,0,9,0,0,7,7,9,0,3,0,3,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,5,0,0,5,5,0,0,5,0,0,6,0,0,0,0,6,0,0,0,0,7,7,0,0,0,0,7,7,0,0,8,7,0,5,5,0,7,8,0,0,9,9,0,9,0,0,0,0,9]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,1,5,5,1,8,1,1,4,4,8,1,6,1,6,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,2,1,1,2,2,1,1,2,1,1,3,1,1,1,1,3,1,1,1,1,4,4,1,1,1,1,4,4,1,1,9,4,1,2,2,1,4,9,1,1,8,8,1,8,1,1,1,1,8])]). % isofilter: input=2, kept=1, checks=1, perms=5, 0.02 seconds. interpretation(12, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,3,1,1,3,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,5,1,1,1,4,5,1,8,8,4,1,1,6,1,1,1,1,1,6,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,8,1,1,1,1,8,1,8,8,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,10,1,1,1,1,1,1,1,1,1,10,1,11,1,1,1,1,1,1,1,1,1,1,11]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,0,2,2,0,9,0,0,7,7,9,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,11,0,0,0,0,0,0,0,0,0,11]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,1,5,5,1,8,1,1,4,4,8,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,10,1,1,1,1,1,1,1,1,1,10])]). % isofilter: input=2, kept=1, checks=1, perms=49, 0.03 seconds. interpretation(14, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,1,1,1,1,4,1,1,1,4,5,1,1,1,1,5,1,8,8,10,10,8,1,8,6,1,1,1,1,1,6,1,1,1,1,1,1,1,7,1,1,1,1,8,1,7,8,12,1,8,12,8,8,1,1,1,1,8,1,8,8,1,1,8,1,8,9,1,2,1,4,10,1,12,1,9,10,2,12,4,10,1,1,1,1,10,1,1,1,10,10,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,12,1,1,1,1,1,1,12,1,12,1,1,12,1,13,1,1,1,4,8,1,8,8,4,1,8,1,13]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,0,0,0,13,9,9,0,9,13,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,8,11,0,13,5,0,7,8,0,5,11,7,13,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,12,9,0,9,0,0,7,7,9,9,0,12,0,0,13,0,0,13,0,0,0,13,0,0,0,0,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,1,1,1,12,8,8,1,8,12,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,9,10,1,12,2,1,4,9,1,2,10,4,12,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,13,8,1,8,1,1,4,4,8,8,1,13,1,1,12,1,1,12,1,1,1,12,1,1,1,1,12])]). interpretation(14, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,11,1,1,1,1,1,1,1,1,1,1,11,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,13,1,1,1,1,1,1,1,1,1,1,1,1,13]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,13,1,1,1,1,1,1,1,1,1,1,13,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12])]). interpretation(14, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,3,1,3,4,1,1,1,4,4,1,1,1,4,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,6,1,1,1,1,1,6,1,1,1,10,12,12,10,7,1,2,1,1,8,1,7,8,2,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,10,1,1,1,1,1,10,1,1,1,10,1,1,10,11,1,1,3,1,1,12,1,1,1,1,11,12,3,12,1,1,1,1,1,12,1,1,1,1,12,12,1,13,1,1,3,1,1,10,1,1,1,10,3,1,13]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,3,0,3,0,0,0,0,0,0,13,11,11,13,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,6,0,6,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,10,0,13,0,0,6,0,0,0,10,0,6,13,0,11,0,11,0,0,0,0,0,0,0,11,11,0,0,12,0,11,0,0,6,0,0,0,6,11,12,0,0,13,0,13,0,0,0,0,0,0,13,0,0,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,6,1,6,1,1,1,1,1,1,12,10,10,12,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,3,1,3,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,11,1,12,1,1,3,1,1,1,11,1,3,12,1,10,1,10,1,1,1,1,1,1,1,10,10,1,1,13,1,10,1,1,3,1,1,1,3,10,13,1,1,12,1,12,1,1,1,1,1,1,12,1,1,12])]). % isofilter: input=23, kept=3, checks=20, perms=38324, 0.52 seconds. interpretation(16, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,1,1,1,1,4,1,1,1,4,1,1,5,1,1,1,1,5,1,8,8,10,10,8,1,8,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,1,1,1,8,1,7,8,12,1,8,12,8,1,1,8,1,1,1,1,8,1,8,8,1,1,8,1,8,1,1,9,1,2,1,4,10,1,12,1,9,10,2,12,4,1,1,10,1,1,1,1,10,1,1,1,10,10,1,1,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,1,1,12,1,1,1,1,1,1,12,1,12,1,1,12,1,1,1,13,1,1,1,4,8,1,8,8,4,1,8,1,13,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14,1,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,15]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,0,0,0,13,9,9,0,9,13,0,0,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,0,0,8,11,0,13,5,0,7,8,0,5,11,7,13,0,0,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,0,0,12,9,0,9,0,0,7,7,9,9,0,12,0,0,0,0,13,0,0,13,0,0,0,13,0,0,0,0,13,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,1,1,1,12,8,8,1,8,12,1,1,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,1,1,9,10,1,12,2,1,4,9,1,2,10,4,12,1,1,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,1,1,13,8,1,8,1,1,4,4,8,8,1,13,1,1,1,1,12,1,1,12,1,1,1,12,1,1,1,1,12,1,1,1,15,1,1,1,1,1,1,1,1,1,1,1,1,15,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14])]). interpretation(16, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,3,1,3,4,1,1,1,4,1,1,1,1,4,1,1,1,4,1,1,5,1,1,1,1,5,1,8,8,10,10,8,1,8,1,1,6,1,1,1,1,1,6,12,1,12,1,1,12,14,14,12,7,1,1,1,1,8,12,7,8,12,1,8,12,8,1,12,8,1,1,1,1,8,1,8,8,1,1,8,1,8,1,1,9,1,2,1,4,10,12,12,1,9,10,2,12,4,1,12,10,1,1,1,1,10,1,1,1,10,10,1,1,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,1,1,12,1,1,1,1,1,12,12,1,12,1,1,12,1,1,12,13,1,1,3,4,8,14,8,8,4,1,8,1,13,14,3,14,1,1,1,1,1,14,1,1,1,1,1,1,14,14,1,15,1,1,3,1,1,12,12,1,12,1,1,12,3,1,15]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,0,0,3,0,3,13,0,0,0,13,0,0,0,15,13,13,15,0,4,9,13,4,0,0,0,13,9,9,0,9,13,13,0,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,6,0,6,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,0,0,8,11,13,13,5,0,7,8,0,5,11,7,13,13,0,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,0,0,12,9,15,9,0,6,7,7,9,9,0,12,0,6,15,0,13,0,13,13,0,0,0,13,0,0,0,0,13,13,0,0,14,0,13,13,0,6,0,13,0,0,0,6,13,14,0,0,15,0,15,0,0,0,0,0,0,0,0,15,0,0,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,1,1,6,1,6,12,1,1,1,12,1,1,1,14,12,12,14,1,7,8,12,7,1,1,1,12,8,8,1,8,12,12,1,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,3,1,3,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,1,1,9,10,12,12,2,1,4,9,1,2,10,4,12,12,1,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,1,1,13,8,14,8,1,3,4,4,8,8,1,13,1,3,14,1,12,1,12,12,1,1,1,12,1,1,1,1,12,12,1,1,15,1,12,12,1,3,1,12,1,1,1,3,12,15,1,1,14,1,14,1,1,1,1,1,1,1,1,14,1,1,14])]). interpretation(16, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1,13,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14,1,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,15]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1,1,13,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,1,1,15,1,1,1,1,1,1,1,1,1,1,1,1,15,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14])]). interpretation(16, [], [ function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,10,1,10,11,1,1,1,1,1,1,1,1,1,1,11,12,14,14,12,12,1,1,1,1,1,1,1,1,1,1,12,12,1,1,12,13,1,1,1,1,1,1,1,1,1,10,14,1,13,14,10,14,1,1,1,1,1,1,1,1,1,1,14,1,14,14,1,15,1,1,1,1,1,1,1,1,1,10,12,12,10,1,15]), function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,15,13,13,15,0,11,0,0,0,0,0,0,0,0,0,11,11,0,11,0,0,12,0,0,0,0,0,0,0,0,15,11,12,0,11,15,0,13,0,0,0,0,0,0,0,0,13,0,0,13,13,0,0,14,0,0,0,0,0,0,0,0,13,11,11,13,14,0,0,15,0,0,0,0,0,0,0,0,15,0,15,0,0,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,14,12,12,14,1,10,1,1,1,1,1,1,1,1,1,10,10,1,10,1,1,13,1,1,1,1,1,1,1,1,14,10,13,1,10,14,1,12,1,1,1,1,1,1,1,1,12,1,1,12,12,1,1,15,1,1,1,1,1,1,1,1,12,10,10,12,15,1,1,14,1,1,1,1,1,1,1,1,14,1,14,1,1,14])]). % isofilter: input=61, kept=4, checks=57, perms=993828, 3.45 seconds. prover9-manual-2009-02A/olsax.in0000644000175000017500000000306010557720003015631 0ustar mccunemccune% Prove an ortholattice (OL) 3-basis from an ortholattice single axiom. assign(new_constants, 1). % Introduce a new constant when possible. lex([ ', ^, v, f ]). % We will get warning about skolem constants not being here. assign(pick_given_ratio, 5). % 5 parts "lightest first" : 1 part "age first" set(restrict_denials). % Try for direct proofs. assign(max_weight, 40). % Weight limit. formulas(assumptions). % A single axiom for ortholattices (OL) in terms of the Sheffer stroke. f(f(f(f(y,x),f(x,z)),u),f(x,f(f(x,f(f(y,y),y)),z))) = x # label(OL_Sh). % Even though the hypothesis and the conclusions are in terms of the % Sheffer stroke, we define meet, join, and complementation. % The lex command above orders the symbols so that these defined % operations are introduced when possible. Prover9 proves these % theorems more easily when it searches in terms of the defined % operations. x v y = f(f(x,x),f(y,y)) # label(definition_join). x ^ y = f(f(x,y),f(x,y)) # label(definition_meet). x' = f(x,x) # label(definition_complementation). end_of_list. formulas(goals). % We ask for 4 proofs: three parts and a combination of the three parts. % The three parts are a basis for OL in terms of the Sheffer stroke. f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) # answer(assoc). f(f(x,x),f(x,y)) = x # answer(absorb). f(x,f(x,x)) = f(y,f(y,y)) # answer(one). f(x,f(f(y,z),f(y,z))) = f(y,f(f(x,z),f(x,z))) & f(f(x,x),f(x,y)) = x & f(x,f(x,x)) = f(y,f(y,y)) # answer(combined). end_of_list. prover9-manual-2009-02A/x2.mace4.out0000644000175000017500000001033311151315533016225 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15847 was started by mccune on cleo, Wed Feb 25 12:26:19 2009 The command was "/home/mccune/bin/mace4 -c -f x2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file x2.in assign(max_seconds,5). formulas(sos). (x * y) * z = x * (y * z). x * e = x. x * x' = e. end_of_list. formulas(goals). x * y = y * x. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 x * y = y * x # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). (x * y) * z = x * (y * z). x * e = x. x * x' = e. c2 * c1 != c1 * c2. end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 2 ========================= ============================== STATISTICS ============================ For domain size 2. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=13, kept=13. Selections=4, assignments=7, propagations=6, current_models=0. Rewrite_terms=62, rewrite_bools=16, indexes=8. Rules_from_neg_clauses=2, cross_offs=2. ============================== end of statistics ===================== ============================== DOMAIN SIZE 3 ========================= ============================== STATISTICS ============================ For domain size 3. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=34, kept=34. Selections=7, assignments=17, propagations=30, current_models=0. Rewrite_terms=298, rewrite_bools=71, indexes=52. Rules_from_neg_clauses=8, cross_offs=24. ============================== end of statistics ===================== ============================== DOMAIN SIZE 4 ========================= ============================== STATISTICS ============================ For domain size 4. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=73, kept=73. Selections=14, assignments=45, propagations=110, current_models=0. Rewrite_terms=1132, rewrite_bools=232, indexes=206. Rules_from_neg_clauses=18, cross_offs=98. ============================== end of statistics ===================== ============================== DOMAIN SIZE 5 ========================= ============================== STATISTICS ============================ For domain size 5. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=136, kept=136. Selections=24, assignments=91, propagations=201, current_models=0. Rewrite_terms=2416, rewrite_bools=472, indexes=582. Rules_from_neg_clauses=31, cross_offs=228. ============================== end of statistics ===================== ============================== DOMAIN SIZE 6 ========================= ============================== MODEL ================================= interpretation( 6, [number=1, seconds=0], [ function(e, [ 0 ]), function(c1, [ 1 ]), function(c2, [ 2 ]), function('(_), [ 0, 1, 2, 4, 3, 5 ]), function(*(_,_), [ 0, 1, 2, 3, 4, 5, 1, 0, 3, 2, 5, 4, 2, 4, 0, 5, 1, 3, 3, 5, 1, 4, 0, 2, 4, 2, 5, 0, 3, 1, 5, 3, 4, 1, 2, 0 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 6. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=229, kept=229. Selections=14, assignments=44, propagations=94, current_models=1. Rewrite_terms=1566, rewrite_bools=339, indexes=370. Rules_from_neg_clauses=8, cross_offs=138. ============================== end of statistics ===================== User_CPU=0.01, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 15847 exit (max_models) Wed Feb 25 12:26:19 2009 The process finished Wed Feb 25 12:26:19 2009 prover9-manual-2009-02A/options0000644000175000017500000002753410421456350015606 0ustar mccunemccuneProver_options init_prover_options(void) { Prover_options p = calloc(1, sizeof(struct prover_options)); // FLAGS: // internal name external name default // The following are now in ../ladr/std_options.c. // ?? = init_flag("prolog_style_variables", FALSE); // ?? = init_flag("clocks", FALSE); p->binary_resolution = init_flag("binary_resolution", FALSE); p->neg_binary_resolution = init_flag("neg_binary_resolution", FALSE); p->hyper_resolution = init_flag("hyper_resolution", FALSE); p->neg_hyper_resolution = init_flag("neg_hyper_resolution", FALSE); p->ur_resolution = init_flag("ur_resolution", FALSE); p->pos_ur_resolution = init_flag("pos_ur_resolution", FALSE); p->neg_ur_resolution = init_flag("neg_ur_resolution", FALSE); p->factor = init_flag("factor", FALSE); p->paramodulation = init_flag("paramodulation", FALSE); p->ordered_inference = init_flag("ordered_inference", TRUE); p->ordered_instance = init_flag("ordered_instance", FALSE); p->para_units_only = init_flag("para_units_only", FALSE); p->basic_paramodulation = init_flag("basic_paramodulation", FALSE); p->initial_nuclei = init_flag("initial_nuclei", FALSE); p->process_initial_sos = init_flag("process_initial_sos", TRUE); p->back_demod = init_flag("back_demod", FALSE); p->lex_dep_demod = init_flag("lex_dep_demod", TRUE); p->lex_dep_demod_sane = init_flag("lex_dep_demod_sane", TRUE); p->safe_unit_conflict = init_flag("safe_unit_conflict", FALSE); p->back_subsume = init_flag("back_subsume", TRUE); p->degrade_hints = init_flag("degrade_hints", TRUE); p->collect_hint_labels = init_flag("collect_hint_labels", FALSE); p->reuse_denials = init_flag("reuse_denials", FALSE); p->cac_redundancy = init_flag("cac_redundancy", TRUE); p->unit_deletion = init_flag("unit_deletion", FALSE); p->back_unit_deletion = init_flag("back_unit_deletion", FALSE); p->dont_flip_input = init_flag("dont_flip_input", FALSE); p->echo_input = init_flag("echo_input", TRUE); p->quiet = init_flag("quiet", FALSE); p->print_subproblems = init_flag("print_subproblems", TRUE); p->print_initial_clauses = init_flag("print_initial_clauses", TRUE); p->print_given = init_flag("print_given", TRUE); p->print_gen = init_flag("print_gen", FALSE); p->print_kept = init_flag("print_kept", FALSE); p->print_labeled = init_flag("print_labeled", FALSE); p->print_proofs = init_flag("print_proofs", TRUE); p->default_output = init_flag("default_output", TRUE); p->fof_reduction = init_flag("fof_reduction", FALSE); p->predicate_elimination = init_flag("predicate_elimination", FALSE); p->inverse_order = init_flag("inverse_order", TRUE); p->unfold_eq = init_flag("unfold_eq", FALSE); p->fold_eq = init_flag("fold_eq", FALSE); p->sort_initial_sos = init_flag("sort_initial_sos", FALSE); p->restrict_denials = init_flag("restrict_denials", FALSE); p->breadth_first = init_flag("breadth_first", FALSE); p->input_sos_first = init_flag("input_sos_first", TRUE); p->automatic = init_flag("auto", FALSE); p->auto_inference = init_flag("auto_inference", FALSE); p->hands_off_options = init_flag("hands_off_options", FALSE); p->auto2 = init_flag("auto2", FALSE); p->lex_order_vars = init_flag("lex_order_vars", FALSE); // PARMS: // internal name external name default min max p->max_given = init_parm("max_given", -1, -1,INT_MAX); p->max_kept = init_parm("max_kept", -1, -1,INT_MAX); p->max_proofs = init_parm("max_proofs", 1, -1,INT_MAX); p->max_megs = init_parm("max_megs", 200, -1,INT_MAX); p->max_seconds = init_parm("max_seconds", -1, -1,INT_MAX); p->new_constants = init_parm("new_constants", 0, -1,INT_MAX); p->para_lit_limit = init_parm("para_lit_limit", -1, -1,INT_MAX); p->nucleus_limit = init_parm("nucleus_limit", -1, -1,INT_MAX); p->unfold_eq_limit = init_parm("unfold_eq_limit", -1, -1,INT_MAX); p->fold_denial_max = init_parm("fold_denial_max", 0, -1,INT_MAX); p->pick_given_ratio = init_parm("pick_given_ratio", 0, 0,INT_MAX); p->age_part = init_parm("age_part", 1, 0,INT_MAX); p->true_part = init_parm("true_part", 2, 0,INT_MAX); p->false_part = init_parm("false_part", 2, 0,INT_MAX); p->eval_limit = init_parm("eval_limit", 1000, -1,INT_MAX); p->max_weight = init_parm("max_weight", INT_MAX,INT_MIN,INT_MAX); p->lex_dep_demod_lim =init_parm("lex_dep_demod_lim", 11, -1,INT_MAX); p->max_literals = init_parm("max_literals", -1, -1,INT_MAX); p->max_vars = init_parm("max_vars", -1, -1,INT_MAX); p->demod_step_limit = init_parm("demod_step_limit", 1000, -1,INT_MAX); p->demod_size_limit = init_parm("demod_size_limit", 1000, -1,INT_MAX); p->variable_weight = init_parm("variable_weight", 1,INT_MIN,INT_MAX); p->constant_weight = init_parm("constant_weight", 1,INT_MIN,INT_MAX); p->not_weight = init_parm("not_weight", 0,INT_MIN,INT_MAX); p->or_weight = init_parm("or_weight", 0,INT_MIN,INT_MAX); p->sk_constant_weight=init_parm("sk_constant_weight", 1,INT_MIN,INT_MAX); p->prop_atom_weight = init_parm("prop_atom_weight", 1,INT_MIN,INT_MAX); p->skolem_penalty = init_parm("skolem_penalty", 1, 0,INT_MAX); p->nest_penalty = init_parm("nest_penalty", 0, 0,INT_MAX); p->bsub_hint_add_wt = init_parm("bsub_hint_add_wt", -1000,INT_MIN,INT_MAX); p->bsub_hint_wt = init_parm("bsub_hint_wt", INT_MAX,INT_MIN,INT_MAX); p->default_weight = init_parm("default_weight", INT_MAX,INT_MIN,INT_MAX); p->sos_limit = init_parm("sos_limit", -1, -1,INT_MAX); p->min_sos_limit = init_parm("min_sos_limit", 0, 0,INT_MAX); p->lrs_interval = init_parm("lrs_interval", 50, 1,INT_MAX); p->lrs_ticks = init_parm("lrs_ticks", -1, -1,INT_MAX); p->report = init_parm("report", -1, -1,INT_MAX); // STRINGPARMS: // (internal-name, external-name, number-of-strings, str1, str2, ... ) // str1 is always the default p->order = init_stringparm("order", 3, "lpo", "rpo", "kbo"); p->literal_selection = init_stringparm("literal_selection", 4, "maximal", "all", "first_maximal", "first"); p->stats = init_stringparm("stats", 4, "lots", "all", "some", "none"); // Flag and parm Dependencies. These cause other flags and parms // to be changed. The changes happen immediately and can be undone // by later settings in the input. // DEPENDENCIES ARE NOT APPLIED TO DEFAULT SETTINGS! flag_flag_dependency(p->paramodulation, TRUE, p->back_demod, TRUE); flag_parm_dependency(p->para_units_only, TRUE, p->para_lit_limit, 1); flag_flag_dependency(p->back_unit_deletion, TRUE, p->unit_deletion, TRUE); flag_flag_dependency(p->ur_resolution, TRUE, p->pos_ur_resolution, TRUE); flag_flag_dependency(p->ur_resolution, TRUE, p->neg_ur_resolution, TRUE); flag_parm_dependency(p->lex_dep_demod, FALSE, p->lex_dep_demod_lim, 0); flag_parm_dependency(p->lex_dep_demod, TRUE, p->lex_dep_demod_lim, -1); flag_parm_dependency(p->unfold_eq, TRUE, p->unfold_eq_limit, INT_MAX); flag_parm_dependency(p->unfold_eq, FALSE, p->unfold_eq_limit, -1); flag_flag_dependency(p->unfold_eq, TRUE, p->fold_eq, FALSE); flag_flag_dependency(p->fold_eq, TRUE, p->unfold_eq, FALSE); flag_parm_dependency(p->breadth_first, TRUE, p->age_part, 1); flag_parm_dependency(p->breadth_first, TRUE, p->true_part, 0); flag_parm_dependency(p->breadth_first, TRUE, p->false_part, 0); parm_parm_dependency(p->pick_given_ratio, p->age_part, 1); parm_parm_dependency(p->pick_given_ratio, p->true_part, INT_MIN); // copy parm_parm_dependency(p->pick_given_ratio, p->false_part, 0); flag_flag_dependency(p->default_output, TRUE, p->quiet, FALSE); flag_flag_dependency(p->default_output, TRUE, p->echo_input, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_initial_clauses,TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_given, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_subproblems, TRUE); flag_flag_dependency(p->default_output, TRUE, p->print_proofs, TRUE); flag_stringparm_dependency(p->default_output, TRUE, p->stats, "lots"); flag_flag_dependency(p->default_output, TRUE, p->print_kept, FALSE); flag_flag_dependency(p->default_output, TRUE, p->print_gen, FALSE); // automatic flag_flag_dependency(p->automatic, TRUE, p->auto_inference, TRUE); flag_flag_dependency(p->automatic, TRUE, p->predicate_elimination, TRUE); flag_flag_dependency(p->automatic, TRUE, p->unfold_eq, TRUE); flag_parm_dependency(p->automatic, TRUE, p->max_weight, 100); flag_parm_dependency(p->automatic, TRUE, p->sos_limit, 10000); flag_flag_dependency(p->automatic, FALSE, p->auto_inference, FALSE); flag_flag_dependency(p->automatic, FALSE, p->predicate_elimination, FALSE); flag_flag_dependency(p->automatic, FALSE, p->unfold_eq, FALSE); flag_parm_dependency(p->automatic, FALSE, p->max_weight, INT_MAX); flag_parm_dependency(p->automatic, FALSE, p->sos_limit, -1); // auto2 (also triggered by -x on the command line) flag_flag_dependency(p->auto2, TRUE, p->automatic, TRUE); flag_flag_dependency(p->auto2, TRUE, p->fof_reduction, TRUE); flag_parm_dependency(p->auto2, TRUE, p->new_constants, 1); flag_parm_dependency(p->auto2, TRUE, p->fold_denial_max, 3); flag_parm_dependency(p->auto2, TRUE, p->max_weight, 200); flag_parm_dependency(p->auto2, TRUE, p->nest_penalty, 1); flag_parm_dependency(p->auto2, TRUE, p->skolem_penalty, 3); flag_parm_dependency(p->auto2, TRUE, p->sk_constant_weight, 0); flag_parm_dependency(p->auto2, TRUE, p->prop_atom_weight, 5); flag_flag_dependency(p->auto2, TRUE, p->sort_initial_sos, TRUE); flag_parm_dependency(p->auto2, TRUE, p->sos_limit, -1); flag_parm_dependency(p->auto2, TRUE, p->lrs_ticks, 3000); flag_parm_dependency(p->auto2, TRUE, p->max_megs, 400); flag_stringparm_dependency(p->auto2, TRUE, p->stats, "some"); flag_flag_dependency(p->auto2, TRUE, p->echo_input, FALSE); flag_flag_dependency(p->auto2, TRUE, p->quiet, TRUE); flag_flag_dependency(p->auto2, TRUE, p->print_subproblems, FALSE); flag_flag_dependency(p->auto2, TRUE, p->print_initial_clauses, FALSE); flag_flag_dependency(p->auto2, TRUE, p->print_given, FALSE); return p; } // init_prover_options prover9-manual-2009-02A/process-inf.html0000644000175000017500000004076111151021064017272 0ustar mccunemccune Prover9 Manual: Processing Inferred Clauses
Prover9 Manual Version 2009-02A

Processing Inferred Clauses

Processing of inferred clauses is separated into two stages: (1) simplifying the clause and deciding whether to keep it, and if it is kept, (2) using the clause to operate on other clauses.

Processing Initial Clauses

Initial clauses in the sos list are processed, for the most part, as if they were derived by some inference rule. This process helps to ensure that Prover9's working set of clauses starts out in a good state, in particular, that no clause subsumes another, and that all clauses are simplified according to the working set of demodulators. Note the following exceptions.

Algorithm for Processing Clauses

Processing initial and inferred clauses.
Start with clause c:
    1.  Simplify c:
        1a.  demodulate
	1b.  orient equalities
	1c.  simplify literals
        1d.  merge identical literals
	1e.  unit_deletion
	1f.  cac_redundancy
    2.  safe_unit_conflict check
    3.  max_literals, max_depth, max_vars, max_weight checks
    4.  evaluate for semantic selection
    5.  sos_limit check
    6.  subsumption check (forward)
    7.  assign an ID and keep the clause
    8.  unsafe unit conflict check
    9.  check if the clause should be a demodulator
    ---- (the following steps are delayed until finished with the given clause) ---
    10. factor c
    11. apply new_constants to c
    12. apply back_subsume with c
    13. apply back_demod with c
    14. apply back_unit_deletion with c
    15. move c to the sos list
Restricted denials (see flag restrict_denials) are not subject to the max_weight test.

Options for Processing Inferred Clauses

Demodulation Options

Dedmodulation is the process of using equations (demodulators) to rewrite terms. If a demodulator is oriented by the term ordering in effect (KBO, LPO, or RPO), it is applied unconditionally, heavy-to-light. If a demodulator is not oriented, it is applied only if the instance that would be used is oriented.
set(lex_order_vars).
clear(lex_order_vars).    % default clear
This flag allows an exception to the rule for applying nonorientable demodulators. If the flag is set, variables are treated as constants when comparing terms, with the precedence

function_order([x,y,z,u,v,w,v6,v7,v8, ...]).

That is, variables are smaller than any other symbols.

For example, with the (nonorientable) demodulator x*y = y*x, the term v7*v6 can be rewritten to v6*v7. Setting this flag can easily block proofs, but it can also drastically reduce the search space and still allow some proofs to be found.

If you have a difficult problem that involves a commutative, associative-commutative, or some other permutative operation, we recommend trying this option.

assign(demod_step_limit, n).  % default n=1000, range [-1 .. INT_MAX]
This parameter limits the number of rewrite steps that are applied to a clause during demodulation. If n=-1, there is no limit.
assign(demod_increase_limit, n).  % default n=1000, range [-1 .. INT_MAX]
This parameter limits the amount (measured as symbol count) that demodulation can increase the size of a clause. If n=-1, there is no limit.
set(back_demod).      % default set
clear(back_demod).
If this flag is set, back demodulation is applied. If an orientable equation is derived, it is appended to the demodulators list. Non-orientable equations are appended based on the settings of the flags lex_dep_demod and lex_dep_demod_sane and the parameter lex_dep_demod_lim.

If an equation is added to demodulators, Then each clause in usable or sos that can be rewritten with the equation is copied and deleted, then the copy is treated as if it were generated by an inference rule. In particular, it will be processed, including demodulation, which will apply the new demodulator.

set(lex_dep_demod).    % default set
clear(lex_dep_demod).
If this flag is set, then non-orientable equations can become demodulators (via the flag back_demod).
assign(lex_dep_demod_lim, n).  % default n=11, range [-1 .. INT_MAX]
This parameter is a limit on the flag lex_dep_demod. A non-orientable equation cannot become a demodulator if it has more than n symbols. (The equation (x*y)*z=x*(y*z) has 11 symbols.) If n = -1, there is no limit.
set(lex_dep_demod_sane).    % default set
clear(lex_dep_demod_sane).
This flag is a restriction on the flag lex_dep_demod. If set, a non-orientable equation can become a demodulator only if its two sides have the same number of symbols.
set(unit_deletion).
clear(unit_deletion).    % default clear
This flag extends demodulation to include rewriting of literals with unit clauses. For example, if we have the unit clause p(x,a), then we can use it to remove instances of -p(x,a) from generated clauses. This process is like using the unit clause as the demodulator p(x,a) = TRUE. (Unit deletion is not actually implemented as demodulation.) This flag also causes back unit deletion to occur, that is, new unit clauses are used to remove literals from older clauses.

Simplifying and Deciding Whether to Keep Clauses

The options in this section appear in the order in which they are applied.
set(cac_redundancy).    % default set
clear(cac_redundancy).
If this flag is set, then an equational redundancy criterion is applied. If Prover9 finds that a binary operation is commutative or associative-commutative, it makes a note and uses that information to simplify clauses that are derived later in the search.

If a derived clause contains an equality alpha=beta, in which alpha and beta are equal with respect to commutativity or associativity-commutativity of the previously noted operations, the equality is simplified to TRUE.

For example, if Prover9 notes that x*y=y*x, and then some time later a clause containing the literal g(u*v)=g(v*u) is derived, that literal will be simplified to TRUE and the clause will be deleted. (Demodulation will not rewrite the two sides to the same term unless the flag lex_dep_demod is set.)

assign(max_literals, n).  % default n=-1, range [-1 .. INT_MAX]
Clauses containing more than n literals will be deleted. If = -1, there is no limit. This parameter is never applied to initial clauses or to clauses that match hints.
assign(max_depth, n).  % default n=-1, range [-1 .. INT_MAX]
If the depth of the clause is more than n, it will be deleted. If = -1, there is no limit. This parameter is never applied to initial clauses or to clauses that match hints.
assign(max_vars, n).  % default n=-1, range [-1 .. INT_MAX]
Clauses containing more than n (distinct) variables will be deleted. If = -1, there is no limit. This parameter is never applied to initial clauses or to clauses that match hints.
assign(max_weight, n).  % default n=100, range [INT_MIN .. INT_MAX]
Derived clauses with weight greater then n will be discarded. For this parameter, -1 does not mean infinity, because -1 is a reasonable value (clauses can have negative weights). This parameter is never applied to initial clauses, and it is not applied to clauses that match hints unless the flag limit_hint_matchers is set.
set(safe_unit_conflict).
clear(safe_unit_conflict).    % default clear
This flag provides for a safe, but more expensive, unit conflict test. If set, the unit conflict test will be done before the max_weight test is applied. If the flag is clear, the test will be done after the max_weight test is applied, allowing the possibility that a proof will be missed, because the final step was deleted by the max_weight parameter.

Performing Operations with the New Clause

The options in this section appear in the order in which they are applied.
set(factor).
clear(factor).    % default clear
If this flag is set, binary factoring is applied to newly-kept clauses. Note that factoring is an inference rule rather than a simplification rule, because a child is generated and the parent is retained. (If the child happens to subsume the parent, the parent will be deleted by the back subsumption process). Unlike other inference rules such as resolution, factoring is applied to a clause when it is kept, not when it is given.
assign(new_constants, n).  % default n=0, range [-1 .. INT_MAX]
If this parameter is greater than 0, Prover9 will apply a rule that introduces a new constant when it derives an equation that shows the existence of a constant. In particular, if a derived equation has the property that each side has exactly one variable and those two variables are different, a new constant will be introduced and set equal to one side of the equation. (Back demodulation will derive that the constant is equal to the other side.)

For example, if x' * x = y * y' is derived, the equation x' * x = c is produced, where the constant c does not occur anywhere else.

The value of the parameter limits the number of new constants that can be introduced by this rule.

(There is a more general rule allowing multiple variables. Also, there is an extension to the rule that introduces (non-constant) function symbols based on the intersection of the variables of the two sides. We have not found these extensions to be useful in practice, so we have not included them in Prover9.)

Unlike other inference rules such as resolution, the new_constants rule is applied to a clause when it is kept, not when it is given.

set(back_subsume).    % default set
clear(back_subsume).
If this flag is set, then back subsumption is applied with all new clauses. That is, when a new clause is kept, each clause subsumed by the new clause is deleted.
assign(backsub_check, n).  % default n=500, range [-1 .. INT_MAX]
Back subsumption can be an expensive operation. This parameter tells Prover9 to check (once during the search) whether back subsmption is removing enough clauses to justify its use.

When the number of given clauses reaches this parameter, Prover9 will calculate the percentage of kept clauses that have been back subsumed; if it is less than 5%, back subsumption will be disabled.


Next Section:
Output Files prover9-manual-2009-02A/x2.xml0000644000175000017500000000322111151315541015223 0ustar mccunemccune x2.mace4.out 0 1 2 012345 012435 012345 0 012345 1 103254 2 240513 3 351402 4 425031 5 534120 prover9-manual-2009-02A/otter_diff0000644000175000017500000000005610440051347016224 0ustar mccunemccune
prover9-manual-2009-02A/running.html0000644000175000017500000001266011151021064016517 0ustar mccunemccune Prover9 Manual: Running Prover9
Prover9 Manual Version 2009-02A

Running Prover9

The standard way of running Prover9 is to (1) prepare an input file containing the logical specification of a conjecture and the search parameters, (2) issue a command that runs Prover9 on the input file and produces an output file, (3) look at the output, and (4) maybe run Prover9 again with different search parameters.

A graphical user interface (GUI) for Prover9 is under development, but it is not described in this manual. Nearly all of the information in this manual applies also when using the GUI.

An Input File

Here is an input file; assume it is named subset_trans.in.
(Use a plain text editor, not a word processor, to create input files.)
formulas(sos).
  all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).
end_of_list.

formulas(goals).
  all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).
end_of_list.

A Basic Prover9 Command

Here is a command to run Prover9 on the preceding file and send the output to a file called subset_trans.out.
prover9 -f subset_trans.in > subset_trans.out
When you run the preceding command, a message like the following should appear immediately on your screen.
-------- Proof 1 -------- 
THEOREM PROVED
------ process 3666 exit (max_proofs) ------
The output file subset_trans.out should contain the proof (and a lot of other information about the job).

Taking Input from Standard Input

Prover9 jobs can be run in a slightly different way, taking input from "standard input" instead of a named file, as follows.

prover9 < subset_trans.in > subset_trans.out2
The disadvantage of using this method is that the name of the input file is not given in the output file.

More Than One Input File

The input can occur in more than one file:

prover9 -f subset.in trans.in > subset_trans.out3
All arguments after the "-f" are taken as input filenames, and there can be as many as you like. When multiple filnames are given on the command line, a list of objects (clauses, formulas, or terms) cannot be split across more than one file.

Time Limit on the Command Line

Prover9 also accepts a time limit, in seconds, on the command line. The following command limits the job to about 10 seconds.
prover9 -t 10 -f subset_trans.in > subset_trans.out4
If "-t" and "-f" are both in the command, the "-t" must occur first.

Getting Statistics During the Search

This section applies to Unix-like systems only.

If a Prover9 process is running in the background, one can tell it to send search statistics (without killing the job) to the output file sending a "USR1" signal to the process. For example,

% prover9 -f p3a.in > p3a.outb &
    [1] 31613
% kill -USR1 31613
    A report (17.75 seconds) has been sent to the output.

Calling Prover9 From Another Program

If Prover9 is called from another program (e.g., a shell script, a Perl script, or a Python script), Prover9's exit codes can tell the other program the reason Prover9 terminates. The following table shows the exit codes.
Exit CodeReason for Termination
0 (MAX_PROOFS) The specified number of proofs (max_proofs) was found.
1 (FATAL) A fatal error occurred (user's syntax error or Prover9's bug).
2 (SOS_EMPTY) Prover9 ran out of things to do (sos list exhausted).
3 (MAX_MEGS) The max_megs (memory limit) parameter was exceeded.
4 (MAX_SECONDS) The max_seconds parameter was exceeded.
5 (MAX_GIVEN) The max_given parameter was exceeded.
6 (MAX_KEPT) The max_kept parameter was exceeded.
7 (ACTION) A Prover9 action terminated the search.
101 (SIGINT) Prover9 received an interrupt signal.
102 (SIGSEGV) Prover9 crashed, most probably due to a bug.

The calling program will probably want to look in Prover9's output, for example, to extract a proof. See the page on Prover9 output files.


Next Section: Input Files prover9-manual-2009-02A/parm0000644000175000017500000000027510426424650015046 0ustar mccunemccune
assign(??, n).  % default n=??, range [?? .. ??]
prover9-manual-2009-02A/prooftrans.html0000644000175000017500000002041211151021064017226 0ustar mccunemccune Prover9 Manual: Prooftrans
Prover9 Manual Version 2009-02A

Prooftrans

When Prover9 proves a theorem, it sends the proof to its output file in a standard form. The standard form contains, for each step,
justifications with enough detail to reconstruct or check the proof without any search.

Prover9 proofs may contain non-clausal assumptions and goals, as well as ordinary clauses. Non-clausal assumptions are translated to clauses, and goals are negated and then translated to clauses. See the proof in following example

prover9 -f subset_trans.in > subset_trans.out

Prooftrans can extract proofs from Prover9 output files and transform them in various ways, including the following.

Prooftrans is part of the LADR/Prover9/Mace4 package. When the package is installed, the Prooftrans program should be in the same directory as Prover9 and Mace4.

Using Prooftrans

The Prover9 output file containing the proof(s) is usually given to Prooftrans with the argument "-f <filename>". If there is no "-f <filename>" argument, Prooftrans takes its input from the standard input.

The arguments that tell Prooftrans what to do with the proof(s) are described in the following sections, using the output file subset_trans.out as a running example.

If there is more than one proof in the file, the transformations will be applied to each proof. The hints transformation collects all of the clauses in the proof(s) into one list of hints. The other transformations produce one proof for each proof in the input file.

Here is a synopsis of the Prooftrans command; the arguments in square brackets are optional.

prooftrans [parents_only] [expand] [renumber] [striplabels] [-f file]
prooftrans xml            [expand] [renumber] [striplabels] [-f file]
prooftrans ivy                     [renumner]               [-f file]
prooftrans hints [-label label] [expand]      [striplabels] [-f file]
Note that more than one transformation can be applied in several cases. The option "striplabels" tells prooftrans to remove all label attributes on clauses.

Unfortunately, the output of Prooftrans usually cannot be used as the input to another Prooftrans job, because Prooftrans expects its input to have specific keywords and standard-form proofs.


No Transformation

If no additional argument is given, Prooftrans simply extracts the proof from the Prover9 output file.
prooftrans -f subset_trans.out > subset_trans.proof1

Renumber the Steps

The argument renumber tells Prooftrans to renumber the steps of each proof consecutively, starting with step 1. The expand, parents_only, and xml transformations can be used with the renumber transformation.
prooftrans renumber -f subset_trans.out > subset_trans.proof2

Simplify Justifications

The argument parents_only tells Prooftrans list only the parents in the justifications, not the details about inference rules or positions. The expand and renumber transformations can be used with the parents_only transformation.
prooftrans parents_only -f subset_trans.out > subset_trans.proof3

Expand Steps

The argument expand tells Prooftrans to produce more detailed proofs in which Note to author: this is a bad example, because only one step gets expanded.
prooftrans expand -f subset_trans.out > subset_trans.proof4
Note that when a step is expanded (step 22 in this example), the new steps are identified by appending 'A', 'B', etc. to the number of the original step.

The renumber, parents_only, and hints transformations can be used with the expand transformation.


XML Proofs

The options xml or XML tell Prooftrans to produce proofs in XML. The options expand and renumber can be used with the XML transformation.
prooftrans xml -f subset_trans.out > subset_trans.proof5.xml
The preceding output is displayed by your browser not as XML, but as some transformation of the XML, because the XML refers to an XML stylesheet, telling the browser how to transform the XML into HTML.

To see the XML source, click "View -> Frame Source" (or something like that) in your browser while viewing the proof.

Here is the DTD for Prover9 XML proofs. (If you get an error, click "View -> Page Source".)


IVY Proofs

The options ivy or IVY tell Prooftrans to produce very detailed proofs that can be checked with the Ivy proof checker.
prooftrans ivy -f subset_trans.out > subset_trans.proof6

Ivy proofs have a only 5 types of step: input, propositional, new_symbol, flip, instantiate, resolve, and paramod. The resolve and paramod do not involve unification; instances are generated first as separate steps, and then resolve or paramod are applied to identical atomic formulas or terms.

The Ivy proof checker cannot check steps justified by new_symbol.


Proofs to Hints

The option hints tells Prooftrans to take all of the proofs in the file and produce one list of hints that can be given to Prover9 to guide subsequent searches on related conjectures.
prooftrans hints -f subset_trans.out > subset_trans.proof7
If there is more than one proof in the file, the proofs will probably share many steps. The list of hints that Prooftrans produces will be the union of the steps in the proofs; that is, the duplicate steps will be removed.

The expand transformation can be used with the hints transformation.

The label option tells prooftrans to attach label attributes to the hint clauses. The labels consist of the string given on the command line and a sequence number generated by prooftrans. The user's command shell may require that the label be quoted, and if the the label is not a legal LADR constant, prooftrans will enclose the label in double quotes.

prooftrans hints -label 'job8' -f subset_trans.out > subset_trans.proof8

Next Section: FOF-Prover9 prover9-manual-2009-02A/x2.tex0000644000175000017500000000103011151315541015217 0ustar mccunemccune% number = 1 % seconds = 0 \begin{table}[H] \centering % size 6 e: 0 \hspace{.5cm} c1: 1 \hspace{.5cm} c2: 2 \hspace{.5cm} \begin{tabular}{r|rrrrrr} ': & 0 & 1 & 2 & 3 & 4 & 5\\ \hline & 0 & 1 & 2 & 4 & 3 & 5 \end{tabular} \hspace{.5cm} \begin{tabular}{r|rrrrrr} *: & 0 & 1 & 2 & 3 & 4 & 5\\ \hline 0 & 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 0 & 3 & 2 & 5 & 4 \\ 2 & 2 & 4 & 0 & 5 & 1 & 3 \\ 3 & 3 & 5 & 1 & 4 & 0 & 2 \\ 4 & 4 & 2 & 5 & 0 & 3 & 1 \\ 5 & 5 & 3 & 4 & 1 & 2 & 0 \end{tabular} \caption{ } \end{table} prover9-manual-2009-02A/non-MOL-OML2.interps0000644000175000017500000003166610607453430017527 0ustar mccunemccuneinterpretation( 10, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,0,2,2,0,9,0,0,7,7,9,0,3,0,3,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,5,0,0,5,5,0,0,5,0,0,6,0,0,0,0,6,0,0,0,0,7,7,0,0,0,0,7,7,0,0,8,7,0,5,5,0,7,8,0,0,9,9,0,9,0,0,0,0,9]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,3,1,1,3,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,5,1,1,1,4,5,1,8,8,4,6,1,1,1,1,1,6,1,1,1,7,1,2,1,1,8,1,7,8,2,8,1,1,1,1,8,1,8,8,1,9,1,2,1,4,4,1,2,1,9]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,1,5,5,1,8,1,1,4,4,8,1,6,1,6,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,2,1,1,2,2,1,1,2,1,1,3,1,1,1,1,3,1,1,1,1,4,4,1,1,1,1,4,4,1,1,9,4,1,2,2,1,4,9,1,1,8,8,1,8,1,1,1,1,8]), function(c(_), [1,0,5,6,7,2,3,4,9,8])]). interpretation( 12, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,0,2,2,0,9,0,0,7,7,9,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,11,0,0,0,0,0,0,0,0,0,11]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,3,1,1,3,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,5,1,1,1,4,5,1,8,8,4,1,1,6,1,1,1,1,1,6,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,8,1,1,1,1,8,1,8,8,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,10,1,1,1,1,1,1,1,1,1,10,1,11,1,1,1,1,1,1,1,1,1,1,11]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,1,5,5,1,8,1,1,4,4,8,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,10,1,1,1,1,1,1,1,1,1,10]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10])]). interpretation( 14, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,0,0,0,13,9,9,0,9,13,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,8,11,0,13,5,0,7,8,0,5,11,7,13,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,12,9,0,9,0,0,7,7,9,9,0,12,0,0,13,0,0,13,0,0,0,13,0,0,0,0,13]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,1,1,1,1,4,1,1,1,4,5,1,1,1,1,5,1,8,8,10,10,8,1,8,6,1,1,1,1,1,6,1,1,1,1,1,1,1,7,1,1,1,1,8,1,7,8,12,1,8,12,8,8,1,1,1,1,8,1,8,8,1,1,8,1,8,9,1,2,1,4,10,1,12,1,9,10,2,12,4,10,1,1,1,1,10,1,1,1,10,10,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,12,1,1,1,1,1,1,12,1,12,1,1,12,1,13,1,1,1,4,8,1,8,8,4,1,8,1,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,1,1,1,12,8,8,1,8,12,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,9,10,1,12,2,1,4,9,1,2,10,4,12,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,13,8,1,8,1,1,4,4,8,8,1,13,1,1,12,1,1,12,1,1,1,12,1,1,1,1,12]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12])]). interpretation( 14, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,13,0,0,0,0,0,0,0,0,0,0,0,13]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,11,1,1,1,1,1,1,1,1,1,1,11,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,13,1,1,1,1,1,1,1,1,1,1,1,1,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,13,1,1,1,1,1,1,1,1,1,1,13,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12])]). interpretation( 14, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,3,0,3,0,0,0,0,0,0,13,11,11,13,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,6,0,6,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,10,0,13,0,0,6,0,0,0,10,0,6,13,0,11,0,11,0,0,0,0,0,0,0,11,11,0,0,12,0,11,0,0,6,0,0,0,6,11,12,0,0,13,0,13,0,0,0,0,0,0,13,0,0,13]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,3,1,3,4,1,1,1,4,4,1,1,1,4,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,6,1,1,1,1,1,6,1,1,1,10,12,12,10,7,1,2,1,1,8,1,7,8,2,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,10,1,1,1,1,1,10,1,1,1,10,1,1,10,11,1,1,3,1,1,12,1,1,1,1,11,12,3,12,1,1,1,1,1,12,1,1,1,1,12,12,1,13,1,1,3,1,1,10,1,1,1,10,3,1,13]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,6,1,6,1,1,1,1,1,1,12,10,10,12,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,3,1,3,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,11,1,12,1,1,3,1,1,1,11,1,3,12,1,10,1,10,1,1,1,1,1,1,1,10,10,1,1,13,1,10,1,1,3,1,1,1,3,10,13,1,1,12,1,12,1,1,1,1,1,1,12,1,1,12]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12])]). interpretation( 16, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,0,0,0,13,9,9,0,9,13,0,0,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,0,0,8,11,0,13,5,0,7,8,0,5,11,7,13,0,0,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,0,0,12,9,0,9,0,0,7,7,9,9,0,12,0,0,0,0,13,0,0,13,0,0,0,13,0,0,0,0,13,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,15]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,1,1,1,1,4,1,1,1,4,1,1,5,1,1,1,1,5,1,8,8,10,10,8,1,8,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,1,1,1,8,1,7,8,12,1,8,12,8,1,1,8,1,1,1,1,8,1,8,8,1,1,8,1,8,1,1,9,1,2,1,4,10,1,12,1,9,10,2,12,4,1,1,10,1,1,1,1,10,1,1,1,10,10,1,1,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,1,1,12,1,1,1,1,1,1,12,1,12,1,1,12,1,1,1,13,1,1,1,4,8,1,8,8,4,1,8,1,13,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14,1,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,1,1,1,12,8,8,1,8,12,1,1,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,1,1,9,10,1,12,2,1,4,9,1,2,10,4,12,1,1,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,1,1,13,8,1,8,1,1,4,4,8,8,1,13,1,1,1,1,12,1,1,12,1,1,1,12,1,1,1,1,12,1,1,1,15,1,1,1,1,1,1,1,1,1,1,1,1,15,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14])]). interpretation( 16, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,0,11,9,9,11,9,0,0,0,0,3,0,3,13,0,0,0,13,0,0,0,15,13,13,15,0,4,9,13,4,0,0,0,13,9,9,0,9,13,13,0,0,5,0,0,0,5,0,0,5,0,5,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,6,0,6,0,0,7,0,0,0,0,0,7,7,0,0,0,7,0,0,0,0,8,11,13,13,5,0,7,8,0,5,11,7,13,13,0,0,9,9,0,9,0,0,0,0,9,9,0,9,0,0,0,0,10,9,0,9,5,0,0,5,9,10,0,9,0,0,0,0,11,11,0,0,0,0,0,11,0,0,11,0,0,0,0,0,12,9,15,9,0,6,7,7,9,9,0,12,0,6,15,0,13,0,13,13,0,0,0,13,0,0,0,0,13,13,0,0,14,0,13,13,0,6,0,13,0,0,0,6,13,14,0,0,15,0,15,0,0,0,0,0,0,0,0,15,0,0,15]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,3,1,3,4,1,1,1,4,1,1,1,1,4,1,1,1,4,1,1,5,1,1,1,1,5,1,8,8,10,10,8,1,8,1,1,6,1,1,1,1,1,6,12,1,12,1,1,12,14,14,12,7,1,1,1,1,8,12,7,8,12,1,8,12,8,1,12,8,1,1,1,1,8,1,8,8,1,1,8,1,8,1,1,9,1,2,1,4,10,12,12,1,9,10,2,12,4,1,12,10,1,1,1,1,10,1,1,1,10,10,1,1,1,1,1,11,1,2,1,1,8,1,8,8,2,1,11,1,8,1,1,12,1,1,1,1,1,12,12,1,12,1,1,12,1,1,12,13,1,1,3,4,8,14,8,8,4,1,8,1,13,14,3,14,1,1,1,1,1,14,1,1,1,1,1,1,14,14,1,15,1,1,3,1,1,12,12,1,12,1,1,12,3,1,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,1,10,8,8,10,8,1,1,1,1,6,1,6,12,1,1,1,12,1,1,1,14,12,12,14,1,7,8,12,7,1,1,1,12,8,8,1,8,12,12,1,1,2,1,1,1,2,1,1,2,1,2,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,3,1,3,1,1,4,1,1,1,1,1,4,4,1,1,1,4,1,1,1,1,9,10,12,12,2,1,4,9,1,2,10,4,12,12,1,1,8,8,1,8,1,1,1,1,8,8,1,8,1,1,1,1,11,8,1,8,2,1,1,2,8,11,1,8,1,1,1,1,10,10,1,1,1,1,1,10,1,1,10,1,1,1,1,1,13,8,14,8,1,3,4,4,8,8,1,13,1,3,14,1,12,1,12,12,1,1,1,12,1,1,1,1,12,12,1,1,15,1,12,12,1,3,1,12,1,1,1,3,12,15,1,1,14,1,14,1,1,1,1,1,1,1,1,14,1,1,14]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14])]). interpretation( 16, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,15]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,1,1,13,1,1,1,1,1,1,1,1,1,1,1,1,13,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14,1,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,1,1,1,13,1,1,1,1,1,1,1,1,1,1,13,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1,1,12,1,1,1,15,1,1,1,1,1,1,1,1,1,1,1,1,15,1,1,14,1,1,1,1,1,1,1,1,1,1,1,1,1,14]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14])]). interpretation( 16, [], [ function(^(_,_), [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,2,2,0,9,0,0,7,7,9,0,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,4,5,0,0,5,9,0,0,0,0,0,0,0,5,0,0,5,5,0,0,5,0,0,0,0,0,0,0,0,6,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,7,7,0,0,0,0,0,0,0,0,8,7,0,5,5,0,7,8,0,0,0,0,0,0,0,0,9,9,0,9,0,0,0,0,9,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,10,0,15,13,13,15,0,11,0,0,0,0,0,0,0,0,0,11,11,0,11,0,0,12,0,0,0,0,0,0,0,0,15,11,12,0,11,15,0,13,0,0,0,0,0,0,0,0,13,0,0,13,13,0,0,14,0,0,0,0,0,0,0,0,13,11,11,13,14,0,0,15,0,0,0,0,0,0,0,0,15,0,15,0,0,15]), function(v(_,_), [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,4,4,1,1,1,4,1,1,1,1,1,1,5,1,1,1,4,5,1,8,8,4,1,1,1,1,1,1,6,1,1,1,1,1,6,1,1,1,1,1,1,1,1,1,7,1,2,1,1,8,1,7,8,2,1,1,1,1,1,1,8,1,1,1,1,8,1,8,8,1,1,1,1,1,1,1,9,1,2,1,4,4,1,2,1,9,1,1,1,1,1,1,10,1,1,1,1,1,1,1,1,1,10,1,1,10,1,10,11,1,1,1,1,1,1,1,1,1,1,11,12,14,14,12,12,1,1,1,1,1,1,1,1,1,1,12,12,1,1,12,13,1,1,1,1,1,1,1,1,1,10,14,1,13,14,10,14,1,1,1,1,1,1,1,1,1,1,14,1,14,14,1,15,1,1,1,1,1,1,1,1,1,10,12,12,10,1,15]), function(f(_,_), [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14,1,5,5,1,8,1,1,4,4,8,1,1,1,1,1,1,1,6,1,6,1,1,1,1,1,1,1,1,1,1,1,1,1,7,8,1,7,2,1,1,2,8,1,1,1,1,1,1,1,2,1,1,2,2,1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,4,4,1,1,1,1,4,4,1,1,1,1,1,1,1,1,9,4,1,2,2,1,4,9,1,1,1,1,1,1,1,1,8,8,1,8,1,1,1,1,8,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,11,1,14,12,12,14,1,10,1,1,1,1,1,1,1,1,1,10,10,1,10,1,1,13,1,1,1,1,1,1,1,1,14,10,13,1,10,14,1,12,1,1,1,1,1,1,1,1,12,1,1,12,12,1,1,15,1,1,1,1,1,1,1,1,12,10,10,12,15,1,1,14,1,1,1,1,1,1,1,1,14,1,14,1,1,14]), function(c(_), [1,0,5,6,7,2,3,4,9,8,11,10,13,12,15,14])]). % interpfilter MOL-cand.238 all_false: checked 9, passed 9, 2.52 seconds. prover9-manual-2009-02A/proof3.dtd0000644000175000017500000000374310474635512016100 0ustar mccunemccune prover9-manual-2009-02A/proof3.dtd.00000644000175000017500000000371710435661670016240 0ustar mccunemccune prover9-manual-2009-02A/proof3.xsl0000644000175000017500000000676410474654552016146 0ustar mccunemccune

Prover9 Job

  
  

This page was generated from file .

Number of proofs here: .


Proof

  
  
| | | | # [ , ]
prover9-manual-2009-02A/proof3.xsl.00000644000175000017500000000535710435661670016275 0ustar mccunemccune

Prover9 Job

  
  

This page was generated from file .

Number of proofs here: .


Proof

  
  
| # [ , ]
prover9-manual-2009-02A/references.html0000644000175000017500000000506711151021064017163 0ustar mccunemccune Prover9 Manual: References
Prover9 Manual Version 2009-02A

References

Not done yet.
[Bachmair-Ganzinger-res]
L. Bachmair and H. Ganzinger. "Resolution Theorem Proving". Chapter 2 in Handbook of Automated Reasoning (ed. A. Robinson and A. Voronkov), 2001. Preliminary version.
[Nieuwenhuis-Rubio-para]
R. Nieuwenhuis and A. Rubio. "Paramodulation-Based Theorem Proving". Chapter 7 in Handbook of Automated Reasoning (ed. A. Robinson and A. Voronkov), 2001.
[Champeaux-miniscope]
D. Champeaux. "Sub-problem finder and instance checker, two cooperating modules for theorem provers". J. ACM, 33(4):633--657, 1986.
[Dershowitz-termination]
N. Dershowitz. "Termination of rewriting". J. Symbolic Computation, 3:69-116, 1987.
[McCune-Otter33]
W. McCune. Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
[McCune-Mace4]
W. McCune. Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
[RV-lrs]
A. Riazanov and A. Voronkov. "Limited resource strategy in resolution theorem proving". J. Symbolic Computation, 36(1-2):101-115, 2003.
[Veroff-hints]
R. Veroff. "Using hints to increase the effectiveness of an automated reasoning program: Case studies". J. Automated Reasoning, 16(3):223--239, 1996.
[Veroff-sketches]
R. Veroff. "Solving open questions and other challenge problems using proof sketches". J. Automated Reasoning, 27(2):157--174, 2001.
prover9-manual-2009-02A/hard-hints.out0000644000175000017500000006556511151315533016766 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15846 was started by mccune on cleo, Wed Feb 25 12:26:18 2009 The command was "/home/mccune/bin/prover9 -f hard.in easy.hints". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file hard.in assign(eq_defs,fold). set(restrict_denials). formulas(assumptions). f(x,y) = f(y,x). f(f(x,y),f(x,f(y,z))) = x. x' = f(x,x). end_of_list. formulas(goals). f(f(x,x),f(x,x)) = x # label(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2). f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3). end_of_list. % Reading from file easy.hints formulas(hints). f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). f(f(x,y),f(x,f(y,z))) = x. f(x,f(y,f(x',z))) = f(x,y'). x' = f(x,x). f(x,x) = x'. f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). c1'' != c1 # answer(Sheffer_1). f(f(x,y),f(x,y')) = x. f(x',f(x,x')) = x. f(x,f(y,x)) = f(x,y'). x'' = x. $F # answer(Sheffer_1). f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). f(x,y) = f(y,x). f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). f(f(x,y),f(y,f(x,z))) = y. f(f(x,y),f(x,f(z,y))) = x. f(x',f(x,y)) = x. f(x',f(y,x)) = x. f(x,f(x,y)') = f(x,y). f(x,f(y,x)') = f(y,x). f(x,f(x,y)) = f(x,y'). f(f(x,y),f(x,y)') = f(x',f(x,y)'). f(x',f(y,x)') = f(y',f(y,x)'). f(x',f(x,y)') = f(x,x'). f(x',f(y,x)') = f(x,x'). f(x,x') = f(y,y'). f(x,f(y,y')) = x'. f(f(f(x,x),y),f(f(z,z),y)) = f(f(y,f(x,z)),f(y,f(x,z))) # label(Sheffer_3) # label(non_clause) # label(goal). f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). f(f(x,y),f(f(y,z),x)) = x. f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). f(x,f(y,f(z,x'))) = f(x,y'). f(x,f(f(x',y),z)) = f(x,z'). f(x,f(x',y)') = f(x,x'). f(f(x,y),f(f(x,z),y)) = y. f(f(x,y),f(y,x')) = y. f(f(f(x,y),z),f(z,y)) = z. f(x',f(y,f(x,z))) = f(x',y'). f(f(x,y),f(f(z,y),x)) = x. f(x,f(f(x,y),f(y,z))) = f(x,y). f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). f(f(x,f(y,z)),f(z,x)) = x. f(f(x,y),f(f(y,x'),f(y,z))) = f(y,x'). f(f(x,y'),f(x,f(f(x,y),z))) = x. f(f(x,y'),f(x,f(z,f(x,y)))) = x. f(x',f(f(x,y),z)) = f(x',z'). f(f(x,y)',f(f(x,z),y)) = f(y,f(x,z)'). f(x,f(f(y,x'),z)') = f(x,z). f(f(f(x,y),z),f(z,y)') = f(z,f(x,y)'). f(f(x,f(y,z')),f(f(y,z),x)) = x. f(x,f(f(x',y)',z)) = x'. f(x',f(f(x,y)',z)) = x. f(x',f(f(y,x)',z)) = x. f(x',f(y,f(z,x)')) = x. f(x,f(y,f(z,x)')') = f(y,f(z,x)'). f(f(x,y),f(y,z)') = f(x',f(y,z)'). f(f(x,y)',f(z,y)') = f(z,f(x,y)'). f(f(x,y)',f(z,y)) = f(f(x,y)',z'). f(f(x,y)',f(x,z)') = f(f(x,y)',z). f(f(x,y)',z) = f(y,f(x,z)'). f(x,f(y,z)') = f(y,f(x,z)'). f(x',f(f(y,x),z)') = f(x',z). f(f(x,y),f(z,f(x,y'))') = f(z,x'). f(x,f(y,f(x,z)')) = f(x,f(y,z)). f(x,f(f(x,y),z)) = f(x,f(y',z)). f(x,f(y,f(z,f(f(x,y),u))')) = f(x,f(z,y)). f(x,f(y,f(x,z))) = f(x,f(y,z')). f(f(x,y'),f(x,f(y,z))) = f(x,f(y,z))'. f(f(x,y'),f(x,z)) = f(x,f(y,z'))'. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). f(x,y) = f(y,x). [assumption]. f(f(x,y),f(x,f(y,z))) = x. [assumption]. x' = f(x,x). [assumption]. f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1). [deny(1)]. f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2). [deny(2)]. f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3). [deny(3)]. end_of_list. formulas(demodulators). end_of_list. % 72 hints input. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label Sheffer_1 to answer in negative clause % copying label Sheffer_2 to answer in negative clause % copying label Sheffer_3 to answer in negative clause % assign(max_proofs, 3). % (Horn set with more than one neg. clause) Term ordering decisions: Predicate symbol precedence: predicate_order([ = ]). Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, f, ' ]). After inverse_order: (no changes). Folding symbols: '/1. After fold_eq: Function symbol precedence: function_order([ c1, c2, c3, c4, c5, c6, ', f ]). Auto_inference settings: % set(paramodulation). % (positive equality literals) Auto_process settings: (no changes). % Operation f is commutative; C redundancy checks enabled. kept: 4 f(x,y) = f(y,x). [assumption]. kept: 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. kept: 7 f(x,x) = x'. [copy(6),flip(a)]. 8 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. kept: 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 10 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. kept: 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 12 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. kept: 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. end_of_list. formulas(sos). 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. end_of_list. formulas(demodulators). 4 f(x,y) = f(y,x). [assumption]. % (lex-dep) 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. end_of_list. % 65 hints (72 processed, 7 redundant). ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.02 seconds. given #1 (I,wt=7): 4 f(x,y) = f(y,x). [assumption]. given #2 (I,wt=11): 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. given #3 (I,wt=6): 7 f(x,x) = x'. [copy(6),flip(a)]. given #4 (H,wt=10): 20 f(f(x,y),f(x,y')) = x. [para(7(a,1),5(a,1,2,2))]. given #5 (H,wt=9): 26 f(x',f(x,x')) = x. [para(7(a,1),20(a,1,1))]. given #6 (H,wt=10): 22 f(f(x,y),f(y,x')) = y. [para(4(a,1),20(a,1,1))]. given #7 (H,wt=11): 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. given #8 (H,wt=11): 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. given #9 (H,wt=11): 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. given #10 (H,wt=11): 42 f(f(x,y),f(f(x,z),y)) = y. [para(4(a,1),14(a,1,2))]. given #11 (H,wt=11): 52 f(f(f(x,y),z),f(z,y)) = z. [para(22(a,1),14(a,1,2,2))]. given #12 (H,wt=11): 54 f(f(x,y),f(f(z,y),x)) = x. [para(4(a,1),15(a,1,2))]. given #13 (H,wt=11): 76 f(f(x,f(y,z)),f(z,x)) = x. [para(22(a,1),16(a,1,2,1))]. given #14 (H,wt=13): 57 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),15(a,1,2)),rewrite([4(4)])]. given #15 (H,wt=17): 17 f(x,f(f(x,y),f(f(x,f(y,z)),u))) = f(x,y). [para(5(a,1),5(a,1,1))]. given #16 (H,wt=19): 68 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(15(a,1),14(a,1,1))]. given #17 (A,wt=11): 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. given #18 (H,wt=8): 212 f(x',f(x,y)) = x. [para(18(a,1),5(a,1,2)),rewrite([7(1)])]. ============================== PROOF ================================= % Proof 1 at 0.04 (+ 0.00) seconds: Sheffer_1. % Length of proof is 11. % Level of proof is 4. % Maximum clause weight is 11. % Given clauses 18. 1 f(f(x,x),f(x,x)) = x # label(Sheffer_1) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 8 f(f(c1,c1),f(c1,c1)) != c1 # label(Sheffer_1) # answer(Sheffer_1). [deny(1)]. 9 c1'' != c1 # answer(Sheffer_1). [copy(8),rewrite([7(3),7(5),7(5)])]. 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 212 f(x',f(x,y)) = x. [para(18(a,1),5(a,1,2)),rewrite([7(1)])]. 220 x'' = x. [para(7(a,1),212(a,1,2)),rewrite([7(3)])]. 221 $F # answer(Sheffer_1). [resolve(220,a,9,a)]. ============================== end of proof ========================== % Redundant proof: 231 $F # answer(Sheffer_1). [back_rewrite(9),rewrite([220(3)]),xx(a)]. % Disable descendants (x means already disabled): 8x 9x given #19 (H,wt=5): 220 x'' = x. [para(7(a,1),212(a,1,2)),rewrite([7(3)])]. given #20 (H,wt=8): 218 f(x',f(y,x)) = x. [para(4(a,1),212(a,1,2))]. given #21 (H,wt=10): 219 f(x,f(x,y)') = f(x,y). [para(5(a,1),212(a,1,2)),rewrite([4(3)])]. given #22 (H,wt=10): 223 f(x,f(y,x)') = f(y,x). [para(22(a,1),212(a,1,2)),rewrite([4(3)])]. given #23 (T,wt=9): 226 f(x,f(x',y)) = x'. [para(212(a,1),15(a,1,2)),rewrite([4(3)])]. given #24 (T,wt=9): 228 f(x,f(y,x')) = x'. [para(212(a,1),76(a,1,1))]. given #25 (T,wt=10): 23 f(f(x,y),f(y',x)) = x. [para(4(a,1),20(a,1,2))]. given #26 (T,wt=10): 32 f(f(x,y'),f(y,x)) = x. [para(22(a,1),4(a,1)),flip(a)]. given #27 (A,wt=16): 24 f(x,f(f(x,y),f(f(x,y'),z))) = f(x,y). [para(20(a,1),5(a,1,1))]. given #28 (T,wt=10): 33 f(f(x,y),f(x',y)) = y. [para(4(a,1),22(a,1,2))]. given #29 (T,wt=10): 49 f(f(x',y),f(y,x)) = y. [para(26(a,1),14(a,1,2,2))]. given #30 (T,wt=11): 35 f(x,f(x,f(y,x))) = f(y,x). [para(22(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. given #31 (T,wt=11): 40 f(f(x,f(y,z)),f(y,x)) = x. [para(14(a,1),4(a,1)),flip(a)]. given #32 (A,wt=16): 25 f(x,f(f(x,y),f(x,f(y,z))')) = f(x,y). [para(5(a,1),20(a,1,1))]. given #33 (T,wt=10): 334 f(x,f(y,f(x,y))) = x'. [para(40(a,1),68(a,1,2)),rewrite([7(1),4(3)]),flip(a)]. given #34 (T,wt=10): 375 f(x,f(y,f(y,x))) = x'. [para(4(a,1),334(a,1,2,2))]. given #35 (T,wt=11): 41 f(f(x,y),f(y,f(z,x))) = y. [para(4(a,1),14(a,1,2,2))]. given #36 (T,wt=11): 45 f(f(f(x,y),z),f(z,x)) = z. [para(5(a,1),14(a,1,2,2))]. given #37 (A,wt=15): 28 f(x,f(f(x,y),f(x,y')')) = f(x,y). [para(20(a,1),20(a,1,1))]. given #38 (T,wt=11): 82 f(f(x,y),f(f(z,x),y)) = y. [para(4(a,1),42(a,1,2,1))]. given #39 (T,wt=13): 70 f(x,f(f(y,x),f(y,z))) = f(y,x). [para(14(a,1),15(a,1,2)),rewrite([4(4)])]. given #40 (H,wt=14): 537 f(f(x,y'),f(x,f(f(x,y),z))) = x. [para(20(a,1),70(a,1,2,1)),rewrite([20(10)])]. given #41 (H,wt=14): 563 f(f(x,y'),f(x,f(z,f(x,y)))) = x. [para(4(a,1),537(a,1,2,2))]. given #42 (T,wt=13): 72 f(x,f(f(x,y),f(z,y))) = f(x,y). [para(15(a,1),15(a,1,2)),rewrite([4(4)])]. given #43 (T,wt=13): 79 f(x,f(f(y,z),f(x,y))) = f(x,y). [para(16(a,1),14(a,1,2)),rewrite([4(4)])]. given #44 (A,wt=16): 34 f(x,f(f(y,x),f(f(x,y'),z))) = f(y,x). [para(22(a,1),5(a,1,1))]. given #45 (T,wt=13): 88 f(x,f(f(y,z),f(y,x))) = f(y,x). [para(42(a,1),14(a,1,2)),rewrite([4(4)])]. given #46 (T,wt=13): 106 f(x,f(f(y,z),f(x,z))) = f(x,z). [para(52(a,1),42(a,1,2)),rewrite([4(4)])]. given #47 (T,wt=13): 123 f(x,f(f(y,x),f(z,y))) = f(y,x). [para(76(a,1),52(a,1,1))]. given #48 (T,wt=13): 401 f(x,f(f(x,y),f(x,y)')) = x'. [para(219(a,1),334(a,1,2,2)),rewrite([4(4)])]. given #49 (A,wt=18): 36 f(x,f(f(x,y)',f(x,f(y,z)))) = f(x,f(y,z)). [para(5(a,1),22(a,1,1)),rewrite([4(5)])]. given #50 (T,wt=13): 402 f(x,f(f(y,x),f(y,x)')) = x'. [para(223(a,1),334(a,1,2,2)),rewrite([4(4)])]. given #51 (T,wt=13): 432 f(f(x,y),f(x,x')) = f(x,y)'. [para(212(a,1),375(a,1,2,2)),rewrite([4(3)])]. ============================== PROOF ================================= % Proof 2 at 0.19 (+ 0.00) seconds: Sheffer_2. % Length of proof is 35. % Level of proof is 11. % Maximum clause weight is 23. % Given clauses 51. 2 f(x,f(y,f(y,y))) = f(x,x) # label(Sheffer_2) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 10 f(c2,f(c3,f(c3,c3))) != f(c2,c2) # label(Sheffer_2) # answer(Sheffer_2). [deny(2)]. 11 f(c2,f(c3,c3')) != c2' # answer(Sheffer_2). [copy(10),rewrite([7(5),7(9)])]. 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 20 f(f(x,y),f(x,y')) = x. [para(7(a,1),5(a,1,2,2))]. 22 f(f(x,y),f(y,x')) = y. [para(4(a,1),20(a,1,1))]. 40 f(f(x,f(y,z)),f(y,x)) = x. [para(14(a,1),4(a,1)),flip(a)]. 68 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(15(a,1),14(a,1,1))]. 76 f(f(x,f(y,z)),f(z,x)) = x. [para(22(a,1),16(a,1,2,1))]. 212 f(x',f(x,y)) = x. [para(18(a,1),5(a,1,2)),rewrite([7(1)])]. 218 f(x',f(y,x)) = x. [para(4(a,1),212(a,1,2))]. 219 f(x,f(x,y)') = f(x,y). [para(5(a,1),212(a,1,2)),rewrite([4(3)])]. 223 f(x,f(y,x)') = f(y,x). [para(22(a,1),212(a,1,2)),rewrite([4(3)])]. 228 f(x,f(y,x')) = x'. [para(212(a,1),76(a,1,1))]. 334 f(x,f(y,f(x,y))) = x'. [para(40(a,1),68(a,1,2)),rewrite([7(1),4(3)]),flip(a)]. 375 f(x,f(y,f(y,x))) = x'. [para(4(a,1),334(a,1,2,2))]. 401 f(x,f(f(x,y),f(x,y)')) = x'. [para(219(a,1),334(a,1,2,2)),rewrite([4(4)])]. 402 f(x,f(f(y,x),f(y,x)')) = x'. [para(223(a,1),334(a,1,2,2)),rewrite([4(4)])]. 432 f(f(x,y),f(x,x')) = f(x,y)'. [para(212(a,1),375(a,1,2,2)),rewrite([4(3)])]. 887 f(x',f(f(x,y),f(x,y)')') = f(f(x,y),f(x,y)'). [para(401(a,1),218(a,1,2)),rewrite([4(7)])]. 890 f(f(x,x'),f(f(x,y),f(x,y)')) = f(f(x,y),f(x,y)')'. [para(401(a,1),375(a,1,2,2)),rewrite([4(7)])]. 967 f(x',f(f(y,x),f(y,x)')') = f(f(y,x),f(y,x)'). [para(402(a,1),218(a,1,2)),rewrite([4(7)])]. 997 f(f(x,y),f(x,y)')' = f(x,x')'. [para(432(a,1),375(a,1,2,2)),rewrite([890(7)])]. 1007 f(f(x,y),f(x,y)') = f(y',f(x,x')'). [back_rewrite(967),rewrite([997(6)]),flip(a)]. 1008 f(x',f(y,y')')' = f(y,y')'. [back_rewrite(890),rewrite([1007(6),228(8),1007(7)]),flip(a)]. 1009 f(x',f(y,y')') = f(y,y'). [back_rewrite(887),rewrite([1007(5),1008(7),223(5),1007(6)]),flip(a)]. 1030 f(x,f(y,y')) = x'. [back_rewrite(402),rewrite([1007(4),1009(5)])]. 1031 $F # answer(Sheffer_2). [resolve(1030,a,11,a)]. ============================== end of proof ========================== % Redundant proof: 1036 $F # answer(Sheffer_2). [back_rewrite(11),rewrite([1030(6)]),xx(a)]. % Disable descendants (x means already disabled): 10x 11x given #52 (H,wt=9): 1030 f(x,f(y,y')) = x'. [back_rewrite(402),rewrite([1007(4),1009(5)])]. given #53 (H,wt=9): 1033 f(x,x') = f(y,y'). [back_rewrite(1028),rewrite([1030(5),220(3),4(2)])]. given #54 (H,wt=12): 987 f(x',f(x,y)') = f(x,x'). [para(432(a,1),16(a,1,2)),rewrite([4(3),228(3)])]. given #55 (H,wt=12): 1029 f(x',f(y,x)') = f(x,x'). [back_rewrite(892),rewrite([1007(6),1009(7),434(5),1007(8),1009(9)])]. given #56 (H,wt=11): 1070 f(x',f(f(y,x)',z)) = x. [back_rewrite(1068),rewrite([1069(10),1030(4),220(2)]),flip(a)]. given #57 (H,wt=11): 1071 f(x',f(f(x,y)',z)) = x. [back_rewrite(1053),rewrite([1069(10),1030(4),220(2)]),flip(a)]. given #58 (H,wt=11): 1073 f(x',f(y,f(z,x)')) = x. [para(4(a,1),1070(a,1,2))]. given #59 (H,wt=10): 1159 f(x,f(y,x)) = f(x,y'). [back_rewrite(277),rewrite([1135(5)])]. given #60 (H,wt=10): 1160 f(x,f(x,y)) = f(x,y'). [back_rewrite(38),rewrite([1139(5)])]. given #61 (H,wt=12): 1038 f(x,f(x',y)') = f(x,x'). [para(1030(a,1),79(a,1,2))]. given #62 (H,wt=12): 1115 f(x,f(f(x',y)',z)) = x'. [para(220(a,1),1071(a,1,1))]. given #63 (H,wt=13): 1009 f(x',f(y,y')') = f(y,y'). [back_rewrite(887),rewrite([1007(5),1008(7),223(5),1007(6)]),flip(a)]. given #64 (H,wt=14): 1263 f(f(x,f(y,z')),f(f(y,z),x)) = x. [para(1160(a,1),76(a,1,1,2))]. given #65 (H,wt=16): 1142 f(x,f(y,f(z,x)')') = f(y,f(z,x)'). [para(1073(a,1),218(a,1,2)),rewrite([4(5)])]. given #66 (H,wt=17): 1172 f(f(x,y'),f(x,f(y,z))) = f(x,f(y,z))'. [back_rewrite(410),rewrite([1159(4),4(5)])]. given #67 (H,wt=17): 1207 f(f(x,y)',f(f(x,z),y)) = f(y,f(x,z)'). [para(42(a,1),1159(a,1,2)),rewrite([4(3),1159(3),4(8)]),flip(a)]. given #68 (H,wt=17): 1232 f(f(x,y),f(f(y,x'),f(y,z))) = f(y,x'). [para(1159(a,1),70(a,1,2,1)),rewrite([1159(8)])]. given #69 (T,wt=9): 1034 f(f(x,x'),y) = y'. [back_rewrite(1017),rewrite([1030(6),220(4)])]. given #70 (T,wt=11): 1035 f(x,x')' = f(y,y')'. [back_rewrite(1010),rewrite([1030(5)])]. given #71 (A,wt=17): 43 f(x,f(f(y,x),f(f(x,f(y,z)),u))) = f(y,x). [para(14(a,1),5(a,1,1))]. given #72 (T,wt=11): 1105 f(x',f(y,f(x,z)')) = x. [para(4(a,1),1071(a,1,2))]. given #73 (T,wt=12): 1039 f(x,f(y,x')') = f(x,x'). [para(1030(a,1),106(a,1,2))]. given #74 (T,wt=12): 1069 f(f(x,x')',y) = f(x,x'). [para(1030(a,1),1029(a,1,2,1)),rewrite([220(5),1034(10),220(8)])]. given #75 (T,wt=12): 1088 f(x,f(f(y,x')',z)) = x'. [para(220(a,1),1070(a,1,1))]. given #76 (A,wt=19): 44 f(x,f(f(x,f(y,z)),f(f(x,y),u))) = f(x,f(y,z)). [para(5(a,1),14(a,1,1))]. given #77 (T,wt=12): 1141 f(x,f(y,f(z,x')')) = x'. [para(220(a,1),1073(a,1,1))]. given #78 (T,wt=12): 1173 f(f(x,y),f(y,x)) = f(x,y)'. [back_rewrite(407),rewrite([1159(4),220(3)])]. given #79 (T,wt=12): 1296 f(x,f(y,f(x',z)')) = x'. [para(4(a,1),1115(a,1,2))]. given #80 (T,wt=12): 1306 f(x,f(y,y')') = f(y,y'). [para(220(a,1),1009(a,1,1))]. given #81 (A,wt=17): 47 f(x,f(f(x,y'),f(f(x,y),z))) = f(x,y'). [para(20(a,1),14(a,1,1))]. given #82 (T,wt=13): 445 f(x,f(f(y,z),f(z,x))) = f(z,x). [para(41(a,1),76(a,1,1))]. given #83 (T,wt=13): 1082 f(f(x,y)',f(x',z)) = f(x,y). [para(52(a,1),1070(a,1,2,1,1))]. given #84 (T,wt=13): 1086 f(f(x,y)',f(y',z)) = f(x,y). [para(76(a,1),1070(a,1,2,1,1))]. given #85 (T,wt=13): 1135 f(f(x,y)',f(z,x')) = f(x,y). [para(52(a,1),1073(a,1,2,2,1))]. given #86 (A,wt=17): 51 f(x,f(f(x,y'),f(f(y,x),z))) = f(x,y'). [para(22(a,1),14(a,1,1))]. given #87 (H,wt=14): 1987 f(x',f(y,f(x,z))) = f(x',y'). [para(1172(a,1),51(a,1,2,2)),rewrite([1460(8)])]. given #88 (H,wt=13): 2048 f(x,f(y,f(x',z))) = f(x,y'). [para(220(a,1),1987(a,1,1)),rewrite([220(6)])]. given #89 (H,wt=13): 2228 f(x,f(y,z)') = f(y,f(x,z)'). [back_rewrite(2040),rewrite([2155(5),1626(5),2155(6)])]. given #90 (H,wt=13): 2229 f(x,f(y,z)') = f(z,f(x,y)'). [back_rewrite(2038),rewrite([2155(5),1142(5),2155(6)])]. given #91 (H,wt=13): 2329 f(x,f(y,f(z,x'))) = f(x,y'). [para(4(a,1),2048(a,1,2,2))]. given #92 (H,wt=13): 2330 f(x,f(f(x',y),z)) = f(x,z'). [para(4(a,1),2048(a,1,2))]. given #93 (H,wt=13): 2740 f(x,f(f(y,x'),z)') = f(x,z). [para(52(a,1),2329(a,1,2)),flip(a)]. given #94 (H,wt=14): 2030 f(x',f(f(x,y),z)) = f(x',z'). [para(4(a,1),1987(a,1,2))]. given #95 (H,wt=14): 2478 f(x,f(y,f(x,z)')) = f(x,f(y,z)). [para(2228(a,1),1160(a,1,2)),rewrite([220(7)])]. ============================== PROOF ================================= % Proof 3 at 0.72 (+ 0.01) seconds: Sheffer_3. % Length of proof is 83. % Level of proof is 26. % Maximum clause weight is 28. % Given clauses 95. 3 f(f(f(y,y),x),f(f(z,z),x)) = f(f(x,f(y,z)),f(x,f(y,z))) # label(Sheffer_3) # label(non_clause) # label(goal). [goal]. 4 f(x,y) = f(y,x). [assumption]. 5 f(f(x,y),f(x,f(y,z))) = x. [assumption]. 6 x' = f(x,x). [assumption]. 7 f(x,x) = x'. [copy(6),flip(a)]. 12 f(f(f(c4,c4),c5),f(f(c6,c6),c5)) != f(f(c5,f(c4,c6)),f(c5,f(c4,c6))) # label(Sheffer_3) # answer(Sheffer_3). [deny(3)]. 13 f(f(c5,c4'),f(c5,c6')) != f(c5,f(c4,c6))' # answer(Sheffer_3). [copy(12),rewrite([7(3),4(4),7(7),4(8),7(20)])]. 14 f(f(x,y),f(y,f(x,z))) = y. [para(4(a,1),5(a,1,1))]. 15 f(f(x,y),f(x,f(z,y))) = x. [para(4(a,1),5(a,1,2,2))]. 16 f(f(x,y),f(f(y,z),x)) = x. [para(4(a,1),5(a,1,2))]. 18 f(x,f(x,f(x,y))) = f(x,y). [para(5(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 20 f(f(x,y),f(x,y')) = x. [para(7(a,1),5(a,1,2,2))]. 22 f(f(x,y),f(y,x')) = y. [para(4(a,1),20(a,1,1))]. 23 f(f(x,y),f(y',x)) = x. [para(4(a,1),20(a,1,2))]. 32 f(f(x,y'),f(y,x)) = x. [para(22(a,1),4(a,1)),flip(a)]. 35 f(x,f(x,f(y,x))) = f(y,x). [para(22(a,1),5(a,1,2)),rewrite([4(2),4(3)])]. 36 f(x,f(f(x,y)',f(x,f(y,z)))) = f(x,f(y,z)). [para(5(a,1),22(a,1,1)),rewrite([4(5)])]. 38 f(x,f(f(x,y)',f(x,y'))) = f(x,y'). [para(20(a,1),22(a,1,1)),rewrite([4(5)])]. 40 f(f(x,f(y,z)),f(y,x)) = x. [para(14(a,1),4(a,1)),flip(a)]. 42 f(f(x,y),f(f(x,z),y)) = y. [para(4(a,1),14(a,1,2))]. 51 f(x,f(f(x,y'),f(f(y,x),z))) = f(x,y'). [para(22(a,1),14(a,1,1))]. 52 f(f(f(x,y),z),f(z,y)) = z. [para(22(a,1),14(a,1,2,2))]. 57 f(x,f(f(x,y),f(y,z))) = f(x,y). [para(5(a,1),15(a,1,2)),rewrite([4(4)])]. 68 f(x,f(f(x,f(y,z)),f(f(x,z),u))) = f(x,f(y,z)). [para(15(a,1),14(a,1,1))]. 76 f(f(x,f(y,z)),f(z,x)) = x. [para(22(a,1),16(a,1,2,1))]. 79 f(x,f(f(y,z),f(x,y))) = f(x,y). [para(16(a,1),14(a,1,2)),rewrite([4(4)])]. 82 f(f(x,y),f(f(z,x),y)) = y. [para(4(a,1),42(a,1,2,1))]. 212 f(x',f(x,y)) = x. [para(18(a,1),5(a,1,2)),rewrite([7(1)])]. 218 f(x',f(y,x)) = x. [para(4(a,1),212(a,1,2))]. 219 f(x,f(x,y)') = f(x,y). [para(5(a,1),212(a,1,2)),rewrite([4(3)])]. 220 x'' = x. [para(7(a,1),212(a,1,2)),rewrite([7(3)])]. 223 f(x,f(y,x)') = f(y,x). [para(22(a,1),212(a,1,2)),rewrite([4(3)])]. 228 f(x,f(y,x')) = x'. [para(212(a,1),76(a,1,1))]. 229 f(x,f(f(x,y),f(z,x'))) = f(x,y). [para(212(a,1),76(a,1,2)),rewrite([4(5)])]. 277 f(x,f(f(y,x)',f(x,y'))) = f(x,y'). [para(32(a,1),23(a,1,1))]. 334 f(x,f(y,f(x,y))) = x'. [para(40(a,1),68(a,1,2)),rewrite([7(1),4(3)]),flip(a)]. 375 f(x,f(y,f(y,x))) = x'. [para(4(a,1),334(a,1,2,2))]. 401 f(x,f(f(x,y),f(x,y)')) = x'. [para(219(a,1),334(a,1,2,2)),rewrite([4(4)])]. 402 f(x,f(f(y,x),f(y,x)')) = x'. [para(223(a,1),334(a,1,2,2)),rewrite([4(4)])]. 410 f(f(x,f(y,z)),f(x,f(y,x))) = f(x,f(y,z))'. [para(40(a,1),334(a,1,2,2)),rewrite([4(4)])]. 432 f(f(x,y),f(x,x')) = f(x,y)'. [para(212(a,1),375(a,1,2,2)),rewrite([4(3)])]. 434 f(f(x,y),f(y,y')) = f(x,y)'. [para(218(a,1),375(a,1,2,2)),rewrite([4(3)])]. 713 f(f(x,y),f(x,f(f(x,y),z))) = f(x,f(f(x,y),z))'. [para(57(a,1),79(a,1,2)),rewrite([4(3),4(6),7(7),4(7),4(9)]),flip(a)]. 887 f(x',f(f(x,y),f(x,y)')') = f(f(x,y),f(x,y)'). [para(401(a,1),218(a,1,2)),rewrite([4(7)])]. 890 f(f(x,x'),f(f(x,y),f(x,y)')) = f(f(x,y),f(x,y)')'. [para(401(a,1),375(a,1,2,2)),rewrite([4(7)])]. 892 f(x',f(f(y,x),f(f(x,z),f(x,z)'))) = f(f(x,z),f(x,z)'). [para(401(a,1),82(a,1,1))]. 967 f(x',f(f(y,x),f(y,x)')') = f(f(y,x),f(y,x)'). [para(402(a,1),218(a,1,2)),rewrite([4(7)])]. 970 f(f(f(x,y),f(x,y)'),f(y',f(f(x,y),f(x,y)'))) = y'. [para(402(a,1),35(a,1,2,2)),rewrite([4(10),402(16)])]. 987 f(x',f(x,y)') = f(x,x'). [para(432(a,1),16(a,1,2)),rewrite([4(3),228(3)])]. 997 f(f(x,y),f(x,y)')' = f(x,x')'. [para(432(a,1),375(a,1,2,2)),rewrite([890(7)])]. 1007 f(f(x,y),f(x,y)') = f(y',f(x,x')'). [back_rewrite(967),rewrite([997(6)]),flip(a)]. 1008 f(x',f(y,y')')' = f(y,y')'. [back_rewrite(890),rewrite([1007(6),228(8),1007(7)]),flip(a)]. 1009 f(x',f(y,y')') = f(y,y'). [back_rewrite(887),rewrite([1007(5),1008(7),223(5),1007(6)]),flip(a)]. 1017 f(f(x,x'),f(y',f(x,x'))) = y'. [back_rewrite(970),rewrite([1007(4),1009(5),1007(7),1009(8)])]. 1029 f(x',f(y,x)') = f(x,x'). [back_rewrite(892),rewrite([1007(6),1009(7),434(5),1007(8),1009(9)])]. 1030 f(x,f(y,y')) = x'. [back_rewrite(402),rewrite([1007(4),1009(5)])]. 1034 f(f(x,x'),y) = y'. [back_rewrite(1017),rewrite([1030(6),220(4)])]. 1053 f(x',f(f(x,x')',f(x',f(f(x,y)',z)))) = f(x',f(f(x,y)',z)). [para(987(a,1),36(a,1,2,1,1))]. 1068 f(x',f(f(x,x')',f(x',f(f(y,x)',z)))) = f(x',f(f(y,x)',z)). [para(1029(a,1),36(a,1,2,1,1))]. 1069 f(f(x,x')',y) = f(x,x'). [para(1030(a,1),1029(a,1,2,1)),rewrite([220(5),1034(10),220(8)])]. 1070 f(x',f(f(y,x)',z)) = x. [back_rewrite(1068),rewrite([1069(10),1030(4),220(2)]),flip(a)]. 1071 f(x',f(f(x,y)',z)) = x. [back_rewrite(1053),rewrite([1069(10),1030(4),220(2)]),flip(a)]. 1073 f(x',f(y,f(z,x)')) = x. [para(4(a,1),1070(a,1,2))]. 1105 f(x',f(y,f(x,z)')) = x. [para(4(a,1),1071(a,1,2))]. 1135 f(f(x,y)',f(z,x')) = f(x,y). [para(52(a,1),1073(a,1,2,2,1))]. 1139 f(f(x,y)',f(z,y')) = f(x,y). [para(76(a,1),1073(a,1,2,2,1))]. 1159 f(x,f(y,x)) = f(x,y'). [back_rewrite(277),rewrite([1135(5)])]. 1160 f(x,f(x,y)) = f(x,y'). [back_rewrite(38),rewrite([1139(5)])]. 1172 f(f(x,y'),f(x,f(y,z))) = f(x,f(y,z))'. [back_rewrite(410),rewrite([1159(4),4(5)])]. 1207 f(f(x,y)',f(f(x,z),y)) = f(y,f(x,z)'). [para(42(a,1),1159(a,1,2)),rewrite([4(3),1159(3),4(8)]),flip(a)]. 1415 f(f(x,y)',f(f(y,z),x)) = f(x,f(y,z)'). [para(4(a,1),1207(a,1,1,1))]. 1460 f(f(x,y'),f(y,z)') = f(y,z). [para(228(a,1),1207(a,1,1,1)),rewrite([220(2),229(5)]),flip(a)]. 1626 f(x,f(y,f(x,z)')') = f(y,f(x,z)'). [para(1105(a,1),22(a,1,1)),rewrite([220(5),4(4),1160(5)])]. 1987 f(x',f(y,f(x,z))) = f(x',y'). [para(1172(a,1),51(a,1,2,2)),rewrite([1460(8)])]. 2032 f(f(x,y)',f(z,x)) = f(f(x,y)',z'). [para(5(a,1),1987(a,1,2,2))]. 2040 f(f(x,y)',f(x,z)') = f(f(x,y)',z). [para(42(a,1),1987(a,1,2)),flip(a)]. 2051 f(f(x,y)',f(y,z)') = f(f(x,y)',z). [para(82(a,1),1987(a,1,2)),flip(a)]. 2155 f(f(x,y)',z) = f(x,f(y,z)'). [back_rewrite(1415),rewrite([2032(5),2051(5)])]. 2228 f(x,f(y,z)') = f(y,f(x,z)'). [back_rewrite(2040),rewrite([2155(5),1626(5),2155(6)])]. 2478 f(x,f(y,f(x,z)')) = f(x,f(y,z)). [para(2228(a,1),1160(a,1,2)),rewrite([220(7)])]. 3140 f(x,f(y,f(x,z))) = f(x,f(y,z')). [para(1160(a,1),2478(a,1,2,2,1)),rewrite([2478(5)]),flip(a)]. 3250 f(f(x,y),f(x,z')) = f(x,f(f(x,y),z))'. [back_rewrite(713),rewrite([3140(5)])]. 3311 $F # answer(Sheffer_3). [back_rewrite(13),rewrite([3250(9),4(7),3140(8),220(5),4(4)]),xx(a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=95. Generated=19519. Kept=3299. proofs=3. Usable=58. Sos=1063. Demods=1086. Limbo=61, Disabled=2123. Hints=72. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=16217. Back_subsumed=131. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=3094 (1 lex), Back_demodulated=1986. Back_unit_deleted=0. Demod_attempts=258466. Demod_rewrites=41883. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=2.69. User_CPU=0.72, System_CPU=0.02, Wall_clock=1. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 3 proofs. Process 15846 exit (max_proofs) Wed Feb 25 12:26:19 2009 prover9-manual-2009-02A/LT-82-2-interp.out0000644000175000017500000001145011151315533017111 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15848 was started by mccune on cleo, Wed Feb 25 12:26:19 2009 The command was "/home/mccune/bin/mace4 -N10 -f LT-82-2-interp.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file LT-82-2-interp.in formulas(sos). x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x ^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. x v 0 = x. x ^ 1 = x. end_of_list. formulas(sos). end_of_list. formulas(goals). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). end_of_list. % From the command line: assign(end_size, 10). ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). x v y = y v x. (x v y) v z = x v (y v z). x ^ y = y ^ x. (x ^ y) ^ z = x ^ (y ^ z). x ^ (x v y) = x. x v (x ^ y) = x. x v 0 = x. x ^ 1 = x. c1 ^ (c2 v (c3 ^ ((c1 ^ (c2 v c3)) v (c2 ^ c3)))) != c1 ^ (c2 v (c1 ^ c3)) # label(H2). end_of_list. ============================== end of clauses for search ============= % The largest natural number in the input is 1. ============================== DOMAIN SIZE 2 ========================= ============================== STATISTICS ============================ For domain size 2. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=37, kept=35. Selections=7, assignments=14, propagations=8, current_models=0. Rewrite_terms=234, rewrite_bools=42, indexes=13. Rules_from_neg_clauses=1, cross_offs=1. ============================== end of statistics ===================== ============================== DOMAIN SIZE 3 ========================= ============================== STATISTICS ============================ For domain size 3. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=97, kept=95. Selections=13, assignments=39, propagations=18, current_models=0. Rewrite_terms=718, rewrite_bools=121, indexes=50. Rules_from_neg_clauses=0, cross_offs=5. ============================== end of statistics ===================== ============================== DOMAIN SIZE 4 ========================= ============================== STATISTICS ============================ For domain size 4. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=201, kept=199. Selections=27, assignments=101, propagations=62, current_models=0. Rewrite_terms=2553, rewrite_bools=653, indexes=160. Rules_from_neg_clauses=0, cross_offs=25. ============================== end of statistics ===================== ============================== DOMAIN SIZE 5 ========================= ============================== STATISTICS ============================ For domain size 5. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=361, kept=359. Selections=49, assignments=225, propagations=221, current_models=0. Rewrite_terms=8657, rewrite_bools=2568, indexes=538. Rules_from_neg_clauses=3, cross_offs=158. ============================== end of statistics ===================== ============================== DOMAIN SIZE 6 ========================= ============================== MODEL ================================= interpretation( 6, [number=1, seconds=0], [ function(c1, [ 2 ]), function(c2, [ 3 ]), function(c3, [ 4 ]), function(^(_,_), [ 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 0, 2, 2, 0, 0, 0, 0, 3, 0, 3, 5, 5, 0, 4, 0, 5, 4, 5, 0, 5, 0, 5, 5, 5 ]), function(v(_,_), [ 0, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 3, 4, 1, 1, 1, 4, 4, 5, 1, 1, 3, 4, 5 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 6. Current CPU time: 0.00 seconds (total CPU time: 0.02 seconds). Ground clauses: seen=589, kept=587. Selections=34, assignments=139, propagations=207, current_models=1. Rewrite_terms=7453, rewrite_bools=2139, indexes=783. Rules_from_neg_clauses=2, cross_offs=234. ============================== end of statistics ===================== User_CPU=0.02, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 15848 exit (max_models) Wed Feb 25 12:26:19 2009 The process finished Wed Feb 25 12:26:19 2009 prover9-manual-2009-02A/ring41.out0000644000175000017500000002264711151315541016022 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15849 was started by mccune on cleo, Wed Feb 25 12:26:19 2009 The command was "/home/mccune/bin/mace4 -f ring41.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file ring41.in assign(iterate,primes). set(integer_ring). % set(integer_ring) -> clear(lnh). formulas(assumptions). g(x) = M * x. f(x,y) = (H * x) + (K * y). f(f(a,b),c) != f(a,f(b,c)). end_of_list. formulas(assumptions). g(f(g(f(y,f(x,z))),f(y,f(f(x,x),g(x))))) = z. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). g(x) = M * x. f(x,y) = (H * x) + (K * y). f(f(a,b),c) != f(a,f(b,c)). g(f(g(f(x,f(y,z))),f(x,f(f(y,y),g(y))))) = z. end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 2 ========================= ============================== STATISTICS ============================ For domain size 2. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=15, kept=15. Selections=14, assignments=28, propagations=32, current_models=0. Rewrite_terms=431, rewrite_bools=47, indexes=32. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 3 ========================= ============================== STATISTICS ============================ For domain size 3. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=40, kept=40. Selections=26, assignments=78, propagations=162, current_models=0. Rewrite_terms=2493, rewrite_bools=203, indexes=243. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 5 ========================= ============================== STATISTICS ============================ For domain size 5. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=156, kept=156. Selections=62, assignments=310, propagations=1250, current_models=0. Rewrite_terms=24257, rewrite_bools=1229, indexes=3125. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 7 ========================= ============================== STATISTICS ============================ For domain size 7. Current CPU time: 0.00 seconds (total CPU time: 0.04 seconds). Ground clauses: seen=400, kept=400. Selections=114, assignments=798, propagations=4802, current_models=0. Rewrite_terms=112588, rewrite_bools=4087, indexes=16807. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 11 ======================== ============================== STATISTICS ============================ For domain size 11. Current CPU time: 0.00 seconds (total CPU time: 0.21 seconds). Ground clauses: seen=1464, kept=1464. Selections=266, assignments=2926, propagations=29282, current_models=0. Rewrite_terms=923036, rewrite_bools=21251, indexes=161051. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 13 ======================== ============================== STATISTICS ============================ For domain size 13. Current CPU time: 0.00 seconds (total CPU time: 0.63 seconds). Ground clauses: seen=2380, kept=2380. Selections=366, assignments=4758, propagations=57122, current_models=0. Rewrite_terms=2030641, rewrite_bools=39493, indexes=371293. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 17 ======================== ============================== STATISTICS ============================ For domain size 17. Current CPU time: 0.00 seconds (total CPU time: 2.50 seconds). Ground clauses: seen=5220, kept=5220. Selections=614, assignments=10438, propagations=167042, current_models=0. Rewrite_terms=7281011, rewrite_bools=108017, indexes=1419857. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== ============================== DOMAIN SIZE 19 ======================== ============================== MODEL ================================= interpretation( 19, [number=1, seconds=5], [ function(H, [17 ]), function(K, [14 ]), function(M, [ 7 ]), function(a, [ 0 ]), function(b, [ 0 ]), function(c, [ 1 ]), function(g(_), [ 0, 7,14, 2, 9,16, 4,11,18, 6,13, 1, 8,15, 3,10,17, 5,12 ]), function(*(_,_), [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 2, 4, 6, 8,10,12,14,16,18, 1, 3, 5, 7, 9,11,13,15,17, 0, 3, 6, 9,12,15,18, 2, 5, 8,11,14,17, 1, 4, 7,10,13,16, 0, 4, 8,12,16, 1, 5, 9,13,17, 2, 6,10,14,18, 3, 7,11,15, 0, 5,10,15, 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14, 0, 6,12,18, 5,11,17, 4,10,16, 3, 9,15, 2, 8,14, 1, 7,13, 0, 7,14, 2, 9,16, 4,11,18, 6,13, 1, 8,15, 3,10,17, 5,12, 0, 8,16, 5,13, 2,10,18, 7,15, 4,12, 1, 9,17, 6,14, 3,11, 0, 9,18, 8,17, 7,16, 6,15, 5,14, 4,13, 3,12, 2,11, 1,10, 0,10, 1,11, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9, 0,11, 3,14, 6,17, 9, 1,12, 4,15, 7,18,10, 2,13, 5,16, 8, 0,12, 5,17,10, 3,15, 8, 1,13, 6,18,11, 4,16, 9, 2,14, 7, 0,13, 7, 1,14, 8, 2,15, 9, 3,16,10, 4,17,11, 5,18,12, 6, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,15,11, 7, 3,18,14,10, 6, 2,17,13, 9, 5, 1,16,12, 8, 4, 0,16,13,10, 7, 4, 1,17,14,11, 8, 5, 2,18,15,12, 9, 6, 3, 0,17,15,13,11, 9, 7, 5, 3, 1,18,16,14,12,10, 8, 6, 4, 2, 0,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]), function(+(_,_), [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 7, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 8, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 9,10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11,12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 12,13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11, 13,14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 14,15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13, 15,16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, 16,17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 17,18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, 18, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17 ]), function(f(_,_), [ 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3, 15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1, 13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18, 11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4, 16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2, 14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0, 12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17, 10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 2,16,11, 6, 1,15,10, 5, 0,14, 9, 4,18,13, 8, 3,17,12, 7 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 19. Current CPU time: 0.00 seconds (total CPU time: 5.83 seconds). Ground clauses: seen=7240, kept=7240. Selections=741, assignments=14010, propagations=243827, current_models=1. Rewrite_terms=11696989, rewrite_bools=162188, indexes=2318342. Rules_from_neg_clauses=0, cross_offs=0. ============================== end of statistics ===================== User_CPU=5.83, System_CPU=0.01, Wall_clock=6. Exiting with 1 model. Process 15849 exit (max_models) Wed Feb 25 12:26:25 2009 The process finished Wed Feb 25 12:26:25 2009 prover9-manual-2009-02A/RBA-2.in0000644000175000017500000000052610576540322015257 0ustar mccunemccune% This lemma says that if there exists an idempotent % elememt, then a Robbins algebra is Boolean. formulas(assumptions). x + y = y + x. (x + y) + z = x + (y + z). ((x + y)' + (x + y')')' = x # label(Robbins). exists c (c + c = c). end_of_list. formulas(goals). (x + y')' + (x' + y')' = y # answer(Huntington). end_of_list. prover9-manual-2009-02A/BA4.out0000644000175000017500000000066611151315545015265 0ustar mccunemccunef(f(x,x),f(f(f(y,y),f(z,z)),f(f(y,y),f(z,z)))) = f(f(y,y),f(f(f(x,x),f(z,z)),f(f(x,x),f(z,z)))). f(f(x,y),f(x,y)) = f(f(f(f(x,x),f(x,x)),f(f(y,y),f(y,y))),f(f(f(x,x),f(x,x)),f(f(y,y),f(y,y)))). f(f(x,x),f(f(x,x),f(x,x))) = f(f(y,y),f(f(y,y),f(y,y))). f(f(f(f(x,x),f(f(y,y),f(y,y))),f(f(x,x),f(y,y))),f(f(f(x,x),f(f(y,y),f(y,y))),f(f(x,x),f(y,y)))) = x. % rewriter BA-Sheffer.demods: rewrote 4 terms with 17 rewrite steps in 0.01 seconds. prover9-manual-2009-02A/README.run0000644000175000017500000000061110547023565015645 0ustar mccunemccune1. Update the content of the manual. Check against /home/mccune/LADR/Changelog 2. Run all of the example jobs for the manual and check against the old versions % ./run-and-check /home/mccune/bin % less checked-jobs/*.diffs % /bin/rm checked-jobs/* 3. Update the version number of the manual: % emacs sed.version % rewrite-files sed.version *.html % /bin/rm *.bak prover9-manual-2009-02A/select.html0000644000175000017500000002616211151021064016320 0ustar mccunemccune Prover9 Manual: Selecting the Given Clause
Prover9 Manual Version 2009-02A

Selecting the Given Clause

At each iteration of the
main loop, Prover9 selects a given clause from the sos list, moves it to the usable list, and makes inferences from it and other clauses in the usable list.

A basic way to select the given clause is to always select the lightest clause in sos. Otter has the ability to mix two methods of selecting the given clause in a ratio determined by a parameter --- selecting the lightest clause and selecting the oldest clause. This method adds a breadth-first component to the search. See the pick_given_ratio parameter below.

Prover9 uses six components in selecting the given clause. The following six options are used.

assign(age_part, n).     % default n=1, range [0 .. INT_MAX]
assign(weight_part, n).  % default n=0, range [0 .. INT_MAX]
assign(false_part, n).   % default n=4, range [0 .. INT_MAX]
assign(true_part, n).    % default n=4, range [0 .. INT_MAX]
assign(random_part, n).  % default n=0, range [0 .. INT_MAX]
assign(hints_part, n).   % default n=INT_MAX, range [0 .. INT_MAX]
These six parameters work together to specify a 6-way ratio for selection of the given clauses: The false/true distinction is determined by a set of interpretations. The default interpretation is that negative clauses are false and non-negative clauses are true. To use explicit interpretations, see the section on semantic guidance.

Under the default interpretation, for example, if age_part = 1, false_part = 2, and true_part = 3, given clauses will be selected in a cycle of size six: one clause by lowest ID, then two clauses because they are the lightest negative (i.e., false) clauses, then three clauses because they are the lightest non-negative (i.e., true) clauses. And so on.

If a clause of required type is not available, that component of the ratio is simply skipped. For example, with ratio in the preceding paragraph, if no false clauses are available, the cycle has size four (one part age, 3 parts true clauses) until some false clauses become available.

Note that the default value of hints_part is INT_MAX. This means that whenever the selection cycle gets to the hints_part, clauses that match hints will be selected as long as any are available.

When a given clause is printed, its sequence number, the reason it was selected, its weight, and its ID are also shown as in the following excerpt.

given #1  (I,wt=7): 9 x v y = y v x.  [input].
...
given #18 (T,wt=5): 28 x v x = x.  [para(13(a,1),14(a,1,2))].
given #19 (A,wt=11): 18 x ^ (y ^ z) = y ^ (x ^ z).  [para(11(a,1),12(a,1,1)),demod(12(2))].
given #20 (F,wt=21): 43 x ^ (((x v y) ^ z) v ((x v z) ^ y)) = (x ^ z) v (x ^ y) # label(false).  [para(11(a,1),32(a,1,2,2))].
The selection codes are A=age, W=weight, F=false, T=true, H=hints, R=random, and I=input (see flag input_sos_first).

More selection criteria will likely be added in future versions of Prover9.

Other Options

set(default_parts).      % default set
clear(default_parts).
If this flag is cleared, all of the selection parts, including hints, are set to 0. If it is set, the selection parts are reset to their defaults. This flag operates by making the following changes.
  clear(default_parts) -> assign(hints_part, 0).
  clear(default_parts) -> assign(weight_part, 0).
  clear(default_parts) -> assign(age_part, 0).
  clear(default_parts) -> assign(false_part, 0).
  clear(default_parts) -> assign(true_part, 0).
  clear(default_parts) -> assign(random_part, 0).
  set(default_parts) -> assign(hints_part, INT_MAX).
  set(default_parts) -> assign(weight_part, 0).
  set(default_parts) -> assign(age_part, 1).
  set(default_parts) -> assign(false_part, 4).
  set(default_parts) -> assign(true_part, 4).
  set(default_parts) -> assign(random_part, 0).
assign(pick_given_ratio, n).  % default n=0, range [0 .. INT_MAX]
If n>0, the given clauses are chosen in the ratio one part by age, and n parts by weight. The false/true distinction is ignored. This parameter works by making the following changes. (Note that this parameter does not alter hints_part, so that clauses matching hints may still be selected.)
  assign(pick_given_ratio, n) -> assign(age_part, 1).
  assign(pick_given_ratio, n) -> assign(weight_part, n).
  assign(pick_given_ratio, n) -> assign(false_part, 0).
  assign(pick_given_ratio, n) -> assign(true_part, 0).
  assign(pick_given_ratio, n) -> assign(random_part, 0).
set(lightest_first).
clear(lightest_first).    % default clear
If this flag is set, the given clauses are selected by weight, lightest first. This flag operates by making the following changes. (Note that this flag does not alter hints_part, so that clauses matching hints may still be selected.)
  set(lightest_first) -> assign(weight_part, 1).
  set(lightest_first) -> assign(age_part, 0).
  set(lightest_first) -> assign(false_part, 0).
  set(lightest_first) -> assign(true_part, 0).
  set(lightest_first) -> assign(random_part, 0).
set(breadth_first).
clear(breadth_first).    % default clear
If this flag is set, the sos list operates as a queue, giving a breadth-first search. That is, the oldest clause is selected as the given clause. This flag operates by making the following changes. (Note that this flag does not alter hints_part, so that clauses matching hints may still be selected.)
  set(breadth_first) -> assign(age_part, 1).
  set(breadth_first) -> assign(weight_part, 0).
  set(breadth_first) -> assign(false_part, 0).
  set(breadth_first) -> assign(true_part, 0).
  set(breadth_first) -> assign(random_part, 0).
set(random_given).
clear(random_given).    % default clear
If this flag is set, a random clause is selected from the sos list. This flag operates by making the following changes. (Note that this flag does not alter hints_part, so that clauses matching hints may still be selected.)
  set(random_given) -> assign(random_part, 1).
  set(random_given) -> assign(age_part, 0).
  set(random_given) -> assign(weight_part, 0).
  set(random_given) -> assign(false_part, 0).
  set(random_given) -> assign(true_part, 0).
assign(random_seed, n).  % default n=0, range [-1 .. INT_MAX]
This parameter determines the seed for the (pseudo-) random number generator, which is used for the parameter random_part (and maybe also for other purposes). The system library functions rand() and srand() are used for random number generation.

If n ≥ 0, it is used as the seed. If n = -1, Prover9 selects a seed, based on the value of the system clock; in this case, Prover9 jobs are not reproducibe.

set(input_sos_first).    % default set
clear(input_sos_first).
If this flag is set, the clauses in the initial sos list are selected as given clauses (in the order in which they occur in the sos list) before any derived clauses are selected. This flag allows heavy input clauses to enter the search right away. After the initial clauses have been selected, the ordinary selection ratio, takes over.

Next Section: Inference Rules prover9-manual-2009-02A/references/0000755000175000017500000000000010502013676016276 5ustar mccunemccuneprover9-manual-2009-02A/references/prepare-refs0000755000175000017500000000043510430711100020604 0ustar mccunemccune# if ($#argv == 0) then set files="references" else set files=$argv endif foreach i ($files) latex $i bibtex $i if (-e $i-ready.tex) /bin/mv $i-ready.tex $i-ready.tex~ sed -f sed.cite $i.bbl > $i-ready.tex /bin/rm $i.aux $i.blg $i.bbl $i.log $i.dvi end prover9-manual-2009-02A/references/README0000644000175000017500000000104510430711241017147 0ustar mccunemccune1. Put correct citations in books.tex journal.tex drafts.tex reports.tex 1. ./prepare-refs (don't worry about LaTeX "undefinded reference" messages) 2. latex vita.tex dvips vita pdflatex vita ----------------- To install in FTP area: ./install-web (This copies .ps and .pdf files to webspace ----------------- To create html version of publications list: ./www-pubs > temp.html (then check file://localhost/home/mccune/papers/vita/temp.html ) cp temp.html ~/public_html/papers/pubs.html prover9-manual-2009-02A/references/references-ready.tex0000644000175000017500000000153510430711424022243 0ustar mccunemccune\begin{enumerate} \item D.~Champeaux. Sub-problem finder and instance checker, two cooperating modules for theorem provers. {\em J. ACM}, 33(4):633--657, 1986. \item W.~McCune. Otter 3.3 {R}eference {M}anual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003. \item W.~McCune. Mace4 {R}eference {M}anual and {G}uide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003. \item R.~Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case studies. {\em J. Automated Reasoning}, 16(3):223--239, 1996. \item R.~Veroff. Solving open questions and other challenge problems using proof sketches. {\em J. Automated Reasoning}, 27(2):157--174, 2001. \end{enumerate} prover9-manual-2009-02A/references/references.tex0000644000175000017500000000036210430711363021140 0ustar mccunemccune\documentstyle{article} \begin{document} \paragraph{Journal Articles and Book Chapters} \nocite{miniscope,otter33,mace4,veroff:hints,veroff:sketches} \bibliographystyle{unsrt} \bibliography{/home/mccune/papers/bib/master} \end{document} prover9-manual-2009-02A/references/sed.cite0000644000175000017500000000017010430711000017677 0ustar mccunemccunes/begin{thebibliography}{.*}/begin{enumerate}/ s/end{thebibliography}/end{enumerate}/ s/bibitem.*/item/ s/\\newblock//g prover9-manual-2009-02A/references/sed.www-pubs0000644000175000017500000000036710430711000020556 0ustar mccunemccunes/\\begin{enumerate}/
    / s/\\end{enumerate}/<\/OL>/ s/\\item.*/
  1. / s/\\newblock// s/{\\em \([^}]*\)}/\1<\/I>/ /{\\em/N s/{\\em \([^}]*\)}/\1<\/I>/ /{\\em/N s/{\\em \([^}]*\)}/\1<\/I>/ s/{//g s/}//g s/~/ /g s/\\"o/\ö/g s/\\sc //g prover9-manual-2009-02A/references/temp0000644000175000017500000000147210430711430017163 0ustar mccunemccune
    1. D. Champeaux. Sub-problem finder and instance checker, two cooperating modules for theorem provers. J. ACM, 33(4):633--657, 1986.
    2. W. McCune. Otter 3.3 Reference Manual. Tech. Memo ANL/MCS-TM-263, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
    3. W. McCune. Mace4 Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.
    4. R. Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case studies. J. Automated Reasoning, 16(3):223--239, 1996.
    5. R. Veroff. Solving open questions and other challenge problems using proof sketches. J. Automated Reasoning, 27(2):157--174, 2001.
    prover9-manual-2009-02A/references/www-pubs0000755000175000017500000000014210430711323020006 0ustar mccunemccune#!/bin/csh #------------------- sed -f sed.www-pubs references-ready.tex #------------------- prover9-manual-2009-02A/semantics.html0000644000175000017500000001770711151021064017034 0ustar mccunemccune Prover9 Manual: Semantic Guidance
    Prover9 Manual Version 2009-02A

    Semantic Guidance

    Prover9 has a method of using finite interpretations to guide the search for a proof; in particular, to help select the given clause.

    To use semantic guidance the user gives one or more interpretations along with the ordinary Prover9 input. All clauses (input and derived) that are eligible to be selected as given clauses are evaluated in the interpretations. If a clause is false in all of the interpretations, it is marked as "false" and given the attribute label(false); if it is true in any of the interpretations, it is marked as "true". (There is an exception: see the parameter eval_limit below.)

    If a clause being evaluated contains a symbol that is not in an interpretation, a warning message is given, and the clause receives the value "true".

    When selecting the given clause, Prover9 may use the parameters true_part,and false_part, as described on the page Selecting the Given Clause. With semantic guidance (explicit interpretations), the "true_part" and "false_part" refer simply to clauses marked as "true" and "false" with respect to the interpretations.

    Format of Interpretations for Semantic Guidance

    The interpretations are finite and must be in the format produced by Mace4. They must appear in a list that starts with list(interpretations). and ends with and_of_list. The following example is a lattice in terms of the meet and join operations.

    list(interpretations).
    interpretation(6, [], [
        function(^(_,_), [
            0,0,0,0,0,0,
            0,1,2,3,4,5,
            0,2,2,0,0,0,
            0,3,0,3,5,5,
            0,4,0,5,4,5,
            0,5,0,5,5,5]),
        function(v(_,_), [
            0,1,2,3,4,5,
            1,1,1,1,1,1,
            2,1,2,1,1,1,
            3,1,1,3,1,3,
            4,1,1,1,4,4,
            5,1,1,3,4,5])]).
    end_of_list.
    

    An Example of Semantic Guidance

    Here a job that uses the preceding interpretation for semantic guidance.

    prover9 -f LT-82-2.in > LT-82-2.out
    
    Notes about the preceding job.
    • The interpretation is the only additional input needed to give semantic guidance. The default values of the parameters age_part, true_part, false_part, and eval_limit, work well for this job (and many others).
    • The interpretation does not contain Skolem constants that appear in the denial, and warning messages are given when Prover9 attempts to evaluate clauses containing those Skolem constants. (They receive the value "true".)
    • One of the input clauses is assigned the attribute label(false), because it is false in the interpretation.
    • The "false" given clauses (#12, #13, #17, #18, #22, #23, ...) are mostly heavier than the "true" given clauses, showing that they would likely not enter the search at such an early stage without semantic guidance.
    • At given clause #138, there are no more false clauses to select; and then several more are inferred and given near the end of the search, leading to a proof.
    • This job takes about 11 seconds. A similar job without semantic guidance takes about 25 minutes to find a proof.

    Advice on Selecting Interpretations

    If the conjecture formulates naturally as
    theory, hypotheses -> conclusion,
    a good first step is to try the smallest model of the theory in which the conclusion is false. The preceding example has that form, and the interpretation used in the that example can be easily found with the following Mace4 job.
    mace4 -N10 -f LT-82-2-interp.in > LT-82-2-interp.out
    
    If the conjecture formulates naturally as
    theory -> conclusion,
    with no obvious hypothesis, one can try to slightly weaken the theory in some way that relates to the conclusion, and use a model of the weakened theory in which the conclusion is false.

    Options for Semantic Guidance

    Aside from the parameters true_part,and false_part, which may be used regardless of whether semantic guidance is in effect, there are just two options to control semantic guidance.
    assign(multiple_interps, string).  % default string=false_in_all, range [false_in_all, false_in_some]
    
    This parameter is used when there are multiple interpretations. It determines the method for marking clauses as "false": false in all interpretations, or false in some interpretations.
    assign(eval_limit, n).  % default n=1024, range [-1 .. INT_MAX]
    
    If an interpretation is large, or if a clause being evaluated has many variables, evaluation can take too long, because it must consider each instance of the clause over the domain of the interpretation. That is if an interpretation has size d, and a clause has v variables, evaluation has to consider dv instances of the clause to determine that it is true. This parameter causes large evaluations to be skipped.

    This parameter applies when explicit interpretations are being used to select the given clause. When a clause is being evaluated in an interpretation, if the number of ground instances that would be considered is greater than n, the evaluation is skipped and the clause is assigned the value true.

    The default value of 1024 allows

    • clauses with up to 3 variables to be evaluated in interpretations up to size 10,
    • clauses with up to 4 variables to be evaluated in interpretations up to size 5,
    • clauses with up to 5 variables to be evaluated in interpretations up to size 4,
    • clauses with up to 6 variables to be evaluated in interpretations up to size 3, and
    • clauses with up to 10 variables to be evaluated in interpretations of size 2.
    assign(eval_var_limit, n).  % default n=-1, range [-1 .. INT_MAX]
    
    This parameter is another (more convenient) way to limit the evaluation of clauses. It overrides the parameter eval_limit. Clauses with more than n variables will not be evaluated in the largest interpretation(s).

    In particular, if the value n is set to some value other than -1, the parameter eval_limit will be reset to dn, where d is the size of the largest interpretation in the input.

    Note that if there are multiple interpretations of different sizes, and if multiple_interps is set to "false_in_some", then clauses with more than n variables may be evaluated in the smaller interpretations.


    Next Section:
    Mace4 prover9-manual-2009-02A/references.tex0000644000175000017500000000036210430710730017014 0ustar mccunemccune\documentstyle{article} \begin{document} \paragraph{Journal Articles and Book Chapters} \nocite{otter33,miniscope,mace4,veroff:hints,veroff:sketches} \bibliographystyle{unsrt} \bibliography{/home/mccune/papers/bib/master} \end{document} prover9-manual-2009-02A/ring41.in0000644000175000017500000000204510727134455015622 0ustar mccunemccune assign(iterate, primes). % The following fixes [+,-,*] as the ring of integers (mod domain_size). set(integer_ring). formulas(assumptions). % Assume that f and g have a ring structure. g(x) = M * x. f(x,y) = (H * x) + (K * y). % Denial of associativity. f(f(a,b),c) != f(a,f(b,c)). end_of_list. formulas(assumptions). % Each of these equations was a candidate for being a single axiom % for group theory. % % We can show that each has a nonassociative model (and therefore % is not a single axiom) by using ring structures. % % The sizes required for these examples range from 11 to 41. % f(f(g(f(y,g(z))),x),f(f(g(f(z,x)),z),y)) = z. % candidate 1 % f(f(x,f(g(x),z)),f(g(f(f(y,x),g(x))),y)) = z. % candidate 64 % f(f(f(x,x),g(x)),g(f(g(f(y,z)),f(y,x)))) = z. % candidate 30 g(f(g(f(y,f(x,z))),f(y,f(f(x,x),g(x))))) = z. % candidate 107 % g(f(g(f(x,f(y,z))),f(f(f(g(x),x),x),y))) = z. % candidate 60 % f(f(y,g(f(z,y))),f(f(z,g(f(x,g(z)))),x)) = z. % candidate 68 % f(f(x,y),f(y,g(f(f(g(f(g(x),z)),y),y)))) = z. % candidate 11 end_of_list. prover9-manual-2009-02A/x2.standard0000644000175000017500000000037111151315541016226 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(*(_,_), [0,1,2,3,4,5,1,0,3,2,5,4,2,4,0,5,1,3,3,5,1,4,0,2,4,2,5,0,3,1,5,3,4,1,2,0]), function('(_), [0,1,2,4,3,5]), function(e, [0]), function(c1, [1]), function(c2, [2])]). prover9-manual-2009-02A/run-and-check0000755000175000017500000000064410557700313016527 0ustar mccunemccune#!/bin/csh if ($#argv != 1) then echo "need 1 arg: bin-directory" exit(1) endif set bin=$1 set dir=checked-jobs if -e checked-jobs/andrews.out then /bin/rm checked-jobs/* endif set outs=`grep '>' go | sed 's/.*> //'` /bin/mv $outs checked-jobs ./go $bin cd checked-jobs foreach i ($outs) diff $i ../$i > $i.diffs if -z $i.diffs /bin/rm $i.diffs end echo "See the files $dir/*.diffs" prover9-manual-2009-02A/syntax.html0000644000175000017500000004720311151021064016366 0ustar mccunemccune Prover9 Manual: Clauses and Formulas
    Prover9 Manual Version 2009-02A

    Clauses and Formulas

    The Glossary Page contains definitions of term, atomic formula, literal, clause, and formula from a logical point of view. This page contains descriptions of how those kinds of things are parsed and printed, and we refer to them collectively as objects.
    In Otter and in earlier versions of Prover9, "clauses" and "formulas" were distinct types of object, and "formulas" could not have free variables. Now, clauses are a subset of formulas.

    Here are the important points about clauses and formulas.

    • Clauses are a subset of formulas. All input formulas, including clauses, appear in a list headed by formulas(list_name).
    • There is a rule for distinguishing variables from constants, because clauses and other formulas can have free variables (variables not bound by quantifiers). The default rule is that variables start with (lower case) u through z. For example, in the formula P(a,x), the term a is a constant, and x is a variable. (See also the flag prolog_style_variables.)
    • Free variables in clauses and formulas are assumed to be universally quantified at the outermost level.
    • Prover9's inference rules operate on clauses. If non-clausal formulas are input, Prover9 immediately translates them clauses by NNF, Skolemization, and CNF conversions.

    Parsing and Printing Objects

    The prefix standard form of an object with an n-ary symbol, say f, at the root is
    f( argument_1, ..., argument_n )
    
    Whitespace (spaces, tabs, newline, etc.) is accepted anywhere except within symbols.

    Prover9 will accept any term or formula written prefix standard form. However formulas and many terms can be written in more convenient ways, for example, "a=b | a!=c'" instead of "|(=(a,b),-(=(a,'(c))))".

    Prover9 uses a general mechanism in which binary and unary symbols can have special parsing properties such as "infix", "infix-right-associated", "postfix". In addition, each of those symbols has a precedence so that many parentheses can be omitted. (The mechanism is similar to those used by most Prolog systems.)

    Many symbols have built-in parsing properties (see the table below), and the user can declare parsing properties for other symbols with the "op" command.

    Clauses and formulas make extensive use of the built-in parsing properties for the equality relation and the logic connectives. Instead of first presenting the general mechanism, we will present the syntax for formulas under the assumption of the built-in parsing properties. The general mechanism is described below in the section Infix, Prefix, and Postfix Declarations.

    Symbols

    Symbols include variables, constants, function symbols, predicate symbols, logic connectives. Symbols do not include parentheses or commas.

    Prover9 recognizes several kinds of symbol.

    The reason for separating ordinary and special symbols is so that strings like a+b; that is, +(a,b), can be written without any whitespace around the +.

    A symbol cannot have both ordinary and special characters, for example R+ (unless it is a quoted symbol).

    Objects (terms or formulas) are constructed from symbols, parentheses, and commas.

    Overloaded Symbols

    In most cases, symbol overloading is not allowed. For example a symbol cannot be both a function symbol and a predicate symbol, or both a constant and a binary function symbol. There are a few exceptions.
    • The logic connectives can also be used as function or predicate symbols of the same arity. For example, - is typically used as unary arithmetic minus well as for logical negation.

    Prover9 is much more strict about overloading symbols than Otter is.

    Symbols With Meaning

    Several symbols have built-in meaning. These are the equality symbols (=, !=) and logic connectives (-, |, &, ->, <-, <->, all, exists). These symbols can be changed as described in the section
    Redeclaring Built-in Symbols. (Parentheses, comma, period, and the list construction symbols cannot be redeclared.)

    Terms

    Any term can be written in prefix standard form, for example, f(g(x),y) and *('(x),y). If symbols in the term have parsing/printing properties (either built-in) or declared with the op command), the term can be written in infix/prefix/postfix form with assumed precedence, for example, x'*y, which represents *('(x),y) under the built-in parsing/printing properties.

    A list notation similar to Prolog's can be used to write terms that represent lists. Note that the "cons" operator is ":", instead of "|" as in Prolog.
    Term Standard Prefix Form What it Is
    [] $nil the empty list
    [a,b,c] $cons(a,$cons(b,$cons(c,$nil))) list of three objects
    [a:b] $cons(a,b) first, rest
    [a,b:c] $cons(a,$cons(b,c)) first, second, rest

    Lists are frequently used in Prover9 commands such as the function_order command, and they are sometimes also used in clauses and formulas.

    Atomic Formulas

    Equality is a built-in special case. The binary predicate symbol = is usually written as an infix relation. The binary symbol != is an abbreviation for "not equal"; that is, the formula a!=b stands for -(a=b), or more precisely, -(=(a,b)). From the semantics point of view, the binary predicate symbol = is the one and only equality symbol for the inference rules that use equality.

    Clauses

    The disjunction (OR) symbol is |, and the negation (NOT) symbol is -. The disjunction symbol has higher precedence than the equality symbol, so equations in clauses do not need parentheses. Every clause ends with a period. Examples of clauses follow (Prover9 adds some extra space when printing clauses).
    formulas(sos).
        p|-q|r.
        a=b|c!=d.
        f(x)!=f(y)|x=y.
    end_of_list.
    

    Formulas

    Meaning Connective Example
    negation - (-p)
    disjunction | (p | q | r)
    conjunction & (p & q & r)
    implication -> (p -> q)
    backward implication <- (p <- q)
    equivalence <-> (p <-> q)
    universal quantification all (all x all y p(x,y))
    existential quantification exists (exists x exists y p(x,y))
    When writing formulas, the built-in parsing declarations allow many parentheses to be omitted. For example, the following two formulas are really the same formula.
    formulas(sos).
     all x  all y (p <->   -q  |  r &  -s)     .
    (all x (all y (p <-> ((-q) | (r & (-s)))))).
    end_of_list.
    
    For Prover9 formulas, each quantified variable must have its own quantifier; Otter allows quantifiers to be omitted in a sequence of quantified variables with the same quantifier. For example, Otter allows (all x y z p(x,y,z)), and Prover9 requires (all x all y all z p(x,y,z)).

    Infix, Prefix, and Postfix Declarations

    Several symbols are understood by Prover9 as having special parsing properties that determine how terms involving those symbols can be arranged. In addition, the user can declare additional symbols to have special parsing properties.

    Parsing Declarations

    The "op" command is used to declare parse types and precedences.
    op( precedence, type, symbols(s) ).  % declare parse type and precedence
    
    • 1 ≤ precedence ≤ 998.
    • type is one of { infix, infix_left, infix_right, prefix, prefix_paren, postfix, postfix_paren, ordinary }.
    • symbol(s) is either a symbol or a list of symbols. Each multi-character special symbol must be enclosed in double quotes.
    Prover9 does not allow different symbol types with the same precedence, for example,
    op(325, postfix, ').
    op(325, prefix, ~).
    
    This restriction prevents ambiguous strings such as ~x'.

    The following table shows an example of each type of parsing property (and ignores precedence).

    Type Example Standard Prefix Comment
    infix a*(b*c) *(a,*(b,c)) like Prolog's xfx
    infix_left a*b*c *(*(a,b),c) like Prolog's yfx
    infix_right a*b*c *(a,*(b,c)) like Prolog's xfy
    prefix --p -(-(p)) like Prolog's fy
    prefix_paren -(-p) -(-(p)) like Prolog's fx
    postfix a'' '('(a)) like Prolog's yf
    postfix_paren (a')' '('(a)) like Prolog's xf
    ordinary *(a,b) *(a,b) takes away parsing properties

    Higher precedence means closer to the root of the object, and lower precedence means the the symbol binds more closely. For example, assume that the following declarations are in effect.

    op(790, infix_right,  "|" ).  % disjunction in formulas or clauses
    op(780, infix_right,  "&" ).  % conjunction in formulas
    
    Then the string a & b | c is an abbreviation for (a & b) | c.

    The built-in parsing declarations are shown in the following box. The ones with comments have built-in meanings; the others are for general use as function or predicate symbols.

    op(810, infix_right,  "#" ).  % for attaching attributes to clauses
    	    
    op(800, infix,      "<->" ).  % equivalence in formulas
    op(800, infix,       "->" ).  % implication in formulas
    op(800, infix,       "<-" ).  % backward implication in formulas
    op(790, infix_right,  "|" ).  % disjunction in formulas or clauses
    op(780, infix_right,  "&" ).  % conjunction in formulas
    
    % Quantifiers (a special case) have precedence 750.
    	    
    op(700, infix,        "=" ).  % equal in atomic formulas
    op(700, infix,       "!=" ).  % not equal in atomic formulas
    op(700, infix,       "==" ).  
    op(700, infix,        "<" ).
    op(700, infix,       "<=" ).
    op(700, infix,        ">" ).
    op(700, infix,       ">=" ).
    	    
    op(500, infix,        "+" ).
    op(500, infix,        "*" ).
    op(500, infix,        "@" ).
    op(500, infix,        "/" ).
    op(500, infix,        "\" ).
    op(500, infix,        "^" ).
    op(500, infix,        "v" ).
    
    op(350, prefix,       "-" ).  % logical negation in formulas or clauses
    op(300, postfix,      "'" ).
    

    The built-in parsing declarations can be overridden with ordinary "op" commands. Be careful, however, when overriding parsing declarations for symbols with built-in meanings. For example, say you wish to use "#" as an infix function symbol and give the following the declaration.

    op(500, infix, "#").
    
    Then clauses with attributes might have be written with more parentheses, for example, as
    (p(a) | q(a)) # (label(a) # label(b)).
    

    If you wish to use one of the symbols with built-in parsing declarations as an ordinary prefix symbol, you can undo the declaration by giving an "op" command with type "ordinary". The following example clears the parse types for two symbols.

    op(ordinary, ["*","+"]).   % there is no precedence argument for type "ordinary"
    

    Finally, the following example shows that parsing declarations can be changed anywhere in the input, with immediate effect. This can be useful for example, if lists of clauses come from different sources.

    op(400,infix_left,"*").  % assume left association for following clauses
    
    formulas(sos).
      P(a * b * c).
    end_of_list.
    
    op(400,infix_right,"*"). % assume right association for following clauses
    
    formulas(sos).
      Q(d * e * f).
    end_of_list.
    
    op(400,infix,"*").  % from here on, include all parentheses (input and output)
    
    An excerpt from the output of the preceding example shows how the clauses are printed after the last "op" command.
    formulas(sos).
    P((a * b) * c).  [assumption].
    Q(d * (e * f)).  [assumption].
    end_of_list.
    

    Prolog-Style Variables

    set(prolog_style_variables).
    clear(prolog_style_variables).    % default clear
    
    A rule is needed for distinguishing variables from constants in clauses and formulas with free variables. If this flag is clear, variables in clauses start with (lower case) 'u' through 'z'. If this flag is set, variables in clauses start with (upper case) 'A' through 'Z' or '_'.

    Prover9 decides whether symbols are constants or variables after it has read all of its input, so the state of the flag prolog_style_variables at the end of the input determines the rule that is used for all formulas. For example, in the following input,

    formulas(sos).
      p(x,A).
    end_of_list.
    
    set(prolog_style_variables).
    
    formulas(sos).
      q(y,B).
    end_of_list.
    
    the term x is a constant, and A is a variable.

    Redeclaring Built-in Symbols

    NOTE: Keep in mind the difference between semantic properties of symbols (e.g., logic connectives) and parsing/printing properties of symbols (e.g., infix with high precedence). Those two kinds of property are independent (by default, many symbols have both).

    Most of the symbols with built-in meaning can be changed to other symbols. The symbols that can be changed are shown in the following table.

    Operation Default Symbol
    true $T
    false $F
    negation -
    disjunction |
    conjunction &
    implication ->
    backward_implication <-
    equivalence <->
    universal_quantification all
    existential_quantification exists
    equality =
    negated_equality !=
    attribute #

    To change the symbol associated with an operation, one uses the following command.

    redeclare( operation, symbol ).  % associate a different symbol with an operation
    
    For example, the following command says that "AND" will be used for conjunction.
    redeclare(conjunction, AND).  % change the conjunction symbol to AND.
    
    As with the "op" command, if the new symbol is a multicharacter
    special symbol, it must be enclosed in double quotes, as in the following example.
    redeclare(conjunction, "&&").  % change the conjunction symbol to &&.
    
    When in doubt, quote the symbol, because unnecessary quotes are ignored in the "redeclare" and "op" commands.

    Parsing/Printing Properties and Redeclarations

    Many of the default symbols for the built-in operations have default printing/parsing properties, for example, the default properties for default conjunction symbol are

    op(780, infix_right,  "&" ).  % conjunction in formulas
    
    When a redeclaration for such an operation occurs, the parsing/printing properties are copied from the old symbol to the new symbol. For example, when conjunction is changed to AND, the following is automatically applied.
    op(780, infix_right,  AND ).
    
    If the user wishes some other printing/parsing properties for the new symbol, the appropriate "op" command can be placed after the "redeclare" command.

    Redeclaration Example

    The following example shows redeclarations of many of the operations.
    prover9 -f redeclare.in > redeclare.out
    

    Location of Redeclare Commands

    Most of the operations can be redeclared repeatedly throughout the input. The declarations in effect when a formula is read will be used, ane the ones in effect at the end of the input will be used for all subsequent output.

    An exception: If the operations "equality" or "negated_equality" are redeclared, it must be done before any formulas containing those symbols are read.


    Next Section: Auto Modes prover9-manual-2009-02A/sed.glossary0000644000175000017500000002240510634260110016511 0ustar mccunemccunes/term<\/g>/term<\/a>/ s/terms<\/g>/terms<\/a>/ s/atomic formula<\/g>/atomic formula<\/a>/ s/formula<\/g>/formula<\/a>/ s/free variable<\/g>/free variable<\/a>/ s/open formula<\/g>/open formula<\/a>/ s/closed formula<\/g>/closed formula<\/a>/ s/closed formulas<\/g>/closed formulas<\/a>/ s/literal<\/g>/literal<\/a>/ s/clause<\/g>/clause<\/a>/ s/clauses<\/g>/clauses<\/a>/ s/interpretation<\/g>/interpretation<\/a>/ s/unit clause<\/g>/unit clause<\/a>/ s/positive clause<\/g>/positive clause<\/a>/ s/negative clause<\/g>/negative clause<\/a>/ s/mixed clause<\/g>/mixed clause<\/a>/ s/non-Horn<\/g>/non-Horn<\/a>/ s/non-Horn clause<\/g>/non-Horn clause<\/a>/ s/non-Horn clauses<\/g>/non-Horn clauses<\/a>/ s/Horn<\/g>/Horn<\/a>/ s/Horn clause<\/g>/Horn clause<\/a>/ s/Horn set<\/g>/Horn set<\/a>/ s/Horn clauses<\/g>/Horn clauses<\/a>/ s/Horn sets<\/g>/Horn sets<\/a>/ s/definite clause<\/g>/definite clause<\/a>/ s/negation normal form<\/g>/negation normal form<\/a>/ s/NNF<\/g>/NNF<\/a>/ s/conjunctive normal form<\/g>/conjunctive normal form<\/a>/ s/CNF<\/g>/CNF<\/a>/ s/Skolemization<\/g>/Skolemization<\/a>/ s/skolemization<\/g>/skolemization<\/a>/ s/Skolem constant<\/g>/Skolem constant<\/a>/ s/Skolem function<\/g>/Skolem function<\/a>/ s/Skolem<\/g>/Skolem<\/a>/ s/clause normal form<\/g>/clause normal form<\/a>/ s/clausification<\/g>/clausification<\/a>/ s/clausify<\/g>/clausify<\/a>/ s/kbo<\/g>/kbo<\/a>/ s/KBO<\/g>/KBO<\/a>/ s/LPO<\/g>/LPO<\/a>/ s/lpo<\/g>/lpo<\/a>/ s/RPO<\/g>/RPO<\/a>/ s/rpo<\/g>/rpo<\/a>/ s/maximal<\/g>/maximal<\/a>/ s/maximal literal<\/g>/maximal literal<\/a>/ s/maximal literals<\/g>/maximal literals<\/a>/ s/completeness<\/g>/completeness<\/a>/ s/binary resolution<\/g>/binary resolution<\/a>/ s/resolution<\/g>/resolution<\/a>/ s/positive resolution<\/g>/positive resolution<\/a>/ s/negative resolution<\/g>/negative resolution<\/a>/ s/positive binary resolution<\/g>/positive binary resolution<\/a>/ s/negative binary resolution<\/g>/negative binary resolution<\/a>/ s/ordered resolution<\/g>/ordered resolution<\/a>/ s/ordered paramodulation<\/g>/ordered paramodulation<\/a>/ s/literal selection<\/g>/literal selection<\/a>/ s/factoring<\/g>/factoring<\/a>/ s/binary factoring<\/g>/binary factoring<\/a>/ s/factor<\/g>/factor<\/a>/ s/factorization<\/g>/factorization<\/a>/ s/hyperresolution<\/g>/hyperresolution<\/a>/ s/negative hyperresolution<\/g>/negative hyperresolution<\/a>/ s/nucleus<\/g>/nucleus<\/a>/ s/satellite<\/g>/satellite<\/a>/ s/UR-resolution<\/g>/UR-resolution<\/a>/ s/positive UR-resolution<\/g>/positive UR-resolution<\/a>/ s/negative UR-resolution<\/g>/negative UR-resolution<\/a>/ s/unit-resulting resolution<\/g>/unit-resulting resolution<\/a>/ s/paramodulation<\/g>/paramodulation<\/a>/ s/from parent<\/g>/from parent<\/a>/ s/from clause<\/g>/from clause<\/a>/ s/from literal<\/g>/from literal<\/a>/ s/into term<\/g>/into term<\/a>/ s/into parent<\/g>/into parent<\/a>/ s/into clause<\/g>/into clause<\/a>/ s/into literal<\/g>/into literal<\/a>/ s/into term<\/g>/into term<\/a>/ s/superposition<\/g>/superposition<\/a>/ s/positive paramodulation<\/g>/positive paramodulation<\/a>/ s/demodulation<\/g>/demodulation<\/a>/ s/demodulator<\/g>/demodulator<\/a>/ s/rewriting<\/g>/rewriting<\/a>/ s/back demodulation<\/g>/back demodulation<\/a>/ s/demodulator<\/g>/demodulator<\/a>/ s/unit deletion<\/g>/unit deletion<\/a>/ s/back unit deletion<\/g>/back unit deletion<\/a>/ s/subsume<\/g>/subsume<\/a>/ s/subsumption<\/g>/subsumption<\/a>/ s/back subsumption<\/g>/back subsumption<\/a>/ s/forward subsumption<\/g>/forward subsumption<\/a>/ s/unit conflict<\/g>/unit conflict<\/a>/ s/given clause<\/g>/given clause<\/a>/ s/given clause algorithm<\/g>/given clause algorithm<\/a>/ s/given clause loop <\/g>/given clause loop <\/a>/ s/given clauses<\/g>/given clauses<\/a>/ s/assumptions<\/g>/assumptions<\/a>/ s/assumptions list<\/g>/assumptions list<\/a>/ s/sos<\/g>/sos<\/a>/ s/sos list<\/g>/sos list<\/a>/ s/usable<\/g>/usable<\/a>/ s/usable list<\/g>/usable list<\/a>/ s/goal<\/g>/goal<\/a>/ s/goals list<\/g>/goals list<\/a>/ s/goals<\/g>/goals<\/a>/ s/hint<\/g>/hint<\/a>/ s/hints list<\/g>/hints list<\/a>/ s/hints<\/g>/hints<\/a>/ s/initial clause<\/g>/initial clause<\/a>/ s/input clause<\/g>/input clause<\/a>/ s/denial<\/g>/denial<\/a>/ s/denials list<\/g>/denials list<\/a>/ s/denials<\/g>/denials<\/a>/ s/fof reduction<\/g>/fof reduction<\/a>/ s/lex-dependent demodulator<\/g>/lex-dependent demodulator<\/a>/ s/lex-dependent demodulation<\/g>/lex-dependent demodulation<\/a>/ s/depth of the term<\/g>/depth of the term<\/a>/ s/depth of the atom<\/g>/depth of the atom<\/a>/ s/depth of the literal<\/g>/depth of the literal<\/a>/ s/depth of the clause<\/g>/depth of the clause<\/a>/ s/depth(C)<\/g>/depth(C)<\/a>/ s/relational definition<\/g>/relational definition<\/a>/ s/equational definition<\/g>/equational definition<\/a>/ prover9-manual-2009-02A/sed.int0000644000175000017500000000007410562366062015453 0ustar mccunemccunes/INT_MAX/INT_MAX<\/tt>/g s/INT_MIN/INT_MIN<\/tt>/g prover9-manual-2009-02A/sed.option-refs0000644000175000017500000002633210775472756017151 0ustar mccunemccunes/prolog_style_variables<\/tt>/prolog_style_variables<\/b><\/tt><\/a>/ s/auto<\/tt>/auto<\/b><\/tt><\/a>/ s/auto_inference<\/tt>/auto_inference<\/b><\/tt><\/a>/ s/auto_process<\/tt>/auto_process<\/b><\/tt><\/a>/ s/auto_setup<\/tt>/auto_setup<\/b><\/tt><\/a>/ s/auto_limits<\/tt>/auto_limits<\/b><\/tt><\/a>/ s/auto2<\/tt>/auto2<\/b><\/tt><\/a>/ s/lrs_ticks<\/tt>/lrs_ticks<\/b><\/tt><\/a>/ s/lrs_interval<\/tt>/lrs_interval<\/b><\/tt><\/a>/ s/min_sos_limit<\/tt>/min_sos_limit<\/b><\/tt><\/a>/ s/auto2<\/tt>/auto2<\/b><\/tt><\/a>/ s/order<\/tt>/order<\/b><\/tt><\/a>/ s/inverse_order<\/tt>/inverse_order<\/b><\/tt><\/a>/ s/eq_defs<\/tt>/eq_defs<\/b><\/tt><\/a>/ s/expand_relational_defs<\/tt>/expand_relational_defs<\/b><\/tt><\/a>/ s/predicate_elim<\/tt>/predicate_elim<\/b><\/tt><\/a>/ s/fold_denial_max<\/tt>/fold_denial_max<\/b><\/tt><\/a>/ s/sort_initial_sos<\/tt>/sort_initial_sos<\/b><\/tt><\/a>/ s/process_initial_sos<\/tt>/process_initial_sos<\/b><\/tt><\/a>/ s/sos_limit<\/tt>/sos_limit<\/b><\/tt><\/a>/ s/max_given<\/tt>/max_given<\/b><\/tt><\/a>/ s/max_kept<\/tt>/max_kept<\/b><\/tt><\/a>/ s/max_megs<\/tt>/max_megs<\/b><\/tt><\/a>/ s/max_seconds<\/tt>/max_seconds<\/b><\/tt><\/a>/ s/max_minutes<\/tt>/max_minutes<\/b><\/tt><\/a>/ s/max_hours<\/tt>/max_hours<\/b><\/tt><\/a>/ s/max_days<\/tt>/max_days<\/b><\/tt><\/a>/ s/age_part<\/tt>/age_part<\/b><\/tt><\/a>/ s/weight_part<\/tt>/weight_part<\/b><\/tt><\/a>/ s/false_part<\/tt>/false_part<\/b><\/tt><\/a>/ s/true_part<\/tt>/true_part<\/b><\/tt><\/a>/ s/random_part<\/tt>/random_part<\/b><\/tt><\/a>/ s/hints_part<\/tt>/hints_part<\/b><\/tt><\/a>/ s/default_parts<\/tt>/default_parts<\/b><\/tt><\/a>/ s/pick_given_ratio<\/tt>/pick_given_ratio<\/b><\/tt><\/a>/ s/lightest_first<\/tt>/lightest_first<\/b><\/tt><\/a>/ s/breadth_first<\/tt>/breadth_first<\/b><\/tt><\/a>/ s/random_given<\/tt>/random_given<\/b><\/tt><\/a>/ s/random_seed<\/tt>/random_seed<\/b><\/tt><\/a>/ s/input_sos_first<\/tt>/input_sos_first<\/b><\/tt><\/a>/ s/binary_resolution<\/tt>/binary_resolution<\/b><\/tt><\/a>/ s/neg_binary_resolution<\/tt>/neg_binary_resolution<\/b><\/tt><\/a>/ s/ordered_res<\/tt>/ordered_res<\/b><\/tt><\/a>/ s/check_res_instances<\/tt>/check_res_instances<\/b><\/tt><\/a>/ s/literal_selection<\/tt>/literal_selection<\/b><\/tt><\/a>/ s/pos_hyper_resolution<\/tt>/pos_hyper_resolution<\/b><\/tt><\/a>/ s/hyper_resolution<\/tt>/hyper_resolution<\/b><\/tt><\/a>/ s/neg_hyper_resolution<\/tt>/neg_hyper_resolution<\/b><\/tt><\/a>/ s/ur_resolution<\/tt>/ur_resolution<\/b><\/tt><\/a>/ s/pos_ur_resolution<\/tt>/pos_ur_resolution<\/b><\/tt><\/a>/ s/neg_ur_resolution<\/tt>/neg_ur_resolution<\/b><\/tt><\/a>/ s/initial_nuclei<\/tt>/initial_nuclei<\/b><\/tt><\/a>/ s/nucleus_limit<\/tt>/nucleus_limit<\/b><\/tt><\/a>/ s/paramodulation<\/tt>/paramodulation<\/b><\/tt><\/a>/ s/ordered_para<\/tt>/ordered_para<\/b><\/tt><\/a>/ s/check_para_instances<\/tt>/check_para_instances<\/b><\/tt><\/a>/ s/para_from_vars<\/tt>/para_from_vars<\/b><\/tt><\/a>/ s/para_lit_limit<\/tt>/para_lit_limit<\/b><\/tt><\/a>/ s/para_units_only<\/tt>/para_units_only<\/b><\/tt><\/a>/ s/basic_paramodulation<\/tt>/basic_paramodulation<\/b><\/tt><\/a>/ s/lex_order_vars<\/tt>/lex_order_vars<\/b><\/tt><\/a>/ s/demod_step_limit<\/tt>/demod_step_limit<\/b><\/tt><\/a>/ s/demod_size_limit<\/tt>/demod_size_limit<\/b><\/tt><\/a>/ s/back_demod<\/tt>/back_demod<\/b><\/tt><\/a>/ s/lex_dep_demod<\/tt>/lex_dep_demod<\/b><\/tt><\/a>/ s/lex_dep_demod_lim<\/tt>/lex_dep_demod_lim<\/b><\/tt><\/a>/ s/lex_dep_demod_sane<\/tt>/lex_dep_demod_sane<\/b><\/tt><\/a>/ s/unit_deletion<\/tt>/unit_deletion<\/b><\/tt><\/a>/ s/cac_redundancy<\/tt>/cac_redundancy<\/b><\/tt><\/a>/ s/max_literals<\/tt>/max_literals<\/b><\/tt><\/a>/ s/max_literals<\/tt>/max_literals<\/b><\/tt><\/a>/ s/max_vars<\/tt>/max_vars<\/b><\/tt><\/a>/ s/max_weight<\/tt>/max_weight<\/b><\/tt><\/a>/ s/safe_unit_conflict<\/tt>/safe_unit_conflict<\/b><\/tt><\/a>/ s/factor<\/tt>/factor<\/b><\/tt><\/a>/ s/new_constants<\/tt>/new_constants<\/b><\/tt><\/a>/ s/back_subsume<\/tt>/back_subsume<\/b><\/tt><\/a>/ s/backsub_check<\/tt>/backsub_check<\/b><\/tt><\/a>/ s/echo_input<\/tt>/echo_input<\/b><\/tt><\/a>/ s/quiet<\/tt>/quiet<\/b><\/tt><\/a>/ s/print_initial_clauses<\/tt>/print_initial_clauses<\/b><\/tt><\/a>/ s/print_given<\/tt>/print_given<\/b><\/tt><\/a>/ s/print_gen<\/tt>/print_gen<\/b><\/tt><\/a>/ s/print_kept<\/tt>/print_kept<\/b><\/tt><\/a>/ s/print_labeled<\/tt>/print_labeled<\/b><\/tt><\/a>/ s/print_clause_properties<\/tt>/print_clause_properties<\/b><\/tt><\/a>/ s/print_proofs<\/tt>/print_proofs<\/b><\/tt><\/a>/ s/default_output<\/tt>/default_output<\/b><\/tt><\/a>/ s/report<\/tt>/report<\/b><\/tt><\/a>/ s/stats<\/tt>/stats<\/b><\/tt><\/a>/ s/clocks<\/tt>/clocks<\/b><\/tt><\/a>/ s/bell<\/tt>/bell<\/b><\/tt><\/a>/ s/constant_weight<\/tt>/constant_weight<\/b><\/tt><\/a>/ s/constant_weight<\/tt>/constant_weight<\/b><\/tt><\/a>/ s/variable_weight<\/tt>/variable_weight<\/b><\/tt><\/a>/ s/not_weight<\/tt>/not_weight<\/b><\/tt><\/a>/ s/or_weight<\/tt>/or_weight<\/b><\/tt><\/a>/ s/prop_atom_weight<\/tt>/prop_atom_weight<\/b><\/tt><\/a>/ s/nest_penalty<\/tt>/nest_penalty<\/b><\/tt><\/a>/ s/skolem_penalty<\/tt>/skolem_penalty<\/b><\/tt><\/a>/ s/depth_penalty<\/tt>/depth_penalty<\/b><\/tt><\/a>/ s/var_penalty<\/tt>/var_penalty<\/b><\/tt><\/a>/ s/default_weight<\/tt>/default_weight<\/b><\/tt><\/a>/ s/max_proofs<\/tt>/max_proofs<\/b><\/tt><\/a>/ s/reuse_denials<\/tt>/reuse_denials<\/b><\/tt><\/a>/ s/auto_denials<\/tt>/auto_denials<\/b><\/tt><\/a>/ s/restrict_denials<\/tt>/restrict_denials<\/b><\/tt><\/a>/ s/breadth_first_hints<\/tt>/breadth_first_hints<\/b><\/tt><\/a>/ s/degrade_hints<\/tt>/degrade_hints<\/b><\/tt><\/a>/ s/limit_hint_matchers<\/tt>/limit_hint_matchers<\/b><\/tt><\/a>/ s/back_demod_hints<\/tt>/back_demod_hints<\/b><\/tt><\/a>/ s/collect_hint_labels<\/tt>/collect_hint_labels<\/b><\/tt><\/a>/ s/order<\/tt>/order<\/b><\/tt><\/a>/ s/eval_limit<\/tt>/eval_limit<\/b><\/tt><\/a>/ prover9-manual-2009-02A/sed.options-code0000644000175000017500000000023210467124216017255 0ustar mccunemccune/p->.*init_flag/s/", */ / /p->.*init_flag/s/);.*// /p->.*init_flag/s/.*("// /p->.*init_parm/s/", */ / /p->.*init_parm/s/,.*// /p->.*init_parm/s/.*("// prover9-manual-2009-02A/sed.version0000644000175000017500000000010211151021050016312 0ustar mccunemccune/Version/s/Version.*/Version 2009-02A<\/i>/ prover9-manual-2009-02A/sed10000644000175000017500000000004710457000751014734 0ustar mccunemccunes/fof-reduction.html/fof-prover9.html/ prover9-manual-2009-02A/talk-semantics.html0000644000175000017500000000222511151021064017752 0ustar mccunemccune Semantic Guidance in Prover9

    Semantic Guidance in Prover9

    Using finite interpretations (models, algebras) to guide the search for a proof.

    Evaluating a Clause in an Interpretation

    • If all the symbols in the clause are interpreted, the clause evaluates to TRUE or to FALSE.
    • It can be expensive: If the interpretation has n elements, and the clause has v variables, there are nv instances to consider.

    Semantic Restrictions on Inference Rules

    (old method)
    • Example: one parent must be false in the interpretation.
    • Problems:
      • blocks very useful clauses
      • frequently incompatible with simplification strategies

    Semantic Guidance


    Non-standard Uses of Semantic Guidance

    • Generate a lot of FALSE identities as candidates to replace a quasi-identity (Kinyon).
    prover9-manual-2009-02A/talk-software.html0000644000175000017500000000167311151021064017624 0ustar mccunemccune LADR Software Update

    LADR Software Update

    Prover9

    Mace4

    • Compatibility with Prover9 Inputs
    • Interpformat

    Other LADR Programs

    prover9-manual-2009-02A/stringparm0000644000175000017500000000027210426424711016270 0ustar mccunemccune
    assign(??, string).  % default string=??, range [??]
    
    prover9-manual-2009-02A/subset.in0000644000175000017500000000014210423565212016007 0ustar mccunemccuneformulas(sos). all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))). end_of_list. prover9-manual-2009-02A/subset_trans.in0000644000175000017500000000030110423563656017225 0ustar mccunemccuneformulas(sos). all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))). end_of_list. formulas(goals). all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)). end_of_list. prover9-manual-2009-02A/subset_trans.proof10000644000175000017500000000270711151315541020024 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version 2009-02A, February 2009. Process 15826 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18 $F. [ur(12,b,14,a),unit_del(a,15)]. ============================== end of proof ========================== prover9-manual-2009-02A/subset_trans.proof20000644000175000017500000000270511151315541020023 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version 2009-02A, February 2009. Process 15826 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 9 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 10 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 11 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 12 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 13 member(f1(c1,c3),c2). [resolve(11,a,9,a)]. 14 $F. [ur(10,b,12,a),unit_del(a,13)]. ============================== end of proof ========================== prover9-manual-2009-02A/subset_trans.proof30000644000175000017500000000246411151315541020026 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version 2009-02A, February 2009. Process 15826 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). []. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). []. 3 subset(x,y) | member(f1(x,y),x). [1]. 4 -subset(x,y) | -member(z,x) | member(z,y). [1]. 5 subset(x,y) | -member(f1(x,y),y). [1]. 6 subset(c1,c2). [2]. 7 subset(c2,c3). [2]. 8 -subset(c1,c3). [2]. 11 -member(x,c1) | member(x,c2). [6,4]. 12 -member(x,c2) | member(x,c3). [7,4]. 13 member(f1(c1,c3),c1). [8,3]. 14 -member(f1(c1,c3),c3). [8,5]. 15 member(f1(c1,c3),c2). [13,11]. 18 $F. [12,14,15]. ============================== end of proof ========================== prover9-manual-2009-02A/x2.standard20000644000175000017500000000045711151315541016315 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(*(_,_), [ 0,1,2,3,4,5, 1,0,3,2,5,4, 2,4,0,5,1,3, 3,5,1,4,0,2, 4,2,5,0,3,1, 5,3,4,1,2,0]), function('(_), [0,1,2,4,3,5]), function(e, [0]), function(c1, [1]), function(c2, [2])]). prover9-manual-2009-02A/subset_trans.proof0000644000175000017500000000234310441316756017751 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version Apr-2006A, Apr 2006. Process 6075 was started by mccune on jojo.thornwood, Tue Apr 25 22:23:33 2006 The command was "prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.01 (+ 0.02) seconds. % Length of proof is 12. % Level of proof is 3. % Maximum clause weight is 6. % Given clauses 6. 1 - subset(x,y) | - member(z,x) | member(z,y). [clausify]. 2 subset(x,y) | member(f1(x,y),x). [clausify]. 3 subset(x,y) | - member(f1(x,y),y). [clausify]. 4 subset(c1,c2). [clausify]. 5 subset(c2,c3). [clausify]. 6 - subset(c1,c3). [clausify]. 15 - member(x,c1) | member(x,c2). [resolve(4,a,1,a)]. 16 - member(x,c2) | member(x,c3). [resolve(5,a,1,a)]. 17 member(f1(c1,c3),c1). [resolve(6,a,2,a)]. 18 - member(f1(c1,c3),c3). [resolve(6,a,3,a)]. 19 member(f1(c1,c3),c2). [resolve(17,a,15,a)]. 22 $F. [ur(16,b,18,a),unit_del(a,19)]. ============================== end of proof ========================== prover9-manual-2009-02A/subset_trans.proof40000644000175000017500000000276011151315541020026 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version 2009-02A, February 2009. Process 15826 was started by mccune on cleo, Wed Feb 25 12:25:50 2009 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 13 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 15 member(f1(c1,c3),c2). [resolve(13,a,11,a)]. 18A -member(f1(c1,c3),c2). [resolve(12,b,14,a)]. 18 $F. [resolve(15,a,18A,a)]. ============================== end of proof ========================== prover9-manual-2009-02A/subset_trans.proof5.xml0000644000175000017500000001024411151315541020622 0ustar mccunemccune subset_trans.out (all z (member(z,x) -> member(z,y))))) ]]> subset(x,z))) ]]> prover9-manual-2009-02A/subset_trans.proof60000644000175000017500000000403111151315541020021 0ustar mccunemccune;; ============================== prooftrans ============================ ;; Prover9 (32) version 2009-02A, February 2009. ;; Process 15826 was started by mccune on cleo, ;; Wed Feb 25 12:25:50 2009 ;; The command was "/home/mccune/bin/prover9 -f subset_trans.in". ;; ============================== end of head =========================== ;; BEGINNING OF PROOF OBJECT ( (3 (input) (or (subset v0 v1) (member (f1 v0 v1) v0)) NIL) (4 (input) (or (not (subset v0 v1)) (or (not (member v2 v0)) (member v2 v1))) NIL) (5 (input) (or (subset v0 v1) (not (member (f1 v0 v1) v1))) NIL) (6 (input) (subset (c1) (c2)) NIL) (7 (input) (subset (c2) (c3)) NIL) (8 (input) (not (subset (c1) (c3))) NIL) (20 (instantiate 4 ((v0 . (c1)) (v1 . (c2)) (v2 . v102))) (or (not (subset (c1) (c2))) (or (not (member v102 (c1))) (member v102 (c2)))) NIL) (21 (resolve 6 () 20 (1)) (or (not (member v102 (c1))) (member v102 (c2))) NIL) (11 (instantiate 21 ((v102 . v0))) (or (not (member v0 (c1))) (member v0 (c2))) NIL) (22 (instantiate 4 ((v0 . (c2)) (v1 . (c3)) (v2 . v102))) (or (not (subset (c2) (c3))) (or (not (member v102 (c2))) (member v102 (c3)))) NIL) (23 (resolve 7 () 22 (1)) (or (not (member v102 (c2))) (member v102 (c3))) NIL) (12 (instantiate 23 ((v102 . v0))) (or (not (member v0 (c2))) (member v0 (c3))) NIL) (24 (instantiate 3 ((v0 . (c1)) (v1 . (c3)))) (or (subset (c1) (c3)) (member (f1 (c1) (c3)) (c1))) NIL) (13 (resolve 8 () 24 (1)) (member (f1 (c1) (c3)) (c1)) NIL) (25 (instantiate 5 ((v0 . (c1)) (v1 . (c3)))) (or (subset (c1) (c3)) (not (member (f1 (c1) (c3)) (c3)))) NIL) (14 (resolve 8 () 25 (1)) (not (member (f1 (c1) (c3)) (c3))) NIL) (26 (instantiate 11 ((v0 . (f1 (c1) (c3))))) (or (not (member (f1 (c1) (c3)) (c1))) (member (f1 (c1) (c3)) (c2))) NIL) (15 (resolve 13 () 26 (1)) (member (f1 (c1) (c3)) (c2)) NIL) (27 (instantiate 12 ((v0 . (f1 (c1) (c3))))) (or (not (member (f1 (c1) (c3)) (c2))) (member (f1 (c1) (c3)) (c3))) NIL) (18A (resolve 27 (2) 14 ()) (not (member (f1 (c1) (c3)) (c2))) NIL) (18 (resolve 15 () 18A ()) false NIL) ) ;; END OF PROOF OBJECT prover9-manual-2009-02A/subset_trans.proof70000644000175000017500000000111211151315541020017 0ustar mccunemccune formulas(hints). % 14 hints from 1 proof(s) in file subset_trans.out, Wed Feb 25 12:26:25 2009 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). subset(x,y) | member(f1(x,y),x). -subset(x,y) | -member(z,x) | member(z,y). subset(x,y) | -member(f1(x,y),y). subset(c1,c2). subset(c2,c3). -subset(c1,c3). -member(x,c1) | member(x,c2). -member(x,c2) | member(x,c3). member(f1(c1,c3),c1). -member(f1(c1,c3),c3). member(f1(c1,c3),c2). $F. end_of_list. prover9-manual-2009-02A/subset_trans.proof80000644000175000017500000000145711151315541020034 0ustar mccunemccune formulas(hints). % 14 hints from 1 proof(s) in file subset_trans.out, Wed Feb 25 12:26:25 2009 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause) # label(job8_1). (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal) # label(job8_2). subset(x,y) | member(f1(x,y),x) # label(job8_3). -subset(x,y) | -member(z,x) | member(z,y) # label(job8_4). subset(x,y) | -member(f1(x,y),y) # label(job8_5). subset(c1,c2) # label(job8_6). subset(c2,c3) # label(job8_7). -subset(c1,c3) # label(job8_8). -member(x,c1) | member(x,c2) # label(job8_9). -member(x,c2) | member(x,c3) # label(job8_10). member(f1(c1,c3),c1) # label(job8_11). -member(f1(c1,c3),c3) # label(job8_12). member(f1(c1,c3),c2) # label(job8_13). $F # label(job8_14). end_of_list. prover9-manual-2009-02A/x2.portable0000644000175000017500000000100111151315541016225 0ustar mccunemccune[ [6, [ "=(number,1)", "=(seconds,0)" ], [ ["function", "*", 2, [ [ 0, 1, 2, 3, 4, 5], [ 1, 0, 3, 2, 5, 4], [ 2, 4, 0, 5, 1, 3], [ 3, 5, 1, 4, 0, 2], [ 4, 2, 5, 0, 3, 1], [ 5, 3, 4, 1, 2, 0] ] ], ["function", "'", 1, [ 0, 1, 2, 4, 3, 5] ], ["function", "e", 0, 0 ], ["function", "c1", 0, 1 ], ["function", "c2", 0, 2 ] ] ] ] prover9-manual-2009-02A/x2.tabular0000644000175000017500000000050611151315541016060 0ustar mccunemccune% number = 1 % seconds = 0 % Interpretation of size 6 * : | 0 1 2 3 4 5 ---+------------ 0 | 0 1 2 3 4 5 1 | 1 0 3 2 5 4 2 | 2 4 0 5 1 3 3 | 3 5 1 4 0 2 4 | 4 2 5 0 3 1 5 | 5 3 4 1 2 0 ' : 0 1 2 3 4 5 ---------------- 0 1 2 4 3 5 e : 0 c1 : 1 c2 : 2 prover9-manual-2009-02A/x2.cooked0000644000175000017500000000107711151315541015676 0ustar mccunemccune% number = 1 % seconds = 0 % Interpretation of size 6 *(0,0) = 0. *(0,1) = 1. *(0,2) = 2. *(0,3) = 3. *(0,4) = 4. *(0,5) = 5. *(1,0) = 1. *(1,1) = 0. *(1,2) = 3. *(1,3) = 2. *(1,4) = 5. *(1,5) = 4. *(2,0) = 2. *(2,1) = 4. *(2,2) = 0. *(2,3) = 5. *(2,4) = 1. *(2,5) = 3. *(3,0) = 3. *(3,1) = 5. *(3,2) = 1. *(3,3) = 4. *(3,4) = 0. *(3,5) = 2. *(4,0) = 4. *(4,1) = 2. *(4,2) = 5. *(4,3) = 0. *(4,4) = 3. *(4,5) = 1. *(5,0) = 5. *(5,1) = 3. *(5,2) = 4. *(5,3) = 1. *(5,4) = 2. *(5,5) = 0. '(0) = 0. '(1) = 1. '(2) = 2. '(3) = 4. '(4) = 3. '(5) = 5. e = 0. c1 = 1. c2 = 2. prover9-manual-2009-02A/term-order.html0000644000175000017500000002664511151021064017127 0ustar mccunemccune Prover9 Manual: Term Ordering
    Prover9 Manual Version 2009-02A

    Term Ordering

    Prover9's term ordering procedures and options are simpler than Otter's, but somewhat less flexible. We recommend that those who use Otter's "ad hoc" ordering try Prover9's KBO ordering.

    Prover9 has available several methods for comparing terms. (Although atomic formulas, literals, and clauses are not, strictly speaking, terms, the term orderings we write about here apply to those objects as well.)

    The term orderings are partial (and sometimes total on ground terms), and they are used in two ways.

    • To orient equalities (positive and negative). If one side of the equality is greater than the other, the greater side is placed on the left-hand side, and the equality is marked as oriented.
    • To decide which literals in clauses are admissible for application of inference rules. Several of the resolution and paramodulation rules require that some of the literals be maximal in their clause.

    For many problems, a good term ordering can determine the difference between success and failure. The default settings work well in many cases, but many difficult problems require adjustments to the term ordering.

    The primary choice (via parameter order) is type of ordering: LPO, RPO, or KBO. Each of those types uses a symbol precedence (see the function_order and predicate_order commands), and KBO also uses a symbol weighting function (see the list(kbo_weights) command). In addition, the options eq_defs and inverse_order cause changes to the term ordering.

    See [Dershowitz-termination] for a survey on term ordering.

    The Primary Choice

    The symbol precedence is is a total order on function and predicate symbols (including constants). The symbol weighting function maps symbols to nonnegative integers.
    • LPO (Lexicographic Path Ordering). The term ordering is determined entirely by the symbol precedence. It is total on ground terms.
    • RPO (Recursive Path Ordering). The term ordering is determined entirely by the symbol precedence. It is not necessarily total on ground terms, because the order of subterms is not considered.
    • KBO (Knuth-Bendix Ordering). This ordering uses a weighting function on symbols as well as the symbol precedence. The weighting function is used first, and the symbol precedence breaks ties. It is total on ground terms.

    KBO is perhaps the most natural of the three, because it it based on weights of symbols, but it is more cumbersome to specify because it is determined both by the symbol weights and by the symbol precedence. However, if one of the two terms being compared has more occurrences of a variable, it cannot be smaller. For example, the distributivity equation cannot be oriented so that it distributes (expands) terms.

    LPO is perhaps the most powerful of the three, because it can usually orient more equations. However, it allows rewrite rules that expand terms in explosive ways, for example (this is from a real problem),

    (x * y) * z rewrites to E * (x * (E * (x * (E * (y * (E * (x * (E * (x * (E * z))))))))))

    RPO is perhaps the least useful of the three, because it is not necessarily total on ground terms. That is, not all ground equations can be oriented. Also, see the sections on demodulation options and on inference rules.

    The reasonable choice is usually between LPO (the default) and KBO. For many problems, either one is good. The main reason LPO is the the default is that it is a bit faster than KBO.

    Here is the primary option.

    assign(order, string).  % default string=lpo, range [lpo,rpo,kbo]
    
    This option is used to select the primary term ordering to be used for orienting equalities and for determining maximal literals in clauses. The choices are lpo (Lexicographic Path Ordering), rpo (Recursive Path Ordering), and kbo (Knuth-Bendix Ordering).

    Termination of Demodulation

    If each member of a set of demodulators (rewrite rules) is oriented with respect to the current ordering (LPO, RPO, or KBO), then demodulation (term rewriting) is guaranteed to terminate (in theory) on all terms, regardless of the the order in which the demodulators are applied or the order in which the subject terms are demodulated. However, there are sets of demodulators that are intractable in practice.

    The Default Term Ordering

    The default symbol precedence (for LPO, RPO, and KBO) is given by the following rules (in order).
    • function symbols < equality symbol < non-equality predicate symbols;
    • if the term ordering is KBO, and if there is exactly one unary function in the problem, that function is greater than all other functions;
    • function symbols: arity-0 < arity-2 < arity-1 < arity-3 < arity-4 ... (note the position of arity-1);
    • non-equality predicate symbols: lower arity < higher arity;
    • non-Skolem symbols < Skolem symbols;
    • for Skolem symbols, the lower index is the lesser;
    • for non-Skolem symbols, more occurrences < fewer occurrences;
    • the lexical ASCII ordering (UNIX strcmp() function).
    The specific symbol precedence for a problem is given in the output file in the section PROCESS INPUT.

    The default symbol-weighting function for KBO is given by the following rules.

    • Variables have weight 1;
    • if there is exactly one unary function in the problem, it has weight 0;
    • all other symbols have weight 1.

    Adjustments to the Term Ordering

    The Symbol Precedence

    The function_order and predicate_order commands can be used to assign a symbol precedence. (The lex command is synonym for function_order.) They contain lists of symbols ordered by increasing precedence. For example,
    predicate_order([=, <=, P, Q]).          % = < P < Q
    function_order([a, b, c, +, *, h, g]).   % a < b < c < + < * < h < g
    
    There are two separate commands, because presecate symbols are always greater than function symbols.

    If there are function or predicate symbols in the problem that do not appear in the corresponding command, a warning is issued, and Prover9 will complete the precedence inserting the missing symbols at the beginning of the precedence using its default rules. In these cases, the user should check that Prover9 has constructed a reasonable precedence.

    Note that Skolem symbols cannot appear in a function_order command, because Skolem symbols do not exist at the time the function_order command is written. If there is a function_order command, and if Skolem symbols are generated, each one will be inserted, in effect, into the function_order command at a position just before the first symbol of higher arity. This method gives a symbol precedence similar to the default in many cases.

    Otter's lex command has a syntax that shows the arities of the symbols; Prover9's function_order and predicate_order commands list only the symbols. The arities are not necessary for Prover9, because a string cannot represent two symbols with different arities.

    The KBO Weights

    If the term ordering is KBO, assign(order, kbo), the user can change the default symbol-weighting function. For example,
    list(kbo_weights).
      a = 3.
      b = 2.
      * = 5.
      j = 22.
    end_of_list.
    
    (This has no relationship to the term-weighting function for selecting the given clause and discarding inferred clauses.)

    If any symbols are absent from the list, they retain their default KBO weights of 1. The symbol weights must be greater than 0, with the exception that there may be one unary symbol of weight 0. (The definition of KBO allows for one unary symbol of weight 0 which must also be greatest in the precedence. This special case allows an such as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown and used as a rewrite rule.)

    Term Ordering Options

    set(inverse_order).    % default set
    clear(inverse_order).
    
    If this flag is set, if there is no function_order command (which defines the function symbol precedence), and if the term ordering is LPO or RPO, then Prover9 will attempt to adjust the default symbol precedence if there are any input equations that specify an inverse operation. For example, if f(x,g(x)) = c is input, g will be placed after f in the precedence. This allows an equation such as g(f(x,y)) = f(g(y),g(x)) to be oriented as shown for demodulation and paramodulation. If this flag is set, the PROCESS INPUT section of the output file shows how the flag changes the symbol precedence.
    assign(eq_defs, string).  % default string=unfold, range [unfold,fold,pass]
    
    If string=unfold, and if the input contains an equational definition, say j(x,y) = f(f(x,x),f(y,y)), the defined symbol j will be eliminated from the problem before the search starts. This procedure works by adjusting the symbol precedence so that the defining equation becomes a demodulator. If there is more than one equational definition, cycles are avoided by choosing a cycle-free subset of the definitions. If the primary term ordering is KBO, this option may admit demodulators that do not satisfy the KBO ordering, because a variable may have more variables on the right-hand side. However, this exception is safe (does not cause non-termination).

    If string=fold, and if the input contains an equational definition, say j(x,y) = f(f(x,x),f(y,y)), the term ordering will be adjusted so that equation is flipped and becomes a demodulator which introduces the defined symbol whenever possible during the search.

    If string=pass, nothing special happens. In this case, functions may still be unfolded or folded if the term ordering and symbol precedence happen to arrange the demodulators to do so.


    Next Section:
    More Prep prover9-manual-2009-02A/weight.html0000644000175000017500000002255611151021064016333 0ustar mccunemccune Prover9 Manual: Weighting
    Prover9 Manual Version 2009-02A

    Weighting

    Prover9's weighting function maps clauses to integers, and it is used primarily for two purposes:
    • selecting the given clause, and
    • discarding inferred clauses (with the parameter max_weight).
    Otter accepts two weighting functions, one for selecting the given clause, and the other for discarding inferred clauses. Prover9 always uses the same weighting function for both purposes.
    In Otter's weighting rules, a variable matches any variable and only variables. The role is similar to the anonymous variables "_" in Prover9's weighting rules.
    Prover9 does not (yet) have anything analogous to Otter's $DOTS weighting feature.

    Default Weights

    The default weight of a clause is its symbol count, excluding commas, parentheses, negation symbols, and disjunction symbols. That is,
    • the default weight of a constant or variable is 1,
    • the default weight of a term or atomic formula is one more than the sum of the weights of its arguments,
    • the default weight of a literal is the weight of its atomic formula,
    • the default weight of a clause is the sum of the weights of its literals.

    Weighting Rules

    The weighting function can be modified by giving a list of rules in the input file. The list must start with list(weights). and end with end_of_list. Here is an example.
    list(weights).
    
      weight(a) = 3.                               % the weight of the constant a is 3
      weight(f(a,x)) = 5 * weight(x).              % weight( f(a,term) ) = 5 * weight( term )
      weight(f(a,_)) = -1.                         % _ matches any variable
      weight(x | y) = 2 + (weight(x) + weight(y)). % add 2 for each "or" symbol
    
    end_of_list.
    
    Here is a summary of the weighting language.
    • Each weighting rule is an equation. The left-hand side of the rule must be weight(pattern). A rule applies to a term if its pattern matches the term in the ordinary sense of demodulation or term rewriting. An exception is that the symbol "_" matches any variable and only a variable.
    • The right-hand side of a rule consists of an integer-arithmetic expression applied to weight(...) terms. When applying a rule, the substitution of the pattern match is applied to the the weight(...) terms, which are then weighed recursively, and then the integer expression is evaluated to compute the weight of the term. The user is responsible for making sure any recursion terminates.
    • The accepted integer operations are
      • binary: {+, *, /, min, max}
      • unary: {-, depth, vars}
      The depth operation gives the depth (height) of the term (when viewed as a tree), and the vars operation gives the number of (distinct) variables in the term.
    • The rules are parsed with the ordinary term-parsing code, so (unless the user as included an op command to change the parsing rules), the arithmetic expressions must be fully parenthesized, e.g., a + (b + c).
    Weighting rules are applied to a clause as follows.
    • The clause is weighed top-down. That is, a term is weighed before its subterms are weighed.
    • When weighing a term, the first rule that matches is applied.
    • If no rule matches, the weight of the term is one more than the sum of the weights of its arguments.

    Modifying the Default Weight

    assign(constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
    
    This parameter specifies the default weight of constants. It can be overridden with weighting rules for individual constants.
    assign(sk_constant_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
    
    This parameter specifies the default weight of Skolem constants. It takes precedence over constant_weight.
    assign(variable_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
    
    This parameter specifies the default weight of variables.
    assign(not_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
    
    The negation symbols on literals do not ordinarily contribute any weight to clauses. This parameter says that each negation symbol has weight n.
    assign(or_weight, n).  % default n=0, range [INT_MIN .. INT_MAX]
    
    The disjunction symbols between literals do not ordinarily contribute any weight to clauses. This parameter says that each disjunction symbol has weight n.
    assign(prop_atom_weight, n).  % default n=1, range [INT_MIN .. INT_MAX]
    
    This parameter specifies the default weight for propositional atoms, that is, predicate symbols of arity 0. They ordinarily have weight 1.
    assign(nest_penalty, n).  % default n=0, range [0 .. INT_MAX]
    
    This parameter is used to penalize terms containing nested function symbols. If no weighting rule applies to a term t, then for each argument with the same function symbol as t, the value n is added to the weight of t. If n=0, there is no penalty.
    assign(depth_penalty, n).  % default n=0, range [INT_MIN .. INT_MAX]
    
    This parameter is used to penalize (or prefer) clauses with deeper terms. It is applied to the entire clause after all of the literals and subterms have been weighed. The weight of the clause C is increased by n * depth(C). Note that n may be negative, decreasing the weight of the clause.
    assign(var_penalty, n).  % default n=0, range [INT_MIN .. INT_MAX]
    
    This parameter is used to penalize (or prefer) clauses with more variables. It is applied to the entire clause after all of the literals and subterms have been weighed. If v is the number of (distinct) variable in the clause, the weight of the clause is increased by n * v. Note that n may be negative, decreasing the weight of the clause.

    Adjustments to Clause Weight

    The final weight of a clause is calculated in three steps. First, the weighting rules are applied. Second, if the weight is greater than
    default_weight and less than max_weight, the weight is reset to default_weight.
    assign(default_weight, n).  % default n=INT_MAX, range [INT_MIN .. INT_MAX]
    
    That is, all clauses with weight from default_weight up to max_weight are treated equally.
    Third, if the clause matches a hint, the weight may be adjusted by the flag degrade_hints and by the hint attribute bsub_hint_wt.

    Debugging Weighting Rules and Options

    Here is an example of using Prover9 to test weighting rules and parameters.
    prover9 -f weight_test.in | grep 'given #' > weight_test.out
    

    Next Section: Attributes prover9-manual-2009-02A/LT-port.out0000644000175000017500000000346111151315541016210 0ustar mccunemccune[ [4, [ "=(number,1)", "=(seconds,0)" ], [ ["relation", "<=", 2, [ [ 1, 1, 1, 1], [ 0, 1, 0, 0], [ 0, 1, 1, 0], [ 0, 1, 0, 1] ] ], ["function", "^", 2, [ [ 0, 0, 0, 0], [ 0, 1, 2, 3], [ 0, 2, 2, 0], [ 0, 3, 0, 3] ] ], ["function", "v", 2, [ [ 0, 1, 2, 3], [ 1, 1, 1, 1], [ 2, 1, 2, 1], [ 3, 1, 1, 3] ] ], ["function", "c1", 0, 2 ], ["function", "c2", 0, 0 ], ["function", "c3", 0, 3 ], ["relation", "A", 3, [ [ [ 1, 1, 1, 1], [ 0, 1, 0, 0], [ 0, 1, 1, 0], [ 0, 1, 0, 1] ], [ [ 1, 0, 0, 0], [ 1, 1, 1, 1], [ 1, 0, 1, 0], [ 1, 0, 0, 1] ], [ [ 1, 0, 0, 0], [ 0, 1, 0, 0], [ 1, 1, 1, 0], [ 0, 0, 0, 0] ], [ [ 1, 0, 0, 0], [ 0, 1, 0, 0], [ 0, 0, 0, 0], [ 1, 1, 0, 1] ] ] ], ["relation", "B", 3, [ [ [ 1, 1, 1, 1], [ 0, 1, 0, 0], [ 0, 1, 1, 0], [ 0, 1, 0, 1] ], [ [ 1, 0, 0, 0], [ 1, 1, 1, 1], [ 1, 0, 1, 0], [ 1, 0, 0, 1] ], [ [ 1, 0, 0, 1], [ 0, 1, 0, 1], [ 1, 1, 1, 1], [ 0, 0, 0, 1] ], [ [ 1, 0, 1, 0], [ 0, 1, 1, 0], [ 0, 0, 1, 0], [ 1, 1, 1, 1] ] ] ] ] ] ] prover9-manual-2009-02A/MOL-cand.2380000644000175000017500000003026011151315544015746 0ustar mccunemccunef(f(f(f(f(x,y),z),z),y),f(f(f(x,y),f(z,y)),x)) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,x),f(y,z)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(z,y),f(y,x)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(x,y),f(y,z)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,y),f(y,z)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,y),f(y,x)))) = y. f(f(f(f(x,f(y,z)),x),y),f(f(f(z,y),f(z,y)),z)) = y. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),y),f(f(f(z,y),f(x,y)),z)) = y. f(f(f(f(x,f(y,z)),x),y),f(f(f(x,y),f(z,y)),z)) = y. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(z,y),f(y,z)))) = y. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(y,z),f(y,x)))) = y. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,x),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(y,y),f(y,x)))) = y. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(f(x,y),f(y,x)),x),f(y,f(f(f(y,x),z),z))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(f(y,z),x),x))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(f(z,y),x),x))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(f(y,x),z),z))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(f(x,y),z),z))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(f(y,z),x),x))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(f(z,y),x),x))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(f(x,y),z),z))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(f(y,z),x),x))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(f(z,y),x),x))) = y. f(f(f(f(x,y),f(y,x)),x),f(y,f(f(z,f(y,x)),z))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(x,f(z,y)),x))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(z,f(x,y)),z))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(x,f(y,z)),x))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(x,f(z,y)),x))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(z,f(y,x)),z))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(x,f(y,z)),x))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(x,f(z,y)),x))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(z,f(f(y,x),z)))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(x,f(f(y,z),x)))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(x,f(f(z,y),x)))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(z,f(f(y,x),z)))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(x,f(f(y,z),x)))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(x,f(f(z,y),x)))) = y. f(f(f(f(x,y),f(y,y)),x),f(y,f(z,f(f(y,x),z)))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(z,f(z,f(y,x))))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(x,f(x,f(y,z))))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(x,f(x,f(y,z))))) = y. f(f(f(f(x,y),f(y,y)),x),f(y,f(z,f(z,f(y,x))))) = y. f(f(f(x,f(f(y,z),x)),y),f(f(f(z,y),f(z,y)),z)) = y. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),y),f(f(f(x,y),f(z,y)),z)) = y. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(y,z),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(y,z),f(y,x)))) = y. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(z,y),f(y,x)))) = y. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(x,y),f(y,z)))) = y. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,x),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(y,y),f(y,x)))) = y. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(f(x,f(x,f(y,z))),y),f(f(f(z,y),f(x,y)),z)) = y. f(f(f(x,f(x,f(y,z))),z),f(f(f(y,z),f(x,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(x,z),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(y,z),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,z),f(y,x)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,x),f(y,z)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(z,y),f(y,x)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(x,y),f(y,z)))) = y. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,y),f(z,x)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(x,z),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,y),f(y,x)))) = y. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,z),f(z,x)))) = z. f(f(x,f(f(y,x),f(y,x))),f(y,f(f(f(x,y),z),z))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(f(y,x),z),z))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(f(x,y),z),z))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(f(y,x),z),z))) = y. f(f(x,f(f(y,x),f(y,x))),f(y,f(f(z,f(y,x)),z))) = y. f(f(x,f(f(y,x),f(y,x))),f(y,f(f(z,f(x,y)),z))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(z,f(y,x)),z))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(z,f(y,x)),z))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(z,f(x,y)),z))) = y. f(f(x,f(f(y,x),f(y,x))),f(y,f(z,f(f(y,x),z)))) = y. f(f(x,f(f(y,x),f(y,x))),f(y,f(z,f(f(x,y),z)))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(z,f(f(y,x),z)))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(z,f(f(x,y),z)))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(z,f(f(y,x),z)))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(z,f(f(x,y),z)))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(z,f(z,f(y,x))))) = y. f(f(f(x,f(y,y)),y),f(f(f(f(z,x),x),f(z,y)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(f(x,z),x),f(z,y)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(x,f(z,x)),f(z,y)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(f(z,x),x)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(f(x,z),x)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(x,f(z,x))),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(x,f(x,z))),z)) = y. f(f(f(x,f(y,y)),y),f(z,f(f(f(x,z),x),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(x,f(z,x)),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(x,f(x,z)),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(f(z,x),x)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(f(x,z),x)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(f(z,x),x)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(f(x,z),x)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(x,f(z,x))))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(x,f(x,z))))) = y. f(f(f(f(f(x,y),z),z),y),f(f(f(u,y),f(x,y)),x)) = y. f(f(f(f(f(x,y),z),z),y),f(f(f(y,u),f(x,y)),x)) = y. f(f(f(f(f(x,y),z),z),y),f(f(f(x,y),f(u,y)),x)) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(u,y),f(y,x)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,u),f(y,x)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,x),f(y,u)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(x,y),f(y,u)))) = y. f(f(f(f(f(x,y),z),z),y),f(x,f(f(y,y),f(y,u)))) = y. f(f(f(f(x,f(y,z)),x),y),f(f(f(u,y),f(z,y)),z)) = y. f(f(f(f(x,f(y,z)),x),y),f(f(f(y,u),f(z,y)),z)) = y. f(f(f(f(x,f(y,z)),x),y),f(f(f(z,y),f(u,y)),z)) = y. f(f(f(f(x,f(y,z)),x),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(f(x,f(y,z)),x),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(u,y),f(y,z)))) = y. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(y,u),f(y,z)))) = y. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(y,z),f(y,u)))) = y. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(z,y),f(y,u)))) = y. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(f(x,f(y,z)),x),y),f(z,f(f(y,y),f(y,u)))) = y. f(f(f(f(x,f(y,z)),x),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(f(y,z),u),u))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(f(z,y),u),u))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(f(y,x),u),u))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(f(x,y),u),u))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(f(y,z),u),u))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(f(z,y),u),u))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(f(y,x),u),u))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(f(x,y),u),u))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(f(y,z),u),u))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(f(z,y),u),u))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(u,f(y,z)),u))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(f(u,f(z,y)),u))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(u,f(y,x)),u))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(f(u,f(x,y)),u))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(u,f(y,z)),u))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(f(u,f(z,y)),u))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(u,f(y,x)),u))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(f(u,f(x,y)),u))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(u,f(y,z)),u))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(f(u,f(z,y)),u))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(u,f(f(y,z),u)))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(u,f(f(z,y),u)))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(u,f(f(y,x),u)))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(u,f(f(x,y),u)))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(u,f(f(y,z),u)))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(u,f(f(z,y),u)))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(u,f(f(y,x),u)))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(u,f(f(x,y),u)))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(u,f(f(y,z),u)))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(u,f(f(z,y),u)))) = y. f(f(f(f(x,y),f(y,z)),z),f(y,f(u,f(u,f(y,z))))) = y. f(f(f(f(x,y),f(y,z)),x),f(y,f(u,f(u,f(y,x))))) = y. f(f(f(f(x,y),f(z,y)),z),f(y,f(u,f(u,f(y,z))))) = y. f(f(f(f(x,y),f(z,y)),x),f(y,f(u,f(u,f(y,x))))) = y. f(f(f(f(x,y),f(y,y)),z),f(y,f(u,f(u,f(y,z))))) = y. f(f(f(x,f(f(y,z),x)),y),f(f(f(u,y),f(z,y)),z)) = y. f(f(f(x,f(f(y,z),x)),y),f(f(f(y,u),f(z,y)),z)) = y. f(f(f(x,f(f(y,z),x)),y),f(f(f(z,y),f(u,y)),z)) = y. f(f(f(x,f(f(y,z),x)),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(f(y,z),x)),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(u,y),f(y,z)))) = y. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(y,u),f(y,z)))) = y. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(y,z),f(y,u)))) = y. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(z,y),f(y,u)))) = y. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(f(y,z),x)),y),f(z,f(f(y,y),f(y,u)))) = y. f(f(f(x,f(f(y,z),x)),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),y),f(f(f(u,y),f(z,y)),z)) = y. f(f(f(x,f(x,f(y,z))),y),f(f(f(y,u),f(z,y)),z)) = y. f(f(f(x,f(x,f(y,z))),y),f(f(f(z,y),f(u,y)),z)) = y. f(f(f(x,f(x,f(y,z))),z),f(f(f(u,z),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(z,u),f(y,z)),y)) = z. f(f(f(x,f(x,f(y,z))),z),f(f(f(y,z),f(u,z)),y)) = z. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(u,y),f(y,z)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,u),f(y,z)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,z),f(y,u)))) = y. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(z,y),f(y,u)))) = y. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(u,z),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,u),f(z,y)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,y),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(y,z),f(z,u)))) = z. f(f(f(x,f(x,f(y,z))),y),f(z,f(f(y,y),f(y,u)))) = y. f(f(f(x,f(x,f(y,z))),z),f(y,f(f(z,z),f(z,u)))) = z. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(f(y,x),u),u))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(f(x,y),u),u))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(f(y,x),u),u))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(f(x,y),u),u))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(f(f(y,x),u),u))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(f(f(x,y),u),u))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(u,f(y,x)),u))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(f(u,f(x,y)),u))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(u,f(y,x)),u))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(f(u,f(x,y)),u))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(f(u,f(y,x)),u))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(f(u,f(x,y)),u))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(u,f(f(y,x),u)))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(u,f(f(x,y),u)))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(u,f(f(y,x),u)))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(u,f(f(x,y),u)))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(u,f(f(y,x),u)))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(u,f(f(x,y),u)))) = y. f(f(x,f(f(y,z),f(y,x))),f(y,f(u,f(u,f(y,x))))) = y. f(f(x,f(f(y,x),f(y,z))),f(y,f(u,f(u,f(y,x))))) = y. f(f(x,f(f(y,x),f(z,y))),f(y,f(u,f(u,f(y,x))))) = y. f(f(f(x,f(y,y)),y),f(f(f(f(z,u),u),f(z,y)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(f(z,u),z),f(u,y)),u)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,f(u,z)),f(u,y)),u)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,f(z,u)),f(u,y)),u)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(f(u,z),u)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(f(z,u),u)),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(u,f(u,z))),z)) = y. f(f(f(x,f(y,y)),y),f(f(f(z,y),f(u,f(z,u))),z)) = y. f(f(f(x,f(y,y)),y),f(z,f(f(f(u,z),u),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(f(z,u),u),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(u,f(u,z)),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(u,f(z,u)),f(y,z)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(f(u,z),u)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(f(z,u),u)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(f(u,z),u)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(f(z,u),u)))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(u,f(u,z))))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(y,z),f(u,f(z,u))))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(u,f(u,z))))) = y. f(f(f(x,f(y,y)),y),f(z,f(f(z,y),f(u,f(z,u))))) = y. % clausefilter non-MOL-OML.interps false_in_all: checked 296, passed 238, 2.96 seconds. prover9-manual-2009-02A/glo.temp0000644000175000017500000000007210632013162015616 0ustar mccunemccune
    Term
    prover9-manual-2009-02A/TODO0000644000175000017500000000030010630101132014621 0ustar mccunemccune1. If lex command, assign(eq_defs, ...) is ignored. 2. The user might think that assign(max_proofs, 1) overrides auto_denials. 3. Change all "lex" to "predicate_order" and "function_order". prover9-manual-2009-02A/template.glossary0000644000175000017500000000011110441172704017546 0ustar mccunemccune
    prover9-manual-2009-02A/template.reference0000644000175000017500000000004210442073740017645 0ustar mccunemccune[
    ] prover9-manual-2009-02A/qg4.interps0000644000175000017500000002647610607454661016306 0ustar mccunemccuneinterpretation( 4, [number = 1,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,0,1, 3,2,1,0]), function(/(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,0,1, 3,2,1,0]), function(\(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,0,1, 3,2,1,0])]). interpretation( 4, [number = 2,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,1,0, 3,2,0,1]), function(/(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,0,1, 3,2,1,0]), function(\(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,0,1, 2,3,1,0])]). interpretation( 4, [number = 3,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,0,1, 2,3,1,0]), function(/(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,0,1, 2,3,1,0]), function(\(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,1,0, 3,2,0,1])]). interpretation( 4, [number = 4,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,1,0, 2,3,0,1]), function(/(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,0,1, 2,3,1,0]), function(\(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,1,0, 2,3,0,1])]). interpretation( 4, [number = 5,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,0,1, 3,2,1,0]), function(/(_,_), [ 0,1,2,3, 1,0,3,2, 2,3,1,0, 3,2,0,1]), function(\(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,0,1, 3,2,1,0])]). interpretation( 4, [number = 6,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,1,0, 3,2,0,1]), function(/(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,1,0, 3,2,0,1]), function(\(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,0,1, 2,3,1,0])]). interpretation( 4, [number = 7,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,0,1, 2,3,1,0]), function(/(_,_), [ 0,1,2,3, 1,0,3,2, 3,2,1,0, 2,3,0,1]), function(\(_,_), [ 0,1,3,2, 1,0,2,3, 2,3,1,0, 3,2,0,1])]). interpretation( 4, [number = 8,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,1,0, 2,3,0,1]), function(/(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,1,0, 2,3,0,1]), function(\(_,_), [ 0,1,3,2, 1,0,2,3, 3,2,1,0, 2,3,0,1])]). interpretation( 4, [number = 9,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,2,0,3, 3,0,2,1, 2,3,1,0]), function(/(_,_), [ 0,2,1,3, 1,0,3,2, 3,1,2,0, 2,3,0,1]), function(\(_,_), [ 0,1,3,2, 2,0,1,3, 1,3,2,0, 3,2,0,1])]). interpretation( 4, [number = 10,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 1,2,3,0, 3,0,1,2, 2,3,0,1]), function(/(_,_), [ 0,2,3,1, 1,0,2,3, 3,1,0,2, 2,3,1,0]), function(\(_,_), [ 0,1,2,3, 3,0,1,2, 1,2,3,0, 2,3,0,1])]). interpretation( 4, [number = 11,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 1,2,0,3, 2,3,1,0, 3,0,2,1]), function(/(_,_), [ 0,3,1,2, 1,0,2,3, 2,1,3,0, 3,2,0,1]), function(\(_,_), [ 0,1,3,2, 2,0,1,3, 3,2,0,1, 1,3,2,0])]). interpretation( 4, [number = 13,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,0,1,3, 1,3,2,0, 3,2,0,1]), function(/(_,_), [ 0,1,3,2, 2,0,1,3, 1,3,2,0, 3,2,0,1]), function(\(_,_), [ 0,1,3,2, 1,2,0,3, 3,0,2,1, 2,3,1,0])]). interpretation( 4, [number = 15,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,0,1,3, 3,2,0,1, 1,3,2,0]), function(/(_,_), [ 0,1,2,3, 3,0,1,2, 1,2,3,0, 2,3,0,1]), function(\(_,_), [ 0,1,3,2, 1,2,0,3, 2,3,1,0, 3,0,2,1])]). interpretation( 4, [number = 16,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 2,0,3,1, 3,2,1,0, 1,3,0,2]), function(/(_,_), [ 0,1,3,2, 3,0,2,1, 1,2,0,3, 2,3,1,0]), function(\(_,_), [ 0,1,2,3, 1,3,0,2, 3,2,1,0, 2,0,3,1])]). interpretation( 4, [number = 18,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,3,0,1, 1,0,2,3, 3,2,1,0]), function(/(_,_), [ 0,2,1,3, 2,0,3,1, 1,3,2,0, 3,1,0,2]), function(\(_,_), [ 0,1,3,2, 2,3,0,1, 1,0,2,3, 3,2,1,0])]). interpretation( 4, [number = 20,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,3,1,0, 1,0,2,3, 3,2,0,1]), function(/(_,_), [ 0,2,3,1, 2,0,1,3, 1,3,2,0, 3,1,0,2]), function(\(_,_), [ 0,1,3,2, 3,2,0,1, 1,0,2,3, 2,3,1,0])]). interpretation( 4, [number = 22,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,3,1,0, 3,0,2,1, 1,2,0,3]), function(/(_,_), [ 0,2,3,1, 3,0,1,2, 1,3,2,0, 2,1,0,3]), function(\(_,_), [ 0,1,3,2, 3,2,0,1, 1,3,2,0, 2,0,1,3])]). interpretation( 4, [number = 24,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,3,1,0, 1,2,0,3, 3,0,2,1]), function(/(_,_), [ 0,3,2,1, 2,0,1,3, 1,2,3,0, 3,1,0,2]), function(\(_,_), [ 0,1,3,2, 3,2,0,1, 2,0,1,3, 1,3,2,0])]). interpretation( 4, [number = 25,seconds = 0], [ function(*(_,_), [ 0,1,2,3, 2,3,0,1, 3,2,1,0, 1,0,3,2]), function(/(_,_), [ 0,3,1,2, 3,0,2,1, 1,2,0,3, 2,1,3,0]), function(\(_,_), [ 0,1,2,3, 2,3,0,1, 3,2,1,0, 1,0,3,2])]). interpretation( 4, [number = 28,seconds = 0], [ function(*(_,_), [ 0,1,3,2, 2,3,1,0, 3,2,0,1, 1,0,2,3]), function(/(_,_), [ 0,3,2,1, 3,0,1,2, 1,2,3,0, 2,1,0,3]), function(\(_,_), [ 0,1,3,2, 3,2,0,1, 2,3,1,0, 1,0,2,3])]). interpretation( 4, [number = 53,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 1,0,2,3, 3,1,0,2, 2,3,1,0]), function(/(_,_), [ 0,1,2,3, 1,2,3,0, 3,0,1,2, 2,3,0,1]), function(\(_,_), [ 0,3,1,2, 1,0,2,3, 2,1,3,0, 3,2,0,1])]). interpretation( 4, [number = 54,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 1,0,2,3, 2,3,1,0, 3,1,0,2]), function(/(_,_), [ 0,1,3,2, 1,3,2,0, 2,0,1,3, 3,2,0,1]), function(\(_,_), [ 0,3,1,2, 1,0,2,3, 3,2,0,1, 2,1,3,0])]). interpretation( 4, [number = 56,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 1,3,2,0, 2,0,1,3, 3,1,0,2]), function(/(_,_), [ 0,2,3,1, 1,3,2,0, 2,0,1,3, 3,1,0,2]), function(\(_,_), [ 0,3,1,2, 3,0,2,1, 1,2,0,3, 2,1,3,0])]). interpretation( 4, [number = 60,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 1,3,2,0, 3,1,0,2, 2,0,1,3]), function(/(_,_), [ 0,3,2,1, 1,2,3,0, 3,0,1,2, 2,1,0,3]), function(\(_,_), [ 0,3,1,2, 3,0,2,1, 2,1,3,0, 1,2,0,3])]). interpretation( 4, [number = 66,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 2,0,1,3, 3,1,0,2, 1,3,2,0]), function(/(_,_), [ 0,1,2,3, 3,2,1,0, 1,0,3,2, 2,3,0,1]), function(\(_,_), [ 0,3,1,2, 1,2,0,3, 2,1,3,0, 3,0,2,1])]). interpretation( 4, [number = 74,seconds = 0], [ function(*(_,_), [ 0,2,3,1, 3,1,0,2, 1,3,2,0, 2,0,1,3]), function(/(_,_), [ 0,3,1,2, 2,1,3,0, 3,0,2,1, 1,2,0,3]), function(\(_,_), [ 0,3,1,2, 2,1,3,0, 3,0,2,1, 1,2,0,3])]). interpretation( 4, [number = 86,seconds = 0], [ function(*(_,_), [ 1,0,2,3, 0,2,3,1, 3,1,0,2, 2,3,1,0]), function(/(_,_), [ 1,0,2,3, 0,2,3,1, 3,1,0,2, 2,3,1,0]), function(\(_,_), [ 1,0,2,3, 0,3,1,2, 2,1,3,0, 3,2,0,1])]). interpretation( 4, [number = 87,seconds = 0], [ function(*(_,_), [ 1,0,3,2, 0,2,1,3, 2,3,0,1, 3,1,2,0]), function(/(_,_), [ 1,0,2,3, 0,3,1,2, 2,1,3,0, 3,2,0,1]), function(\(_,_), [ 1,0,3,2, 0,2,1,3, 2,3,0,1, 3,1,2,0])]). interpretation( 4, [number = 88,seconds = 0], [ function(*(_,_), [ 1,0,2,3, 0,2,3,1, 2,3,1,0, 3,1,0,2]), function(/(_,_), [ 1,0,3,2, 0,3,2,1, 2,1,0,3, 3,2,1,0]), function(\(_,_), [ 1,0,2,3, 0,3,1,2, 3,2,0,1, 2,1,3,0])]). interpretation( 4, [number = 94,seconds = 0], [ function(*(_,_), [ 1,2,0,3, 0,3,1,2, 2,1,3,0, 3,0,2,1]), function(/(_,_), [ 1,3,0,2, 0,2,1,3, 2,0,3,1, 3,1,2,0]), function(\(_,_), [ 2,0,1,3, 0,2,3,1, 3,1,0,2, 1,3,2,0])]). interpretation( 4, [number = 96,seconds = 0], [ function(*(_,_), [ 1,2,0,3, 0,3,2,1, 2,1,3,0, 3,0,1,2]), function(/(_,_), [ 1,3,0,2, 0,2,3,1, 2,0,1,3, 3,1,2,0]), function(\(_,_), [ 2,0,1,3, 0,3,2,1, 3,1,0,2, 1,2,3,0])]). interpretation( 4, [number = 99,seconds = 0], [ function(*(_,_), [ 1,3,0,2, 0,2,1,3, 2,0,3,1, 3,1,2,0]), function(/(_,_), [ 1,2,0,3, 0,3,1,2, 2,1,3,0, 3,0,2,1]), function(\(_,_), [ 2,0,3,1, 0,2,1,3, 1,3,0,2, 3,1,2,0])]). interpretation( 4, [number = 101,seconds = 0], [ function(*(_,_), [ 1,3,0,2, 0,2,3,1, 2,0,1,3, 3,1,2,0]), function(/(_,_), [ 1,2,0,3, 0,3,2,1, 2,1,3,0, 3,0,1,2]), function(\(_,_), [ 2,0,3,1, 0,3,1,2, 1,2,0,3, 3,1,2,0])]). interpretation( 4, [number = 109,seconds = 0], [ function(*(_,_), [ 1,0,2,3, 2,3,1,0, 0,1,3,2, 3,2,0,1]), function(/(_,_), [ 2,0,3,1, 0,2,1,3, 1,3,0,2, 3,1,2,0]), function(\(_,_), [ 1,0,2,3, 3,2,0,1, 0,1,3,2, 2,3,1,0])]). interpretation( 4, [number = 126,seconds = 0], [ function(*(_,_), [ 1,3,2,0, 2,0,1,3, 0,2,3,1, 3,1,0,2]), function(/(_,_), [ 2,1,3,0, 0,3,1,2, 1,2,0,3, 3,0,2,1]), function(\(_,_), [ 3,0,2,1, 1,2,0,3, 0,3,1,2, 2,1,3,0])]). % isofilter: input=152, kept=35, checks=2438, perms=57023, 0.04 seconds. prover9-manual-2009-02A/uc-hunt.out0000644000175000017500000000432511151315544016275 0ustar mccunemccunex ^ (y v (z ^ (x v u))) = x ^ (y v (z ^ (x v (z ^ u)))) # label(H1). % 1 2 7 10 11 13 14 15 17 x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). % 1 4 6 7 8 9 10 11 12 13 14 15 16 17 18 x ^ (y v (x ^ z)) = x ^ (y v (z ^ (y v (x ^ (z v (x ^ y)))))) # label(H3). % 1 4 6 7 8 9 10 11 12 13 14 15 16 17 18 (x ^ y) v (x ^ z) = x ^ ((x ^ y) v ((x ^ z) v (y ^ (x v z)))) # label(H18). % 1 4 6 7 9 10 11 13 15 16 17 18 x ^ (y v (z ^ (x v u))) = x ^ (y v (z ^ (x v (z ^ (y v u))))) # label(H50). % 1 6 7 9 10 11 13 14 15 17 x ^ (y v (z ^ (x v u))) = x ^ (y v ((x ^ z) v (z ^ u))) # label(H51). % 1 7 10 11 13 14 15 17 x v (y ^ (x v z)) = x v (y ^ (z v (x ^ (z v y)))) # label(H55). % 2 5 6 7 8 9 10 12 13 14 15 16 17 18 x ^ (y v z) = x ^ (y v ((x v y) ^ (z v (x ^ y)))) # label(H58). % 2 5 6 7 8 9 10 12 13 14 15 16 17 18 x ^ (y v z) = x ^ (y v (x ^ (z v (x ^ (y v (x ^ z)))))) # label(H64). % 2 6 7 8 9 10 11 12 13 14 15 17 x ^ (y v z) = x ^ (y v (x ^ (z v (x ^ y)))) # label(H68). % 2 6 7 8 9 10 12 13 14 15 17 x ^ (y v z) = (x ^ (z v (x ^ y))) v (x ^ (y v (x ^ z))) # label(H69). % 2 6 7 8 9 10 12 13 14 15 17 x ^ (y v (z ^ (y v u))) = x ^ (y v (z ^ (u v (x ^ y)))) # label(H76). % 6 7 8 9 10 13 14 15 17 x ^ (y v (z ^ (x v u))) = x ^ ((x ^ (y v (x ^ z))) v (z ^ u)) # label(H79). % 7 10 13 14 15 17 (x ^ y) v (x ^ z) = x ^ ((x ^ y) v (z ^ (x v (y ^ (x v z))))) # label(H80). % 1 3 4 6 7 8 9 10 11 13 15 16 17 18 (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). % 1 4 6 7 9 10 11 13 15 17 % interp 1 models 8 of 15 clauses. % interp 2 models 6 of 15 clauses. % interp 3 models 1 of 15 clauses. % interp 4 models 5 of 15 clauses. % interp 5 models 2 of 15 clauses. % interp 6 models 12 of 15 clauses. % interp 7 models 15 of 15 clauses. % interp 8 models 9 of 15 clauses. % interp 9 models 12 of 15 clauses. % interp 10 models 15 of 15 clauses. % interp 11 models 9 of 15 clauses. % interp 12 models 7 of 15 clauses. % interp 13 models 15 of 15 clauses. % interp 14 models 12 of 15 clauses. % interp 15 models 15 of 15 clauses. % interp 16 models 6 of 15 clauses. % interp 17 models 15 of 15 clauses. % interp 18 models 6 of 15 clauses. prover9-manual-2009-02A/BA2.interps0000644000175000017500000000414711151315544016135 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(c1, [0]), function(c2, [2]), function(c3, [1]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). interpretation( 6, [number = 2,seconds = 0], [ function(c1, [0]), function(c2, [2]), function(c3, [2]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). interpretation( 6, [number = 3,seconds = 0], [ function(c1, [2]), function(c2, [0]), function(c3, [0]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). interpretation( 6, [number = 4,seconds = 0], [ function(c1, [2]), function(c2, [0]), function(c3, [1]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). interpretation( 6, [number = 5,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [1]), function(f(_,_), [1,1,1,1,1,1,1,0,4,5,2,3,1,4,4,1,1,1,1,5,1,5,1,1,1,2,1,1,2,1,1,3,1,1,1,3])]). interpretation( 6, [number = 6,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [1]), function(f(_,_), [2,2,1,1,1,1,2,4,0,5,1,3,1,0,0,1,1,1,1,5,1,5,1,1,1,1,1,1,1,1,1,3,1,1,1,3])]). interpretation( 6, [number = 7,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [1]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). interpretation( 6, [number = 8,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [3]), function(f(_,_), [1,1,1,1,1,1,1,0,4,5,2,3,1,4,4,1,1,1,1,5,1,5,1,1,1,2,1,1,2,1,1,3,1,1,1,3])]). interpretation( 6, [number = 9,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [3]), function(f(_,_), [2,2,1,1,1,1,2,4,0,5,1,3,1,0,0,1,1,1,1,5,1,5,1,1,1,1,1,1,1,1,1,3,1,1,1,3])]). interpretation( 6, [number = 10,seconds = 0], [ function(c1, [2]), function(c2, [3]), function(c3, [3]), function(f(_,_), [3,3,1,1,1,1,3,4,5,0,1,2,1,5,5,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2])]). prover9-manual-2009-02A/trans.in0000644000175000017500000000013610423565225015640 0ustar mccunemccuneformulas(goals). all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)). end_of_list. prover9-manual-2009-02A/uc-18.interps0000644000175000017500000002153510445411303016421 0ustar mccunemccune interpretation(7, [], [ % L1 function(^(_,_), [ 0,0,0,0,0,0,0, 0,1,2,3,4,5,6, 0,2,2,0,0,2,0, 0,3,0,3,0,3,3, 0,4,0,0,4,0,4, 0,5,2,3,0,5,3, 0,6,0,3,4,3,6]), function(v(_,_), [ 0,1,2,3,4,5,6, 1,1,1,1,1,1,1, 2,1,2,5,1,5,1, 3,1,5,3,6,5,6, 4,1,1,6,4,1,6, 5,1,5,5,1,5,1, 6,1,1,6,6,1,6])]). interpretation(7, [], [ % L2 (dual of L1) function(^(_,_), [ 0,0,0,0,0,0,0, 0,1,2,3,4,5,6, 0,2,2,5,0,5,0, 0,3,5,3,6,5,6, 0,4,0,6,4,0,6, 0,5,5,5,0,5,0, 0,6,0,6,6,0,6]), function(v(_,_), [ 0,1,2,3,4,5,6, 1,1,1,1,1,1,1, 2,1,2,1,1,2,1, 3,1,1,3,1,3,3, 4,1,1,1,4,1,4, 5,1,2,3,1,5,3, 6,1,1,3,4,3,6])]). interpretation(7, [], [ % L3 function(^(_,_), [ 0,0,0,0,0,0,0, 0,1,2,3,4,5,6, 0,2,2,0,0,2,0, 0,3,0,3,3,3,3, 0,4,0,3,4,4,3, 0,5,2,3,4,5,3, 0,6,0,3,3,3,6]), function(v(_,_), [ 0,1,2,3,4,5,6, 1,1,1,1,1,1,1, 2,1,2,5,5,5,1, 3,1,5,3,4,5,6, 4,1,5,4,4,5,1, 5,1,5,5,5,5,1, 6,1,1,6,1,1,6])]). interpretation(6, [], [ % L4 function(^(_,_), [ 0,0,0,0,0,0, 0,1,2,3,4,5, 0,2,2,0,0,2, 0,3,0,3,0,3, 0,4,0,0,4,0, 0,5,2,3,0,5]), function(v(_,_), [ 0,1,2,3,4,5, 1,1,1,1,1,1, 2,1,2,5,1,5, 3,1,5,3,1,5, 4,1,1,1,4,1, 5,1,5,5,1,5])]). interpretation(6, [], [ % L5 (dual of L4) function(^(_,_), [ 0,0,0,0,0,0, 0,1,2,3,4,5, 0,2,2,5,0,5, 0,3,5,3,0,5, 0,4,0,0,4,0, 0,5,5,5,0,5]), function(v(_,_), [ 0,1,2,3,4,5, 1,1,1,1,1,1, 2,1,2,1,1,2, 3,1,1,3,1,3, 4,1,1,1,4,1, 5,1,2,3,1,5])]). interpretation(8, [], [ % L6 function(^(_,_), [ 0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7, 0,2,2,2,2,0,2,2, 0,3,2,3,2,0,3,3, 0,4,2,2,4,0,2,4, 0,5,0,0,0,5,0,0, 0,6,2,3,2,0,6,6, 0,7,2,3,4,0,6,7]), function(v(_,_), [ 0,1,2,3,4,5,6,7, 1,1,1,1,1,1,1,1, 2,1,2,3,4,1,6,7, 3,1,3,3,7,1,6,7, 4,1,4,7,4,1,7,7, 5,1,1,1,1,5,1,1, 6,1,6,6,7,1,6,7, 7,1,7,7,7,1,7,7])]). interpretation(9, [], [ % L7 function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,2,2,0,2,2,2, 0,3,2,3,2,0,2,3,2, 0,4,2,2,4,0,4,4,4, 0,5,0,0,0,5,0,0,5, 0,6,2,2,4,0,6,6,6, 0,7,2,3,4,0,6,7,6, 0,8,2,2,4,5,6,6,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,3,4,8,6,7,8, 3,1,3,3,7,1,7,7,1, 4,1,4,7,4,8,6,7,8, 5,1,8,1,8,5,8,1,8, 6,1,6,7,6,8,6,7,8, 7,1,7,7,7,1,7,7,1, 8,1,8,1,8,8,8,1,8])]). interpretation(9, [], [ % L8 (dual of L7) function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,3,4,8,6,7,8, 0,3,3,3,7,0,7,7,0, 0,4,4,7,4,8,6,7,8, 0,5,8,0,8,5,8,0,8, 0,6,6,7,6,8,6,7,8, 0,7,7,7,7,0,7,7,0, 0,8,8,0,8,8,8,0,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,2,2,1,2,2,2, 3,1,2,3,2,1,2,3,2, 4,1,2,2,4,1,4,4,4, 5,1,1,1,1,5,1,1,5, 6,1,2,2,4,1,6,6,6, 7,1,2,3,4,1,6,7,6, 8,1,2,2,4,5,6,6,8])]). interpretation(9, [], [ % L9 function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,2,2,2,0,2,2, 0,3,2,3,3,2,0,3,2, 0,4,2,3,4,2,0,4,2, 0,5,2,2,2,5,0,5,5, 0,6,0,0,0,0,6,0,6, 0,7,2,3,4,5,0,7,5, 0,8,2,2,2,5,6,5,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,3,4,5,8,7,8, 3,1,3,3,4,7,1,7,1, 4,1,4,4,4,7,1,7,1, 5,1,5,7,7,5,8,7,8, 6,1,8,1,1,8,6,1,8, 7,1,7,7,7,7,1,7,1, 8,1,8,1,1,8,8,1,8])]). interpretation(9, [], [ % L10 (dual of L9) function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,3,4,5,8,7,8, 0,3,3,3,4,7,0,7,0, 0,4,4,4,4,7,0,7,0, 0,5,5,7,7,5,8,7,8, 0,6,8,0,0,8,6,0,8, 0,7,7,7,7,7,0,7,0, 0,8,8,0,0,8,8,0,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,2,2,2,1,2,2, 3,1,2,3,3,2,1,3,2, 4,1,2,3,4,2,1,4,2, 5,1,2,2,2,5,1,5,5, 6,1,1,1,1,1,6,1,6, 7,1,2,3,4,5,1,7,5, 8,1,2,2,2,5,6,5,8])]). interpretation(10, [], [ % L11 function(^(_,_), [ 0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9, 0,2,2,0,2,2,2,2,2,2, 0,3,0,3,0,0,3,0,3,0, 0,4,2,0,4,2,4,4,4,4, 0,5,2,0,2,5,2,2,2,5, 0,6,2,3,4,2,6,4,6,4, 0,7,2,0,4,2,4,7,7,7, 0,8,2,3,4,2,6,7,8,7, 0,9,2,0,4,5,4,7,7,9]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8,9, 1,1,1,1,1,1,1,1,1,1, 2,1,2,6,4,5,6,7,8,9, 3,1,6,3,6,1,6,8,8,1, 4,1,4,6,4,9,6,7,8,9, 5,1,5,1,9,5,1,9,1,9, 6,1,6,6,6,1,6,8,8,1, 7,1,7,8,7,9,8,7,8,9, 8,1,8,8,8,1,8,8,8,1, 9,1,9,1,9,9,1,9,1,9])]). interpretation(10, [], [ % L12 (dual of L11) function(^(_,_), [ 0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9, 0,2,2,6,4,5,6,7,8,9, 0,3,6,3,6,0,6,8,8,0, 0,4,4,6,4,9,6,7,8,9, 0,5,5,0,9,5,0,9,0,9, 0,6,6,6,6,0,6,8,8,0, 0,7,7,8,7,9,8,7,8,9, 0,8,8,8,8,0,8,8,8,0, 0,9,9,0,9,9,0,9,0,9]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8,9, 1,1,1,1,1,1,1,1,1,1, 2,1,2,1,2,2,2,2,2,2, 3,1,1,3,1,1,3,1,3,1, 4,1,2,1,4,2,4,4,4,4, 5,1,2,1,2,5,2,2,2,5, 6,1,2,3,4,2,6,4,6,4, 7,1,2,1,4,2,4,7,7,7, 8,1,2,3,4,2,6,7,8,7, 9,1,2,1,4,5,4,7,7,9])]). interpretation(9, [], [ % L13 function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,2,0,0,2,2,0, 0,3,2,3,0,0,3,3,0, 0,4,0,0,4,0,4,0,4, 0,5,0,0,0,5,0,5,5, 0,6,2,3,4,0,6,3,4, 0,7,2,3,0,5,3,7,5, 0,8,0,0,4,5,4,5,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,3,6,7,6,7,1, 3,1,3,3,6,7,6,7,1, 4,1,6,6,4,8,6,1,8, 5,1,7,7,8,5,1,7,8, 6,1,6,6,6,1,6,1,1, 7,1,7,7,1,7,1,7,1, 8,1,1,1,8,8,1,1,8])]). interpretation(9, [], [ % L14 (dual of L13) function(^(_,_), [ 0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8, 0,2,2,3,6,7,6,7,0, 0,3,3,3,6,7,6,7,0, 0,4,6,6,4,8,6,0,8, 0,5,7,7,8,5,0,7,8, 0,6,6,6,6,0,6,0,0, 0,7,7,7,0,7,0,7,0, 0,8,0,0,8,8,0,0,8]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8, 1,1,1,1,1,1,1,1,1, 2,1,2,2,1,1,2,2,1, 3,1,2,3,1,1,3,3,1, 4,1,1,1,4,1,4,1,4, 5,1,1,1,1,5,1,5,5, 6,1,2,3,4,1,6,3,4, 7,1,2,3,1,5,3,7,5, 8,1,1,1,4,5,4,5,8])]). interpretation(10, [], [ % L15 function(^(_,_), [ 0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9, 0,2,2,0,2,2,0,2,2,2, 0,3,0,3,3,0,3,3,3,3, 0,4,2,3,4,2,3,4,4,4, 0,5,2,0,2,5,0,2,5,2, 0,6,0,3,3,0,6,3,3,6, 0,7,2,3,4,2,3,7,7,7, 0,8,2,3,4,5,3,7,8,7, 0,9,2,3,4,2,6,7,7,9]), function(v(_,_), [ 0,1,2,3,4,5,6,7,8,9, 1,1,1,1,1,1,1,1,1,1, 2,1,2,4,4,5,9,7,8,9, 3,1,4,3,4,8,6,7,8,9, 4,1,4,4,4,8,9,7,8,9, 5,1,5,8,8,5,1,8,8,1, 6,1,9,6,9,1,6,9,1,9, 7,1,7,7,7,8,9,7,8,9, 8,1,8,8,8,8,1,8,8,1, 9,1,9,9,9,1,9,9,1,9])]). interpretation(5, [], [ % M3 function(^(_,_), [ 0,0,0,0,0, 0,1,2,3,4, 0,2,2,0,0, 0,3,0,3,0, 0,4,0,0,4]), function(v(_,_), [ 0,1,2,3,4, 1,1,1,1,1, 2,1,2,1,1, 3,1,1,3,1, 4,1,1,1,4])]). interpretation(5, [], [ % N5 function(^(_,_), [ 0,0,0,0,0, 0,1,2,3,4, 0,2,2,3,0, 0,3,3,3,0, 0,4,0,0,4]), function(v(_,_), [ 0,1,2,3,4, 1,1,1,1,1, 2,1,2,2,1, 3,1,2,3,1, 4,1,1,1,4])]). interpretation(8, [], [ % NM08 function(^(_,_), [ 0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7, 0,2,2,2,2,2,0,2, 0,3,2,3,2,2,0,3, 0,4,2,2,4,2,0,4, 0,5,2,2,2,5,0,5, 0,6,0,0,0,0,6,0, 0,7,2,3,4,5,0,7]), function(v(_,_), [ 0,1,2,3,4,5,6,7, 1,1,1,1,1,1,1,1, 2,1,2,3,4,5,1,7, 3,1,3,3,7,7,1,7, 4,1,4,7,4,7,1,7, 5,1,5,7,7,5,1,7, 6,1,1,1,1,1,6,1, 7,1,7,7,7,7,1,7])]). prover9-manual-2009-02A/uc-hunt.clauses0000644000175000017500000000216110445411402017114 0ustar mccunemccunex ^ (y v (z ^ (x v u))) = x ^ (y v (z ^ (x v (z ^ u)))) # label(H1). x ^ (y v (x ^ z)) = x ^ (y v (z ^ ((x ^ (y v z)) v (y ^ z)))) # label(H2). x ^ (y v (x ^ z)) = x ^ (y v (z ^ (y v (x ^ (z v (x ^ y)))))) # label(H3). (x ^ y) v (x ^ z) = x ^ ((x ^ y) v ((x ^ z) v (y ^ (x v z)))) # label(H18). x ^ (y v (z ^ (x v u))) = x ^ (y v (z ^ (x v (z ^ (y v u))))) # label(H50). x ^ (y v (z ^ (x v u))) = x ^ (y v ((x ^ z) v (z ^ u))) # label(H51). x v (y ^ (x v z)) = x v (y ^ (z v (x ^ (z v y)))) # label(H55). x ^ (y v z) = x ^ (y v ((x v y) ^ (z v (x ^ y)))) # label(H58). x ^ (y v z) = x ^ (y v (x ^ (z v (x ^ (y v (x ^ z)))))) # label(H64). x ^ (y v z) = x ^ (y v (x ^ (z v (x ^ y)))) # label(H68). x ^ (z v y) = (x ^ (y v (x ^ z))) v (x ^ (z v (x ^ y))) # label(H69). x ^ (y v (z ^ (y v u))) = x ^ (y v (z ^ (u v (x ^ y)))) # label(H76). x ^ (y v (z ^ (x v u))) = x ^ ((x ^ (y v (x ^ z))) v (z ^ u)) # label(H79). (x ^ y) v (x ^ z) = x ^ ((x ^ y) v (z ^ (x v (y ^ (x v z))))) # label(H80). (x ^ y) v (x ^ z) = x ^ ((y ^ (x v z)) v (z ^ (x v y))) # label(H82). prover9-manual-2009-02A/BA2.interps20000644000175000017500000000113311151315544016207 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(c1, [0]), function(c2, [2]), function(c3, [1]), function(f(_,_), [ 3,3,1,1,1,1, 3,4,5,0,1,2, 1,5,5,1,1,1, 1,0,1,0,1,1, 1,1,1,1,1,1, 1,2,1,1,1,2])]). interpretation( 6, [number = 2,seconds = 0], [ function(c1, [0]), function(c2, [2]), function(c3, [2]), function(f(_,_), [ 3,3,1,1,1,1, 3,4,5,0,1,2, 1,5,5,1,1,1, 1,0,1,0,1,1, 1,1,1,1,1,1, 1,2,1,1,1,2])]). % isofilter: input=10, kept=2, checks=8, perms=14, 0.01 seconds. prover9-manual-2009-02A/util/0000755000175000017500000000000010457721406015140 5ustar mccunemccuneprover9-manual-2009-02A/util/glossary.py0000755000175000017500000000162310441167335017360 0ustar mccunemccune#!/usr/bin/python import sys import re if len(sys.argv) == 1: print "need n args: glossary-file" sys.exit(1) fout = sys.stdout glossary_file = sys.argv[1] refs = [] anchor = None fout = open('sed.glossary', 'w') fin = open(glossary_file) lines = fin.readlines() for line in lines: if re.search('\n', '', concept) refs.append(concept) if re.search('\n', '', anchor) for ref in refs: fout.write('s/%s<\/g>/%s<\/a>/\n' % (ref,glossary_file,anchor,ref)) refs = [] anchor = None # for ref in refs: # (name,file) = ref # fout.write('s/%s<\/tt>/%s<\/b><\/tt><\/a>/\n' % (name,file,name,name)) prover9-manual-2009-02A/util/opt4.py0000755000175000017500000000265010430435077016403 0ustar mccunemccune#!/usr/bin/python import sys import re if len(sys.argv) == 1: print "need n args: html-files" sys.exit(1) fout = sys.stdout html_files = sys.argv html_files.pop(0) # get rid of program name refs = [] look = False for file in html_files: outlines = ''; fin = open(file) lines = fin.readlines() for line in lines: if re.search('', line): page_name = line.split(': ')[1].split('<')[0] if re.match('<blockquote>', line) or re.match('<!-- end option', line): look = False if look: if re.match('<a name=', line): anchor_name = line.split('"')[1] ref = '<a href="%s#%s"><b>%s</b></a>' % (file,anchor_name,name) outlines += line refs.append((name,file)) elif re.match('(assign|set)\(', line): ref_line = re.sub(name,ref,line) outlines += ref_line else: outlines += line if re.match('<!-- start option', line): name = line.split()[3] look = True if outlines != '': fout.write('<h3>From Page <a href="%s">%s</a></h3>\n\n' % (file,page_name)) fout.write(outlines) fin.close() fout = open('sed.option-refs', 'w') for ref in refs: (name,file) = ref fout.write('s/<tt>%s<\/tt>/<a href="%s#%s"><tt><b>%s<\/b><\/tt><\/a>/\n' % (name,file,name,name)) ����������������������������������������������������������������������������������������prover9-manual-2009-02A/util/options-make�����������������������������������������������������������0000755�0001750�0001750�00000000417�10457720212�017470� 0����������������������������������������������������������������������������������������������������ustar �mccune��������������������������mccune�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/bin/csh util/opt4.py install.html running.html input.html syntax.html auto.html term-order.html more-prep.html limits.html loop.html select.html inf-rules.html process-inf.html output.html weight.html attributes.html actions.html goals.html hints.html semantics.html �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������prover9-manual-2009-02A/util/prepare-refs�����������������������������������������������������������0000755�0001750�0001750�00000000472�06446326072�017467� 0����������������������������������������������������������������������������������������������������ustar �mccune��������������������������mccune�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# if ($#argv == 0) then set files="books journal conference drafts reports" else set files=$argv endif foreach i ($files) latex $i bibtex $i if (-e $i-ready.tex) /bin/mv $i-ready.tex $i-ready.tex~ sed -f sed.cite $i.bbl > $i-ready.tex /bin/rm $i.aux $i.blg $i.bbl $i.log $i.dvi end ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������prover9-manual-2009-02A/util/sed.cite���������������������������������������������������������������0000644�0001750�0001750�00000000170�06045246306�016556� 0����������������������������������������������������������������������������������������������������ustar �mccune��������������������������mccune�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������s/begin{thebibliography}{.*}/begin{enumerate}/ s/end{thebibliography}/end{enumerate}/ s/bibitem.*/item/ s/\\newblock//g ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������prover9-manual-2009-02A/util/sed.www-pubs�����������������������������������������������������������0000644�0001750�0001750�00000000367�06456462752�017450� 0����������������������������������������������������������������������������������������������������ustar �mccune��������������������������mccune�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������s/\\begin{enumerate}/<OL>/ s/\\end{enumerate}/<\/OL>/ s/\\item.*/<LI>/ s/\\newblock// s/{\\em \([^}]*\)}/<I>\1<\/I>/ /{\\em/N s/{\\em \([^}]*\)}/<I>\1<\/I>/ /{\\em/N s/{\\em \([^}]*\)}/<I>\1<\/I>/ s/{//g s/}//g s/~/ /g s/\\"o/\ö/g s/\\sc //g �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������prover9-manual-2009-02A/util/www-pubs���������������������������������������������������������������0000755�0001750�0001750�00000001701�07200131072�016642� 0����������������������������������������������������������������������������������������������������ustar �mccune��������������������������mccune�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/bin/csh set date=`/bin/date +"%h %d, 20%y"`; cat <<end1 <HTML> <HEAD> <TITLE>Publications of William McCune

    Publications of William McCune

    Updated $date. end1 #------------------- echo "
    " echo "

    Books

    " sed -f sed.www-pubs books-ready.tex echo "
    " echo "

    Journal Articles and Book Chapters

    " sed -f sed.www-pubs journal-ready.tex echo "
    " echo "

    Refereed Conference Proceedings

    " sed -f sed.www-pubs conference-ready.tex echo "
    " echo "

    Preprints and Drafts

    " sed -f sed.www-pubs drafts-ready.tex echo "
    " echo "

    Other Papers

    " sed -f sed.www-pubs reports-ready.tex #------------------- cat < These activities are projects of the Mathematics and Computer Science Division of Argonne National Laboratory. end2 prover9-manual-2009-02A/qg4-ac.interps0000644000175000017500000000101011151315544016627 0ustar mccunemccuneinterpretation( 4, [number = 1,seconds = 0], [ function(*(_,_), [0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0]), function(/(_,_), [0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0]), function(\(_,_), [0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0])]). interpretation( 4, [number = 2,seconds = 0], [ function(*(_,_), [0,1,2,3,1,0,3,2,2,3,1,0,3,2,0,1]), function(/(_,_), [0,1,3,2,1,0,2,3,2,3,0,1,3,2,1,0]), function(\(_,_), [0,1,2,3,1,0,3,2,3,2,0,1,2,3,1,0])]). % interpfilter assoc-comm.clauses all_true: checked 35, passed 2, 0.01 seconds. prover9-manual-2009-02A/BA2.interps30000644000175000017500000000043211151315544016211 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(f(_,_), [ 3,3,1,1,1,1, 3,4,5,0,1,2, 1,5,5,1,1,1, 1,0,1,0,1,1, 1,1,1,1,1,1, 1,2,1,1,1,2])]). % isofilter ignore_constants: input=10, kept=1, checks=9, perms=13, 0.01 seconds. prover9-manual-2009-02A/MOL.interps0000644000175000017500000000202111151315544016205 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(^(_,_), [0,4,4,4,4,0,4,1,4,4,4,1,4,4,2,4,4,2,4,4,4,3,4,3,4,4,4,4,4,4,0,1,2,3,4,5]), function(v(_,_), [0,5,5,5,0,5,5,1,5,5,1,5,5,5,2,5,2,5,5,5,5,3,3,5,0,1,2,3,4,5,5,5,5,5,5,5]), function('(_), [1,0,3,2,5,4]), function(c1, [0]), function(c2, [1]), function(c3, [2])]). interpretation( 6, [number = 2,seconds = 0], [ function(^(_,_), [0,4,4,4,4,0,4,1,4,4,4,1,4,4,2,4,4,2,4,4,4,3,4,3,4,4,4,4,4,4,0,1,2,3,4,5]), function(v(_,_), [0,5,5,5,0,5,5,1,5,5,1,5,5,5,2,5,2,5,5,5,5,3,3,5,0,1,2,3,4,5,5,5,5,5,5,5]), function('(_), [2,3,0,1,5,4]), function(c1, [0]), function(c2, [1]), function(c3, [2])]). interpretation( 6, [number = 3,seconds = 0], [ function(^(_,_), [0,4,4,4,4,0,4,1,4,4,4,1,4,4,2,4,4,2,4,4,4,3,4,3,4,4,4,4,4,4,0,1,2,3,4,5]), function(v(_,_), [0,5,5,5,0,5,5,1,5,5,1,5,5,5,2,5,2,5,5,5,5,3,3,5,0,1,2,3,4,5,5,5,5,5,5,5]), function('(_), [3,2,1,0,5,4]), function(c1, [0]), function(c2, [1]), function(c3, [2])]). prover9-manual-2009-02A/weight_test.in0000644000175000017500000000033110456772765017053 0ustar mccunemccuneclear(auto). clear(process_initial_sos). assign(constant_weight, 50). list(weights). weight(a) = 3. weight(x * y) = (weight(x) * weight(y)) + 4. end_of_list. formulas(sos). p(a). p(a * b). end_of_list. prover9-manual-2009-02A/MOL.interps20000644000175000017500000000066311151315544016301 0ustar mccunemccuneinterpretation( 6, [number = 1,seconds = 0], [ function(^(_,_), [ 0,4,4,4,4,0, 4,1,4,4,4,1, 4,4,2,4,4,2, 4,4,4,3,4,3, 4,4,4,4,4,4, 0,1,2,3,4,5]), function(v(_,_), [ 0,5,5,5,0,5, 5,1,5,5,1,5, 5,5,2,5,2,5, 5,5,5,3,3,5, 0,1,2,3,4,5, 5,5,5,5,5,5])]). % isofilter check ^ v output ^ v: input=3, kept=1, checks=2, perms=2, 0.01 seconds. prover9-manual-2009-02A/BA2.interps40000644000175000017500000000050511151315544016213 0ustar mccunemccunelist(interpretations). interpretation( 6, [number = 1,seconds = 0], [ function(f(_,_), [ 3,3,1,1,1,1, 3,4,5,0,1,2, 1,5,5,1,1,1, 1,0,1,0,1,1, 1,1,1,1,1,1, 1,2,1,1,1,2])]). % isofilter ignore_constants wrap: input=10, kept=1, checks=9, perms=13, 0.01 seconds. end_of_list. prover9-manual-2009-02A/x2.in0000644000175000017500000000024110456772765015056 0ustar mccunemccuneassign(max_seconds, 5). formulas(sos). (x * y) * z = x * (y * z). x * e = x. x * x' = e. end_of_list. formulas(goals). x * y = y * x. end_of_list. prover9-manual-2009-02A/BA2.interps50000644000175000017500000000050511151315544016214 0ustar mccunemccunelist(interpretations). interpretation( 6, [number = 1,seconds = 0], [ function(f(_,_), [ 3,3,1,1,1,1, 3,4,5,0,1,2, 1,5,5,1,1,1, 1,0,1,0,1,1, 1,1,1,1,1,1, 1,2,1,1,1,2])]). % isofilter ignore_constants wrap: input=10, kept=1, checks=9, perms=13, 0.01 seconds. end_of_list. prover9-manual-2009-02A/group-terms.out0000644000175000017500000000013211151315544017166 0ustar mccunemccunee. x = x. % rewriter group.demods: rewrote 2 terms with 13 rewrite steps in 0.01 seconds. prover9-manual-2009-02A/bool-ring.out0000644000175000017500000000057711151315545016610 0ustar mccunemccunea3 + b3 + a2 * b2 + a2 * a0 * b0 * a1 + a2 * a0 * b0 * b1 + a2 * a0 * a1 * cin + a2 * a0 * b1 * cin + a2 * b0 * a1 * cin + a2 * b0 * b1 * cin + a2 * a1 * b1 + b2 * a0 * b0 * a1 + b2 * a0 * b0 * b1 + b2 * a0 * a1 * cin + b2 * a0 * b1 * cin + b2 * b0 * a1 * cin + b2 * b0 * b1 * cin + b2 * a1 * b1. % rewriter bool-ring.demods: rewrote 1 terms with 5682 rewrite steps in 0.57 seconds. prover9-manual-2009-02A/PUZ031-1.in0000644000175000017500000000467711151315545015564 0ustar mccunemccuneset(prolog_style_variables). formulas(assumptions). animal(X) | -wolf(X) # label(wolf_is_an_animal) # label(axiom). animal(X) | -fox(X) # label(fox_is_an_animal) # label(axiom). animal(X) | -bird(X) # label(bird_is_an_animal) # label(axiom). animal(X) | -caterpillar(X) # label(caterpillar_is_an_animal) # label(axiom). animal(X) | -snail(X) # label(snail_is_an_animal) # label(axiom). wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). fox(a_fox) # label(there_is_a_fox) # label(axiom). bird(a_bird) # label(there_is_a_bird) # label(axiom). caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). snail(a_snail) # label(there_is_a_snail) # label(axiom). grain(a_grain) # label(there_is_a_grain) # label(axiom). plant(X) | -grain(X) # label(grain_is_a_plant) # label(axiom). eats(Animal,Plant) | eats(Animal,Small_animal) | -animal(Animal) | -plant(Plant) | -animal(Small_animal) | -plant(Other_plant) | -much_smaller(Small_animal,Animal) | -eats(Small_animal,Other_plant) # label(eating_habits) # label(axiom). much_smaller(Catapillar,Bird) | -caterpillar(Catapillar) | -bird(Bird) # label(caterpillar_smaller_than_bird) # label(axiom). much_smaller(Snail,Bird) | -snail(Snail) | -bird(Bird) # label(snail_smaller_than_bird) # label(axiom). much_smaller(Bird,Fox) | -bird(Bird) | -fox(Fox) # label(bird_smaller_than_fox) # label(axiom). much_smaller(Fox,Wolf) | -fox(Fox) | -wolf(Wolf) # label(fox_smaller_than_wolf) # label(axiom). -wolf(Wolf) | -fox(Fox) | -eats(Wolf,Fox) # label(wolf_dont_eat_fox) # label(axiom). -wolf(Wolf) | -grain(Grain) | -eats(Wolf,Grain) # label(wolf_dont_eat_grain) # label(axiom). eats(Bird,Catapillar) | -bird(Bird) | -caterpillar(Catapillar) # label(bird_eats_caterpillar) # label(axiom). -bird(Bird) | -snail(Snail) | -eats(Bird,Snail) # label(bird_dont_eat_snail) # label(axiom). plant(caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_food_is_a_plant) # label(axiom). eats(Catapillar,caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_eats_caterpillar_food) # label(axiom). plant(snail_food_of(Snail)) | -snail(Snail) # label(snail_food_is_a_plant) # label(axiom). eats(Snail,snail_food_of(Snail)) | -snail(Snail) # label(snail_eats_snail_food) # label(axiom). -animal(Animal) | -animal(Grain_eater) | -grain(Grain) | -eats(Animal,Grain_eater) | -eats(Grain_eater,Grain) # label(prove_the_animal_exists) # label(negated_conjecture). end_of_list. formulas(goals). end_of_list. prover9-manual-2009-02A/PUZ031-1.out0000644000175000017500000006010411151315545015750 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15888 was started by mccune on cleo, Wed Feb 25 12:26:29 2009 The command was "/home/mccune/bin/prover9 -f PUZ031-1.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file PUZ031-1.in set(prolog_style_variables). formulas(assumptions). animal(X) | -wolf(X) # label(wolf_is_an_animal) # label(axiom). animal(X) | -fox(X) # label(fox_is_an_animal) # label(axiom). animal(X) | -bird(X) # label(bird_is_an_animal) # label(axiom). animal(X) | -caterpillar(X) # label(caterpillar_is_an_animal) # label(axiom). animal(X) | -snail(X) # label(snail_is_an_animal) # label(axiom). wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). fox(a_fox) # label(there_is_a_fox) # label(axiom). bird(a_bird) # label(there_is_a_bird) # label(axiom). caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). snail(a_snail) # label(there_is_a_snail) # label(axiom). grain(a_grain) # label(there_is_a_grain) # label(axiom). plant(X) | -grain(X) # label(grain_is_a_plant) # label(axiom). eats(Animal,Plant) | eats(Animal,Small_animal) | -animal(Animal) | -plant(Plant) | -animal(Small_animal) | -plant(Other_plant) | -much_smaller(Small_animal,Animal) | -eats(Small_animal,Other_plant) # label(eating_habits) # label(axiom). much_smaller(Catapillar,Bird) | -caterpillar(Catapillar) | -bird(Bird) # label(caterpillar_smaller_than_bird) # label(axiom). much_smaller(Snail,Bird) | -snail(Snail) | -bird(Bird) # label(snail_smaller_than_bird) # label(axiom). much_smaller(Bird,Fox) | -bird(Bird) | -fox(Fox) # label(bird_smaller_than_fox) # label(axiom). much_smaller(Fox,Wolf) | -fox(Fox) | -wolf(Wolf) # label(fox_smaller_than_wolf) # label(axiom). -wolf(Wolf) | -fox(Fox) | -eats(Wolf,Fox) # label(wolf_dont_eat_fox) # label(axiom). -wolf(Wolf) | -grain(Grain) | -eats(Wolf,Grain) # label(wolf_dont_eat_grain) # label(axiom). eats(Bird,Catapillar) | -bird(Bird) | -caterpillar(Catapillar) # label(bird_eats_caterpillar) # label(axiom). -bird(Bird) | -snail(Snail) | -eats(Bird,Snail) # label(bird_dont_eat_snail) # label(axiom). plant(caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_food_is_a_plant) # label(axiom). eats(Catapillar,caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_eats_caterpillar_food) # label(axiom). plant(snail_food_of(Snail)) | -snail(Snail) # label(snail_food_is_a_plant) # label(axiom). eats(Snail,snail_food_of(Snail)) | -snail(Snail) # label(snail_eats_snail_food) # label(axiom). -animal(Animal) | -animal(Grain_eater) | -grain(Grain) | -eats(Animal,Grain_eater) | -eats(Grain_eater,Grain) # label(prove_the_animal_exists) # label(negated_conjecture). end_of_list. formulas(goals). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. animal(A) | -caterpillar(A) # label(caterpillar_is_an_animal) # label(axiom). [assumption]. animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). [assumption]. snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. much_smaller(A,B) | -caterpillar(A) | -bird(B) # label(caterpillar_smaller_than_bird) # label(axiom). [assumption]. much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. eats(A,B) | -bird(A) | -caterpillar(B) # label(bird_eats_caterpillar) # label(axiom). [assumption]. -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. plant(caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_food_is_a_plant) # label(axiom). [assumption]. eats(A,caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_eats_caterpillar_food) # label(axiom). [assumption]. plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating wolf/1 1 wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. 2 animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_wolf). [resolve(1,a,2,b)]. 3 much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. Derived: much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. 4 -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. Derived: -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. 5 -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. Derived: -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. Eliminating fox/1 6 fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. 7 animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_fox). [resolve(6,a,7,b)]. 8 much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. Derived: much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. 9 much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. Derived: much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 10 -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. Derived: -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. Eliminating bird/1 11 bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. 12 animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_bird). [resolve(11,a,12,b)]. 13 much_smaller(A,B) | -caterpillar(A) | -bird(B) # label(caterpillar_smaller_than_bird) # label(axiom). [assumption]. Derived: much_smaller(A,a_bird) | -caterpillar(A). [resolve(13,c,11,a)]. 14 much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. Derived: much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. 15 eats(A,B) | -bird(A) | -caterpillar(B) # label(bird_eats_caterpillar) # label(axiom). [assumption]. Derived: eats(a_bird,A) | -caterpillar(A). [resolve(15,b,11,a)]. 16 -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. Derived: -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. 17 much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. Derived: much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. Eliminating caterpillar/1 18 caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). [assumption]. 19 animal(A) | -caterpillar(A) # label(caterpillar_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_caterpillar). [resolve(18,a,19,b)]. 20 plant(caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_food_is_a_plant) # label(axiom). [assumption]. Derived: plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. 21 eats(A,caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_eats_caterpillar_food) # label(axiom). [assumption]. Derived: eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. 22 much_smaller(A,a_bird) | -caterpillar(A). [resolve(13,c,11,a)]. Derived: much_smaller(a_caterpillar,a_bird). [resolve(22,b,18,a)]. 23 eats(a_bird,A) | -caterpillar(A). [resolve(15,b,11,a)]. Derived: eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. Eliminating snail/1 24 snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. 25 animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_snail). [resolve(24,a,25,b)]. 26 plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. Derived: plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 27 eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. Derived: eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 28 much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. Derived: much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. 29 -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. Derived: -eats(a_bird,a_snail). [resolve(29,a,24,a)]. Eliminating grain/1 30 plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. 31 grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. Derived: plant(a_grain). [resolve(30,b,31,a)]. 32 -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. Derived: -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 33 -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. Derived: -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. Eliminating much_smaller/2 34 much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 35 eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. Derived: eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. 36 much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. Derived: eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. 37 much_smaller(a_caterpillar,a_bird). [resolve(22,b,18,a)]. 38 much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. Derived: eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ animal, plant, eats ]). Function symbol precedence: function_order([ a_bird, a_fox, a_snail, a_caterpillar, a_wolf, a_grain, caterpillar_food_of, snail_food_of ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 39 animal(a_wolf). [resolve(1,a,2,b)]. kept: 40 animal(a_fox). [resolve(6,a,7,b)]. kept: 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. kept: 42 animal(a_bird). [resolve(11,a,12,b)]. kept: 43 animal(a_caterpillar). [resolve(18,a,19,b)]. kept: 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. kept: 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. kept: 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. kept: 47 animal(a_snail). [resolve(24,a,25,b)]. kept: 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. kept: 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. kept: 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. kept: 51 plant(a_grain). [resolve(30,b,31,a)]. kept: 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. kept: 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 54 eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. kept: 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 56 eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. kept: 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 58 eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. kept: 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. kept: 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. kept: 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. kept: 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. kept: 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. kept: 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. kept: 65 eats(a_bird,A) | -plant(A) | -eats(a_snail,A). [factor(59,b,c)]. kept: 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 39 animal(a_wolf). [resolve(1,a,2,b)]. 40 animal(a_fox). [resolve(6,a,7,b)]. 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. 42 animal(a_bird). [resolve(11,a,12,b)]. 43 animal(a_caterpillar). [resolve(18,a,19,b)]. 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. 47 animal(a_snail). [resolve(24,a,25,b)]. 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. 51 plant(a_grain). [resolve(30,b,31,a)]. 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. 65 eats(a_bird,A) | -plant(A) | -eats(a_snail,A). [factor(59,b,c)]. 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=2): 39 animal(a_wolf). [resolve(1,a,2,b)]. given #2 (I,wt=2): 40 animal(a_fox). [resolve(6,a,7,b)]. given #3 (I,wt=3): 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. given #4 (I,wt=2): 42 animal(a_bird). [resolve(11,a,12,b)]. given #5 (I,wt=2): 43 animal(a_caterpillar). [resolve(18,a,19,b)]. given #6 (I,wt=3): 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. given #7 (I,wt=4): 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. given #8 (I,wt=3): 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. given #9 (I,wt=2): 47 animal(a_snail). [resolve(24,a,25,b)]. given #10 (I,wt=3): 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. given #11 (I,wt=4): 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. given #12 (I,wt=3): 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. given #13 (I,wt=2): 51 plant(a_grain). [resolve(30,b,31,a)]. given #14 (I,wt=10): 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. given #15 (I,wt=3): 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. given #16 (I,wt=10): 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. given #17 (I,wt=13): 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. given #18 (I,wt=10): 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. given #19 (I,wt=8): 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. given #20 (I,wt=5): 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. given #21 (I,wt=8): 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. given #22 (I,wt=10): 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. given #23 (I,wt=11): 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. given #24 (I,wt=8): 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. given #25 (A,wt=7): 67 -animal(snail_food_of(a_snail)) | -eats(snail_food_of(a_snail),a_grain). [resolve(52,c,49,a),unit_del(a,47)]. given #26 (F,wt=2): 77 -plant(a_snail). [ur(59,a,50,a,c,48,a,d,49,a)]. given #27 (F,wt=3): 68 -eats(a_caterpillar,a_grain). [resolve(52,c,46,a),unit_del(a,42),unit_del(b,43)]. given #28 (F,wt=3): 70 -eats(a_fox,a_grain). [ur(55,a,53,a,b,51,a,c,51,a)]. given #29 (F,wt=4): 71 -eats(a_fox,snail_food_of(a_snail)). [ur(55,a,53,a,b,51,a,c,48,a)]. given #30 (T,wt=5): 76 eats(a_bird,A) | -plant(A). [resolve(59,d,49,a),unit_del(c,48)]. given #31 (T,wt=3): 78 eats(a_bird,a_grain). [resolve(76,b,51,a)]. ============================== PROOF ================================= % Proof 1 at 0.02 (+ 0.00) seconds. % Length of proof is 52. % Level of proof is 8. % Maximum clause weight is 13. % Given clauses 31. 1 wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. 2 animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. 3 much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. 4 -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. 5 -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. 6 fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. 7 animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. 8 much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. 9 much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. 10 -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. 11 bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. 12 animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. 14 much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. 16 -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. 17 much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. 24 snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. 25 animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. 26 plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. 27 eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. 28 much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. 29 -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. 30 plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. 31 grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. 32 -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. 33 -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. 34 much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 35 eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. 36 much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. 38 much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. 39 animal(a_wolf). [resolve(1,a,2,b)]. 40 animal(a_fox). [resolve(6,a,7,b)]. 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. 42 animal(a_bird). [resolve(11,a,12,b)]. 47 animal(a_snail). [resolve(24,a,25,b)]. 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. 51 plant(a_grain). [resolve(30,b,31,a)]. 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 54 eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 56 eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 58 eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. 70 -eats(a_fox,a_grain). [ur(55,a,53,a,b,51,a,c,51,a)]. 76 eats(a_bird,A) | -plant(A). [resolve(59,d,49,a),unit_del(c,48)]. 78 eats(a_bird,a_grain). [resolve(76,b,51,a)]. 81 eats(a_fox,a_bird). [resolve(78,a,64,d),unit_del(a,70),unit_del(c,51)]. 86 $F. [ur(52,a,40,a,b,42,a,d,78,a),unit_del(a,81)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=31. Generated=57. Kept=44. proofs=1. Usable=30. Sos=7. Demods=0. Limbo=5, Disabled=58. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=12. Back_subsumed=2. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=7. Nonunit_bsub_feature_tests=31. Megabytes=0.07. User_CPU=0.02, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15888 exit (max_proofs) Wed Feb 25 12:26:29 2009 prover9-manual-2009-02A/PUZ031-1.out20000644000175000017500000006002311151315545016032 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15890 was started by mccune on cleo, Wed Feb 25 12:26:29 2009 The command was "/home/mccune/bin/prover9". ============================== end of head =========================== ============================== INPUT ================================= set(prolog_style_variables). formulas(assumptions). animal(X) | -wolf(X) # label(wolf_is_an_animal) # label(axiom). animal(X) | -fox(X) # label(fox_is_an_animal) # label(axiom). animal(X) | -bird(X) # label(bird_is_an_animal) # label(axiom). animal(X) | -caterpillar(X) # label(caterpillar_is_an_animal) # label(axiom). animal(X) | -snail(X) # label(snail_is_an_animal) # label(axiom). wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). fox(a_fox) # label(there_is_a_fox) # label(axiom). bird(a_bird) # label(there_is_a_bird) # label(axiom). caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). snail(a_snail) # label(there_is_a_snail) # label(axiom). grain(a_grain) # label(there_is_a_grain) # label(axiom). plant(X) | -grain(X) # label(grain_is_a_plant) # label(axiom). eats(Animal,Plant) | eats(Animal,Small_animal) | -animal(Animal) | -plant(Plant) | -animal(Small_animal) | -plant(Other_plant) | -much_smaller(Small_animal,Animal) | -eats(Small_animal,Other_plant) # label(eating_habits) # label(axiom). much_smaller(Catapillar,Bird) | -caterpillar(Catapillar) | -bird(Bird) # label(caterpillar_smaller_than_bird) # label(axiom). much_smaller(Snail,Bird) | -snail(Snail) | -bird(Bird) # label(snail_smaller_than_bird) # label(axiom). much_smaller(Bird,Fox) | -bird(Bird) | -fox(Fox) # label(bird_smaller_than_fox) # label(axiom). much_smaller(Fox,Wolf) | -fox(Fox) | -wolf(Wolf) # label(fox_smaller_than_wolf) # label(axiom). -wolf(Wolf) | -fox(Fox) | -eats(Wolf,Fox) # label(wolf_dont_eat_fox) # label(axiom). -wolf(Wolf) | -grain(Grain) | -eats(Wolf,Grain) # label(wolf_dont_eat_grain) # label(axiom). eats(Bird,Catapillar) | -bird(Bird) | -caterpillar(Catapillar) # label(bird_eats_caterpillar) # label(axiom). -bird(Bird) | -snail(Snail) | -eats(Bird,Snail) # label(bird_dont_eat_snail) # label(axiom). plant(caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_food_is_a_plant) # label(axiom). eats(Catapillar,caterpillar_food_of(Catapillar)) | -caterpillar(Catapillar) # label(caterpillar_eats_caterpillar_food) # label(axiom). plant(snail_food_of(Snail)) | -snail(Snail) # label(snail_food_is_a_plant) # label(axiom). eats(Snail,snail_food_of(Snail)) | -snail(Snail) # label(snail_eats_snail_food) # label(axiom). -animal(Animal) | -animal(Grain_eater) | -grain(Grain) | -eats(Animal,Grain_eater) | -eats(Grain_eater,Grain) # label(prove_the_animal_exists) # label(negated_conjecture). end_of_list. formulas(goals). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. animal(A) | -caterpillar(A) # label(caterpillar_is_an_animal) # label(axiom). [assumption]. animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). [assumption]. snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. much_smaller(A,B) | -caterpillar(A) | -bird(B) # label(caterpillar_smaller_than_bird) # label(axiom). [assumption]. much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. eats(A,B) | -bird(A) | -caterpillar(B) # label(bird_eats_caterpillar) # label(axiom). [assumption]. -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. plant(caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_food_is_a_plant) # label(axiom). [assumption]. eats(A,caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_eats_caterpillar_food) # label(axiom). [assumption]. plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= Eliminating wolf/1 1 wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. 2 animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_wolf). [resolve(1,a,2,b)]. 3 much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. Derived: much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. 4 -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. Derived: -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. 5 -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. Derived: -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. Eliminating fox/1 6 fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. 7 animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_fox). [resolve(6,a,7,b)]. 8 much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. Derived: much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. 9 much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. Derived: much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 10 -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. Derived: -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. Eliminating bird/1 11 bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. 12 animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_bird). [resolve(11,a,12,b)]. 13 much_smaller(A,B) | -caterpillar(A) | -bird(B) # label(caterpillar_smaller_than_bird) # label(axiom). [assumption]. Derived: much_smaller(A,a_bird) | -caterpillar(A). [resolve(13,c,11,a)]. 14 much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. Derived: much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. 15 eats(A,B) | -bird(A) | -caterpillar(B) # label(bird_eats_caterpillar) # label(axiom). [assumption]. Derived: eats(a_bird,A) | -caterpillar(A). [resolve(15,b,11,a)]. 16 -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. Derived: -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. 17 much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. Derived: much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. Eliminating caterpillar/1 18 caterpillar(a_caterpillar) # label(there_is_a_caterpillar) # label(axiom). [assumption]. 19 animal(A) | -caterpillar(A) # label(caterpillar_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_caterpillar). [resolve(18,a,19,b)]. 20 plant(caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_food_is_a_plant) # label(axiom). [assumption]. Derived: plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. 21 eats(A,caterpillar_food_of(A)) | -caterpillar(A) # label(caterpillar_eats_caterpillar_food) # label(axiom). [assumption]. Derived: eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. 22 much_smaller(A,a_bird) | -caterpillar(A). [resolve(13,c,11,a)]. Derived: much_smaller(a_caterpillar,a_bird). [resolve(22,b,18,a)]. 23 eats(a_bird,A) | -caterpillar(A). [resolve(15,b,11,a)]. Derived: eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. Eliminating snail/1 24 snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. 25 animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. Derived: animal(a_snail). [resolve(24,a,25,b)]. 26 plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. Derived: plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 27 eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. Derived: eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 28 much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. Derived: much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. 29 -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. Derived: -eats(a_bird,a_snail). [resolve(29,a,24,a)]. Eliminating grain/1 30 plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. 31 grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. Derived: plant(a_grain). [resolve(30,b,31,a)]. 32 -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. Derived: -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 33 -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. Derived: -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. Eliminating much_smaller/2 34 much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 35 eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. Derived: eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. 36 much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. Derived: eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. 37 much_smaller(a_caterpillar,a_bird). [resolve(22,b,18,a)]. 38 much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. Derived: eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. ============================== end predicate elimination ============= Auto_denials: (non-Horn, no changes). Term ordering decisions: Predicate symbol precedence: predicate_order([ animal, plant, eats ]). Function symbol precedence: function_order([ a_bird, a_fox, a_snail, a_caterpillar, a_wolf, a_grain, caterpillar_food_of, snail_food_of ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(binary_resolution). % (non-Horn) % set(neg_ur_resolution). % (non-Horn, less than 100 clauses) Auto_process settings: % set(factor). % (non-Horn) % set(unit_deletion). % (non-Horn) kept: 39 animal(a_wolf). [resolve(1,a,2,b)]. kept: 40 animal(a_fox). [resolve(6,a,7,b)]. kept: 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. kept: 42 animal(a_bird). [resolve(11,a,12,b)]. kept: 43 animal(a_caterpillar). [resolve(18,a,19,b)]. kept: 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. kept: 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. kept: 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. kept: 47 animal(a_snail). [resolve(24,a,25,b)]. kept: 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. kept: 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. kept: 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. kept: 51 plant(a_grain). [resolve(30,b,31,a)]. kept: 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. kept: 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 54 eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. kept: 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 56 eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. kept: 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 58 eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. kept: 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. kept: 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. kept: 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. kept: 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. kept: 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. kept: 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. kept: 65 eats(a_bird,A) | -plant(A) | -eats(a_snail,A). [factor(59,b,c)]. kept: 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 39 animal(a_wolf). [resolve(1,a,2,b)]. 40 animal(a_fox). [resolve(6,a,7,b)]. 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. 42 animal(a_bird). [resolve(11,a,12,b)]. 43 animal(a_caterpillar). [resolve(18,a,19,b)]. 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. 47 animal(a_snail). [resolve(24,a,25,b)]. 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. 51 plant(a_grain). [resolve(30,b,31,a)]. 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. 65 eats(a_bird,A) | -plant(A) | -eats(a_snail,A). [factor(59,b,c)]. 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=2): 39 animal(a_wolf). [resolve(1,a,2,b)]. given #2 (I,wt=2): 40 animal(a_fox). [resolve(6,a,7,b)]. given #3 (I,wt=3): 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. given #4 (I,wt=2): 42 animal(a_bird). [resolve(11,a,12,b)]. given #5 (I,wt=2): 43 animal(a_caterpillar). [resolve(18,a,19,b)]. given #6 (I,wt=3): 44 plant(caterpillar_food_of(a_caterpillar)). [resolve(20,b,18,a)]. given #7 (I,wt=4): 45 eats(a_caterpillar,caterpillar_food_of(a_caterpillar)). [resolve(21,b,18,a)]. given #8 (I,wt=3): 46 eats(a_bird,a_caterpillar). [resolve(23,b,18,a)]. given #9 (I,wt=2): 47 animal(a_snail). [resolve(24,a,25,b)]. given #10 (I,wt=3): 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. given #11 (I,wt=4): 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. given #12 (I,wt=3): 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. given #13 (I,wt=2): 51 plant(a_grain). [resolve(30,b,31,a)]. given #14 (I,wt=10): 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. given #15 (I,wt=3): 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. given #16 (I,wt=10): 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. given #17 (I,wt=13): 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. given #18 (I,wt=10): 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. given #19 (I,wt=8): 60 -animal(A) | -eats(A,A) | -eats(A,a_grain). [factor(52,a,b)]. given #20 (I,wt=5): 61 -animal(a_grain) | -eats(a_grain,a_grain). [factor(52,c,d),merge(b)]. given #21 (I,wt=8): 62 eats(a_wolf,A) | -plant(A) | -eats(a_fox,A). [factor(55,b,c)]. given #22 (I,wt=10): 63 eats(a_fox,a_bird) | -plant(a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,a,b)]. given #23 (I,wt=11): 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. given #24 (I,wt=8): 66 eats(a_fox,a_bird) | -plant(a_bird) | -eats(a_bird,a_bird). [factor(63,b,c)]. given #25 (A,wt=7): 67 -animal(snail_food_of(a_snail)) | -eats(snail_food_of(a_snail),a_grain). [resolve(52,c,49,a),unit_del(a,47)]. given #26 (F,wt=2): 77 -plant(a_snail). [ur(59,a,50,a,c,48,a,d,49,a)]. given #27 (F,wt=3): 68 -eats(a_caterpillar,a_grain). [resolve(52,c,46,a),unit_del(a,42),unit_del(b,43)]. given #28 (F,wt=3): 70 -eats(a_fox,a_grain). [ur(55,a,53,a,b,51,a,c,51,a)]. given #29 (F,wt=4): 71 -eats(a_fox,snail_food_of(a_snail)). [ur(55,a,53,a,b,51,a,c,48,a)]. given #30 (T,wt=5): 76 eats(a_bird,A) | -plant(A). [resolve(59,d,49,a),unit_del(c,48)]. given #31 (T,wt=3): 78 eats(a_bird,a_grain). [resolve(76,b,51,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 52. % Level of proof is 8. % Maximum clause weight is 13. % Given clauses 31. 1 wolf(a_wolf) # label(there_is_a_wolf) # label(axiom). [assumption]. 2 animal(A) | -wolf(A) # label(wolf_is_an_animal) # label(axiom). [assumption]. 3 much_smaller(A,B) | -fox(A) | -wolf(B) # label(fox_smaller_than_wolf) # label(axiom). [assumption]. 4 -wolf(A) | -fox(B) | -eats(A,B) # label(wolf_dont_eat_fox) # label(axiom). [assumption]. 5 -wolf(A) | -grain(B) | -eats(A,B) # label(wolf_dont_eat_grain) # label(axiom). [assumption]. 6 fox(a_fox) # label(there_is_a_fox) # label(axiom). [assumption]. 7 animal(A) | -fox(A) # label(fox_is_an_animal) # label(axiom). [assumption]. 8 much_smaller(A,B) | -bird(A) | -fox(B) # label(bird_smaller_than_fox) # label(axiom). [assumption]. 9 much_smaller(A,a_wolf) | -fox(A). [resolve(3,c,1,a)]. 10 -fox(A) | -eats(a_wolf,A). [resolve(4,a,1,a)]. 11 bird(a_bird) # label(there_is_a_bird) # label(axiom). [assumption]. 12 animal(A) | -bird(A) # label(bird_is_an_animal) # label(axiom). [assumption]. 14 much_smaller(A,B) | -snail(A) | -bird(B) # label(snail_smaller_than_bird) # label(axiom). [assumption]. 16 -bird(A) | -snail(B) | -eats(A,B) # label(bird_dont_eat_snail) # label(axiom). [assumption]. 17 much_smaller(A,a_fox) | -bird(A). [resolve(8,c,6,a)]. 24 snail(a_snail) # label(there_is_a_snail) # label(axiom). [assumption]. 25 animal(A) | -snail(A) # label(snail_is_an_animal) # label(axiom). [assumption]. 26 plant(snail_food_of(A)) | -snail(A) # label(snail_food_is_a_plant) # label(axiom). [assumption]. 27 eats(A,snail_food_of(A)) | -snail(A) # label(snail_eats_snail_food) # label(axiom). [assumption]. 28 much_smaller(A,a_bird) | -snail(A). [resolve(14,c,11,a)]. 29 -snail(A) | -eats(a_bird,A). [resolve(16,a,11,a)]. 30 plant(A) | -grain(A) # label(grain_is_a_plant) # label(axiom). [assumption]. 31 grain(a_grain) # label(there_is_a_grain) # label(axiom). [assumption]. 32 -animal(A) | -animal(B) | -grain(C) | -eats(A,B) | -eats(B,C) # label(prove_the_animal_exists) # label(negated_conjecture). [assumption]. 33 -grain(A) | -eats(a_wolf,A). [resolve(5,a,1,a)]. 34 much_smaller(a_fox,a_wolf). [resolve(9,b,6,a)]. 35 eats(A,B) | eats(A,C) | -animal(A) | -plant(B) | -animal(C) | -plant(D) | -much_smaller(C,A) | -eats(C,D) # label(eating_habits) # label(axiom). [assumption]. 36 much_smaller(a_bird,a_fox). [resolve(17,b,11,a)]. 38 much_smaller(a_snail,a_bird). [resolve(28,b,24,a)]. 39 animal(a_wolf). [resolve(1,a,2,b)]. 40 animal(a_fox). [resolve(6,a,7,b)]. 41 -eats(a_wolf,a_fox). [resolve(10,a,6,a)]. 42 animal(a_bird). [resolve(11,a,12,b)]. 47 animal(a_snail). [resolve(24,a,25,b)]. 48 plant(snail_food_of(a_snail)). [resolve(26,b,24,a)]. 49 eats(a_snail,snail_food_of(a_snail)). [resolve(27,b,24,a)]. 50 -eats(a_bird,a_snail). [resolve(29,a,24,a)]. 51 plant(a_grain). [resolve(30,b,31,a)]. 52 -animal(A) | -animal(B) | -eats(A,B) | -eats(B,a_grain). [resolve(32,c,31,a)]. 53 -eats(a_wolf,a_grain). [resolve(33,a,31,a)]. 54 eats(a_wolf,A) | eats(a_wolf,a_fox) | -animal(a_wolf) | -plant(A) | -animal(a_fox) | -plant(B) | -eats(a_fox,B). [resolve(34,a,35,g)]. 55 eats(a_wolf,A) | -plant(A) | -plant(B) | -eats(a_fox,B). [copy(54),unit_del(b,41),unit_del(c,39),unit_del(e,40)]. 56 eats(a_fox,A) | eats(a_fox,a_bird) | -animal(a_fox) | -plant(A) | -animal(a_bird) | -plant(B) | -eats(a_bird,B). [resolve(36,a,35,g)]. 57 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -plant(B) | -eats(a_bird,B). [copy(56),unit_del(c,40),unit_del(e,42)]. 58 eats(a_bird,A) | eats(a_bird,a_snail) | -animal(a_bird) | -plant(A) | -animal(a_snail) | -plant(B) | -eats(a_snail,B). [resolve(38,a,35,g)]. 59 eats(a_bird,A) | -plant(A) | -plant(B) | -eats(a_snail,B). [copy(58),unit_del(b,50),unit_del(c,42),unit_del(e,47)]. 64 eats(a_fox,A) | eats(a_fox,a_bird) | -plant(A) | -eats(a_bird,A). [factor(57,c,d)]. 70 -eats(a_fox,a_grain). [ur(55,a,53,a,b,51,a,c,51,a)]. 76 eats(a_bird,A) | -plant(A). [resolve(59,d,49,a),unit_del(c,48)]. 78 eats(a_bird,a_grain). [resolve(76,b,51,a)]. 81 eats(a_fox,a_bird). [resolve(78,a,64,d),unit_del(a,70),unit_del(c,51)]. 86 $F. [ur(52,a,40,a,b,42,a,d,78,a),unit_del(a,81)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=31. Generated=57. Kept=44. proofs=1. Usable=30. Sos=7. Demods=0. Limbo=5, Disabled=58. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=12. Back_subsumed=2. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=7. Nonunit_bsub_feature_tests=31. Megabytes=0.07. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15890 exit (max_proofs) Wed Feb 25 12:26:29 2009 prover9-manual-2009-02A/RBA-2.tptp0000644000175000017500000000116611151315545015636 0ustar mccunemccune % The LADR formulas contain function or predicate symbols % that are not legal TPTP symbols, and we have replaced those % symbols with new symbols. Here is the list of the unaccepted % symbols and the corresponding replacements. % % (arity 1) ' tptp0 % (arity 2) + tptp1 cnf(sos,axiom,tptp1(A,B) = tptp1(B,A)). cnf(sos,axiom,tptp1(tptp1(A,B),C) = tptp1(A,tptp1(B,C))). cnf(sos,axiom,tptp0(tptp1(tptp0(tptp1(A,B)),tptp0(tptp1(A,tptp0(B))))) = A). fof(sos,axiom,? [X0] : tptp1(X0,X0) = X0). fof(goals,conjecture,! [X1] : ! [X2] : tptp1(tptp0(tptp1(X1,tptp0(X2))),tptp0(tptp1(tptp0(X1),tptp0(X2)))) = X2). prover9-manual-2009-02A/RBA-2q.tptp0000644000175000017500000000112011151315545016005 0ustar mccunemccune % The LADR formulas contain function or predicate symbols % that are not legal TPTP symbols, and we have replaced those % symbols with new symbols. Here is the list of the unaccepted % symbols and the corresponding replacements. % % (arity 1) ' '\'' % (arity 2) + '+' cnf(sos,axiom,'+'(A,B) = '+'(B,A)). cnf(sos,axiom,'+'('+'(A,B),C) = '+'(A,'+'(B,C))). cnf(sos,axiom,'\''('+'('\''('+'(A,B)),'\''('+'(A,'\''(B))))) = A). fof(sos,axiom,? [X0] : '+'(X0,X0) = X0). fof(goals,conjecture,! [X1] : ! [X2] : '+'('\''('+'(X1,'\''(X2))),'\''('+'('\''(X1),'\''(X2)))) = X2). prover9-manual-2009-02A/assoc-comm.clauses0000644000175000017500000000014610607455332017605 0ustar mccunemccunex * y = y * x # label(commutativity). (x * y) * z = x * (y * z) # label(associativity). prover9-manual-2009-02A/outs0000644000175000017500000000133410656077131015101 0ustar mccunemccuneandrews.out andrews.out2 subset_trans.out subset_trans.out2 subset_trans.out3 subset_trans.out4 subset_trans_expand.out LT-82-2.out weight_test.out x2.prover9.out olsax.out redeclare.out hard.out easy.out easy.hints hard-hints.out x2.mace4.out LT-82-2-interp.out subset_trans.proof1 subset_trans.proof2 subset_trans.proof3 subset_trans.proof4 subset_trans.proof5.xml subset_trans.proof6 subset_trans.proof7 subset_trans.proof8 x2.standard x2.standard2 x2.portable x2.tabular x2.raw x2.cooked x2.xml x2.tex LT-port.out MOL-cand.238 uc-hunt.out qg4-ac.interps BA2.interps BA2.interps2 BA2.interps3 MOL.interps MOL.interps2 BA2.interps4 BA2.interps5 group-terms.out bool-ring.out BA4.out PUZ031-1.in PUZ031-1.out PUZ031-1.out2 RBA-2.p prover9-manual-2009-02A/redeclare.in0000644000175000017500000000215710647214444016446 0ustar mccunemccune% In this example, all of changable operations are % changed to other symbols. (Not all of them are % used in the formulas below.) % Note that multi-character special symbols must be quoted. redeclare(true, TRUE ). redeclare(false, FALSE ). redeclare(negation, ~ ). redeclare(disjunction, OR ). redeclare(conjunction, AND ). redeclare(implication, IMPLIES ). redeclare(backward_implication, "<--" ). redeclare(equivalence, IFF ). redeclare(universal_quantification, ALL ). redeclare(existential_quantification, EXISTS ). redeclare(equality, "==" ). redeclare(negated_equality, "=/=" ). redeclare(attribute, @ ). formulas(assumptions). (x * y) * z == z * (y * z) @ label(associativity). EXISTS e ((ALL x (e * x == x)) AND (ALL x EXISTS y (y * x == e))) @ label(left_identity_inverse). end_of_list. formulas(goals). x * y == x * z IMPLIES y == z @ label(right_cancellation). end_of_list. prover9-manual-2009-02A/make_book0000755000175000017500000000106610667606064016050 0ustar mccunemccunehtmldoc -f finalbook.pdf --size letter -t pdf14 --webpage --duplex nav.html \ intro.html \ install.html \ running.html \ input.html \ syntax.html \ auto.html \ term-order.html \ more-prep.html \ limits.html \ loop.html \ select.html \ inf-rules.html \ process-inf.html \ output.html \ weight.html \ attributes.html \ actions.html \ goals.html \ hints.html \ semantics.html \ mace4.html \ m4-input.html \ m4-options.html \ m4-interpformat.html \ m4-isofilter.html \ prooftrans.html \ fof-prover9.html \ others.html \ options.html \ glossary.html \ references.html \ prover9-manual-2009-02A/subset_trans_expand.in0000644000175000017500000000034710624652510020565 0ustar mccunemccuneset(expand_relational_defs). formulas(assumptions). all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))). end_of_list. formulas(goals). all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)). end_of_list. prover9-manual-2009-02A/finalbook.pdf0000644000175000017500000275104410667606115016641 0ustar mccunemccune%PDF-1.4 %âãÏÓ 1 0 obj<>endobj 2 0 obj<>endobj 3 0 obj<>stream x¬»ctem·6Û¶mWR±“ŠmgǶmWlÛvŶ“ŠmÛùò¼Gݧ{ôÓçß}O\ÓsŒµ×ÚäÄòJô‚ƶ†1['zf¦ŸD¶Îæ¢ï ; 9¹°ÀÀÉÜÖFÄÀ ð“H `L$0"ba!bæââ‚!ÿ·sw075s"¢RQT£¦¥¥û/Ê?"D†îÿÁùÖt47µ!¢ø>¸¬lí¬6NßÿcE%€ÈÉ @dbn –“×”'¢—U!Ø ¬ˆä ­Ìˆ¤Í6Žj"[¢oÂ?"#[cóBsdøvBБȀÈÑ`dþ­p3Øýâ#²8X›;:~Ÿ‰Ì‰L lœ¾sàdKdncdålüßt“ïô}ƒØ9Ø~KXó¾ÁämÌ휈¾­Ê‹ˆý›ŸNfNÿØv4ÿfÙš|KÛ9ÿ“‹o,ƒ`¾¹Næ6ŽDN·o¢-‘!€ÈØÜÑÎÊÀýÛö7˜ƒù¿Üpv4·1ý/舦ÆVGÇo˜oì²ó_qþ£úÑØÙY¹ÿKÛö_Rÿ郹“#ÀÊ„†™åÛ¦‘Ó·mSsÆDÒÆÄ–ˆ™éßèÆÎvÿÁs8ü+ATÿô õ·ƶ6VîDÆFY[§ï„QýϪÌ@ô¿Väÿ…ÿ¯ø¥¼ÿÿŠûßkô_#Kõ9þæù¿C‹9[YÉX7À¿/–ÿ‡€µ¹•ûÿ§ˆàߌ"ÀÔÙÊÀá¿#H:|wµ é÷`bønÏÚÎÜQÌÜ `,oîddFdb`õ=ðÿ¢«Ø¬Ìmßãù¯é'¢gfúwÿä)›™YÚ|Oû¿±6Æÿ­­ÿ™‡9Íø ó_ðòßsë¤ìn÷íÉ¿ÙS“±ý^ÿ~ùGIHÈÖÈ“þ{¼èYXq|[àdföþÿ ó¿Áü£)càä`îF¤õ#ó¿"ý'ÚÿÛMç¿ÁˆÚÙÿ3åJN6Æß«á? ÿž s{g€¤Èw˜,L\lìÿ²eäìàð½Œþ5üßqÃüûý_KpÁœDC/ëôÑÝ`¿¬›§“ôki±_Xä³' [+uè&Ò>-mݘH…›g:5:læÄX¿?Ü‚Ü q5®•…]Ð `ÑÒnêkÅìQÈn˜ÒËý$ùóî¥òÒw AËM”0Ï“ñz1·^Þ^ʲËÁð;_žE! ËÌßF¤qÛÉ5 ˆ×‰:ˆ€Fë^CgÔ :|ÊeùYñ+sÝW#ÊÿHKP<Ï:…Ï‚Ä`ˆÇ%‹QJÿ•N8by6me_ÏÇ+]_;*O–ø}/]A¯uÍ6M_”mƦlÅwûµT1<3 l.!yá"Âî)­(\1+7=“Í\×Ç'ºnVN‚ÐY´ÌÚ­ÜDª1•×$UEIÓXCöî V¨CmPèYBu˜]¤Õ·°Ž_òðôî בâ^¼6¼ü‡ñ”©µÆxà•j÷`:B¿<‡ªÊ6=í™ïþp5XÛßy s6n†£!t>‰T¤Lþ~eØ —ÉZææ¼z®ïÃÉsèéeèB\o|â‹U”ögØÛ€«Ú/\ ¦Ö têƒ "w™ƒÍÉÒŠ?8'ªÓNÀ4¹øB—Àǵåf)#ÆnYW d¶k8c*Ò(Rà jeç£{³â ÏüF´ýzoª¦Žw$`óEî¹Qã#"½RXýò× m«¤Evý†K@œ c,϶­ÔÃ1{X‘6ü¾¥ø¾†TäC\FÑon-5„òˆZ¢ˆE2ÝEãù®Ã‰ç',Λ°¢ŒëÑëÔ í…ŒTÅ@Qëµ|ÝöÆîä±]ÃDøÃiæªàíU Å ÄXLXè;ADj½óNú<(›’U­=”'@O’Êg jó|èø àŽžÜ‚Óö¥í2ûq‘‘|1ªìê<Ó?¢þ’”EWb¢Q~Õ(@8B¾ÖV51¬’ L2Cx.¦)¯­CEi"­tÆÁìS»%Iþ?bT-ÍÂq»Ø ”“à‰¥eŽ@h®1¢di!V`¡õôskž"¼5Ÿ$®@ 61¹×$ÿ…—Ë@`θHåh}ç 4šÿnä,,#&¨6P†ÅWÏÙ¨½x¬¦ªˆAoDgúD$—º!™´.øVkëdxW†ziu_d׌9¼O­MBêÞ«8’úÖÎåd¥Ñ8Sq7ê`ä$ DžGúãµ’IR€ ÖØã»X€o§Dê©‹Ãóh Χðö6ÁH‹÷¯û¨n¤“(ü:mŒYÉZJ¸kô:È‚"D‘;ß·øË‘qS·–©_Æ5Ê$LEògŠš¤såö©ó“Ê‚þ 7'…o›?Zlµé”’­Ûš-Dèø[á踮èGÝ/<¸ybžýa³*›ÛÒbÒUU™y€±ÁÆSÒóçi‘K‘;Éü÷ÛerZRiTíèÜÇÚ~v;9F_ê‡Ã×]°M—æÃ®ó†Êº¸$£Ç(2ÌT$§Ëò ï‹Ëb“ÇÉË(o¶Ôë·$h˪*Gx£àô> >OÞjœâª£bjºæÍÍÃæÛÎ\4Áz² ÍïѪîÒË{RÂP=O%QoçÙ˜¡‚®¯_¤ô¡xŠ06­1·gwH{´k1=pÈfsU[ûýÝ 97¿k©¯Ñ8Ê b¸tÌò jöC¬’À'Ò.0áð–“%š3¬/†BˆþÞ²¹;a[¾£µÈc‹×èr )Ü Tù•9pùd”&ô‹Ra (ð= Úì'i= Ø,\)s{RÊûº„¤ÐI$ÖFi¦ãëÍB¿¹é9©3y-%Î’†’šcšÆkÈAÚöLùðªÒ‘$êZJÍ{’3exæ2ÎV'(}g#ò6“3LdEÔךøM£Çöm©·Au¿Ôf‚Vû›>(2ŽyïœñÏu©£^Rn[¬®Á—89¼–Y ä§ P >‘¸*œá„?Tï‹WVýwéPƒŒö pW†ðCÙÌ{YÖmæ`q̵£ ·kÞ”;;44Õ"ê`HKŠÅW ‰áx7Ø*#/gÿ7zC`|µÝûÄÐizB`ž×"–¾ùßn‹(Å5`hyNMq´Ë\pÞIàV\¿¼Y‡•À_Ñ¥„äètj­b·ôgÊË”cä×*KX™Ðˆ•Þ9š3ñ¢µ(f†Â[Àü+éBä–{RF3’8…wF=šÌäØß@KÈK³ºBmÜà3¿ãšZ×î(ÿ<·I™ŸÛ/çUg^iU¬èÎCa§B{³­0È]ò;4F´8¢ ‚{D y¢«Š28+çXðéµö­‰üu‡ ·•¯òwy_lºžÆÛSýˆ`ÑtîOL¬XôV£ëõïütC_’/ñVe©ÞknËŽTN= L¢œü’’'sÚ˜J?ó–lÓÎUµ'jÄ ­3Ëô –6·ƒCDŒ ³Lð€y fô®˜…Ä™9äź­TþñÌuên_êÔØ|vý‹´N|,~n’žœ:÷Fðª+‰-;<êPltPOlWãBjÆ}Y' …Ò½®¦ë¿Í,vqÆ‚^AÏro×5_‘øÁ#$!™*hÊ#ñ»„SeKUõÎ"Ùð¦H?øÍ7H5¡`‹†ÒÏÛ:iû– 07Š[rš/úU¬¼_êy«ÂO”ëØtZhÝßÅT K\zÐÁŒž×hß! N QdIðWA,uu€<|~Á[rÃÝå›d›î_£+$[xÄ2JY„ ¬@ë=yy€øR41’¤mjE0BwÞÍãÕ’ê¥Åºh0¯ ÉE‹CQ+˜I€åj0z[¹EIxž2ŒÜö.ß¹5Ó7òòHqØF cá}¦*_ï€OÔâ…²…pw½“Ó&5ÙD(§ç¯6 ʰ­Wê]@­+h+ªUkÃ#áÝåÍ匲¼l_½=••Ü™é\KÂÍO„‡Ñ7Ñ8{XÜz xÎ1[â!~zÊ x†Ê©íDZ²í¢Á£…ð¬W0cêÑÝ-3 k–?ó2¡Û}AAK3/Êëoñï¼ï¨±ˆøSŠT(°‰1¦ÛÙ° ~´Žï åe]ÃñíÇI.†âÎB(RÇî/ég“2À¯»Kƒ»W^… Ö_ŒÉ/"+<êFáõ×Ü„‚«_w« ÛGñA„`ã~¢ÀYåÙ@“u÷)#».rØTã ªxOVã°ˆ7¤ (ãB5ÖŒ÷†Ö,)-6=sZ?VÅfÿ7Ý’”s´²À’+Ü”XÏas KÞ݆¡¶¢ÏÕ¦ùÛ)Ä—YHµ|󊲞 Tò¥˜þlÕ¡Ì-ZoïÓk%éÎ~×ýA¥ Rá,Ò0&&\­©(‘ê‘ôNH©•Y9cŒ;sIsâ”ø¼R„?%ÁYItzLï°"gyâÈbšPݦr:ô C…Z ²>ÇhKw›íQ™Ü* së<³Ž®§&™kÊGôb0ѹGBƒ õ¢]‚qÞýÀáoyÅ–Pcju2¨³ÙŠÊø-W×0×HÐÜú¾S”•³dVc×®ÕBé–Ä]¤7øòHÆ&¿3“1ÂÑõd”þÃ/EU»ëÿ.û€× k0Š’¶j_ƒ@£‘ŒÞÜÉ”sþ¬ÛãWS™Íë£ÐßÚb÷ºeÄJ¤Â3ÃWíw¦˜Žˆòå# ‰{öÔI<å_ð¿Èø„-(ÒuÅ‘þ6F¥<;rŠ- _?ôØ40Ïövuáð»ÌÀ+ ôdôyéêäŒìn°˜+M4ƒÂÐ9DJ"÷æ¹ïÛQ%BVP5€‘ýõuò6`k$'¶0ÚnF4⣠fßåš…A¬f>f©(ª` )hŽ7eÇñüX2R­ÖU{£N¥N8?ØÕ¯¨Hèwc¶À«î :|Ž/ ÷ûÝÊ·’9&ÃÓÐè57®šÄŠ’U>½".H"JèÃüÜ}0xpN©¥=Ùõë[7¶¶‰¿p™>¹ïô¨1¢å…Îã{ÎÒh{îò4_ÄC ¶Xi§ò¶òIEÛyÿпæY¢d¸+œ o=`° Åá=KQÓ¨Úå:8wo`=ŒŸÐ÷r`ÀÒáá™'JT¥F|´PüÑS¦CXeÓæ¯oÎŽS{Ãþ®'•Í›$±úgå¥@Wæ&9JùYSÜgdýL’…—¨É’f:îáÀs %_ÿÜ®D“II 5-z3Š;ÑœøBâµ]Q×—¾1,r½ËÆå~ Äq}=n#¬/Pù»†´$ùz‰Óv+|À ¥Hôîѯ,øáÊx}h›,O«¥êrkü"-dJ…¢zŠ0Ù’ÁL¦„¯½ˆš┹û º%jú–Îg!¹º±®26Â08ü»>v`N¤9uÓ¹ºûR¿[ID›|k¤À.kÿ²~6ùt±X;àE’ž–j©ÿ¼&j¹–Ê¡ü ‚ñqÀ!U^Ö7ú×^*©P%ŠønªËPJ´êÆMç1„)ðÂ…‘€­PûcC‰â+DâaiðÀoÁEÓôÍ@ãÜϵìºÔsd~yØ÷:Þ†˜´+TÎsì†zQSKCÿ™ì&UÅô„ÂÇf:ùÔrȾôOÚšB!f×*xâùô]¾æ¯žF±¤ÒËwJ‘¼wÿÆ­ðe[3Е:Yg¥¨ò™Ÿ ž! ræŠYÙ¿áS’eÈ™£À´¶Ü}Eyißâ/²§8P3ƒ¿M@öWem¾”p-.Ÿ1¸qæ²ÿ1ßr¤¯-æ,"Âxcow5¨Ë%ï¦Ç­ Tæó?óª$а›º6\Oø²*¢?wºØƒ».«ÕÂFYL ³ßë»RˆoÁDëÿ G¤Ögd•muªóðD-!F{(\kó?”ˆŽqI£Çx ® ¿"‡¸à„àd¥72ŸöÈE†¢ÃdÑ+ :{|GzYVÞ²œéЗµûÂÔvOÅplÇþ©±£>‰ÜDÛwjxPUK•ŒØìر³—µ]È£PPÚ¿£Ü€mïÔx6šøÿ¡EkF›*Ãõ¤)g'Õ9²B@æ‰7‹Aq]Œbƒp!è@¿™LGõŠý(oKŸâ~w£Æ¸)uÅ/£%>t‚!i•jŸ¬˜p9”vß+ [AŒ•ùaƒ+d‹îŒ÷Ä… ‚ÄóúI²µÙ$QÝt‹áÂKþ • ¡'úð¨98w†¹¼›¨eˆ8´‡J"~ñ´ê†¸Š‚¯ÕhqϦ¬ÇÂuâó!!ý÷³L@Mß§ ˜t´¾íUàÄpí‰ÁQšÌsÁG=ô_¥]ùªŠh’åÛÆÝÑ1®«ü¿|ªØÚèú{0 qZ˜¯WÓäðO9–†¿¤~û ÷³0N|<zþ=Ò) –ëªV‘ý}±‰&ãqÅ™»wÑtPdhä´–xM22­—†¿ ï`Þ2¥,ëÄÕNeguÛXâpÖ#å®6çP¼€û¬I[UÿÄ Ï)¸˜lê[¿£‡ouo’sß1:”ÕÎ*Óï qûظµTe S)MÊth)wØLÿ+òd‘yßóJUàoSŸwP|zÊcšv„kW&Vùaï4*¤óF¥à¼ç»Çʶиêøm¢$ËYÉŒÒÉÛ»T'ù=MlÑOÒmíx¤äˆu¾y[þâ6êZ©¨iâÜõÇË߉`ÎÖ$Óò‹‰m÷§‡Ê&Ç{ýi F* zÆÓn`Q%eúäSÞÏ5RoGzTbœ1õp Š5juGÀô êvðÁ®âqò6žÑ ”ŸAÉ HNщO^(#®è-IÀF?æŽ;…£Ù¸âj¢È#¸&€Ccl.oÅž¶¯®(Î:É·5˜ìÂ@õÂr³u…å…56 e7&JÌéд·Ï­Ùµz4…ö˜§¿Å=œ<Ö¿€´ò·¸T~>ë/ÈUªðA¬C¶G–ppÛÀÅ OθTŸK<¬7ú™½qz8gܼ4‹n×K#¢s pRS{Oxq‡1ʘQ+n+Ü¥0+z¦ýcÝTªãõØ=å­_CÃ;ñ]#ãchÕ"ò5þmʱS$%}þO2 «‹>ñ3ÌÑ[àÝB7§þF¤‰ÀîÓÞ‡b®ciõr¹Ðs0#ƒš¤Bì^C…Iê'x/ žR¯33óRG;ðvÖçWÔƒ„tmÚg £¾à“饇ÝÔMGɰ<”'‹ïüŒè&QGå>nlDÒTã}˜šA,!\¸Ïp9–eþeæ©ÝWˆ×¾îB¹¾ô¾Ï$ ë–óÜŒêkjHz-3[CI¶¢.ðßcaÐw vnJS+ iwÊ"VݲžXÕkL‚+|6ú\HŸðZh½%P„tšLv•jî¯y“ÀØé5Y1rV-Ò‡qM!Ùl+u2t ¥æá¹‡Ç8‹•“×If;½ÏM†×p3ÛJ3êÆ@;ÑO×îçm¸7]ªìޱQ2&wÁsŒàñj¸ª—÷+_€ÚåŽé¨&8 H‚¢+к,h„¤åÎâxõ­ì|Ž1NBù ±ìD)x€„æ'{ÌO±Sd‰´nî]h1;èF6 PP¬ô¨3u“ ÅYëÌ3‚ û«r¶¦än°>:Å·ÏSë‚ö?ëk)+ï¡B­eîJ$zö"ªÑª6ÆÊtñœ•hpÁ:Ô*Tg^’qx5ÆÐ£S äb±¹MOãÔ¡œ®Ÿr¿†³ÙÚ8Ø…¯ešwúN&û'—F)`dž“þXo6öœ£!ªLÒ‰quèh‘;Ô+ͧcíĈ¼(¥*(1‰ÒL·ßK©ÜºôV±ÒÆóô(Τ€up‚¬ ô\ó6ÝìQé½×‰¬4‹íÌi˜út–<ÍO£gXG±}ÊÕ­V7`eÉïDÔw‚QcÐÆyžæ8.6¢ÙÔM–qÉéJ¶­e.‚`&Ê;!ž‹ù2}GýÔù<"q{`gE€¾ÓÄkµ¿Æ%q§9Švϲ"ûl R‡!ÔÈØã|ØçÇÉí ¶ñì‚ör1¬Ñ§–tJÚC×êOYç3þ¦¿%Ì+ªÏ2C>«Ð?ò=ƒ)ÿnÿ‰cÈ`×ÇòºÅ}»þa Î…Í !o‹ Žõ%_·ÍÀh™/ûra=h)¬Ó×êïzÄkã–á_ÆLb= óZË@#aâ_18Ý^XóòNºßEI@õó¾â*oûOj÷ƒO^¾I‡ÅÆÆªŸ±Xv~ÝE®`Ts†$[¿+(P“èMž«®mòóAÀϱSHÒJ"+‘…ÙÄáôÔãúžÅ‡Àè(o÷~#ŒáI/çÙ|JIíE —— ™Ñqr”Ž~pJÚ¡fEнÁœÕ‚l¦™2¾‚#v¾Êg³*S½Û? Šî§ f¯!¤ Š…ÿ’xTñ ÃË’¿ŒÖ‡¤ Ä`ÕÛ®ùâýi1U•u×PZâšb% —ã8B´})çß­†ÉÝ»Ý;×ì4ÁpžÜ=ÇÞ'ÙµmŸÁW0? —w泺PÚ3]Ÿ‰hãC‚ðÉ4¾‹h±NkžŒÿs®IP4 ™Ú”^±­‡~VOmrj_Ÿl`Êöyën ù f甇ŒoÖ–Ik÷®zôK¡Öð>-b"¸.‘'ÑuŸã`Ò£.º3<š¸#A\Ó{£ß3\+¡Q*®›UâþCmùç«<&¢%‡$ÉÂûªók8¦á+©>"Cü°Ÿ—“-jûÔËÚí‘I ãÕuÒªÌq!Ño;€£Õýfœ\ƒq: ¹.SI®™‘’$#sqÁ@­H”Ô‡HëŽRЇ_F¨Á%EÉVžs´Ú”l¿Ë-'«’z)G» —JeSI±ir¥VüšRX§ÒU¾3TmL@ö£yçm«¾¢S†gå–Þ %E7_Ÿ?0°ôfò§¥´@.ÛÉé{~ö„«…ùaªŸ]!¢Ä…;ªµïƒOt+ž2û;âCÓS¡-bØâî )'Ël¤ ß6æYï–v` ñäH©tÅX=¬~^A9H,Ç©Mèˆ|MÄÓ¤|¹‘häkV>ÈÔñ~EøSuJŠ¿LÊÝZÔä¦h=~úÔnük[ÑfƒÚ=4!o‹VdŽîšhˆ2z Ÿ®V¹7=Ä䙉ó¹z«´Å¡v‰0²ï5"I¼°+¹sÉm;E²æGroÆô–` ÂÌ8ÿE¿‘'' HuµPXèzäÁÇS¥Ú%o¯êpk}¶™/™ûR»@(µ¦1¡=×óÓĪÕTÓê§’Wo™—&«7Dqu¢¯z|OÔpStG££Ç"eà ã;A"ÔƒrR)‚ïªÁuÛÀuz,Ž ¡äY{‚e×Çölw+×™š0$ÄJ›ªZ=V&Ͷ4òU¶Ú'tˆ£ a#gäÔ+œ/Ð5ëh¢,¯öî_ÐíUÅÃLWÑËœ]š¿¼CãÚÓ“?ŠÓZ!kú-fiÁƒ­u>lÃqãÎx'Ù SXö>”P¬¹ŽkZE#õ<–_~EW¢rè ó{ÜÒÁ@ ¬¥†$9h\Ìò|<¤é”©j"‚ ½}BUX«ÐwƒEN=^Ý0¢³#Ÿ—ò!ð%=ëZô¼(sVJ£ØL³ÚÌãùÔc̹‡Ú“~äLÆ6Ъ{} ©nŒù›a—æ#¯ÜfëµKk³Û¨ÃE á§:+¾–¹%ø[—ð q„ìŸ-;÷©]33‡òIuº Ú^~–cd¢Á°æZ±ÿ¥(ˆ<ʼ‡™½ÊC>¾c‚‰ˆL©@C8t”Ž´ŠÙ^JÔH1δEº…™ô#5&ÙEß[É7\å‰îY±} Ügñ'yóh IÊç°Þ¨€{HÛþhb3uñ,“³Œ4 ¶TágòÑ!…ÿ-ó­ãúª¿UÕ­Ý%¢Ha¬BliS³m¾3kÆvOüÉê¨à³³uÕM± #ð§Ø¦#¹Èædl»^Ng…l­ì+L«U¤›—ö…’EçK¿g\o} fäM“9KóÖF©"†[(È¿/•â ÖoE–ÇDj¸¼¼-ÖÇÎo.±Ë:cÕ=@˜‘÷KÜy@†ôþ¦~ƒÖ ´~\÷XUê%†a”Jï[{u4B‹bì§NÜ£R^‰Ø!0\ˆ}yíYiñ| ¢„š[ƒVÆ'éS+¼svùÕ»ï<ý'òòþ)[Ópé÷|Ägö½–é[\»HßoÆt9Æ!Ÿ; F{$,îú .îÕ8uw vBÈÏ…;ÖvКüuKÉ6}âè*Dv5’7{9/ô¡hÉÞúSŸ­cÛ“%ïü ˆ¨ ˜‹@Héø¢6.jky­@‹¬Õºê '•Üdi’.*1§©û±ìí¢n´HáLû¡.…2éf¹®_>õIš¢òâÓÚ µ†rÆöãý'U»2’CÓ‡;í;·g1‡ ¸‚‹ŽSy‰4ó$²òxÂã*òååqò˜$àÝ2ƒü±zJd_¢õô= ZHwã~eÂ¥X[m\eÅ×îèÕ‹õŸ÷Ít3K¿%¹ª5ø*BˆìëãSãç>É{Aܵup¼ãÙŠìȪöL_¿=æ½³.[i®!iUÚúRÒôѶí%‡ÛȧNÒÇdÁ“ÿÄ.i‘UŠ\~’qK“ìõòâ¢c0˜èI£5Y½©€RA2:`ö›+öÞO¶·/£ÏùÝlA¢¬a¸QŽüehÏܦ«sÙÚ¸‘,|T_èù˜B~¸9ދ΋¸F(áä¸BDì?·f‚P/¤À³F/ ÈM< c0ÁRiPu Ž Ð{ Ç€0ŸBÏ‚¼¨›Ño”U*)?ÞãêˈO/ÅgTÐ#É"ò[üíQÓÜ ·^º_c|aÃìèf[—7¾èÜW„åÍïõ1*=!R¥½Hz²ê`ój]ÒŒŠÿÅÆþyÌY?¼ÔæÎF­ADÏäûg’6ž©Õ4»°YôQÔ]›x¦oØ,6ï«“÷î1‡ëÏ/²Ò[sÚl¢Rž—Ú•ä}×ÍŽ€9,Å&^¨Hª-J«à¬dåâW ~œc¸ƒïósŒ½ ev'™i&±Ô Rƒ'å~ hÛrú ªy½Ìa/(¯¡ é¡·µúa§õÎw£Sj—Öé“͇_ï ëù AÓ#ŽzLõ%’•Ž7¥8 o°ù% î¼’uj¼X2aöG <᯻ÒêjŠQà°ºAĹê2>þ¤Jk —¶~³&?ŠŠ0ãÚ¼/ç„p¿ò›”—ÈM s$¬OZOk›’ƒ§…8f`nÏßýT6 žâO»ä‹Eš}áVáb±þ’Ž”'¡°hÖ—ƒDFAÐÞµõ•Ó‘—] W&G«b¥)µã  ü /TTâŽ,мJùñžvñFä-š4Ñ?fç ¡Ì‹c¡*ggH•ã\ ˆ‹n1©BD"ÜAG=n«Bá7ìÐàa8K[›Ž µ•µ 5QÕ3´Rv[<ÏŸ½X×ïô¼›|’Ò³ú‡.{@bR ðMûÜÌ²à˜ ž/ö•Ë“,^õ¨ ­¹‚fƒX›£&ÃaÒŸNÌ®·ð=\+îàVåÝ`ò†óqrÚÚŸHéÃ*i£dHØm5 `¥0c…îÔ£Ì.~y¼è Mé*a[îs;¨HÄK/‘ù}ŠHÜcØšÅL¥Ï‚¾èæ³¬Š›Ó´{Oy~Côõ»c½A:DFÈ5iòžÙ`±¿Ž‡¨kó/¢p=l¼î׺‰ñǸ­áU÷à |ùœ……Í4°~iý‰Àdd‡²t¶ó㊫*—XhCפ•–z»"ÀÐ†Úæ¢RIaÿ³ ôE¸óJT´ª¶ò§þK™²‡m˜ª™ÀÆ:ÌŽ Á¯„×óˆ64PV4 Yþ‚1òâ¼ù™g¨pæ+ƒÖ6œv_M }Þæüv1™$²„ í ]ü«_e= D¿»=ÙÓhŸîî¥KÑ^ì¶ÎýkúŠ*ö¢q‘ç4„ËLÌù‰}JÓÇžâþ×}ׄÙD""…©vÆÝ1s`ï¾p”çY(@bC)\PÆ4ÓÜXPÈtø3χ½vj_ÕÄ#Ëy—äÏf¾´>ö;I)‘Â#xPÅ(Øäï&þ· ãÕ‘•òÌÝS ¥QÏ!žï‹wWUIᘃšYw]n"UXà.]èÀŽi‰ "så}üKø¬$Þà±3Õß KðŸ·Yv¯{;©G+ñt°ã‘7=ht8‘¬¯àeËJRXRwݾ?2fÓíÉdÇpKx%¤ç^eê¯/ߥ”l:› e-ûêË÷ Á‘Õ].„úåbŒ¹•~0ðɯEpЍ“œ¦³îúÖNM­Ï~2n9ðx¥Ùì©€ 3’ÍÔ„gÐuåM/P¦EÎÑÒ@ƒY›þð‘¨|CšUö¶ƒ~ãüu­Jl. ‰DjHÈË? ÷ÆÙâågphÖîÑàQŒ¨^ì½k›á>~“5!Ln°²ä,‡kOlQA€Êß^@|²1Êa¹¨×áØœ…4„=´gj§´ÿFd: ÉÂ}Ǫf¸6ß:… ¥{õ‘Àßå]Áà·l»Ú‚2Áâl ðó°K‚âTtŽÛ ¹Ö‡+c=Óº´úMá*Í+"„µŸtn&£Aêe&/Ûv˜‘\šáÌ yàÆ5²QåE:ŒQ˯µx 5ÔÙ Ú£L&N²M5^צZ×’Å{}È¥Ù›Z×"š^c6Çg â¢’ò:abõÐÏH2>š<ë]ÆÞ÷(9ˆRÂM5õ}2ÿ”{yÞŒ0ƒBu#Χ¢øu}V'£°* QïþYói½¤d—“BUhC$•óŸÏX¬L0"X{¿L6^-U³5QG‘µôæÏñÎÛÉ|õý~–r¹\c* ­ó¦Æ dÐ ÏÛíÿLRÀJv£tA´û-–© q‹µ¼§ì/1ÀL‹?Œÿè¡ë¡:Í(~Ws·!ÿÕ÷¾Ú‚é\Ÿ‰9& œcXiÛ®8+É·<@©hlW9™Qàª!©«àIeÔʦÙðàûU˜0f€X÷§–›gÑŸ´›_¼Êko–ÆË€›ôÉîùè`oöÕÆøÎk˜¨CPEÒi6H°½# Œß&-b¦©-êòx%2þ&z[Ø  ðn"\Hsñq÷OkÀÿÐ÷çÇa“ ¡ÊIp#Å×BÇ‹çÔåoü¬[ÿ Sä4þ˜³Ž–\8ã6ׯ0‚m¬@æ‘5íyÐüã~ É®Ä÷×Ñqèý¤È'I°1ÛñŒæ—»ŸLºOަ`w™coKšÊ†f`”0 ™dçõ´ *y¥8Ùµþ/YÙïÁ1$¸tº^‚!ˆ’j¸ÄLÇM(¥+ÛbVÇY¹ÜÈ…|™»¦°Ð‚4 —h|RÀ\êTÞú[Ô $N¿z>{Èd &]ÆÒ1†|^"W%e…Ü2®ÞOõ¤&Ò¨¸¡æ¾¦‘f§É}±ó¸á›X†SMI¼_‡ä ™ýùS2ç·U ûSº@ RÊÌúxÞaˆ°#' åQ?Ïj‰Ù¦PAQ\­Kûñ˜w/8§µU- ñšÚ üz»yž'QD·h¿çŠj7r¤Úrï^ž¤;§ ã뉤$hkä}é<ÉÑ#XÄ~žíc0¶B(ÄÃÓ0Ð"RUÌ&Ý E|Á¦ý« |R˜8Qã-ÚöQoc^굊…ÁLT[ïvŽG·ÚÌ—5ã*^ábË÷¼é§&õê=8að4×f›TTÏú#˜ÇÞyõ¾PÔO4Fy»º#ü¡W²åÔáòµçë¯âR>Í 2P×gž7?nËVˆp_’f;ÓTÝŒ0Ýüè®aò¶•{¶I¼ÄÂÖáf¢š#–BüGç -ÉÌÒ+êåbûÕ5^Ú¡Ûð¢,¶yŸþlTŠÌ‹Ytx¾YÓ(#ó´'®’|lÛ!KíÔ·ök ÇÑÛ?¾QI³ï÷ ÅJ]óÜKx‡«‚§£·]ÅÒ5Åjš‰Å F'Ò žþÌÒ€+AgÏ't,ˆ²ÖÚ;¿0£=Sþ&™®íÍ1ßN™þ?E÷Þì{¢¿­¸8¬"å„3w†nµY`gk¹uv¢ÈmÉ1 G¦z°{ÌöDÄ;AÛÔ (‹Vƒ¥;aèÍJï-‡c-<ÑHXe‡Ë"º>3·ñ§y¬âÄîÈòÉ« Nx"ä æºòo&Bš±Ç4Öñ”3ýB Yïí*Y,ý G}Š &‹TH&#`>ÐÐãî!üaC?¿{I?ƒÃ¡š¹‰Š«E<® Û²Š® 7¶ÅM— –‡Ÿí§2zn·…OÌ×¢š÷Öa½+Ëm’ת(DåÇe?æ °¾îG,¬a¢ƒ9xØ ¹3ÈÐS‰V:.—«?K*Ë4ßôJæ¢á@l™1oC°lÿÝ­,+p×G›Áhyµ#Ÿ›!ŒUÚÈg°p|pAOÓAãNš¡j›0ªp6¼²!lRž8šÃÓ“ÿlÏvÄ}ˈ nÔ˜ie¦ìT³_$4bŒßóCÇç3½#:H4〾 „ ÛüV¾RÌLIÊDü²˜± 5D&ÆÍ˜ç9ê00‘<Á™fRƒÆ‹nÞG–²ôyó,O­…ÆêÊ d<3dÜÓøi?•NGÁ>[`éYaÂÝ*‘fézúµÓn±*©]<(Úçàv_iv9xùçJËìœUo“²J~…õÁÊ‹#WãÕÎô©}1d<&×iÔ€â/¢ë÷<(g€Ù ®‡c5;OuÖóQ³Ð&¥w‚Sý´c>¾"?uAäÑöô”œO¥âݽô]Ìñ"Y¢Sÿ‘¨ËÙìqó1]^ýLqJÉhð#Q^Õèì!ÎIíÃ~–IÓ.1kmú»P@N¾u¾ jª»ÿG'ú«‰¼†V,6²©¾‘T²-€¥½Ç9E½÷>?P@ý½è(n,ß\€‰ øOr HÞˆIì¬S:­¢GŒüý`‰ÆÃl í;):c®"œµ.f¦þ™ÈʳI9‡ÛF(Û¿ßhçÞCóTó6}Ù®~Ð(¹ËHË‚ÃÞiyÎÝ´n&4Ž‘§ÏÍP;æÌà Ålq:°»à¨¡ñ]L„ùR1žÏ<æëÀø ËN>¬sîSøã[”‹»l^?iÖ” èàþ%˜toB{ž|*ºÉ ‡gÿ¸iu sŸøó»‘2€aI3;•áàé-Ôœ†/ÿ9oVØ„HH  (<7ûIÂ+ý’ÞDO3àE:Ô·©v] ïìæ?•/@ ¥@rÍKÄûâÞV|ÕŽ²ûØHòq£#Y 6ï0GЍÝ5‰¤·P°o/•9¦múʵV‹~ÖåŽ*Ï Ê … Ú=¢F?º%Yed.Œ|…Ê&"µ+]@¦hßûT¸üzcÇ÷3wç4ZÛ&—ÊÎg{´ñ–‘ÔÝöØQu0bwl›PZ}çM}´Q“¼2i­5?A\óO=šmV–ÅžÝç\8¶Ð韡®ÊW+‘29 =/—VÏ-öù'¼‹™E¯D§ ¸E˜ç@âÆ.Ë] >Ðé<†ÑË„_T¼¾BEâ[=ਯV¥ÅBqYm-ÅjvfâÇÐ\‡2)Bù²ÝgBÌ‘öÍCÞ—ñ’5· ¹ÚÙ°Pó=–X˜ Í›oƒL.‚&“£ø£4š~ã8Ìä#´Ðêÿ4سU¼Uýš|‚hT…•yÕùÛ©XØÐƒ»ÁÓ¨Æ@FF†ûräÌaþ rd;sUëÿ5@Ê¿[ñÌô0®˜$Ày( Pд`òpKèùæG¤ˆLEg êÏ|À8d>°ÿ£vÿo2¶þOrs2»ÞÆD:)œ­K&÷wŠ™öZ½àG>v@9í²Q“j¤=îPÝýø…ej¯ÄÅ®o Q¯y©¬Ôw]}¾p,ÂcÜ¥à¢[œ|O\A…‡fk/âH±àì’ùO»ƒ¯ÃñÕ,§œ8{Þød6n4É å/z ™57:äà&"Nvùì<¹çíå ïÚH$aóÎÈ€£¸„37]—å†Eób[ÛŽ‡-¦—”ïJøÛ ÏàwâiÜeÈ8ÄÞ+Z]ÀÛÓE”Jl2"`‰Öµš­B¨:´C-´be.)7@ôh ]KÔ{2®kßBϤÎ7s€›Eèˆ|›.B6˜ŸlHÖOY†õcÙ§SЇ/“jëÐFoKÔpCm‹vVðýø‘æÝ«ÞùsEi Æêœí ëndÀy z#x é—ÿà1vyîNéùWD“#å;JÚ€–Íb‹Xa¿yEC©/¢«Tÿ%¡=­CÚù9C)¹Z¥<£'IþË +À5ݽSÿŸµ­‹Î͉åV€‘ÁÌ1Lû˜!×ù¬|Uõ^ 㚇Ô1H ’P¿€™˜•y6Ó¿j¼$°£—%ž´Üei,°#Ù ±€Æ”˜Í »ë­ÈJ~èø¾£%Ù$ë ø.uÒÌ,Ëð9±46=C2ÅûÅìUkè^äçÌ'SÌÄ=.ÕXåB!É2<ܰ›{ƒEMãýÈÐóbÀ)Ÿ]Ù³Ž=Ú(OïÈùÈÞ0eCzèÃr­Ö.…'­7®9ª°²%÷j%öÆPRAísºILù#éöˆÝëñ“áˆøÄÁTò1c´Ð‘è­/Ödž Ù6g¥µúügT|£•¥êNµÖ‹Ÿme2Û›TXG5•XT**åŒ ó½)ï¾™éÈò¡¤Ò$Ç&ҬԨث®ÜeˆÏ*åfR‹”õ[‚:*{áóçW NpußÈÈhv•S;&ë>Ù5±)ÁzÊgœ>ˆ°i˜ÎZz%D·"ŸZjPKÓä['dq•œŠ?‘zSB‡9µïž=F;;§1„Hâ£ç• ÒÒE¢§/1ÿpp¶äbN:^!kÑd ó‡äs%)Æø¹q?ëÒöëù·Jgá™y&ßLžÞÔ5¹h/'œ»Ÿ`ÚþXE¢ÿ;—žTÇŠEÄy¾ûŸï<⺛Älwµ ä¦Ñ{vðo:Ñ7ÜiáxÅ+_´²aÉ1tíÝm[2& ýצÕ8H ç?lÞ¤&5è5Ò×L»j©³ŒªMœ&éQþ º´Ń,‘·¨{×4ÆÔôø4DÁé ©¿É¢ºÄ³Þùzü¥$-£¨{Óc¬%éçtK,nðI‡¦ô0éŒïÄ¡rÝgZí‹9!dADå·8ó! f±zË–1Ã=DHNy*|-Ð¥8/4ÅcvS&¶Ò[´Ù©«w ¯@¡b•÷´?'C×åƒC=ìûÂÔý üÂ*Aç|‡¿æþP‹"G¾ZŸ¾«M7A.*EàËÍ{³Ÿît~–0oyüO.‰Bß] åZ¬Í¥GÚÓ „ú˜´LœÎŒpŒi¨Ö¿Y\PÓü[æ–zº6m®•z70ÚJ[OZ’tg^ã»ðÊŒéØ4ŸPÊ»>¤”оoŸ5’ñê•@Ni © Ž2y©W®$$\5c1§^p¾é+꣺@·ÃôtÙ‹2GßPë×ÎT¤ŽÌ±°¾Q¤UÃÁ<'M†vŒ>¾CtRɰAÓç$Lt[/t- ž`i_>ÄýÁ À‚¹Ö¥~@z;G/s¥y‰e·±£âRþÈ÷œîÝën_”×ÿñÛßyGéé9«Òþwq²-ç(¹T8Rp9¬t^¯òAµm" •‹]œ‡ÀÀJÕ*ýG[T-9ÅOó=¯ö‡;îÓ-ÚK7µ#¶Î"´ AkdÉ7ß,TLËéá.!ÃlÃêRÚ#-϶_f²+^.ÀHRQ ^&Né9»g®ÄvK‡*ëh @¼î­EÇQž³¶œž3&aF6Gòû~ß0>þøH‘μðúÅ÷#©ÐGl?Œ &ÈÆœzôÖJäZGŽèº-õ¹?U£Ta#ð°âÁÄ ˜ê®Ÿ&¸øþnk”·â}(„Õ‹Š–b-ö¾`ŒUi׆K·Vß.ÝK+DíJ2Ðä îét6Q÷•FÄŽ@-¼ÈÔwêÀ4w•Ë'’éÁÔ .Ní‘E˜þÀ¶Ù¨ ¼}E`G¡ÀW”Sü|²ÑXÔf“š#×§¸«í~'wìt‡—>sò&mœ% ã)ãÅ":Ù;šèD;5qDj=Æ`>Ô\á”**ÐagàÎ,‹’¦È/ µÒBž™ñ¦&€rƵªªn¶(:‡,TÓiLØ%ë)&å}»ÇÁf0u懡DäÖ"WØÊáI{D#B´£ñÍkÛPã‘Ì9(Ã5þøE¶¾^-~?/_Z£úëEÊÐ×k˱텚œë¹÷Ep6ð¼?\±©Œœ†HöX<Û²8”¼qhÂÛØ;ÐŒŒª@¼ç„׿´îÉêSY¬nW¸°òëËLä ‡üxa3àËlâüOæum2z+Zàcã Ô ÐVð¹Aæ³`ˆ¥[¡ 5ý2ÕôŽ]–sW#GC(Ô€{—(1À×Lÿ¥cŒ[‰É‰æì”!H }m¸"WXYXMŸB!ÇÉ÷7ÛÑ0òw༈»О'#yíò^ꋳ<5†4wn8ÒéåÁ"|Åi«6Ë-òç·´GXùÜOú×¢JÇéôz¨PÂ!Œ<³Z7ÎŽ§V2®eþ2QFþÍc4®=<_I/y^󆺌·O ´ÜÚ8;ÄÌ? áw!CˆÖœ‹ZýÌÈ<"áj‡àm>yÜzú=°7f︶ø‰G*þñĨx$¹¹ÆY¥Táüä*^ÆZÑïKfÞ¯oÀVš ž•ô/po¾¤Ó.·ï¦H‘Yjeωœ/2/VyÆÑ#F‘’©¿,ÅT­¹{ÑšÛtjO¤ÕUž`«”ă۫öÎ/(Í´Õóüú;=ª¬Æ¨<þÙ̳¸ÒÁ•¯ô×SJlçôh–¡8àßêÅGæ<ˆf‘rŽJ5¬Õu´ rÌS…¢ë(×ÅR•(õË ›§ãÈ„hãwhû ƒ‰ZµM²ÝT&V*ùد0Köí¥Nœ’d=ù&õÃW‚iu 0*7Ë ºVºJÊÎêæ@¦Æ•ŽñVµˆ­°ê_;7»¡+{Ë"8{KpvúD£­n»]œ&ïëÛzÞ|`´D«ŸêI;e‹wg®+æI½»?è_FÑ7ÆÙ_|ÓØ°ÎE…8“ ¶* åKLá¥ì_ì +(³E¶p‰¤ä®Òáõ©È„¦ˆÊ)“†Iì:¯ï>‚ †˜ŒŽ>ZMK¹7y'™J£è ³î^Ãm_¹£’Оy¯QMdz <Ÿœ5\çžšýÊ4pM8ЉvÑîZ -þ±ADõèRD­ÅÀ§e¥"îóapK±Ÿî;_{DM¹gÚàºÂÄÆ¨6àïZiðs¾áiŸUéÇWëÖý‹QN+IÖ38·ÛÑàiF•ü£Ò  Ä¸RÙpm­Ø6š•ýÙ2‹é=Ó8•M½,!-,¨`í[„ëz_8ž$ä?O¨Éìôe‰úsAeUÏU±Â(àÁ˰ ¸¶ötrò{ÀÑHô‚KYµK·8o½¿¯4r{Ë\Ë|@ܶ¡(Nxƒž/ê½·ó'y¯Ž+P”¦é·§"_$Ä:Ž]+—~æ3Âgqâ0í#=»ÆOŒð9’ÆHE(ÐÈFKFòOžƒ€ó…ÕЈ“ÆÁI‰ƒÏ“”2ª8 ¥vÐ0ÍRý™½Ã¾Ç LÜ3e¿v)Jƒ¡ü¢6õþS!Nw›#*vøþRBUbg„65œ$a¾¥«' •AõW®*¦ ÉÊ ŸÇ‰Œ0lãZP{­ïÞË¿”î)"Ü€d ï‡Ûsê°iŠÒÛrÍͲ“çûÉMŸÈ~tP.i'¢ð×ÒòÑ”d÷¦jÀxrጱÝèñ5ܼ\Nð93?ÿÀüVÚ­çÚãì.àÓA[ «¶ŸÅoM¤î\©šÔÕæ)ÀÝ {[“Þ-ШÄ#LœEèÁ=àN”fÚ¸Ïˈ¤àYÁ¦F-«¹ §œ|yéM²ih±¦2øÅ}žV_ùioúÀfV¹ûéÈab!±üœþñu~@?_,ã%)ÝT’ü¡*=Í|PÓŽê­½­¿]Š‚D*©ÎaPëzF9ÝŸ¶ã…²ý 4“ÜͲ>±r⨖C¦ÊÑ 3CØ]&rÞ Ë¤Æµð¾L—‹úÓÊðOž¤Ÿn–‡ÈùšEgEê%/ ©–Œ•†ãÝ„©-Çp[Ýh-®AQŠ ß Ÿ2£Arôºv©„Ú:ݼXh…6/ð¢N¼C›=»ÚÏý„˜ëÒŸˆð±þ«Á…Cެ† UE%ó&`—¦u)š –{Ó· îî?ÅxѾ™ÓS;Ùq®Ù¿ÉÚQýÅ@nÖàÇûÇ3V<ÖÎlÃ’7Ê?Ca×1ckϘUZ¿„ŠÑ 7B¶6u¤ é|*.â»]®&@`¯UÙÕßò<ŠïáOñAI£n\”ÍÞÂwÂÃHpÐPùH°‡Z_õBðg÷éˆ õ†¼òµ"¡ò>ÎD4žSžpøN }ɾÇÍøV Fñ 2&ªAõAqšÑ¯ˆÿ!WÝ uÝ {GD  ‰¹Œné*}”p ƒÎ¾êíØ¦öXu‡º‹º<ãª^ޝ±ûHkã`›žûŠB’ôÀ7Šþ]$îÑÊ«QMÜfÆ–Øã)JeyßTˆéCf ¬×PÃÛ ” „þ+"­Âgobé‰%ø‘û¥7g›$T{»ó_‘] ±9ö Ñ‹[!i!Ò"ñPD6…iª0)€¹"[¸9ô”X„¹K rCR²ß` "°bV†ËQO½ªOŠ:eù’ú·ÉJE¸G^óßkmã\ó)w}Eðƒ%èP^ÀÙyõB€zç~WäSR_#¼Y¥@7ú˜gŠîlBSt®·E¹Û]ÛU¼ ±X2{¾ÌN¡¨ÞÆ“X¥t¢íFÌ1ÕdTžÿ#-’¿Ü»+¹…÷6>4õœºú;Ýq3‡6FLïÛ©˜3™^ÚB¿Ô©†}2ègûë}æ (ï“G˽‘1T„ïep‰"—Ý‹}–a3•5âŠË줩w_`©õü›Ø°mxþŽcâèGãùÊX|°⺠.½ã1Dôò0§XNÖ OqöÎÂ*“ lTàDš8`ü¨•J4{uˆ2š€—NËìÚpûÀUfcu"ŸÝ™^™&]øp¼‹ŒÆ4­¼jöE™'G[‘#I=F¾Ä‰¾ëgë—¨ÞשÉs 7ÆQdϽÂ.\¥‰Òç•Lq6ïNLC¦Çóa£éi‰#›Ý¹¥“Ì*€ºÞžé•Í99 nœ]<·$´Ê»2ƒ¾Rƒ±Œ´Wå{ ,0.åWýOÛœVælŸßNÉÿª¸_`Ð+§–”úºGjš1à x©.A{¢6â3dtÈ&3Áº¸|_•xF j+@'“¿š—º8oÅ0&HâY€!/jX,Þ'xÆw ¿³ÅѸ£t­¯jÛ÷Ü”_%ífÔ@³’,_%_²?Øöâ¦[“»"V„µ1$+uu—3E²)ºbÁâÃ[ÚìÑHõ²ó¼÷9›ßß?y—®¦—$[ÆG1n¡WHNË•ãg#OÐ.‹ ¬=)¿(-ÿ@¼ ºŽU#M”=³|ǧfr ¼)²Ð—©VÀñqwðÔ*Ü´sÍèѺ5´Wú‚˜ó½"Î]P!ï‡û4IßG؆PŸ÷µ›vÀÛ®D?3oî-a]~í(O3[È¢kôbÞ–û/½Rä·V]ŒeµN£mP‹Ï WŠI¢fR'ÍáùvŽþ„”ñ»·Ûƒp#!˜\rƒÔ{.@²z&„(ªïç_k/‡d¨INX'W7XËœ¤o©2ƒkÌȵVJiõ­ˆ R¯ÃúXiR†‚Çp€óh‹eçü$Ò£®¶t´£!Y'(DÝצî >“ˆøö1ÎrQrM÷&å‘-ÜÌŒe-ÖÉ`„b0=†Xàò÷³QBînù;dÖ2lM×܃'Žqîw ‚æº6ŽÙUSìþ"“¤ä/ƒ¼‘HǬé{}œ¸§$½³¯föާ3¡z¾°;ñHb‘2–•‰ó0ê¿©júÇ&Pµ¦ÿ95g˜¡ê3 ›ã0ë‹E$ù5D&46öi«Z¥;Ìî¬6±DUtï§èÞsR+ç%懂,·Ó‘'33g‰[¿¾–j\ÆSªµé³Ygkð…¹q2©ZÏÊMÄZuN£4éë„ÖüŽ?Äø—Ekíd»“µ“TŸðÕ5"uØä*fdÅàìíIJ~Ôš°¹e¾Á¨.Xsvk³}…`IÌâü¦Z¯aéa¶4⦞ðYuLcØ’Œ"'rÐpØ?ìo¥¬sJö^@¿ÞR}œ±eßduKÿ!ê?ð¯v©=R^ɲŒQ¯ì°NÈ2=ÖɰØSš4ü<ØÎ·•ŽŽ»þÔ1¸ùOR’÷ø ´»ýÕovÔ.zŒ½ÎF@/n}X-9™ æî'¢Äay‹7ܵyŽé÷Q!h·m&‹䤚ùl‰Ò5ò¶©n]¤tᛈסóž¨dt™Ä혔¡­ó=A¶ü.aM€‡ôÈNC{o<³-¸9 ãÇF=¢-pV¾v¸wc&F䋸2·îøÜ7ìŽé½þ­Œ'ëßד>ýO#n»¾…·ñ²Ö'A;2IÒG`OVì‰ ‡?ì8W‹ïv£ICd§-MHb6à Hâ·]…4êPºþ´á‘‰ŠâhÁWÀÊÆ(¢2yo¼rqÒG<ØŽS•ݽ±ü:¨ß=X†7ñš‹ƒ:ýë_eZˆ8îÍhN#·,uÎï¼ï”4JÎjÛãUŽÇ/çÎê°c¨•ôç?†v9¾ æs3„ˆ°[A’!¾fÃbÂ?è[9)0¿äÁ+•&ÿ/ÞÃ#¡Yía qŽqÂE—ØIúv6‘ST¤ –]Mrì”Úa 7f«9ª¶„á4ý¥±±›þºRª ¥Ùœ¾\‚Ûªf7æÞºJ9à QjCPÒ–¼¿àT…š‰Çérz1vþb°È7äìå1©PÀ=1ž2Up2 ·[ÒåÛ¦søš²ïÏ6î9L~ëvbKÈ@ú†å‹/XGTËkýýv0AëäTNZÁt­ë!Æ/fÊO\28–ºp—‚Þ4¦u·¢ÇöØË’OÞ]÷u´ð¶Ž.\/x‹½êðmŽÂ\˽X'À°?ÖÍdðÐsó-_”ƒ–DåìlQ…ºÜðA¦_I¨È1t©®•Žv¢õ¯Fž‹vÈ3x,_û‹×±»»> Ë|—†Ã¾*Þ^zúŒ ‰&Y¥›Ä!âˆE¡ãNáxd.õ‡¦Ö}ìß³õë@Ò"•…4z5gÌvƒzNMh0OáÅ9³\4µ›Ž2“EF˜)xÅäß•ZEN¢cÃÊ]qó1‚£ùüµ¨¯×¦R f;ÉÚ@ &ò…ïFÐáêø¬±ñË€^9†ÐKÅ…?ÆH•äÚáÌ·I»Cœ³.©vÕÜ6PÑ ûœ˜„Õû4$Îæ~ò]ÒGgQÉõOˆv<&—°m”‹íI$–îãÐj´W^Ž‹,¸&;[ÏO¡`‡ õ+gS ƒ0q‡õ,>‡ ó˜µÊÈø¤ÔGXMÙ Í®¤¡Ï K;ñª¸µÎ¶Ë4ˆg*¦½“‚ÛÁؼþ’ûõÚSXD<¶àrTé8Îg‡²» íÒÓY8sz—{^¤(’R Xøûµ<™KW8#yéI ip¹€á½øÏŸL<^ ön†î“ÿçþTmåA6KË7!¶7%qúyñÖrúÒ`ÁmËß>CvçÿVÒ§¬ZÃ_ËÛÎ,œå#»æ!†±<¦g›0‰y®|aÚnh6“$ÆËÇÝì6NZ†prfÀ´Yî{,þXNR›ÿÜ錢óÙ0Z§M>ØC ¿:Iþ.ÏÙļŸïÒ&þœŠ—:Ðr«oq>Mð-ͧ¬SY²ÖR>v³íluýSºXØb„bdbkžpØ€m›2$+tzg»+EgX@ÓO…*¨/¦°1í$Úà/l÷ˆ¡{“hQ•Ûr%œÎû,5ÁÒnwÌ£Õj‚|2BžvÖÝi¶Sv†¹¬ÿVêaPQEKÀ/l`÷U®ö¯®56»ú#øá¥Qø­Ñ{d(âtCq^ºNœÖò87”˜®ðçîOæ…f"ÌŽnÑAî_ž4<¶i\KáàöfÂyu˜;õWÀJÏÁ’'¡­~lDÀ)ü~݈m$·à)¹Ã•&ˆ»û–—!™§³'–ÒrWÞƒ§@"‘ÁOìßy˜ÅÉkÚÞ€øVŠP….í09i 3)‘ysÂÓ, —e¶º°g;Çìý»ûê˜ &8C9·ñ%‘ÙgÔþä¯Â=âÔ¹Út/BiÆÉ9õü2£€@s U­s?#M[À:XêçµõÌúò^Ü…RÏÈÙ\`ë®7ש|¡7éÔ¤½,ÓJïÖd³ôö#&¬B™!×û<#Q„þ™i w_VnÂX0Ó#re&÷çõ¯Ýq·~a=ÜOÆ>ßIëYæ3zÀ¤¶Ý‡.wlœÐ̸a0S"Øs!$õ—ІÁ†¿ ˆç3Î8ä×ÁºSxÅb›ü—€`Y™Ô,\уº×é@pä…iÚ.Qƒþ ®«CPº)®Å‚Çݒ寴BN¨b›ÉræOòHœ$U“ðuUÊj+%–G”Ï1ËÓ®\"š¹¸Â˜Àn½ðñYí-=}üsê´‘ ÿ[ X|ÙênoÄ]cÀ—f"MƒFˆ %‹)÷ ®yb›TH3’˜Œò0¯@w>S39MÙ›¡5mG0«"Ʀ`¿®VH“Ý­{}­ÑjÝ!ӖϦÃÜ€Râ÷IýYJÞ /ýÓfÉ›HlU¦é‘äÒ,Ë„? 3cgjòõ²Ñ·ïfÌòñ-Å cwkÿ°X× œvÜéluHr×,‚ Ã?Ôœ“TÍÒkmt;C¾Õص9BHIÁI]®sNˆZ}0ßbD¦òÙ{ýN “ö›¯9ê!æãG¤|î¿€?s¹x­¿Ïg‰»Žn%cއݚŒ‡qW¹4-ÎÚÅMHz²iO4 < .>€Ÿ&×áó¹ø1%äh2d ~-‰8ö—Ž%Ý P³Ø¡'—˨–2¾Ò`‘c8¨®u{e~j }ÜÓ¿Ýÿ>H¸GQ’W6Ñ1 IüC‡óíácù•ëõ_ËB\ïW)Ù›ØòÀrãl1#ç\ØåÞIÀ1Ä&4VéFÈÈèŸÙ   3ÐÞÅ%—µÆ“2‘§½ÅÎÚ•ÜÚVù®‚PTçîgEŒËfaÅŽJOÀË_É3Ð2*qk,Ô0£­HÚ³ÔËéÒ?- #hÏÄáõI\:’”.Æ!Ô\r6Fæ”´¨Íý*³ÿÀ™¢)th')ª:AOå†XÜ‘pÂG¶â?5ļ_ø0 ôbòîôÛ¬_ÑX¦XWù¶ÜQ’ß±iܶV!ʲñ°{Ò/AU¨éâ¶8CÞ^ÁÈ4Ò. 5Å.4H.­ÃkL®*®‰§(Nb³ÈK`kÐ_u¼11 -Ó²ÀŠàsO¤‰Õö¹¢Ã‹"ñÑ€>åפØÞDä«Ô–¡Þ ļ–Ð(F?©Î• þ釟=ÓùÐßCõU¾…C7öÐ_|A©ÙǨ°Òt–‚ÔŸXÝ_f±*e Ùò&ÑßeÍú&˜ ¢Z’d[†¶F)?‹ýãdÄ}*òÇ »çzp¥q/,Âo=fõ¾,0zHæø‡öÓ!ã+½‡']Äa](à ñZÒcû7BNVݦá{™‹E¾lÆÂŽ3”¨vLž²ß\be“µÆeÕPÔ`ryÒ®Ÿ7¼+ $+ PKuô×IQr¶—î!x4¨¤û|Ámož‹´¾ŠëP–ƒÜç%$ŸÌMé}˜†tZ¶l>/dÝŠ·š¡gñˆ×–]Á·`·râ‚Ûñ2Ió†¬h˜þ¿â>>‹,3à¦üI8Pì²æØ1ÑïÊ<.Èî.9E™ Õ‹íé}zC¶÷9ë„^¬ö±ëþ‡` Ì]€KíKVv<á¯YÀ{IÜyŠDS"—­sÕÔ6£g‚—Ì'öª¢ªÌɪ›oTY‘ŒVÏIž9 æóyP²¹É¾nÚ q[\ H4ϰYtxç`+ ,OxðnÞ.pœíp{p¤!³„ò §©©Ò$Ý8?(²ÓÇ©Å?]Lk|7&ßÏU#‹á²O§ Ì­=5gä‘…ëÙ—v£hýüùÒð¢79…:m.Ö]TÞæžÕØÓê^5o”ï%mÒgýžÜœÖ>t?)›ÌJE#;×e, g÷A`?“% }6žœÄÌmíVt‡À[ª™+V§c rŽ9F©Û$þV©VeÉÞ¦Â%‘‰DG—AʇH’‚Àá2¨¡2ØcÁþpÊW;TW}·1¯Ž ˆ ŠDû’¬£®Xypa€xŒ» ¶¹ZNž¦o›9¿á$D¦Df‘§½°>Ùðz§Y!fñRŸ4Íæÿí4y«ÏËÞ4ŽHÆ•° Yê‡B?fl=6(ˆD~ƒáOkR„,t+‰ñ:ÍkŸÅ ¾,§×íQ=C¶¬AîÚAkÿüÅÈD«-#ÔÜ ²ÕPLéç Ùæiݪ4Lc¡·V2ù¡ÀÚ8…ÚJ÷âC䤯I=e•»mV°5‘•rYåž3kªó[ÑÎÅÍç5'.¼ÊèÔJëÒ³&Æþ¢¶™AÖT.ËD×’£Ïw£Ð‡®™ÿ)g·Ý‡Xu›—®­x' /¾ãz¢Ü±×/l{ … Špа¾,h0ïŽ $±ÎAï‡:M}ÌP€‹ý”äÜ)ª0v¼Èd¤6…ê%ªüsëÞá–Z¥£˜˜])ðŽQ'µks4ØŽ¶8¤ÝæJý ItÓ•6±¶jT´ÛS‘W÷ð–Ì¢^6;I&L*ÑqX¤HŸ‘E?¾ÛÞ×·M˜èò2Qx]X)[¢—ò•ªbH©ÍÔñkbŽì»Q9pžvêJ·CÎÈ&bæ¼diÉ <<x“(ÓÕ±â–ÆC1füH|›`LCF?¤S;Ê6(noZnë/œ4½ÞE•IZ6_ˆ]’hTñeJÏG8JT–¨w.¡@'Q “X*f% ¤Hµý¾h5Õ˜dB–$›’̪?ÖD\š¿'õœ°als3ÇßNæJÈÅ»/úÁï+0å '^`Ïd»âÆqÜü:¤­Ö3G†/úfR‚[ÈHBsnG®ieÇ['P^í̧Ä>å`ðgñª*ýd/vÎŽ*ªóˆPð×WÍ€Œ’qn–ûÀ}§† úpή(ˆÀí<¿•†D52¶®Ù©&e\zAl8:SØòƒ*NgF šÜƒ~Øì•÷R’PÔAr9üBî6$Ê—ö‚t\ÅçlÇÆ{ÙŸ!€øÀ·ûISœŒÄtÂ\ ÞIqÿ2žQ¼úw“FÔhh5£­f3üµàö~ ©ÎØò¾ôÒ@E>²íÖ­²"xª[˜_¡@ɃM8u=òOŒæÚÑžÅLÁöË…‰†i™Y%bÊÙ_ ¥²«ä¨µKE}BèÃ:-QÀAšrû”ý§ŽÍ’½*Ežì©FŸ5äÄ}µ1rmî =pBí³/]óÕ‚T{±Ô_z[pÓßN»ãk yŽ 2ý*…°OÖqC䲇¥,Z|ÍxˆÅGc…¯há-—ÔK0bY<0µ±Æ×‹~ïÃÌ_TâK,<§´¬ý%åTˆ ¯@n¤ÃÆâ;U ±•%˜§èæHよ²®¶Äqƒ8YŠ+þM+ÆW2Ú0Lÿ>nð•¶_Ö Ú‡ì$¦’x¿æ\\Ð2ŸjHk…%·î¤÷®VÂc<Ø5C&žŠÍmqõØ/ß½ç÷÷±®æs(T’2âl¥P…¶èMž.t“© FTòó–å|_v÷æ»å#Ûû¦çf8»£M %§ž:)OçñÌ(£´Å}ÖýÄŽT…SK%á¼´÷€Er9êïÔ¾ÒñÙ…ó‰Û"@ 'œ”…Q¦´¡½ ÿÉB‹´=Çnûü!‚!o`´ãD :ÖÀùŸ‰òLœ>2‡z’}„ÂД9Ê‹qå•sê›ýI’2Þ8’žÊ©ÎC°lú}¡»íý¥laÿl$ôY±8pÕýë‚ÙO®]mQRÞi3“YFA©q;k¾GèhÉ3ÍtÇ]·ºäÞÈ^ú¡N­l %;Ç•e{æŒÏùîj£…ÏùâÅ=šä…Ç“äèÿP²·BO昼_7Ããæ³ÃT2F¢ç T5½øঘâ6¶IgÐa$‡·¸Ñ åßvÚ Ø–g§«7_Òg-Ë«$åP-ÛЋ M”ñνÌ÷íH@\¼Ã7t¦ŒRüo&AÿA<˜O‹C½ý{*45ñZð~ô— >J ¹GÁéÊ'Ì£[ѽ hu´XsŒ¢DøŒ(r‹tâ\¸Äü•¥l§^Ei­0‚ïJÝ5 ³·K–vE8Yo÷$;rG¡Dn BdDýG)˜F 髽´*ù8šÄR½»£¡:–‰%xŸ¹Ù"Qý;;ë,aíÛ7 En;þ_@9âU|ERO€‡[¯?ð_Q†Ÿ¹u–‹Û+IXœzñà…% Geteô€·>$Çg1¬«g=w—}:,LV¶‘4n¾XœaœQ]4øÆ¡u'ÕØ1ÅÔÿ'Ì9%âL™#Çûž¯ ºH-;u€zÈ]Í Þ]šà°{z?Ixe è§à€0 ¸Ã™~ݺ'=Òá² Üï­;3.mJÁÿ­„agß×FÚøJò’Ôô$%nÕ¬NO€ipPÕD§êÉç÷xOÐFó½ Y\¥æ½`}%Nx­Ü^ö¬I@ì†Z\#[kàž Ÿ,Ö×i`¨C¸ä3—ªÃËÚ…ÍÒôÛ|():w‚V5™*øó³‹D€Ù¡9±f#E¨«ácJwIl?WY})…éåG«.™Ê5x”A¼Ýíé©âk@–„­¾þ@ÖðuÁyéÌåžeC · DCßòªoðo"KnE[ÆO¸žì‘ä„S©t›M`(Çä¨0‘Ø^ªö5ÐÕ)ÃÍѸGšÀô Œ(K¶x¥Gò½w»ÈmE`COzÑ“w`¦ªU¶Ï©ÿŒœ–VæÈòN #t(¼Qß ™¶Äž>úæÔ9ææ˜tn»Äa%Ž ø œGÌ¢{-˜+rÉ |ò<Öânn(n4‹‰DŽ$€Ÿœ_=KLºS?V!¿ºÛwlcGFp<Ÿsº‰±– Id ÆT幦×3׬ǟ'_ÿ²Só‰ªH„F‹³M¡ç—ä;nŒ¯^Œ“š:'0å~Ûg{·>?ÂU™÷.S³z_™}.Ø÷¨,•û®¸ˆ;ßÖ{£¦LÜVËLõ°kFám˜‹ìÎúËžp#׿\Ï]eªf¡z³a¾yñ2¥xó«û—– `4ðRÙÕ¯Üyx.É$”:_š=–ž×9’TÿgØöh÷ÅoΡÿÜòGJÈI]:ô¶×î >6œ p…‚ i;9ŠÏŽCU2ä9ã s“|S@.EŸJ£Sœ÷©š?QÀ0}]ø·wWé.¢õð»OwÓMÓUfXpµŸ×øOÇÝ l]1‚Ûw‚|¦¢ +ŒƒÄêJC.ô:M •,ÆË¾R©ðÍfS‰sÞAÿéÅÏUòPkžþåºåæ;ÜõR„™¤|cÈ0"`g„Þ/F©É#Zî=OqÔ•› ýŷ猌 É”@Â&=ºË4<\d…wõa Pê±ÏÐ$ï9AÇÊ dë­K,°Z“ÛÃFÔGg½(^—yÆÊ ª¡ç9=¾ƒÈÓE\ßëÀæKT·7â˜Ý¦"| Kº‡ª>Çúnºì9æï%7Õ—C‘Ó9ÙüB˜=®äGÈ#ó_Ž#!¬t”8qs-¾—HþhY"cçq?'àÔ››\·¤å]åNk€ …dPÿÓ®_({®OC‹ ®ž'æÊ >®­¾C&„ýù“’UD¦€&£Á™}åÐc Õ S^fáÁ#=#–k5EÇC9¹r•¿¤ FÄ,… ^êË›GÅ“¼m¸cS:†ºà•ÞŽÊC-MÝIª` '~uÜ?\f1â S‚Ëx%úÛwCϧŽ%-y¶¡–ÕL/ë…×^Ê%ÿ€±Ùᇖ  üGÄ:!;ñA´‹Ãª©?¨bEFh9Fe¿Õ-þLãžýuC˜©DÃýú˜ì3{ª¯‰5èÏAj×þEÿñ?Æ5@PCùèBè9ºj(q,¨Z' ±5·/P&è!u†)éO/x élYéö'û_%=üsG銚3³¦¥5¼a†oQ=ë˜,J­¿ºÃÿp§3_@ÕHžHåííïsÙ2Gœb;%îŒOvÔñ®EÚêJ®Ýžø$ŽøÈ¥¾ÍÑê˜x>·£IQ±”,–Å=àm;üå9ìgÁI·‚h…>\rô…ø¢{v…iåBAöXuâ—2’ÏHÿ‘Ô^¾Ö'®ŸfÒ"² ýÔ[Ï3)™à½¸nFë<ü·Ü­ÏÕ l~?7樒Û?WâP r¤ŸrwÝj,€Bi‚3ÓZi›ì¥ÛÚm%Ô¡ỏ;ðÜ.3û½}íê<9`<‹~Zƒ:ÍÕW Јt›²2aSfhybÇånЉÍ{ %ÊúZ€õÄÏ3­ðÑ“~%g9Ô‘÷¿÷¥#Û`c(Áa켿œ@D'¡aŠåÔ퀟ŒÊ÷"QL”ì[î!ù1Û§œîåìö˜ë„«-bOX³b*x„L嘲ÎóޝâYÒ,{¦e† ¼Ý¥ŒÄ_f>²d(Ú¨^w…6:iÒy –ï]–!Õ0Bô/yIbþ¤nFó{ŠÑûvü\òhCøÌbQ9Ç_´-Úq§RºÄ)NL ‚‰üFÚ^ýœ‘½¦Ð'Q‹~è²uZ–b}X¬¦tÑRz…îÔãÆ(n}Y±Êæ¹·ééYše#äiÍ3¹½œLDãÁ«–l–x½ פàòÐz 8ÎÞp6ÐSMhJb¡zÖJòy q±Ë¦Gg*!Óùdl¢ö¸$©o¡wÆ'‚wPKº“c%õúJ°¡]Á,^“Íî¥+îÛx¥x(Ø>l8¹úóÜN·'>Î>¤H*bB£5†,,7ùÉí•÷{ Ni²/ÇÜ÷мšPBŽÄø½ ¯ˆkM—“ Óä)mˆ÷Çm– Á.pòËzŸN>6fe«?Kd@õ^ê&Üžà k·v71t SwfI ŒG#¿´ Sp­²CjÜâ"Á:Äéñz戌KNo:rNcfºb‚!£‡Ø«àJÖ“‡ÃÓR‹Òú¥²+ÿ?¤”õûúÄ÷qÉÇ@+•X ZÄ»:ö’§ ²ÈQú\ñ>ì>›Z ·(»»QÓ·­‹ ñzcè/¯Ù?‹q·¯ãR‡ONÆÓ4«gGQš¸èG·¼í3ëTX¨(àtçK¦!½Íþ¦{j½ ÇQK¡¯ðÔÐÀËNBÕ¨~9]šÍÐ,Ì" qSB rXFš:ÍŒŒÝ¶kƃk@&ýŸRj¢uÐl1yå’O&¢P”罨½&¯Äδ‰dÔüJñß°Y[ÅÖqL2ñ]ÇNš:sàü•ç­Òµô,Æ0$bKª ´ÝDx2´áÛ§{ß­Ò#˜ŸŽ•Œušª7“dÆïìp$Š*zóÖVÝêý›S3…Fæ~^XŠ…qg­ù"\öÆAõáœ>gŠ(™íÚÈ1µr#±¾êßܼo%Ó/Ê#6È.8VèGûl±9iW$%ª¬ƒ 3Þn†£¨]*f§ÖE«E#—¿Û‹&án%gFÍ x©Y6OÞmíÜÐôA¦º2Ǽ+°•ºÉç‘·ÕqÊÒÜ›ƒ²ù›7&`}œ¾X´™¡7S·üÜâ ÐRŽÐï¹²É'õ|xÆ&$Š¢¸5 yDʼnf†¦as쟀,Lc:B°†3M*HxSÐ ${æNRŸ–­/‹9"¦ }AMÞÇo•Rù¸Õ‹Ž4óY­y++å &Û^t—.|IÃ<Ù¹b ¦t’¾Zü£¨p€\ Q"?§xP*.Œ_î¢v™…„©XBÅòûhhmYþ$ ÍÞ›dc¼l{Ò ƒeð …y{¹õ>ÎÁg\~æ6ÐÙç}½‰g…^äÔ€óö•ÿ »ø Úö¸$(@Ï¥ºs¾¹Qô§‹ÌØ^ÌàÀòïo2ŠÑÝlÀIZ3´¤Ö¥ ¤mzÌïöîVEÒkY¯51ù_e‰Î­o A¯0gøŠ /ìÑ5Åf‚Û+E§§7ÀdîšO@K·*p³¯05““$~ÇQ$‚W˜e$ #Í„yò,D¡ëÄè0ت†æ =Ø­¥ þƒë ÞÏÚ@Zï´~l§Ý³vܲ7÷¬ÄÓéòk¨Þ‰@Ê:žu–:8ø,H`rö êõuZ¦~f8‚m±4VM¹“ÎíSw&@†c{bÛž_lÛ¶mÛ¶ídbÛ¶mÛ˜`ç?ìÍ^lßWŸÓÕ}ú­ª÷¹´õ4ÕîÓf1[~+”½¢Ó<|ƒ:YˆÁV3¶bÿèN¿jíxÏõÉ”Àvš`fàR|i.ÐCZ %ÞI¶È&5®©æÆc³üÞ¡¦]£W°4µÄªÀõ'B&–ºÞÅfF äç'&-ºÑå]\ ÓÞ£k7¿*˜RUp¸_)®øEQV©–œÇÖW Í…›ÃN2ª—#ðpôÓŠò%ö–fÏëi«nd\ym°&ÄÜØÓ%—ÒšÚx-x6J~+ÕÝ$:¸ÁÜQ!¾ÕH› dƒÈÞ^‹?¥rk# fdJŸ:÷}ß¶! П1-ÏÌ`$Þ¶Àdñ›HìíìZNm®‡ ªF‰±–‰ý«ø0¢hî$Ì)eôkøO|Øz5é±KfêeUµògOËÖNU¡ ž”«¾Ž^–g Raï³ðVl,Œ\CjÇN ’4Ô=¯ÌNP¤ø°px(U9ßVöÅóé&ûö”W¨´çt:úSÀ€*0“ÐïȵB˘A†{ήIØÍØGÈ&+¸áuÿZNp'®›LxëÆŒ¯8¿É ?=ü6¥‘QbdŠ¥õ« ×“‡;ÜWŒ 5°X¦ÀiFáæ·Š˜µMÇ'Óé 9Ÿ7íÇÄ·nM´piçfÆBõÎöû Ízäì}gì4y?‹¦ðwGõ…ò*-ŠûýñS'dl‹kÒAÔçµ#8UÍ@#aà$¬€‚$*¼Û:ì}þDÞ/{|YŒ‰ã¶¶¢LNoÊPz§Ò‚4fèSCµoÇs6›ña1öŒö²ÙÖ.Lè4phGi~"0'”£^– =pcqœ ­9Q„MÓ¶û¹Ò}†,µ¦ûgé+¯‘O6’§Æ €ü4} N>6äoÕ¹?Â=æÞ’WV$³ùÃâÑ×»—±&àCc`¸H½€ilr\³—…èÉ‹¥LÔÌÙØäÿ>ÃÞÑlã­}9? CâeyáYý08úÐÁQ¥2¸.ë.IÙAÍ)‚hšª…<-?k°¹µ0žP6_üeŸýòdlýX où£r¯•Fz"åò÷Jç¼0ìê~8o„1äp=aÞ ¾|*Äßû /è³'š¥<·X’ø®‹U'¿"<Ö"ºp¸Ðx9¬s€…ßh$Ç‘$¤ºª2ïÏÜVp>ÖÑM—”ÕãxN,ù>¹:eÞ>( u!œÒ1wV)鳫ø6JΗKe¢Ÿ#k­´ë:HÔã:֘ í¹Ú´¤§×.ze.w«W²¬͈87€û†™ Ó´ŸPx´ny¡Z”Æg-K\ÞàY›ücLVda~@ ÇÈ’&±G¨õ£BɾòÉ©DFÆÛ1öûUSyœoøwq¥RÍ+P€S|rñå3ÇE®a׆7á^¾SÏÁm5ËÂ-hG·‚˜I®|³˜}[N#¨sØâ³”Ð÷ ÊçH ÄpYí9ãz?ƒs­ï¦ˆÀ—Ž‚8ÁêØÇ^Ü 9_×µ·O#OæóÇîæ vŽÍXHÕD8!X]²0›Y»'éÙŠb!¿W~”ê(êͫκ÷ÇgbÄçžÑâú|)Uå–Ëaï?¯µ¨ÓC£ë•0F“ñÉ!§uo™ÅÝçËÌ®ma”A”8}&ýʵ7\[O™‰G=®Œ¦ ¤"!—&·Þ`¢²‹nJÈØ$~j¬8>Í)ÞÖÃøÎ[vè‘¢¯ô¡LÉÃ}XƒèqzÔ–`ª¢Zÿd$úÓe¯ÓÕLjR(ÉW>›W‚®Eš—.¾*²w7w?¯ºÁ¢³ŽÆOºº¦@ ycÞù=îÕm‚z‰"ÃòDòÖI™Z&ÊHeû#zû aÉXÛ E#‘*ñ“gtØBn­í¯R°Ü!ÙyQ\_øeÔz[††WBÎÀÛ%x?ëØ8éGÍQQ¯O5³’L†…¡®éµZ^Ÿú§?~tôPÈ»9À*¶;òÍwŠ÷r–mÁ?ÂkþÖ—“×Äk:/© Ê•iWk–Ó®{­Êøa~·jåäÝá·\’„¢´&)§ªOJT¸ùÂ3kH¡pÜÀ]§ÜWe¿À ŒkÀ PRj˜¼à© ƒ²/ÆSÐÕÎý듼lQ€*'6•‰€p\þ ä<ª•è’ÎöØ1z ±¢â°ðëF¥A*«…FY¼“/ti‹aõ› Ó&‰×‡;‘ŽÍÐ*TôUû•ñò¸‡]#íXµÛŒî>°Ýñ7%Øâ’&›ð$/!kszâ‡ç~\^ÿ3-úX^¯F»…;L":hÉAª#’4‡Ž[Œáˆ¼”ŽRØù¢âƒ”«ËHeÖ!x­- ~TReà“¤ÐÓ‰ºFÚïˆ6ü* {[IJQf{ ö°Ÿÿ–¯è¢Nô75ô„ÛV+ªIØ6kBS›qw'¿ L°êùõ¤:&±dU–Chè%lÅ qøÁ˜¹/-÷•œHۅؾ¨‰èÓóìvœ‰í¿ŒW^ Emg`kRƒáÙýØ÷޾[°Ê+*=g¿ÌMe O3+_½à9÷/¿HQŒ’PëÑ7›ÎZÛ£F$™Â0œ*U]dAù9Çø’½´&úª+OÕüÝôEÞEZË(]ŽqœÒ‘ņ HbÇø©£ ð³^œ,8³ATèåêÀ’©eÔö0¥˜ƒó"v¨>°Ÿ{ñZ?nêƒÄýy'÷â|»†¿ê»:y˜=óD`sU €WÔ'˜îdPž߸k Íy9B+¹ù9ªtzˆ¯€@=Õ9_<ÙXw{ïâØœSé®Ã¯^˜)W„JdtuR_;ç—SÞ&Ü\\±™;=<ûݾ.²zngF‡‹á¥ŠM KÅï² <’ýÏÈ|w¬èÁSCñ@Ç¢GëŽú{)%äGNš$‚ØÒY¾3Pµ….¬‰Ýè;ëÌ*‡¼73<º­^ÉfìÅÅí‘ýId±>ÿ¸Ë‘þáóÛCüSwç¥w£q›«-1KI9¤êý©Zo=KªRÌ¢ ?€±Ä>näÅ‹¾*é¿g‹ÀFT퇻׈P”2•°ž Vã¶Åò€Øgjãšk+²€?qo >JiÆÉØ è…kîÉš \=»e™¦ÖJâ'@%¤ k¿Œ/`pF=0xk‚3²=c‚eëÉrN;µÈ¦AXÙ‹KH/La‰U#$NH×¾ókØŸfðG5Tn>$Fz1A{ÂÎÇCõ_Úµ¢Ñ¾ÃY'Ðx)Nú~àJ¨Ê*0uÈîîeB?=|¦2nÒÀ¥²©é!¾zÚv^¦Í{IÊÕ×ßúw¾fjq$cŽ/>õ¥¯fá)µö`*P.ZldØkè¿YB¸{×¼÷²0³Ä3„n&Ný€ìÚ(æ6æƒM§ BåÕ=˜`¢0âéó,9b5ó؃8Îô6yNª“zÿζjŸCa$Ã`ÃæÝ3^âÁ| ôQrÏžå9¸<(­úÀ¶ FaƒÑ%®mß:yÎ7lnzïÄŽ×ÌÑD rÁÛ+W›Ö†HÖm]*,íEa¤F“Û‚XƶçþgXäÆ x±Î)¼rE¤)¢Q=`¯IÄ¥&Á”ùv¼ÑïQ«u¹&®?RI‰<Å–%ïá.¨Š,Ú G¨2ðm%Mzl‹éoÀ!ñ»8Òyâx|6‘êÎ3äo*JÐfϨ7þž½ ¤DyÝ*õ§ÁÑþ¸¬ÖJ m䜡3”YžW üT!&žÊ·Ùåðb0„Jš³Â±S²ë?*hjÁ|™E6_ü£!´WºS§1ǃråc}d7ÃÏîñ™ö¡±ê­<îlÜÝòÕ׊“¥ƒ?­ÿìþþ'–ÛÂóx…¬"í êiÉ+ÍJ‰¥7ºEDÑþ,ÎË㞎MYÔæ[‰Š,ÒI«„:Enþ{ mȨŒß=ŒècqÒ'å¹`GfÛªæ§>õÓ5YR¡Í;l<^s®5RÂiÔ°S×ì9Oc‡N¶vÓ®«æXyt8fjâSר‹3(²þ¶”fååúsè͆®BœA Zd‡Å;_0.öËŒÇW:@$¡…m”î\ú„LÈù=Ë ÚÏD|@î„…‰°¶Œ¦•s±V ™¶Çx°!y¼Ic§ ŽNP päniµ’æ9ˈ•+àoù½»Q’URœBW0ôÉs÷`f9[öjçNbW¸ƒôÅ*ÂêˆFjÕzLñà6ÅÊ3²š3ó€3ç¦Ï³­^8µÝÕò.0³¶ÇÊÄá”">„•XØ“”‰1…”L~ÈAöG£kÞ»>O~Ýñgòt½©®Z t}+‡ß4u@>Æú<yèEYìÜYâZOÜF&t±¬úªõ¼B$]ŒôvWÞ£þ ôÚŸ‡îâóÙ‡ÎÂAoE'‚È:¼îƒ É5àŒR¦ãµºK gÆ£[DÿO1šÃ`sÊ3™>Þhùß^.·üx]gzkyüÂ÷óìÁpr‡ð¯ûÁÃR‹ˆ|hàKz—_R¼ bƒ›‘†x9¬‡n¡!ìûjM~†6V#Fð~—Ôþ6¿ƒ¦±ë÷i"}HG×±æè[>Ʀ’5ž5hk0¿™CÈáô64ðXÇågŸçA‹ã}ö*–\†œéè<Ù[W-#ŠÕBøÏHd ¾5hÜ}mi AqH;_Ð]“Ò`ãtØÎV(g|­p[» ›>¿þh­Øª˜™A´sJ'âhaþR1Àa:»ú6nöÕæGñ8#\~¤)XÑh-°'·¯Ùc¬Bõ»üâ©öhM ‹?!C…úÙ ,)8°"ó <¹´w>-æ„È$Ý!ñâ¥лˆNËpýÓq6 EaÐÆ'ž§ÓPǾYêåLW€¬³!ïÄzD_Í/a¯©ô×ÍmÜëžµUÍ1+àæ¹ùy¿f‚ÎËÜûe}ŽPÀ9S;ü=þMý€ðÒ ­ìðDX>y…ãõ«òg:Mò£mYk¯ËÞÕ9\'µeA>ÊYDÔŠÇOc 7ëò¸Åhe Žd© æÕ‹ùb³í}90 i5±y|¦ór¸Çõ¬Q`y§»q2(èÅ•HQXGn}zªç  I¹Ç¹Þºü¬Ì#û†‡ñ tK¾Ûɾ¥a쫽Ü'|y T|1]–s$©åIÜ&CÌ]ßÓ¿…ÒqÛä,ÉÛapÖ>2 ãüæãïöç0W…±–ÇqvT(»vhÖõûì"Ôú𪲠ßó6gXôÕðjoãý+”CH_:gOpÃÇ"ÓÐERX[ž.`Ôã,^>ƒîk6¹K?]C¨ÎóŸ×(˜Â]°4üž-Æ¥|̘yî(9?¼¦ŸÝ%Ïhמ4q”wÃ0'›ñÚv¦Tj=ƒŽ}%]ÂÄ9×_=š»JÌ m¼‚2¨[ÖÞ8¿ïñÚþÁ0x(T n N¡[” À´ }`ÁãY™¢œ¤eˆÇ*¶Ó•YdRû¢Å4¡°ßsJÉÒ?(+?E 0ÍåÈÙÑ*Ó÷uKÈ9ą̀­AÇM®wéxñà¶¶:ð-VxT±^Ô=x¾˜=uª'º›‚,,t©@b°¨„ãD`Xk,GLm êúÑaÕlØ s÷ßRb0¼{ 8m¾H$K”¼Öíû…˜Â ¶l'Â]³YÝŽñâòj'””'ÿZw«Ç”ÆTœ’ Ñl&5£½{×Û€t=޶ÀÕ2”X2œˆ¤4ÊcÍĪBl+wáþ¯îµFIL,Iªà: ÄóÇ3ÀW/…ÝiZY€"ÙTʸgNõ³:K(£Žw®BÙ!û¼,w<èïKޝ¤Š”° z8ðl‡(ÄS%Dð¼bU˜÷¡bl©“¿ÿà¢o¯&û°’KˆäR³*©g·Ñ-RØ\Úà™õªBf¹“dÈáéÏ‚)ÆÙ­¼núks’S^S¶nžàŒÞ“}¡Nïcýîï+ŽÕ‘hÇl~pª Í—½Ùï$ Ñ?ØfÙ¤6ÞÉ÷ÓÛ›ó< á°^b“S—ïyÄgÌ«ãß4Ê“•øKê;|l$Q®u'®Â…‘6[@v–}¤ôR¦®œ§Š<]ñùªÈIýµ,â¸ôO 7Båôø½²¼ú8Vt)ÓI*ð3§²Ž/‹pÌcïØçÆõ/–³ƒé~)K qȶ™™ÁΕTýýÁ=œÜ[[·–vH˜›úË„¤9±ÍË:Ì2NYbì^¹hu–.!êy³Š%¢Á… 6_/hÅ-©WoiC±ú$€b——o)Uœˆ´NZµšV?Ìô,Ò袋öG!\µ²¢Å^LÝ ähØü.™gÓéœ ¸ϯ£d,ýÁm/Hçíj̳ªÚ8¥=žž—e/áé7"`iA÷/…FA—¤y×䦪™€§ìÎtiu÷é»ÁüÕ¯Œºö¢î˜¸¢”ðƶ¹éùõ†â*‘£8 5Q¯D°DþÃAùá ŠÂS F¥+ÖÅû :Gué´rµ»ˆŒîdCm|:·_±Ÿ•µ ^ߘžÄ(’áØ´–Æ>·F®×þ\†oü €°Ršd%îy×!5gw‚šáÂN±Ô¨×àî^sÙd€6n÷OÑÊtªY‚¸9(ºEÏg—G$B£(š®õ¢„¾l 9çà»Æ˜!òg¼î¤äîž)ª3#£S”X’VÞ^ˆLëqšÂ_Î0VãzEêsxáÀØpNP¾>ò€[š Â9 G÷“.‡k2#e»˜,áp©trŸŸv? ÌÞÕiaÛØë‡fGê=b“]猑A¹£Ê4‘¾Æ€ªðS™ß,fœ¼Îü!5n ˜¶|S.ÞÀUܰ¶mFôÍQÖiÛnC…ýô¬í mȵ͎©°0s%–b%vO*Îã\‡P ‰<÷ Ñ |•+%âd§‡A«G˜Œ:0sÀ}”©óþLèVY9ÀTIˆ ¹ W”°´¤G¹^­jæ…7xå5=K‡ê»8‰\·ÁýÝÌέLÀôðBÁ´mQͲŠÆn¯`³—”¶€â aÍ¥U‘ÐÏGúÔEÓx¤`6= .¥á¿J ½§]p5C`Céò‚+1ñ¥[¬L7Ì2*‘DrIÚëŸãù3=YzuÌ|R„Š)·â7Qš3!@rTÁwåvšãËFßÈ‚­Î¨qøuÅ[ƒ,ñŠJ\>'fT›¤m qNúÈxÕ/‰Iã ùJr€ÜDÒ2m‰ræ‡(z GC1È–íw2cšzø\í[’r™?ðÏ‚5€ïmM²¿0áYJãÁ3Y·›·-ÁÔó¨<ÓÏÐ+¢ñ=Pó$B” PUÆcz´ÀM*A„íÐMQz(ä²U‚€¤ ‘ä]ÅbŒJHñ©Ï5­,ˆ+µW©¿˜}íÂV~!µÐ7‡ê­Â ¸$úN¯Ø€ÏªÃ¿6M:gÖžk`µ¡ £™Äö)‘ÊÜš÷ð[—z+ÚªK'‹(¾qA’†õ=´^˜Žù¦7 †»¹`] 3ƒ:åß!ÑY’›Û¸v,P‰bRøJ÷ºÆ*`sdððÇx¤>[6šLTå-AvÀuù~‡)„ë¢aCÞjÔŒc‘ó œ”Ý ¿TÓ ÏÒ7<Ô›ßÃì: Aó ¹âÎ.Ó‘B' táÐ Ù¦‹kn-ÆóDlsÿqL B•‰òþ1ÂrŽ£Ó‰gDÌêc²J¼ºÜÓ׿’äGÀü‘6ߤwƒKêmìýFkó÷ø,`ù§4¬õOkˆhï€àÖ­ãZeM´b‹1u5³†Ñª‰U›|Eª‰SÄt·wY¦¢Ï¬(þïšñáM  šÅííèŒõ´¤®tJêò0†wkNÁ5ºd¬K÷–?ì%ÏXœn@¯:†’ÐÝdZj¶)šÌwÙ¸Ad¦;кCI9õï‡Ò>!CàOAåÀ}4]â:¡[/xbfâ[íLœ=ò‚ÁE—ëÚ÷”´ýc1Åâ³…êç9Ô. -j †R‹ âð€ƒ[š¨”Ò€És8½ô߸!Ä v0<Œ@¥z"Sk8ä¼È·Le^ö4{‹’ê{#Ò;E°™èù¹ÆõÉÞAÒ uÉËŒÅ2»g­-Zú¢|"6ÜiÉ Ñ’×"ÄÒð¼¥HÎqÙÁñ̘ß?Èì>e/÷­ØÔà W;)rän|œÕáh‚ws©Ùœ)ƒ ™±¯°‚„kVw87SƆ!º^æ¶Ø?¸m_Q’û{5É5KÂòvY¶Ol ¶?¶úÚfàú­b“3ËΦ,éà !ÔN¿Â®pâ·ÌÛQ9Ŧbç%¿¶zã¶ )ËÌÅÞÍAŽ ^¼o¾Ž4ÃÌ8ƒ>ÁÆÍ„7+ƒ¶‚bŒ8…Fu&s‘Äd¼XâÈÁïªâÃ"øÏD‡Ï‡¿£YÕI¬p‡À,$ÚäÍ&z00ĤZáÛqw¹ƒÅ‘]þ ³vÏ÷ŠÍ¼×,Ô6—ÿbíì³L^]ÎòÝQézyõ¼ArQ™ž n5—¦ ƒrv)ÊÌ)eñ:˜Qeýƒ1éHŸ!ïÕ®cá“øaoš›ÈãnIZlÀ"›Ì°™Â £øVësÖ¿åìóJ=ýHƒÏ#®ZÀÎö2®Iu¥u¦|Î S´±–ûKBd’/MMKï…t딄&¼ø}ÔŽŒœ­¢Ô9BFl_¾6l³B'§¹¶e1Õ¤K€qW‰/¬@µ t¤E²sÎÅ}¬) †%öh%+Âv9‡ ®ôN/Ú*ŽÛ¼Ìa->ºü&M3 Ñ> üí{BPÈŠîA0+Óà^kI¯TbšX“œ&î»{Ô­—ô¡,ÀÑoÁv¨#º—ÔJà Vꬿ€Þ´”J¶:a¡±„»ÎP-[h϶ídüuŠü«—øòž÷]ðØØßñÛùúŽïH| !Úø¯r»t‰ëQÀ‡jC}ä=œÃKFKï’³Æô~hâ"D¯x¦àqÃö¬J§U y/Öä/é²{>¼F»è §rfÕht2XíMô]ÒÞ€¥<-và¨E$rú2ÈÈÐÈ:"ë« ™Ï*üL‰²ÌJÍàfôWpàz«Uè ¤ºãõ÷ãçKž”X›'܇pÎçj0&ã0‘Õ /…<®"«‘¾Ø;þ©gÞ,›h8ìàUÈ+µ¢‘êLÃ*v2là’kþ¯+;­“CiË„9u¦dN·Húã96=ÁoQžßÌ>à?}“w1ZCj£$`âi íMs«>½H‹?·QÏ$¶ý62+sköëË—ÚÆãÅ–rê¼rA7ÎuÇ\ÐU_‰Yk/ÓŽíÙç*xOæœÆ%‰G9˜v”ŠêÃË/D©!Ì‚xN‡zz7#û)´ªtÊV”q7=? %~2!òDoZp^ƒ~S6& ³Œ­2–0S¡èT¢ÙÏ]ù©£ã¿ýÃÝÙž’âz%´«Qÿ–ÇDPÒÅH¬c¿Mþ‘–—ÈŒÎ/xlÖ´W¥å7á&®@ŸYkΉ(óÑpYœƒ k]Á²L§….µ+\é&õ]¿[ºW~TÒìÎãÿþëè®ÇÁRýK~¸2’¿ƒ«uš‹mp@àqÓãD†xiä§ RïbUQWGAóñA§(å ¸.?ÜOÍe´‘gmnZÆhŒÙùÐóu͆9Í}ü;@öOS{boÍ_è͹‰?mÓ9…ƘÞriŒ™Ö97ËŠÊ'à#š‡l“ÝOÇ«¯™séïn”º*­âß•ieJûUæ«4•±G?¦ ¦.D@:vê_a0°Ëý*æ2B-Œ%äµÜè¤V°9ßádAê.¶è t¤¨v>aç}÷ffS³´gò4Çñg~XîOkuNE_Ú©‡,U>Ÿ™Çîã-¼O-¤Nùú…uª.À™œ\¶DÂàÎ]c´¯b}Ùò(ϤøÅ},ÛN¦Ã°+ÇÈÑòúÎ|€óÙ`ü1¬¤V¤ìÅåa|jciH(M&•MS´kªÄ1žStçn«==Ú(õ§Õ ÷¾‚ÃÓñ,áí±Nv1À8"Â0î5×$‰$~²^'Öð×ïú(äÁîw»`¦;žŒ^<ŒÛÙ˜þá}Ü45Ð…VÈð cæÍ¼¥Ö!N^¥ÖIÑdéúÉ5À ‡e´NO°°ë¡•Pw¬a­qœ\B¿†cò¨þ©¸îªìÝpêLÀÐÃü U0,“uCî\ž}ã`¢DEªSRÖ:Ü §©Ùj¿vû×x—.¹5¦j0ÁýNש£—JâˆåcòVgYM^;ÎYÛ“oE_ù¾RhêCD ?«QyYqb_ “ØuäIôàÁL“ˆÝ®©õ?d‰›ó'åXx3}%Yès w_FÒŒàÓ0AÜJ4`£+¤v¬8„­=d iº&e´ nîë0W9Ù¹Û‘VÌÃi+ݲéÌõv,É!¼”WüÉÅ×’Ž®;Îîà-mŠþ„Â¹Ø SÌÿ® ŒÍñá–¯7.ž~…›äÛöÍ׿& ŠÚ?†ãO?ÍÅ›~õŸxÒtÔ0¾#€JkYõF¬‹2ÝqW²¶ÉVÌŒ˜ O§^ƒoEm@äÄÓ™³-ïvØãõ½G†ŒïQPubúZýÈš¸®3Q„š´ &ˆcVp+©‡k¦b‚‹'øÈ\¦ðOœ‚tc'¨Ó¬Â žZ™ÙaM9’ðLŒ–C%F8Rá˜þ‚¥UØ¢`¤¶ÿÚi¨l-ª#ž³cùúlCÊ—Õ/þî¡”f€Àœ_¿¹%âÎ$u£´Ší³ÚC’çØRß-­èäK—»þxŠ2|fÃN)ks/Úô¸207¬ô¨› ç‰%¤Œ“òo¡Ë§·Ê– Ö$M?,!ÕI£w¹Ÿ¦ØÉ*@Š@†Uj&aà²Qž´=åÈS]¦o)Þ‚èý ë¶Oz­ÈCj^XÝŽêää~9¶ƒzzýÀfá#†×Äÿã`>*#Ѓ×_ν¢åØøôÚ(Gúî—;^„ ÁÏô1ûP ATDHÊ¡' ;çƒFïŒóî º®P$(Wö|›$=1 Pʯò$PÕfð³bɹãî"ë\w¬¨yƒîÔ–/ŸºMLk¸þM:nö4ezÅÅ9Ù‚´{šÉ-TaëXàwVJ›·M̈dšL›}ì¢>G²¡çÌ”Û[Ä{~2jãM¸ Ý¢”S‘Ç tc¨TD¥ªð!dªìž4°åÙÕ+ÕªŸs<¼Wd“÷wÀ´‘0òLÙ—^õ ûi@I»üé‚ýðqƒÖ?*C w`€"ÚUeë¢õf¾$Ñ RX6$Ý÷ìP3J&6sÕƒ$ÕàÜV¾Õª£'ÃjlÚNT½sq|p‰÷rËÉ-Ðîì#÷§©‹r½Æ®uÏnË_Ún<ú¯Ð[Hp·Êz»÷¸r|Òõqh‘A²a}ý2˜9|U>õC“в¼‰(0o¨_90[È”Gô1p*PÒÎꯟ©·ìÂv$£x¬hª|(c¤è­þtɨ*¥„xÊ>ò«ÑD]ŽÉ“©ò´Ø\ˆÓÆ£¸Ž´XjL[U¨¸àJŒ(ý#ÇÜ3³zhn '3kÜÞ%„V§zZÒ4`ɺ³VlÙÐ"÷Jr 4äžÃY^ãqqquú_ÊûúZÆj|´ºÆ0‹þT¢ô¾±²Ñ`MŒ:K¢3!,ÏP‚§2h›pŽóã##jÜÐ’—N­e鮳Ÿ†è¼‹JÈÅÞð7‰rîs¸©«ÂUH?²³ŒÅßûegÖÁ¤)ËÁ#Gùá°T kÜáCf„þùõ=l½bƒÕ§”Ñßåý¥w’É~ÝV\e4ÖNåÃî Sãv$ŠLÖ¢^íúç-âZ…›ÝNñ¿ lÁS¤FÇï\ò4óð»>²ÇcÔ™JÃÞpР° ¥Iÿ=ã…L;ï'éKƒ…ZvÊÎÏ=–út¿=ÕóýÖñÛlðœÂ“ò¹,î¦ù pw¿-6imçŽ ðTß@;áûlýÎ498 ( ½pÎ?ÞV‚Qh+Ž'£v¨ØŸ~Èd˜s\8:—U8ÅórÐQÛS»¶îb3fÂE*ñ©Õ+ ‹cA:DŒ u+‰N±ôCˆVWË>ó»#ÀŠÓ±ŸsDûYeõúK_³g%'hîvœ6°¸ì2'¿a؆º.OÖíΈSuÎMHˆ‹ Ù0£¸ª6RÊ =àù{€¢,mŽ:?kòµÌBÛ;cá?àÁ¸¸!¯E)|!Ûýƒ‰Ç®Ñ]¢²9íd+¨V-ܵhSÌí˹ӳÈf1(–ðiìéýÂïÝ夃>ôËd¬è*È¡®2 ¦ÐðZüå ­õB×>"ælí®Óò7˜û«Ç[ˆovõ‘j½Ry²?ñ~UŒÊ]ÀàÆò†*M'V/MXÁ3šbÕ.ƒÊÛ¸9Ñ™ ¾€õˆ" ¨B3uï5Asvá¡X!¤½Rï7U‘4ËyRìÍ j‰ˆ*Ú­ L¸¥Ð Í` !*@ýãî¦ù’ 9F¥GõÖÑH¥UËØï~‰ó³¸fÈÇØñú1ƒjyÛ#Ab©Ó.‡k JqÕÈ´ ¸l€8,Á¦tFDï2ÃÃcØLðTE‡‰=yüÏ6p`~#m“RÝ?¹é0ªÊüˆÍáôÐZ;ÎȬBzƒ-ÔQHE ¿TÌ—¦J*ɉ͒âiƲ4ð…ôdÎ~þëk" pá|@{sŒ1 ñºxR Êš%Ysåá”`eö¨(þä!;DÚ8ACÙ= – \´d°Ï%oŒ< ¾67¸1Òà¹ö¬uš¡_4uãõbÌJºùÆ‘*ÕWÓ4í uæ?^øˆA~}@n³ ôÝß48§ƒ"B‚ƒ“*ÙD&o·XD¶ k7¾J™Y¯¡•5îJa#öàÀf"ÿô.×H˜FÞ &¡× YB ÀÞ¼6ŠC‰%If¼¬i™?m¿…dºÈ%SÖFTÀc*–Bþ@AœAA’_ËXàI‰õ‹ Qp]nwJZøÞ‹Og1Œ+&1ª«ïÌ.A´eåñmT«åúÏ2ãwÛ4¼N¬]ƒ5•2¡…Ûˆ¬  Zü¹/Äó¯á¡c]ˆÈÃ!¥IfÉ…©Üà-@ li¦ÙN³UßÒ¥#žGè=6uíÖ¦ï <ŽQㆼ‡8éq†É©¸x<›ÊBNîç”úßÖ}’\i‹ c@Wǘ‰B•ƒñ$œŒ¦ÿ³PAê°ÞÿôëÓ—›ŽsäH!ƒ¹b›bmü@ý¦†'…Ö™bl€æ#N¾«puÍï1ÜÊܘ=øDtÄ&<©í‡¶4ˆwY>/4M½²Ž¿Å¾)ß‚Êþé祘$±‡„Q\°Vz4æˆ^¯^ïAf¤Âì-ûJ@ŸEnw/Ô]¬ò•V¿5øoäùÚk›Tv+r‡£ýqÿœfûJû£r]îÿû4.(qZu:šwkÞ©¶ -oÝ€þÒúèðˆZ0ôŽ«8½AŒ\HÛrG’)<3‰ž¦<ÌÃJŒõ¼ü±×í[0]*†RŠêäÜ"(|€Ÿ;~7Ͻ@§eˆÒ`Í—Yò¦G¶§Û$ž[”…%ò{iØ…Lm‡h®t¶ÿ©"®Ü¬Õ¦ôˆ4Ùâ9á M†ó,ɸ˜·²Þ3÷ãd†FÅ#íïœJ¡Ÿ!Íj[=Âøó<"¹D©èWªä~=r£–h¡âÐΑ¬3ù¥çƒl$'D²†OcÁ·;и¯†JñÝQ&Ü õº>ym™ƒ#€O‘ýYwÍtü¯$ƒKªÂȯÂÙGCèÝŽ;io}ÒáßçŒ-RÐyõµ`uzíæf'·Ïšn´J AHé¾H“ïa‡î{¿¨^y•·À‚1|xx ^œÒRôî'dßjÐ!ZÁTÈtŒ°}lÛi¾:Pó(ªOϰWL/²¸5­Ššwå…?¤xc×U²õÏ£û™Î$Ìž*"ÍÙ–o¼k}æ_eòC±’|8¡ÌëD̼û†JY\|´Ë¤Ý©ª€¯‘¥Ñ¸È™QiØ^$ÁºlÇ+VÚœ@aåÓp‹o=‹ë%¿$Ú8ÑÓ’{ÁžM¤+Ú¡È¥Ýn†þ¢Õ½·Bâ„Â`& ´û7?GÆŠ²ÊêwØ¡dùχ¯Am}ÌZt¿ä/sµýD²áÉ¥x†˜âL×aTÕÒS]xbб =QH¹À!%ã¹`þËxÆÿoÀø¿#kGg;G+˜ÿzìI¹endstream endobj 4 0 obj<>endobj 5 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600]endobj 6 0 obj<>stream x¬¹c@¥íÛ/œíšŒ•m{2&Û^Ù­lM5a²&“]“mÛÆd»Ýý´÷óîOû}¾çßác­ëº(I•TEÌL€’ö FV&>€˜ƒ«³ЙQÔÁÖ ðIáD ¤sƒ¬ìÅA@>€&Ð 4°±Xyyy(?u=­,,AuMZzz†ÿ¢ü#0ñüΧ¦‹•…=€êóà´up´Úƒ>!þŸU@È0·²Ä•´e¤4R ê) =ÐÙØ äjbke ³2Ú»iæ΀OÂ?€©ƒ½™Õ?¡¹0}:!â0¸8M­>Õ€¦@ÇX G ³•‹Ëç`å°p6¶}æä°²7µu5ûÇOºùg?A>%ì>yŸ`J. Sg+GàÓª’¸ä¿ù ²4ýcÛÅê“ p0ÿ”4s0uý'ŸXÆÿÀ|rAÆVö.Ðã“è0̬\m=?m‚9:[ýË W+{‹ÿò€à ´0v6³º¸|Â|bÿ“ÿŠóÕÿˆÞØÑÑÖó_Úÿ’úO¬@.@[s&V¶O›¦ OÛVöÌÿt‰Œ½¹€•åßèf®ŽÿÁs:ÿ+A4ÿô í§Æfö¶ž3 9³‚è3ášÿ·*3þÇŠü?Pâÿ‘ÿ”÷ÿ_qÿ{þkdiþ·ãÿÓ<ÿwhIW[[c»Ïø÷íøg»ü¤Œí¬l=ÿ¹ÿ.¢ ü·-óS—öµˆ½Åç`aúlÐÏÊEÒÊh¦d2µ˜Û~Žü¿èêöf@g[+{àç€þkþŒ¬,ÿ®óŸ<5K+SûÏ9pþ hoößûŸ‰ø—ÇÌÿÇÞü— ¥Ïñ©y:~ºóoF5å>wÅ¿_þÑuðx3r°Ù¸y\<¬nVßÿ‹Á°þÌ?šòÆ g+€îg ,¬ÿ ÷Ÿÿ›þƒ‘°7u0ûgØUAÆöfŸâ? ÿž+'W Œøg¬l,¼\ÿ²eêêìü¹“þµ>ƒGø÷û¿v-è4E8ކ_4Êïa¸Â{Z³J'ëÕÕå<³ÎãL´Si3H¤XX¹2ÿa•ªwÞÈŽ±{¢¼ï»†:¾à­_- ?£ëÃû §ß0ÒÙ¥RX7aT$í'kõQ‡xê½Ùצç$Ì üz>›™ËŠ(k-aÛ†aŠËSbSÎĵ ´¯ß¹' z²ÐfÚÓé¾#këûaÁGL.->ª|d¬yhGYaƒéŠhAçÚýÀ²&U]©ÔéO—`Ó`­µ é]-Sä;G® …uõáÙ&ú‘yNrvºÒ´— ÐáÏ5•¸A˜4Æ3Šë;~a¢ïù¸ÈF™ªûN‰>ln~q’³" á³-÷É |o­ðrè*\Œ¼+d<â·É¦õ)«¸f F?iËT¬Up§?:¿C# #%AÑ! bd#E²‘£/÷éé´ d.ˆtò9˜}h›e)eõLP}[-í„kV{ò‘üeKARÌÜÝØhq%R°—ËŠö‘~Ñd€¶ÛÁã«!2¨0VyŸÚäײU¶‚«´§*K§G”(‡K_gL‡WÛ~°–{ÐvfxÍòñµw» Ñ‹ê”vò+‹æ\5­†2 êV§²ðO{ÒÙ'¹‹3O3$þzÁ8Ýg¾û›8º²ÝÌ9VWÓª]ãsäñ Ÿ–aµ…S¾h2âÈ÷0?|]Gknçœúþ…Ú)%ÙðG0QpN-Q|ù:Óœ¼-?ÿòïâÉ,+hÅi!!®;ÊsâX–Ùü>›rIy å%ž­í ežÊoÖá#­ì‚.>ÙÔ=BFÕëÌlÚÇ&fí73T§žÉ-~ã ••S½Zç­ÕT [Ž¢cQ‚ø“;uF…©¶¯¾â’‘z:ò‹ôEB.1#ß>¾+he»ü¡pñúÖªŽ/2¬0›q!¿™eXIìÍË@…ÞDWftµZ§DÜxö:æÿ¶@Š)š•n :ÝݽÇâ<ÂeTþâI4›>‡DîP/cϺÒM¸±­³’]²ì+8AÎT48˜¸%ã‘ ”\ļ ì¸hlBÜz“ 3•ëÚY…ACôʃËÛ ÚK$yê2_œ²qD—߯Øîã' ò…»”öúCY»<ðH+:åsGnμaG—¶MBŠáaôõº*FQ%åâ…—¹Ì|{W3‚à•{’:~vpCû–÷«S›œZUnlÝ ×a ü@£äÕÕÂj–´r)²Q"eièK7kÎs|JýºªöãሓdÑyÅ!Y5å4bö”.Óçž4äü\ Rÿl´ï–ËðÂÀŒý¿hæ\:FÁøÆ…àÐý&íæƒ"ó´ýݨBäªØrÀHÙLëÞ ×€X¿ÖÃc ¥<µØ­\°Š“~2ƒ[Ãt«Uù™‘N^ÚäRÍæoÅSÇ ao–ßkn£êœÍ…–Àã­^Árà@~*r’ðWLhK¶¢êR‡ð0¼ãÇ´ú¸5Öü‹åÁÆGÛ‚ˆàß ¦˜HÚÇ\²Úntwê¡qNK+Ê•qÓM(©è#® ¼”¨00LKtp¹Ç•_Ô+)脆à‰F÷¼hÏè%y2uÚ#/*¶f.Êo´K8P>­ªAZõ[½~|ðºy«ÏÂѱå|.åm¥ q”€ç3`a t Óžâï ÊÍ~Hý¹òì÷ž”lbG€ÈœÆnóC Ý¥MG%cHªS[”O·ÐæûA­Ÿ²“ÔpH&h([dgŒ>%̓—†Ô‡î*Äàpš1G3u‘7|fÐoÏi‘¹ù"e›Sà‚Š};T‡é:ƒGzÚQJÌ“Mº¹Yaך½öýðh¯‹&EÝÑd—±8 Méš)#ëÇÈ‹ÄbÕ‡’í-»fYhQÄ­hÓ8/Ú­êÏt=•cIÞsygždx–Gj}E¸›¤pŸÛñÆÝ€R~h¼'ö_„iü C#Ñ7+ïÀȪàÊT”*¾­fuÍÊeE!Ê£&šc…•Ah^¨Ÿ5(¶.P)1}…³ð<ܯ¬ÕÂmÉ‹g²»]‰‘Ô] þ Cð*ɽØLë'Ô¥i~®änqê:?4 Ô˜¿®îm®£øáÿIb´¸ ™"ƒ÷R- 2½ÿ=îQܨnžNT -p;èKF€(›Dº«&ùa>8ò~Ûˆ~®çYlƒ”˜·3äX‡Ê§=ÓÏœtÿ×Oç¼G¬‹@iZ;·g½ø~C= s5ùˆØ•ÍŒ Žã©Fp)Ç:.‘Ÿ«ju± Ï8pó,c[%•i²ÿO®²Ày ZâÍ,‰ëhf^ëÃai¸á|ܤh`%{%мâZÛ·àÚAáfÞ#dÐ+²»«Qj…k!ªßê¬Ëõd3ÓÑsëAÚmk_’zõ ïœ Ÿa[Çйթ( Yÿ—¼;÷¶V •‰ Ëã½¼²]!S$P›]_/‘Ö6£pÒ8{ðÜ/ï߇¹\‰Ö ÅEÁ¥ ©P=ˆïŽ T#Ëò`=—BCK"Ñø}Ÿ{ãÔ«›ª Iv[vxüPOkçD>L$óz²Li°Å{T±t6¶ª©×, à!ÿÇ*´RÖ$±H&”žÆo¾Ø;j07þø™#{„|®è 9X´s½kp.}ÁØ Ç¸r2•ïY ¯lHRoϵ¬¡óµ¦X`¥uA7Eýa…¾±¶ú-Ä^Z©ç(•ªµ‘­Ý[ƒv5 &ù þÝ•%$¯, ) õ6lÛ—†j(t׋ó²î­YÊì='¬‹‘PøÅzŒÖ^ÛyœôÆàÊØbFWD »Ç$'ª`hJz]d„>ʱ\¿# PŽ8ÆQ7 t‘%Ë ¬/¹R¡*ÝĦ7Þ\G=´B¾‡…$’))È*‚Ëí­ØÏÿd¦~_݇»H+†û¹kšÚæú€AŽçCgº³G"”$:Éô³¸ž‰rÁÙÀ‰·{2ŸP@mHõrÛ—Y¥Y»ÃÏmKkî,N/zÎé|†nþb, ÇÚíªµékA3¥ÿk@1±ñhtS«ðWc1B¦Ö›öŸn+‡VlK<‰`CGVמ1­Â«ØÜÁ¿1Òé¾È*-°µæùPDc†T8x»Ã ã–±¨$ܘùPJ»:×ånc¥éÀ{.Ó…K}̹Ðë°>Ôs¤@©Kz F”öìŒËÀ¼vôAþu.¬2yšÖÀ‹ô"oOüpÙ­1¿qÑi7‰Õòlo2h­’Dµïª“ð‡ Åa6îótÏSa­0HÌœÇr¤´ü)¤¿%«7›w®Â®}­­æ¤®ýLª˜¡ì=Ö]Ñ¥áßÓ&ì8vÑp(vÙø9ÆÄ$Rz°.ñ’†i&N6 0ˆ6WצèT…«q §à†ù—¶Õ­Cxæužìªü@çÑ6aùÅŒž„k$þnTÂÁ,ç©éAÖ~B ¦ÜÞödÊü:1¯XÄæ7Œ¹/U“òA0Þí _ØF7#¢^ýØAp`f^à•W/yþ€ÿˆ+ï¡¡Sî ª¯ÏPÿQ >#c×Úc®ºÚ$O Q¢ù—ê´jô4¡ð'”4/ŽQ´9fY=æì ÓÌ/KÁÌSOê·„’Qä&œDd`QÞ¨Õ¡nîrÂwDá:%V Xkºž,Ë´‘R („«íßàÉE^V¤§;—#{¸·«®¢Ÿ=9©¾ÆÚ\"ßF°B˜è° k™db! ¤ÿ|K€ÇØëè Y^²÷ûR$÷ŽË—øH ÿXÛT¥jÿ\y'/ÒúÕ  %ø]pqntðúdå¶y¡O…­éÆU`y’{KP)ôn4EOS‡[VÚÒ•Œ‹Á˜»¿Oöçmo¹Fk(‰Áö¶ßN¬þ–aê»86§|“ã-LR® ‘Ó   %H¿¯»)zO¿P™£ ¤R‚j3[YJ,^˜³ e‡5ÑÒ0;:Œ‘{y„ûU)¤0ˆh,®cYV€÷·©¡ìÞÒ¼xuËZæø@دZÄ«“­œ¬š~‰º %"”ݰÒÒ¾j$™¦uÆ÷Zm]íÈÍÅöïDï¶Ã¬"ã}Õ`éM¶N?¸YæµÝJ0#<ñÖƒó2^&«A§V,0jñõš6Âé'ëiwü,ý =m;~8€Î¿m|@>˜ Ûü½Ñµz2JiA;ý¼ûš¯»œJ>Ä“ŽázÕ2´œÀ?ïzŠ;˜Cmjà <Ë#¤ušVûi!A‹ƒMÙ C!'”„–^KÛ±+áy`ºoÑ0ø Ïçßp76×øVÔ å{p¯@ÇN|ÙÑèDÄN÷ÑZÚú·±te|0 ÕÀÌÐÞØ“±¤ä'ȱž#kùj ¯9 ›Àž[¥ógÐW|o©W„æÔM¿š‡âM˜lK³fŠÔÂB&}ú]ϱ½ ü³Í€ L³zëê«2oÏgB )ô‘ƒ—k8Ê®•:­U3 ßéÓ¯r®çœ·t&m„hÂ>©qŠ>Ú¤Åjqµ’·ýJ5/¹X.N¨Â¢ÐßÈZDÓévã2ñ¶LÕ©Ù] º“2‰rœ`^ר,yxèÈŸ¦ Ëf³(j³RDÍÐbZl°˜´³ á w9÷‚#ž¨ºÊ4M”Ñå@â£'—¢µ3At¨Ë\„_CV'R‚ù`ú\ßõÁµcð­à›Ð{Ý êÿ¨Zka«çÖö´$˜RpL–\xyÊ¢ÄØ¨ÎL¤²F ¯£üaUËvô­m«¿ŸhSFkñý@Oä £pt¡q4¾Uxs‘=DcH‡‡‡Ým$ÈœQñ)fý²ûx A·e)^Ì:mZEËð“å45Œó'žSì˜;HÉÑ3)°©Tå·^‚†gVÎ5x»Út]Îm!"òB–5•h“II¸#kº¥BVY:Œ,ÿÌ6þÜÚ&_гfcWðÜñí½ÇÅ¡¼¬x8µÂrÀ¹ý+,5\ç¢üD3W7ÇÞ\fúQJè¥?ÍsÖû%C‘Ù8jvÑ~'‘DnK‡«á þžnÃ6L[‡%ÓHë 2”¡¨ùÁÒ*&Bi×f%+¥BÓWÊt®ùç2S„cÿÚ ŒAƒ€U ,°Âjû[…Û0޼üÁìj?ë‡Å¡jìà0K¤±(+à;ô( šð>Ôˆäð‹FK4îöž³å¯§Mvtmš²2%·ƒ¢mfF9Ýlp—úH Qü¸“‹>N)ºËÙqâ»öý™ ‰Á>Ðip× ¹_g2a_:ŸZÞljˆ»|âí œœ<õOkØðËÜ—QWçEDXÊØÂ×^èç#×É_ʸ¡­½åDDN]‘—qÕVXààò³t·Ó-ÙÌòP¹ ÔD‰ÍlÄ 8æÅëUs¦¡~鑽¸ýãøúªØt›¢]4I½n¨v±9eT¾Æ>5ý8MˆaÏŠÃ’/E )x2N8MÇa¸Ôü[a,÷}«àáÛF2ÜJxó”þÔÀRm>y¿Ääo˜}fÝ÷¯;:nP/ô·¿èïU|ú®ž}ÿdÙ¯ ð é.+çÔß´SH±Y à=L;Z%>/·eßJ›G(@œµ'!±ƒéV]¹ý ì)/ÙÂ00õ²Un3«"ó·öñëPxæÕÎýÂl.3$yÞ‰•‚g°¥ ¯ ŠÀç]d&®U ò4]˜Ð‚J¨+/oAÇM·q9E-o|¹\OcÞÆßàárŸ¢Ž/4 åá× °?@ÇX` à ªÚƒš7I³T)„}®/êü°³ÝL!òàä­WF×1Š|ò­ÊrÉL°»ø¢ÅÜMf:ØL¦«ZƒÞJñâO‘Ö¹4”ôTÓУr9!¦ø1ymeæ¢î|&ê†Mûm•ÆÄµsb×g=ßjT×LåêœeœÅuó+ž¼ª]«è’f®Ú@“µ«ÄbÊ,´¶çxmQ_üšW;õ^‰=I8Yg+ÙÕe6±a\†šeCÚø·®;%4V@õÝŒ‹¸4/в­†G™>­U“{mʬ+ã'tCS]ü÷¿`&Ú¤µö&·©‰Ymªª5±zlŸãÚ“§Ló‰(Uù)!`NÉ)½¥Bo/1™…Å«{šùE×ÃUÎý¹Ý“ìS¥8ï¦]ûòü⃠ö>Ê=y–Igévdck¨$ë ßÃßåƒáEHìë ñÛ,^Õ†§ŸJ¡4¿àQp»ÔK/è¶Wtë|Ñ&àŠjOiÒ(I¢ýÁÅû¥ÞþÇ[%yhBï›VVŸ{óÓàö©ŽÒè ßü·îQ[ã>8-âîEBx¸×L¢R 87ÜãÎf#ò•§â$…d‰²¤É ßxîqĵmRj~üº7l~IÛß…tceoë¼Tü8hµó˜C[¿ÚŒu°8ž¨Þë„Ùd¤£%‹0_„Át€XUçÖ~c 0Pé8Ç‘^Ͼf½#êánA˜8°ž8êJMàë©:‘öê²èå ¨¢yø6¯æŒP-ú€¡3óÏN ’¼6#ã–ÖÞS¸Õk7=eRã’SPQ²¥½ñ|ÿ %ÝŠál;Rïu3>€Ú˜¹ÄBÆp/——ø|ÿ£jYñÏ;‰OT]Ä៮èö› T!S`5ç·÷ìä#ÃʺUHÊ ø-—£¸h¬ê)•®#Û“.Î3l?s/¤!M.*¢îé2,ª‘ßRO,nÁ_«zºQ ',šp–IA&ÐyA5¶o&§%M‹`õ“¸4­\ »°Ç׈Z2òÇÇ7õÖì¹sF–(Ô¨äÿÓz§ðÖ®õ¹Ž->M¿¸­“Ö¥°ÊC9ZÓÎä"Çô"›@‘qÈDú}Ík##{=8² Y]öçqúØßAÖnQcÜ3ÚD3?‰ÁØZ÷Ãjhdfžöv»|úQ)®á‡'ëlŸH„<'!h„°öÖøV–ˆéVŸðJŸü£ûI¢ûÓ‘ÿ°æv}%iéÞµwÈd—\IžµF–Jñ3שÔÃÖä­%³)L…-ØW<Ž%Ê|¾c½ §åfDëQœQÉ·Aíöa€¹wä•2Æ8â~;õ‡ÌDOC"ïó¹lùpz –ðÞ Ï·V[^ÛC ¦ :¿mLmÃÑÒ©l¨gL+”,íGÔ ósó°û3Pè_ [8Ô› üc‡&%š\ÊÃþ¾¿±"wnÂWwàìâ}y€<¤-õùÈÍ%[.G|Öò-ò.3T¦Žáƒ)Vy´Ó‰dFö #ÎKgàw6z1÷*µ²0¯ñ>¿Òµ8£5¶äÁQB4æ Ô"ŸG©5´äâ[[?’mÔ€ ¶:tóÔ/u"sUŠëáäLmØÚ/Gæú™/7 ™ÆQð¢Î{·¢§ÝúçÚÌÆÀ¡yþBMJ‡KY’õù^8yb«¥ëX6Bvˆ,šì¼½`½áíK±½iÓ` w»«AmhSDôaœÿ²qCy&šOˆèû¦©O˜|†ç× '¤3žéçjóµ ˺ç&Æ y9Ûœrb¶yY·‚€–avö™î¾‹«ÿlÿªgµ*ЉÛðû ÝÍßÍæ‡ r$,ô¸¤š¸ä‡©ð/qXc´+'Ÿ÷—Î êžn?¼öÄäð:TDEar@0ë»=ü7Å_·Î±w‰DW©áANgÕn-6 ¤o°#"àßoGå…‰gÆlqhðz%ï¤Óº'é7®6Á«fŸgxÐ8ç±§/€àÐGðÔ%ãJc´ZX(Ó'óíÛ¶Øp…AþWíæ…èÕâbˆ)dÞÆ8~±O4kO=«Ð¤Øü;ô†Ï7,Ã]¼ebv@…òÉûoÖ ºQƒÏè3£€_€{÷ò€h)ÙK(âfTD{SC6ÆùôD «4º-Ob:¸6äñ|sQ<):4 [«¯ ¢¨‚#£Åmí–Ò¯#ù67 :Pqœ³A‹Ì ¶ëúë«\±êrPVò¼[†tD§à`ãC×ϼҦªÜË0«¬².Ùv«MÒSÒû)Ú]ûm gÁ˜³•åwäjqnIF à·&´&ÆáĽ¼§= —óùEÖ³„ÒfX0ª½k·Kå„“ö9²fT⫇>“Yûjö§Å ÓxÚkl¹]ÙY2 ’µolãÔv€+ŒÞfžƒ£ tAhÔ‰žfªÜF4>’UÙ3Gèïeˆ\›?7ëÁlÎ{ª]Ç›­gÛ4*6˜MóÓìÚlÜ Ü[¡°˜@_âñˆË6 ¬0[­* ’&쟗¨Ó+áµ; ’ETÒZ©/‡í>:u˜:AÑÏºÓØW•·°ú„ß ²ZÀ¡;±--­V̈èëë7jÌݰ[½¯`˜Cyä°\qu9˜£Ñ&x~{@:¢(Å‚ùº’Zvs§'vnäašuérß#~…vE²Sq¦uÈà߇[RòŽ™è¼!|Å>7p¼n3•vza<Š d›¸g¸§(ËÒÀÝI8»Ú4—Ø1:GÁYŠ~#Ë‘>Är¥JUœÞª´Zè>5›¶nï%vѹµr+ûéôŠDú:j¼…ÄZÓÚz*º¿ÄPY×1“4Hû‰©‡7ÉôÎx¦i}¿âªUÖ™”Ÿ…4ó¼m‚QyØn nÖïllŸC:I—sÑñCð´á‰/@µ½øÖù3µ[}§áðÆù{]Â9òàb&½}„¢@LJ‹¯26/2Â|¶ö|XYÔ Ù„ký-OLÞëÎlJšbM¶çކQ—=Ó<.¢·,¤=p—ËÆ©Ï1fľÒtNAƒ‹‰r—Ø”˜¦„T¬µü67gæ¶Ç 4uÜæäFÿF®©_Zž¡9Žâ#ö]I¦÷åäݬ–oAC5)È—ï 8s[ôî?~:Wë²” M¦œ$š¯0¤;NÌy¬}§¯UkZN³ñ¯ôÂðg ÍNÐß®ÒñzIm°´uRZ6Ïb¶h3j{ã_D+º¾œ£Ôíí Íá1ÿ9†žvhÅ€ØÓóžnÕѽ½Õ(@&›bs.¼óßg7ôžY”0¹$`®ëu•¡¹ikbOž>Pì{½*ôžQfÁê«Ï¾ÜÃf t©À¢¬Ú„È+clDã1æÜ—T?C¯|{x%’ìa“‡ÿZ´9eîÛ×ÜTþ¸¶ºqW“K@Üw ,}+…õ*ì 3õ.;âÃÝšò‘dÞ.g“–“÷¤}di¼XŒ¨%GoÄÂσïINíê¶ä¡“ hñ³ýY5@þ¸ãîÀÁiÍÖuh,Ô)C0YVÑçvÊÔÕÏÄ\ ™”ç/»^ÊÛä·IÓª0²ûƒ äÇ„ºäÿ³—Æ–°ÑÝÛ’€Š²Öª.ÚCwU&ïªÚ{°ŽOݪ ͰÅ|,§¨ãÈ@è˜èÉŠPÇÍ4 ¶uyåšN<ý"Wæ_À?°`µdÛ¤Ÿg8HÑ16#•füŒŽ%_½@µË|Röžý@)Ç@3Æ·×Íó~­$&°À‚:ì7ƒ‚(ÍôÌC凄WQœ4‘s#ÏÚØì¹²›Ö $1^ú`@Ü®Ýãˆðc ¶ùÅÊ/)z@«X˜gŽ\Iåüõèm· !ú9©L·˜EÚ‚º¶^ 1ÑDCZï|<7#3«Í2H%åw¾Wþ~G__J~7Ê÷¶¶ùƒá$Ä[½šôl½rÅ?lޏEöeØØ¿h¸êõŒA3ì’{cÝz޳Ýé\>~QËî*p¬,LÚ6 Fñ=¿p®(ìåÁ¿Ê ¹š½Z«ê ¡ß~8‰xIt¤Ûe~8ý–á<Ìd9ú¹{àq Új…ÓVi|# öøöÔŠsF\=:×ᬩ?Òi7TJ®¨Ö ›©=ßL<±óö‡eù&U :èZÇ9ä;ÑÎ8hItÊ´oánÊÝ'í-í®Ýë¯ìψ”ÆÊBYvÛK-†{5³˜h#Œݹ:²w÷#ªœ9èË“òã¥WEs”sx줛_? ï_rçuÙyð5@R±6ÇôôêœÂËËmQ“ÄÈ,c¹׳êÌ¿]{ŽâihÑV…¹u,ײåŠe•©EúŠTjÉW)GhgœÏ(ðå˜ÙÝÒ¨²i‰è$ÑôT7öx㜻ñsÜ¥¿~Q9mψ,?¨_¡:|2aWßcq yþ¥jîÕè Cj }®†­??&Ι³ÿ.Xc…å(Fµñt¼‹Lßy@z3޳ ÌÁÉøåYž²ÝiHñVtÆžÈ^U Ç+Û1/Cpü‚9În<> ¹~ïûùïÁßKSreÒ‰ˆ[÷ï5Á•u;'îír¤žÅVzì0Ps˯‘eàF)Wr¢kvzêX¼(+›]¨H æ^!eùòwS•cèj—ê´Fí&4X4Ï_«t ‹H³ù±ÏÍf pFlCñL—ú'?®Y×_“Qæ7Ïž45»³ƒÆü…èì°Êjf3cíZ/â7æñÔG.XG‚éX:¾3gŒ%?ò½ëÌKù¼o]’H‘®{Üé>`|¶­è_xôÄ HFdšB”k@sígXÜš¨ü$̈…ãuÍoAIÍzç³Ü>#¬g@o™8à*ÃúÅ,¿Ê-šÓú >î3Õ5SK¥Þ01> êÀ•7¢ÏÜê q³¤HmþBÖÐå˜ê’eÎ7»Üep;£.nxùa ïÔ Æ‹e&Hž”³sÅÕÅd8Ì<·õ [ŽA(h(d†ï¹ÍôNwŠÏc>ººÃb䎛Ý&ŽJeî·Ü„èC@KoQЗôþ…¸üô²–D…¡a¨&.ßùB=øÀA§H_À» ÓuþW»Úzúfx“,}ñ·°UÚßWUy°ôZ#=›lÙ:þBë¶¢Á™5Ž£/¯šWÎu¸ÚaX$”¾Èv±øIïh³˜Í]!6]~ó²›D\^´]*µØð¤Äûn²ßszFlQ¯VZëãÄ"ٌ§ís?ØRÆ…uô.x¤›8Î;ÊH)ý®üT´-Y¤ƒñvC°mµ)ýª%dï“ ÂŠ5Òõ‚¶—¯þ,‰yÆÖ×£›ùMÞJÇvþ ð¥5ª¼£+I¤ò Þ7-ð«ò>§MÜ…?’)ÛcêÔ£NVC»·‡ýŒ?Åâ_5Üÿ¨ôàE^ö 6vÍ|áM.Óc'ú•ï@ >`h k›TúÙ»d`‰ôèœMÞ¹UC€jDâêyŸùëtjX%]™LÊÞÝìnG¤ÙvëÐÊ’kÈΡHµ*B€­fO˜¹lzUÇa» _ž"HRô…WŠpm‘Óuv‹â²ýêçÝÅtGí‘æ# ¤Il,n–["¡5Qú<¥aQ#R¢T‡â61o™+Ô x’Þ§YŠ`ªéïœðÚ5ß>¶iŒPBþ°*†oú¦¸¹Ÿ1¦Àèlð¬ëúnp:}Ø3¢´¼‘ÓúC© (ëÀ#­³¨† ?’uø‡MÔûºMÑþ‡ï¸Œ•hÓQ/; G¡ -u^}ó×½ìýh~1Éð[unbÊ ÎfKçm…MÅ»t͉Ôw ¼B'â'.Ô“œ[$#«i]]2E¶à²ÿ\ ô-ߢ<\umÇÅŸºYð•Gß<š#ˆjJ…‰Ô —®€•gøÍ/-ˆ!_d ŠÒ˜Ï¸@eéY` ò_9ù7ÃΚ„ŒYä@Vzóü<~:ljàAÃ;û‡î#†Ž¿Î½áb¼½¹„IC‘²Ãù¥– | .hÓ–?åùaÿ6ã@Œ9¦Y>îÿÃÓ4KÇÅ÷{D{ÛeÞŽŸÿÚÓmàO’„sr@ü±çUø¥¾™ ~öˆDû-;‰aäjoÈU×ß‹à’ ÿÜïs˜‹/^™4¸çûùÐ…^/¦º?ïM qF!‘iÿNgìd,³AÊ Á“ ȯós :x”¬APv£¿–Òà†7K¡a$iJ•g?R¸9 ÿ`’M_÷—¬¡} îa)ÎÛÖ¢.t"oº½_M–¸ê0Ù„¤J…d 6—½ØêÏZ‰o£Ü³DÚA‹ryär"ÙÐ+Às¼$f"°í·#ÞeKKs árŠ^ÑŸ²½þÕákÃÇãauå}Ÿ |nÑ-BãN%-Í¡Ž[ͯ½R›æo§ˆæO´ÚoË~‹¶êFápw TÿUì¯Ôí¼Ë¸èµa`*ùù‹lìãûÕ5)ˆP.óðÜ)ƒŒÇHÈ+c?éwåôHOǯ¶2·æé|ÞUètÄ;È^ÙÁ î}ÞPôë#ÏlUØÿéyÿ`Eý©a_vØ£è{ÄWsF$úH˜0é;­ðqžÒ!yN 6¶?  õkþG9w-×xñÊ{²Ÿsѯ°ûÌÆãh¶a·'ñPWI9ì[.ó q·Ĉ¡€ßÝÚ‡'ÉäÃ}r•q+W4{»\{zns›‰fEÖ]Î×ÞLyc¦¾ÖYt3‘#+ ú£¢†i9MMÞôž}w‰Ý[3²xɤµ¤8ÁcÝõk+ui“$K¦§{tÜô`‘Àr}³ÈÀð0/mÏiì8ƒž!®¾Ù¢,þاOFµX˜g'Tp íÇǪw’Mmn½P̘?@Òx›ÊÎk’Kqj˜@âeÎk½«¤LޫųhôocPI“l é¶ÒÔ`&¾ž‘²žK\Ôùa\š«œXF „L-ÃË…«“¢w†=Æ´V&{rʭ؆‡×8Ï™s’¡¶„$ÕšY1Tkê˜õ5Æ&;ÿ†y@éßD÷>5Êún é…|ñ%à[EóÓÝÀ‹ãß7a™ÂZÜŽØ•Q¯FJNþyKIœW´ÂypX­…œ-EAű¦¤Ò¡Ðjš™ìà*è*ìh%‚ÆÅBÎ¥5LÇ"½ž0»ÞÂ:tål·h$\A%„“IY‚ÉÍÙ›ÉÅ?ª¿‘Û+A·Žy‚˜Nò$~‹$E•¼UO¨òn»¤«bxš1ü- :—_y"£FW““›ŠÙ¸CY}æÍÜK¡) ÛÄ'Jõà= u²#¾•£Wð«KdÖ—»™îTè¿ztì1…{1¹5 çj2IÇiÿaF H¡'Þ+E\Ë~dSÑùI!Û;¡°íš6‡6˜—7oX?h”-v¾Qå“<×h‹ã·GÉ,zVPÅk„ÊôMæ Ð{ì­Kô¾J:¡ß—ª—@Èjþ‚e'ï–@Êbá=l¿Dú¬ÙÕžO¡¸—{ž¿qïykðtï‡Ö°1>»×1”~§ÚömÌNžµy1ÙÏH»¦¿“`KÞT8¦¹ï.ƒ~«Ò˯5 u=ð.DäÔ©W#äʽülBé†$"®ùb!½ÎƒB¼ s›LŸB®Œ÷,Û 0æ oÖÊV¿kêÏÑ×õd¢Ysêy^ÅLž/!®œ:1Òÿºä¯ŒÁöA,,Ïbp:(ÃFåé·ÞÅȃ.ÉýIX39¿©Üf½ÞhT¾yÑi4AÆí›:‘ŽÁ™ï d_VþÐ'¸kEy\8„Ú>[ãë/ê>ÈoEn®*=ˆ~õÃ~¼ëÊ,j“,ø7• ë¨IÑ¢tZ–ÇÄ5еI ñÂoÀ¼•ôðgáçŠÝEö§óY /ŒËÁ¸©ìæ)ª­ô ¶‘Ž¡ôŸ7±!ïè8IÊ1Cå£Y´2³ý!Øë¸ÞßÑnü´³¦3Í"Y°@Ò+9Hßhòï× ©Ð¢ªË‚o_NWõ׋ó*­Àõ›`¤Ð§-Í™W¼?õi;˜Í$†iœàÇ;I BbÍì7[ßÁm¡Ø¬r¥ÔŽt %"~•ÿs'wºpÍ”v|Ú9þÀLŸvNU°÷bÕhNÇw%Ô+G Õl)›38rˆ®*mÌöÃ@Òe®ÝvJ;׺si[“Þš¯ì„ $¥XWêëÿ‚íÁï{Ýfu;ß‹O0Œ [-s?d ÙÔªÕ•É¡ç&ëËÈU±8>õT»²ëÑR½‘¨îªL¦ëÇh™9ÌQ|-Ø*ÿi'_~ÌntA/{•`®ÊQ_ë‡#S.ü×B.¡Ò:§Ü–‚·é8ÿ3?JìaƒÎËÞ‰ø~È´íàïgB»éÒµ+ñJ˜£Ý÷J¸"G-_ò9rÊ›Jééw«Ð6¸G ‚„¨={«áª º„ÖNCüDè<üÓ‡ä´À¢QDÌ$묕†p4©$£³yÓqÅð#gÑ? -œùò Û€ˆ8\¦­¬wZ܆ HIR›9çT‡ïsÙ| ‰¡òíP¾ã.¬¦¨Á€§Þ®»î¨R¤R ïnèüvÙ[Þ×/‘饨SGJ5JÁêà*d: dUYúg—<×?Ðó U1¢•¾}“Å2Ç9†ÎÏu(“Ö·Ö”)†ñ:d¼@¨(s¨Ùýc>µ‹à]Çw«u}šÕˆKí—ùwÇ]¹èî¹ûK⽑^‡itzj¹-¡°-+e¡o¿²Öj^»<×{BhìÂkæ×~u>ó˜ë…»zÌhžªvMm@vVË8á9jÇ„Ýa]¼]‡s0O&HÙ«b$ì&ùÐÉ—í’Ç'vã+…/h‡±r$ÈpWOrõ»k´o\ejbç'ÇÉœ·„ nðo¶} `*Ø)º¼ÉKÄÞ6z”ŸjÔúÔ°Õ?´º¨9Æ5åFs±B#~ÖÇï¤ÝPåtvmáí4.Ä[ņ؉9¼¾-tK8D,ªË¶ ¡7`.­³=ðG2rma!S`—cª)JÂCÿÅ1û©ØK²dÀè>d€K¬öOp¤}ª ŒR%@ÌØåX°Î‡TÍa¢8O,– Ɖ›•Ÿ‚bÛÄš“­½eä\9+“üÌ™ÑàÆB‘L_yû,ŽÁpøî©…£‹<ê^WpÖ¬Þ¼¶²2–‚P{xtöïÓIºï3ÓÉ/¿#T?JÛ3´4nec¥S-„65t©`Ýl¬ÏGÈ4ldÆ,P5úJmÏŽ™°! úöTáã­Ï3×¢:ó G÷ÜÐ&Ú&ru¸-Ï9bÆÖ?¹ÛÂ×°Ê»ÔSØ[6|œÕQrPdë÷¼ß+-,ßóvìTªsQƒ?DÆiñ§¤Hàè<Û\·c,ìŠnj ­woføWLŠ9®™E×/FÒ¥£(o´Òza(mŒàß'ÊG4½äÝ`^»ú¾øÐ€»ÿäå'NÍÆÆ±?Ç·2Lö{÷ƒ:÷I°[÷a´pøhÑ9POŒš7NѨü4¾lò'€œAdÿK‹ ûd*|ßH}Tâ?ÃQ‹‚^âRv¡][oY|üum·ñ^ÇÈ@À?‡_V‹€zÔëÚbô”%“¾-×B§¿Ò çw;G"®TЧ–Í~ݨ´Ò†s‹ûbÒF.Gã~â£aÏ‚SUß8ò‚GP¼Ypì![¯&È f2º1š9w~*ÐAZ”߬c°»Ž îÁÄœõ"}ÿ©Î© Š0˱¿k›‹™ûÝ.ˆE­Ü€„A¦¶Û¶¶÷A:Ó¿·PèÅ]÷ùÖ÷ŽÈz)£‡rÓ&xçm;Å1a¾äðެäëœ p8ÌkÖ1ùEšèÂÏ,K–ðÉŇÓ÷9°µ·ŽsÿoR‡! u™rÇT›Ô¼†ˆÿl¦Y+–ÚGëpuì_3’}JñîΑ0 [ܪ8“v0òÐu£µöÃþw«^y°ot4f¥ã{»á~ÅÑ©­žøN¨ñƒ©‘\øì*ÀAØžK”oe<êžÂ;ž1û7ÝUNΞg™ßaÌÒl¨àÕaÚÓ†ŠéÿÖë,ÊÞÊÛèP€w'í)⟻8`s™Ú‰-óN .×ñïÙµOóúñy®&l¢ W6ìÒAz¤é¬DfÖü0âk3T·§°cÙ@|¾Š3ùÍ¡æÇ¿ìÜø*4äïôñ®;§¨R¤*t°PnÐG-„Œ—Yb»©:}³sÉ(WÜŠ½ÜÊ¥öŽÇ¦ØÎeïQãl•Q3¯|tÜ?¦Ç3„µ„"»T"ÃÂ$yL0B7ÕåI"±û¦q…œòܸ۱¨S‘ÀÀ1`ˆcöB§Ó!*]ñäy¤´ žÇ±vrïÆ £Q²Å V»ì…‰ÆD›ogHã^PA»Š.5¼Dä$‡ä¬ú‡°"ì5{*ð¬§9жUQSUEúýÞÚmÑ4¯_ë¯4sФú-XL¬W©ýÕ3†µ'îP3¢ î}ê!Øxí§-[øö¨%PYj×qfß^!"P+×¾“m¥µÃóÖŽÌ­ˆ Xõ‹jÓØFM »óÈ)½ŠÑ‹óŒê ˜‹¦@j6ÇÅÕï—è–xïOTQcŒÝ ÕðÄØÚg"‘‹p²‚¹1º¶ý‘XÉ~>ž€$Å‘{ß ßr¢p*òÙ’__xƨÈôvb+Nˆ¨¸ð –ª˜:è£gaoçßôg´NjϨ,Gäɸ2jMhI#UhTþEÐsmNÿaîØ´zCÑîË–´4z¹ÓGÊ`å÷lºà6 Å`Ù]“’RíÒÃ÷!}%RT|ó=svy-áÆ Ç†ç§XÁõ4Ì6çIwÒøÎÿ%nµÊÝ$SŸÓÄT®MΓ›·¥DD€°}Ö»òñ_Ľ„ ¡cB ã:hÿj¡¹ËMc”=ÿˆ‹¹šêíï™;ãê—[Ê.? ä²”å›ìx|„¹VO­D<‹ߣ@(;¹|I0à—ͰmSœé»Rû, $YÂ<¦ WO}AÚøn¤lPènì C!í«d'z ˜Ã%àIs½%ÜIØæC°QMþ’~ è¥Hú4ÞÅ(q)Oy“Ó;˼"ÿñ=,îßQ—‹ý7ò:4½þÀFÉ,fDzÌ%‘cl÷ECÄÒ`Ÿ$òÍ­jÉÏeó| Q™–ä“ù"çÄÛ¾–x•FD”í³å¶¾Ée§¢±£zˆó%ïßÊÈÎxoû±w)’Awé¡ìöˆ™/[MYŠªB?ð gT’‹Šô–ÑwwÔ PÆ=¤|Ã.,þÓ¹©ÈWóÖ‹ýy'Óõø¸úÉ#vÙq„ÛÁ× ºyZÙÚ°Ù™¦ðÅ·§ÕßEWÅðy{×€.t‚ýu¸ÃûŒ]5U¸qà—©¹M?k'(.Á„I^Ö§e”w^›ŠÄd}QæoÖSìÆøœL$ $Š?ðNüåVâFd¸s-R"ZËÔb¥:vè¹EvsäE… ᫆¤¾8$/KÐ7o‡…. c•ç‡2”¬M eоfÕ™ÓÚ?Ýð‹jÑÿÍð‡ žñ™NŸ]ŠÁ;jfPGØòZzŸVöû•bexhS,U‚†æn‚²Ÿ«6½;=’;J¯äj׊x7ü¾R&äaÕLÍ’urªÉW š|„Ë šœhYÚà2& 0ö>÷hEÊ4å1ð©ÿ/<@ÿ¿Œ™ÞÄ6g‚ÛS\³FðËšŒ5²–Rçc0v(~ѽŽä@Xo,'óÁ|®ž±;Õ!©$Å.Øùåá"±YúrG¯Aš#xê ¥rs–7*}m}S= 9ÎÉ¢|k¬ÉKøë¦ ¡ƒ°œ£ÊA¦Â`n )óìa*üÙå0&€ÑüŽ¢mƒU1ñWéÔS É|¬)ÐÞ;¸y—³×¢"°°úé~b3üG×±”ærÌQcÄ.눣³£ù¥Ÿ‚Ìrž']µ6¸Í•ÏÙ‚h„®kž—ttz ð9§|zÈ4¹Ò:÷–A%PRMô‹¬Š$ãÇœFJ%?ã2£Áƒ™û¬ôâ Æo,Ÿ‰•zb‹5pÇsë|{tP(‚Zú°[ ‰¥˜Îë4¡ô ÌaàRp¾'žPí‘ó ê¸ ðSµ6i3nïE ]ƒUòÅ,¤fÍ BOÀN=­n¦kóóª¼Æ<Õ¤yzv˜¤†êõ"E –Ö-' W²;«óz€‚¿›¸¼‚±ŸÙ„Ù¬#¬sŠðæ$€†S4ðçu­³aã0Û—W¶rá"ªg.¤‰éóu>•cÖuºçy |§F€B ¾ór3š^5Jîþ v܉bßû´C5¥¿ÄKè¨ë}  ø[1q¦›-Bÿ\ø¨‰¨1àÿRÚôO%÷àFưk±°ww†RÜö…RSšAˆO†Û‘.W×Äàm}È¡Îe¶(9œ²õÝ”¥¡TŒVS£>A+SØ2Nm³ñ]ø>…ËL_-߈åtŸ>ú(ù">1Œ ƒ‹/’÷ò%Nd›{xu~”mö]ðLGç;×õÌWrÁ%?gïT5‡­Ùò{a5Æ4Éwaäƒ@wæY¶àùÓzøU`ÏNª@ ‚ ‡·/3~²ú;Œ?o!ÂË” ©úX’CÓ'•Z®ÚÙ×κ9›¡Qø¯c»8 ¼õåœ+¬^¸¤SÈë¨jæÈFÒù(‡Š”¼œuÙQËI´¤ÈÔq»s&˜L~ ­ÏDªËõ˜:TÙy› )Œ$!fÄG¸.uRJa]! 3–[L÷g `Îæ¯äÑ(¤áU `|ª€ “Åf‹áÕýT¹Ì].¦ÂÙ(5ä¾>ÕÄ„¹Hª³Ê9oLºµ¶Ò”=zQ­ß}ɾÇîO•+Ë ›- ±­Vº™™K­&ëÚš¢bklØÆ·Ê}Ény…פœ~éÐ5»Ý?ø›Û-YÙŸÔEÉg¯11•£Ï›½âB#8w?\´»÷û7#;Ó˜£ŸÍûˈ¬°€ÍáêÛ€ñQã±úçhGɘzûMôe4Eô} ä~Ä(\[ø(ú;¢ã£>¾´„ôþ¦ªÙ'Ac¦¯ñy& i™ÛrR"±¼Ñî0öÒâU™µ6ܱ ç°ÂƒòT<·iW&tG~ ±Ñì_Xæ¨ê‘à^Ú0ðönÖó§¾qCÍަd›ÏÙÛ" ^Œ&LͰÞжæ)¬L@C(ið¾C jßp¸õnÕ(Wú Œ¢¿ž ˜œJTÇI‹ï[b{ð´-]Ì?Ž®Í92•gi6|r @CÖKhª™b‚îâ–ÇôA¢&íY±f᪙m$¬¦^΀¶té}o~9*Ö¿Y:´óŠ; l Ì1(ØG„Xs½´)0C¢)RÚ·˜5-rÎþøÿà,¨ö Ó¨«#Ša‚ùøìŒÊú× |ä~ósÀÅ]{®›!‡÷¨ÀçÌ‚Þ_&×6=•=ᇥp˜ ã{¾­n€$aRõ̆[)Q+–zD}˜ùqôÄÂŒ)yÐ|°æì@)ÜdªãÛW6!&ΠΣêDNA SéåñÙÕ"ªæú4ƒËÕECÍÒ?9Ôáæhe¬¦$$9Í›M>ÑýµÀu+^dâäƶM#ÈäZñ´X–ì‡|-‡øOJ…Ф±ÑSe Fid˜ˆl.°Ií×ó¶võ#Eúnù«JA€fàŠSóªû_»uÑ,úÇÙÝ«ºÆD”JDioiÑ0ã'šäWÜ™eâ}ΊG–m«]èáÒf·üÖîòØ À)ú`Ý2€„úø®;kÐõp…[üU~L}I1ºm.J«¥'àИ3L£ŒšxíÝÀ†Í»¸å¬t a@ö}t–T¯éMÚžÓ¥\MY4ìÂrwûÖ!««|–™ÁˆÉ{ÄmѪÖO ô,%`{U¸…DEZ¨r’27%QoqÏË\r´ïß(¾â˜"Í»êL¯†':‚ÓðPáBáึ(ãO(ô=W÷IFÛ³âÏþÑ;u„WTh¡M s¹ÚC:اÿãƒHÎm•ö%ÈÈr‡ŒFØ| éÍ=,B"Ô[µM>¿ë0å<úgµ*%’\ïÑy_xß;«Ú+êæ²Á™WQÃ4úÞË¥˜U¾½×`4‡Eqö‚æxPYË@F­ ¬˜Õ¡åfŠ/ÇüÊ;‘XuüÐÕ)¦5ÖL³C‡Í”}<Ÿ=2Äë@¦0Ãáø½Š¢ 5ÛÃݲiÂbp$L"L:“ºCP1lfK,ç; ê×Ó›ÄnðLƒp>‹tæ #,A *}àZþ”ÚÚ‹æ ¸~ïŒeÕ‹Foö—ÖFf ?4(NcB² %¦¥V«LŒB¡ÿg]•Zu/$yÎ>פøDˆÓŸb.å:Tà -N`ƒ'ÔS8¨ÖpvBÇn²\kcsôö{ÖûÁ¨m8ûÑD…ǘJw÷ ø\õÑÒ;òSREay¤½X‰AàçÓfPüài‹°¼ø1Ó`o>s í ‡¨Ó(,Ì_õøðÜqÄà÷Ü[ŠŽ·%à›i*Úæy? ÖÜÙ/^ÃqŸ a·át—wf‘ ] ¯@&NU5è÷·{‰»Ýì^MÇýT¸; ô_§å–F“SA½8r±ÆK‚G,ÉVÕ­k]ù@ˆOetÐ0N[Ì(‡ZŠé~óþ4Ž.6úFª\½=Ø’î‹V9”¡OPúÔ`NFÂq ¼ÿ%ãÑzœ v—ã±D§ 9±ûéÌ©¨Øc,òÂ…Õ«M -Î{‰¯IÑ¢(uËz¦ØÀ;TN‡+¨­äaÉëÿ‡FA»{žhÑ:ÜAâàŽy°Ü0Õ—eJG¦Kj3;™”Ô+v~D¡§~RAÜZ”d‡+“ß1‡Æ'E ´lM,ÐB„µç7G4DNí9‡GÚé(¸±ó š³hLçØ'¦£ßIçaôÅž>w¡¸¦ 5›ðvèŠmØ:YlTŸ¯Òâ]ÄNÄX¯^&¤Å;~¯œÇ_‡­‹Ž^˜H<®~†…8×EˆÈpxÅ‚7ì—ÛþŠ«„ˆ„ËÚ\‡kC€ï³W4!x!xyþöZ!—œ¯ø0gYØ´uÃß×PtÁ…ä"-ëxÊ.{eã×¼xŽ«Ò§EQżÒÐv•vsȳŒSËB^ä&áÙˆÄrno»˜Ž¢‹ÚÊQV92©Ë&ê®{•4âÒPƒ7ò¿¥tPJOzyF~—QàRXbˆ²à•Ä ÎwMRêßÛóð”×Ñ_=½¯?ÝñÔJQÔpìg#ø+Àèt½\_0ö^kg_ú³Íñã¿j"n>ÏÒµ…9_¿»åˆbß.RáH7”ÄLeH `yñ¹˜¿1w-µË¸Êö“"SsØ‘ášOæ,ø¤0•a'J2š;ë¨õ‰¿öËÅ¥Ö-,à8Ó¶Kï– A…yoPlšÛôw8Çl0ìÊa BMjÕíF¾Ñ2 f\H@µi/škÐù£e¯%¥Áë&±; ®¾# ÈÛuìÖˆ!›}³¬ôå]PBäsDe¦ø»f÷0ò‚Aó™Sê<¤¯“9[¾ŸZ2!~ÔÌáÅ õ"»'IuîØ1 ö¦v(m°sŸ]žú¨=8ÍìmöìQ3²¼n\ˆ`_«Ïë„-áÒ|È‘8wJE³Â±t¤$™Y«9Ö7*ÝÒ) ÿp¥ü<Ê¿¡f8G÷>>ø55aà7lÔóŽRZîœü¨bÈÌ ÅH¨F’‹Pä¡¥¯§Ê·ÝT Yê©0¿ÿiÍg)MG Û }ÿ(zìL•õNλïE®hà{ æÉfo²5Z—ê¯]wG‡ÕysN9Â" Vuo} yçÇ(Ø®ÓN(´úíµäK(ÓÞöóQÔ«ä +‡ŠGG±­K´:”Œbã½m<£,Ž%R«AhŽØ8ÉiÛèC_3I©n/ kœ}±٣ÕyjfN¿ aUå —j•ÆÚJ€Ê|®nFo´ÎNËÉÏÌŸFó‰FK¢QH†þðU1tÚy a/óÛA…W”Už§3Ìðùdbm£)²Ie$­7Y_Ò§†šÓRBÐó9V ¸+2äÛy(U­ð(¥|`Ìç2>p$?éËÄV9%Áæ“’’Ÿ¯l;QnÁõ_ÖTE•Ñê•)ZÌp’Aã[iXlU_Ýútj&vOÑþÏcÄòZu²d’ü\w=…%:û£Ò¥¹ D….æ¶‚~oqD½ïìzh²2½H5eÓ£èav²Ýð¤/Ép d<¦i8{„+¥ ™¾ØwÒ¢¿!¶žšÊþi¦„ôú)I¹²Ždý³xàænçVqB–œ\¹/é¡[ \5Jí÷¶. i$‹m>~ï{&Òeua¤Ú\³Ò|©¾Œ(># S¼™’êX:9¦)©MÏÚ{úGÈR£­¢Ö1¢÷MÑš–¢=a§>r©±.¾EóÀQ÷¡Q}_Ô< Å–ËÀ˜‘‘úŠËý—@•.hê̽×9kkk9•—oØ¥qå%>èÏÃõ#Ý"=Ô®bé2&Ø4yÖCR×¥s¼:X¢OÁ :Ì^½-4¤@±ÝwZ´ÝAY&ìÕ©mæ 7Ïg*©B ÿO“Žåq¹ šCa;'Xo@ ¿”Qa6:õ%¢C>í0„#Ò{Ö$`w®dÓ†%D?Ñ>x‘_ˆâ„ V‹ž* Ù÷P¹.µ´Š`ÑÙ®"{¤|¶þI±ÅÿZy}æÈE„eÍ3X»ÛµOÖ&<ºÆ—¬8tßâSfð§o¬tÂI.RO·CûaLÄŸ‚¿YþåB¦Þ4Ã>½ShÁKw½r°¥y/ PQ˜8„ãFÓÓ¨ÚG¥ãA5c¬u m-c:\«kðôÄáÚUUpymׯoO¼ÞïçuDÕ‰ÌLÂWüCwÌN4(¨tûÍŒ-Þ5Y¥ëY¦q’¼©íIÿÄ›`Z¬¡”ê\QÅì¼³§ ?¿M+—@úvwíuõŒ{“¥5¿Cú{ikl;øü‰ôåîØ #›Ñœ•4’,'†ÂùÿÒáà‰na‘ŠLJØø·ž)|ò¾®Èzû¬©Q]ɇâÝÜ@òZpÒ©= bnna„¢Ïè_†c Ò7ÑR•ÃÅo{Õ¢OY¨¼®€›–ëïßlâÅ‚;Rõ§j߸jf“Ì,¶T­ Ï«¦Ž#8õÎvü\u…~C¬ °$ÌQF)N ÇS^¥ÂñjüuöbÔGZ/ÃA£È.ãD9Ãå)¹k-å•JBÿ0ìwê£×Â>M¥Ð¥;í«ÖädWªb’X]:Š1ðUž…Ud¿.ž b ²Jå8*m%ÂJ]T²g,V‰Ãÿt5Šm!MDá…ÆKž•*ÂÖmœm^ÖbÖï³€“[,Ì£fýxù´ÓÃ}JlØ•77íüõéIñ¼Ã¥1 Æ¢zÒAºõМqÞYCœ{‹j—l3ÃC¸s—ÜZ“„˜&üLó¬ÜÊ:,°‚تE9Ø$=¿6<ûÞã8‡¢d).ß~ßwv¨Ñ+ô•?ãv kbuÛNѲq5 bëKzϲ½¨²Ý+©RM‘Ä>üùàŠñ¬¼ðîàXì[ì°J­éÂ=^Pß÷¨û,?O’â©d‚é\¹vÆãKêÂrê6)Ð 1ëHT7_h†m¥ì.Çþa+¹ø0Œ. óHÛO—øÕ&ëÜWÙ¨D)gQk}k¨”X>tÅÉ¢F#ΤMñw.*Ê»\ÞÅ‚±C sXÕñkxF‚ÀÐ*€. Dÿ®«5€óä %t™H2Er¾vQ¸ï×+H_•ÔÆQ^ÌíÄ[›¼v²v¥ö©XPhùl°¾eÞöbͱž¨îûÏ@5;pYGj¯£;¢jù;`•jêmxŸóØÓ&j-‡sî¬ïÓwm¦^ÐÏ›CVÂjS‹ða»;RO*jäÝ.›¢ˆ²Ó_îÑ¢ó%Â"WÛh@MÕ¹®¶=DA­8_ ÝJ¥Y)jÏBfÇã»Ê[“n`(«ºJDÇ›G²Ÿ¢íeØ'KTÁ}éôñQíÅwLÅ6Dwæu5]«^T±1ÖK»ª¬y%àö+½©xÆìé·Å"W7»½!†ò§ÉÈ««&+’M6­¿Ï6e–õãOYùêÓŽLÂNødW˜c™Ó Î,·þ,©!ñŠ‘vnäS€õGwpx=¬éÞÅ™"aK؉ˆ|jßÌîá8ïÂ4cüˆÑ­øa~NVÿ§ ’‘<&5„›N!BõjôGgŠEs >Ü;d8À9Ðk±zº˜õç¹ËÌ­ÿh³jÙA™bþ“\gÿžJ¤¶²…ZÒˆA²–„Ÿ;øož;Y×ç{KnÚ1¯„Áõ~P ÏŒ[5/ÔN4VÑê?ÿ¾$¨iq·RUODâ`U=ÖYx¥ë÷îfǬf羕ҹèi1º‰i‡ù|®¥·ëáÅ@iÞ§KaWñ›ü¾¢åšÕu2‘ë6’?14ÄÎÜ>Ð8?æÝók¥&RÞè"V‘  Iª?¢];pf3E&?µ›ð×g¢x9Mqacáø²3r·/¢–i­=B©8׿ùéòc D:m—|da5ƒ ‡Ò‚Ù'sŒÑd8Kôžß¾XYpRH:8_=l#Èì1îžÅv…Öp+ä#•þ5{örqEM‹¥A)õ ’‚=X×ÔPÉ’îÜ+Y§ ÇWDÚáG·`ºœƒön'tÃcRÊ$-KÆß°}‰nß]b¡¹IÄô¢ìâ ÄN¸ó¤â¾‡ÈWóúçÁ³)×U:/[Œîn3ž\2ÇZ‘NÙ3ÆgmÎuñŸv—7VPüq ë|ˆÏ“°‡‰ß–-”šÀÆrÊZcû›nŸs\º¹)~Ò1€™½ÃÒë&‚ù /8ŠibÁ!›óMãÎQ ™/0¹øèµ *Ð=Ðà…ÌFGÙ³(Fì#ûÈÉkºzI<³¥‹±=Õפ;¶b*ÖŒ„6ø•±Ô”–ˆzÇ­Ä”D€:J ®Â™Ú¹dûu1K¹×Ôªÿ³WVA÷{Ý~x·ÍÁzˆ!Œçàø)jÞ!ûß5ºè ¦¾ÈŸ*lm¯?º„Z[ˆÒÀ3[h{@0@–ˆ–?m¬TE MfÓ=x§c¶õýL›È€M@õ,ôºëÆÓ]©Íîz0·ÞÐñ…‡¡~@p°£à5‰ôKlÖfبhDù ˆË%zJùÆP6è3ÕõÐüxÉ‹Á·LB‚.tvSÐfgÚ§ªvTq’žÔãœÖ›Ý´p±Ñ7³¥LøÁÆ(â=éîþÌKÞB—µ)u*:„¹Fuiê?o@—ˆ–¸dÁ$Í£4GõÂßfÂ\UêBN:mÜÒ0æIÿÈ+;À‹¹™¼Q6¿æw®«lÇDÙ”{Ũ“bÇš&ŽiEÄ-ý‡·}œyAÌbST}©0†0ë{ÓáÀòŠÂŒÌè  ª`òkº·W«`/ûÙÉœ8ØRñðx–s›$n¶N Œ^Ñ—«ö&žá´­üöŒ{>R1xM«=C¡Š‰ŠãÓþ@SRHÄÎr¡Sp)‡âËûÏîøjí_Ðfÿ“ñôxFÌ¿!mBC’«¼•äVÀt‘§Áäo -€fIüÒ4ß/‰³¶ÀØd:Çha§@Ë'™äeR¤”¾QÆFÕÝ‘Ýèsj—ˆZC/%D¬ªì£tÅ vwªB kM¼G{Ff‰ÿ þ¸)«ìÖÀo¡­·o'þS»›Ð[«4j-e-$x°¨Çj¦É˜Érn‡ËÚfù¼büDºÇ4p²n„óV¸rKê¿vÓBcøäZêV„»`RÀ‚mW§0‹á'k“Ákÿ„oµów4Äg¿¦N“X—·‰Õ˜\ãÚšŽ¸ —6]ò^^‡^Ñe„Vjú9)Øi£úœ×ªô{x“˜ûá)!³“׈÷[ððÆ*[ÒQ$̘„NNÞÌ%Ù7ßVp exÄÑ‘£=¸ÂOû/õPJNaåû_fÛV»×Òô3þá¸ð×€ìOv@´ÿÀ5.³˜·Äoô?“¡àVÖØ ¿;A§Àž­ÄÿRBiÅkE™8~°u ji7°lÊCR£ô–ë9ïY-r÷§€•¡î>—‚¼•êh2ñ²q^ñ® ôr.…ý­ô\Òa!ç‰*qøl鉔ᴵhYÖzQ23Øm6¬M¤ÌäÊ×xãf' ÝÅ0Le·P¸½¹5Ο µ3}.PqZ!ÑÝ’ ýºÛjAi2½Æ—ªåÌó.™pÿ¡ŽÇf„Ñ%`~&Óqïni+ðf÷ëoRqx ›@w®þ¨¿ Ÿ-H6‰·\ýWSCR ì™^l,xŒ³h}cןwÏô!Móæ<ºYÁg‚3ubnÚl£ùÖL#ÞzŸ.#½2¿>eƒ Ø£düS<쨶{Far× ‰K?ãZÜö>wq£’K{¾€C¹_—w¤ðy-mo™BÐ$E°Ü´Q £5#Yª1b2 4pÐ{h¸©àߌ.ZvÒ½}XÈÂ×@>u_è–ªu";L¸F½ ¤éµk—©Ð‰ãçAnkÐ"›ý1šEþ0’æ¾$[QóçdÿûÒíž´‹ÑCBÊÁã c?½k‡Ò…)ú)¥Eg™¾ÈX<è'üÚ!A›šJö€”\1O€ô׫óosãçRyS6þ 4N˜Ãh$ žCfÙæjatëîo1̃àTJÓ!Ï/bøÅ0¾Ìú‘ÅóÅd]bË5Þo£Ú×idÛ:ƒè’Œš¼·-‘Ÿîpñ¹uˆÛ\ákÇE5—¡ò z‘1°¥mL6köž‹­N D\vûà¯*÷ÇM·š¸÷gýìïú° b ÞƒA­h‡T‰HhA)):?'åüÎu)»J'råAW,"S+õ ¢ü}KM¹¦³Ž&hÎØý_³K&÷í_)ßC¥±Ÿáù3ã.ÌØòU`ñ`t±Ü¢\à†6=>½a9Ó%”ÍY¢Ø¶¬žçÀ Ò+JÎvb³I‚L’m)ª_ÜœÄü°zÿqûÍa?û¤9(Xb—:•XjC(¶éJ±…ÓþéÈÊïßü•žçíQR{!Ü¥ºBº.:ŠwÛ¨ndÎ ²~›]°ÝÈÛaàY‚|pcÛenŠðZhÒod!ú†ä®be'—³…ÈX\r“.GÒ=„­÷æøÏB ¤çŠÑq¬RôCÇi‰ïQ wLqCëìTJ+t!r‹yP.‹ú*9LÐ̯q;\à»x牢»æÅò[fæMÿe 1?5($`äÉLÏ…V›å„Ö8ïQOÚè±±èwWœÔ{‡…¹‘dH ïFX ŽÛ”N'ôé)5î~*Uû¯ù’÷ž÷²Bh¿“²K¦Æ5-~©³7ÐŽÛÇ_ìP­HA®eQvASæàŒ„¢&O* "%ú9¬3ƒ»QìÐvíÆz€Ù®U—[`vâEðŽÃdEØð]Ñ7H™Zö_ÿçU—醃戢@SÇišáaÜÚƒZ*­ÍôÙ¨'P•Š9®hPXÎtø‘bn™I{È-bÒ5IMØ?‡äj7V‚>#CMG®O5¢Þè1F€_µâŠùâßxI~ö¤[­fß{)ä•€1Í–VC#ÇZˆ¹Žs3öøÞŽu&û_Œÿ®KÌþ2å2ñ"z Og³QŽ q‰NÛh‹ù—Q#ËáÞ•ê ˆ'zi¥×iLD±Zäµ’Ï:j¶éi=€Ù±¸›Ó\؈·d’†^~šÐè&oNÖRQ‡ÿîÃdB/Wbþ© Œy]D¦Î "b:¨¯ZË#ó5ç6Npml5}ýð‚Óëã°P?H·J­ÝSX±íXÖå}~nc‰È2k£.¢·.$š²Ü1ç:#ºå–6ñc}Áù÷wÇUç%ßN†À¬¸ûÚ?¨p„ýqSlí% 1… ›AI¤ÿPnàÖµpeW¸1àœh{«ÎxMʰĦ,óò¿‹%è)øáµ¡ôóëV¿ŽG1–wè0de}Â"ô¸Ÿ^Íoù,“ÑbGÎq®çÈ´dw"ÿ§¸ìÉ´ü Ã-ë`^h_nçÕJÐdBNyâ¡ì-B±Ò“ã–î „2¥ Ü2å)š§‘ ¥Ò zô+K.a}€¥ªK(º„Ðårìÿ4ý¶rc²[Š Jò'/³ˆÀÁÁÂ:Š‚o³5;öl\©Šþp}Á¸„a¯t@¨›æÙîH³b–ƒb¯ZÕùø{³y!A.N1{ O¡ø¡—1R2Ü]MÒ££±l‡gú3âò'Ì·ç_¾˜Qâ2$&ºãZéL¨sVÅÏ!}Þ­ðbS†èOÊ!x!xyþ¯u3´¥ÛX#zåNioÎPIŸ»OA_2ÆË¬¡àìàŽo56¤ËÓj·çÖ\ž~h(Ç ^óGì*C?Mî×àiV8øÃëƒCm]GÝeXÂ_¡¬®upqÌ–‰idrPË*ëþv?SHP­{ìÆœˆÃjåÞMÀ1ÇK#¿À¾ bÜ ô 6¹†ÐoujjÓîQs¹J!e2¨# fÞ¯ÅÝðÇ»ÊnÚN #–ѷ×X9Uw¥Ø4΀Œu×AØ4±„ÈeÃØ¦\xs©û`—wQRjs„ÁSÙKj’²eŽàë}©Î±_y3„yÈzJ+çeQŽ’ÅÍ%}4ïÕñVE0¯yç dzïÐáûÏ !6™Hžgªë9Y‹q‹ªØf0;VêVÁx,%µËX^Á*3k÷K³æU•žo…žcìrêÅéIfû,há`´oçÚ`~¶ãqâ¢=.¤7T;Ým£àÚµòÌÝè]åög§F'ÛÈÉ2J2\ÌRÂÎÓ f½p¿Y†œÉ¢Õu{j¼%–¹I¾uÃæ£8íñ±<ï?â -ç)ßV̵Ï%véqXJ—'¸N®nÙÓSõB L;üšQɆó ÓZZÝž1Ќݤ”$G¢]–Ç‹÷cÕÔM⫌•»8tŠ“ná¸Å¶º·É•þß¹¶7_êgÉ(=lj%/>‡ ™T¸ßfd#å&² ¯Â‰ŽÎ²r î’ªbwñ‚rgï=þàªJ»2ÄWDvaºxRatO|Ufý«]ßO¶ÀŠ ·€ŒY»BÞIÈ­Ô÷Y5 Î׸óµö„Šç¦– ´²¼´w—bdâ¨JCÏhT¸(DÕ nB*9¯ó¦ö'Ľ½µcgóEМÎKO éÂùÏ6§ÿ±/,Ž£iEÀ‡ù½é~Z§àxLç¿^úúqP×P[÷A+¹2 ’³qSœäDr>¬™ªPƒ™ÓíÞ¿OL©d»¤J¾s¥bì&‹*îfroüâ2ÝHhÍ…`d¶1n®Òôý»ÔËu_Ú‡9kªnXxLÚ m‹Ç™®Ò*…ô³êÝFÆœÂjhs‹² Ë&˜ù|«I9iüðqN7bœƒQ2h;O^MÏ+x¶Èòò Äï_ƒîwÕ2Öªp˜È“æñK wz¿|éˆLîUi7ƒV½ùœXáa”ü;+"¼ä„.ÏÞhGÛæ•ß%ºp ×\.ÂÌ—ßâ¤ç\UŽ^Rp×0^Sy½°õ¬0ð‘§|d·»ÙOÍH†]†oM$!ïR‘Ä®s‚FÙ–\¡…Ã[%ƒ„b¹7ÉÙæIÕ,ÛÍ ÏjŠ02\— ø3ðÄ#eðãtƒFï‰_é$S˜‡nD‘@¼Mv' ‹ äf*¤[—–¬¢^?øbOî|j†7y–¤ú޽Kå2/ìÒñÿ…dZšD]Ç2Šzi¿õ&:÷–i^J£¸Xóøú¢ÎFY‡±òV‰Ø´ÿoyÓv£êãªÇÈÌd6åq:a­ÆÕŽŠžž—‰“‹óÞ5ó­]/a¶»]5'}'Ð ¼4«Dîë™5ô×qƒG2ü2zc¸v—Ûùê5º —a#[ÐûÉìíÀ*Vò2€¾öÅ|¬Ïþ.dymA…íÄi§–ˆždFÄ p9›‰_ñå¼ôjÂ0y¿~‰_¿d‡ 7îfr_,Vq-¤Ô€¸¦8,1~ï &‚fH7À®Hæh†àI øe mêá6(ú;4~ÑzîHãø2@–»äîN0ùדµN÷.ðo½é×®hý®_nzÜD¸™d<ÂÅ>Çf\êA2«È‘jÒ÷còhˆa6«&Q]¢“H¶»M! >`øPI5Θ·xìàe¶¢F™n ü0ï(­¤Rø —í]¤‡OÕ@ŸpV .P•Àõav‚­•§@Ù_ÏÇ¿ ;_ïè­í'u Ò$¸6;ç´ïöìrÄä„Uj]}bÞÆO,·ÑZÝ-|õ¹eSq8Lì§6®‡„—TÆEü çÞÔãȺKŠ™qnvz/BB‹aú*ÂèýÊ!­¢Ž¥«¥2Ía]G’lDçÔýkô`c®rTw»éÿÐÊl].5Ë‘Ck ×énáˆ!|¼`<:ÄSø>•€c®ÆÕ&ÑŸ eGçÄËZ q¼]ß 6:æHÔL·qfRYåsÿ”[R)‚%"ÀÝ%ZÓ­BGeŠÁ½÷,‹¶/CÂó™D¸˜„‚¿–<¯¤XšAŽa1Ëù¸~ò6rL… Bù¯/6¨Pr»‘xÎ5µŠk:—Œnî³y¾DQö&#¥ksþTÛ¼O4ý_³t¢ô²íx8Â$wøëLÑÅ;L¥­txšDhϧÏÝÝÒ=²+¤1\p7cÖ³ÚWŽÜNÀ@ÔðHBxïö²ô±ã¥uÜS½­²KèŨHü—ÉcZWò¼‹‡’+?\«å·Ÿo¬;¸ZOö Q'ä]›8×f æíÒîU©šì‡™_T€Ÿ"a{(Ÿ0:Çh—ÎùÕEozHZ¾LÛ\þ,Ç”•¸±‡µ?t¸.ªÜ©kعÅŽÑ»^އ» £TËíƒu:ïÞõN2Fª…÷–þ;éÍ]¶™,&GäÓ+¡Ký^ðË_±÷]×T¾+àêll§P$ÝL€’Äe‘0̸ÙIâÝ\Øzf@½ö@$ÌóÊ·ð"¦ˆ¹Æpæ´ûû z¥O5-ö[0¤]_ïær)óO¸e` 1ÑÇQ«ØÜ¨ÌnÃÇç5£¬Ëk@~(º”v¼Òâ!ðj¢á€ ÈŠuà,‡QPX¡ØèݤÄįײ…øw‰ÐèO‰­Ê–_û7ÇOcàžZËZfÈ[„­Œ>…5MàT”¿¯’ÝN‘ï¦üSþ’·ÂËÙ<æ›5ÏDºÊ£:YÞ€ÕF¡$ âañû5^Iù±[VÊP2z,bÀ¹Dï}D‹bûu€Ve¥ Û0œßÇËsh*uBú·ë8`ˆt“ B7QØ\"ŠÆl¡Ÿ?{_+¹3²Ý2¿'æ†9v+œµ%ùÐGާínés^v)²Ó,®AYÌþw=šÌ—&rð”>+̸̿÷ÿÓ‰ÜðO‰ä!¢èØ r¾ž(l>‚N `O‰W‰†lÛ&êÚÔ´o¯8ô¬—ÿ*bkÀðYÒ:°Z­”E‰¬µáT,“’Ø#Àrª‡™” \˜8jִе6R^0V™ôs$!»X§Uh­NÛS&Œhù¾…,†êÓi1]Õ’69ÜF—)ðñ¿úô¥Òžç ¦2¹æ=ÓƒîÍN£!d,¶È—·•Ò“aø%<&}Ëe/`Z–ÖI-ܬ+¿NˆÉ×^Çsd»u® a6&J”Çà3»†ÔE—í9±­;{ÎŽeœ­¿ž³ûñ¨­Ä·L90j…Õ66í‡)œG̨G ©÷q‚`o†·$y)6rUg}VI_"ªu²ÿ¯ïÚ:‰„ÆÔ8Í|·iI{šö!”‰\ly“W&L} Lç¢YÝ–çsÍ"âŠ[êþ&ÇÐJØgˆjÅÙÑø=þ—öp Î…ž eF%ç|½ å‘”pųœ0˜$‹9æP7k/½—P»'E´Êáa]{jÞDÕÔ¹°„’çÒ*ñiº ƒ3v›ù†*ÔnÌX¸÷+XþÆÝiÁJï]z4?› ê¤û¿Õ0·<ðþïLE§ÈǶŽSà“fr‚G]¥ÛgeÿV`i![ÀШålÂÁ5wµn±:ê`5ÒÜ:Ýzá_𩵠dÇ·ÁßÕ[Ûÿ¬Ç[„%H¸¾I³/E®;wL¶:›£E¤C/òRv†ãͧð5G´½ßNNÙ0žp‹àCS)ËLnx&{V‚!ÏdXõ¢îÎ˨!Ù¸rµ¹…¤]°Ë³ ”2½¬-·<)™ÚÞJÁa¥ßDÁ¼`ßÌáu¹ü¥þÜ4Ïzœ‰{7…}Œ±ç¯ôXj#¿É† ˆ¢‹\Ý¢[t´»%Sèíyk#åÆô»nîMž_>‹KxÕ€š+ä¦ ãš ¬»«–aš4ß–ªô.Å»É.K•% ⪜*@š–oEKÅð', ôrª;ÿ-UsOž>“Éïƒ×ÃS³4Ì áè°ÊÔÇOY“Ê·'OÜßèkÛ»óêv.V“yÝô ZT$3rwøäñ¿ÛeD¼`Žý¤Qw¾´± ž;a!Û_ %Þø¡h‰°ÒÚÇΞç31µÝH²â"LÎfj[!úí«k¹Û£kkXŽÐí8…øg.¡zk& öSÙŽe‡dRʬëÔøÓ™èXꉜYåõ2ܺ ¦ ôpGó:¢ U1×Ür*&"°;~‚ÏLü‡E÷·ð@¿ ò Û ùóR#:ËPÑBº[è©Wñ²¯O>e³? ºÌ“HcÒ„^Pqúá㘞ò( V¨/yîàZ¤ëßkaÂY××÷m }¼ˆ?aO5Dà%Iœ–{ÆmÕŸÇþý›­>ÂIE¼oᵈI¨¼TL`Ôß +ä·eLD»Â¼1¸gÆè#zñ&(Sl}B‡çË;ü`ýÈDo1 j­EB ¦Út’mÉi×RзÏo6­ØŠÆg¿I¢7K 8ü¢å ùi—ûBu›!A Ðm]õf4Dì@µ‚‡"ðúu(T¤ú'òáz=[fv–¨‡òüî%…R3¶pçŽ@¨e¦Í·óI.мM#õñšå±[±Cª¼Þ 9‹ÍÈË3žãúH»/ű¦6³„³BÄÑeº )ê¨Ôøz¸³kP¥¢0^hhz[KÈUPR5J©¦ý¦¢³{²H#~t!l8Š*jòxˆ½-W²dc³½)$£˜h|ÝGäêqëÈ×\rE;rˆÈÅxb³+ «¹ÎkÖíåc'Ó7º<™2)-wê µÓëá;[·ÆfXc¬OëƒLUØÍƒ‡÷ѧ‚¤#¹öp¥œÛ0ìÉM*OO³”c¢[Ë–{]Z¡¨—£¨<ÖK±\É¿1Í}M§Œ•uz`zm<äÞN„þy ¹@R £ªuàÅV} 'ç°ÂÊÂÞ ”í®‘]ZvÊj¿_óRñ=ì&ÛJÆ·(k¤]MåíÝ8b­çö¼tÿV#ü'IìK_ØèÞÄ‚QIÿˆªg§izA·Ux¦`T«?øß`ïƒJà¨j›PPãÝ2$µy~ø+°Ìr£w)ŠqM€ì$¦dcèÑ Êf½Ä¿ôq‹‰‰ Lâ£J­™IÛf”®çÖ;2y$åLÜ5ªNøý·HÒÆ…ä"-üð°=<XC‰V)$Pç¼`à 6óºZ%XÁS³§³å¶x™AøÈ?e°æ¿zbh$°é0É›mlróHÇ%„¦~†-„4„²µµ†H⃪bæ âg;Þ$¬±váíœùÔd9ÝÏ[ è8M¢ºîÄ<ûcÿ7ƒ ¹¤çì ójñu_û,iðèô€z)‡×£Œåÿ=ißⱚԸ¤ÃX/ô¤£ƒ±^±_åóa4¹±k#¬ôz½R«W Éd—ØN‡T¬µå¼'spï. áDhÒÅæÂ2]%áy°Ý Øˆa§ÐC‘ eðnr’M–KÊTƒ•ŸoÔ7×ïàFügMÛó¹ô­Ò±L å"® i°±Þ‰³§”µþ´ÖFKÑ8Ýazµ:¨ñ»–$RY4V1lö©­jÈ“0½¥Œâ­[0Ë6ÜŽ+b„^|–[ðRîÒœÄ:ˆ°D`D_;-I5ÎMFù,™I‰Fa©,$&§D@ ïõ\¢Àìh ÅA.u:Vn|²Ò0=µ_3qÖº|ô¬Ë:N¬©#Õ¡#ò•Ã}ùJ†p0TdVtiÕG"û‚£áŠel­C¨r–=ç´PÛ æ—‹„娘‡ºÐØó‹º¥röf |Å&TÇð¸á˜)lÂÆîea{8:?IV'Fü½M·&¥ ODæNÖÕäõˆtÞÚÒÀ;œ©•ôž&Bç0}|Í6êËÕ`fªë#&`¢¹_n|YE?]lèE ŠÛ:7+@·e ~°˜ R èÚ±”L)e‘D¯ï,ß_À_1Ç9D×nžâý’k%¶(W´’²:fÌÿ U•_¡g·ª~¿_¨sf•QƒA§ ¤DïÄ£odr\†ž(%™`8GŦÛK/Ù¾Ó›“Ñœûä¹]dƒ»øÓ|·ˆãµÓë."ì{H6z‘m÷rdY»FL`–/x0P(‰¬,“D¸úEìûP™UXK'Àä‰þ~Åêm üãP€`sr¾Öjã=±®f¢ïW;RÝ)´îÕ6îK X{‘ Ì=Qr´¬H˜¦ì½ËïòÉhÒnÜ3šÍû|0ä±>›Sb@&KÌ*4¢ê½džšípo&lIjÆÀ"²?ß å€Ÿ\¯˜‡k©+W{Ø ÿĶª›Œ§G·ƒ.Q@L¾¶99µØ§=}§ò?²vÕP Y£”¢¨TÚ6Ž@Ñ ôÆ}Q4 h|+ëÍ¥»¤iLÃ’0(ãÂÂ>®ªôIpàÛ.DæŸ7*ÿg÷5±ß"‹äßÓëÀ’-õ¾Î,±¼ŽxC1ª-@_G+¹í´€Ç„õ§§ó»Ú…h·²êË¡ úW(õ¦`šÂ¥·Hƒ ±ñ-Ón TÎ8Œ\04ø…¢™yYŸæÕž“sŸù‹.¬yx_ùVB$Ö´TüÂC ÒŒ7”u¹ßÙ•^O&†£zCzï>@ßq5>“%Fÿ’¹û·ÄM±Sp`éJBdèÞ2ÑóÔÔ4V&¸¾ãˆ–ÿ3PFª)1…IÌÇ‹~Ë-Öü%[iÉ'ù¥aÝØ½àŸÄ7L%|˜âN.ät¸`"ÙÜÄI·0–Ï›e¯ž¯Žß{Óñͪ^¶3@‰Ü†.?Þf3úÙ@¿ˆ\—a…­Vg™u¢Y08üŒ^ÚÈ/°ڙ p"D›vza›¾éžeÙÊSΖm Ô ªŠ§Æ Î&^ý’Ý«¶À«¾Tñ‰ @EH]O ‡KR|ÒiU+f4`“^÷‚Lì·×¸_fd§¿ìDŠ~Y¯h‘øø°ÅøÈ$Õ,žöƒ¼…¾N$ä ±â=NoŠ1ôdñ¥Ñ9‰Edÿ:PÍáIVÛ;$àj÷½µRz*…>•5‘MF$Í9ê¤ïܬ®x7 0žó` yöV¿Ô,îøò§¬ofGH$Dõ‡‡pkéÇ«„D(ª»fy丘'¯ŒùU“°÷êx¥<¢KŒ‰g ®"0… ,[\>I3 +lZ-NøŒÒF—)L×Jz0W2wpTLî}ØT ÁnÅôÞÔÔ=Î_#+`}w(£zLч“%õƒÁ³pÑn¿º•€j¶+ðþ“¥ŽhüWÌá¾d‹©jöôòˆ¨>uÂ&=Ã*«“Ôí,Ùù-Ù}Ó/‰Z~v l¼¨ì(l1ÕˆP¬·ƒä"~æ¥^µk¹ª¢_äd!šˆÃ¦ ?ƒ‘¬‚,W¤Ø?ŽÓ9Õ§ù*GÉQî© sh“&AƒqÅÍL¶Îÿßz˜5…_SØ¿áåJ˜TØ÷XNÔéw0cT—`JñVB»{¾…L‡uUo û<Ï<Š~ñ®¯óq‡ZÒ0àåÏ¡ÑìÎZÄ+·/ôc3<ï²7{äÍqÌT}Ît‚z`»=,’ ‘e°ôíCl:9˜ye 4™r ¤£Þb³Š!h‘K'œ”U•œQòÜI1-&ó‘ä,üx|Ӟ؄†u)Œ™pÎk¤9®ÓFñ¡ÄÅAÓ¢…õ›¾#€r`Ž!Ýnµ(%5$lxÀj¾âމh#om©öÑU.ºÒ¢†3¬óòk†ÞeZ54’;õGXó”FýŒ– Áÿ Ȋп”òOŒDIa¿BÞß4ƒšN†–Q)LŒšƒƒ)[F¦ÃȲmttM;™¼}}ù¯æÂ—.ÖÙ¾Bá¨RrÙj=ƒFÒ³ýló¿ëušvŸ<ƒ£r±j¡}'SQU¾óG}ÑDØPšV\þ K]ƒ%:s‚¹ê[®Ø0;zµ!ZLÓ¬»ÒŠ?ÂOØæëY>³}¼V %qÑ""Úé·ÜOPRAH`Ùªz¯‘CÜ.6¤ÔÚz”ÃRÓE_U¡¾~ËáŽþ®¨›mÑØÚ7!¬I³þ·^A$²-¿>ÆÎ›:úSzä=|][¥d…]ûXu¦Ìv’ó;†áwj­’&¼†ÏÔíÌŒûe[†–Ón£ÿø}Ⱦr ÍpINf49͈1Qˆø¾Dô|Þ»?L„¢ÙÅÚîå¢5ó|ª.…@Qœ˜9ˆI͆ ˆ%ËëÒEÍ–2ßàrÛKõ Qyf™«Ž]šÊ“y¿úï«2¤Í³ô¶©mÀËà3ß¾äÞ›Ž¤õpÿ{^~è ’ªÒ$#{xÔ´ õïŠóЕÃgÆ«z¸9¥ëíT­^€e’ BʽIÀÂ(nÚó ’é?–ë¶rXÛ^ÝMP}†¤[P—{~ay$d÷‰¢sÞóŸ¢ê™6Wc© 6½ë(2ØÛ É.u †w•À'ý·¢ºì¥ÀUÚ§º-è]:9Hi†õùîM.Þ{Q ‚—Œ˜æ–Ãcyy€(°Ï“LÉA 6»Z ÖÆv4áw&· óµ‚ñ%@Ú6h•—mšMSÿë×Â5DÅÈÕUæwnAé;¬°s¸a2„}Ú=Z”¼Ø ]³3‡¤ìS5ÕF¬¸¤T….úÇ9¶ŒèWKç𮟷l1Á[æfòÚèH†­Ý3—›.ëìQÕh×>Ê9ñ*§.ÛÓ3Z]Å¡è½b äçÛ\<ÅNŸùÂlþK‰Q„w;†C…§D‚‡lKu$(óa6ί1 ¢xÁÂ':t¿°©å¶_¶JCÄ­ÍúIw3ÙâŠ1›Ì¼Ó[­ùÚ˹(É«¸ƒƒl9@Óh#ÌÄ/·Ü~ÌhšxÊøJ¾«‹a03æ¥>`éni}ÎɪH?øÓûŽOFGŽ6Š ?DšÝM̾tHî ´ÖÊ`vôPw]›ÍÍra…è,Ûήà ^¬¿S~0S0hlÝ•˜—xà®DMRTÛ¢&Ö(У˜C‹Yc¶¥[ÒÀ’o¶÷°JÐcdº±RËÅuÞÍ•лšmËé •lxBkË”D|îQJšHœå½±é8Wð¬Õ|C™ÂÑ„›ßê¯Ç{å·¶as—@:´o©¨©ÊJcãØ×-ýÄßa§«%èpš<Ìæ‡ÿµ&‚ÌWJM&V×\:S¤ >#—w7 `@ÞJ÷‡‚Yòná•!û1þNý \Éc3or¾‡y¯Vç¸ dŸ"´è§T¹çp ß$ذsïÅ¡ELŠvØ %´UyÍW[d ¤ùU¹H2‡e }6Nµ—/ci´h¦€ÊN<ªrü/°m–šŠ ¯u‰ð{¿à÷®y €¤‰ÏÐË÷÷^Hn'_ æ¾}ˆ6š•ë÷;±o¿Í}'EBC¨ƒ`Ñ$ Ò„•@o=7Ò« _•°>iVM‘ý^©.\{Þj^w—W§ºñ2Ť˜;ü0QÍ8ÈàcßT¯²‘E“Ç´Ûo_rSBa3FÃÕönpMó1â¬õb:ÿbo˜D^O‡™öå–YRi|h4;‰0Ól_þ.1€ëØÑ×ÿ.£±ÈY¾]¥¼7›a˜ê_p 2£]ø¤§é…•eJö§ˆMYÐ6…!´m›_í)´Ò ’ÿŸ¾yYdµDª FJ®D•\¢ý‚* .¹ÀjÃøg‚ ¿kée"ë~;P$¤ßXYæ§‹•ìûß!y”F‡½ÝÞwÜa>ï\‹gG½cÊà¹kO ¯ÁÛJ3Ä¿e¤ ¤ /Ú2޵Z¶A–K`gÆ—8ÃÖùÐ`À=ËÚk¶"ÛvÞÓ@³ê—G˜ö]7C¸U+_°ƒ'øï*'ŒBcdv’wÑ×¾5ÿ’·ÿêÜÔ9¡kº¾¢eš8„”Ý‘Äó!2G§3>ëîž[’eQ§ùé3Ö..o_*lÒ{–¶ø›ªæ[`Ûša±8CתöZ2XÖv.•'BÝA;-)_á~ÒÖjâ^ˆ36Ÿ•Gwz(š¶NjöÉ€ ?¾.¹Â›¤üÚ»ïu-À~R¾F@87«CÍ4ÎÇ iáÌÊ®$kV»u’ß/üÌ@`x»–€W¤½J.7Sw"¦ìVUž[” ìã´F‹EV\SfÙ}ý–Žâ’+†7¡<±¹Ì½uÏç{¨µSη[ßrKVÊ(F-ðŠ=ä ¤Ý‡‡Ü0w¿FO kLn`§ êˆMÎ Å—¥P>°?`~ΉRû +‰Ù’ÕT½^‚Ó®/ŠìøÕǯБSÓÑÌÁˆíe€eëâa÷%\T¬Ô‡.N„½1Ib8ÃGb°MWX{aôâ÷ ߆¬ñ@ãûñe\]8Jñ&)”۹ܰßMVw„é#æ&g£{Š’ﺩ=6E¾šòh…£€]œ(¸¿œ:|¯tÐ`ûܯ8Ì “zÝà[y¥±¡ûö°xVÄaSçãý‰‚8"φRñpæJZ‹Ieþ³Õf×é¤Ù¡º^Öÿ‰™Gjð„ \&I¯ðh„æ\Ó­'pþÎó³Çk¤†‘Íáp@Ä{XÁiÄjáñdDI€NÅôú¤è^\¸ä¤g²æÆÊ”Œ]ÒbÎ{ˆ&Þ¯d½@‚:½Mm)S¾+½h¹ôù|i㪠¶Ä©;Í{ôšÌƒxR%WÎHK .õ9“»jzátäÉ%(Ù³!wMG–Œ¢í©Ù½ òàu¼,=ÓÆÚ#»³q]|ƸžH?±›À&·0WÒ4ky‹ñÅWbŒfè´=ž/®š…l(ð Õ K@ˆ§Ää+Žú„ã¾-8ÇÁ+#¬°˜JÛ 7OXILe` Ü?“Ö+À¦þ²B'˜—°Õ掎@Ÿï2Þú]p.ä3DACºAŸânå$ÚsfžNL°óãá¡Á»”ç†A¢ïò<§jø•W›!Ç!Ë» Ô’tÒÀ¼ã}c´w)ÜYÉ7ñ‡ »ä87wOƇ½ aƒ?ã>ÃÕôõ¬­±kL TóÈ7ä?ø\þÂW°YLi!xõ»š ©5R…$¶~½€®ïZûXH˜)ÎÝ3:$]ù :}rª¤¾ô«k¯œ¦Jâ½ð´¯‡>æ| N ¾;•}p‰åÒ=òÊs_’-Üô.ý‰Àd.â÷ËÉY¼:ø®çÂ}˜Âm…dÕ¯ÝÕßP—¯tÀ)l„ÕËÓ7âÛþŽ,>;˜ËÕ:0\ßăÝj7ÈZ¥R86ôªìgçq·öÁ¨¤«>þÃ×_‰8›Ð Ç|» øó\âÛ‘€§˜‰Þø”,þ‡,Ë Žì ‰!{ü'Œ47ò'™áÒaùÞ‹Œÿ‹R‡# HëøiÒY™z«–Ù"~M´^ 7EC÷ÙB<î©ônÚ÷ÍXŽÇ/è3;BYÔKôæFGv ßMv5\ÔbpçrAãæ|éűô/cýmV¶ëàŽmv I_ƒpZÞ)ʱ½Þ–Æ"ÇÒÝÈ£ðw6ß#ÁE5ïÌà‡¯Ôàåbý” ä%›cNéðóÇüûD8Žd¨D+¸öì± )…¤’ÛüiÖtŽ>h)ÆI:÷[L±’ˆË‘œÜhUÂR6ÐH*FÇÔšhüɆ¯P»9{}J­´ÚK|5-^ÍOç[~G¯&##ÃË(”Û©+5Y#¦ïP ´aGÔ<R¥ä)ÌB8†un¿¹}f{eQŠÃZàpÞŽ—Aws÷§´äÏ ¹—³S÷у7µ¤òzï O*¤@ø@ìæzÈæç:F¹[óÀ 9êï¹Z¡ Üh&Y‚µÏ‡·¿6(õ¡çÞ¼Sa±l·ºrô%+>Á@çs›9ÇGªOöLÞ§iÐE( T,Š„yÞØÒ¸O¬ŠH5‘bõsêoí䢓Šáh(p`ª~mªï$Æ•Ô/&îVÑ>_ëVäu?Ži±Ô'¸3s¾x›ÀF$ÈÛ¥®#ÈñjC3ÍSœž8á•ÓèîÛa½ÙÄ-Ms5OñåR@A™Þ4ss—Ô™SB§®døº8刭ìðíQ±9Ÿ7t a&WËüKÙ6÷òÎ2 ©R”+åR‰–ݘ ¶^)~·5ëÑcÛáP+µã8§3òzä©SÒáú˜ï¦æ×F¡žÅmzÐ>Õ٩͵óÛu)Q@‰?»¬XÔ•:bôHAM?Ƽ½e‘þd&,W¦Ï¬íùhLYY0kXBj ZÂ6’2[yÿTJ’êýµôå/ç7"žaÆ–¿yϺª@) jˆÍº¿LÙõ“œ²ö³*J¡Ð Kó¹ni¦¡R¬I,Ÿ'5Ùßh¨S¤.½Â‡Xð'9Tòì­·Ž:Ȥ”(¯Ï})WõQá$m¢æ‹Wä|4¬²—©¨ bž`*¤œô\#Oζ÷ëy±Q¾à¨L Kos×SŽ!LF©¶*¹›ÿP ~0%Äžii«RX¸Ö€b ¨éfv”Ã,¼£8áH¾]zÓ 4 ¡¯ø?Z~0îÅ^oa¿Þ¦ô}ùSˆÅ­ïÈó6ÕrµÒRî‚4Ûh‹ #l„–# .Ñ›µ=ÁL?J<¦?ˆ®’.Ût0˜¡\”YÑV²I-¸aaÈfb–³Õ’° œúþTJnع밵ðÛ4ŒT@X÷Z)OÔÛR©h_6 Âk–T”ç3‡neÀláe6­<Á`M•Ǻ'†ŒêÖ„ïçÞ ƒ÷ÐV)JöÉi|Ê%J.§ÊyǺt@Ðv#¯$çCM°NóEi'E´‰P¨^D@®Ü9ö˜¤šá"*m^ƒÞHuPÏ«¸Ö‘²3]¨1¡‡x7GÓVñÐÕÚɺÖ™!¢U€Hz‘-_èÓoš‘Ì’Uköš´hÚi¾«î•ü?ÇÏ¥Ôò Ž~wšßLþÞ ¦“väÕb”Õ€ 7÷@(Á¶ù!d×°N€ ç. ØhQÖ«YðÂÅòá·47:JûºØ%F¬8DDÿ)¬·¯…fÑÞ‚ &ŽÁ@È!qÕ(Ö–a-Àö_(hãK\޲:›5S•›»ŽÍq‹“š, NŒ]C{µÀÏž$ ¥î#àä^nYôœl íŽÎ±ð|¨Úk¹W؇[{rÁÐÐÇ›ê'+Ù4ôŽ”ê˜—ÀÀ¶2èe¦£Z.ášé­s Ú*e…Oq/³‡îŒùýü—§T³¢×Éé¡ÎcG†P+EsÙ§zúËZ"7s’u]ꥻw\tiðÈêWßˈóeA:‡“›LjKÆÇÊ9âÚyIìÒùä3áÐ7¡܇úEZŽÝ Û˜ñäxzvï Ã'v 4°8 Ÿ^Sl¼bL¶‘ WB7ƒ¸N´œÕ•*!›žZþ%õÿ“ŽÛY§\çϸ0kÕ°€O¡˜ÂhúJnÑ· „GO<‰ê©Ýºêˆ‰uLÇ›.MòºJB:7“R7ˆm˜{´’ÙR,±2>‚û& ĵC #*aþKÆæh!!¾ªU(wQ8žÍ—y3tKðºÅd. ²+²²qVëaKô÷ù¦ž¦¨H5[Œ)ቷ#jÃQœ¸ý7|F‰ª†^º,‚0I]Š" ØWê2BÊ%,t$?ÚVÑ .9átÜŠ©J%TÀ}¾„ÇRǸi?5”YåßÏ ;v.¨…¿×ËJU …#Í1†Ø4T­_樛 éW Fý q1Ù ÿ/ €˜­fŽ”®´=ÖPýÊR–²7úõÕ–p…!Ú¥9ï´ªJ²ÞW|çÍýøë MItÕÿÂÔÛgᘀԧÍpï×ÝõõýtÕ|NXµ#¿ýztÿà EN…¼àL‡Þ,í›kº=VWqçPTnÍxö-_ƒŠ?ºÿŠÝQ«‰ó6ÿ-A-¼ñ/%x59µSáîèr`¨µúÀE/õÖ…IÒ¢Ìû}[ˆÌSuj¯@5þq"'WÒï_VfYņæž±y‘ Ø€FcQ’þ7³ FßõÌ ®Ÿ@àteºÇë>Øã—=ÁÁB‚Ž\Í#X ¸¢ë¢ï,…Éç+ÞÊ‚V3˾CZqà¥I6 ¤x¯›o]× <%н]ùO‹÷q‰`ß%iQm&öIè4ˆ¸½Ò;¡ÇÕüöÚÛe”gwOJé©ç-Gà¿Q&CJa§tºÛ§/Þ ._ô£w/@qÝö«0}¯ÜËkëÍ–x¦YŒJ¸€»^ÈqÏœOàSW¹®Zˆ3ÂÊÌKÑbþKñSK PgŸa#;s0°ÊǬi…d¾ú,í:T–R­C³9”ˆÛÀì›ÎÉ0ø YŠÂwY ò`‡Ûà%°üïôI^¡„ð×űiÛ@1Í’!—Åuúô¯B´h©GñÃ*‹úD)…ÔŒï=Eìf€È™ ã9¾ã)·¶Ü1)CP^eëƒïo8˜š¹y$h]kÖ¼m*ˆÕÙ±%„+È•%Ð [qFyí'©T7Þ\v…ÙÐåÃ-Wp5çîäMdVþS18³˜ØÄ© ?UïØ…q¹Ž0þ>‰bºÅ-åõ‘^²Åtnõp æNÊ`ÚbPpM¨ɚߨçšä bBR.­`6 xÔY‰ëTM_à#“[.WN Ÿ¾7 ÆŠöå0úTT·ùFùu Ê‹ÑU,º¤£è¸÷úPR^ ?üǵ—Õú #³ÿr)>y °<ÊD‹Ÿcu&¥’Qñlø´ =:ƒb²oø™,‹iÍÊóTTæ–)st2q{·x„3"%7w""†ãu‰Ä´¶Ú‘ÏnŸ=ÄÝËJ8öß×t]•;&ƒÚ'àuÛ•ã\ÍÅRobçVÒç)w#+4>#C©&[Hÿb~Á`1åSu–2àSƒxÕ™X«¼A6dÀDn¥(ÔçÒÒ ƒ*î'š,ôê‚u|Š!^fTœ$×dÐàÒ„hÿ¦£¸ß8¸‡—LÿW{9}S7Ô¶w>SßøMñÕU@PùÁò{¡—-éÊùºAû}ÿñ'ÜfæÈÝÑE;ë1±ÆDÜ“6ž@“i›‹h;PP§Ã(üú†ÔħRjoÀÔÝõý˵g÷(çR"ÜG¦‰·ý°Û$yû8Ìóå&€ôßfBîí¶ûÑÉŠ®™¿Uægñi%Ë·5'+—f“—d†¯À*"àÆ¯°žfësAkoÚkýþ•—ûb¤Ò¡®œULŠ‚(»æeµØí¼öH褉_„t$¡Û¥ã¿ûKᘫDÿ.-!š9-ÌæÚqær(^Ïp%9xs¢ `}îû¸ÇÑL9·¤ÆxkuÉ¢p¯”‹Œ{Ñb+vèõ] —Ì 3Õœ~Òž™ ÀÑ–•S™$›¥Gh5Û[Ó7ºH âßPâšå|Öᦻ”Ì(ãÕR>°ØX»¢Œæè*t®@œÃT¢™G»×Á”>U 5؈‘ÞÆrv$¹€ÓÏæ«ÚÁËLÓÓ%½öòÏ*#JT†yÇ=vÁª0A!… %1L†“Ãʶ¡Þô>ÌÉ}?#ôù)Ÿžâe¾@ª’ô1¦1ûF™Ðc]¡ö;y÷®|3äm­Tb¡%Æ’[§až°JHk)Æ ¬~Qz°«ÔÍkÄ1Çw^d›à Gþ5£Ý=a†l)¶Ìýô´%ÜYJ ®.zï ¯ÎéHRb ªn=BÒÔ‰M1‰‘™Gáo´Ã³÷@SÖ.šyÄJcX:]ÌÒ0e„“è•Ç@¶ëì®§ðÈr~{Ыëe8Ff%‘oú9 ¦ÄÖÎzÜ;Ì*÷¤'-ųº3~œ7n˜AÞ.Z þ÷ºj³5õQ“æ\õóׯ‡DŽš9Sç=æÀëçÊ5žQojÎÅ· »1‹ú^–hÃ}$ÐÕàV™_I/K.¡…Ûæ•ôä$~rñ0´ûŸ½Ú¬’A'¸=†Õ5ó¹*1šþů¬àÚ™5lS[º³‡§[ÎUyûí û'Ž#C>Hß3:ߨSå¹§“ÂòuNGù}”0<-ŸÅžÀ\Kês¾—Ù&@ø>XÔ’šV ]Ìöz!—†áˆ7¦•€~ %ø…Ôm†´FÊv£áoW?f-X®òY'€§òƒãxçéæ‚¤Æ¥ÐˆQeîkhzÉ.Á0<·‰wt4Ä\çêðÆìnQ«ç?b1¹ß¼QÀšV=[¹h0rIáP)þ̱»Ÿ Ï-â×V9?|ÐÙ¥Ph6‡³Šç˘38,¦«³ëáÖÆ¤i›¨#;–‰@ÅÓLñ6×g÷-C†ßn¼„—°ê"æ»ÍÌ5Tœ—u¨v{ü7¸žƒ^`ë×~Có%áÉýØqÞu7îÓE#jâ4£c#bð&wÆ.œ¢änr£ræÜçZ¢ ¬­ìúÖQïÛ|ÔºÊOÌý¾½½Üúj¡·þuŽ"ë0ZÀ ¾² úßíL·ø±÷´üÊgE?Æ¿Wß5.PÝ&.êš+9ž„æxÇä TÚSHA‹oò=s“§¶ñ (HVñU£¹¿ÿ6¦íÃýqÉÓõ(EÀ£Øþ”ѦX¦‚Ou®¶>£«eîðI%¡Ì{où*~ ÚƒMÈ{ÃãtTÉGO$½Øé(Ôv˜p îÜê• “İ«áÜvÞT1GMRú¥^(Nò}‘göy,£ c¡ãµÇd³š‰Ÿ‰ä_Š_ès5ä·-wóc`¢´€$bµ|æìŒHAkUCç¦ßæ)><Íï.$„‘z.IÃäž>¡Ùtà ¢Ëº…Ái„»Êªˆõ¡é1=ªŽçÚ2€5[•õJÅ>›D;£÷x1Ï0ÎÎ| W¬mx*gRZUKÖp’$wš?m;Äk¤‡Éé–¦=ÊÚ³Óòï¥wt­ žÎ§Ñ†ÜÖç²–ÐìI|‹Ø€QІèiòLö0•ûŽô: ªÊS ãP†Zì‚gÖT TÇômÏ7¬zÖ|s?TÓ2û±9]K)†°˜…¼!oq®­ÄÐ~I»dÂ5GLŽsK-ô?‰p¸˜ìixŽBwïÀÁA»XƒÓðMɌڬ›ÂvÑgt‘|T ÂdU½Vµ×7®h}Mp¡b÷§“fa¬[Žýw—~5$•Þ±¨þ¤±›¥ð»¬(¬-Øus¡ÏÌLÃþôW_ì"]8uQg•5¡ðôZc¦i·Œý.¶ ,êÒÅ)C²†‰œŠ$ÍÁÚq½‹w—iš.`³-rÔ,@iƒGsß’ ½&`4 €I2‡ó.-@€N¶\Vlwrºm‚@h›¯ëtÍÏ¢~2-M$úÚV8>5ÇáÈÑØü7Š#K!Y×°MI¤zžMBÓ Æjç)Ó‰_£|Cð—xïæpÚŽJÔÒ$4ô’mj™ùØ«¢/ÃE«üëX…AZN.‡çÎN‡ÎJ+c¢’ÏG2ñ`ÎŽ$´ÐíbÏoPö™w…ß­°ÐÛ Va]wù£¬Ap$Z³´Å%Kk–·Åþ£Щ¿‰ý•tÉ8—QÙë•Êý/rNFzÖ'̨h8dËõ…•[A§C­é>T,nþ²mÚîcìköäÛØ&È¿{…ÒJ7jK<Á‡w,}óI€¾q~®à+­G0M>í§Vƒɵÿ”3*=ܤ3ú+3 ‰Ž·2¾%N$ü¯³©:ÿíŠñðÓ®áŽ{¸SQö¿ic§HÇ]¯ ÌMkU7Ý E9T;ß§BáSzNäÊýì&ÇAËOÛVØ{‡¡Æ‡èªèpê~¡Eò#NXÔ"}ÀŽ{rœç-¼"bÉ×Ðãj.•Ò8L½²­Ói7¿Ÿ¹ñ±´Œu[¦Lnn·èfŸÆ8X­Ù…è@S™QQ’¤ñ§yùG²ÔqáæìH­ãy!FÁþ—EwÍ\ƒ™\0Îvð‘(TQEÌK`Èž¦8jQ¸) Ùª0¾úì ’ª¢)J ãó_USFéóÈÚ_¦y Ô×–Y{®´窚Ü$¬ñðwý‰4jÄìùGP2°ãë!6·×K¹Þ~F¢™oMÞ²¡ÛüFâ°û`b/h‘ržiF;y×Ïáp@Ÿx{^¸;Õ·f44P[_Ùw„L¸Dº›zñW5„D)¥Å&‰‘Rôð ãíØ.6À¦&ä^‡/O& ¤!¬çagEv½ý7`w_ ßXñÄ¥¥ŒÌ3}ǯb)Í®”cjmË +Îrã«P8ÒŒA”ŒÊšcyÀ† »Ð4259ƒÕžþP•Œ‹.ï_,Âà$ c ¼œ÷œ~ "UÜö ^ýà€píÅyH8Ù!0‘EXcâÀÚûï s‹g¨|ðä(j‚æPI9ù-È~ÅÅ¡ÙQ­ð" y¾%an–,=ÞàÊdÄðpšR½{ë•­§êßÛìdSj;gäÏs Eð[÷Ÿ–à«”¨¥}މ¬n3ÔZU“Ò¬-Ò}âÈjÖ‘þÉ¿ êôSqJÆÌ»z¿g`[ØŠ@Ê-Ï¢D7øê: ˯òPBÅ>1CAÝ®FZ/;ˆÅ ŠnÄJVÛÚŠE ùx£Îê_N僓E©PRß¼Y¦é+(ySü0 ²_µK•J‚ÿ¼^1 ¼V ˜œØàJéžjÈk3©òÖ‹Ý9™Ê¹V¶c›°$»iÁ.ÛO4el.Ò³h´ÅøcÙTqŽ›4 ¾`÷÷n=á…°õê†ÁT€(wG@‰hxÍn_›uxN‹R.޽Ú(¬Ñ":J!!.²yæh…d¯p6è£ÖÉø Öø ¥ÿñîeåaÒõKoÕ_vk9®€56›¸ŒÀ~ìœ=H¡hä±ö¤“Afã*»'GÍ£#ñR)“σW )ÆÃ‘o_Ó÷»»Ö½a#¨ýªÊy+'âŒì®¤Ð‡TðÝ»~-Á9 º,¾FíÁ¸X'CŽ?©,VâÄ2_þ^ÞÁð‰ü¹ë ب¨[9„a"ø¼Ü‚NžˆX’É´×)<_a:lEFG…+ VvqÀm—8¤ØUôo9ë3a© ?lRˆÀ›ˆY—ÆÕ,&ñÄæzí+.Ú'ÄMô!LÁºÒ êÀv†SkmËÛo‹©ü-žîu6I¨H•€*!}þ›?Ûì@w•— #8!6Þ‘~š>ι/?[¼ "/ØÁÿe&Z{îr MÒœp8¢~ÖlÒ6£0#ø| ½/9ΫÛóýgòón¾Añ«5SUþ…HVMþ8ååÃ|-•³eëït“Œ"è\EÔ–?¢eÆsQÇ¢ÜÓÈP8S/U¦ Ó5<(BµÔNa&ŠRÀC3Õù$þ©$xú*ídÿ'¹6öæ–i5gX3ª|1ï) Q?f”²R€M“É# –ˆ½1ߢì.$zô@hZHí?—§&–tÊ)¢‚ÿOA=r<1æ!þ‘úЋnòá‚}…„ÎÔòöåó’ ×fä„o‘”ÓLzÃÃ÷K- é›  ÒÕV%dk½j‰TjJóóhÍß[-Em5Ôïâ`в¢‰ z•h¿+8:Œ(G¡AÞ|Aó/ Ðv ß9| êšCÝ&Žq3Eƒ£‘0µVÕÍœl¬T=4°„£RL±ÃBR7@ö)÷¡M`*ÞbF¬½ƒãƒî¥ ·:Ÿ6,}`/(›„á|žBíαÉÈ îs~Þò—ÉŽý$nq?ÑÝcð®ÐÜX%øOgÙ]É8©¦ûÿ¢‰÷gž#E„?~ÌÙ•?Lf(rÉf­ ã C íVýö^bCÅ}8Eª_CtFªÄÏ‚®ÓNê›ÊBQzS’fZ«Ð H3[ÒAjzž÷u$H¼f\x΄²¾é?ǵçºHY–î.i±"0FĤá6Å&„ìâ¼@ºûÆÑ{“Š y•k¡˜î|0m.Ê]ÿEáÁi‘ðäÆÿ¡e†h™,æ6/ÁŸp!çF€foyY\óƒú9·mKiÊü[6µ:>ϲ¹±DÖª#|Hk•²¼UÕô”ìFUòî¦f©i=#ö½«Þv)ªEí2Ò´—ýnìè2AsU&ÑÎl¨\ ¾‡Q  ·o×?ÊÇ:“ú'¢Ûäs¤ûr{QKiþÒ)5Þý]¦Rær³•O­Âv3¶Âű™äº݉:ß´{W Ï òž¾87}¬W_”³Ê§­lCÿ í£‡Šå´9¹u´Þ¦ƒ£³ÕüwRm›dZ>†ýò!ÌkÃNi¶¾ ˜ÞÌý. Ä<Èå¬ ¨l$£ô4 ‘gv_]C¦äÒ~á½¢/â'/Ö¾‰˜õ?•ýÿö•æ<à¦ÝEåÈÅ8¾lùIÉq¦–’µw0¤LÇÎ|]±ÌQ‚¸fba5žöb,¨. Ô·›ÍJŸ8«ë¥×D. Τ¿BÖE]˜¾MGœ… é1R{› ~ÜÒ£eêŒ?í:×-«º4»Õæ<¤ÿ;£¼öÿQõWX¿Ï"åUëUáï„öͦR÷XÖ©¦KNÆ%J餄ìÀmcä.YóGä=c»S[«¨ Æ:EA|¢[ª¢éðL‹ì"o' ¼S0G‰¢›Hx¥ˆŽþ±Šdß”¥ÒéÔ!TãлÎì‡Q6~×ßB†ùx˜ÖKàsÏú5Ș9 ^ÙjP1UE_`Í1@¸{õ¨Ý`«<ô›9U¹¿å¼iW Þ•¯ÌÂþ³”²R=ê¡%dÚkÕaD4§•¥æeÎë‚QQq p´R¹, Ç3¬Áé6™¿ª\.чÈè`‚‚Ÿˆ.Gln×~¡¾±ƒ 3æëßt €²è«–†’t؛ﯢUe‚%“PŒ\>' UH Z¹ì‰ ”wæ—AëWR^cø^¦™^Aa/|¬€²Ì¥”a(y9áÃ8á]n…‡ƒ7лD¶£›¯Ó}›¼mâÂØ8œo¯á»?ˆaø›©R/ŒÕøBZxŒuç]‰e‘MÝèéŒk«ß3˜òò ùsÐWå>ƒ”vÍcûlßv&ð‹¸íG<’}Çc‹žX)@Œì/ YT`{;Li—ƒ—kå:žŽ|è°Ü”Âà•y»‹.‚º›¨Ÿ!i£(%:”ܯT‹ÓU?’í¡¶y¯p‡½¤ätK¶ÌäY¿óx‚”R€RÙºk¢8\ŒéæK×XÎå[”^Œ&ƒ©÷Ë*æ¶YÑ£.ˆà† çkuòêÿ¨n¹¯æþ”f±}™¯(Eïë8üÉë6?J\I ÂüUô@u9?3¦Ìo`Þ‰:Û/QºÁAs½ *bô#æóbmk¾%ÐÁe’P#TÈorHŠ;,‘‰¼– `ÖaZ©«*—’…pÃ>‡'¯þøs+ÁV‚‡)’++//˜âÄ…m¿ÏCèùÆd%dtNÞ* Þýû%X~j£¿pÏ÷p‰ˆi|ô`ãv´±õÛ¼s¨,N¹AÛâ<™¾dˆŸ#ì_µí€¸©ãSnÕP½›ùÇ‚«õlˤ#ò‹¢À™ E°beà:û'A=ÏÝ5!ô_§F ™Fæj ñßó9ÙTÆU샡²y•#€Éjçô$÷óÌ}b+ E=ó£Uºn0b LþŒ”ˆ‚±Écv„¤5vM„àî ai¿¾ë˜ÖIPÇYÕþ¡›¢Ø'ÉŒùE#Ác_‘æÖ*ÆKþ®”)4@0ý³º¶IhÐN®Í¸4q iÁÀçíó§{V®p°öœµþèY°“þ± ÊIæ³ûœr…L‘ŽìÑÑ;^߈¿X@F%ë¦só-b?¢û± +Ý-½Z©Âö ×t‡øŽGCŸ–ÅÞ †©áD‰8úOCiKÄ•qI¸æùnÜ÷ÅÔÄü\åóŠ= ä]®b“Ú!½HÔRo£ðoø DÌ&Q®<ùd¥ãH¤fÊ®/æfUIÝÕ¶ž÷`w¿àòã^CîK§ý<œsï|“£ÍôŒï  M?†ÖdµQ¢ïðÜø2¬VøŒà#,ö­cjÇrnÀvF’t‘®’¯PÒnTRGÓh“»>38€‚ô&æ3ÅGÛ8 cuRÍäE Åj©\ QÜÖHÎñk¼é°ë/+~ºEq×Öõ«Dá‘`n|Á¢Á¯J÷ jÜàçœèÆë)Jî20øF½ýd´®t[‰J› F)XZp„-=)°Å·•Ý0™ñKZU­ê¡DÖÀK}Ø}èöÒH_–ëü ü™cVу$ UüÛyOäù}p±ȉíWWÁ¹ +ý;ú¨W%÷EÜ)ßð¼´7F™‰S㨋Ÿ‹øZ*x»L|DNMgmÇ÷’öM¹Iç“v¯Ô…¿ñþ¯ZûÄÊdVEZÝé—¡ÔxÛJµßŒÉ6ÆÁ>-h‚Ç-ÐÏ·N$.D2½ ,kšÒMîÖõ WÚ´•éõ~3ìT:WÁT«’$Úùëy£ UJ»ÿ(²B™-®ÒI_Eå¨G+”_íÏuXlÔ\–ÝÕ_º Ù=¯ÐÎ,r¢±"V„ƒ àäÇ5÷ò‰ê¶Õ­ky<ÜG:³p$Àº9zXʶÎWÀ9éS½ä¡âµE@Ø|¡ GîÝÁå7¨tVÿpù5q¿ƒac…?ËëÙ°KÔ Ì’²óeµ·T­mÁŒ|ø?âH¢€ìUÓjzΆÏÕO~kà ]é: BUÇÿêƒhG5FïŒ R.¬Kë°¨QvcŠóY½¶á$(Ñyj)ì»±` Iaig‚ ŸÿºYqvÊÜN†Ò¥€gs}«P·Åw†-ÆîX…ÞR˜«™Š^ÛÕ‰§D!l|[3Ð;éëý<¤ü_šŠè„×cèL'Žq'VáXla2ªLAº.Uà{%qSU—Öµ7ÚW™ X¥\w Ö]Qb²¾m *±‘¬ÑwЊø ¾’É%©Šgà ˆÖÈíŸæënª' ûŸé=¡ܽÆÕ‡^«¢7ÏlB#‹ºªLË.AõcuÀb¤× c :™¦ÿ‘„†™;ûõGoשz‘¤“Øø½>qMÑUØ·¶zÞBÓ÷·YSKíte¥[k Øl(¿²7DWGâ\þÊÚ,rZ‰{w41àT´¥ÚÝ4Qr³ÉMfÅêÛ±†23Ñv¸8ùúŠˆ'Šì?\» =dxq³-Ê$¿fwF&³‰Zy¬£–Ñ8 :`H\T¤óŒD>ä.Äì½)°*ÝÔö©µ:#‹/|âJå(»Ôè©¶‚U~Ôâ01j¢ˆï,£â‚=W"‹ Ë0ñïÉ~|ëŒÛ' %EÎe5êzJÁßÁ.*h¡î5âó‹ßPý Æž?'Ü÷ÖMÉF_}ì4Éñ I3ë@'QªÍд,ÇxÊH0ó&ÜsMùºt½&øÒoA{—ÑèÛ,ü.èÑmº>âU¸!Òd’ø9f60ZË*eº¹žyáfþèæ­ÑzI$ ±ñ´@S›ù¥¼­k}Æ•ž_®…¥¥ðL°×s‚à„¤ì}aª½ ³ï¨³-ûÔµM!ÄŇ¹MÏÏ«ÑÏ3ܶÒ*ƒÎ¤Üiú,P*±ôÊÛœ*OÑ3÷¥•íqHrã-:ÙP—Xs‰[ôõ"çÕÖ¡–(€—NÒsÍÿϧY«ññr˜G–búp_D26ñåГÛlFî(z¸Õ‹‰Ò’ZTY|ÜãŸÂßjpwƒqMW ÊÒ\T_äE]]Pî4ðL¦¤Ôã¦jñŸs8HåV“Ulî+8/€æ_ßé1uìå«c=\Hø÷¾×ë¿,×;Fº>q7]S€s2\µíˆØ­kœ3út°jÍÌ–fBæ:ý?ª!l۴ŨE¦X bÔ”ÅÆAlR.ò²e†2÷?ØeÑ®öâ/¬6¨…Q-GQÚ%‘?r#Ø«fø`Îý¤ økßš€P£ø»˜ååJ±öͼ·—N..ëQL £ Àç‘èÐ á~½³”ë÷@Y½&΃èÇtws° Ô¬‰Ðä)‘¢!…4ËÐÝêÆªû·rÑÛ< þË 9ÜWìeΪHGVIS¯I‰tš.ÉxhØxAdh!×ò™!¥Ûÿâ&ü¸9þ|ú߈®Ø÷Q‡†%j±&âC«d 4š÷§ø”²ÿ¥¸ý`SÛúlÆÉ±oÉеLLÀΚJºÓâ#cý2LøJc‰¸x_ï }½øñ=fÏ숌È6bñÆ ²Ú‘ ¯î O“,È´-¼XìÈ «¯ " TˆB»ÂŒ'õÊè’Ëu¢×Z:! È‘–g IüwyQ»®@øÍrµWˆ*#¥ür¨ä­P`zHU-¯H‘bœç&qŒ£8MÙ÷Â^·Ïyv9—Æ©0uJ<{ìºvàþ¤,›ç¹(í:3‘W¦¶:o_„ªX•×fzŒ’ìRzc^–Û’KIOqYßù;[”¥]ž²ÇgcÓS¶ôÕDZm›˜ôõ¢ˆ+o›Hû¤[¸3–’6ÝzÊéÖWZîcx§Âhº0ï.+OÖpÕáui(9¢€o\Y­(ù'Aðûìs,Ž–V¯ùÝ9ϵll÷VÒ–¶ï^—ÊJî”±9ª°áøVdZ¥Èó]Ϋ’ùÙ²m¹/˜´ ©Ù²UäšñæBâÕRÁŪ&óIÓ÷%›ÕÝ€§K©x\üœí{âd-Ð8^ÑÉCß¼¯+ÓKÅ®EŽXý‰4ñB×È"ÝZÈÌ-Iª9J?u,‰­•‹äÄ”wdl*M ¥èÖ€[ŸÛBh„Ll|ÿTÅ7.Z;­™AÈvÚs!× ümQ¥Ãóæß·ú®ä×=7cXm?¢ÿ©i¡BÉ|ŸzCš“:iÌ"4Æü©bÇ–k–É5 m–ØIy޾Ìp*h`MµËØ£Zšò@žUÖ–²½‘égNsÎåÁ†FZ•È`€4Æ'óÊu·å‡µH^&Á‡ñFYÙ8bV±Åí9}e<àîóªE¿xMßGz«îCPȦL3ü/Ôÿr>Ãÿ_€áÿ…=0²61pt¶³1p´‚úæY’endstream endobj 7 0 obj<>endobj 8 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600]endobj 9 0 obj<>stream x¬»cxd}Ÿ?»c³bÛÛ¶mÛ¶í¤c;ÛìØ¶±¹Ÿyffwv_ýw^T]ç÷5?çT]U¤„òJ´Æv†&¢v¶Î´Œt ?Bv.Ž&Ž´r†Ö.&€o"+ )©£‰³…­°³ÉO€š‰1@ØÄÀÄ`äää„!ýV³÷p´03wP¨(ªQRSÓü7倡Çr¾5,Ìldß®&Övö6&¶Îß&þ•LLÎæ&S k€œ¼†„¬€BLV fbkâh` wùÎÆ madbëdB 0µs|þ9Œìl-þI͉î;'€ÀÉÞÄÈâ[ÍÄÝÈÄþ ÀÞÄÑÆÂÉéû`á0s4°uþ®³ÀÂÖÈÚÅøŸ¾é¦ßeü6bïh÷-aóÍû6&oçäìdähaï øö*/,úq:›8ÿãÛÉâ› °3ý–4¶3rù§ß¶ þ1óÍu6°°u8›¸í†&c '{koß߯ì-þ†‹“…­ÙG@p413p4¶6qrú6ómûŸêüwžÿ¨þgöööÖÿÒ¶û—ÔÅ`áìdbmJÃÈôíÓÈùÛ·™…- ý?ƒ"akj`døº±‹ýò\MÿU Šf†ò;c;[k€±‰) ½¬ówÁÿg]¦ü¯5ù¡Åÿ+ þ_iïÿ¿æþÏý÷ÊRüß.ÿöùšu±¶–5°ù€ àßóÿ4°±°öøˆþO5“ÿE3kÇÿÉ–p6øžn[³o4 ed¢ûÔÐÂIÔÂÝÄXÞÂÙÈ`j`ý½úÿ¢«Ø›8Z[Øš|/ê¿pà[‰áß:ÿÅS6·0²²ýÞ'ë°LlÿÇ€ÿ³ÿ ›þBè¿ÜÈo²³²‡½ àß¶Õdì¾aã߇”íÜ¿hÙ´LÌìvv#£÷ÿ‡›™aüðÿÑ”1pv´ph1Ð100¾ßÿóõß'ÿaFÄÖÈÎøŸ½Wr6°5þ‹ÿ"ü»(ÿ€¿„ðwºL œ,ìÿòeäâèø Oÿ‚ƒïüaþ}þ욘¸›ÁœDC/ëöÓÜ`½lXd hi±^X°&Û(uè&Q?-ý º1• ·ÈrntÜ̱y!}üs vr3ÄÙ¸^vAõ닚zS_+fLö¯©­áä Q×»— ÈËÀÝ5 qž;óõbn!'¼¢½Œi—‚.¾@žI!ÓÜßV¸qÛÙ-ˆÇƒ2ÛŸJëó‡†Î¨*tø”ÿÊò³âWÖ†'ŽF” Þ%–€:x¾M2¯% ih¦_¥­¸ƒ~s]†3Ëú&髊Ø<ÐÕ Áüþ*èÒÂÊÌûìœ Ú)èöÐ)ÿ=¡¥^ß‚£)×;îkðÌAo±EnÄ» þ@šæÜRƪA^E÷÷í¹\›öÈzC<ßÜ౿Fn¤ýc/*¾[AT?JòÆp„éž/­{¨AƒƒÌ‹L«ÔÇ»8ÐêY¸8ê ½4ñÞÚл¨ú¹…4Ë€ÞI)ä…Ò/Cÿ/&™ÂŸªïižÃóþgdG§¯“µéOj\²lž¶2$µˆáE¦þ«¾@×{§·úºGÁº¬Í¾¥Í@cv⽡­ßÔR _úþáR"£*-@ø †Hõ–Ë…3ÎÓ |YÊE0lp­ š˜Ä…õ°H&í]ÑZd@åƒö¡èV£äxPľ=½ß”4ÈjôŠfš›¹ðúðƒi®Û´m±æWZ"ïéU›ƒ~{Àa¥£Žlk}JHø1hÔ­–åa’B‘¾GQY¬j1¯â2¦Ó1/P~¨,Ø|=ã-„Ãoÿ¡4¥ð&IR'§š™Ý5|™âݱ°$ÿÓí=Ú4€ñÈ￞ú?T—ÙÀÛD¹ ùõ­˜ Úo©ždŸ3FÀŠ=¸‘×hQî;pœ®Æð ñçJtL5«aæ(ZöVt5CàcP›Û&°jz9k¬0¦ƒÁ°Eª¦þhÅ[›°»ç×EL©#ßÀÌ;IÓ.ÖüaááØtrÓÉàªcæÒa>” Ö €¿’Ej‰øÛL”[”a…FZ]}ã@Ôûõ€ UáyJR%¤xÖ†?Ó§¶+èßÕ÷aœ|Ÿ|loX6ó̦ÂgÇÖ¿S/ô Q+•1hßB8 “Jq{Þ‡$³’1-2Î.{l¶#øÚìçù!ÌÔfjëºëxÄfôG¸¹ d™&Ráš„pZm W°=FÉ"ä2 !±rÈ÷“·JîÂF]õl3‘NÖŒFª᯵{ÿŸ"œáõ ÷ë­<[âì#Vó/±¼O•ª¡;‡tü/Tž¢6{Š”üÆJ.à—w/P£gIò6µ4¯»á7@à%û´´SBNØž{æªR” ÑÕ¡ö†Xq˜œZ½ï¿)<©Áàž˜ôòOÊýÂ=ê?oâRÚ"#`cÚb© ç¹$öúaOhG+øˆýkü&…PÔ£Tõ"Næ—£}Ž)ãÐþ99Æ´N&/%WBà ð‹?º.^$›ÒÏL-uúÜkóº*ÁÈth6ö¬"bÍëÆÅs/r”U”î:¦øEðÅZN•>x~¶[oWéÔ±t½rݬàâ­¨æé@“ló¹’ž‘,¿r­¨¡|SpTýxºÁlý/ô6Øc³ŠiP?‚…Ǽ”€»·CÏ6¾¸(ŽÉd‡?tJ·ýLjËQ„§(Ö˜Õ]NžëY<…÷x^ó͈©´y-Ž›"½Ñ•ÜÉGÙœqBßÍ]xkŠLSð€ä×5¶“»˜=Œ}£>çuÊ—§i/D΄i{NðˆÎˆ"ÿÞYE{·“CÐêϑ㗠РÆ5ÅjíÚ]Ûk„ÒgïoV´ëVJ€µÈçÚ(xÙ†;!ÿ]tX¶è“›wÿ-¤\wZárJضݮžˆµ£ã\ ºÌ0peå%/*·"[BiŸÚhCæ÷Q ëIªb4­!O¯â¬*‰â ÊæìÁ+ÎòiVÚ#þ裡¤òY1[qì(KÞ™R-.q}Fàü7h€ÌK/䉈†¦¢ùU¨sÙÏË®Ÿ,•¬#Л_Ú¸í 80m&XæêxERÜð62;ÜøôSd¥T29œ ¦xa ›bêÛ(§ßsåK’¬€ªry¯”¾Ö±Ç˜“zÐ9îÒ1j‰8¥]òÌ–¤Â‹dUÀ7—W‡ZÛ­òÒnøG{á¡ðªKÝ9}‹ŠRн6YvãºPà0Ì™ºz ­¬E±'f"€8üjD_³ª¨ù}P`,÷eŸ9Ò;ƒN„òHÀåï>'·u|G”mZä† R¤Æ¿ÛÁêË:Z‹–ŒH“¤>'¶,¢W¸®×@#ñÖÒ»‚º«³ZêS³k%} `¦GuŠoºvõ ™i·V”/þÌ¿Ã,aJBòâºò7 ëMÆPÁCÐe]Õ—Ÿ:ÛkZ.e9 º!G‡VõÉþ¿ŸÇMVfy¨Äx„>åóÔæ‰‡ ©@ÈšçüÀñÞ•©&êøÜiè‡Zø°Tßt_Ê+A¶ý¸äÂNEÙ<á·(¿.hH(¸‹ÿ3¬DîÇ¥t«8‘sÍÄ”Yä`-Ï¡êÿ¥%»(A€–ôbå…œš„ƒÅa/½ª¯ÄÓi}_ñ6^ š3N×5‘„xTOž uá@œ$êR¼>Æé€ñ ºÕ‚òìŠÀ……­½~Š›§1R±ÉÏ¡â¯ëá7evïSÁÞíÍ|ÃîzêÁ­ˆ±ÌÆZ1~ÐëpÊ?Zcó|_ð+ må®Äñè§@ŒvjЙµÝvz‡-²Œ«!˜hœo:׎ÝÁï©!ÿ‡`}|LLº*†€ß©Ç ¼™ˆ²aH4¬Ÿ¶ù0‰rK1TÓw¯—z³ä°”giA{9õàu›‡Bíý¼ãW¹‹0<­4£©ŠPÆÍà0ž ‡]\Î «ÚÙO‘¼ëͧg$g®=ÄeêH7P‹aæk)åÔf½c3ôõ߯9T! Œí£ÀÐ’¶9-a÷[›íNQq§¤æMËCªÛ¢3,Xÿd©=O è&~Elo¹ìmSU™oAHã¸gšëíè*€m›æäĪ˜—®º:Ô ƒèë ï'rº`¦±«ÛÕËC¾Õž ”P’{±åÇuÿ–¸âCàX¨žkÚÜNGoI‰;ã6:¡yÄ0ð4Ý£’0ÆË‡PÞ«æð›Ñ¯¥’´vi—MÇ(h^¹ZC^Ì>(Û%Ú𠸦'.Ÿ_dG“sÈDE’é@¤>8smX>I‡„£óK¢‰¸ÐăÅêÜAkJÈhÛ¹‘0Súk…‘Æ$§Û73|k7¦ó«Ñ .½²H·OdÜE¶Æ;ìŒãWƒÈ«}maDã÷Ϧ¹Œ\È­:9EÁ„rco6YïäY쥥`˜¶!䲄Òô„:ï írïm6kWV½BkÁBÝFê.™Ì¨.kö[õfÐû©¥F?¶ñªÑ!«k³¡œkÀ)‹‘•†ö$„äï»0ïxs315Æžñ§]]‚nËÊ{åþ°SÙ˜†€x4},Åä·ÄÅ'§Œås×2î…Yð˜.oÛî©6IüiŠæ¼øm'§ãø§(ið¹ãU˜ˆ]9ß~£RÙ{–`±ŸÊdÏÊnÀ …ÑUÝY{w±šÕpwê Ó4UívÈRjØò\Ð7µ9»»ø ˜J»sî2ì²XôëÑîdðn̾qïø%{[*¾ï;-„JoG µ ¬Îc·!M2Í«`ÍúSq¡ügèd6Yð8¢_犱ÚO‘2ñêTSj w{ƶN!‚V•ó žø]1HêMKEȪSütãxeùR—¬ÅÈ”FÇR©ÝθÂêUËT>Ju×QÉzÌy¼NPäp¾Ï¨uH"éÁN܆Ç!l¤Å ŠwãwT¹,º¨MÁõ¼Â.ŒÊkO÷øª_"Ï©À”¬r©;øú%]Ôºü¥žð… !Lϵ->[Ðrø|P«ù Ճˠõ ™ê4’Íô .‘ß)oª½ˆ …C(Ùê'KÙñÐ똪8*§K"$©A°'pÎYhZF”vÀŠ¥ÕŠë3­ZéÉ;¦þw±ë[EB¡™ÚÒ¤”Û½ÞÇè¸l˶·!ça‹^Î=ÂëãrWOó]#÷»Ì¬^âèW{ë9úWè14"M¢ [šãzqO ™ãèSº¹–Bñs¡ë#;´¹9©ëØš óÙ¤¹Ü»Neöq–ÆÜ}Ñ!»|H:T¬›dàßJµá¢rŸågË•­ÎšéŒ¦?÷ßé¹^ú/ sh³ùÔtþœ‰|ö¶‚ònF‰äV̪Éò ÉÅÀnÊ¿ûÇýüpzþŠ#jÐÕTbìíÃæŸ-pÇØ £&Þëg:_гɩ ¸]úä«·Æûnåyöf™+¢Þ8mbü°<õõ¬úá_ñ7ù§¥o £º«%yFÝöï®öyïß¡@{ \À¦¯›1GA‘Òj“vaªÞ’H`…"ÍÚ)cçï÷fãö#ßwáìf³™Í%ŸØnlÇ%½þá ÝMòÝL4z÷ö²‰£l{†‘Ó Ðä^ãÁY7Lâön.3Ÿ,nŒ=õ­âØ_-§£ù³&^—D¥›+îÌHÎ~†ÙŸ-h: —Ò"ôþ[}a 0yÄô3Sšh£Š|>êÞnzý‹àCLÁnlUwÔtÛ·½w c C¨òZ'bLôT ïšM qÞ ñ˜Nì>žê¨p4ë8ðä—£cò è?‘‰¦|‹fü„À*Ù$+t}ô¨Â@>þ,: å÷ÑW—5OŽ¿i"s 䂱‚(”¡ÃS˜.i È'òòo:#ãJqMÁ™q£ù›JRygQêËŒ’ov÷„ ÂM”¥¦¶°`7™)ù9 Í3Ö­ØâÏ4•ÑL¤Á"-õ¼jG#ÿ‡œ¦­â‡¾0™àóˆßvLAMÔ´7ͺq"ýNråâÇ ×qÍßÈ‚gªÃènÞ%äìÞ?Ýò‹j’ûŸ&tö÷ö\Ÿã¬§›X†IŸ¼ÅfÙí6h±÷Ò?°ã¸$œk‰½µ‡ÈH@æÏ Xá÷¬û2`ÆâÌÝ f°+€U-)Æœp­‹gæ—?Ü-6­iQGôó}4ÞOüÓÁ®Öðóig®É³ ›}¶$-bš:›ao·KmrÈÆ#HÇlÔYŠ+á¸(}ÐìDцxbÈãÙÛíÍð›T©'”ÔÛ²‚‡ó‚*I[ª‰Ø;/Ž–‡áxFõü‡G9Zwpà€ø%ÿv$þ4çé•‹Kê=F3[Æ* gÈøYàÌ–ð19 Èû. ª;uTñų„­÷ÙÁî+}Ef† 0U XÃÍ&]‹*ú¶ÜJü‰¸9qåC$Œò %:o[”>]” ]ôb)²‹YRäÍõ‚]Oéç¬Ò[÷6æo>ÏP^2ÊCbÊÛ{›ljhîmJ&ð0{+£Ýº§ŸZÓ0´ÛéˆÜ²PÖ³øêF>“wŒÓ½“4캪4!Di™Ú›,нÆäBÊ‹ë±Þšî  ù mû.@31^ }wÓ¥÷Ül!…ý’>MÀ‘éªr¡»ÈS0UæKߺÛ>̃fê«H²Zà‰•&¤`,ITéUå:†¡áø¶ƒ*á‡Ð¶Þv˜îÐìGJ´ýåãaŠ:üÑÇíçvf±,ˆcì@h c î~ ý¹‚;zRÚò+«NJ ÓÄÉX;ˆ]³«-AO©þ)OÆ@JµÜä<"€äÍÒè2ñ'ôNýÅú0# ÒÆ¼s,§ `Šö[\ƈL‡BáW©Ôi˜ëG!S™ä)òád@›äŒ[Ô|zeoPòc.DµÝsõû*Ò³h1êGOEþÈvE®ß î!šB†˜îM¾·/¡3•Þk$ç-pê—õoRXËõõ,\Eyû‘ùÀ›<.Ÿß}š!6ÈÙÄÒÕ ê•Ž~o~‘ÒnX1ìÎŘ·J%°/ݾ§¿mÜÒÀûëe!äV­ õÄ>‹z‰“rÑEóÁ #ó¦\·Àä¥î°§Îë?JtùN‹0ÅØ U.eÓÀÔæA™þ{LF†Jq—»꧃w¢èg7ñXTŒè–½¯–p<{üdÀ²{mòšß¾’0­6$ïf Dñzé×Ñpeù€q¡ƒÅCðH`;J n×*³¥©OÑÞºžÌc§¥ õñü4ç¹ÙÁ—C¸ÆK‰ÛCE¸ìÜì$#Ý Ý>ƪ¶Ä¨©C=_íŽSL8ÕÖ§á9.twó$TVÚf4‰÷ÓÆVAr6›á ø1‡K5CŸ’…Æóát,{m.?û“·ºf·è &K¹Êg Ä,ós¡¨ÙÍÏÈ2ƉOÂ>ž6z^·&íÝøG,غ٤B¾eF…Gì.Ú¸Ì͸£”®tZ ¤uꓵ#…®ËÏ¡Kà¶X¸¡(pÌ$ŽP*}0ϨŠ8ÎpV†ÂƒÇ.—Q+Rt5öQÎßw§=÷¥ëÐýÅ VpÖºêöã¤á¡>÷rARJM-BhSŽs§ïF8&è´6’#5äÇõ ´Š€œ8ÒñbbqY¨Ñ^á0üd×]‚iÇÉ÷xÍ»%,ŠsÿD«Aá` ~ù’Ñãj˜y\é1<鲪äÎðæ)®„=𜬟¡ÆN¦uªyY€x$ÇJ >Miýmõ°ñÎ+¢§™4G¸_…Upß+!8r%œGž’íöמu„z]%7(æ´2;f%"ƒ~&vŒÄMsW›>­!¼­Ö-_ ¤L”÷‹/*è7ïÁ‹Î’¬LL×õB)|–iR"û€î]Ãg&¨íÆO7éQ87õC§®1jVàvž l#ÖH âLÀ’_FJ$)û5eÖ¨ —u³•WFî¿{KR¥VÀmÝ@ø¢6¸#+ðLoº³ &™ó o ;Ç?m.’F†ž:ŠSÅÞ ‚ºˆ8—ª†Âß&=]%$­HÞK¬<¿¢³+â‹•áûQ25*tk˜ ³WØ Ç¦ȳÜ"£“UÒ.M´Ï62'c[™  W1Ûš\§±; nØJexŠíû&a¶±[‡«°¨‰¡˜óP}w™‘2stœk~áÏÁ¦„#%z‰T!À'À:FsÌÔã~þêU —k|–0bó>‹FݲPɈ×ÇÙ¤’âk$ ­Í¬PZÄs6—Èk•ëžý›ýJÉn:E›Óó¦å%âÙ¸øîž¿¥ê ¬)™_„Íýà L!É?œ™—^¬Þä\Nûƒ–SDhEzÉdü ‰%“Q3x³~Ö"²v¤q˜Ìð”RãO ýub…îá-AxÃD-jÖÕ¦J[Q4E z/Zþý)–ËÀŠŸ¯µ:Æ:)†¨$VL÷á¨=垀 KafrdT°à‰8«¼oÿ|\dí9»šlNwè1¹?*æUâݸh8Î;Bƒ„Ň÷©ô‘¢LÎÕm£ÕE\Bý6Ý;:‰1]MþXß™¸À6@‰.ì c$îpà^Œ¥-•èÄßdvæãL[Ùÿ\(ж§1&·““P”&.Mi´#?Ñçzíš~KÖkÔ/p*¿QѾç} o¹ß×Çeqs*`˜n4¤–UMÛXLÙg·¢¯ë‹™&!ML}WÔ\TurîŽè¡ç¹]`nò²,•m òUE qéúÂ>­ìœ£¦‡˜Ð£KêÝzÔä¦H{e¿Y«Â6* ~·Åþ*1k๿fþæøšds"àA× ƒ aºµŠ–ÚÉÕ¥‚Ò×7JjÀ~Jš¨ç\ï 䤒$à©N麨®F5_‘[H´Tüïv"ÛØì³ïÀò4„4¾†8L<á6ñžjíNûÐö"é0ć’Ì~§Ÿõ»”¾!M‰^"‘Ö‰ùúäa–Q½ø7Y,£%PmšAÍ{¨Ê }ÅÚ-ugÞ}–}'œþE6çËG×Uª¡Â«Úþœ¡äûpêäþ¹#ß/?W¬ÍôßjÅÞ¶ }£‡ŽGrâý(…ÓU·Y5Ž,š øx,Ñz¼½§›ø®e… ¦ 4w!9Üxd… ²Ê?zcŠÖh7yÏ0úÌâÖdo Kmæ¥Ü#B#o‹ ×ý]_zS瘀äKsJþ”K­!UNN’­çåÎó1Ô\¤úDj®RÜ¥øê»R'Qn4žŸ{ àìi‚#b4±¦©2e³GmÌr}*yJ|ä4oáÿü­-p¶§FøjÎÜÿ UÁý5 æã;Õ“ór¿vHÿ˘ä?psD™>R”xn»›Ìh¥^ÏÖi6—%Å=(™½LE¬V¡US?îµqD;7eXg9+mé*Àžéjý÷%n½þÝ7k½ÝEË–çT(vÉ"‹¡<#’Ñýp ¥"Ѩ«àÌ8çÚ™_é¬ôi«XÝJÍ£TÈ5!á —ìÌx~ÏÁÈš¥8Ÿ`ÓÈ_ǹ‡¬Ý¿mQ7m“reÎïË´®à(8P;äÈ« ‹ òîZ¼/‹¡0ÒòòhÑ/¹8þ,WË•OØj‘D,K“•ähñ;å=/Âý‰m[rªHZ«âcOÿ}¥ÝRÃQºÌ@¿XÑwÑXÔŸxd]ƒ‡Ð xCˆ­Ž¯«c[9‘]ŠYíªŽq¬çÊ3nXŒÔ Šià4T&J¡=ªTvƒ‚ûÚ ˆq)×ô ‚{Û|íA'ªÏ Ž!=«ècpé×þÑaæ#³ÔjPNx©×äKIÞ…=­†ùͶœÜÉçèìIR˜v3 ¨V§2Ùx̘j@lÌ¥K·ŽÈk_BøYv…œ´iï±Ì/WŠ5E×Þýnj&Rk~lÓ½¦ÀÃlâ“ò¨Å[Œ`áeô¶ÆGì°"Lj۩ ÈÞ€/ã’ðñ^;¾,}v C¢Õx–å™òžw£Õ’Ý"!³ ¸ñæAIs»óÊÁßlD{Û’àæ•R~5Ø7÷½4©:•4m‹Î‰FÜ&,—Ëü¾FJé&ÑéZžœgÛκTŸØ¤R‡±Ú쪀›¥áøWw ƒ¼gܬØÉÒ¢Ê#-åšSgÏ¢[U& t:fGÆ"/GŒ¹ŸKÓŸFõ›Èó˜Ró; /*îVÑõqÈ1ï °04¶\ÙqéûÜ”%­µ+Q+* #²^–qÕ~_/¦ ¥e]/‹±k’mäÌešVŠ­›3X‹÷‹KÛ%ÜqáÄ&ܺ>œ>œ2”å#¯›¢3÷?ásYÄÇÊÇéW%åN*§T¶x£dßœ1﵊–öul\é\ŽÉ^W“Âf‘+ìð>™ãÇÖ€ÅO—ô ¯W dsÙÖÑòžŒ¡e”z“']ÿafÑBÑ*az†¢îÃÏ-¬™/]0©tP?®J}Œ$èŒf‹!–é‹yÛ< u_IZ5~¥àÖÜS)3êø1è¯þ´eJ VÜG,vÔ¥%ÍðrU¬kO§üì;ñƄ٩– Ý‡±‹]´W´Õâ…”óÉf“xÛàó<>:Pšëö™®u¸Zóú¼}‡ˆáÇ5?̾¶xSÂxv.9gïnrÔép‹KÃ'løˆ°é2Rè6-ÑÎ(j4tÞÄQׂCOèÊkMÁU P/Ǥª W31[é[ IÂý%Ýèã86pš=~Ű­3*⌮0y>í§+±KI/vgK V^:½åø:·2Aí[Š·Køœ¢_‰=‡ÜÀM&ÛN xiØq ¤—›8šúù»RSS¸(ÄK"÷—D³LÆï? éæ¿³Ø¢Ö(ÆI@eZ8íª»«9•OÅHY "{‘›1&»ºÄúã¶ß~5â02XKÜyDZDˆõì(üY…ƒ©*ˆ2ÀV´€ðÀËAóQž’Å™Ö2·ˆkh ÷6”½†¯L¯"Õ<Áð.¿^1›×¡™»cGý¥ÃÛqÛ¦Èêá/Û`ïSÔPØ)9Žõ:L•¿°ßJtý I»ú~þè’§Ê„ë܆• Ž™”nÆÞÑ93eÁà2òx1§ 7bØèà écC–9Å%% KÙu¸x'¿'é"—˜m‘ŸkžÐùB;‘7*x‰œ®S±äi·¢Îy;EÏiû*ü¢ý ¯ó¹î¡y–ÆÐÑ…Øò³ÿ<7Y ÕÅÝyévÛ ²;’’Ýļá~œ@Ù K{úÔÞà9eýÇ%®[ŸÜVdÂ}„j_óž}-û8E);_€è7{,Y3%Xî|ƒ¼s™É¨7³bUŸj: Ð&Y5áhÀ0üÆg3Zbÿ«ÍÙ-·Ü¤œÔºÓ97Y‚àì’£aË7‡[ƒÜ(I¿×Ø„Òé°$¸BbÉj$7 Ê:š¯ajª¼{&IÀƒÙ€T—†á|¤ECZ\Yj*ú4ú‘r=÷4›q–dN>9 À!=ËO s}Lb•Í1Ly×QL¹è*÷h}î×û8ïÍM‰â­{Òϰތ¢¢YÃÀ—:ɶ+œÖàreP1ÄÆò5é°²¼DjÌYÎ’PÞÃó\;ä»ã[ïŠ,—u„rÑxì4ê¦0Øw‰¢ê¨%s ¾q5î œA1~‰’Äñ³…åŒay± Ï ûQ(ƒ»ó7µ¶‡Ÿm½KµÚQj0±Ü`‹Á*E*$£±×ñ­ÏED·Û'¥-_7Sï(ûô¸®‹A 6dV%ѺYå'Áròë45KØU¿]"¼~dqUô05ÇWŸaàCU äv«[*îoÒ¬X1¢‹vDJÑØŠs({â˜*¤È ¥Eù±%"†ÅIu¨g•uBKÿ(ÇÆB[Ý7§¨Nù@ãüB.é÷dMdqòËñ¯?Ù[àb½U05;„ü:ËAÕüå-s¡Bp‰Àj0ü£~)£=ÅŒ—sÓ—/öà>²2biû"øÁú‹ä®i£J"âÏ "ó~j ¾y!™LIäÀ «;AÁ ¦˜6V®Ðxé|Þ¢Å/&œjN)€ÛÎŽ•€‡„ËqïmýÎ_è´ãi~oý|8Ìä#¬"^!iŠ+×ÖäX ç†Ù e=w!}Ö|&ó¡ˆkê»^­è1©OzŒÃA³È ¥¤¤›õòO0ÑËÏ ‚[‘^ôáÕC³?Ô"I¬ù³èSC& Hû`νU#O¬~Ä›Lx§ÿ!× uÖ¦pQ:ÃbùA?ÔI¨eÀgñš”Õtž¦ãYæ•Ñ÷Ò9’.mÝyòËލì§Î!^;øÂoó Q=Ñv_R^Xbö=äx[tîßÙõ窃‚qŸN—JûÔ\ùÓÆô µƒ•‹”Mæ'Õ_!ZÙ}q$0ËsdaRÜZÒµ{ 9~Úf7ŒÑ˜&`«€`W)ûM˦J‹¸ÿ®b„dC–è4øaS¨i( kRm“*Ú˜âéZáÝï_ ±?[°€ÐYD+­•2†sx%"î½QÛ[,$³øSõ¥”sVŸAµt¡¨84«j”¼ÅÑËD"7QÙeÞâ¶±f¼*­¡¸ç¬Ðϱ—jÐ.Î}Ž{.ÿùÈmAú¤ãÚ”JŽ‘Èþ¨Ò6ýÉdäFG±ycb¼-¦¸ÈÛÇ»¼…> ¿r”ÍíxÕ\uøÍ;±_ˆ“ˆÜ‡Ùû üøèiËMJ»/²m •{8ê}Ú*"p„eŽ&½®y |«ŒXÈÕsѳÑ÷SK¥7UC(O$tÑA—Å](¢˜ÖQŠpåüê<ÞoQTÂíó@ND(pîjÍÿÚ ¬+(:ûªÒäµèlŽ|æîDƒ×>äøQ„•ÝdR&K2"FÓƒ¡˜mvYæ­¨vÍ úä|†'ÛíFËÃmXµ¸ÆQAÍtš«3 Ýüõ8g’úl‰ƒvV˜ðù.­´¡Ç¥kŸòžÐO²y!éãZEl\L™ÕYkXë «ôòu¤‡¦²ŸJq#tÓ ”P–ªIû:*æ¢%û›ã —b9ÁÊ]38Á¦öeFEð…±+Åü•ùŸÿ¤·¢ê7Íïš§ ˆ ù¬Õ9t V ä•®lÿJ÷ ƒpYœ2aÙÀ°Y×ÿ{‚`Éæüèlx厥ýåü¦Pë±¹GpB~c½SúÒ…®@ï·»›ƒ˜.uìÌ- qÏs?“â¤e:3…hg†£WÐ9ïmÌí^ç3~wáXc³ïŠO‰ßò"‹Ê(y4ÖÌ,Âj ¨ùØŽ»ÃgÌŸz#ôfW’ÔE*l¼YÜè8*ÛZ+€å²Vé…}ø‚€ÑVž\§¾,å¹6üˆZv«;GîBç[k×p<-Áç=©ò§ÆæûD]^àö„Ù¯û+Ýø2lX&i ,!E%+‹ ⹄ Þ£T¿ú9M;-ëÅõ;h L¹”ŸGNψ_À©´Ý¿îôüC‚'ÔÙdCu—djðW„z|À»I‘½¨AùžÂûø0£fè!½ÉœìYÖej–-âú´6:Õz‚íÈDæ×žÿcka Ö¬Î)%‡ö{úñiaæ°ÎúOÎì•ëNLŽû%ç¶î“ǧn™¬ÈUŸh ü/f8´SÔü¯9-®IÎD0B‚í"::cTŠæÜõ]s‰—–ãÅÝTá¶™¤|æì1Jñ¡Å2ujh’9wY«.‹Åé8ºÓ©MÓ¶+þIÎt'X›±6å~Ñ”ªòXtõ°ÈÖ  iW«¸.çDÚøÀ]ìLiêÁV?t’b@”)[­ž ‹æt‰ž¬w-L^Ÿ›¥ QÔZ>³©ÓÛ”<ÉZfœ£À>­¥©û¢¿¡ó…Ò×a/DXà ËÀnˆÓ ß¡d±1É© bkÌñ˜ø·ÁNØéÚ&·mŸhŸUÕšÓ ùcR|딘Ða2æ6ÍÝâ-3H#‹laxe BÔdrÆqŠ1Žª ªž,’ï<̽Y®Œ²ó%y°mvi#<’­ÐþóbÖ•Ï7šæ-æ¾m0妒ªZ Ü ž²bkóT~Kn»pô‹;¿*T¾µÊAøÆÊ•Ø!Ó½§§S¡*&ÐV &õ6í”ø¿Ÿbu¶gPõ±a˜m¢o:v;ð–ï²ùO†'°Ì~æ€}ªû0-ÌŸEÑMû[£Å²°roOý¶užr(‰ÈÄÂ,_×*Gê¿òØŽó2 D¾Þ­$ƉZ%‘ó`°2X¶!WÔñ2®± ô9ñRùÈ·’›Íû2Uxz‰Gm”V^¹Íæ6 GtÌ‹žtRDtŠð÷æOÏôˆv:+×ë’ŸÄYòZ÷˜E~ŽÍÖeÊ rFÂ-š³¾!éhÿ¸¾Õ¼ÍÌRÙ¥õÂycPf›\­l²[Ê`b‰ôJ‚¸å+|%Æñ G´„Y íÙ"+Ú®¨T =RdaÆ‘´^õ ¹S³Köø5ŸñóØ å)¬«ßâÂ&¹mꈨk? M%c0Ýþ`JÉåÄ¢ïA›¬[ðSZ0›ùUmS´Fð &¯rcG <i’ÔÅÀTdû ‡Î’Å’rWYlq Øz\v „ãÜH¤Òzq:²™|a#Èrñ$u[SRýP4M÷ú„Yàè/UwüÅ`5œš,v™tì³0Z’X°¸²’•å™;=Óó«§?pšS•P6¶ty2Øæû‰¡@X\¹·;ˆ$Þðwô‘dÔ=¼âé-¨N½í¢Ø Rtˆ5›¼¶¿ËUŽ:¬DˆÑߦLz/m­^'zBRQ’NgAõ¦ò´¼ éK2µM­n &ð3­ò:è#â3)ûÇ8C\T¼Ó½é“¼È£Ø&neÑv*óâ^žá0!§±»`j`MŠÙu£u9;”ŸÆi©P¾V›)@^ÙÀSY¿]Œm5µ˜zNWÙ¨‰xœ-„ f²”¬_Ÿbôqúç®[Œªé~zAd›¼Üv]8º+àN!ñJr£¨hp‘4vŒð½]½îâ€ë—|` ð nÏÂÃ'Þ–•î˜u˜\/ßüÝõË-œüHݨÃaâèë…ïZ9ªÄõ­¥ÛL…äŽP×gÇögêæÄ¯Hm&H µ;Š¢ˆ¹Ý‹Þ˜ (žî(O*—ÄyÆd¤Y!D{Ÿô"A«. ÞÁÈÑñ6ß W’ª@% =µÔc59x…ÙJƒÉÕI?ªÑJ®LuAL‘UØgÌØ¯û;Zë ÆN“\Y’¦)Óm3ÄŒ&WÁPu>o鋌s›u1ašPÖP[ìLg}NoQ¯ÒyQj¸yD¬ÛžŽû%VÑ'–í/(á1 ™#þ#éZFºz×sðу 2Lb„¿Ø£rèj¯Bv÷É«°ßϼ¿îƃ¿Û)M"`¶B™¹¼Ë$¦{k-©ÕÙ¥CU»?©ùä“ÏMñ"3…[Ñ£éËÌpf‡Î¦Èî%ol“ÃuyËB'Üd\J¬Aá•Ï% ‰,ѵ~EÔˆo“|´–ä±ÝÿnÇ"ëQRÐS0²d€Ìê}p­øUz„¾yƒø‹Ö™P_!j¾Dsã€Ñ Ò:ßPÙt{HÔ>_URy uC[mN™‚¯³ça1©ŠJõR½IñIÝœtÿ ¿Ÿ/€Ð=adÐNœ:ôì‹Ã‹)‰«Å& î]éB„j? ln‹w‚êWëtI(L;ÇÜÄSHN¢Ñ̪\UÍb5“Ì@ógàQƒÜnF'~µacîÛ¸?özj´f¿3ïOðÀP»êJ»k‡N\.?â¨æ/ñu˜ºÑ!çÐE¤èäpšHÓjë,CÐÇç&”:$ŒºeŽšZÂìMe)¿ÝWT—€±lý C"׌÷¡>6»P—40ýOMLÓôa Ö`#ÏCѨ3Ø×S¿W5gEck€ó|9ò÷¿J–Êñ ÈÇ4§f_DË–›] —”îhK®jT)9ô ¸>6âbðÀTÔÀáíL8œ“±i¿-èV&ôp²z©ai 8S°×Q'sT9þ®®˜›y¥sŒŠ éâ;Òkín³¬ãRö{*\tÆoÂçåï'¸½ðN \ õòÆŽ:¿KÚᛎ’ýhˆ LJÿÒ^µ­”[½ÓáoÃPëEK¤@†Oœ& çC¡ôµ$­K,³ÇõÍÏÜè~?î\‚ +~Hzÿ4>÷µŒÜ:äÚÕåÅ—Jâ!KÂ5ån”$ ª|²ì+yµK©ùs²Hþî5ËnÛ]óMc~‡UÅôyTBfI³×Jugv/ø9§«šŽ8ÔŒƒ—Õ ñ)ÛÊû«[ÉÍCEÐBu4i}¦[ÉîK‹—:åëÕ ëÄ]³äã0ÄQEÒŽr¥ô1fÆWÝ¡Š3#b¾À<’:Âùo3¥:¶B“öêŇÄqÜi¸Æz¢weà°ÛmY›Ùoõ°Ÿl¬-ÑÆžKíÂøD4É1ÅÑIzîx>÷Ðn8áõ ‚ÕÞýW4=Üz#9£g—RCìÐ5Ìͺ{иçݰA>ȃª#u¨ûú´Ì ÕŽ]ÒPe˜âý@TPLÖwµ™(à?Xkâ= vôe§\:Ž‘JÑj"žN³Øq˜hÁ(.îG?Nõ}ìwš $Ę €O¯0w3·U¼©¦ úäu#…¤̧ '*:!ŸKxÞ:ÏøøE©Ê"ð•nÂFO÷8_Û/-!ˆQЬ~9w)¸ûr£4• ?… 9#=l‹álð^Eõ$‰‡ñ¦Óó¤/op๶´œ J •æ«È6ä‹“­ã“‹ˆŒÂ¶“yþ‚þFŽH»æÚÊÓ§é¨TæLl9ª¤P1Ó¡/p@î§}…iéeŠÿ( ŒqOây$C?ÜÊ9cÛš.?{ç(s¿;J8îŠÒ±yP+^`®×à–IÿŽ!ìÆ1õ{ש'!"‚u³ÍÌëÁŸk!¤¼A:Šr«'îÕm:¸™®œ›a¿oGHÝ ¼ÿþ£3˜«ÑuCXàÚ"Å3ƒÈ—¡ ‘Sý'LÆâ¶Ê¯þü´|ÿ§ea5ýñüùkÝ¢6õ¾-(â®:yüE¼Rm1Ny§•´ø¬ÿA@¾¿ãö}³%žNç:‡ÏÙo„â!yes•6JQæ5üUGŒœ¿šê·ØÂ_!Ïä·õ˜TâIhƒ; ÖM3*fmú*?×¢k«}£‚{Þ €‡ñ„Ób+b=~ ¼2¤öê.m¤P©êÓmSýìƒáþó/O®Å°hm† Ó†gñŠLFGõ—„„Ùã 7¾ ®„À…F¿’œfž“fY &'¬˜7º§WWõ°¨.ŠéÏ!“8¿ÉGDâýãøqB¬aR†ä¬çòit: Tc¯S}”#̨YØÉ›|np¾á¶˜X›éáÈéX*Nõꔵö( É ¼*bÅ6àl¸¾u&§‰™mt­˜€£8¦þ’(lÍÉË@~³¹]œŸJÿ8³p‡¬X,{d§ÃÒ +Ýb鮳Ê…ÄÏ2?Ú1‹‘÷Ü &f0÷DNÐhµ\F—U#f¨,.t<ì5=QÜõ@;;tÓy¸.¶œC€í@#ž¨k.\†‘âg̵p^;|zñ”`Tµú_ÅOкCfn{«ÒÉ…Ÿ9>ÔŸq#íûdŠ=aRòÁ~CŒ c‰h¬´û?wöO5Šàc‚ Ó?È\@äÙ~Ñì-¡Âáê%‹ñ¯gZ™_`¿£r"¹Â³%À+¸S}+'ÝC¡)ÇèÿBu{:É´Gp=8!ÚR ‹;³èÇ)[wkDí(øc¸áø ÑÚîŠ%Ð& ÀMÓ!ˆ .Ìy(-×±w*œ»Êpi ®‹ÇyŽnÇ7Q‰¶ÏΊ‡XInY¸Zûz3ÊK[@X`<ñúy¥hV´=SŽžÎ}™¯§;Wã6OU6DÞí´b4ï¬kn~Ìc”/ z׬ð¤\©RcÞ”9¨€ÖµÅ!M) T×þ›.b~ôž›YüLJEèxä[FÀ¦H•]>¨É5=”ù.ÉcölóÏ:Rk§ß<ÔÊiï«·8ž3qh’¤‡+ÒÁàˆšB×ÿ´šØN¹Åtæ°'¼uào_”½7x¾˜^† 'ä@ˆÃË*ëÄ Üã¨ôz•HH^al@šÄÝAä¶¢)Б²SëhðnCQŪnÊMnHÖª hÚïÊ7v¿¨µ!Q‚C-Vƒ)Mg§ÁývÅ"3|¤ICìr€^“_^zåÁƒdá³gAéd|MÁöŠXìD Y ýÏS/`7€÷„ ~õÂMcâ`@ÍßøßÖ]‡¹Cõ Þ„ rï3ýйˆœ‚ùOa æ„" óžÇ²2ËøħDó1YC.‚pÇÊw䀤Лj‡aXŠ1ãùŠw»Ö*:#Ñ@Ó”s¿|»¢3ó{ž¶@UŠ#è‚NŽb1VŠ›vô‰q˜§ ù1?JÄ'ØÃ§*¿ð+ýWÓ /µÃ›…¯T Ú Ü'¨[1iN{aùÙ´vW"Ù-v‚FU ‡r“óÿnÙ¤˜Ö¦">a‰ I¬û`&XgΔdùÃ,YéOvAÇ?´ún²7øí”W™W' oÖ@½•Cæƒò7,Í{`ªÒià:rÅÍ·2±(A¦ÝÒ¼Ÿ}9ôŽ&=Ô®ŽLᦆó  ,¿H—†1Í$5fâ.hø×9q4£S£t^O¬´Ö¥ý„Ôóus÷ù# S’gÔx k %{÷­”È?A ,}Ò£æä±NÚ/Û³k:>D•ö&°î¡FÒ*Ã4WôOAgYgm*fì+rm/@«ò%3ŸôÔç¦.R3Ýò çÈl ÍÕaóÞÐ5/ÆlowA¥B_Jœ×x¾V¹I,ÙQÁ a‰¢ÏÒærYe¡=ésvZMšZKàaZø¿j^¯øDh¸I•M¾®ÝWÄ5x‹3À!µ ±„Pj ïtc0¼˜éÈšª/€C¾¶¦‚š‹Œö{/=zôØ»à†%LÞSv^2&º/•®€cdŸŸ”½•A¯Š‡0s5fcˆ┄¤ÿ¼F±€±bÂ;À´ÀÝLůã@$1²ÈÚ†ÃKÉܤâÕ††ˆ§x|Ñ »šÊ·iÞ‰‘<ØúµÈEê*¡NT·¨ÎGO!>Ï-âèˆ =îÉ7Rh·–íuúž.Üžn„Vœ»Ž9ªí¿Tf0tUSÖOùROìjrdøŒë~Ã5Ž’;9$t㤈eVD1f)ˆþ§hÎUZ°ÚH½Rj„°Ë´X@fÁd #Ùxiï Mpá!¦ãÈ2'IX®×¢³ `(ò!Z¤N†ØRýÆ}¥Ìºyî¨cºÉíÂS[f«TìMD9Þ¸ÑûÁt?öÉ*†Y稒Õå8rêQïQ>‡Âš'éǹÏ7D…Ò÷:å…PM›Ì¾¿.9Í;“Ü£úÃíÝ‚0Wfà Œò–utlZw¿ãÍuÒ\ñ“Þšð*ø÷¦èøKT€XÍÓÆ™ŽÑ4cúÞs‘&Ø=<âÇ •S‚ƒ.2Á ËÌ£X5˜[š“øã° ‹æé$(x|GÓ€Šw¸ñ×nkö¡øÛQ€à8 Ð680{׿\í¿dN‘ȬSy’‹d€öã½îG,º˜S á±¥ò>¯2½V…æCn«9]¤wǦ׈#w³üAi6ƒWØ€Î|‡^•fÛ}›5Ñîf¾GnØLÀ"0'h)ÂÀ ˜ðQP.‚РŝØÃß)=¡PŠÄÒXf¾îk½Z#œ-ÍÔðhƒ“côvÝ͆ÌþÂÎ<2CáHËæ¸Q:|禑 f© p‰åÌÔ6‹ïÿ+ÏŽ‘‹þ š²©Ê{¹ óÀ°`úö^‰åI1X—ÈFD–Ìmê~:ô?úL2`gX,¢U±Ò虚:À@+½‚L;µ$[‚¤Ru€{Âó e^¢ùh²—ùŒ6‘’Ȭ¢kë§ÜEûÑ0^.úM¾Su(ˆî-oÈÀ§Uç)4´µmÓ½¯qq¤£ÇvWg5$’¿©§u…u ·ó‡Th;péâ“Ëײ;¦+×9z»„×í².öÃõ‹>êöVãat~Ð@ 2SÑÏ?[^…ø?ÿ0«'xÊä7f|eÈý@Mk’©ž§jù®6cP¶k8G mʃ.¨ÜJný¶tµ¢eR§ÇÕL'™ÇÔà<$öa©mã© wJiˆ4vV4Lû `e«"Gk°Ÿ¶™(À_'d¯d<þðQm‡ýæÛù;®()±vËP{¹˜5à­^UÂøyŒ“ú5ë?ïÏ£=!°0T†Ò{”HÖŽ+ZeÇB½)™Ú Ã®ÖDG¹Ìg÷¯3¶:úò_<÷ï†eèùR(Œ¤¶‘Óièñ“\ÚD¡€¦vu`Âí?/Ì8¶½y‘Ô |Vmi Š%¾!*€‡ÑŒÎÿ$f#æSv1ò’'ÖGT² øNTw™æ‘ÊG7€ÝÕjæ Í•=Q3Ñ5ãÕ#pxþë·7Tîc<þ#Šêcù™ž2…lv‡ ìNYÒ¡ŒSIb~3jµã[!‚(`:KRŸ^èIÕq¸8}ÎŽŸéO­ï‹¨;Ý$_Œ'Á.Ѩ«-m`&„,îtNçªÆ¶ú̪9Ûõ³±Ôs9óúV&q©Ï}Þiþùñ›>ŠFMÓP£­m$sµ*J‡hùvr>nGÀ`EÄe‘¾òl@x›s31¨@Õš¾Ó˜hø ìª!Ä ½ Ã&цÿùë7hÜ2¬xù’€Ð{_òãTþÕEŸ¥ú=Cÿ!à'`/Û%"ðI»T_ôÚ`$0øN4ƒs/1HÞÐ8¯º&Õ´ŸÀ-é€ ‰N’9ÈŽàíä1ø6—Ë ã´—G4såqGÉ¡©&s $”þ¢a^÷+Û “3‡¨’7wî¿bÒlÕƒîd;ã#‚yÀÜ–dÓjãÍöF¹]íÇ×ý(éPxñ-ü d³'·CÅH £QzZ~Ùcíukzç~$Fºp,Ôân-ÍÁ¨¶—‹[^éð1ò Ç-JëÅveˆ|ŒydŸ¾”$ý±MvîøÆ÷£ á®Ë“ÒáKÞGô¡Ð^Õ±2ª9‘’ÒL“—jηïYzu#§;,ÇaxT“Ðîܵ¯é_<kACŠ…Éb°pÞ+ЖËc¸GÈu9ˆ £Óü\4^ ’×¾wÆÏô”†ýÚxLÅVR+×uœN¤$ZA¼ó‡[ãÚâÚþúé Í+ll v/ˆÀÅÀPS\IÛC`üá]:Ž0íZtúùÇ{Š«Ýo½Z¯%]² ×ò¹")kVû^,É\¼_z`D‹€D­Îs¬ý‰awñ÷­/e4Ü:×U«+¨q&Ö<¢éÄAß e½Ýkä”åkPW¥aÑãÓŽ’ËsÁFZö¹À÷"Y¼¤HGÑcžN/sdµeH¿ÐëF1k$IŸjGm6Ö·ÀÁlòé¡$j;[!çÈúÆâ;‚ã:wƒäó@éniÉDN}z’†6ÏІG]ñࢄd8{²U¹øD™´Z®ÜÈKÅÕ«6t`»¶QíçµßȤcÚ´ypm(\Oc™zÈÎó\­Qûåõ»?¦Ú,:¿+>’U4—(ÖÚ YÁïdDS—Bîš#¥r Ï“wôøMêBZ0ûc-J-Ñ»ü:„üI›1V¶u¹Ê<ʽ‡ý²I|gúpë¤:ݶϖ0èö«Ÿ„áÝm³1K4·÷ª;¾Õ½Ç^Êߨêáž³‡¡üXo0ÛiY&vKT ‰ñØT°ÿ†RŠÙR<¯V7)IŒ¯²ôÕ &pÈ4é0?4ˆ$¤›ù;„ý<ñ žï}I”È0$6ÀyD—Fõ¸º+¬¼ÀŠø¡_JMóïûr'Ê—ü!ÒÐ5l“9 tœ¾—P¸!ñ§¼úâȼmš'øDØ­ƒ y«ðêØìÔêr„mþíWó<ÎL¾É˜¶)LI3¾³u¹¥= ù&þn‰ç"Ç,²Ý¿±kïzOPßx3XLj½})I3;")¿t¢(†Š³¥Ãè|xÃð–!™H ¼­¾õ;ÝäXIÚ…zOØ[–h/Þ¸S„’îJúøLQ Ÿ]W'g=ˆPp0?ÛG܉‡N:ž|‰AßÝ­TœsuÔ®ÜÎ.RÁ>Q0´ o|ZúñùîƒÚˆ× G2iÊ( jÞ…0 “ؤö´û]õ'G áÆ>Îòïª9jf€¦tj 8-•)µŽ|愳šÀp†¼´|"0ßC¾Ù¹*aÉ‚jïž¡E-‘0\ðTÔ¼ ­ÉÆü¿©?­Rè¡•hIuWÀ‡>½ÏaÌÝ"5JOV!«3±2\™ ›h…ƒ1îxuÊÈUù…c±Nùá êñ•¯ÿ”rŠé5E48Ú³Q#Ðâi”uˆMÚüs¥Ì’54(ØYeõº†òaÏü±â›BŸ—ipÔ-æ¯lKy+C„*ï$Hâ*XÓªwCÇ$êÐhþÑJÁò*O äx{ÈsŽï$wWe€NÓçH×.‰ÉKo1 çHúê1î$hYÊ÷¡ê̵²FÈ~«w*ÅÓxe‘ÝÂÆhxãvl² ÄŸc'C§úì¾¾žZ<µ}­ò¿õï/Î#¥b˜£ ./êï½iùÛ™&pf“Ëúöö ‹µçÐ¥ 3’¹ƒó£¨FÍJô1éðüÓ¥±c‡U-UÚêh=6%tª ç¿Ší{«M|žlqÁ”k×<BáéTaQ¸S¿®1næ§Þä˜÷qè ÙCYiÁdr^ô àƒóìnÂ{ŽÓþ2ê^jÃlK¹¬^Ñ¡x3—ñ¹)“E®±òQüę}Èb´F=U#¹²\[i÷ ¶²œüñì«‚'ë>Ñø‚é àqM@>Ä;{TIF¶£Ýn¶Aï¿ï Eèsç9€%±ËpeDSoŒI©hÀÕ˜à˜êÜ–¢ø¶ýniGd/“â$% kY*Õ 1{iÀù@G8jEåëÉPOåTQ ²ßšAÔºØ_ÈL‗ƒOÎôœŒ í,êȉñX˨Àpx€Lÿ7̈ ª(}ƒ‚ƒúAÿ<òò,²DÁqä] l"ÑšRNx ìׯcBw‚è^F=Ë37‰ô–4ŒÿˆZšBP‹CœqƾQ©3‹â’QªyNÜgÞìc7úcÊ›ÁÉ÷^s:J‘†Fç¼—’Hlµ¤¼ÅøOº½þ3Œ7’%J>ê=ˆ<,G¹bYÜÌ‹ÓÜ©ÌÈ2ÀœEbBkþ0)¥bÃîÌÜÔ\òeíœ=傈N¹‹:÷4±³'jÄC8N¾s=Î9ÿÌ•ƒ9GCDù…Pá8ùlEd´”åHGÈS½Ò7âsõ^B£¾Ñ­¡RW+{FZX¿çÛ&6\ñmq¿ b¹üðKøÐ…švôn{Wòu~Üã2Ó!;Š0¬,ç×y~ïo0I°€]ú|£m2¢ ˜˜XIzfÎrI“Ýy3 Õ\ ZZµßvKåÀAú„&=`NS {kIbEÛ¾éjcñ—™æW1(h“fþ‹ ­¤‹P[†­ã`"ºÔ'O%B¶5öÇ”KïütÞñÖYŒ´ï.­çëí·ÙºýÏ&5S1PZ8m×9Ÿ¹™S]`aê¼aÝvï>´WDo)лnÂü «¬ ²z<<'¼'§c6Р¦ÔVÚgM•šJþBŽ"¥¿È9ìÕnuö—†Ú €„ØfdMÙ‹`hp­à›Ù¿=ÖÕР:âmÏRTžEŸá³¨wk,„hÁL¨±¹§¯)VPz;pZ×Z î§þ’s5<ìÐ{¸V4eìì ëBô?ãfNµó$U9²P‹Í^ÕvØNÓýc}Woy'#D¯°%Z‘ÿÆ”ŽN5ˆgéüv©¯úÊëÿဌ2¢»°Ûï?EÿÇ?"(ñ.˜G‹'9}EgížqòéîËÃþa÷I?ßYFh©å/“ܤ»Ò-î£9æí£Öëîß•áÊIÈ9,YÚgdˆ.ãf?b¥Zå ~‘´þ­þ P¬Ì]uñ¥ðÅ6¥ñIßÐâG~@*°ÏŸgÕ¤Bbœ…“í]%§.Û—F°/+YÌœÜ´ÉØ´QœŒa~V›C/ ö‰rª‡œ§ÞFáÙ^# ORÏeT6]ô£ä ž/Óy´}£#= ïûέ‹ª8ˆOjiþ\7>8®Ð$€ò¾|ͯ…‘m' IwŸç9Ä}4„TÏò.³þÌF•x˜µd4d„TEÂ\ }h\°B¯]X‚Ct¬éƆx›Ê–¬`.´1{ÖR)>æ(•udaì†¢Ä Bèð:†A õŽUCe é‘PF-µîð æÕ[ ×ì[®¢NÓé }j‰v"¹j‘:íÝ;h%M‰ì÷gÎŽ'ùfBj‹O±´S„ý Ö>(„·ŠdoDÈ~î"ÈYk€…GŸuö==—¢œƒý }¿Óíðÿë}Ø *2’߿֭ñ³>…°0ž>ÀXüÙ"±2_îqïòÛ¼.hÛRÕà$ÀGÏe{¶—4dšJ¶< ôrÃïÍ‚Ý<¦è ¶;Ïè ÆÅÆ;vþhÀ²††{áBOÃI7‹o2=–XoÂ1]”ž}€*C øÒðΙò¢7l)SïÄCUäÑ/B,ž%Äß8Þ£4ÛÈ›TÆwi×qΉhûv²}c΢IgƒL$ÔÌm¨„ÙSÚ?›:ø“‹Æ¿& q•l ~jU ê/]€åË똬v vîu´pÜ ª;£ö<(vë(õ;´ÖVQz¡±ú1@<Ê>,¤ì̓‡MœüмLÀùšúV„‹ò"4 ÅVÁK4‚H-Î] nñ«R*¡+ÝÓ9~2~Á'HüHB›— .$áÞ | ',k§;7Ó 0ÅÞZGÙiUË]í:Ù)¨´-(9Xõ‘ “ayíÛ'‰Cßá|qmeùe‰v“Ió¶j·¸ÀÌÅžöˆt^ǘe§oœ-F`ÌûM_A+£7*'Ë^e÷YW\ñJX™¨Óð9¬ÛØ93—BŠÀÕq|Ry…5HÈ…›é‘Ol¹Ætñé©d†WµN^RulO˜-÷NsöäÔÇ$ ûtbþÉäWÀAJ–äuƾ,Cp–ü ÉBé•©­§‰«c{d‡Ó-ûhæ.‘ÂÎ~h1ìøÈ$ˆ_§a‰Íû3Z¡´ Åžã7ßN_Ì’ _ÀÖ Üò ­côÿ^å¢ó¯2+§x!)å¥ãí—¼<ÝÝEnsœ§‚í¿KR6ŽœsK x°¸ãø²Ýx(b·C‡±ïx(Ì={˜üõ˜¸ïÞM›ÅDHHÉ€)ÈTó®FFÝ­ŒæzR<£–Ë€óÈØìˆ0S/·ùbO|®Œmøu33Þ²Šªªô†«Œ“%SÎi{ˆ^qìŽ@ǃ\ÕÕš,i]¹åÿ›w¡[ ¦7ÿ%°[“žEϾIQé4B³.\-áMvßÕ„PˆÞd[u*aØ/±uZ kh;ÅŸó.ºÿ÷쨵@ð“~ïóƒ®WF,{ó±þ$Òºþ„QRpàcÎ<€ßI5ä ö.´õJñjmC)—+›ßûFhŽÔ™(B’&ÊÙö|cmuË·°ŠV1•kâœÉï¨×\žIÈÂÅO@. {û¤ PÊâÒÆóêX3ŸcüL•xvóì,€läLøâŸv`lÕƒonZ.B<ב¾Í?/%e}þÙ6oÄ­ù h\ÎJV˜åþ×T+‘?¼²ˆÝô=²±íŒË€½É 2]øßT|HQÊ`oMdwA&„[Ey7xx'¨ž7Í k±‘fšÈK†êá2Ñwóü8I€ó¦ä9°H£ kœï óò×2ªq½iÖÐøÉÑFÙÚgtuY¨³„?a´B~xGjØðøŠk €`ÿ}Ö†P?—-lBýlœ:Ã×.7Qò.D¥rîÈîDɪzú¼Óìë˜ý@höäÞÐæÎÅ#É M¨ÖJ&ù¼% 0$’J².r"—ˆ‹…¹Á/ý*tL½?›%ÁËéˆÙËNwÙ .ý\*RƒU£_|Jð9ÇÑ×V0Yg¸GÔ¬»&=I’Àâ¢b¹þâÑõ+å±^g¼R"sDî‘,Œ·>_GÎÕOÒbww»wªÏ>æ²'û/©+î‡â,Ò€.w2&HÚ Æ$êˆT0_tnSošŽa Jv$„&ÛcÉ1šˆ£úDœ?¸¬”ÆÝÖûëSJñ_tönøÑN÷}Š](L‚ÝZ`SΪ`kù%™#‚^ôïú¨Øxe*L¯.ä>ÒkóYhl‡o†Á®•nRvÍÓÄ)½LÃùeM,vÝAG÷FúŸ£y±mùkþ86Ô?Ì Ž• '7I¬¤¬1>P×-òVk‹)úœœ ÐH‡Cr*vd6wgƒ¹9ÿ €Z‹X!MOO{œ<Ît†®¢¼È•ìÞ€•½åy1Š“ò0ðV¤!·3ÄY4«»4¤¤¶¾ú¡ÝÒ¤šlDCƒ3ÍÔŒ…ÍiŠÚóý†vsžD@ ˜µu¾5vùlúTÔK¤uU¸Ñ#t¸m_¥ô¾/õ˜™›H²úó!.ÕK.7ZtÏhѰåÍ'›¼‹ºïiJ‰¦Ä?Q»N„ªß4én›?Ì«L¾¢t?Ù­÷¯28wq„Zù™e¦M£5ï¤6¾6>3§CÁÀ&s òfÝDú™Œš—丫•.ìþ*Àœ‚Ùô—SqÌÂ}£xì„1“1MŠzp|!ü•T~å¶Ñ·Èí…¾½?K› jxå÷߈É1ãó–—9tENY4 ¥¿êÞKdc&ÆÖ£Y;‚ˆâ}°kò¨~ï&Š¡±5¬ µ,þS¼ÈŒìVW½GöÈá¦$‘ahOÙJÂyõzO›½ Tj‡áG¶*È`‘i¢›Š¢:ªÐdæ¿,èðÅL ~@3X%¶,júØ ×­)òÎÊØ+Þ8—SvŒ}:¹xí³ÄZŒkw%ê…–¨íP¸5_¸Rû‰fGáb#±æR:eû¨Ñþ%Os q‡h«Ÿ÷qJŒ6; ݧ<ÓøùÀÍ; €ló·»ú·>FúÊÒHë©zæŽÉM=yªì g…Žÿ©×·ù—«ÒÎZª‡åIž…€ÄhÆ>êS»Gå^Ì[¢§£ÅG-ð4°"ôUÆÿ—X:)â¨qc{ ƒÖ–µ†éCغ¤Q¥íÍ嫚XUÚÈßÛå‚«ÙEæ™­ÄE)ˆ©…ž9É÷”ÅÄæ)—[z ÙІºZÖcw4VbÚ}¤ØþøGî]Wã¬T¹( •|ÁÉDçÿeä¦AÍ&ÆÀñ6§YPvKiÊPž<5Ek"È|UèÜĬÓáPÙ63?ód™­k¶@=àñ)0Ë.º2K§+X j¸ó{ ë] ‡œŽ¨¢ëpè\•CEdº=ÿH‰rX~ÿt±O³+Š„¸üBëì¦]%èÃ,ÊYbƒ+ô]ý¤èqPŠì1„• m¾‰œê)ä„Ãn3×kubUSݲL²¦JG½º?ܱõ¹oŽì¶ X4«pt˜r ûnÀ4EÌ5µy‡–ÆÇŒ¾0A¾Üi¶ûBÎÅÈh;UŠþ0$ï÷¡-ïY§.mñ3« ŠŽë%ÙRœÐ­Nô{oñeB6G=û“õ—3^&ÇyoReÉOà{;OMÔ4ú Á‰ßÍÿpÂñÆÓß0®>*ÅÏòd«“LåÁ–“) qÉ;Õ8> 1àMݯ¶(õ×G.E{ø`díúëÿ‘pP8Ë0†]a"j3g2ÛͰ¦%T‡sÐ6H§o»Üœ(MŽÇ¡®7¦"yAœ:/6 ztÖýÐãmÊ*‹Õ™E¤e˜ö‡„È”…,¯êKã¹ö¥!žf(ÆfiÛØúš ü-Þw£VüO²qØ¢ÍÜF„ÞDsU¼z(}ÅhR¦8Åwx&ën·/¬Ì†ø íÝ dšˆ<þïMtur© ]Ø%%’üþÿªØhé•bÚêçõÞ)n÷µ~o77«¶ª1yVXD#~fJg8‘—­Ÿw¥•Q˜Éî@ v9æ8Ή ôhd&p#_sÓ¬kCµwÀ©–à•蛹ýbaMäVÎzýk…Q6usýŸË½JOœgng-bÝÓJ›þƒ¶Z<ÑCÀßäÀ´ŒsTnH®íko¢Ùô „!]ÿ(wN-ßÚwJ@ßĖU>•¡Æ]ñÖ{ÀÆ ºM \ £Ú€"ŸÝq…Ÿe­Pk0Œ+x89óþD%&2$ðŒ\~˜¢ÉÓÜŽ¥¬ ôã•A2bàƒkÀ ’ ÞÊN²ßkc9*èâcy åü˜°¶˜`þŽ1ÚµÅßxÑ›ê4¬à«ÆöQœQ${MçÙÅ¿nñHümøEéõþ»H÷/ñ·"½Ã».ƒ[.|Æ2K9–¸Ü-MÂy:OiÁŽcÚðJ{µÀ©n-Z4>LÃÈœGVÿÂᘅ&Ø Ù(亊µÐ%æ:„k{ì³F!,½þz˜¾:$‘óÄiqŠXçƒí‘ù'O´—‡é*™¡èñBê~,F¯ð¢ûPôÑ èê0›H Èø Par¶ êK´â»®˜Øˆ(û'>i ©¶ œÚ ¢A‚F½®gØF úZÂXXZÝ¡¦wЇåš*¾0 }¹»«1Ë[– ~NùFˆm‡•Ü6½ÝÞëÕKAô&÷úƒ™' /Tɘ¾’ÑF"rp¨èšù HºüNÌÊæ2*üWCG^u/9½®Ä’—)ÿ¢d4* þ)…ø]îÆl6ëJFh>çÅ‘¨›Vš…f¯¼¢hݰ—w§nÈ fb&°ƒÛ.lg2YÇ67×sÑ¡€ªÖjÚÚ*e•µôåõžQ˨vúÒgLú´jÒgâ42M‘ç„|Æ›üUòê÷SrkΰÞìô*Ú–Kùäu•3Âü¨· w”‚Ü“´àœ–F áÁš-É¡8ÏwX÷çu™tMd{ ±n¿7:‡XÄB“6wD5UHQéQ›o ÃòklÙ—ÚúÚ‘ú—Yñ{pyL[G¹œËz‡oº±ÐÕÑá¢h<Ö‘Nk;uY9ÎñÉ0²sŒCIe ølÒT/ɹ6¤”À5¡Èm×J¡nkžÇª±eT¾Ä6QÓ «ÐÍIí«–÷NÒdütŒ½žáî®âM£ ¶øsKR‹:^Q ¥ÁNB˜>~6Ë©¦@BÏ”§NKRãzÀ'ÀÜiºÄ”LÎç­®ÜæBì4Ê#ãÿ¸Í5ßñŸ3ÈÔÛµjRSOŠ‚{äzԮܭƒ²s8@ŸÑMÿ?Óßy­Îe²ôEÐYÈ‹ðfA>#Þ'Ób¬-ÌŸ6 ÚÐô±¦èÉæè­µRáë,K*;s˜jÕ>Ùí‰ø/u ð\Òë£á°ß Їû^ÔL2–¸ˆ—vÑ3PÍ)Ã÷𵨸UxK§i¾e‰ªWž­±öWq-òWC×Åÿ@ ÔÒ2ÓT}ȹ.ÕÄÛw·bUæaÿ‹,a‘K×–ïŠs÷Ÿ–OÞ(·’º™¢ ?^ÑýŸ±†|„ÜÖ¯CÔ” ȱóÜçÛ®qÞ±äVDÛ$OD±|vŽ»rTôÚÊd麇ª|ÐðIJ"ûž½Ï=ÞMÎÓ“™ÿë4ˆT}S ¨‹H C£9âÍ/£`Zªèy9±×e¡‡›ËL[á¡yçãqñº.DøŠû®›xÜÊG®Šíõ½=EŒ}Jz¬Ëø€ÑñÜiÆ6bñëÜ\Bÿˆÿ‹f5?r×å/<éNu—S¥™ýØcxŽ™…„˜¶k“å;ÃP9©º’‹ v<(‚oÒ7éIï ¨\Êš¢ @]¶Õa-·÷´­1ÒS®0nM|¶ÅšæhÓG¤æÿ{?‹ÐçËÛ*v;芴ïkÂEr‰0­”þR¬¿WÄ|Ç”'«ؽšœïkÊ}¹*§±°«µªè·x“ #ùîîÔ¢¼0ù"(*zâñ¬ÿdÖ¸¬.ªåq¡€¼ûµÞ"ëæ;ø0@b#×LË«?#Ϥ¦s^úŠ&¿9~&óºœ&)ÏڄߣÑ~»ݧâ×n0Ü.¸‚R‘Úýs”U`¨¦Ü‘¾uã힌¬…¬ v†ŒÒÜEÞ­Ì‹Yª¾nå²ø‘à×Ë®‚ƒG“2¿—Hf˜þlrïrµ/T1C)üIqx+ñ`á ¸ Å‘ï §öW´:|ÆI¨H‹uŸ{iKOÏyÚëÁÎRÌ€ó$ÉÔc ôNQí¦Øa9ßÑÛLóŠ"¨Ÿ«´÷_¸–°v˜ ÷cHn†f‚SÌFl)¥©$Ì3|HDˆQ£Üïc £¶RÖWÑûÀýjïH‘Ip3œëZHþD"I”Å@–ñÐòCmž`I] Ïùg§A³gÒJư"fk•ýE2I‡± ïJªñßh‡7zpõUß¹ÿÆt8¡g  ÒÃpeeQs§íšãBß¡I±òþÖ ‰$š]1¶m»jÂ^ñlk oóGÍöd4Ü?Ú­è ”-R,ÕšôÃ!W³Ð¹Ë†âª{J[óŠ ZŽª,g—ª fäÃENßÂIŠ×n8šö],šm†u)ŒF¬ë}¾iÃsÀn_q9›.Ú @«–è¾™Ü9ù/$yžÉòúâVi´7TâIŽŽ¥ÄKl?³è÷§¡Hu¤aòTšüLÇ>(A{ØÅ!,^«–}ªgšè"¹·[7*™Çè-kØ:¢º1M¤¬Q¹Ê£ €Pu¾$ºÐ¨|]]s6íö ÊLì‚ÒCÓ/tÑqâ@xš­ §»"ûmë’®3ÿê‰|HMt9óŒ1~£– û¹ñZ'ØËàU‡™º·2¶åúò  trN¬‡ØfÛÁFLõÔ™BˆQÿ™$iDQô,?’HQ>žQY?%=‰Æ8Š×-jžØˆà ¬‹¦òáë¹ywåØÄSe=9qÌŸœT "¡æ[¥x®rbü„_Ì÷{3ó>ï&d‰¯‹¦Ö¡4d¼¥‹ìÂ?1ÖxñJ“‹ì1'-¬<Ë-®Wz&¾ØRüY„1v¥üüú ·ûÒ0å\‚ËIôO¦12§cÄÏRšDV—$–ôjœ×• ‹\@a…0@<1žh³ˆØdÆ•}ø³Оj±&òï\rÇz«ºsá+ZæAj±ŸecÎkq[ÔË+M1_BÑtÍíè+ÍÕ$¡¥F !„ÏÚ¿ç,È7Tx´¼©5–Öü/6åøu8_NËP÷1'N½ë¥ÛÙ¦$`Bãy›³¬d|ÚrD·™Šäó¿¾\vÒ.HQŠBYžÂÏ^†ÈÂpÿ‹ùIîjC›ËKÇ×÷È|:à§å–‡û‹öó{ê¡dTޝÙ..?ÐôÉœÌ4üتEZ UÞÈF¥‡K”ü•Ïñ»8k*"Í9&Km[Ñtir…|’5-w¦ÀÝ0ø£ûîc£ï°9²$‚vÿ¨@!ñ¬[t\Ti ?õ‡´±q ÃS:g¼ïÅ­ñô¶+)³eãdîÉÌC|ħ2 Õ+éÅF¸ñÜ‚C!l/Ø#.+¸ÔâãTÀ—r£‡ùR3VÂiõŽj½Ÿ¶¦‹ý_Ur°»Ò"{‰YËѽJî« MÑŽ‰aû“< vMœ dEÓLÜžØ^°†Á;â}÷4ë¹ÏŠÿeC…IËé* %ïä¥'Øo‹NˆpǬ]l–C£)€yÌ 9ƒ$ʇ';†í€W×—ÙÃÏ/–ÆPîfÍ<øelÅwÓ‹ƒ¾qɤ”&w¥•Fîí¿–¾Y61eKcŒu¦º¦HÍz©¬¦LÖ‰ÜÏø³ä0¥~ÖÞŃ~x•nÙ‘6F!›êéNM“£=HÊ›ñ+T§?øiÐîí~ €"•ælÝ€‘sÅ}_Ί7 ÔÄGSEé´6;cC|7LYT]=(BSÏ6©Í÷%!ñÀ†Îî±…~©ƒö·\âEØu¾­ˈåFEàG·‹Öã5ð­w¸2¯V‚**Ç|ÕíÕÜ7.äVÉm8¿‹óHÚ´ë»$@òΗ´³7òâ2GãèB;ú’7Êlëo¹?– ­‰J–ð7h£2"-é³¾°"«•ÀÂCHn5w!üU1Å_‡¼rЛl” £nf@®¶l9JYI¦çñ]Î:‹´ï(@£WóHD;MÎKLåìRäHÉ…ú¡ÃÖRbp±Ìi •šv ɦ &¡›äÿ{Õ5¨²d ªEýË+³Qbd—裗ÔùàGˆ2*sÈ|¶CÏcÉX é ï÷*°J¦à.Ì÷éŸùóï"X§VVŠªÉó¢lA†-RlÁN’¨Ö5ùYn Íeœ¹µ¤V=×p9¸ÅÕ±5e𠕤7Ï—Ÿ98ã–Y¦MÃÖmžöeDÊø¢c]ô™&£îóý¼Ìê(†ì…_!ĹΡš»¾ô:}MSgTŠb€/d¯0»ËêŒ~U­VÈØ¥iÈ6§ŒÓ“ÊBÁñU”„WÃ5ô¬üx +’©ƒí$»…ñU`èò|)u+ÜÛ'@rw’SÖ×ÜÜbjWJ‚¨£Ow²üŒ÷Á§2/"ßËEYëE R· óXJ|TÈÛAãÝ%:°+ÂR4jð5W—¶ø! E=×áçVÿÇæ¥ôøváßóZ yŠW·­ÙJŸãðUÏ—Nº ¢±=îÊ.êŠX¸‡CFFÇta¼a¸jß-]ŒE¦¥F³D—üÍ çô{út,sø{%{Só ¶$ÜŠÆ|$•¨#n¢×˜Z^êÆ™×·æÓŽî.“±‘º¥¨¢ÉÒÆ?æ4'ª¯í+W„'oÂïò×GÈT ÌÃà4d+p7•Í7câ©:!‹a帛¼ÿøOV~7£›4—¨Í¹É7rºƒ÷F›Ä†¶Nò¶Ù%À¿&ãe)ô@‰õtøoãÞŽ!âßSeØñšÍºHHM0êÓ¸NЇîGŠK$3FÓÝS@ÏnG±…æJ½ôOŒ¼Û‚”I+‘’›þ¹Ú+<:ÎåTðñ§ø¥m÷Àj5ƒÁéÅÊE@åPýóâò羃Õþé…C8ŽÜŠÊ)ñ¸+z´­«º?,3ÿ5!²¹/™Ä7z¸'©‰´#u 6­Ý.(n;iN)¸¼@6“Æ÷ʵþ4ñäŒA´x1èÃõ¾^Õ.KDÙ›¥Í3T4 5ÝÔf«êNråü›ªå#3¨Î}— äÁû[ j=œd÷}ɘ†ƒÝÄònŽ8»Ý¥ô0Œ•œ{¿6¤--¦†)7ë Ôú.Y'tXÚ\¿ý•S¾ÿ½’æÖHqز]Iôçp¨ÿUWÑÞƒÝ$(ml>Gpîù¡ °<™™JìuèMoœH„4ÑóÜý ‹îžØ%|©~uè±(WGMm"(ï•Ô ¸Ú%#«Ó\ƒ˜üeh²”Ù ³§g_Ÿ@𠌈­ ¡Ê,ø^Mú;‡c_˜ë}¼fj%ŸÛgAÑ>²0]ÖÝdÄ8@šñ XMûŒœÖY5ÄÌ<ÆÞp‰n#ãfÁ¸"‹&¥Yé—øíØ†? tîOò;å…º÷ ŸŒýëBûŽ·L¶×u~—>MŒÝ'Â?†Ž5ìÙP»C5•‹Á/ÚuîµkáDÁ÷jˆÀ!&÷QË¿ë=É™ú6r¡ïuL\·‰bº«vìHFI/¨˜— èW̃tȺäÔÇŠVp$sJE_“¢|«aJ÷G»ÂŽh€ÔÐ ló¡Þ[µ­úK_¿àÅu˜ÇŸ%®W»yzHQøZ›œø¾¦B“øüÄ; T„ß™Ûá‘Ri,çVöûèÎX1ÏKŠZôu$ârÄ\b¬¿½þ~`°[±¡¦¯’ i³Û´žÇ²:6?¦„·ΧJÊ.6øŒmÞûp ]ó«|tÏeÏÐø_¯™ñrh—73Llÿz)—rô‡ûö%ñ{ÚØ›JÀv”‚w´íhx@0·­LmøˆÇ[z×$â4ãŠ8&“QX"Eãa¤,u¸%jýV$µX­¢– ‰kºç¨Å~vÚÜ)替:¨bÀ¢{9ÁÑ|T¥`†¥ÏS籉kðªé8zº›.±é-ÓuJ7>IòÆîÏGë¬,üáÀÅË6rÓ'3V?>‰`ss›Å:ªCüEéA=ûÔTÓ ¶íp§D:#=yãð8ÒiuXn\Ý!ªaG'±öÝ@$¸\ÌüyÑ {júx³{ÐèÄ#Á¤¨h_ó©úa¤nFıƒm¤‰&JK%žKìß7[ÒjA/à½À3hü¯Hª‹Ö¦ ÐÚÞfÑL›r…V’0ú·h5¾Cä·Hú™ú1ò9‘`ýÒ }¢’U6òUŸ~ï?·Çý´æQÃÐ:L£Wµ‡$R6ôÿ2RV?kàŽø£ì ¾+ò{‘ ÷Óxö™žûŠÑ †˜ÌYή,üÛö½”ÞÉO~¿3¯õ,…v c• EUÆ«“˜ÐšÂˆï žcY°?»Ç[½¯Öuÿ¬Ìø­÷ZJIñK÷BÛ sGµ(N#L$!wÛ½WdŽ9¦µEq£{¨É‰P5”ÐxÑäÇ4öNâñ,ÉV,½ócï¯R¶s­X?ñ¯ö¶€U¥ò™E-nªû’ÈOLŒ" ^­ed£7 êždcÞ—Ôácð‡ü$œ¼ ->ˆJEbÌ'7 —8Žý#~dJsp¸³ŽÑÃwõ"Ç_˜‡Š^‡bùØ\r»å¨|Ë`“¢å/fÈ:zlæÐ´¶*øÚGÏ—Ô» úŽÿ©Àö2Z—­¦”Eò:±þ'¦l'9ø9 0@ÔKìÆèûèˆC³LOÕ-]¡°¯Â7t±œžõ’õØ„™ a” ‚“¨mµ*á~ˆÚ‚ š¡kÒ›‹/ý`ª%üú—Eõ|‚(<n¡ÁË›WÀRÿ½V9Z>ÂÓ ŽÓ8žü$ýUê3›8’V‚)ØÓâ¨!è!ŸËwüóE‹ï—l ¾ÊG7jŒ§=ø[4 gïäSME–™e&µåÓÑžÌTIåï+‚²ÄÂø¡ŸÏ框©„ ‡-…Äe§ Ngî&¸¼’Ã[DÈø¡¯Ã†}–ÜmH½E;â[ˆ.›ÀДŒ܇i%Žá}3bñtëDõÀí7£¾¯¯MFøWg(¾Äa®dhØzserôÿ•µ‹VJ<"uE‡ßIZ1‚+ƒ„avKsH<|¹0îÌot$„á@‡éQ /èŠ9uÉkìD€2ŠTt÷A[£Ÿ€8#P{ˆ]FŒa²¨«®t€ã›¥#¡‰,~ÅqkN€vü:Ú"&•ß7#…Ú{z)àLÒ¸ 2maÉcûÚþ’$å7|Iè.@Q–ª¶!µþ@áx*t~ù5틱Ú9¡AÌ ¤-®3ƒ¼•¡Ð:…©Dùa0dÿì§a—á ºPóX7í›Í}åæÙhªËoÉx ¤gïoÞ·(ár“܉Ýå¥&ª•¢°ÇPç9ÔØ‚GÚFF­Â³:a2ÙjÀáÅd8_ûö$êv¾¢©‘`c-Òü+™>Ÿ/Gr´]o´P ö°lÙK£€]¶¹Åæ©Ç‰¬çjéÇœÓD4é^PÉhc:ù?ôˆB§% 4YË6î4 ”šõüô‡Óßæ?­ ¿ û`Þí¢¬Ê5écVê½%?ùÑcý¼ÏÚ=¢å Î<`\™21%Šqt#öKþëÃíCc%L”†cÛ¶mÛ¶íŽ;¶Ñ±qãŽÑámÛ¶ms¾ÿ0›YLíO-juªê=Ï#vSêÁ“­!@"Öý¦ò÷€Â6"C²©}B|uˇäó{ǃo~hî?^ónÙæq‰EÖ4‹f³ÊÚŠn^âÑà· ÈRùzñ¾µ¹Ê컌çlÛ³š‚&#¼ÃO šÑ`_‚»t—jŸXäaeËkA>„Ž®=/Üõñ;KtßKäûb`Mí¡â1'# 07.HÖÂÛà=Ô °ŸÌ|üëÒ×ÐW^u¤!üÕ§ÿÁd•']Y±r2 ¢¹5ˆŒóôt­$ÓŸ—LZ¤–ao¾Ç7>q¿ŠÇÀ:Ÿ¿2†ÊÓ‹–žÌEråç“—£°Ûï?m‹sΉáYHòt¦ÇUÉÛ†í7$ûgðÌÏmégfOFR†ó<]XâÓÿ‘?õt€Ç‡5Œ›Œn+Y?‡G)»ª_…\-9½TqtQÀˆ U2þÖá·ìrÔÞ†Î^TçÙ2Ö W¦©Ùyoµ~¯?õjos‰¢ça#ò 5ÛÜ…[þ9 ¸™¡+Hù0È{“t¯½þNÈhs©,î2ÆèÏ_è(5YÒø‚ÆyBš0|:±"‡ÒQ[/SÈZ^‡.ÀÝAÐÜ÷¨Ñ$”ME«œ*^æÔ…A’¬$”½•õCÑL‘\zȶ%=ÇnÓl˜„ß+Ϥ`üUœ ûX ¤ds`*¾\j[{,ò2¯Æé!WÊic~!å)/Îs=¢>+•‰V(‡©ïL]N™b@àô§1¶ù]ø†hú1îxë *D¯ÝÄ:ÿEpX~øë½5ü A',Œ/?ž¾ç®ÄÝ‚›º§j0ó‡ã@üd7]QqÒ‘TÄ‹Zǘrͨ +Þ)–¬>(ÿ´#Ý‘œÏÊо§}1N<_hÛ*ž¤ÆÆeöy–ÂË^{ÔñâNÃõpѶðÔU6£©¨ÖUMìWµñíÍ5뺭ƚ™$Á¿5w‡¤îpVcKŒöQÒë`ø¦Õ½Ö[c‹‡yÎEŠ—ÃM¾¦à¹íæeZ¿mŸrê(Ø{›ï•lÿ/^`/{<è’ÖàFNQ¹vô´ÐÀŠø•|¨ä¡šQ,«±~†Ž<ÀÀévÓ)6výU¸`;J‘íjž¶0ïð¡Ö½Èž×ULi±R憵õ89ÓÄ]¨¶š¢>b_J‡É&ȶ¿öâë:6ˆ™Q*k¤ëìÝ¥ ß²a…ùm+wq«Þl50a>÷‡øÏyÕ"[Ço>lZœ”ÿž·¥ÝN&Uc*[ø%"¡(óчaÎ’«±+ª~‰Ì q6ê6’½pã+ìüóO*°5ž]<J¡?Û°¼§‚Þa ³ÝÝ*í¤]!³¯¯YjlåÖk)©®ûZb+U–71­Ž¡uZH|¿tTc±Ï.¾e[˜€2.íò›tcÚc=h:·…‡nN•H?‰{‰Å¨0Ir­}Wv¨»ÖØ^j8N§XµtŸ.Õ¸ÕÍŒ¼¼ ±}«Å»¹®Ê—E‚) ¼K£Ú¼BêœÙ‹HÚö¨güò hôcÀŽG1ñZeø©®÷më!ª¦)·ýœƒD³öÐÁ(pQÔïxÅšÂ[âÜ”èuÆë*$¶¿b’ÂO}†—t籸¡äc§ß%ú†ƒî„LLX͘Jt[RrÊû0ÆrƒNÎ +UÏ(·±®–½®ÍBjâfu5rPè$™šEOÁ{•‡áG`EˆDÙѹ_ƒu-oó׳ÍYËw!ÀYšêù{ óPyô§>–À¤ó(ŠST˜#¿/5ÔW …3;”@~âÓY‹\ˆb‡éÝm«Zð²Ÿ¿Šµ—[kÜa“QÙjža»ÎA*Ÿ{á]¹SË&õ2qä•?u`ñ¾žc§¾Î=MËHÈŽÓÒÀE‚()bgÙá™a£N¼©9FËb²v.º„åñ*ÕÿÒ§•ƽrR‡,Y㣂–¹[…Z“[s=o•\d’ÊQ£d·bà¨À²Ò¤«ÐœÚDŠ,ç»x)Þ1‡0çX+>qÑí^nl».š˜=/ÚØ2*-Ÿl·:5WÞa«ÂÔ‚@kÒ‰{ñ9¡b ‰-­:KŒ–•º˜+h>ÛÑÒ~›0Gû® Þ5MSÁÚ‚gSÔ;&ªHÓr‡6µ5ñAƒŸ„9Í!}‡p—M±–ÞdTÀ<ä“dNTc[¾oÜ·XÃfAîÿ¤Î¢S©ÈÊÞ÷ÒŠ9×ùìÊùr€M€+”LÚ êŒë¾TØ­£Ì£Ô_[¼ †Ž!ÚÔJvÜ̓üÑþ› 3·ô×ɰ…þMåÏf,/dZeI6¯š6*&+k­_i ¼]Y.¥…Yádµ°¢»wÁx™†o²“¬vò\ö)ä÷„Å6Óä.­„ÿý þÅ/Ö»S‹ú‚ˈ~É–’:™ ŒÖ“‚b9q+À)žQ ëÊ©ßv¦â£šÖ'Õ†@Ïl°[ŽÒœ™\¥ö‚È ìë§z:8Mªô·Ä@•Œ®hÙ¥QVb´Té)טचÞÚ8žŠÊ`N“h/Z fGâ²­‚¿F 4Zˆbž“Æ:à×§¡qø5‰’**Mþk/µó2ö.ô­ú§.4ñîõN¢|uìy齄 <hE‡WÙ/H6rIÉ£¦=´¹uÑ…¬(M‚ MÆó+CÃÂânÌy›Rr·Åp :“ã°Æ–üæ°‚u¨ñk¾l:Dë”øB-=óBô÷öPÜ«J.Ú³{l–CªÚ;¶N•²BWÀ–zÖ¼ÿ¥MDà ì=@BA™5*Wr£r{âpм#âR¹ÍI3«÷ãØ`JD¼òKɲ'†f#Díìáp¯ÝêB:ÑnÂx?‘éÃÃH¥KfaÞéoKX(ǧÛ]¬ƒí/Œ3GÊÉ»‰ÄBìø ŠúùœŒnÝ=ÙáFƒ€™Ã ·A' ¸®ôü ó‰¸ö˜1Èplôk†4qm(\—n*ROÝOqÝXøQHF/ϺòœTžÌ{¾t×"diØ„öA5˜ùϯ ÝF³õȲÓE ­;×ö´)¤f%‘Á_ÃÇ‚ÅþkÒ\; Š×sÛnŽËf_”(uHÌ…ñìüpÔ¡ÈûèÞ6ç{ËhÔˆ²Íóš9 O>ùqG˜|RB¿Y1ÏN:ºëc[¤5«ÉˆÒ«“0çLÒL¼ÅãK‘øb÷-lµ¹ªQózÿ»F"0&@«ãš–XYI¹ƒÁÏóÇ„²pC“fåÏ xlBšWœÿ â~ÇRH ¨Agd°»*R?±p}¥ò&rwóµDúœÃÒœ'æ-À€DAÂ3bì’ ¾Ùj@!~p¥Ø† ùd£žoç¼Å‡¿‚Hì⬶¿7©ººËcÅ­ê_Uçë%&%`(ñöG\e&϶bÚF3@š\b Üà¯; 7àbêU-Û¢ÂÉI ±XñþN¾Œ;üœ dé”|ìá7iÝôªèzjÚÁêNj¾ÛèKùêv”êrU ?Qt¦Å¦V!ø=xÃ@÷6þ0¿½ØCžvš™K<¦vbk& ªºé?êí0Çú¤I­Ü(‰rSÕÓÙú‹Ò¡f%‚®%SaV Ëm‚|@# ðë hmEè¡aC ©."€­ÛX}RÛÞO̺â ê¬×­jA9ñ„&UŠØ¿Ï~Çá>OÖÓu´úIÖÐÑfš:’øY•Äç/m›£|ËîÇK7ä—óšv¦wÿ%ùÛ¨ØZ÷Ó™l§x/ºK”ÄY ¿ÑÇÃøubËÛ”½lÞ<`K¿Á«þ\ûÏ_ÆüñS%s?¿¿-Ëzž¬ž^¢%Ww,kA¥vÜv)>!Èi"íû¶<½s6ZT8 ^–½JË£Ü=is/xª­ ï ö¢èpúµpPüÎ( ð:S¦_Zz Ø/³„ÓØT©ðŠæÊ9\LOà¤^<ùÂçòwæéÒÅRd·qÀQö¼5È=êdHÏ2‚àÃ*åK}æëϤÕSöŒð†rÛõOj¶U/3boå=2lŒÊ®K?kaM.äÌ]BºèB óï¸/á¶«hªn/«ªÚ"¸ClýÆñXBºÆc£BB!=6ˆ¥”^Aÿ¹º/Ú€gHlZ]R*Á¶ÝFåöÇL8³ÕëÆBùJØÿb%¹&¥ñúÁ¸ŽǹpïLwnŠÃyìY.Zm}ÖX¾àªï×m6k©zŸ=IIX€ú\f½Õà}æŽ=ÕÄÌ ÜOïZu¸±ú„AÍ9F?k »ÎªœÃ²ývÙTvpúÔ³ÑN¦V½ $Iõþû„†2PÏ' -ù¶J´Í´"¸¡gãñ§6•³Šë¸ðßzާõŒªøaç:ra¤ÄÔµQ8›z¯?Œ\ðvãñVí óÓ¶”'§©PÖŠå““=³aÊÝSþÇžC9`Œ@¬8ã}×o0œ¹=Ìqâa¨Ú ˆûü›$¯»Ùô°í"bp¹¤Ê\ºÕ›¯ ì÷ÇÝ Üš¨¥H0ðô¶þ\VŦ`ëŽpÈZ{>}3Ü[§1ÚÛ•÷‹ìF~íað~ªxŽ¡@‚5ŧ™ü­W¤–0ˆ˜Ë§kÜl/:Qeìw»ž^`µÄf ¶Àµß ÷ÜôÓß3k1µNÄ-r$0þH2ŠÔ¾ÑÞH1–JÔ96ÊÚ;}E¹¥÷†ôù§C9wçz+DU8ÕcÿH«>Üküè^•¢Áâu®®}õ ´zy€ýRʦÝY:™iEÖQjŠÈТAjÅ?Áe®éYߎ`rI¿e >õ†k]ž áƒ]ÿ®áª%ƒš˜=¼/í’':dUqî»L†¦ÙÅÁ¸ÔûêMþQŸ¢p#0b/‰fÓ-5ÁøD½!Úæ³çºgÉL¥G*ç[X9v¾T]tŽQêae÷D±é l=6Èc¹UH'J- 6©Z°Åbô²…ÙŠûÌ7)_‘y„7AÎqFB–ȇEìˆy™;zŒ1Žùì~õz¬ÝBoèa÷A;V­ šÂ;Š q˜4Y/µê??èzæ2[^rtöˆ¶E,u6&Œ7ÓÞËÏBÔ y®Eÿ9ž¥–.ÚþôTïX׷΄ÔÚ³Ÿ„?èSç–1¶Ã‹UávÝ›Þ5`J²ºÕÃóhþK£\äØú3ÿ#œSˆÒ/÷Íiò 'RMùì/¯ ÿ¦ÙùÍ«Hž¯ÓùJ¸Ú«P߯"‚¬  0 w˜P"Ýo’ÁßìÕMe®×o-m~b cŸ’Ž‘°ÔÒÒ¾¨ ÂÎ;Z‹5¸Ø­×ÿZSû¹  ÂX)é”WÆ#ï(”GK‡PÆVÁU`]¡Lƒ5ªIZ]èÒ,‘£;"ÿ[àñî·|gWç*ô<íèéÁGþoÄ¿<6þÝ·ƒ6éÐå‡Äýƒ²Lo¦ ¢?Ââ±F ŸH2>¡Xd@œŠnØeDÜ“f#èØ V8Ë ©"ô˜dg9Äk ðè‰j3ª ®å°a[Š6¸Æ 8¹Ÿ¥µî!Ž+ñ ÀåT{‚ü©Š‹îdùu{_U¹ t^è–”…rSÆ"Õ¤È)€<Çz™˜å†þ¨&¢1<ªkÕE„dÌ4ðÍ&}Õ& ù°¢Uv!‘ÜňžèäjÎÞÀ½ÆnºtCôð‚„óåâ¸ívs©¾TŒìÈø âã©­¥WY*r©†“ö«ª!ƨ®Ö€/B¯è·GDv½«'X&K‚(ˆÂØúÛ^µ{tï/{¼ï;è Ú)¨Hª¿1'RØK"½ð¯,ÃñÎMvË~sLê/³¥Œ–qbÎ^ œà¶@U@"ÑÔà]Z§•^˜5ùü!6·ð^-_²„“A/bè"Ó²g«ÈGõE DÚ†¸Ja¸¿êâPDŒ‹•®i¤7R\†&SˆT¤ÒØîÚŸ<ŸƒÚà~ʵå:~¢ž³¢ñ« [†•ž¦ê ¿»«*:Š øÁRä7F|æ~"ÜänaCøûÍT ¤)¶tŒ°×É‘}tLëv™á•dó•v¯«Û`¤soB]8†éKV5'x7ýÒTÞf_^B–Jþv<Èÿœ1Ž[ÅXŸ߃¨‹ þ’Å¢oš]¤Ù¼_Š“R¿3ýRÚôçBr0+Âu*èCüíñ:…Xº³„¬ ØìQüÿ_ÙP7‘C›®±n¬ìäù©7Ò¢ú}üGÿm±R땹'aÆ}„cމ¥—K9ÁÅ;ïJM­Q‚>Xð©0'ììy ŸÐ¤äùç½òÕk>϶^mÍòoÇPaoì(œ4 •~xÊÀÃõcžšÕ[Þp·ÐgÈ_@;ÙZ*‡ Ü¥[-1c@åfS>âŽDO;¿NA jR¹Ô."¥£[–a€š¸ñ ŽfÊ1мu T# ²¶D†V ®Ë,ÜÚ}¼ÏÆ]‹ÂU6Æ—¶ÕÎ÷}9åÛrz$øá3èl¤å¬I?U4©ÀIÀ<î£ÑæŠp•R„5çDn·ÎóÎI:Ÿ¾·*ÿ…Ñs] ·|lÝUèCò1§u¤S´ze5×*wêk6삯 œÇ pf–œ®Š%ÊÙ›ºÖAškt±Ð}Ë1Š>ÙS/À@Eͬ`ž“ûÃ@+bÂý†ËS²GæŠâFÓô[%v»—h<êMš7tÃÓŽ~P„tyoBtP_z»ÇÉëAö¯ï~GMàø¸Ó }BáF®m”šaÓ¼*:Þ^¢ •±6D~¤Œyjp¶8ÈÙ÷ÆðÚòZ\b¶‘¨·s'ŒÒ ¸öÄÉOl %ün¿uc®³TV*œIˆ u>n)¸ì>-{ë®á¦'7ÄNêa6/DhÃnˆÞIs§¢Gÿow§F:Æ®xÜh„Œ){Š iÎJ_£HzAììÅKl['> D©þö¿9'aH¸ÀŠ=þNÃÎ0n·q«Ó¨6IH¤Y`q›Òhy?ÌDÚÎtrX”Wzâ¤d{›ï¡ìëþÓ¿d^mtð3¯X©“—(MýÏMካ¸òêìâ¾ÝT+ñ¤c¾Œ¼»}ùF ¾üÌÃû•ôµ jg¨ÕUüZæp³©Î/"éSÐØ. é&aÞ­0Œ0ëmª=‰?‹`Ͱr_ã F…Ä v–\Þ0€í`ÃH׬¢Ðuq`?gUDûevåVºö4ýUM— õç[ݪÎ@Q‹¶Zô¼a±ŒuáyñVø}ë5˜Ä×Nv‘UÊJÄ*ÁCXCÛ9jž©s}”5ùõ`89,û$öpmøAð‚3.̦éò;ÁrŸo €$"K¦›Áo~ w7¤JÛº ú^ÊJ{µá‘A¨+‚Þ›~6Ž9GÞ+xQH8l kì„»76œVïßD2}˾¬ñNõêÔû ´Þz‚[¶0HØCƒj>IòH¥©ÚäF´8¼o0!)KpST¬=™‡=}²s÷1©a¦•þx}gÊlÆé#IæÌ2cIVi‘ÆžÖÞ½÷êìU³PË\hÌ0cåáõæ'å@iJËgÙpÕì~¸u៬À·JÿÉôç(§*×*®­9öµ£šë+ëüùh2¶Ÿòde`§ÓdýÏSÝ›G ²[fÇËEK'X¸õô/¶#Ûp€i}R†z9lÞíX?Æãƒ÷eÉÄü=Mˆ£ƒœØG!ab¯i…(Pnà¡TR'ØòYiðâëhr+‘=þ•ØYYŒNoß9s÷+ìC·ÁÎs.¯Äåpt„²t†IdjG¿j"1u1ŠR\Bgf“*½Ö¸w¼!Rú »­k·E-¹àu,êSÎܤ^"¨Kw"Ò'³î‘µ)ÄÙ·ìò{OTÜR^Ýy´­~*¼šgPMda@3öÑPÔqeê?‘=JÖ2”£‡Ó;„Å·Óò¼eêTÖ °†Ì´†Ì’6Ô†¥ýI«t{ ºÁž|õ¡~÷,­ rfM^“‚Aá‘êÞtM%µ½ïÖp8Ê cÖ/©؆,/L³ ÕÔ—ÑîdpX¾®É+E¶FÚ–N)$È«-É"d5óæ‡zÐ)‡0\©%æˆ*áTµLÍh»¦D³/ãÌ·£,ÔˆP\ųFž`ªÇ…\ãyÈ¥Èí ÄAšöT »`–:TÜ5Ö#óuÅ““wܾ•»Úî¿~ý‘F Tl¼#¤YB6¯çLøu„*6OºËÊ„†r9ýÀ ÒI»~—³Ñ_^CŒ»U1Z…«²ÍᩪIDI;7µ” y;øûì¾õ}ŒMl䇢¸=΃pä"Cr·Q¤ÛP[Ý’T‰WnÄÐÞTÌc³uó±Ûÿ¡¯?&ÙºØF¥vHì­àì³î6°ð¨¾Â„ñ×(P°¾žèhJLö#B™O£Qç˜@ºêâ¥ßVT7j&Ž÷}ŠîÛÑ'Ð3L:Ø€¹\ÞŽê[Pâú”k©­€Õ´Òª•wùùë 7e¾*â×¾&º$S娯 _ ŽÞ.D5º÷NIH(ÀB»FùâeÿeQɶ¤@&Ðà”òÏöœœO/'šF•RQûìQüv!ȤÚ/l@‘ü˜"7Šܲ×þÎŒï"ú[‚)¥Ö͇Þ9ó:‹-å%X¬Tš‡ì½™:9 jÊ´á,‡ÅE—‡~ä³}öë0Ê„Rt£ó OËÆM3_Ú$+ÒI+G8A7Mÿp;¤Rg2kO ¬Bì¯8íî1xc³­³Ò;FRY½ÜÍ^ÂEÿ˜à·Jóhþû:Oþ…¶ #HMáÚ™«RPůÈÅý>:±NS³ÏÈ2q£=6¾þáÉ¡y<ðTèÆAZü g ©éZjŒ`ˆ pí¥«üs=ƒ}¹ÐÄ\÷žÞÿ,perþþ{„ë|†¥S2l‚‰JÎvFF°¿'¸SÔ¯œfäW¡0xP£Bç½ß ·(dK׺?y›š!ÁÃ+/Èòí”ëµhLKø‡·Nª7M<{Žb¸ÿÆc8ù±OE8TžE^kbË~ü†EAÂêI Dæßæ[…á”5”ý‹õ–ì áõEJÝãwµÜÔ¥bÜ= ¥/ç”86ï·Ô`Ï· „Ïzá qà¯Ú»®Ò…C†Ó0EÖÈæ”èöq¬ÅÙ±³'0ã‘«tuµãÙ³– ìûeð Rð‡½S|åÛ#Ï$à¯ß¿uÇï ¿sÙœ¶oS‹tk:«]ù®ª½MTzR­¶ºz8ò ñ¤«¶ Hrù,í(º‘ec=ÖöÇñØ9#¨Ž ²Š€cì%ùã°TINP9=3a¿ç¯ÛÄÌ€$™˜wL(y'æ?ÊÓ–ËÓ¯þtphMúQµT¨­­*£"ļP½A T8k6ѿ؊áþU(éoÍÒ¬’/7ƒ7ÏùÏJmã¯E#5Ž›½ü—|Úe+">îL0Xÿ'çâÐJ)TÉÀî·“U´w²¦î0› á·šÎä)ìò,Íw£G“ÍÕ§V‚pÒ%/+üÓh[Âì}þëÀì+Y3«øMŽÙ+ÐÞÕð}óþ6º6£A}\ ºB™òV®TÏ©L—; ÉR_ÐòRÁ|ÿ0ÞZ&6³@èLvWHÊEuÒ=—Œ¡§š /b|Å»^çeÿÙd=òünF'SÑ}xÒü.â«M6§‰;¿H7ôì :nôÍä¡ nƒ"ŸË%‹ˆ&1Hh>jŒ Ã4¶¦cÆ¢J9J6?õ°þñèžå©E‘é†Ik7ˆUªV:œñ'鳕u&­¾Æoƒ¿0)†3Y~i ª:Ý„{¥—ÎùÆZt™BØX¯Tޤƒ’ÑBhð+bê£-Æì¶o#,l6–8ED„) >U-û|£>Ëý‡T¸LÕâƒ5ÂÄ}«SÔò)«¹ÛÌJÁÑÅ?½¢äLìQ>]–›w~û ä‡ÓQû×vU?˜) RÔø’$²'ÆUVäbÅ8@{Þäì¨åôa›"\³ÕDÓôÿå3)ñšU :NMÃø²)Ì Q3qC©³9MÓÞ¿ê§ï|žh ð´x 1skàY3HõRÊá¥øéÆÍEƒËœ_#}[ËçTRªò–ÎDŠv„õ¶­ýq¢3ÞY¹ÓQ~"Stôݮȵß#­J–eþfŠCNZ±×é±…ËM1¨KÈ;6Àö~þ8L{ßPÿ˜™~h[:ö‹9W[Šô¨Û„n4¡ˆ5èûåZ²>`¿ƒÉ˜¨ô^CØBîɤm“ÍÇý—ØÞ~¾&Þg ; žÏaªº¶è¿k$^9Âwâ}YÅ4 Õ'0æOû;-ó.¡…§‡ŠÄÈœœF ”r8Er(&Š’{jîw|zª"ªxRüŠ.kÖ˜3óï˜3SvfM/™¨ó£?ˈï”5a¼—m¨ô‡+ÜÒ}£§>™¸!N²¡Œu=å£Y”ÉU 4°Ð° —Õj%¿ñ¿$m¿¡,am”ª µ#%íàá·üpÙˆþ6ÿÛ¬¹EÖF&›’S'û˜N¨H¨iN…I3sêÇí#,õÔ¤suå¾4,¯xh >³^ÿWïNЋ†›» h”ɰÿi?\DëÉ›xü%欗f“BùÁ€ŸOƒuʉæyDuc¿c‡„þ–¡6;šÄ};™œìÜïÝÄ Ôã=-&¡[œ…êãÍ–ÛýYüü×Eàž÷C@\“Ê} ˜SrñÄ/²B£i'<ò"4BP‰u h2œMÍ\ÝÏï»i†²ûµ†¾ûøw>>­U%  LÅ;¨Ìqýކì)/‰ÉÌ.ew¾§ñ Iã °²¶YQ´rP2m1 zjœÑ]™g¡*[ÍVsÑÄBaµpÆ|‹% «™ŽÀ1[#dÃkCJæ'ÞÞELŒò©&wµäÚßuBF °×É~6¡]IªQ¡I%8³´lB”‰ôUÇ(_Âiî ÖʱÆFî‘æc)’¦€F/¡< | ŒM6C…z yGÞ(ûИ>[â^(4du8ƒKw- GÝ_‰ }[æÐïÓ0Â+l§Z‰Ùÿ¼˜4°¼Ÿ†i‚jFð¢-Ý8qÞRì+NóŠ9KüQz”,{ѬÝJ! a,ÿË÷¿¬gùÿ Xþ/œ¹½¥©‹ÛoS;¸ÿó²endstream endobj 10 0 obj<>endobj 11 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600]endobj 12 0 obj<>stream x¬ºst¤]·/³c»b›Û6:é¨bÛ¶mÛ¶mÛI'é8vŒ“÷Ûß>ûÞ}Ï_çî1ªj¬5ñ›sM=ãµÈ‰Uè…Œm â¶6NôÌ LÜ[gs ½°­•±‚¡•¹½3ðÅ`‡#'q8™ÛÚˆ8¹@c€(ÐÀÂ`þþý;ù—ª»ƒ¹©™€JMYƒš––î¿(ÿˆ Ýÿ“ó¥éhnj øZ¸­lí¬6N_ÿ׊*@ ÀÉ 01·Dµ¤ä%Tòj   ÐÁÀ  èüu#€¬¹ÐÆH 0±u|þÙŒlmŒÍÿ9š#×BŽ€£ÐÈüK èf´û‡E°:X›;:~­æŽS§¯8ÙÌmŒ¬œÿqà‹nòÊ/;Û/ ë/Þ˜¢­£“£‘ƒ¹à˪¢¨øøédfàômGó/6ÀÖäKÒØÖÈùŸX|aüóÅu20·q8ݾˆ¶C ÀØÜÑÎÊÀýËö˜ƒù¿Üpv4·1ý/è@Sc+ £ãÌö?Ñù¯sþ£úŸ§7°³³rÿ—¶í¿¤þ·æNŽ@+8f–/›FN_¶MÍmàÿ))[3ÓÐíþ“çtøW€¨þ©ê/' Œmm¬ÜÆ@8Fy[§¯€¨þï²ÌøKòÿ@ŠÿGü?’ÞÿÉýï9ú¯–¥ú,ÿ¯úù¿C‹;[YÉXÀ¿‡ àŸ!ø÷”ùÿHX›[¹ÿ¿äÿ»ˆð?¦Í?0ÿ'ådðUßB6¦_󀞙…á«Tÿ)AsGqs7 ±¢¹“‘ÀÄÀê«ùÿEW³1:X™Û¿Zõ_“àK‰éß:ÿ›§jfndióÕQöÿ`mŒÿ[‰ÿÓÿò™ñÿ4HÿeJñ«ŸTÝ퀀ãkÈÙ~ oþ¶uxÒs0èY8¹\lL.Nfïÿƒ©Á0ÿÇþÑ”3pr0wè01011¾~ÿóû_;Ýÿ#fcdküO÷«8ØŒÿMøw`þyH‰~™…é;׿l9;8| © …¯Àý{ÿ¯á ºàN£aWõ ènpž·Ì3HutØ/- ØG­U':õ’hW¶ƒnLdÂͳœšvrc¬ŸÉ†n!NoF¾7m–‡]Ò á|ÒÒîèëÄPÈo›Ñ+H“t¿y©=ÞýÖ¢å$.òf¾\.,å„Wt”±ì @1Ä(²(ec›ùÛˆ6í9¹&ƒð¹3QgÛÒè| héŽû Ã†Ïø¯­>)fmyàáiE™£üÑÒ„Ì·Ž@å·`ÌîÍ`Ë ¾g<âžNÄ_oöfÚÜ_ij¢-m B…˜ÅÖ®9s÷DÀÜ%Ї‚??è^JĽ ðͼb¨ s?¿ú­ ¸zuãÙCÔg,µQù#8-V ï9Dœ ¢çâÚVèu"%ÉX‰LÛcõçÁåG’άÉÕŸÓ N“çÇ$BCH¨ŒË¿wÂl¼%pM]¦íÀÖù¤¥ÿEa ¨¡cå‡pµXü]ôóÆÙ¤¢%+VOsÚ‡¢²“®¬ ºåYĹ<†ôðê''8ÊŸ U̬þ2Òf"‚r~Å’>#$Ä…kä4²Çš–Æ`Äñùòžã͵ÑÐLj$°g+ßUõçf¥ $'ÚÂߨ>eú?ð‰~%²`ŸBQà÷bÈ{ÎL¶ ­s­‹ºÓ£Ÿß±åm­ê4y#ó#¼)ÆO¦KSƒ®UÈ8‚Ì9AŠÊn±éâ…QÈUx{3 šø¹óÞ<’ÿ„L×§7í{Jú0°óF&ѾOC¥Êøc¼¨‰Èí_ŒÔ”Ûßc~u%™žo-¡ëpÒM¬ž>³é‹æ’±âê3QËbÑŽc×SÚŸ æ(#.”FÇ.Yó·S:8߈¦‘ýÜ¥ W­$Ç µæn‚¾ö½ˆ!]ˆ˜¤çâÔ¸Tè¸ãë¨9{ p(àÒÌoˆ/̯´äIE Zx”x™„îy<™ì+“9*pÌ*m2 g¿±¡³.Ÿ?Wõ8ÖTìòêîÜinð ÎÁ¯ Z¤ìP¼ª.¾ÂG¯È0mPKZ:SÅìù1ŽÙO„LÆ4{8|8*ž”ynÕÔb“²–t&dzh—ç«rV²1ž0²Å`²»sØÀÁ¾KYëcãƒ Ž baʥƿ] ÞPi:qø êü€‰ÝzttUüNê]Ìzäþáýšé@\§@o^=Ÿ3»ŸÔ«²Å•;gbã;Àõ=Y)¶Õß‘,:çøúÃ}"¼TsƒÂãï1(¤ÎX”l$_´ì4 Ķ}a? õ®o^ Lô¦%cê_@®õÉ+¾ÒÒh(Ó[R­®aKÍk÷~Y=½¢øqïéëD—!Ërƒ6jL„"íÅ5¹}!îj8¼àçgÔÖ PþÎ;’6~êï’©íWBóí_> îè´Û·¤ù”DGÌJ±„?&´€ìv^U¢ ëyR©»wœ  L;óÇ_ˆ¿ê¬i‹Áb¹) ‹"ë *›6Ù˜¯dpAw™Û­¥—}¨²ä¼[¿(‰-¾9Í<Ê—¾!l8±Ö½$ä=ä}Ù¹½v7‰Y ƒ…«®X]Úö›ÂŸþŠ×OÈwå0¿´É]¼:)‹eYyšXEñª,­j2b¿D=ìÝêÍ2ŽCD›°Wçä*\K·ÉÒå7m”SFÿ~§Ns¨ÿí½ºCæVЀÇÐn–Ò¡bçy’×O†pa+0*”;bÇúœœ…FÕàö7’‚oTP°©A\zjŽ|—{o•]t^õ`Ä¥ZËž*¢–6ºJÚÉþÇ›KýÑ29èÞ£K‹"P,Æè—õÀÈÊ võXGMœªW&_hLÅ zŠo ð°wýÞ9àŠŽsР$ºõƒLÛze¸7"hjr:e÷lÏ¡/M½‘CßDHÇÁ[s…!{Ò1`oôP‘—‰Íj¿ë¾£`ÌÓî¦íŒâÝ5±ý ÕbùføOm¡>T¸ã“ʰ›?ÎܬJ 1/–]å&þÝë¿ëã¦Ö3C±N'æé£óœ‹ðÄZ þÅ ô¦ÖÆ…×ãIÖÔ#âÊÎÔ»¢éë¢_wCTßÁé/NY²~5S1þ˜„GÈœ³¦ƒ±úîtøº¥%$¿®c£v$ö’Shç YŸl6:·úÖH³éDPh=‹MnylåÈk“® NeärÇm\ý’Ä&½O+¥ÏpXñjVÜ>½'øý ²â€”`ÉùaãomT!ï{øO¯ÃmÄþ=)ýÆæ8PvCÖ&2Ü¥ÚÕ-‹Ý5"0^Ç`¨Mæ3yû‘o3ƒ)Oà‹DVå䀞,¶5z œœ€\9Où¦Ðì’¨<%ƒCæF ²Ÿ\je8~«UÌ«G¸û‘/Íê\*A犿|‹*£B!Ô[jž¦ ~Ú0»ñU¯xø–hlKœ_^„ê >­Z‰?ìbµ@ÿeÉö×çL¾ˆL€±{çAYU26¾Z~1æ&y[8æÌ÷Dq„¾càù`|v (ŒÁ‡ð£6i4óÛ¢>ع³d\_-&‡•=ù#…§šZì A ¿îxÕ - ý#Êʱÿ:ë1œOæ2+íç‘~ï>ÔÃÖšCWG•RŸéôŸ9²‹ÏÕ=…âwªWŒÌßy Ãý¸Ø?$Éu¬õhàöµ`U’ï,vR©áZ9åYÃf‡®ÚL–(yû15JîÜÝK¹IC³Âôî$Ä—¿ZÎ¥LôD¥È0¨K‡Ó:«Êh“ƒßaê4“¡6r¢Ö—Î[_Kàß÷•‡òëhôáo"AØß·wŒ€d€ž*õùQ÷± ÅÈ÷-qŽÂEô¯%qýÕÆb‹^Tß”²±Ö,i<ÎõÞû‘c¿î 0ꬨôÉGŸªìöÇ1Ê­™páNÙˆés$®¨QÚÜZfÜr”KÌ]˜øÄNM¹Ç^-#Æ~YmìØiÛ÷bÔ­ØU|&¸­ƒZ¡ÙW_»;ú—m\;|B§Ê9¿gfYþ¨ªR 9‚ísv˜Ñ¨NN×MI&ͤбÆÑÜMˆ ˆhDíƒâM)­za“Ø  >©³óŠÎ0Çï:·i]$N…j®í:+Ùõ°¹ÆwýÆ+bÞÙÕ·ôÊ7ÒŠ«skžô-õ¿ÈLa1dBHcÕ>÷jNnÁmøsÜ£ÁFÚ:A#âõ´hZ»¼Û›6¨`»{È;cžÌ‡ýJ3ë¦Ù£y€ý³ÁFm–k°†¢;q9ód «N8û¡—ºµ×®¡žfŽö«7L#ä·*¯¸)‘ùµœ‡Û0÷òiß;e-Õî4z6ÕOÑ~[LÖìÝ£ÀU´¬\Úð|Õ%+9S2å"Þ•bù[/iëyé—å,æê0è (mÿ¸£¨4™TM8¯qu<…ëïv?-ÏdT9¨ÁÄ{sçé]¬»ö¶›«…ß%Û%…Ðåu ÖÂûF'»¦hÙy¿Óy;Aˆ7ZøS(ò&bÀ’¬û$XZŽÒÎpl62JÍyU¦¨“ò­[õD0ëžj;EÚj’ocZÏz~?ßq(¼á–³Ñc¹ »¦lÂ?®v¬îßïÃnÖ+«~Ç }1 ‡¼e-:ö¥(¢!d4Á¶!€ˆHêÑŸí5Xîä Xš§bXÙíã Óé,`{Q‹ìyÄgÜ»>™Z›bv.ÄëÙ†ñq$N¤£t¬ƒ©Ý2@ñ¶À4˜`ùÖ(aw?ßç@÷+÷À<ºPö@M,w= f$Ã2{H™a«ôyJ&j˜1Á´™òCØ-xÅ«…‘qÔ.û°šzôèW…õLzá·‚·7+eÞ¸©#(òbÿ—M¼pº^ös@åT„c[XM>­¢‘ŽÝ¤Éz¥ûIl—:üYÊ¡]dèj³ƒ~ï+õ[.„‚2\ñuìÜ‹+3$ŒZ¦ö”ׯrìX$”Ža¾¿­DbR)ã<üÛârY9i¢Óì¯Á‘oT:…Š'‘4:{ [pd]·DiØk²·<¥ÔÌ”1û¸‰Î{Ë ‰kO»ûªYïÚj¹)ßoÒfšâ;–•‘PÒYòf+h'c+¼Až}·, ~a,‚”›Z ^*=Ó3,Kìï"èDv vjìš|ö˜©øð•xQsd…÷¿ãdVÆ3å|ê}ÓÐ\?ƒÏÄIB&ònt‹\ÿŒý5‹—Çr·­¥J±Ë:Û’O.嵌.¿qï/…D1–W¸pz‚¢@ÚxýIú±/‡[ÝÅ!Å€¸[y Pì.+±pRÕ|ú©7²A3x©TØhκ !33:ñ§›Kc1p{ 6Õˆ¤‚‚YO`Õ5C‘¹Rè ñµ!¹vÏä¸ÿ†Ãþ7&Õ…{†jæŽd1Ø“û îS¿k=ÉGL—ItX@‘7@ÓsÙ Q4dcÑŠc@aH|¡sˆÜâþÌg›*^4þf kf›Î6W¿‹y£Ø’­¥MÁ µÊ`ÎÏ‘a,…t¼ ؤ”¢ÄDrô›ç¯c¾<ž§ÌP(~Á•)ʬû·à‘Iúä1ñˆ0•U*ëtô1gI¯¦†oXÓ‰ˆ:v?ž\Ge6fìZTÓèCdÌü¿oÞ{y,ÝEm4ÑN¨üÉ—6ܤjý1V(¬ñͼO¥iú‚wš®lç¯ÒùÔÐÃk‚NAU¬WmÏ\]o  Àçbfã1î³ÂGÏóœÆê0éáàßÏC˜üÝêœO36q‹~xSsŠFœ$–ÑX£&LÅ_‹éáøÊäÂG}ù{žc\S?õ´j?IJ˒på^uüC7­2‡IÎOø@Nm¾VȪe*?~QË=rIEæ[ÿ(Äz;‡Üèen£,o5>®¹ää1í\›þ=Ï’À[¥\’Z“›…æù¹L˜©cì•*TûÎÔ‰ÙnK®ß6v«¾ÍKAØ]ñÛp5ßü|a ÉIåÅÒ’áIQèÉìÁïoŸ+‡þÁû)øßC’h‡áЦ6Á~?<‰Ô¨²3›ÏBœÊsj­Ò‡ª"¬¾9)FùHØ1ôûÆ‚IHqC݆íTêÇ>]èïI*oŽfU÷gœô²vï#yn£Œ€œpä äñ„z5åÅÚǃ-Þþhª+¬(GŽëµ(>sª‚žeRäý‹‘ß³ºœÔ{Ñk[<%b@™«ïÕå1CBV£°˜: bDhKû¦â+æŸSŒÁV]µšs/qpY„RçK^y©ú¦$pµÿ>ÚE÷6®W]Li„јŠÌ ¤¾ðåG­^)ˆ›JÙ/2 ë3R!…L &Áÿ N¬Âû"£°š%‘cm¬EÓÝÇæJ4Gç%<üKÖ…d¶‡íë±Èß{ŒŸÃ~̈¿Ó-¯/o +¯ž„š Q@½yƒÙÄ‹ï2y)˜C@ŒxSùˆd0OVÛçXXÜFrNìÝdæâ{À=“‰¨%fݴȽ…„Y"u"g›Ù3Ev 1Rζ]_n£ir~ÍÃÁî‘ýik”9"fP\‰U!€'³[יͺ'%~Z¼!wð®†ì›]^n¿]/Wvçìp¢Ü¬ºiæg+nPWC*ÌöK'½d³’xÑl—¿D/C •cà *L„!ÞOcµiö'™U9mWv2^f­¢](‰uy3“¡k‘r,ø–¦?Úu‰Rºm3+§U´<×!¨sÍpY Âñå(Ç"I:&0šƒÀNQŒçˆõ‡ѳÞß ‘¿~ gáþÎd~#+,Ä‹G¯lq޵±-"—^ºÕÞQGî.wþ½gï×¶†Ñ»TUV#ìö:’¬¦méy˜é=WK€ßاrâó}ùœŒ–ào³oy•_—ê¬ã[É$Òi‚„kºN@ «Ê©F‘fÙhICÿÛ"œUÂÔ]gÔÞ…ÀîHSìGê©×qš÷-¡!ðáWbúúkæŠU9ÏÜâ–#üϱ´ÞbŰò¼Ý–÷<94ðôF ¦ËÉ×®Ê4œ-j4qóÇL¤&E5P…ãy[{ÅQgê¤fF$e6a·Ø` ääA7ÊS˜Ù¨Î¬j"NZ¿´ŽBªJl}w[B{ŠÐ ™æ-…p߀-KuúµMê¿Ë&è{.}Ž:²¤ë¡¬òxå#¦8š£WV§¦§5æºÓdu. S×Ý< öBÞš¶j7²µw¯ÇY/¥9-Ø€kã±ÁÔÆà>º¿M„A7xÈx®k?âBQ·q·~šŒ‹Ø5ê/ˆ­õIM«TŠéHó×ó RöÁãç9¸CnéÔrÎAOõ¼J •cÊp%Vˇ¸éZør®ô n‘´Sôκ™±‡ª\‚¦ô(±4Ÿ] ©¥›Sgév˜~µ¡o}4fí뺖¥‹' «S{¯˜¤A˜ÉŸ Ðó/ÑáB˜q5$Ï9~Ä{ÎóŸDq~9õÛaŽ'ïcbwÃótíL´Ãz°«”-² R=¿ˆÿÂ[±Ã÷][aèÿ\”à®LgöŒ¤!WåAd%ÈEÌŽ/ÿCdkš·¢›KÓo2t秘ÐúøÛƒ( ]zCZÒk¸ÞÐCÂá Hç‡'mï¸'.Œ7¶€d™¨G“!ßd&½5Þ*×™”ãAŠ”¡ÄðO¸Þ1àêe-Gôj(^) ¬“øGtgø”H#®Óiê»Ï.uò ~_ª§PiA`G8œÙÑÌñjR"GÎíš? þ%¶_Ù»Öù{é,áü¯ ˆÞ„Vô–Q"ASÖc1º+íŠ-ÌüˆìƒíŠ.¡áç_ïó†3n,c:jš!|TjùªÄø)ަH“‘íì’ yUnËG Êé¾»,ñr–ÊcïO …oçFîÝpZ±æ¯üiì© òÔ!uëaq"ªôef3àyKà:0~Jƒ«k?¿ õB¦Âˆ2/z§–c0(ù\?T1Ö¢OHÁ˺ – r ÜJS¢w>+]¹š*E^·¤r¶èxZœÑ›UÕ?Ñé¥XUF6FÔp:w²¯Àöâ&Û8WÇ>ðÇ­楦Mâöý"ÕvæU@z¹ÌNG]iï`uÈ8ÙØY7 šH­– vATÅ›'–b¯J¦ËEÙóöízI¼Ð¯Ï_¿ç,`l?ÇÔÒ{9îÝ=¢gqìh»´ Æ3þ½OÍ…ÝQ"\q™Ã2ùVa¶1ÜLߨÄkWU†¨‚ ú(¯)$#f6!Vn —¼Gu¬åw†ñqðAKT¨ç 8ÆÁï3 $ƒ*ëâvi^·¸!Mе¿ÅZ=‚vîáÐÇálm^ído©¹qÒ&òÞàë×Ê  w»e››Póþ{׃¶~<³MÇŸFy›+nzX¬YÜ1Ëjoë¨zf™âjEÑëô4²…í/>+dÐ@b¼rd³}¨[ö»Â1œm.èR ²Rl¸È\ðr‘ÙæW…U$\ÚÍE@PWãUO*WpÁð˜¶hÌí…ñ°GŸyZÅ­‚­ÝÙšá=‹“é–šf3qs‘óˉ–ŠýÕeìmøxŸ´uc W¶“E {é¢c,,ÈÏRžuðròXí ImciK§Ò·oq]û4£3pkGB"L¸¦„ipƒìåH¥ìXôi"z²H¾RæÎÆOÂ3lÙU\–Ì$yh@â‘‹JK£ž†þoˆ0· þu7¾]!ù_lkõò „Ú „>Î*uÄ(stK$©1Çü ¸ÌëT¨õ—]J°¶c»B(Q`ºÂ©Ä”7$%å7ÊU)#H .7æUŽ. â SÁªc°‡¥lüæ³ðgœ¸¿¦ARýNS›”á±e—XÔ K”O„®2Ò =ñõÑh%y]¶\VØJ»! »Í\#«JÛ!*z\z‘.¹üÌîTe'W¬¯P]‚2µ¢ÝzeLz ßÝ_•Õ æÖ\Å#àþð·"ÃHFgœÊë¶A[^ùÑÇ…¤—ßlû»f„O×4MŠ?]”’ÏÙ²-²¦xÈL<9äò‹ÿÁéϬ”þQþRs»†A‘‰Do¼ õë.è‘¢ŠEŠj–”Tl×jI¸ÜL}3À->ЕµóZ:ÝšUû0;E› ?a¾„B.aKÏÉ€i)•]™ÄÂTjl=ïkÓ±ßCTíì&£u»ŠVÃT4Y9­8·‘ñ"{Ç®ùÛ¹Õ|„$’ËI¡%"OˆÅÛ~Qc_g0]b_ƒw$òM…n–*0~KÉœêé˜eæ·$Íâ(?¹.îI9'H zßwL.]–•0&%õªÜGP¯Ô}Àý-6Ý"ßPZS95ñгÈT,šðvÿöBÉ'g;ÝѸJ¹[ÌÉЄ>K”Ëç.ÏÞÖž“ù¼¿‰òì<,9#™ñ CDÊyü~½5JqµFXžS*iEu?ñ¾½pc¹ÄÈþ&G“¬Z´E¼,\6X•AËâ,LùÝMTwy†²u Œ›³–È–ë…𷈇@ÑpY¤äèlâ➊䭬²ÆÚEð´¡“ùkeþÙ„ÁtíÝ "ã q”‘{u_,…Ä‘ðJ‡i®qb 84È_oÍ›vô¿UØaP GZj’|žÂvƒáãotéIjs9BcÞ£™§ ½h%ñ”Xž übfÒ~°_Ô­yMônH•Šá= (¼ŠmµØëÊ£ÈÃko Ä¡¹›U6~+æp*t‘¦99‘ÑS®lžvË(•SÄî;ØQqê‰Ü,> P%.pæT[bßzíIr@˜ÜÙ:“ì÷Û}¨Ë_œ_mÎRÏ \­©~fN+.ÌB[³ÚAè'@·ÀlŸAj³aZ;.O¼”Ԫ蛉,½ë’{3àXUç9jåkࢂŒ²^U?=%ë@öÝ”4UéSìÞ÷`àg±(v9DÑ$Ò¥ößàq®2Ø_FkÔx³êÒI‹q$©,<åË£rTv,µ¶dÐV‡§8­mêîûT£"$Leºì+Z=¬Mæ>²ð–6ûpJ4[Ü`.}懖‘f'„’‰oÏøÆmòF„ Å´åÞ5S÷ƒÊ¥n$ZÀÛŒ ³\§~ mÅÁ›¸D‚z  >Óíå{’Þº¢Žkjÿº|ÁBEâ…r^1HÌ2bBÃ6UÒ*É~ÓãiýD²tr¼¶Mÿ¸¾Þ€¸ë,Õ¡Ée;þx—E þR³VÐ"„Q³e=l}Ú œ˜Ï9¸Ò.Ø;({K²í=9¦VñW7vŒzðø1º§Æ^x÷úºÎ–têŸ, æ°?qE`øœ8ŠïS;^CVªÿÐ¥ªìö £vÞªæÌrÚôý´ä.„]ÍÜÿÆž½µwÓ«€êºl\ Û#9fsýfïk7J;˜þòw­Åï·—eõé5çòñeѪ†…XyuþiºEº I«k¾uVs$l(sö—½E»Ô¤>]Œjé+2x°é¾åj®É,„[6Z×¼}¡ ݡ־æ•‹ƒ1üQÍuh|×\{–È«Oþžo>>Vòç˜ÎÁe ô¦ñrò ícpëäâ™àvÖé)`ˆÔ1‰ qçL- ¹r›2AæŸq-n_BÖ~V*d†oιäqªãÆó†9Û0©*•ÆIá tì5×QŸ$(gH"jä :þkáþq%Ñpù!B¿D‚ëõ›ô{k‡V~mÕòë¨æq¨µÍ%¹¬§º9Ú¨ø293«,W’ ;‡ÄÖS?C+“©¤È\¦ßäÏç³ê¯Ðåï¡!1r¹(¨\1õ´9ŠXêf ¯”yȨ”AÙpƯ-Èò#óǃªù÷äÃo››É‘±z-*ÍybÏ îE¥Ö°’¨Drœ}l̰Ìh'¤?íÝ%Y½]½`И°\+ÃCWäkí>¨N5òOi|?ŠíH=ùxÝ‘7”º®eÔ­ª'H,öÚFˆ!c)z¿þÙµ¹¾ÿÀÛÔ ™·¤+´pÍkZ‘ˆÒšd“’ääË)ì‘Ý9†z<…&^$j¼Çù'ç'“C·R ÅpzjP,I¨Óÿ3á ™|¿uB`Ë›­FWæÏom€ME›IMx²q¿ôåëÔ*yO13>J¼¶?U<,¼$•kþVP¢–4÷ÃT:óŠh·&*L±Ö„n‚ºVA¨¬\·«3¿Û‡V•8ÿ…Ôëo˜ÑÑârýouþ .8æÈ#–ƒHõ¿@uu¨\Î |‚{ªn¿N¿Ð¶@Á°¹•…1ãŽü™ª‹\1,òoB'EëŸ Þx8âU÷Íâ§¢ñ ‹wަ‚vrT»äyØ%þr؆³8á7XY~—g©ç’­ähŸ…àyMk¥3ƒZÁGdã%‹Ôµ-wd®r‹<ñíÄFäë­s¾½‡`óî§( µ„=é»öšŒ]ýçùœ³œ®Þ͉æçç‘aïVöm¹lï׳Hš²¨Óé‘ÑÌîÏÚý’ì"Ý8®kÈ­&qËꪖLÃŽÆxFÈ‹wã'ƒiÖxQ†ÙèìAÍ(®edv:{Îx.Y ~Ÿ'È×.sÐ{¸rÑ´mˆPùÛð#¥ôõŸJ”f~ì´ß *hÓã#×Qã¡©Ðs”Va¸%ðaØ‹ÿ&û’HÈH\x[ì]ýØá`ksSLŽb&—²ÚisbÕ¹Uo{˜ò„+ÊNì“õ‘äôøs{Ű-ðN ÷´Ï]δ‚ugÉ÷³\qÐÑrÚ¯—‹·–_ñ”é ”´Q&Éc¬0à2s©$‹h ‹HÖ—éAlé5Ìý{“2îýŸ$zVW‹7ÄŠ8œÁûX¿§½ÐÉåî2å~s{ÊÈœñ;yj@ƒ“²6¢â¯TÆ3Ž‚“¬¾ Ø$Œ¯º·¬tJ¡ŒIùn(J.©ãŸ°9‹¹‡”U‡äR×ô¸)^¡©© ¿Þ“]¨™}ž2ÌŸ‘¦@*ù«ëÊ °Í °RèÓU7=“ÞÕ…)Ä_º^xKþ{1*-Øä 6«%áEù{ Žtÿ^Qš—±e™Boi?ü,*×ÐODÓ9üZïå{#ñˆaóÔ z9}Õ8…qÉñ'ˆR¥Ã³”òê)˜B¿ÀÔ–H ò‡Ô¥¤³JHjVp„È0²J`¹d½Íõy¶{%&#¾ú^,úìH`%ðçÏéÌûŸ™_Z¤$ý˜ÒµœDŒ* ¯Šµöl¹Þ 'ú®|‡wfð§Oïž-ËÐÔß¾«“|4|¶DñÌÅÞb=7ç¾Ð@ÜIf›IS}lŸ¢Ë ?íƒy+Ñ*ì!«6|¯b±ÃL;€REãí˜<ÔSÙçB½T^ºP9Ïwf´ÅL{0ª¡;->‰ýÍã —d ×Üw±ë1HRnl0jI$E†’ Rµ¤±Ìí,±=¹nÒ©èÔ»A·†Ñ´rÿž&ü7x†óGX·SHJ7R!"|ˆž /Úâ0#Üz0;»ÈR†ºñUc‡S¤ŽßSÁ ”Ãú¬È¤.Ïêf¼7[ÚïÆýðݗ̃£yð-a£na+GXºQ€t‘€³š~¹;7>žq_üÁ?hËð¯xo¨^âÖZ°›Ü^t:ÌùÞËa7:‘Ê(»Ì lC…¸`:q=Ÿ4 ó°€uËmSVe$±ÔÇLJ¡¶¾0íéÑ£·ºƒº^—ßAº'Æör_ðÝ^—ư (È—ü~o­­Ÿ@Ï¡J.ÓS¬ñ¨£AE8­E’qÿƒ†=}ZqÃd" 㲤 ÂÅ3\Pc&'¢ü,ü˜ChÝ»S·üýŸËeÉ?aÏÄŒf푚\ÐÆáDŒ¤îJÃg{iQÌ7«ª¿cœï(9[äµÂb¥Vg¸sïü*îÍfXƒÊm·`Ôÿð+p‘ï\Q =0{QB ‡g{&·-ÀCe‡lýu½×"I€Õ­Þ$ÎT_2ÆQpvÁ±™P^ˆm­ ñ9‰M#B爕Èw0ÈRÈÊqòX™#Z mVïß3¥K…`4êpêž[vOoδ/JøºØÅãÝ­;f¾­ñæªÆ°©Ô ÛyÁ L(ý -:õ*5åÈ-:uÕtZpŽ€ =I噽ãÃ(rûþ>ß„%#V%˜x#ÛÿЧß%”Ðp$B° ó!P]–„<×iÖ¼;ä ÷,zŽelÜ c¡"éò+Öû,J‹»IøÖF–om:ŸÁº6]2ñcìû>â³ ë|üýRYmÀÀý©¶ñ¯Úè0újðO¤vªM‡+@~÷ÓzZE0(³SßUÞ„‘ÛRØS ¨àón0†àïllíc&ñÀ@¿ƒ ¶RÛK§ØýÝzÛ?Hƒ³²ž¿\ÒÁ~à €‘]9ã7¿ó>dÆüàlôN[«ÂÄ_­zZ§¦!‡"S/^ŸÅËÅ,gL¸<([…§Ê’áÌ/Ž£ÈÖpðÈ<$yÏÈÌOA¨tØè)O–߯ú ¯9@_yÎŒ !2,-t’ÞDÈ{"õ—í\ŽFÇqæN«2Ø ‡ó#ûîa±Ô}´Ût µ¥AÚ³æòD’›YŠÃ[­OØô7jî-3¾ì´àqaÇÑ*T«`»<ã¶¡üÅ2 ³JeŽ(±ÏqYû¸tšQv³vÀAøOòját÷ ×ÇæáRúTó—œÍ¦¸±Í{$™ô´õ¼M‹N‰¨Òˆ†ú”rXñ*ê0—äë—ÍâØ/ÁØÒ‚v6D‘ŽÛ#ûèÏæÎm–éÒXqɘ;Õ_ììP#úwfÙÀWR8€c“š`})@ +òæÛ’‡Flm’Ò»­áâYhoQïÁX]Côçg ³íØÄß‹¼¸ÂaS¿ÈaÈÚ{õŒiÅ`[¹P×Uœ„ÏNÀ“6÷{øŽ P9+nVC£†*ø¦ž2üi Ú¼áP1#(¸fyÑí ML‘ z¡šÏï`©uM«é‚’…#yË¥ƒÏE øcJ/׈evï¨ ²ÉE+g†1\>Ì¥\2ðN ö õ šFZŠY=x˜KªAWŒŸeul­¶RTl‡6,&â#¸CMüÝV|«O̳øtåvs_L§“Å&xü“ùïÁð}.²Úžê²%¨½ÑÞã,KÈŒ½œÂ]5þês³k+"~·ÂÍ'Dï†nÏPCÀä²½©.¤J›>ÊÌd|èøH›Ò=ëÅÒ³~ÞĸÊõ˜"Jºô\ ›Ž1ˆjÎÜXõýy§øµ²áþß¡—#Êl£ïnº¾e®ú.¨³?ž[&Ù¿O“ëf&QÖB«úOv£Æy?£¸‡ù0ˆ¬ì%#AÂ~SÊ ð=ÝF“Š©Ò-s}ÒÈÀÔRûY:µ–!‘¸™kS¶ÔžÀý *°Ø¢¶ÕäD¦Ìi¹‡À¤/äbhÚTT»n~Ø–Aœ¶±8ìÞOÆŒÔ?ÂíHÙ‘©ç23^¨Ã/tB…®àn#Þî»å³);ÚºúËSzbp?¼+¬çdl)2rž§wÊÃUÂÉDÝgs[°:_fL®—ß Û±çÄD§*ûŽ9AfêÖ•1®®Sècð 5Ä|w5=K$1xú¾]Ú¨UÇ'·KE\ö=ö˜Spý0‡O-©wc¶xç„+»;Oþ@ šæ7Ô0ΕÈtÞ8Ò˜«ëz¯í…b"âÖÐR4¾óæO1Hÿ?<~šü8tØíŠ[$é{õgè6?Ëc]^7dŒu–â@f\F¯,ôtPv nÝ€1@áU …rÆá÷a€ìm54váØ„ÏÒWX3_´P+Õ/Ø`¼ã¡K®n™*2·Ëg?$·«+—<'\Ý;€2²–ÐUc8ƒ}¤LŒ´×Ó·^Ë ž•QÔ=¥„ ªT»¬úÍuDTT¬,y¬ºHŒcd<f:M¾sýÁ ›åܶÊj%.wa2NÔž¡IÂ.×ã\@MÛ! n—{«8/-–[n`À̰ÇåŒf¿}žQÉ;ñøB„Oš½  =å&}]ü¥”Ô÷˜ ?Yh tÙùDÝåµ ‰B;5nžäÛ¡±§†‰2@kb°)+_¢8­ ŽŽ>%¨õ¦™¬Èº!Í3‹Vœáe÷½âA™«_¯âˆ1âˆáµÄ k³ñèm§PܮՊÙ÷Î6•Ì`ôÝF üX^Í­¨×\?Yb \•ˆ[+m—… $ª$}›ö`œ?ÝXøƒ^Bl ”†ÑL¬°ŠÂ öà†«çj¬—vÞ»"?¤Ä|ú…âÙñ!EØr„ZZÎÅûl:Õ‚”iŸî0ƒ%qHª<ð–ñBȸS·~P"AÒfiûyX”Ú  ÝËŠK[Õ#ñèâõÈÑël—ˆã¬îݶÏ7Ÿ”W`/ …’æ #«[ª> ½hÒȘ gá^^zw¬ l]|gþ騽0ˆðêR~HëO-€s;êÓúÌ»/ »º–”³ôâû0}Ìî:Ž×P<ãÊB$†ÐHóMC7Íä+ÚFž^g Ë(´“dù¶-Ù1i;Fm‹ZÁ¬Oí±~`ZåÝ’Žx¼"¾V Ô0*X ®Q¯EI¿p•³¾íŠ"]‚Øà‡ ô@_ˆÁäSv¨‡Á"ï½À#<þ»õî\/”ƒÊ/@¡ÏæŠ*ò†RDN wMßâvdˆ)¹¯óÆr* 5é!½ËýÀ¾Ü7ÕänãûNÑz­&“ª$,ÁÊšgpþ˜fʆ7g¡邯¥z .õçÌLlÌ5ø8k°\W‚°&[E"qJ‚ÿ¡‚—*ð>ÍÍ3î()+æå`Ü[óh[÷d,Jâ žŠ;C±Äöw>÷œ@Ä1ñîÇ„–Î žÇžTðˆ@UFŒn")y±Ù= Íí«¯’¸À $n‰Hã Ôùzˆ<Ì¢ÜqySfKö¬ù&Ü2t8:ïm+Óršû7é[S“¤ ¤—+>^M$ /^ÝQ‰Ø9‘Ž7›µ9K1ø¥sXtgwÃÙýáj’WÔA¹?Xym“ív¢M ÓF4X©Ÿ`ŒžÖO Sïæš‰Üž ÚØ˜dS  …l¶Ë ³ãE ÒÐb{"gw­|5À7þ°³|ø¶Ú 0ÀøÎú]2L—gaHá¹8hmëQlL²ò(ËõíD_þ8w™ —y7¬ï3ŒS¹|,z›¢æ2TÝ ×JÚ¶3ÇÍ¢ó-J€àîÉÁðGþð+gý¶§h4mGZ¡Ùsö眅ú`šŽŽÛt]jÚT#VqD_…úØÉ±¦Ýõ»ý–¹`¤äöp8u~ª nåC9ƒÙ°<õ7‚ƒ×S\+.kiT÷1FÔ(»Ž¨TÖd»Ð30ÜØ,óë÷“—mOºSÑ%üBb!Xüñá_muÈõ\!³xœäÅ}l,Yó l¶ûx'ž™8.Ý… Ð^ë’(u­#ŽóbU¥)÷^©— ^¢Ï‘"ú\®+_uhÐNûþ¾¸ 5WLܾö£Jâ[J×ÖRâF9m[[Âð¤Šð±ÙŒvÿ×G¿îWÙ¦–§,HC…ð6˵M¸#_Ø}øKGTi™ä!Û<²*W2/†Þ–¶ª>9­æ9!®з}0¦вv¼3 ×ûÜ{CD·¦Z7rKzª†LºjÄÇ,è$ ì‰í£ÚÅýî»$ÜŠ”IÈê° `âë¯Ï<È<“½e>@†] ÃŒ:¨QUMLÈ„‚yvRåvc†ìÝ™âTsüãQ¡±IÚ° fd™‰ðëýŠÕ³ ß{ìãü´æd¼©D¢¦°˜ õA8/‰Ý£5G¾¥„ ÿÛ·sù©ãÓî(;÷ô5GÒÌ öébømštt¼ qVGý‰€=É^8q0×ÄÌÓ›\T+– )Évî´¦z³Äu·\vìê¢Í~ZéØõ»•›öÕ£‹þ¯pÉÉ#œå gÕ£ˆv$E*ÿò í'X*•ïwQÒJlš#ðOCwé{'JŠ ¯ULw/ =\¾ð½Ó]ÙTÙtµléHÎÕZ¨‰Ê2£®-‚¬‡OŸ!á'ØO¦$M9#9¯uU}ò)úÀŠabηü¨¥}ü¬ÉÛj´åà'™T•«ÓoÞ?èÆ »fœMÂ}Û4îú““2ßg¡ðá¢?¬þh¨}ÂŒƒfD*£NÆø$ï¹Ù¶xDPö 7žièàýXÂÚ›QƒÃ@uÎ!pÁä•U9¾'šýnNónËö:(±]¢0¥<ž_çï»ÐçÖÛahÊ|ë §ÃN² £1Û=k%âRjÍ|Âoži>-?W8ÿ¨÷ ƒG/ã‡ò)—¨×{Gnîˆ@òÍ¥ì>]Ðî]­èÄóVä¼c_šÎsn\KQʈ|GLáÌpRn’—‡Y‡ÀËYì¡"AÓmÉAþ½ÀÅõFš"¥ÂY/a6ÔtŽ[Ÿƒ-øÀîð†ºnŒTçÍ¿»¹’P¥&-BZŽ*üÏ5N‹ ß2¼‘+ %0Óz¨;î²;H3vÉt-òÃIËLtVÜ™zI›¨¸ÑbRC+¶ uŽJÍüÙš4±jíxq-õ“%ƒ Á'9ゞ¢¿š¥peŽà["Y;Ć0*Ÿ¨0~P—=“Ç<ˆSle4âÑóŽ“1H®—Ez))Hy;Ê»ãõ,‚P*Ë­ÈE™)¥«Y\÷ó<—3m;e‹ä<±v!kd·Rp™‚öW|߬f ¶'oy"/i“f²a޽ø~æpRóŒƒ(“Œ±Q’kA,‘,Ÿa~ìxª0+Ù½wôÒ¶›æÆ¸+¹%*Â,),až <3›Ù´’Ž"Œ 2º†©]ÑLfhÅ ¡m…´ë(Xé˜QNõùuOÐÙŒv{€xÆÓŠËˆWûc|ïS6_BdïðJ©C˜+7{ò¬¥ÎjMˆ[2©°ÊLû®ý¤Ÿ-<®–'š{9àœ.)R9›h‹t,>w›º y&İ}ù™‡'„âÕ7KÙ`ãï|3Íù-v ­n.Å îæ/Çèà£8÷ªÑoëȧÏNÆG8O<Ÿd‰È`sv[ò‹ì`Ò)éùwƒ)Ìúh5+D}â)/#¬Še>"ô?W.žÅi´f<· {³R¼ƒYöXœ¹B`^ÏåÚ©H¿%Zž06|áŠÔÎâ•0O…ý;W™à~‡9ŠÊ1áT5Œ²ýBÿó1X÷3è-]Ðnw2 =󞸙ȉ©sòšò†ïýùî¢ø; .˜ÿÉ2­c·0¼ £øÓ`i´è&ö×1v¶oÌ´©›sÒ’àêA†H®$…WcàjYoå3ÌÊGHå3~Š.Xßê‡Uõ!_r—]¸qòg.¼^ðî ¶›ÆÊân‘ŰÔ¢\z9Ÿ×Þ#ê&oi†!ôßšŒ¢4 ½Þ_LÙ/}KÏR=æ3ïìÙk&sÞ±*so¾¯ØfŸ0ïYqBœèo"’%è~-Ró+Gtshgš’bXM弿¯û_³(%îêì±X§¿¦èA28gN˜µ§Fƒyñ¹á¨R~÷YóÕUrRÏŸ3±(° FÍ{öÔí L »l5çÊÝž¢sÛ×}Öj+š!¥ÑÜ„HE~gÄ(ÙÄi)ëN9Šy‚ãø\ çwBú|k uý\ù”+^gô,Ù¿× ˆéì»6ds1´(4Ç×PQڡ΂=U*±[ëc'A¸dQ?ÆéGZvµÞß!jŠ'–ïô±õ³µû {VVE’ènÀÿ-@Ò¿qÌÞ‚ÊenÃkÇ&²l-V0O¥žø.+ÒòÆèjž­Ã0õÞŽvgž¬©òHÿoAõLÀW­,°0Ê7a܃$¾æÓ€ø&rS®ŽJ-ÙÈ qjÎ… -¾ÆV>[w&[uÔáU‘3Ĺ›öœ@W2¶Æiºko»êÉ)ŒîÎòkA‰I†Òۖȯµ4ëÏ÷IAw%*ìà±¹h›(I9#¦mÏ îP%ø¿Äê*)):|[ƒBôDÛ!ZžvRpšg±Ÿ ½¦¢‰£”9}T:DLäwåCAC_NcùÑXØ´4ùõ쟎SB¢Œ›ä”´•Æùï4œòÀÒJbD£e+y¡(›§M—Þ"]öìB¨Üñ>Ó£uqÖ™Õßgv›î'¡²Š6e“.þ·þ!{CӤיïj¥ÿ‹€¥ó `Ÿ'™€E¢¹f è'Õ¬ÊéLIàìWªäÀæ\Ì»¨Rˆg¡†6‰qe}W–ÁË =,SØâà ­S(#‰—§ª®sÂüÅ·ëÝ‹žèóì·y£”tü‹Ì™ZOÂn¹Ùi ø? T,…·´‚{r °qÈ”Ð351›cŠfí×¾0èj¡¿ñÒ›¼¯¹hÆjÅf·€ñ[Kà0ÆŸÈEœ9¿Ý@\¯±;mÂ:t÷ˆ5$¹qêêtÆ|׿¼¾Ô¹”sà}AH)ýUµw‘ˆkbo ]Í>†' •±êÀ–¾ÇòÝS±ä‰ÞõA cÎ[÷H]þ€û–”¨3Ȩ¥æWwVp0|›yÊ—ÿ8¼¿)•½­¾]ÛM ¥Þ5GØÏ©ì$…«©MY}‡¹79_n>“KsdĽX|xPH7;I6ç7rJ¯l@Å{Šã÷#úOJhQù÷·kpeÁ<ýÿtivGÛ)ÜݰvX'IY赩³^DeAÓœÿá!2š²ÙL' àŒ‰ÿzúÒucP¿,Ë5óB(ÄîÄîåeiAâèg­(Tu“œiP’›3Ëû0Å Ô³+ßk²Vó.ʾq“-Ýo£¶)=:$0ƒ–$L…ärö9U˦“ún±Æ€Õþy &h1EŠ7ä9 D'd”ÜÎ÷ÞD“?¹K±•ŒwËe·V¯K‡±­ÆCžO˜½²dÖ_Δ‰ }N³ÔL"MRÛ•ØÑÏ+U|ò)úÿ~zC·‹!‚®Ò[X%°7””‰FÓ 0ÊÈ'C€­3]íJ à3Ààr…ïîA\¬Îcè ýT¿˜²\ÝÔa 9ˆL†%Ë®BÚpo`hî…åô}ÀVXkiiB. ø¢¦lĦöú½:;ïÖ£iñA‹„=qÓ m–_«OÀ‰‡H/ƒŒÝo´"jIü "œbe µ#(`€w“ ³ KÖx`>Ì‘a­Œµ¥ƒ2‡º|—`€ÉÉ;ÌÖp#ÇÚÂV×dþoW°ÅŽ€n´_¤-¬Ÿg§ò´éãï.w§y#Øf p%:?Xí¾KÖ¹è`nžé Êr]¸R!b‡IÀ-ÝÁ²›dî ~,FIÙrõ›7nI‹zŠÆÙ 4H<$ñtca¶vñ oÃ[GâþñC¿•¹¸2F9§®x²ßˆ$WÄÓ™åþ`Z–ÉöÛ]âË"Çšì9¾=ÆÂíæúäáØUpì©|CŠÍ^·Aý‹5UdãiqIe¦.†ùønDEÔÙY§¹ -Ìß=öŸ ÿǽèÄßPPT$+°˜°WÆKö`3Jzß²ñC`l/Ñ´jLžbVv|MŠ“ða­ÊýE H{Øæ kUõˆÈßï‹MÌkÜüTÚUáãÛ ÍØ<”sÝö%°NøÊ¿çÿy×­ìϸ6Z¸tðÚ7¹Ç“)Í{+Ÿ5A±…ËzÞ! v"j°½ëÄî"¼Ýœþl¯äµ;¢~º<…aj€†^zý_ˇõ¦!gŠUƒÖštÅaæLJ¨y$VÌ(¤®ì©þGdù‚å&rJpw8$ùÜ»‘=‡«\EØXO<ìMh?±¡ó×"tô=´°©û2áãíŲ«MìãIÌ–ð«½6Ö¸ót/n«º.-‹Â¦N’nZTѽ†µšT Õ‰G»u—wè’E®îa»ãnº¼{ÎÔ&“R½éÚɰURòzð!ŽšþÇÆ„ø¨kÔãáé„ut‡¿Õ–S©|W à‘O©E~%šû©MAW'œ&&[Ç›“T=5Èfÿ[ÃÀ!$ „˳ˆZùÒ𢠷[ÅjíR-N2(j®üÈ@-lÆ !)º>§\r&½Ôkí²µYbµ†7‹©úJ æ©£_Wþp€å2SzƒP@P×yÖÖ§Fèòð®ÚÌ;.°4WYÎíç;; aWÊM.­êâ´ùap–šEC³G1i΋"Òþb²AöaàvqØÂÙ]TD¹a[¥´ÂÌyH‰*,j w'¶ò„êºÐ .%Ø@nãòAõ¾HìGuF—e;z#o‡k.݈Ô3Ô¸í/G÷=–J›«Œ>A@ÇPì¾?½9øÒOÖÊRÔG"pSãTœÍÄŸêFì~5xìrG÷}ú&Zzˆ6å÷¿«;hçm›ÀTÚ½)±³ÙtŒ¡4ðg# oŠœª²½!§«™ZDnî5æØÅÌÏg›lϬèîÂÊQ/Z÷¬}¢Œ9¡q:9ÊnG §,;„.üÚ¶2ó£]'ŽHxjß0Æq¥ß™;L'׿g|'¥‰º{RЉ®<¦”AÐÏ2Q=bæSŒþ%¢J Mαÿ˜°¤·¢õ ,­Â·;Ô™ÆUFˆi…88ÉË ®Z•iÌ—‰Û}R‘ò ?oªþºþk`'®?~šåàÇJéÁy/ˆwgñݽÄÓ2¸obXöðÙvÕjs{!žVyiÒ §Ê¦v¨ñ{i%±6½í#L+–é“4ÀÜkWœZ¤ˆ ¨4bßœ…ì™n5Ä©ùô›ÕÈ|"F¢ÙÕ.ø]ë*š/Ÿ–Ô]SŠüﮬrâ6º\JÁa®ñe-ØBV¯%–äË"}[åtPñ7ª§…_ñ‘æÂäRVP€oTEFV¯€O¬ç§¡I‰UjIY5íô*¿^xõ Ã¦·¹0Õ€G0Zj ˜|Ö²Ù;~ËúWQñULû¼›QÍ7/m» ~÷ŽeF°çðš»ðÌFd)t¯Åí…åè{ɰ"Á¡MrûY;ž·äð™…¸«¿ìŠi­>Ž‹(¼+ ùº:‹¦ÄûUÑü¡¸7äÂež†9xœÃXYáN2ÛÙۈû •­)°û§ì=¢SåHrm–¬( ˜·ô]ú£Å=/Ü»­c­F,D겪|È2ì\­pâ@û:H}Ýý;6PL…­Ñ´>»’£øȯ·hWU²ft.rªú?‡|GÅr¼–š§û€KC ^­‹/ߟ&¬’(„lÁë†Ü·’²t²L÷Y‡°îz9‰§!ëÊ0ª…Ó¹Cyp#\_dF¨‘}¢væì´Všž¾]o±)gÚ{GÛÃ.9ƒ=6ÌÈR”Ì8´}&›k°O Ø¿ûcÍ %\–ÉŠ FeÉ ˆQûÆb42EÁ/¤~\eYÅÁ*:<5Κxä͆=Æ“îro·ˆL{}å¦viBKù"CwŸö©åf®Sr­ZJMŒí©¡-"W›_lnTEûU[E¿( õ=³h!qŠ}Õç¢ÁÍâ³|€OPþÝ®ª+Š›ô{N‘}Y4¢ç!8@çŸÒÑaØ+v•i"û“ï\·¡jþÌÊkÈœ+d³¡Îм'hØ’0<²Á>92,¤äh,áó뜥Ýd(¹º W;›¬¯ßŠ¡)Íÿ2ßÕ²Yj~ç6qØÏßú`ßq¡KÏ|$oÊÁTÄi¥[ËXeE^xDø¤:êt˜-ÅàkÈ‹VªmÎoñ”‘Ð3žÓHb/‰t>—L(Ù"C!<@E] a~àVW. r«%Jô3›Éuù^f°“ûãÎ]kÕÆ§ìA¾¥#IùX_Å.WÛŸíAÆnrL%é©*—`GáLƒ˜Õ2 V LGy…åÿ ÝW†£Ö²7êä Ý í¦çAoC›¸âg©p¥O½FŽ ,‹høÕ¢7# ò6šÏ~éÎÃâNƒ¥b äpGÇ%ûoW¡&ÕW@lg  ÝäÎÛ·²Œ=©(¶¸(ïÚò܇cŠkµ›ŸPªyÿïÍÛçókY—ˆÙ¸€W7ƒÛÞÝЋWª` Œø¢”ýÚ•-m`˜êݰQõP!˜nŠWé~Ó6œ)Òú,®}”¨*ÍÜŠ2¼þ¿Û}U.¨@¹è²h›rI¾—ºNÐàý˜%y_ÜTd¤]6wü{oo\fØzWß5Ñ^­Œ­LÏé†Y¶Åè,õdNCKË‹ÜÚÇÏÅÍÄ.‹u„”¶“›ìÂÖBfñvþ¹§6± Y€^Ä0ûnüIPËš±•>löoÍäÒR¦ƒÏºÈô "5ý©}ìªqÚC“€3’E ôâ„[#?d­`Ým@F±¢WÛ#æ‚Ðf\U/Ó¬n•e§?‘=„ØbsÅ%²‰¿QR‡˜ïL9 ²'¥gÁ°ç¿{ð®‰Iå=LJä•X#¥œõ”ÄiFH¸u;"ö:¹6Èbìå«úüà«ÛLñc&y"œ6ÝðB¬ù2ñŇ;‘ÂoWl­ÌjS­c~±Œ.æÌ„á @%©(zYn5LñõƒISªëÏNøœN²Ãð@žþóuÏØí“-nÃJÉ«k •„"c%Ÿ!ßfÞ]Zçqˆ]…t4›‰Yt@}äiŒ”Ì]^Ï”™Tð€[èÞÛ¬º~‰?šââ^¹¨Ô&ÝÖ’fŸxDºøÜ(*«×ï±HÞ”µcFåZÃå)msžƒv—1ÄŠ•1•ëI=T¹Õˆ|5Ï.L8Pá¾fÅöéçŒÚm Š˜=Cî$dV[øÁûVa·X8ÑÁ‚>®ËÒí'!üÃSQn”õÊ@›Œiöš¿HŸÓà×lZr,õÊv0s®?éÿ¬&uE{¥ÐõFîÅtwX²è·iX«å¢|ÞԨѭ|\Sµ2Áôw=¯%žm%é]Œ°€R;Q€u:çú¬|GþœJ§ê!núÚìR-ù2åOŒÊf–:]·„RßBiEy‹‘Q©)W%™^î&8ÇKÚuèa¤Hé6Ô„ [䘤Lߘg?c&‚Á™ÞPëH*&‡ð.Ùá¯{,@ïŠä>„÷™#¾ØÜ¦-v»¢;F–(ÆÂc¬ºû/šå=ÉìÜdó¹Õa^®T-ÔÆhÓ‹Ï) ‚#ªI%ÒRð6Pîb(ÔáiÊ.ݲMqä±fôGƼ}±‡ ›éG$a6¾Fî8¤Ï‘Ïõôj<•ÁÓþx~àHöJêæ¯#éWo´Ê,îÔ]‘•e¸N{Æ-ÚHwv¢¢ieÑo1Ñê[ÁW8‰€+„SPÖÎç•2¼&ÃÚ¥¢à]ŠôO§ýLf^ÑK“ž‹…;08"¼>Å-»Œˆ…êíéf;·QàW¶IhÊ[†…Å„Áœ˜í ÇÏ¥1£@ŸÀÇfL•K-{|íß›´¼ß£A¨ÿI‚Ù¤:Û@1MVYýÂÇQÀ…WãPï“‚Åp×€ÀãSû…Ïœ¶¢¤æµ‚ e¬„‘*10¡¨b˜j•Gø¤~Š¡-'Né^QܾmÎb.¿óXæ=Aí¯ÿ×vaV{h[2áÁ)=y^Ñß3Ñ‚ãQÍ‹È\~}ºº¦AÓà« ¾Â‡?ÓÑ[ºã{K¡ý2Ð #¾j¦Í…&̲ú`à"„Báá†ô/IçHfkgÝa#iÁšþËYFEÔ¬õ¶ûÐ@Äoã[ùù`û("®M¡¬ˆæÙ¥¤#L’„1„w»R°•:šŽ»"»tì7¹ãK&qÏ…ëV²ŸÈN£Ø¸J’ÍÆ1 ÏžVCô´ìUÖ«O®áªV8qÈ,ýŸ{^6j¯½6[)Rõ§|Ñ?O2Èe¾”’£M1p .ðáÑvìW?3à4?fVynzÍ7Œ¼ñ†™µ5ÿc[€¼Ä´I8 ¨0`ûwÙN”Ïì*éÝ«ø]¤™ó¡çmW)‘ª‰ ‹l·ùOEÅ’jFffúŽ*º®]zß.‘Üð~.K1Ö›„:¤Ò§ÜœCQó÷Ö¸ r»¼Mï—+LÂþæv™âQg*øþ¾{§mµÂWi¶Ê¶VRúnW| ãD&ÂÉÅ9„ò:kVô0 9 oÖUg7è Kªd‹r&ˆÿªß°Œó0Ж˜?nC@…3µê:R‰D> ˆ·Ág‰¶YZšèõ»(ò}mîþcü¾ o?í.üOI=¾âgB«–º]ßènI9 p”ŠÅ!M1Äþª$j¿(Seí>e*Ù(J¸T†C4¹­òEz;b¶ý™? :kã»jVŽÂ{««ZZ7Ñ¡_—éàuáÿ¡©¾8¿öN6kVSÐò8Üú›z•©¦a¾ôßî‘æÖ§GÇ–40Ÿ•§_̶Ž+S´ÿåªÄšCFÚá“ïéRSF7ÓY "qÄi®µÜ;¦faˆåá)¨Cù{„£ØÌü„ÁWw¸×ÛÕã÷_~ˆW?y[dJjOðá'F  ð"S"ÝÀÞ/ 7>d™F9MÒ~Ö‹‚ý~˜…ÌkzŠì™·D1€ü¤¡t·ª±Ùêå`n¿µoõ5‚½ (Ù[8¤Ø{Ø®æßž•ÖK»¬5„G†”SC' mÀFmV¶4 çz¯®ÑUE!qeˆðöï5}› ÞÉ´£ë%g˜ËkõÕr ¯>¶7Ëí§d÷PC"j©«{ñÑY=CÁÔÚe+dP¯30üIŽÄ J¡Ø;_EA!®ñc ž9!3&Ó_8$¸€AÒé‹l~cg¤:õêöŽÚ8}ŽóB£{º_ÅÈaØ¿pH nß‚ùÉsº Œ£§c–E+9i°xƒ#C –äÚ;…–ŽÆqQ:¼s:û”s$/L ~A‘Çpüè3ʳ›1ä¶p—=ª2j°ÝÇ}&…÷»›5êêø3¼×BKÊØÆ²aq÷F8¬+üÛ?НÜ_P¸À®õ€‰°¸ª0"rŒ{q4=¬Ä^¬OÄCŠ‚Tõª“.A[InÉ˺`ÞƒA*ßUoèÖ`lë$¥(ŒE bì÷wUûú˜o °Þ4{/¨Í·â5ÜYzêžâ‡e Hi«XÉ~¥Y{êþBSZŒj4[—¯¶œæ6‘%QŒ¶÷¨–‚‘Ʀ±a`=Z!‡·R:ÓWïÏL\Žš*0Ù•Üëêç:#´ª®õ…t¢f0^§¬Z®€,Z%]´¨_çŒøBú~9¢„-/t`0YCÃmEóý‚ÑäÖ݈¡QE©ÝèŠ-¿'+¥Ú(äÖ^š>P/a #!éqJÐlB^–Ñ=PëOñTÁz…NþËœÇ)'¥B¸|€Ä…bëµ0D>šì¢?âÿŸë£*MŒ–¿ç—‘;kìÄêÝt‹OÊCô1¿¶ˆñüÚåeªk}9 ’0{ó_µ»87è…÷eñÄï1HwhWñÁ„bjœ¡˜’±Ç·,ù´¦˜¨;ªû¢Wxt‚/Kd{>ùm¥ŽE‰É VacôÊCáÅâ¨b§aÚ1ø—ÅåÐï@m«rGQ<¬Á¾¿„ ÐÊ#óE‚•! €êû.”Æ|ˆïÚY~K_Ç—D) ;ZëÌ¡¹ò7ò¹#5ÈܰŽ)®×B)«ºõu«Zí¹DÅÑø7žaªšV'mHc=ÍëZŸÿ2É•qhj™¤kàÖÀ'ÁúQ°Ìô…·Ÿðe£¥t«BSÞ9äÖmCxÃD–{Áqœß ~_êç}j _eÍWÈ`ÚØ|¸}U¹sýw¦n(eôp¤†`T1‡Í¬ãFQTxû傹βn” ¼)JC´.ê.3©Üè=®Ä°¯«gr7°ÔBà~çœ%Üë¸ú©X퉎ù‘Ñf4½€Ût<ðpœ2Ià™™H:­_×àj¿¥œÞØõ®jöNÅöæÂ^vX ħvÝ^œé,\Â2AûrºÏ^É5P¶º0UL©ŒÎÔZŒÆ)ó§ìÅ;åêûY«KsPh` ÁEÉ*cɽMÉ©¼ÙR Û–5Z/àše÷ü4JRâ Q‘0_ÿLÌ—2^/ÿV3Jò£O$týãg@28|üîÅ/Ä÷2FÝ0:ù—¨Â{oÞ<Ò¶Ó&~È-Ói¾ªÀ‹ë.<Çé>9ˆËÖe{! oç–ð2^Ì1ôm6C…æ G[–~RÛNCHãQœêÂW`“š×5œŽEL.Æ—D°{‡þSŸq¤t¦k¦[h‹M¢ea¬mJ-<…Y ›Ž&Íd¯ºös¸:‰È~Ýôb&®As¯ dµÜ=‘~²Eb•7‚ް²¦­ÅÒhÛ›BÍ6æ£$‰Jä3o?ëЋ®24ãu!k"Å#LLÜÕ¥ðŸ\z °.jÓÐ.ä_cùžç µõÒ˜\á8à:Ý^äo *³ÝÊ¡ø\‰E…AÎ~ 8ª#ŒÆô…eÚÉóåžñnKwÎÀk£‰4÷f´OE ˜Ã23ç›J¼î÷…+ńϣ!Á“Ò” шûG‡{År ä‰ÕÖ·§ ùõiOYñ¶»Ÿ³W¹Å7—ΰÜjv>€ºñâG…™¾ïižŸ+|¸g¥žaZÔ=Ý«ÅÊ<Ôœû‰]8îy¢’ULÔk°ÉbæN®ìŒ8iSrÅgþæóVÍF$¿Jð`Êl'€Qêâµë)zÞVs®®Ç¿¤#‹IH²½¸§­,‰™‚[M»~^óK3eÜÇlDËzlÀe¨ ÜJJv°Wšº3Ä8ϰžTk¢óû)Ë8{ÈéÇö#˜¿µpRîÕÇ­uíQiå‘M6|Τ&•\'ñðöMO›Û†!‘†C<ø-p€Ïè äòÅË/œ¶ç‰’„ݯÄ' }^4äÀËÓá‚+I†‘o¬Ÿ¶Õß#¿ï“Û-z.‰Ä#šñœö8’ðEÐe¼õÈ@=3ZÀþAÔ(oÃØšÜ$át ÷—îEtœrq‹êÂC©·l!YÝ…»¶§©#:ÕÛí|÷§ÒËa¤ ¶Wˆm¢”pP›Æ}Zü3‰GFï½\hä‘xƒ¹¡v«›H5€;›Q˜ÔÊRÞ±Œ ›º…øbTªŒ^Bëšl4I$õ¼Ö*ä]2R=­­ÛÀ 9uûõ‰:ÐhZ¤¼û {†Õµ#qsyA}0Óqz#ÊÞß™Ç78«òé 2æ9çZÁB]ý Úlþ<‘D—Nó’=Râû–о;=âxeòÙ)Ï„OœÖ àá{Þq3P¨YÎêCv)ú1!üÁ† @Kê¬^f©é³üúmOà |µù5Æg<Óþ¯¡Ën¨`=4tÙ-gº @ 3£Ü8#@GdÕ¤€QŽûcY¼2¥9àŒÁÈHݹèü#áÒ‡¨ˆ/Ø3¸„Ÿ!üΧd¼ìÀYÒ+q0å.e1SµÓñ+‚ìÕ¢ ¦'adäCêÌ4!õ}ßµ}EÛí¿)=ò–ˆ&!Ÿ' Fަ•‘Õî_®’©â_Í Ç·”Ì‹nñä ógŽžSÉ6É‚^0ãíbæ‰Æl1¿(*qOAÙˆ óZ ¸ÇУ޺ ”} |¥£!ãyƒ{+uülÔm-Ò°Æd-Ý–y,Kúæñe™z|Ñå«ORëªÉƾù&ùUÉØÚ^¯F˜§Àüp•06_ZU‡Gá@Á!¡0 öhS#†ÐÉ¥v“|…G´ÝO3ÂRËþoÉ@Ånê¢BÀŠ^ôO}B³ÙOµ;ZJŒœ±k´k?¶ÕŒ¦ 1L±nKeÕ·sœ BY½0¢E«µ×…s¨û ”^_Sm0h–c³d0˜C(çc ì mÿf–ÓJVOiK.‹ Ö-Tü—ÒМ©Eyu½†I?0kè®bVõý±ÙjK:ÒdnICý¦ñ1cʼÿX‹’Õó>ßQ+È ¼,„5R×ÇÜ#d½îúßî_„, S¿ +1‘î«¢ ‘6&PRÊ’÷“¨[áÁ¬ÖÖµ«{œ¼e»¨¨Ô}õİz—ÊlîpÓ:»^Xª$f›$@ýægðg£üÂÚ93ý‡æ}4ý$$¤³Z‰=è—ivúj(óxf_ Q#[ƒ)Kž‰…#¾[Ð’WĀ܈¹%Z®ÀМj­‘]æ²Õ¸ðïhÓ"¿B˜ Tƒ²/{by~6Þ¾–¾B;4ÚlÄÝ䙵º{à{Þ"Zexˆ>Kô$Å9ê&f³Á2µ]ÞMdL¥n ƒÐBs#L¼«s tÌÚà.•ä-Ô@9‰ú´E{KUQ`yÒ!8V±ìÛ‘ôš–>Ÿô¨FhòÚ^ézì]ªþÕÑ·nÉò¶cÓÿ³Pû¤KÄ ƒˆÏ0„¢m*r ùå“0¸så‚aNÙb_3±\2åO&ÈIJra,ís·ðC‚¹ëæ©4¤C¸fw&ýĬ*>% %|o·õ%µw…"b¾æ\™°eúIßXâ$leyÂÃÔ@†xo]õP÷\—ÜÔ"™ÓÿOãiÚü†Æÿ¸´»ÒUð‰B´¥¢4HûWƪEªµR¤ª¾OÌÒ„xp›o·‚z hº @š9m«Ó°·þù­ë¿!¾„\~§ê¦ ŠDJ<´^ʈ¿\ïòßuI•ˈ7räjjˆþßB¨ß?7ž‰Ú˜]¯•]œ!€ÆèÓ‰Ò÷ƒÆìGB¹~Ï†ÛØß5¡¸³+ú½XoÇ EŠ’6Ý8Ïï_Ù6ÆLg²&!LÒN#m!…¨=ÇÁ}áú{^ô¨)sš©ž,Mò/z—%ÉñïIzÙßN# l!|â»Î£«îwÑ@7·®ÿZŒÒ¡O–' %u ßøTOãý·²‘”8ú.‚Æ ÎOS¶¼Ÿ53Ü÷WΊãÈ~/RƒîHJ®›€ãÂv ·áEB—t4çÔëøGè›䀤NVqìØ"€õ«G0àgïÒEŽgåÕ¦ˆËY7nFÛêm¤÷š½tdyÎcמ !®?—‡4Ó+Jð€<=XK@z5ÿ1¡Š¾”¶9¶°—]¿%úc7wáÔªï8¤}/äS²=ûì Bz'FQ—,Ó-jìh#4°Ì þZÎ/õ¸BŠ€20tT[»fé j zc_ǘÁ³£o߶뵘Á"ؤfJSIlpZÑÿŒîžLÒB¬n_êðVe`_¦ôöiÇñ{ÄÎÛslFèè±)ÃX¨²¼Ø|S}zrê\Í2/q36 ˆ®ñwËþÞ$×I ›œ Z¥ ‹.±{à )2Ñ[å{À3+œýÞáì˜ýY-ŸôR¨Åþ8“Ù!ãex`a«>?>ì«Xî¥Úÿu·¬½¾Û^~ÒZÍ.€0¸¶pù°ï wÔ&ü"‰DFZŒÁGåþh@Å–#P«8à1³wˆ­ÐuÉšM…9K_}“¿}On&ÐÊŽÐÉQÎêDJø6óåNZq}BbâéL¬$fpÆæ¢ÌõWJ»u*põL6Ü“ŠÑ“­‰‹Û¿û†z v¹nà*¤^ÓãñרreÕÜ–íª6´6¹@MòîßËbãÉó©q;H_'njÜ(?³ Ž0±,Ÿ°„+‡çj“JÕX?̰¾ w¿hç¿¢³"cuÂÁÅ~Xø<…Ì9@h§y†ÜGüB¦ µ)ÈÇñÎrZœ-c³ô†kôA¾eX sW³’AJÒáíÅÞ?‹Èž5Ô ¿CCÝyOqÂ;±õDÜ=÷'¡ I6HÛ¥Ž £´Çe1ošR]ÚpüÓjP•’¢ÐšrOX±½ËŸkî"ÅÃKÔÚ´ý£q²cÆ8 ª…ˆp%±³ø.à,¹ß 5F‘1Ìj|}I˜\ÀR4Í1=¥p“°S9êJ3ïË®|oênƒ¶uæ(ªéîÙ: PÛ߬>Ä9GAÓµƒ.Å›.ÕLÜ ³ò÷uÏúF§ñ­‹…,í€ÇÚ6 ÖFÞOϦš-rS¢¢“[ê9ý‹‹#3{;£Ò·²Œ—KܺãÎ#t!C¿tNm;ú k ã£)®I—,Ü*ZTÏíÔÃv":æûVm4kçM”.Ġ»ýõÔÛÒÀÛD±@J£e-,IËwü³¹r:lÔ`H±ÅÖýbdÙÁÎŽU·õ1L*ÔvMi logÈ ‡ãº1‡nFÂìÍú?Áõã†01lô±§ŒŒ*|BùUs`tuŠP”Ÿåoò uï‰y$kcjIg¾V Õ8˜, C-Î% œõ>+7nB‹ìUÔ-4ýØÍÏ2û§|®¯;µ¿Šìª+éü"¿Y«¹¸rup:1Ç–ø%‘©rëðX²|Ú$ÜM>¾–µ9o?«g`·¤z»(Æ9Üvu≄»­7 æ1îæÆ¿ùòvF¥±+,ŸÂDnÖÒšûãMR µª Ò\æT¹,ù¨BܶÜwVB=ý}bNãü³ì£½ždÌÕ):NÖ*²^ðÓôe=”ÝJ‘>ÏX±™-" öH”&¿Ku.p«B@ÍÄ£©¨§¸Žº¾4?Úë¤ÐUL%‚ÐKêÍÌÜûow›ˆ’oíqžiÓ³¤€xZ!1KðkÒ"Vºª¶j,ä» MX[-Rø¬7D]xû¡†å”»ÚÇ,÷£}¥ê›•'—q¯œt½suåQr­öØ«ÌR_±™ø%YaÐu Æ«ô¾ æ^!#úñɾ³82àò‹%éÜmȸie™Œ%œ>ÐY–À0½ 6€XÝh ãü}ÍkÝ2žÆyY~DÒHÖw‹Â†Žš£ÿ±´ 8‘Íç&±ê~nY}ð½ØZg³\\æq¬Y]•ûZ™×>$åàLnЉtqcX\z‰Yj7ïªÊj~ïÇ”üe€ çŸ^$¯°Ä00³½³B©´ðTcfÙ?+6™í¸ZŒá†§‹³/´„ʾ†tÚúÚ½¡€ûÃŽª„Ôã{Mçqz)#:)n•ï&°KÍàÀo–½Þ®oëÆžðo¡/ªÚàR|Yl5«1\ñ{#®¶„ ¡FRä‚ú¡sˆö=ÈöVº”¡¨èÇK¨°»ÈºEM;Bè[¼¿"û‹ènÒ,•Ñ<ð¤q²%¤"beÖŒŠªFäîêf_jêhý̑ފ½ˆ3†Ò¡¨Þ{yS]²¯ø<¯@äo®’)é {PK:Ñ£ÏÙ$À·°ø YÙÏͱ ø[¶!EÕa³Þ(úZ˜ œZ¡ßÛ|™!×!Eýdúb<÷ø!"ž/VB¦nõ!ó×>aîàF8ëÙ3ó±¯ÏšÍøãš•l­S<ɽ°Á]þªá@2ƒy«U*ÖGhX&¬Q•WlOÍ®DüRMtÓK[C»˜…¸ãðí p‡`é&Pøhh!@Dy¨Š±lÀú.Õ»,Ó¼À³»ÃvDì„k_ S:K:s Ô¶éAqRk)·ø¬Ío÷ Ewý\ Ö‘Q¾ uÛc„)él³Íð ¢äÔ|vW~áê~™ˆ¡‘ʘz,í;èÇ Åù²c·Vr>*… F‚¡j{Fx +ÞÙÚ'<·D<µšmzYÂT,Kb1ÿò8ÎNïù!A6nŒ%Ϩȯ €¨ ­µb3í ]è° #:fl BDÀðÒ%㌅4O’Gá¬YÔe·A ºýI1Z:µŒ€|"£âð}ÝLxÅNhñ¨Z´} ãs”1nåã/‹:”¿–HÕUg‘åÔýãÑùñä \dãç0‰3Ûº¸@õ笨/–&h’üðµäah›=èSi§3íí<KÕcóN/í5y|ÆEEoÕÒOfËÀ×:\¢’Qÿ £] i(:gÐí ©½[àÞ]FçQRÄZf;A__ùï2„à\f†(mÑA1n¾ô‹»±Ù{þªä(&>ÂÈRòH“\Ii°Cgv£éþùÔwÌxS=lníRIEN]pÎ;(„ÝÔžpy¬„ YºÒw §F%ãü_`ž?ë¦UM¤$;³‰5U’:q2°F_ä½ò“G°‘ãÝyIù«"ïÄE‚™HyòÖË\Ë|]JÓ\¡\P͵P(û± ”nG~çßº¬õŒl&u†Y)'»B÷˜!\˸pYÐ l·qൔ0Züik®|ë'X%ÏKÒrÍÈ>L’Á§K¤äŸ6¶eò%Xå òPGÐ =±vÐt©zÄ¿‘/¡y¡Ø4v_K¦xÀ Í›©òþÓº ‚Jv¹”üWQvg¢Š¶ì³p©Éžy¦ÁâjÀQ/¤U¡ˆÞ§b¬Û;L#…EÍf„TD¹8›3†ÍJ™(Á™¼8•´zGp{¨‰”Ó°½¨)¬LezEbkϳÂ-£…]7t÷PQ³×C¯ïÙ×Y • ×ʶ„— Ÿ*Ç…oú ïÑ>t¼ÅãÝŽ×ðµóÔPh(Kà‰DeÜ¿ä­iâ¸äì&pá„«±éfcÎß•3%|¾Ë)ëòp‰öGÑ*¹>RŠ1Ãö1ÑÓPjž†a¦#Ÿå»Úñ^ˆÁþÈw¨½(š{üÙ;„©Ñ¨VŒD¬%¬ãÛéA Ã@ñ2àX’½#ï׈‹ ø¡Ÿq°%Ë _RØNzù<ÿzîæi,®ÄJ:äFâpH´ßñg¤Ñ'“¢Œ„ç/Œ‘[Ù\¶}^¬…^ðgP"PqvN…¤jb°w Ñnß;·Å âY®Çm›ø5kÎr¬æ¼‡Pe‰Õ‹§}x|A0á.þÝN­ÉÜöXÊOmÓn>ÌäQR%5¾ b1²‹`Êr…ÙW<ñ%™á¹·G°ÂmýÓ‘ÄFµŽW[A^r.K)ƒÐ[Rèx¤¬fÉía=äoÏ‹ÞÀ±€aóÞ8¹ ‡ŠPLÚ8g³þ‚ ¸Ô‹ŒrX¯Ý&f®B¹0yéû¦ƒ©W jž!›íç¿Õ_Lå®éGèþâð4­²[„Íúcêï^H•ƒÄ.”uÌ]úí;ªÄø ÏŸå*h¥/WÃ)·Õ±‘»Muˆ9€êøÏ‚*ó É*E#øÒÎþ×ÄÁãjð0(Ü{Ïa)è.¾2Œbè¸Qw[´Û¹“¼K KJhÖè‘ôµÊþã̧ µûÜc¦äð¶EÂA)V~J©vþß(Z¾Á²”á«á@õO \=C*1oé/t.™ 9bˆ¨©•ØËhŽéK|Iwã˜âO £gFÞkƒJß; Ó$£•…ka2QÚråWàµVk@¦º/Ã>2}çînÆ0cpþ‰Ñ‹n!ÓýÆCç^®ùâLMÕë Y¤ìHqªöûæI¹§ÉŒ±÷W½|Ä•éÈôÀ/vC"oǼQ›jÑ<Ï`Rb(qIœ³£e¾«ÙV˜‹t'¦Éž18ÏÊ” Ù¡ÌB)¤ã“”ñ1pà ð >ý‡3Û ÖB“—/¨ öQ÷2“ü÷ÀqLDXÒʽ}ñÕ êŽæWº#¹Ï Kwés^¨¢†0ôµœl ˆTØ1c'm¤LT•N °¹HåÔ=ÃÙÃQˆµ˜_Óƒn˜9±Xàwß©jÆ2|ÿ ‹ Ð%?kR£ ò~ççïGmð©OmrÛFY¥7F)]—$SÓRY®XéÈJº\çŽÜ㻿š„vþÓܰÊî¤O‘3ßoßÊü )¸Éªäq0n]jJÏúùÊÐTº•H œ9¬X}w*B¥ëhá”4»'—Òm¯Ñxi¿Ën÷ëÈe4ÏÄr… 8~c ßDï00AJ=G BCßO!g­AüFOö¢ÝéF¤\@²-ûÐÖ•ä¤â<3ß5¦11Õ,êIËl*÷ÿ†a­Á¹¶ нŒXeJli WD¶µê­ë¹»„óê‰i™-U _) ˜Ð‘-s;IS¸LŒ ãj„£×>ÖšÚGâ¡ Õ’ÇŽÙÛ¹žRÛ¯NZ²€+}’”— ØðÅT Û:|’¾LÒ¬¶q§`ÊÔrç^áˆÏ½jR–²µºþ¢Kâ=ó,76™ó–@ÎÝ„o <œ°.Ûî‡ü d„ÓS?{sÉ\lÒ\ômSÜun*ŽT»Ø*õ2ÅÃå=ÕÆTN—70!þ cÔ7<ÉDýº”76¡ÆWÀ¿èL˜RAᾬ¬pÁ7[@¤¿Š³ ¥Ó¥É?°boZ^üØr æÔ¤‘L}0éíkùŠrë“£Ù>rt/¶[®(…"r¾ì¾{$w_D½É£pŽ„»i2¯9÷$=` ÷î›%Å¢¥+¾j˜EÇä0Ìü…$ú É.á wcЖµ·’ÔlÒºþ¡ZÑš·TÀŠ/Í3Ã=Gê„yOÄz/ƒCšÄ¦^®u%Þ‡E²—î†>U±‡”^EÖ•ÞÚ«Võª¢›FW_™[öüE®]ÀC•,ÌÞ<™âúhpOÄs­Òü?ƒËc²¸sÂë.#Tå+9Í1G2ÉëdUኳÂñ4Mó<4SlØjôœuPNY.ÛQSÓèndž7)@é"=2•ÌÞÉYV[T&Ê©YÝ:d¶5z‰ÞTsºuÖzSÙÛ––‚þ½L*Ï(æ½~Zôˆù¼Wà!=˜è1£Öñå®Ì›R{ïÕ¨Cå‹©ôЬGמ‘ÅlÄŒZÐYß,tÂo§Ü«ofô’:ä8Äèð¢H$H*JL¹o¤1ÒQ¥RX¹ Œãe³ÉÙU·6²ÎøËÝ“ñòëqò@5ó3óѦ zëqF œ›«î(ëD œÒÑ’QÊ€D·ŒómŠÎƒÅX¿\;A¦T¾v®' ²)1^ Òé3¾™Eä~l¦·Gz”Ì•‚'N\‰JìѵD…khÇ,WNP`Q•E2½žÀ ®k±ü ÿè¢òÀ¢€ziT´U¾Œ(›Zòß-îh¶¸…íøWÃÌNãR<nÜã9:ZÊÚüVÜeeïUKŒËÞö•C…[†G¯Œ|òg„]Ô.*ô“õoSEÇØ!IÊ!Æ¢”NÉ0Æ=C)å¾BPÞ°!u:»d«u,Eà Ö—Ùœ ß𞯪¹ŸZçýLüXù gìĉqJ}v„è[À¥¸Õ˜ï2§‘7áÈÁLüÀ½ ïú/,#˜°ÍÕêü f±Ìl°ªQò%ý%Ä™IþŸx±‰þiŽOÓu[šÑ-€~Ëýg7IMÜ@v0ÛwðqV;[Gð¤y›–IŒVu j|‰ÇÃÌ /­ ¬±Ž°º1¼é°c¼–¥„ôÔ÷Œ p‚÷Cè™±Àìì1ä™–>»½û—Ù,™åcÈé]7äíi‰ÌFÑUÂ…½½ü{(<)°åÈ4]Ô ÌÀz½ÿ>–4£Ù‰% àŠ”Á'âÅÞRWx²ýÀ„&ø%ÀÞtsúbt'ïj ã‘$ŒÙÏ1 ›±sÕm¯ŒE*80ØÙaRväv ¬Á”1g@J®²þil6Hž!‡‡ß´Zˆ4^aJIF✢mw‰¸äl$7uO±|½ZŠ\±¶ïâ¶`ÜÉ{CÇ+Æ3ùh»T™nèE+ŠÙ;.s¨íFáásæ÷ÄQ»ÌÝVè<§®è4Ðú¤YÔrÁZS¡]×Sù<%se8 û>ê™Wzª†v¹¼´°@ §øÿC9Äð¾8€^/F…1š­ˆ%2·ß–$ƒÖìšG¸®Eô˜ʯMìªpF1çÿŸ»Á?º<¶:ì2…·F¼9œæX §½8óý±ù°ÒŠ^ðCå²z¤³çCOÄ ’<[#Þ¾éa: ÄŽ»¸l›_Îÿz©8qûk×*èÅ›Í_^Ž‘/¯”oü¼Àþ4¦+ Åg@…ÔŽ¥õâíâœYjË…¦ Zl…/©°RËmæÙ]˜ÀËÍÓyQÞ¡gPÛ2>´¹a¤Ûù;®22GeJN;z ŸÈv†ü"È›óí]®]³4§þ[•ËÇH²ð-ËÝ%<”BCX‚1ŽKtÚ\LZÆc½Î•€?gAÏPC+Ud}Ð^à¶·­ €üeÄ€%=8²¥ËkÈú.6.5“ÔðpËî ýãÅ 9Õh,õÍVW€FAØR^Ü6럫ŸõI'§On»Ø©y"®¹™‚ßð]2#"-üšœ8]²FôIS*édkÍrôÓ¢æ‚ ƒ),}GHAÌbñN\ÍB¯ƒ÷¼-d •n½pºz£¼ìÍX…0Šõ ®Ôñ9lz%ä~²Y Ïè•·ÿfÖÕ žïÂÖo=’ÌË¢cxðZS¤Ä}D¸lj£1½D, ÂHņŠ'Z>„­_'¢ÉÿánØê}+7%âü1°}ûé¿ }È"†xPwÙ‘7´÷Íåz§I ÂX²ÑÄÉ ó?ÑU¦ýÇœ&T‹æŽ/På/CvÕ"ü`Z³V á¸‹Ò¦ÚÔý˜Y=ÇkêV’f%Î9P¡¨®"¨#¼ T*”5(w:U´Û $«4ûE—™¿)ek-p‰‚Çhµ”%”ÙçÙĸü}ó§Ú ŸK2Ç[.ôÑËH[ø39´ÝJ;µax «Û•$ MÂõµ<ÏWj[íIASÆü‰kæ–` îxf  2 ¾îÚ±ŽC-Ç…úȰGÐŬ eSõb޵`(Ô+ºn "0`êEÔ7@&О#çž”‚™l: <ÏŠ–æõ·}uI êdv’ÌB)_ð;ÓÙ/í³¥%n4`‰äû59rÕ`„›ðMµ}CâEùrj;ñnÜ6É”WrœÂ°Ö6³“‰ QÆ–¶#LÔ§ ½ØHL&Þ:) çãàà Ö,GÀ—F]OŸ·*âÍxØvÌO­MÓ$‡HX²r¹Ev!h g ßÞp[’ÞL'¢œó•ÑQŒ¹púVl>¬Ëå¾»Æ~ê&°Œ>v<£@ TN³ï¶á„(}[õØ?PY´QIP¼3r\Óƒ’&:øöŠå(ð¸ýX²?ôã3wÿLÔ+{¸bÄòLó[xÁ jY‘ +ç ûçcÙˆXL¨âzEòêvÅ»­uë¨JŽhwÒÿ¦ëÛ‹‰/à·Òö»"©æ=Û–ôŠúSlÛ6=2”ƹ¼ƒ“¯æÍ 3Âûiû›G¦œœé,˸j1œºþ‡†ëïðWß@Õ׉C·íû]¾©Éµõ²VB„ƒ½ûtDoá—»cÿF¸šÁ­©æ¸w@Ù($· æ+ù_]<[4Èž»vÝ :èƒæ+0ú‰¼‘P]ÝâºIˆ²ËOáÿéiúcœsß‹Äôl•‡vƒßúL¨EÏ>È&$‚»@'»~[ÂÅaSRŸbüTÒµl•Ú®;Óɱh¼“ËuÉ[À¹h‘f eWW.ÞÎ ²_‘Æbæj‰£œ p€]ͧx>K²’á“FG7×%KÇ “¥É´Ä›þï=õú-3>ï"Ðgßc^bdÑQyHäL¿üè·¢ø^Ï€Ž?O®<ÃßÚ>’‘é+_öAQ€¾Lwõì Ï Òç9_«¦¸H³ˆ=-W?½Dk_—ê Ñ‘‹«D‡¸[T6ÈgcU%ºu<§B:—ƒÿêX^™2ü»öïªíÑùñä \dè΃‡fxÍVu¡¬œuu(bQv£¨¼‹c·¹èÍ©¶ ÅÂj«fÇ€!s{>è«¥Ñ@a¶ÁÏmÊqŒYBY½tTrPÀÔ{0ã)}»ÅA(¸?Xú–2lãMR–áûLÅPÍ€¡!M‚¾’·®î>ôä·bv5a}T–Ü2ûGGåIs›Ü¼3B> "'y_óI#w,SæÍÚ},#GT]j$9²1?~Ï_×1ÐÞ¸½E°Ž±)îÀÔê¸ìc-Qv­gêÆ¹ :IˆÒ-¶¶Ÿ?؇‰fNˆ‚eí;1bß¾$§Ô%LÂô˜ä+׌s2`Åí£¤ÓýpÝP…ˆ<c|x¸+_ÇŽ'‡‹S ŒU“¥!Ø<7`AøÙP¦›ùËÉ·[>­Ö•æ\ƒ%K%ÑtúMYõÅrø¬£†É¶<¶bõ ,ß7N\½’åônOï-Šž=£gçÓóº@ TEF9’tûÈÁ…èÑP¬ êzF©´ÙY).@»Á%0ä.e5g¨\vïÌn©£`)A¡"[DÁmQ VìÊYŽÍÃíí+fóèrò> ŒmëžZû%cY@[üÌš’uPä™Lî¯ÿ¯- _Óìäù{Æþ‡a÷M~ï+O¾ÓŒößvYuÓÌQ1 ?u|92LšpG-xNIæÌ·ZóóùÊ‘âì fJKM݃%n"u?¿+[sw“ÈÅ‚á:ÏÛ!,š§S}Û|<6ÆBez\rB¶ÒYv½á¬`}±†¼/ûH •±÷¯Èdà6Ý´*h#Ü!+ã¨ýxºiÚö9¾)š]WÕ–âKs|RžHר®)Ø—íÝ\ý— uïéß÷¨ÞõHÐ}ü­|÷FNхʧød}‚órgù4 K8G™¼™Gÿèƒj_Ê]$b˜új¢ Ä•}Àž}¸¤ˆ½ž#é°j”F2ztó…dõª´vǽ$1ܺÕóê8 ÑÚ*WÕƒ:(ó8WAÑ/¾Çòܹ)öqç= Þw-?PPÔìâ1PBìgUR£'åÒCU¶XrüpC×–äU,6 ÞìÕüæëÁBm6>‡6ÖXµ-³açÚ$Î`ƒIN;8BXtY„Ù\Û€¥³e –žˆ¶¡’Øûh3ÈíÁrFQ.0ÝV8Ô¿¤Ìmjå•FÓ"aû ©$ÈHjñ"/µ¸¨¾ÿšu3¾˜®æ|uèæØ ΂1n‡.À8󺲈Dæ"k÷o´ÝS>2ݘ¯­hn׬_"Ò:ÃïÄÊ<ˆ–3)ÔÅåD^H;1þ±¶eèúåÏjÒÉ+» ÁœÀ˜|‰eáý¦ïD œX‡â5Ÿòñe`,!Fž†©:i"û>Ü0‡Ùg˜aµ¬K‹ðš€£šq›»ïX3¥5·•]1ÒÅïw¶?¯ê >eý=m4›D-±KXà£Ð^³Æ<µœ™!FWf«h?Òhä„Ï^ÀüW«‡4¶úÌlSwj'áê«ß"¼†/ﮚZØd¯Ë.%¹.B¸÷ü6Ü„8J[…åÓܸ»ZŒ q®ôCú¾pö%H]Î;] _ƒF=þÙÑæðvêAöE„Ö_¥ñü~çÅS€P´â}?Å*ÿ¾¤!©cˉµ<Éâéõö¡ + þ¾Šý|Ž8Æ1Ž£¼ç"|n/UO¶Ø-³UÕtì„ý½NXžÀ“ç©òhz0 p©&ªƒf¬3);“¶·aM|‹”5&‹ø}ªA<ú¤¼ÚÞ;य¶>fÍ¿Î?ÿ]¦fŒ|KŒ ódp1_Ÿ½lA‘{Kïþ…Âþ‡‰Âlð~®µõìAˆ¤)j~ʽ³S4îrz9>w“’mé”#¿§Ž®ÚÿBçïCÜJífÛÇ"ÑÎP"íìa`¹Æ¡àYjcLñÈ8ªs[Šß;Sð8’>±g—Ù5© qÚÐI2@˜Ï¾öÔ“±Â…K¿ÕŸ×†ÈÓÃ’ur èxµI'ëS¼upÙNÇ*A||“¹~dÿ¤‰þªŽD`½q˜ë‡p U¯ Âk0·A”:,ŽcõQß¡Y~QýkEÓeÜëbz‚v®kcÍýÉ¿îÏ«IâLüÈŽ3o(r ­|ífsU%8%‚ÓJBÊÄ.ê.+²¼£¸‰òùLˆšñ{…'úŒ˜Û‰¦/ûÐç×Jøg.ð¬OŠ·0ߪ~9'¾ ·ë”3 ÚÏšè×êU0¿B>‹ ºõ‘·ü°¿2¾Iüé|öRx³ xæ“«@ è™Ýfß_eÑˉl#ÉX&h·¡CtLƒ6}LXÒ£±Gøj©a¶Š*hû„u Í€~ü+CçZ¯?i@ðÚÙ¾dÅt©võŸ{¢N!;žnÙ[qIíè'È•§É5Юªe}މ€‹”5ªá;˜·ú%», +óÒª”Ð6`‡¼3ß(°܇¨4¯÷Ò3Ó)¶0z½ä{3e‘¯ŸÜ&£²Àtp“ýN-#è %E*F„OgQ±Ž8<~e{b-ðµ\ý’Æ–mµLÇΘrÓÙó3qaë>öYM-·³À®\»\o2XsÃFœBêxIݵJ¸m¤™ã‡™£Iº*ˆ+½ì*-ïëØ ‘âX 5_™ÒÁÁvW²!¦kXëYF‹ºÀk¬Ñ„ >žJ/í½=¹³Új¥“XWÂóZŠø™4ð?Ä›ß-êÊÍ7Ý`YhÕjÅÞ5ÓFð\Ëë¯wolkxÇÿêw=Ÿ°&8¢zrè…b{ß)FN©u}=Ä´ˆ#¯Úá³æêxåy¬›áKþP1¥çuŸà§z,C<_J½-mÒLEZaºK½¿¸y•L0‡Ëƒ¦Uq«´í ³‚G¡"æí%)£éóÌP3Oöf3‘4tï[9Dô1rxÃ?™–®JŸ­o΢Ê=Íö0áÝ+.wÔ[.;˜oŠÀ*ç3}ˆ®;^Õÿe‰˜,v÷àN&woIõvJž‡À Ä‚h„·3§É@P/ÖBùÐòðÑ;Œ2°ÆPÜRÆ»‰j-]jn·e•9\aû£ºxS:ÝãÌ5ËÆ^0I#Xr!…†ÇÙÜTFhž/ÜKÁ‹® Æšk•8‰šrë—-§Ï K⡽O;AÿNˆ GNx³Í—‡%^Ñ)ÿ_Ûq½á¦(óМr”e:€Pi°s|Vñ<­šwŨœ6N¢§ìGEŸëy±ë®ße·M/)Cé%ÇsS¸[ô(MDùà5ù޳Þ†,ÛgX‹ÜzíFã´6\>¸ò¢‰êŒ¸l&+h˜XÍ€×ÐbÇwÌU ,§5¡K7(Ùó¾yÂ`»DKñ/"žmsOE_GwÓDÄ­ôã¾§K?«¾ôÿoP ›¢ÌLëd EÅuàQÊo€Ûª„»=R™;|dí¥Óú–#7‚·FüG›ÌfñúEÚPnhAsLzýò.IHûäc!ò@ª™ÉV{b>Þôd)B¡£íMíKR·}A2— Úßj7åé™ëƒs× LM<¥áò¢Ì!ç£3[ê?)˜Y‡vÊ<« IZY_±Mmpˆ'BÞ Ø”ú.ô!æUú”“MVÞ§Ÿ° á€æO q+…<›ñ$I-Ö·ml´ñˆ¤H×XÈÖìÆd¡W|ºîòpá÷–ì4ºu‰hÀaôÓ ôÆò–3æ­,)b“¾îëx$L7¾I$øˆ€mØ¢b>zþ®+?;²\,¥ùÛ©ö„!¥Ò5 êŸÏ:{4qÇ º/Léjþ(†p؇aˆ®áÀ¹Gd[=Mžø«3¯?lÑ ¾yI¥ü±‰ø×½ýËóR•ö½!B,޾šãHYr‹øâ&Vÿlòf¾53 ò:F°òà+æsR`ýŽ2™KÉë¶m¨!xÀ¥Ò¤n¿Õ3Ü…ùÚœëà平´Íx™ƒPÈzúO‹ù±ÔÈFó½(·÷æ¡#SetnÍå6 n¬yŒkŽÿ²‚©0€nUž\aG÷[:›ûo€Ýg vùŽ»HmÁ<ƒâPmR?Ûæ‡óÍ(oU7C²Â–Vøb+õý™M,¿ bR¡gh䬅ÈÀ_;›×õe¯&5¼eO-NÅ„vß[¾’ÉOmþ°S{ј)<‚Ô&ÿv·×G|ôJU ^bgÇ€(„—S‡sÄ^|Te¾7Ïí¡§hãKR‘0·›\¢a1Ü™€Vû Ýûw*øöÀXÒ‘»`Ñ¿$ñ þ-¼üß>¾œ+éX0¼t%O³<^éa=,wéóÏV jÏ®!e7ŽÂ”¼/è›åý,ÄË{ÆK1mlzŠìÍ;¤‰êÇ) D? Û\ŸVÓÀ`ªÃaß»!9F1áÎ}ʯ‹qGBM.(U.¸ÒŽ¢š.:èÔ—‰› š°ur‰Cã¶ñ÷ôt_¿vyü¯ì¤´‰²É‰•rÙî¤êJ&ŠÕ\ åù5åû<;ßzËÊN1Âñ” ô¯®³B—ÐÔCêôPGÔ(áp¾ƒéI§Gò°ë­þXäÆÜâá_¥ÀL¿Ã^ï²ÿ1çè$šhÜ+ê\8ÙLÁMOº“{÷Ým ~—è†Ú¹Ê¼e/êcI óüíí|f¹KC!dúÎìÕ7èÝ}vOœr3öwËùbõདྷjíÎÎÒ!›DÆ£>¸h¨ti/ ¤uáQs\ó|‚{|¥@<`²k u˜¢4yìy‡ÜñС•´‘zéºAO»  Õaÿ÷ãfš„ V7¦p¹Ç`?• á”Ú™(ƒm1exb~ÔŠ­—QB¼“ûµS!dÒ£îž5ÒVÏl'O—BkãýŠjé ·¶·Ö`ä½¾‹¯^¨ØBIð?¥:JØÄŸ§š\4oms8JóMk¥s6PyK„ ¼ÂÑæ“æ¢ÞŸõ³FƒD½¬~ËW„&Á€{î¢)§ï2’ßW|O¨ßq%É_¾¹Óɦz•êùu©<ÏöhJ@v6}mñ?@6sÁ0˜ïUáÅ•sITŒâuÇBÓ9ÿĪâIËeÀ\*Æþd?·Z/J¢y9 Q:jŽÖ¼+µÅj8¦šZZ  ~„®X•¢ Ý¢Ê)!EÑ.Ô&H /~yîlì—Ž5H^ó".>ÔùÂM§Q‰0ŠÐ8´%(@¯ÔN‡äôWü{Žö|­(Á$+ëãv Zãu.Ò£´GåwÖ²Äëvõ³WÀ¦¨ù•I¢€›|Oþ7â)ãà^{Ö|o‚O©Cjy¿ =o¸''’g k"ÑL_!“ÙíöñÇó6õ—Òñ YAcSPîkF#SÂòÐIVÚáhSPé”!µ ZnU Ïž(C`[•¨œ“«$¹Ù·í:™e¶ü¢¹\V çc /|UF˜NÛM»ïd6ª£Æ‰Y°†›Xå¼¼TCl#ŠÉ:¯ˆ.[Àà?^®¶q¬<ÀëËû*¬ilógFõ5sj,‹×ª»z¸Éßc×1‘¹Žä'”sÜ¢˜Äog˜>ù.VïY¹3YÔ´/Z0¬Ï{å/!7DúT›ÊÛ.û­LÍ“¦*„$¨nÔ¤Œ!3&s{Ùhæ'öø¨ègküÖ¦Q~b;„ J]úFêæ«è˜pÿ;±œdRÿ£¥«ÐàÍAý/ò!‚{Ó×S¦44êù‚*©×òè9é Þ»ê­Ó¤êGFܲK˜¥/  ´ÁÇ×hpIµúêõd•Â05ñ³¦ô÷Þx;ÌøZêb‹ýG0véQ•Ñè¯d ]¦aâ²÷wyI¢Å`ðîðÈ+šQeH“–¬åMqRP£¬ÎÿVY±õ×§#š‹Çc5ß$Nœñ£Ð€Þß -¯²¹èÚ[²@Nú±N]5wóiÓÜéeM2»¥¼›Ï®ŠÙx1¿ÐÀh¾øÊÈ©½ëB¢dY2T­rú—ñ‰…x0ÏRÏËmF¹¹4¹ŽR¢Q°)B-Úîâjª‰¥~;ÀÄ•¼Üš£j4€U ¦G¡Ý]áH×Õ Éê× ’<œxÛøºÖŒ<ìŸ_×qÃ1@¹;‚ì<§ÙdD¾´ý”8À t}ˆ3Ý þ 6¿8´®¨øp‹Óãâ‰BZ»ç¦Î ›:N¶ÖϤ 2¦û'÷«(±¨Ð§¾8ãX\ûßF¬ °ee™™ƒ1ºë$éNÿÃÕk7¦ó6•ÈG´^®J¾q(˜~{Æœ,¼5¸í¶ÄÐÓmÐ_àþ% D»2QÿÍ:ãh@)žÐÎÚsM–…ÚLÚyÅSîû~&Óãª^1Ðq‹ æ‘«ÿ–ÃÈšÓ«†i¦‘!IåžëVnÉQ‰_Õ®â…ÐÄžAS”Ncàû»cÚÎ4SÍ[—o{aí/d#ܶ1IM.mF…¼êyõÜÔÛžN2[8Ç9ØÉE°YÃn&!VævY¼¬ 迼)zŒL‰…û_´"r7R…n9Õq5Wäë?Åá_‚-"ï©j¸llËù¾«r ª¬Wu¤­'6)†ëxÙ•·ëp‘5ð°Ò•‘bO’…ˆ ¡‹2@A ½š)?" Æÿ‰fŒ¨ Ìn?Œn$Ä7(sy¾»}Í{þç:€MàHfÁHŠrÅÁŸdÁ{¦õCýJ+Ýò´='[sUìâú{Ÿ6}]VÏ@èÈa›p&´eÔ Âd½ôÔ;µžE/€ßr¬‰ÊSÿøÝ*xI‡{ØÿÖT%Léy%ÓÀt}#ÞÞó?•¦s •7P:FÇk6iŽK±)z?÷,ª˜{ý¸TO¥°GSx®êu¥gê *èO"b ßFB§ oWw-{¡ñ;ï|éÙÁó%O7; üüDÀ?ÏóÂ×´‹Ýíx¡ì|i\è‰g i!ù˜eGûuÿ?¯¾ -3Ä_ìÝ,!åï€|Ô§[wve!Àõ$ç]UHúÚ¶ÂFѶlÞÄ¿ Ô HÕ¢[ R?ºÁîÄŸ@M×"G²À|ï´úª'9sèqK®^v=bÐwñ_» {@b'S5˜{Åí›Î$sº¬Éþ9êeÕ§ÿ7g9¯;Jj6•i¹ØuÐTÌ kbî)Ílòü¼jW¢ùÆ¥º´ßR’Úúìe¢†C-Ä66{teSw ÷²ãúòS ¿@Ó’´àFÏiz¿M‹2häòd„9­éÒäU$óÀàRkóTËÝçˆ#êtÍ'c2uÌíäœk|#·½ =ú›w”UYaAM€ý\2*3¶³-F¦çD“Oh _ýó1™™~³äÎ$M¨¿µ°ÿ‘ŒaWjoÍô½Ù ›Rs3[ð~X—éð*£)lÀ\ô~HµX†¸‚o(" ÈOT¸¹ÖG}˜“îtþsã’—¿ANy½²QfèƒmI²­Ö'Jÿ3È#ayhýṳ́›…w-é¡Hà¨ÿÆ*8£ å…'óº4ÝdLà‹óý*U s \5‘Ö ;>ÒN¯W}L„¤fÅð7”殳á„j²é:]Ì>ø5fJàFI7E€«¹TÌ–|ø^æ¹×\§s¦´ífʺ‚ÞÖe;fIÏå{FrÄN þZÖ0ÄŒÏT›|ÒÞ®œU'ÐGƒìS»ž÷×PØ{£Æ¹¸T\¢BÔvüÓß/ˆBúW¯ùå›ÒŠ=\bc¢»ä\Q‡ÛÍ|KWÌ:öMºªÅÞ!¼«ŠX2%ïæ{çù¦pžî%ÓYüëÉi0PÀë¶Ø·HY­T†_@c×ié¹íëC…%§Çʦ‹ „u¤Iõø{^»I^»ÐÜè{¿5@†y0+MÆm‰?KAXáµ0T«›|nËy+©ÈŹɯŠ\ÉÃPxBz}tD›ž¸a{?˜ïóņtM½'Z} ¡J,Q·Pa0ÞYiM¹ä]Hóš1Aee£-<Ùf†€jsÊFÜù¤‡,4ÈŸü)H¢½˜»/:…ƒL˜w¤rŸ<ð±8X¡{¯  ïupßKemA"ã yM HØ; %,’ÈÉ( Ì0' Ö^Ì”ËiÅÛV–ZB³gÊ'[Ë#hkÃE¢™ö}à­½çó8!5eϪ·¥­¤Bý<·¦Ô·ŠbÃ_òÙáK“Wè»Ñ?ª¾ž¤< 9¿IvÿÑW;qã<þÙ¿ª B~Ï%×Á-pAz yã}]P]Ú––ⱞ5ZÿIgÅn¨mCb¨›BÌó«ðÞ¥ð)ï /Óó;ýXãe @¬ayX_›°> øñéM©2@õc¦!h{´·íâõøŸÑCD3:©¹{ÐÁÓb(Z¶Cô&÷]ØTñ Ø»ÜÛ€ÎQ<ÄVP”[TorÊiÝ'ë{[Ý•þºÃÄGhR¡Òlìš%äÑgÍ»¶{o°*xÚ«µ_ì~¹uáõϼ*¨ØÓþ™GB›Ås¶RÐÚg9 ókñXR§ÿÙ‘Ù'éšl•o3@Š^Üm{ ö=βϸڔuÓE(#MZz¬¹æ§if*1Ý­Nuy_ó3+î›ê~¹©)Z“èðZ xØsÂôŠz@=ªô|D¬IãTJ*£mQ‘IÚ O>œ3„ù=Dž­Þ`IÒ,;µÀºÃÅd»uÏuY|—{Ù«ù™;ÞÆ†r‹;Î]c³à4åVä?¾Q²Ñ7ÏsŠ'ÄÎ?(œjÊ‚ùtêÈ©§h,ÜšXбÈD‹`¬ 6ð:µRU6ÃCQÜ}i>qú‰.çšžAU/]îà^›qE‡(ˆRÞyMÅq¤Ö*Aß±ÅàÀæâéÜNÇ’·kRì Õö˜)iÈÝ$7t(üup­œÃÉB~ ÒaKŸ†Æ—#é‚:&HÖH‡žºª˜¼YäQ€ìÙ€L2±OZpXi¨Ã°k`086@)ó€÷Lyq+ë*ëU©äáYá`p ùµ)(’ P‚¸ÌZQªË4â'ú‹8œ$[Ú?WÁ dbL‰)“Ž–k͘÷ ¼e¾}=%©§<œ4yÍ“$Ì`N 8½×{ë€-OàÆÇ]ÁIOhÝR)\#Ð ŽÁnEÙÓªž[l‹vi¾4ö+rPû`4ü=EŸ¬I´P™ÿiñ{ XÑŸä‚`ÆÙêÏèM´Í¬o\¸ø¨Áq¨µ€?ìª^xÐq~m°ñmµãývk"3ÖLF•s™ÊžUY7K¾q|w'Fÿ¾ œÚ¢Hš¥‡- œ–§ o7 &L@G„z`cSü>« •ËäÜ’ ÍSÒøièûI•-%—ŠDHHÏ}@ V¡ÝÊ=Ò͆¸ží.¨¤´WQJ Œld³ÿÞ¯Ùú?¿’Ü-Ĭ±Ý.ÕïáÈ[Ô`>ò¦µ=íUõÙÒÅuÐ먗´€m¼ÆåÒ¢­&Ç,µP.¯’ÎëiµR÷³ríÁÑN¼TUEÕ^àÊΆ©PÈ‘ôzn3OÚ:ú_ÌåËX¡!Ç dnÏ;k=+ݽ;±7«K0V449C-ôª›p´uÏìö¼>—³ ø¾æûI˜Õ´ ~çô¼ª]é®0ûyʈ| ÈL±DQ7âCÔ/Ëþ©obYÝÐ]3[9ÒX È- ºî^fS~vn~ÁlQ*‹Gªæ8 ‰”È}ßíŸ]…#*„ãÓË>¥³Ál»/–.ÿ¡l®¢¶ø±ï àK†Xóh·ÙM”šê'¬¦­B6<èpÍçW=ʸé=Û1cE%tA"¤ÁrIÎzã©­Í㉔Ÿd—kJž‡·XŠªôîP¡Çé(ô@¾²ë^Ŷ]ÖƒPå‘$îÚüIÊú*ä¯Rm”£–媑ç™ôÀ\°ÿ4ކ”,plüØyµ'Èåð Í6 òáƒ,ôÍ rúù•ÐØÛ ƒ\Éß!úB¼Òa=8±I©ÿÄQNr{E<|íìô^l·òÕèA²Žsæ)ŽÖEª‘3zyÉÃÈ7"BðÆÔ nWü¶Bm¬Éëè1œÍæ«}K…ûú©K!5y è/³¤‰;DòAN?Ÿ=¨ZƒA{’ -l€²ûrZi¥ßn|Ø*w߬}‚í:Iè'æ%jrhX¦ô~ïü¬ƒ®Ñpâ YÄ®Aœ—Cw±ãMêsÕ›ƒmÁ 2õÿ<_Ë7±QÊ3Þoí¹¶s$p–^Á•GáÏ*qz…Š oðZtüɵäõéÞ+Ú’*%NØ°Ê 5,>m³àŽÀ¯Ø#‘i8½P©ÌªÖ*Ûä/Z·ô¼ÁN^ôj#u‹ •œ Jýן{ý› Ýé*æ1¬R gdTepGí r2DéªÏc”ÇÑßâ RïÞØ2±ªäÝ'Änõ¹ âQO±9jz`i»I¹[²@amA›ç+_³}O 7ÚAcyåéܘp°¡ÍglËŒöäOR<;tÕCÕ^³ÌFTcD ¾î?…¦ “˜g=~IÄX9yˆ|n"Óò| °5šsµFRtП{Ë;{‰;,œµvèåp´žü@œåEHÿ±±Ó €)•ƒ`°Ù6·±ÎfHºC{奄ö{Œ½Þ˂͜KÍÇüjò`uóË)$߬õñÄ –ò×Y+Wí±ÊÒù9SqÖªÁy˜¿KÈKý¹*\+@ÛþãÕé&ö2¦ŒŸn÷]i“žvJOR~I“ zòŒnV«ž2Ç;)Ð'^ùU›§ùk÷ÇiLá13æû¢'l[ƒô:„Ï>ŠºJ†±€öhB&~põÇ”06‰–*àg),ø~?ÝwNÑsù¡û°öë£ï4è&`IaÒËG´ & y¹²ýå„êy2ÈìuèM¼Ù ˆŒYè÷åéN,÷­ŒÅÖ¬jB» º'#näÖŽ™J¥åì¥\°0b—¦7Öin3ØÀéÄèF%ô'ªG·èU;X EÁh^`&~V>š7…©Án2ߦjUÿÌÈëÎ9VÁéw‹d%Ž i_®kI>=/ÌLöN*²+K¦1Å'¥hs{üØ¿™vwf/ Æp›˜mÙß© Óg. ¿&I<= ƺêóú,õlÜ^Ì$b‰6½Å£ Î篹~ÝO8ú·ú:\­1»¸!ê;gù t×ÁW£QKu[6âPý©mhkôÖ{oÖ¿X÷ü9=á[†¦ä±èx­ƒ^í STü¼4 $`|Â)­5w0×}ÑdÈâU>—Eí@Ù¼åBu6y:ðfZ9LùfòSWí,J?øõ +ÉÉÜ¿å2#Ðj’hÚYkø”Ε€ï#ôîçÛˆwppŸ~¨ž÷Dº¨Rgæ%sÛ¥%÷u(‡ Óñíc²€/ÅMÑI¢bÜÊv^¥ç¬2¡Ô‘Ö<¿›xß§»+"7©Õ/qHYõêl’ÔL¶NýP~,˜ W\©ºFo¼Â^ûÊ„š¼Jœ8U å×ÖJx}ý#"›úÊ…ª!Ÿ1 oäªý_u>Õ`ñ#–Dv—+Û*€‡ßaÐÿGþõrš€œp!Ö-ºSö¶¢k—mS”ïñ ³¯XŒøÞ´K°cRd#Øx6Õã¼áxΕÏØs,ʶ‘ÝÑ?šÒ…òÖ?¨ç±a6±¨íûD¤b%MæÓ¥ìq ‘„¿‹#ë­ÂÔ ËS‚-ÒŸN\°E>†<ªsá»ü(ã6½µœãè€eê‹y™a¼: \—þº°`y÷¡Þû‚¼¡/(2œ:·&«|j-¬ÚÆáÚFå‚…V•¤²Ùà¤ßp“:žBÝ |jÀ­‡ýô+E96sHÝÓ‡ I ÔΔ+®jˆÌ…%xŽ""9£„v”``¨þ¶•–²Š “©õ‰_{P™…ãd>äwRë­6MTC~òÎl?èjM+á(W{mñ2Ì}`-ÅìlîÓò¶›~˜Ì­H²æÙš¶»³:ê ÙAk1áEÓ“žé´¯¼ÂPL‚ØyÞåDUÀõÐFH½=;œÒe7vA}ð5©í–`?®Ú%Zs…­«_ãýÄP=›cSDG¤ýOãñ˲BpT1©…Š `úŠƒl0t—i€SÍŒbò­«¬© ¼­‡öŠüE9ógY·ÀNí囼ÀORŠ'z’qRì‰@‘’òå&÷™!¤çoìâ7?3uÃÀ£jáÖó½pXj¹FeßÁÅeK[Zì_’Ö8z»(¸#fþF:^ øŠØßàˆš(×!ˆ=éÀ$Gd䀸ø36 ÿz5 V ¦æt°'L+r“PŸœNNì),SŒ­¸wȲbÀpõŒê‹´6Ó³GÞjoèÚé1ʯºcJÊHÚDÂÎôؾkMµ µâG¯FóèP}ët«r£+Ðýnd9þæéJI¨V~hÓl³Bꆶé(fM­¬õ>dÇÓ’7ÐtK1_«{k…¦¢•ZEëÿ½‡›Ú_|³(\rAPxíEtäd­³ÓðZcVs«¦çùóõ¯Å€Ðoà%KΤڊôß­“¹"]ck ­zDfÓl7‹].åJ &†ùq¸£ KÔêMYxK÷;{‚~9€V¤Ó‘gt Ý\…îÑG ‡£µgx‰.;ž'-î]ùª`L˜0|Wn)+½ƒkï‹ãA6SާzÔ ‰OØ%™PüÄp¾“hV¼Ô­¹‰M¢ùY›ò$Å¥p(ÈÝUŒxŠ$øþ±¢7ü¤“© ãã{® Z‚œŸ} yiöÏ[Tôïã‘xQéöz)Ý&M+ ±½°]鯉K0Ï[-7©`²K¬Ré4!Ú]?.D„Øpó3ΕD©õxíîFÞ“[Ö^„=G\d²üližìÙ¡µK\¨Ã|6]þzþ‘‚öä ÒNù.Šò-%øKÓ­Ð S#ÓM¡w±Ý7{w¥ Øo9ºNí«mÛsºxCâ/Iù<€»}~ ¡,œ*ðPú9¨>χær%zb¯o6†ª°òFüñ¡ Ì/z*tìÖ(IÇAÔ]’¾³†KcwöHXZr’ò˜ÌÌiŠ–ôÈ9íÇI_P³$LYí*15 âa2ì)p’Á%xqQßôÌ0ì¦Á9a¹ø¶Šˆeü«(\ºMˆ‘ªì{Õ|´<ïU­|½§ÒÏ 8xÅ*wáâ,ü´¿õãàƒ?MÞYòè¦Ü^¹¶%ðZeuD\ù‚gäB*Ù›RÌxiˆC<\ KOQŒsö»¨é)6.¿8Òl›è®Êì3òhâr]?QÍ2|HÒ«Å.&[æ:*/ÈtT®B>µ¢l¥Ú-~Š»¹èC›h>Žc.m¡ô¸\Ø»±s,ª ï1à¤ßš›ž¸ÆBÕ¼ÀöÞÖÑ–!:€Ñ€$«yô÷ÏãhDƒœ… aÅ;OèSã‚£§w¤q¡–òNK6)’j$b7å÷>â“•âìôìÕ4aµ·ÅªFÀ`Tf?FìíŠ>˜3Kœ*´0ô5÷’ht߉òñg\]5¢$ Òñšk$øo… ö“M¸@Ïÿ%‹¡Y5¢a-O mÅW•4Ç3$²‚¨õ¦zŒwîã^Ï/ÇZ=]nÔ¤á8XH¨¹Z¦EEs]‚ôÉ:?¬ç-|,3Îá”™Ñ#*ß·Bæ!*l“fkÁÚä'\(«˜¹w˜Pê)ݧ»ñK^,hª&ñ¸w’ ÿœ£ˆ4‡˜´B;9O­“[5ãÕçwì2±B£†©oìáO¹m;1û6³d@§-ƒÅÚ8Éþß8|Õ‡H»&¾KH•°.ްš[uHÍæÉ9Έ€ë‰±›>&óTË!­*1øÛkIh?ÇýxP¨K€¹ñh„5¢¸ÿavÅpÞüéÄXj½]§Í*É<žSÃìÇc{ãÐÙø°°‚¯)·Å%ÆA[‰àuœ\c‰¿ÐˆMŸøkÓ[¥Öyè“ÒYè…ˆÅï^Øš)´Nô¥L³wP/Pf-¸ûÂzÿ³Ð¼ë¥Ì¦Õ|,$k "+%’mShæ'(¬±¹õ±þjŽfaÊøóMá+q7ÛH¼¢³” clø6ŒÌFTQŽ~roÉÜ€>SúÞ&ÌY²K]†Í¡«~§0:øË²­|ãV,Ôð†Dmµ½†w¦ÈýÁ;üx$#éiLz`PÞ“£Èg¥”ÀLÀû&ýℵfêOo{yôò/éņÒ]‹@À¤{z+âJƒ¯¦_*ßøÖV-É̇¾sr3ª ¹ÌAsn¤cMÀ†z®Ÿ"ì¼8híÑLÉ}ÄEÅ.õ¥‡¤5b¼rÀ^šgŸ •^oW¶çŒ”¼œuÙQšxhÔt³-Š,b×è&0“%©Í3ÒÊ5Ð6›Ô\Öñ}ƒÂÃrÓÉÃLh°ç ßå BŠO†«d÷ÝNMŠ^W"Õ¶Ž^•ÅL×ÀFÏÄ÷Yð ÿúß…ÈIœ±@s–°ÙK ]þ„é¦Å^‡$ ¯î‰9„þ3õ—Í<”S?›SV>GŒjžBŠ€m3ôaoý­"„UG {Ùñ²4ÁþÜÜú þÃVÅÅþ\[¨Ò_öchtÄfY,Ù in–Lü Þ^ ºÚ¸qØîÙKĤ,ºjðRj5ØóûLüòI­ùg.s¤¯ZãR±‘]ã1Ûÿ*ˆ˜9ĤÓ6ôOoQMûiûÅÔÖM”†·(]u3§FP9 !/â‹a¹´Oyá]ÌQûþܹž«¿”%%ßævD½M)þD31uíœÖì5(ñ5KÜûP’•ÿ1#â¥1yvnzõ°ÖýDÁO‚ÊL¨ŸÄqt^¬†Í‰J6 œT™9R,~T«’ÑÏ [ÜLøéȹýIµòF¶»Qû¸ëj„²8:Ï©È}×<‹é¢åUötÇ=ç œ³¢?ÈŒD­ø±C¬´;9M.퟾§°Ì;é`à8NñÜô J"à³´·;ˆìQƒ²™oÙ¹¿=¨È±jû™¿| á‘îø®íúÒ«„Ü'ä—“^Á¾GÕ²U^˜ÑX‡ÿ‚Ëð¹·oàsb ã:$P \èY¨žh©M–ýœŠà{¹Ð`ŠgÁ}Á\¢sÀÈíƒÐ?P.}¿ ‹wHzÕ›$|`ä¤O¬\SÊ¢õBm.P7''Åv&GH_?§yÁ9޹@ÇM…fT‡B©vÍTøóçq¬5"j‹Ý¸x„¡×:ˆ€áEI]o5N$¯#©Í¯îº}Q|¯Øœz7–îü vF~[.ô¢DÒiú×A²KMÞ¤Õ#t®VUE£K‹" h»õ^ßõGƒ‚ÏÃÿÃå*7kâ•ÓTy |–$|œ-ž©ñ AÒä["‰ØìGòaTLKÑ—F’ìQ•ƒšcä‘)Пƒ˜îŒ#7±‹¤~)Ó¢(Ì<ñD}òÞ1`²òêëÓC DÑvÁ:Z‡lkñ7eû/J©çà­1:ƒ.}NÃÐJLÅ Ý~Ã)ÀÆ‚ÅfiýpM§´Ä¥jPõ`­Æ£1T'ø /ß@`5{Úþùã=‹á?~DV,1Èĭʺ·÷&[rg•,QdæŠD4·hAx¡®Fç¿ãD«™y”a«®ž=NBMཙ¦lÓ°úÏ)ï‚H‘ƒ1nÄX¨_˜Ë°ü xc™Ûz°ñxÆ)»rlQ%Ër%Ê6}ÍÐg§1Èír2N\÷¡&ö¤Ÿ’2_a^“»"V„µ9²me ž¤_«Qv?·…å”+K âVÕŒ]‡ïiE}»Ré²ÙÏ[SÓæªé÷CQeÚŸœŒõ…¦Æ®âfY?›_êÉîÓº^ûÅÌ,ÂrçÞØySj}·†Åáos+˜n 06×½ÊÜçþuê”wÌÿ” „†eðÎâ7~äü}÷c^æÃòBQ]ó”°…÷TÞÍœ5¯xÝÁÊéæ~'ýæ3º3T°9Ô~~ûóדðÏÓž0OšxÈŽ+äÙ…Tå’Åé>V=ËýVù¼[·²‹õó ~ÓÔµ¬\–5÷î%Í^¹>ýìÇ„nŽ]Œß‚]öºl½±,ôáïKAÒükĸ»ihæäêÎxÿþRÏ>5Ã;¾Á{'†4GäL“<¾,õ•ŠEù–Ë>¡¼îVf?Þ]½bVMQ•šê÷œÃ7ŠýþM´gÙŸ5k—sÔfGùŠ*3OûøM¿• íx8Z¹~²ÝW9NéW§û¸•nt¶|h4ÓܹâÿæŸÂ&Þ­×~·ôíν¢ZwÚ.È/~¹æÝ§wG¢/ˆ= ½q_kNÌ5/ö-{¹Íš+òžWô1P¿Øž®V;'`Rþ—Pæ‰ì³˜Žoá¨ä8Êy£?ìþ¹ª£Ó;^‰,Ñ?6E²C«mNRHb‡s%ÿŒBçe»š¦[ž~$ü˜qÊ'YFÝs—YÜ9Üßòh÷GÖó_-xÍâxxap‹ÁÜözï/_*ã¼ËÉÃn)Ųû§ ×ß ¼W[öí>í <ÄåF"÷›릮Úe²˜kwݹo}eY·NHiˆ°Jû{¸T˶4i1Ë(+ˆÿá» éJÿƒréÂïNþŽút¿÷VïÞ²U§;›Ä¿çì19i^–/ö/bÆ+QÃ[¶üO}ÅØ¹âÕv+fŽy q•R©Á^'' ÿ,}¤¼Å¢Ãñ±…€‹Bý£ †0HÎIM,*ÉÏM,ÊæëãXendstream endobj 13 0 obj<>endobj 14 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600]endobj 15 0 obj<>stream x¬ºspå_»/ul;;¶mÛ¶¹cì˜vl«;¶m§cuìNÇN:Öä÷¾çÜsçÌTMÕóßZ>ŸªïÞ‹’TEQÔÂÉÌRÊÉÄÈÊÄÂÐ:Xº1ª99˜:> œð””â®–¦  “£„)È’ mi°4°±Xyyyá)âNÎÞ®@k€FSM›–žžá¿(ÿˆÌ¼ÿ“ó©é´vP}<,íœ,AŸÿÇŠê––%À ho WVÑ•U’ÐH+i¤--]Mí*îfö@s€ÐÜÒÑÍ’`åä ø$üs˜;9Zÿ ÍéÓ Q7€)ÀÍÙÒø©féenéü‹àléêtsû<€nkWSGÐg@N £¹½»Å?|Ò­>Sø âìêô)áðÉûSqr¹™»A€O«*Rÿödc úǶð“ p²ú”´p2wÿ'ŸX¦ÿÀ|rA¦@G7ÈÒë“è0³XÝœíM½?m‚9»ÿ冻ÐÑú¿<`¸ZZ›ºZØ[º¹}Â|bÿ“ÿŠóÕÿŒÞÔÙÙÞû_ÚNÿ’ú_>An–öVLð¬lŸ6ÍAŸ¶­ŽðÌÿ4‰¬£•€•åßt wçÿäyXºþ+A4ÿô í§¦NŽöÞ K+xf%'ÐgÂ4ÿgUfüù Äÿ#þ)ïÿ¿âþ÷ý×ÈÒüoÇÿ£yþïÐRîööJ¦Ÿ ð¯åø×rù™:í½ÿ?Å´-ÿ½hÔ,­ÝíM]ÿ;Š,Èô³»E­?· Óg›þÓ~@7) —¥… dn°2µÿüÑ5-,]펖Ÿcú¯-`deùÿÅÓ°šÛ9~N€óß,KG‹ÿÖÞÿÌÅ¿gþß—ç¿L¨|Î0HÃÛùÓ›ÛÔVtú\ÿqùGQLÌÉ àËÈÊÅ`dãaýœ­OxÙ8üÿ_Œü ˆõß@ÿè*š‚\^ýÏHYXÿï?1ÿßn†ÿ FÒÑÜÉ⟙W™:Z|.ŠÿEø”]Ü-e%>ƒecáeÿ·-swW×ÏÕô¯Uð=üÜÿµr--½,Íácá–M ®ñž6€Ydƒúúœç¶œÉ£ãF)ôK›¡×Vò‘ÀP“ëV~œÃåýÐ ÔñõoÓzù·sº!¼zú-ý¸=*¥M+QFeÒ¹a²îW?Mˆ§ÁÛ}]z~@ò‚@öóùü¯¼ÈŠŽ2¶ßÂÐL‰*lª¹¸6_%šv@ž©`‚Þ,´¹ŽÄtúïHº†c˜p‘Ó_W–Õ>r6|tc€D`ú¢:_~8D¡ 94ndpäÌÏf±’QÞûdçõZ»?¥uL§·B5DÉv-êÕ+ÆÝ%î·eXe«“‘Tó$FØØï£1q1M§µúlú°¶±—Õîj&%¾$w.ªýB•Ư fíýý¾mšg¨0‚ÕMÁUU ó\zÖ^1 á'[ôч>ܲ·xJíËÛ2, ‰ÏààÐå×”ÊÅÏG ææM¼âœ©ºx2HõL‡K{û‘eŒÆyq/=ÕG—9@:Ó”á9gAþ¨þãôk }Åvfˆµ9‡æÞü|O>Aþªj;±åÁæùéÖºñ›Xmþ§ýpËÃf«ˆ!43µ$FÞq¶Í—³C6øb(ZL¢tϬ&3€f©8 lim¶ÃQùO@ß!’ø>\7`lzk—;t ± ýaG4*Á%ÝHX¬—®©åqD~,rW|pà+òE4³ø±&]t~QÍEýiª/®}Õ@qóNæ žúmŽãW"á·c/Gzº(–§}­å(&Dž¿ÅòŸ¥%Ĥ«4$%‹¿ærO¿òýQ”“uÎC6§¢0ýÂN­§z̯‾ʙÛ)„(/ÄþkW²ú›šèÏ” ˜'Š~pô¶]9cBéˆ%; Ñó3Ü> €\d–Ÿœ=$î>KåZM íB:Ï–|ÞH¬$6y±›Ï²V ªý­i—Ø:&êÀW:”@´ó¯Þwù”³U­‘¡ ¦èÒ©vm–͆¿þF׸x~SÝî} ÎæßO XÖØ³‹©m‘@Dô,¼lžô½‰)i®Ú~Z7jgç¬ã!Ë@,c ZÔõÑ·–×Óã>Üã›}+äÙ*æË%Nþ³šücÞý5|† 瘔‡¶ù¡œsn¼b-C¾Qýåè…,“Ÿ—|^«WÆ&íŸ7jßdi­Y­_¯ïÑômùjoè†áNG©¡lu“hå¸êÞ£o 6¯¶t´,úI»0,y r~Ï‚&cS¤õÍ__lh¢Í‹Ñ\G<%³3ݹضŸÊZWªòtÈu'Ù’[œuÙbUyÚÕ7S(6õ`í>EXRà‰ãlšfðœÝ\Pú¾9†®?‰JJ ý kJ¾áÂbVî…Q¢Ñ|/9[ôÞ¨ï)D#_#°ôEƒ…'ÄHc,ýB‰îJä&`=„wÞHdZþ}€ƒ,èÛ½Sƒß†#úìÜ·ámS&ƒ$éK ¿êP ˆVrºV oª¹Dǯ- nªZÀäp#vT}dêÉ„»›vP©½tü\‚™2sÍ–Ü¥B,@¨S诺†¥Z|ª£¢M_£zÞó ©¢‹4¡a¡•¾ª+жA*¡¤]cÏ/<-JX<þ¼.ÃÎÙ¯yl¯ˆ@¾´;åH I>:°­Uª‡²IŒMHcýfµ<]K;Ïíe R&K…Bpý€ ¦Tm]q,g@hú ³“þàúa¯M~ìÈíÅ€{I#…n…‹Y³Ì<á˽û26‘Á5É“!Ÿ$tD‰º#%œ£°Ù·RÁ‚—Ù©v<†Î" «ž›‘ÆeÎvÎãjáÁ “ ÿL‹aýh©Ù¨B“øÊik­q╳SS~A#$^®Îr8õz‘ÎF\Š'!‹ò„·¨çŒ¼¶Dq5l-öÃì±lwïÇ@€ª¡¿-9Q¯ˆäàÁ”ˆëL߇üybc•ú¼ÚýĉÊ!Oƒ~úZî©(]†¦bFÑ0H=,Hw ©(êòÍ\è£t‘'I2׌Yc ×OÉ®„×á CÚáüãæJ ª½–w;nßnÐßC®‘Å1~ŸÝ¾m`æhšÎx ÂÿÒ‰?å˜Óø韄.^XÓÈ:¹2\.ûÒL{­­Îuiõz#BK¼×=Ÿ&VgJi|¶*—§ìô=ë 3­¬§øoŒÉž³»”Uã¥'vlx{ì¾õ ÷ÑÂÅ_¡IÊND¥CÄJ?ïK¼ØDðO~öûcÖ »»Aãφpõ#j0·ose£m´‡­T; »´Küƒ7©I€”l¶¹vJ¾&¼têQÓq®ÑØÜN²nVgáêžæ#ë X*Í­£÷BC«Géß»t"sç5öV›%/q¦rSÖ£¥Å£›¯Û@~ÚYj#Ô'M^8ø†“^jÇÉï dHluwÌ'󺛀´Ì!TÅÏtŠü‘T)zLžÄSàÅå÷á˜|ˆsú­ê!xXM~,]ž)KæuÝ¿…µñ½ˆÈ+·‰±DI`›¦øHr?¦ -HÐ_é$UµëÇf97žÐÚE‹Áf:ò-lhÎBçÝûÞ­FöœÛ•ñЇ›yåGWž¨þ˜£˜l×™yØ(0Zʪ@ûtïú%º•O¨F\ .ïòi„2cú\Ƚ¨´)¿†8èéG Uà¶G?ƒT)ïô&N*BâÐj€Gšø-'HP¹ê›nßYˆ£ŸÙƒiÇn;µfÖ@vÅ5Å7fM®óƒ#.+=ô®ÈmÍ 4E?<7–ܧ@yãG´Où0@Í‘‚a[üÅøõÖ±¿º”—qͽjζó&êT¤×ýõY£_Ý ,@À@¢–}c¦ÎÂ;ŒS§¿Ä¢VAU•ͳ]°i÷ˆP¬¶)êÎ3ü8¼Ma?<0Ä ó-8ÆFsáQ‹N ­ÈæYm’áÐLiÔBß»¼­å•'1[Ì’œ8>LíódšE‚B¡<%ú•Ö®²ÄŠDâû .î%ÎGËPÒ¥£cKù`Ñ@ÎMx;¦âÂwB;Nø¼.Vì)G†:êm{JégÏÿya”¡¹²´•‡Ø7»62Gš{‰Öø@]Cï{ijІØ8¥ ­È2F›Ø%„‡js°0V4§;J³a,×%(J9³¸lŸ=&qK7žbÂ/ I׿"t”õŽ›‹§» ˜(>äþ¤ÏÀHE ðVš2£Ww4N£Ù*dO!4a*ð.˱k¦ŸUM´Éذ£øçV2±hè[»_59:EK>ÜÕc@F;¢×v¨3(«Ý:,ØÀ,á vcÀ Rœ 3G[ço€×À§ˆ±É‡Vq¶Í-5¿ñ†z3“¼ÒkïÛø#WÉiy*è/¿Ídbjصûs½BÙq1r‘E;„¼RÖE߉¹¿Ffƒ'Lå%&8HŠžŠËu(íQ®rdÀÖÖ¥nWu_Ï?ùwmÉc„biаßãJN)lL¹ƒ*b÷êØwír§Á&sÚï=T¦}\üëýœßÃ7°êÔtÖ.Ze‘A¾Â"Á4$ÚÕÊu|ICum÷8¬ÒßñÄ›‘4ÿf9Ø8œ«Ž ¬ëw•ý”Ic×ÓJb»)¶·¹:ãCM}{Œ´ž –ž&Á?ù ç,ÒÁo³û¿ o´š{>ÿ'´ú^Fâþ·¶?)aÝ=–ØUöÚ¨áû²¨×AEJÿ«/Æ…Û÷AËO1ÄŸÿ5ñ²Ö¥L~g§1Q<ˆ@qb ‡YIr A¦í4ZCàÉIßï4˜’P÷Ý#;k]Œ¬ŸñxüÞ=£#ô²ûÁ£ÅH_­î£¯%ÈuýZ®®Æa›6ÿû`•;e ëR80œU¤³d<5)÷f^ø4]щ|³k0ýèƵoãAÉz#GÝ|(Â×*ãŠbz*³ÊsžZX!̇ñm[ëq»ü¯G~޽¦…🎼œÊB•‚YÜ_AŠ^;HWî9rÇz,¿+ ²2æ¬ÉP=f6ÎeÅê÷£ ÂwÊÿ}ïºÀûíí`ŸÄ·'Üõºì˯(`6?±ÂåÁãLƒ<7¬TyŽ¸Ä xÎÄÍd —“Z\Ó®-°£  áCËôç #ó]ã¿jàCX›'BÏŠt§»©ÚÀ àd)ô:áuH¿Ç®÷÷áÀ×Îí´‰K!«ÆD÷öy‚_—ô`\ðæjñk'Ô*çwÒ×O†×òiýw³ÂÃ8¹ÞßMcx-t¹Úp2ÞƒÞ¿–7 ÙÀ˜ôƒHK…®¸¨& Ÿ¹²µD=Jr§x-“*o©¢Ñí²Z÷ÃÒÆAc­Ç„…HßQ¨òÃÂ뤎RŒ÷þ¦•"`¢³.jÙÚÄÞÑ©•£Ðú4¹„ÉŽÅîÚ*_× ¬ í*vG»Öá†y“Â5¯œ½ÙaÌ»Bû¿^¨ýî«D0Ü(Mà {£âÂ1oK7–¹°–¾'ªâZºQT~W ÿK”=!jRu’UÂ¥GHïƒËs3üëkÈßÕÓƒ·ƒÂ¾‚ªB€¦׎à)6ó Œÿ]näQæ”NÇ™#²ÆñÈʹÊì„.”¿È×á+ÍÉjÔµ5¹Z_8N‚"é°,—ñê;<šÏUø¸‘xs±­ 3-[Þø×õø4Á®ÈVRzOj’è9ÕS†øš»Ñ9P›ž@äF¼¡þD˜Kzm8·(ËÎay‡˜,AýŒCoËMQ% æÉ‚é¼ V{CùkÔ •ÒMô"Hœ4Îs=…ª)dUøzüg}iõo’¤ë¼7ý(×D5*¹»#j? î1H·›à˰ˆ0“:ȹcÔ S™TZf9ºßÈä,àÉŽ‘ÿþp6ròFqDCýå»%ìÈËŒ‘˜{€˜/ê´q×µ]dêV’û]Ÿ÷•¯Ô(ÁÔWŽÄÆœ>o‚ˆ/ºkÖañÉɵYÅÇÒ¯AmHÍÇ¦ÖÆ}Õp%¢«B{±€ž{Xëò~ŸÆ½ªÀž/by½¤À28&_ı6 04¡ÝÁXx3GGÓPˆUëü­©€ B¼ º3µ½¢GÜÑØ_®ðB?¸)íü'¿W0Qp^±3ünÅSyË"Á*°‡ðƒb?o9Á𦠧­« HÞèÖ°Zƒœ}w ,Ç·ûÕfeOüÀ_4úZ.Çk¬T´k2U?šÓ;ïŸ"H"gǶJ óÁ}àZ{;ƒ‚ÐëÞUHNÛóºÀDÊ“&1­ï;‰{¢i3ëv.5œ1ö¢¤ˆüûV¥y*K7ˆ”;[‹™Ãè£N=±&Ï×9Î[”̇ñ½0v<>³`?ÖÖŸ -®íév€ÝXÓ{@Šž9b3},yd'{“yKVUµXÌż‘ :Ñ8†cÜQ£cql ™³ ªÞÚ2ý£¨YÑöÎÉR\æ'áôVèh´i¡>¬rû\‰Ð¢)ñû·_8µÍîc‹ö-¹Èkð^ÁyÇW„hÕ)°ËÛ¯§Ò1¹±!¼á™F+6¹Wzº¨Ì|5àÎØïºO¢ HˆRKùžwçb”šÉ ²¼ZÈžO•Vˆ_±æ£<*¸µ¬ý¬óŒ. ‹W6ŒP¿ëž×¬ôK¾$ž·%MÙƒ¬¼zG^x}44"ŒÔ­í]8-9bÜgvöÕÖªyýdXË¢<Åå–Yú¦‚]¡Æ–Å×EÿSD9ƒ3Öû .IÉR¢I—Îfj+³ÓùL˜”™ÑyÎ~ßn–`ƳŸ·(³¦wÐÑø¦#x¸Ã0Ub´Õ€ÏfÀ _G¨6œ¢™ µ²U;†¶ïö#¤qŸtÓ•’µÄÙ§7_]4‹S&ÂÖW™8ßC{þ€ƒ;¤ð=œp…î·óh2§êÜ[õéRÉÄ>äëøê–°Ã7îC_CJneá5߬Œ£™+´Aq-T}ï¹gBÙ&*nÔÿF¶¾É ›t»äÃñPšCï¯Ë0Â?bÍvˆÊâëY9°ÎRß º¥Âbd›ƒ×>¯¼–ß&Óí£ÊFëæñ’›ëv’ö~óÑ™)ÅUO•¸—d53ÎCìhäõ0ÆH`,ûü}â=Œƒè©d>«…•gï{W(ôiÉq¨!ø/Q ù³¬Z¯ÚÅXØ…ÌqUzÕç– ±ûè³–¬ê_ÝpŸ´Þ$ÅìǦQãSÿé? ïÞ•´`œÌ'ú6ûy½'É^Ò¨ß.(ñê²eËâQ;©"ðá–Îj–nëy¨ÙžkfÅÜ›òvý¬ßΕƒ3ßHçÞ¥—gÁµiÜ,4»æØdeù×U”ø~U#Wýt<á”o:ÁB턲·°ÂÉš¾›/¾u±Ôwã+ûn©0$Q”~©ëí)»ßâÞ vF0|éc‘–‘’bóy-YXúFwäzû7…7ú‰ÊãS^‘ûÑ€êâkÆö²LlI\v±Í´±ÿ%W,EØ~útù'dêæîàD*þ“}‘t¡ìÌAÅB¦ˆö-où‡ìäœC¢=8¶%–°Ô©í/¾ó8i Ûob¾#µ¦°'AÜ‘h^Ù5ä„‘Ñ2¹y®–~ßT ÓÌßÂOœ-CÓ3Üý*ÅßìÓÙªýᶸÚG`‹<Á%5Ä 2¶K.b ¨fƒ(~§¦Ë Î2T“ÆYè¢åî¿ÁkÊüAcjV1ê€ ¨C8+ DZ,©– ‡ëëRÃxõ Ì£ ‡Š‘¼Ä"ª|zI%áÚ{ÕÑÆÐI°ßSéRC©;´wRï¨uBI¹óÙ¦³þ*J~nîÕ¹:~#4ŸFŸâÖM”ÛÉÑE}.l5°@ð2g¢M6÷z^ÊW–öíñêO™oiš‹>Ä`†¢N¦*¯Â–€y¾º%'s].ïg%·%Ë&(cî/Ð,§F@ã5È3ÔÒ-IúÖë³,Χ^ί“‰²¸‰¹RùbsZÆ]ã« gÁK ?iîL×ñq(?g*1—«çð°Ví Y1å cìîÚø¦ÀàÉûvßš×Ñ8÷ë¯<}n™…;93ò#³D˜îWm3Š/ó ‹k6OIM ¢PÉ!E=ÉG=¯€¸íPͨ‘L)1dãš5/EÀ•]‘­c¿OüÑ+:TŠyÍ×uÔov­˜Ä‚/)úôQïu'8­ø¹¤¼bdÊ¿È?Îâ¼Bó³ð "¶û€º3­ zU¿„7(c’PJ\ß}¶Åùšý6PœíéaI ŽQ¾œ³îC˜;Ô&jæ¢AÃG°à™3a©y}Pë¼ý:Ûsû÷é«;bBÙ%Œæ(ùz> Ϙ¿cí%Þ²Ëh Sö0£¸9jøÔ?Ål6¸\Ÿd§±’ý¨ä¥éu¶c [lcøpìúÅ%ï7à‹«>‹ghúõmÚ4¿¡·{C‰è¼]Xë)-@<5´·44O›ºýä©]Ôåg-:.y¥´m!ÿ910cKÜ ïì ¶µÿ ?B.'†Á¡GpCi(¯lÝqÈ{œäXG XŒ{W]ÛÚ##[Íë=ÿ·gd™w9“‰ƒºœ9gg"÷Üw±ÿýƒ‡¹TÖx“þ¸ì÷_¤LèYß•ƒŸ²½íÐ/Þyà•!¼÷a’ίõ¼˜cX+æµÁ±R!Ñ6u@0h8Ùñ{»kqa)‰¼?¹”yÔ‘ç ‰ks S~Y~q:;v²¼Vœ©V£¡ò%•jôÎ]Uø—sb†–emŠr‹üÙï}ùxÇì–2}$V’F¯¿“¥%ÇÙ¼Æ ֖壞bÃ6úÑBÞp= Ó^²¥ð_NBÏã2åRÈG´ÙÕ¼yV˜ŽÿþŠèE|6{ÝÉkÓ{¬c1îixû6’5¼Û;‘{È<¥ÇõH÷Ó¥]¾*N™µí1ÇU³~)YãA±%C‚NéÇ ²Ö] iò½1ýâ ð\hÎÌèÏTÂ×ùqq×ò eÂMóvöpMµ–ö§ ÷ÅRî¥àÑ=fµÒÔú¸7xešt˜$ÓKÎ'Í‚)iø”¦wá¡ å{íc5ézƒ¶í¡]t41-Ô$?§afE_Sã|Ohq™BògÒÍ &ÀâšáêW¸ô´›Yú]®œ¦¢RüJ¬càHþä×À¼JÖ좪:FÅ¥q >öŠC×¢w´²U“U9%9Ä#З*øOĺ†3FÔìó’|é¿SùBÛ>ü€i`:gRr8*/ í׿Ï:4§´‚ÂÞòׯ†(Œ= ŽJñ{eâ <ým4õÂÎOC^”¿TŽq-(–Kd#îÊmíÝp.õÕPQžû`ŸŒ˜ËÝy²5O‘¯³ží:š¶ ?1_§9±qîcõ ¿;‡ß$÷”kMwqÁ4”ÊúܨŸ‰gZØÌ@»‹ùç>)›v´í(•Óe0/ú䦢TEiMfi®Íìíj%ÚôØ—"+ ž]˜‚sçd¤!A0ú àD¿§Raõ¸ÿX ™ÜjŽZ|¶ò¸î[ >¸1&ÄoãôѰ‡ ¥Â ÀÓ1ãe‰éÖ‡« ºÎ÷Ñ9)’>ô\\ò‡å^a/7·»~Ýc¢äõä‘}R[N3W#Ô™0Ääþ¯ÅüCõ@prAÕnRyœø…úBæƒýY4¾œ[ÑŠÀÂ~VÆÜ±ÒÏ ;ø…§T55µ_øO³¿üƒÔtÇu‰<€ÄÆPºÂV­’ùgô±Ö6³ºrèdKãÒSºèÞ-àB.Ñ _u2Jþ,ºŽ¥=ÞSmÓåd·½Ч…ió¯±åæ*ÚµB‰*ƒC˜Î±6Í|ÿ’8ÿq%¢2ym…W vŒH+Òúvƒ«¢£EDÀþ˜ç)¬Ò1}ÂgIh]7†Ö=a¹×…ùרU2L¥4´à*tž¹gÝyKÊ’pÞWdpF÷Ò°ÙœãÅÜÝ2±")÷ZAôe•àWcêð:¬U)½º qFå’ŠÛ[0C2—â°ƒ_êì:nv@e¼×sDÜf„,ÛF¯ks¼€ÖKx’ò9D7¡ŠX˜¨3o«ß¼«‰•L”^oIxüW»_Wè<»ÖófºÏ8G° ÒéuI+µá‚$Z­CŽÀ4xZ¦y§Ú§Û-¾©£Â‹$ÛØZìɸŽb¼¨÷b¾yd.#‡ˆ6„RÆ]O¼‡¸¹8o>;Än^+òº´ÚH¶žÕ»«q«Ý!€'ÞšiÝr‘?º–ÊL>@1ͼ¯DlC•£.t“‡m¨ÔcêK–‚ÚŽH”–„2уújþ— ÜŸulþ ðwr|~Š?€ÒSÌ3ÐŒ¤:[æ,œáÄ¿K´ IÑPCe&÷ˆwÊ2ÛÊvî]~BÈ-z®gg„ÁŽE2k'qüKš;lܽkÛ{ kT:{©rdî;k¸?'”ý/Ý^Ϧô¯³‡4ŒÄ/Tp¼˜zäàiGô‹E…ÉÇžnEZ0ð z ò>\Øuáq€=µeš´ŠÑö=žŠ&%¢à bW-fÄldÄjo¥I*¨„*“¾*ξ €QÝV“¬ ýÅÚ H¾e+MêEüìACÃ-d&=i*@É7 ‚›‰û» ð•9§i¦T‡Çš"Š W¿ÉB‚Îø$2‘×™qùý‹¯ÌATÑ!†éŽJÑôõ#wØ×†aî™þvQ»PfdÄøŒ[¿Ÿó$'"È-9ÛO~!âl¸Å[f_pM›ÞEƒ,´›cÀÅ;ñ\|Ýã¼(Þ!R¿Ð(*.#/‹5ÆIñ#-juÁ1\ø£õˆÛíšíŸ“w͉-åNjïp›\BÞåtâ Ê*öà´ZX–|GT™h×@AY9 ¢Íç$wø‹|i_¾gÍG×;“ÞÇTYÿ4µ•ßÅú$‡SW‘²T Ä´ @Ìv$½~¿fWûqC‹ãਬ½X†MdÙˆœÓ¥!=fI/{9:'AucDiŸjƒ€:Ž›HÁÊC¾¬öLL÷¯ù.R¸*ÜgÚ–7¬…@(Ư`«Ô:W´±Þ æÆå5ç:RE9ï‹(x/>õ1èqò/ŸÑMâÜà·©Ånø¶z#‚¼Ø%1%-qÎëÖ¹ß:çÒònsÙ9h½VS,~9=q}÷Zª¡èWE«9âû{YÝ­“ä—éƒËJ|-ECP»ÂUœ$(äP$÷ðGX¼¶{pdÍ•iÆ¿^á—âÝ3w§ÆPm]8ýnwNO¹‰A{³Çßï~iÜ EYØF\mÊP­“¸/Þæ; î»dÒJ clç³ü_bÝ& ôÊÚ´êùr¦iu9­ïrs˜0ŽÞoÙ… °ºœ’¼ÒíZeÉ7VhŒ1Ú™êSg‰Ÿ|l¥è|Åžëà6dJCœé?©ç¦-CÀ†SÞ …+l¢tf¤<õÈxû.“m|Õäxmh¯ßÀõ ²ÜèΚ¡ž2q~$0«ÿùñ-[cc¬’ˆNŽ‚Ú–!‹¾øD íåÞ¨«p6ãÒV¤0Ý õ.ý«€Ôýú{a<‡q€c³ÿ¸>(†É áYÿxGnê iÀN—ÙjAݯۻ”=sÏîÑ$ivÜ.¤8ìÜ2 Á4¬Ò²ïë¾ ~5ëšôȯåŒbÒª»ªúÖ* «†‹#ñФ½â¶á"GçÈq3â¹ àˆþ‡©®žµ#Üú˜ýê5ågs(,^³tå±Äµq§æF0¸Iǃ R=NôÄžËX2p®i]¡Ç('&†#5ý|·³7¨íËõ­;PÄ÷>šçŠ$d\V/•Ç¢C7C8ßÌŸ™!¬½ êç·ØæÔSŽÄ†t$—¤ìþR3ßd?#'´ç …¨4;Ø€ï¥:¤»NQÁ¿’Šæ/`ÔŠóÜØ$ÒèÏíª$Šê0•¢`+ ËP}NÐ’ßñ¨b]‡¼§¯3:êh/n4 Ø*CˆÊÝÓDmÌtd/æ¿ÈyïœlÉ @"á*ÂÛ<pVŽ?¾9ˆåÕb[‹â-™®k'Nœ¦…“vX\0¿w©4âܪx ‚^µ>GÆ-º_Þ­@Xv\±¥’± "ŒIbbSŽó¶2¶ÜÊóæCÙ®|b×=’¢OéM¾pçn“Äg6Ë-ºõñ¼uubHu™eØ÷PŽ_™>QÂE †ÒS÷ãr‡šÆÁˆ?ÙÍ2ÕÜ«¡Qæž]8ååOYbd¿šEH ߦÈw*!QhdOoì×}G©ÙN‡æô$þpuPx£Ë¶Ø·«wCÈã‡Ì¨]EZí?¡Ñ¼xÂ5a\²ºžÓÁÞ9^?paÅþÙî¥ðÒ˜OÏß—Ç':}1˜~OÒ@0ÄØ$^Òžªk™žngùdÜÚeÞÒTðxëg)Á«§+2"c2_!ïéžX`¯žE5Œ«A7ÒOcë0ùÙÚ)´6ÑVk×æÎ¤ìñ;áSO Áì˜+óìKÿž€l²™0·EÍ<-b”¾m\ÅÓðTÁRˆqü©;ÑRñ̇ó9ï²…\ÜiW)@ÚWÄ}ÜmTÙ¨ÝcãC /eÖñ-ÿ¯¨ m9TÚÕ4NðrKMì5¬àMÏý Bgã~8Ž8¤_M)6{ž²~_¢ôäã)t æDD7#»ÁéÖÛQ/§Om  Áêq§×%2ÖàküÖLZ®Š<ú¼$u†3;²ÊTsòSà1^xŽ@Ÿàͺv“œ^ñ Ó~»jn?Þøà=òFžL*uëë›ñ^Á¤ÂMÃsÊ1lÀ¿; wù1p¾].˜M‰&ÏN¢Zt±qû ìЂaD.(ÕTî]þ+JÏ#ÎÆn‡è>êu}?¦êäÅE¬ùé¼X`ú]hjn?%IÙùë57{îžjüÚŸ\k{O;ª’Ì©´->mY…ÊïæäÜZ.‰´‹±8&£hE(‡ï*~YÛtz–9‰qD ¿Œå¿Qç8ë§U’ÒÓKŒ¸Pd¾$8ÇŽSº4ñ ·8d`Û˜ç¾ezßYÈÊL šªF³9š"Ylv<±çÌõ¼ ïöCFŽtJ¤tÛx½€ÙßHž“ï„ït‘œŽ ­MTMaId\_Ú\‡b^¹-Y@3²™•“EÂkh³¿×b µù¨åXÌ3Å>³‰X±×]\Ù"å9ú-GY·0:a, Q/»˜C­“I,ªzÒÖÀ‰'>ÚW†¥fûÙ˜K'*h âÃA¯]7Éj¯XÊ*Hàò&¥WBIËêTצVÌõ–&Ï93¦î¨»æ»æ’S>æ5&éŠF;á›9G,t¢}lÓÔ}Òàïä‹+K-AB lÕS­ƒÉ¨i¿°wZaÃZƒžçXH£©7_ácØPõ*ôÍ.¿Øm)½$ÛÌк £öÜÀð˜èúÂnRÙ¼Þ8tfMiéâ>“‘ãñ¸Åújj!ÕÏ›’ÛZL!ó›Ì4ay­ÿ¨  <”ÓØšái¾”9"û…¬ÌqbdÄý3—Ä$SÍQù]ÆûUæ”>(æ›22 Ueeï€>»ÂóßKñ‡Ñé¡Õ%)<½c¥™ñëAR}.nI-Îo *0®M>s[ÂÞï«ñXmaèRÓ`t§^õTÌ÷r¥]B§¿Ì‹Ló])·ziAõ™”wg?nW‰Dçi—·Ô¾³Rþ9^¼—Ì•(£(úñé˜4ìl>jËA# ';Ã$ÐŽ…2Çéebwd‚é2™5Sï"hrW»nà%²´‰"`²<»Ù’ Nn‚†¢v°iÐã9½Ä¢Ê½¹Ýî]Ey룤H”€¶}QA]8¤@s½xŸabnñöˆÇÕh½R€˜¤b(U’K¨ˆJ QdXÖ™¶–ÛÌü%X-%}ÀJuó“gô‹sºnMO¡pï…Äà ƒŸ$£ýûìÄFåžø¦~Ï~¾—‹?bkeà8çײͶSV6hYË/ôÀUx1,;'ÿ²qÎQ8Ì·ÑW‡œª2 Ω:>[à-™G݈®ùC%jR~Ga»ï'3ŽÎœ—íBÖîÞúy»Ï´ôñ‰ß,ñÇÏíF5Œ1ì èòþ*±VýW3w?(ùQÖº‡ Û[Cºr4GzÍàåFJEXú¥Õu‘žòníç…¡žƈ¥ž&Ün¢˜ŘOÇ4t•¬?NªØP qK.yár Ÿfò Kÿó@ôHü*ç©È-1Éì€Ï¯¾ q¤Z³Õmvõ{e8¡Óðs.ß¢Øø^c‚çGqŒ²¼¡"3|üë±<ßìæ ÞÜ¢[šod…‡xŒHNyÄùÈù¹¾YLŠæ¨¿x–åM}e°t=ûR“ØðbId)Š{êí{,[K¾o´œ)=ù{­B EùVU§Å7½9Š­0H¡h’޹dPâ–Ð,@}EeޏÈz%¨&œ+vú-šáÊ^K.Æáƒòã®r«&G@Á„ %8ºZÃJf\ôaÀ0Ù¾ÂÁpµàJbˆe­’BäÃ~ ü­vsAöû¿ýé@÷jŸ1¨Ã$‘Ö­ù³ºT]ÒûÍÃÌÏ_=Ü©YUªFúćüNM‘qÆ€Áád^ígÎqc”Ù#•z•Í®·WM„EÛLéè­ðU¨ù$Ò8ŠõXŠ‚ú KyĶæ“M³äʆ*¶bªqžŽ›ŸÇóé¾$n ¤ÂÒõzMÆ™2pŒgy£{*,×»ÇA9Ç=÷â ÍÁ¼sþ@MV$¾]öD»0I U£bZKÆÞ·Üçþ`éAWkªp©5wÞÁ|g-F¾÷Ài›n¯P„Ë‚/?| PÊ{'³äÐ> ÐÿÁ•˵äX÷ž% `&xÕ0‡—œïù|5䳉Æ-K×1‘Pææ±ß)ë’+ bÝËb€$¹Ë|P—¼ƒê°»ä¬‚Š3,°­œÈÌ‹>¸Ii¼qÊóW…¸HÛ5m™*j[ô€ #0cª1úºr|Ñ ¡ß¿[S€ѳŒÙȯꎨ0ŒÄ•Pç´IHôÞ½Êöm-Žeúû]3¬/ž™Îïnz:ÒÙ(™]AÞ-zà ̇­ÿZ¨µÚ;«!ßã&³ÝÜß5³äâ¯Wà Ë/yª;—sò‘à‹.|ºIÙLk÷·ýu.È2»—üB½k–<ú­}‹wLÎB-·7žäHÜNœ­îó8é)¬H¦ mó×Ëæäß[Õ£r¾Q¹FÁ>qò§Žß^" F[Ê‹“ÒSHZ?4nî–»Ì(DY'Slj”h ôŸOñ–vO£{Îx7” 5ÏÏ‹ø‰dØÕQ"%Up¤Í4¯²•¦ùVWœo~r‡½'Ê.Õõ+êÝUŒ¥tF ßÚè¸n äGÙHfHɇÌ¥¨OÿüçóðWâ« HSƒ‚ݵÉ'tž6N–cÄí&m0?œ¦_s´S²ÊãVß/ǺžÇGAÜø!ÈËì[þN,ã+g¾’ •”õ\ØÆ"-D­TŒ7Iµ;¨™\m™¹3’R¨Yßì.'›[ïÛ—Cßõ,ª±p€.ñÉ<ÅñQ!}²ÙàcpSnò£Ð èÝýþ8¹Û'.[¶9i#ˆÎ÷7ÌR¤ÆU5E,Ì`ñ^kÓz}ÎñMËT Ño+eŸ“auå°¡tí¼‰ª¨(Zs{Ô¯}] `­ÿÜU;¨`l¦NÛ­ã×ÐÙÏš¾Dô7èÞfÉ­Lçý‰/éjŸ™NÛ?­›Äׯ¶<àüö{÷hÂÿ:æoßU)àš„4&ý…,!¶¿[_€øˆÃpO¡<Œ¶oímZ7_®ßL†ruvÿ½…•Z%u3²Ikøl„%¢,§ÿAÑúÖÀSϼ÷T³ùWù¤Íž…md$ ,ÙÕ(ð{ÖrOª±Ê.ÛžlãtÓ“sé/eS;Š>íÉr¹â-‰ Šõ'݆ŽøˆùìIMoÂÑ 8{‰fÐà5D1Bh³„Üô‹(”€hÞG<ò¸ b›»¤ƒnO³2;¾Î*p‡*/öC;9(šåÛV¸¹?KdB̃téÌI­¦ÄÈj?x¸†Ü¢mÕ>ÕeÞž¶ò4OCaFQ˜Àܧá¨%B.Õß5;¦A‹¿~Tœæ¿ö˜‚"‡M 8ŸƒwSP{ïÓÉuõ+èv\CG!®„$—5L‰ù0¡@Ã'9@5 Ohnx¶š¼þ€Í$1ÖNÎ5ü²/‚®ˆÇü%¥®2¼¾}¦84Pâkr! <Ñu]²ç ͈Ú!›½Òtúœí%]TJDº:é¦dnÌúpñdz÷ÚéÝú B–œõCT¼ÎÀž–Öd~l—UvŠžáµ°[®{Óý65öœ¥GQL‰*â'·E,nªÓáOÀÒŒxO‰DZ„Tµ¤£¤>$Ã`Fä%Wå—/OËpÛ8âè4YS™ ½ê©˜"sÕ¦jü}Ä] ºJÆeˆpõðòC!gÖö2`J¤ÚNhCœ—r©ŽÂpÿ5ù[ƒØL¶~òä QZÁÕb¯­ä˜}ØÌ&<‘Â{ÒļÌÂår7 q×tøòd†@ªÝÉÌ!–ËkÙ!«‡?¡¡k•e\MCJ\HU“ßÉm†áèw"A†)0°Òöô±… ¨-Äí`‰kâ_óòc~^m¼Iäd¾I ;væøŸ†Cp ð`•Ø"/ïp3””éßwŽ!@_H¼6“í‰ï ~Ôñ†ž¥†:›¿dÒ§×ì¨âDÎ}3B>_V{Ù2ù)3zÚõÙ¶@v ¼2û«§}¨X»ÑÔ…ß=“‰Îf‰h,¡9¨¢1NrpféÏÂ‘ÉØvk•EލqáŒâžÇ=m5›*8¸Ä)|þkyuÕÝG{ö<¼;Î=³ô3@©™š§_qp‹h©R NNÂÇôü‚²3=pÛ bƒÉé^øš„ª<½c(<ÑÕo¸}L\ŠRÛˆža*îš½¶.6_Î+Jh ðqVRƒÆ+›`eY ïBq³/彊´ºhñBÀÿޛӮàJDï}õE'µÐ;,4Î˜Ãøçå–›3!Ò¢ˆØQ² ²˜M]  ¼ÇD,U?"ºë·]ñ¾>¾L£åèi_ ‚Gó=’óò;#5rééR¢ÅÌdT¼9ë»ÃѳÈIî¾ÝÞ ¬D&ÏÕ„k O·½ýdä+™G@?¸Wăn4@}üZ#3ÀNúE¨BŸg=«T~/<á/ÛVØ*˜%JŒ˜øŽhñ¯“G­úO_ òÀaí¨;GŸ‡ôS\ãmù„¬ ù°û¾x²:B±0ÍÉ݇ú_ ùXPÈýþ 欧VSGue¼¸H¡‹ot»mç¡GŽ¥»þZ­ÎôP3î§æ#ÌÚ”áÐn”U—Û,C`?¨¨)î²SšŽó²TÝ>±1‡Ü¢E$<}³'J™0e0Ëóm#n{3¢_•:ÎA¡f ­´AÍlhœÉàHKœÙ!¶©÷ÙLƒö9ĪGEBq@, Ø.çØ;/ ozñ ®{‡¾`™V¦½þ¶3ã2Í`f+ç¨{S©¨©[1£Ï©œï$SC¼™+ð˜AívN“ß“$±žÎY+h<ËYA”Ò_PŽßd±³jç46=Êÿ«.{Å’WV|UZ2á)óH>Ha®îmŽô½J†3°Z¹=…9ݶOOÍï 6kƒ r ^xúr\U`ÜroMAH"ÍÍIÅDðr¢»ª*ª?À›#º­ð”Þ>ÿŠªºŸô‹¼UÓóÐÇgz{#gbá¶œš+A¿«äÈü]ñe8Ìz¥ÑLYétØOjÃ϶³ù Ѹ癣–åÄvðËjpàu?ê²é©ª?»—1cÀõÁ°Ó)éÅâÐf¦Ô\¿?bãþqI???p‘d®hc1ŒM‹%Æ~„#Ï/ûGEûfD uþí;5r«ÂQÏVúþÐ](Ô{SÅ„Cú"NücmHqïœkÉt¼†}wï²Ôò/³>[­–¹.ðKm¿ã¢¿lŒbPM(ò·¤®Yu4žk÷`NÜBÕ×1ú؉»“RC‚ÝÅAܲ[ã¬ä[̪¡}bö»}dÑ•ãm§€šˆÝiÉ»`u;‰ŠÚ[¡lôÐõ‘~mËŽ{…)…íëËGäêJ-m¶.tª+Õ’?þü1ëQKžŠCà™ÑŸÆÀ!KôÈ Pú©þ_*@Õ¿€û9©žìL~AÒÀ0Þ­(ïÕ)hÁ8ÈYWt‰\Ä DèØ [Ù=øŽ`ìã§+jèÅÑulœd毬¯›éštz¼u°GW&¬ ¹.Ê¢ÎZø lSö‰©Yžë êgIíMU¯ ·â(j°÷Žf„…¯]Ô„²÷ª2)üo1:Τ?kk¢"Á–_Wô ThÕ3W\˸âBBÅŸ2(#k½Ë¤m>AýÊÊb‚á€OÛÛk}$fçü8ÙJÈLÙÈßgšåº¥i&-U7ý–YÄ=X&sÊšhozX×'»ìÊ2( µ'ÙÇé/ç’„òZ~\Ú!ç×……ÂVN¥ÕØÛ¾ê‚cœsjñ|é8ð ª5áâ"ú¤Ò(#ÇÜÙ© ¼éjœéÍ QB9]4O X¼j6놈×èNC‘û¹ £°‚9]åëïxÔ_B7¸‚)§VøÀ½Wô÷q3m˜\žÏ=é¶ô?¦¢·Þy(Þkzx4YGO…2Ók2š9M’Xþ^Ní‡ø¤?å? ã)ò ‘@Œš^n)a…Öq(¸3äÿµL1œ÷˜áˆ¹ýxA·Jʆª½áŠZøûíëJ~âªC²ÛÏÜ&"\r"Çs±G )IVk§ÈZÓ-þ<çƒÑpŒ{›Œ›Cs,|ÐÞùÏBò8䵑~KcØÃÆáÜ¡$Ÿ1uæYdš òÓ߆ý¤-€£½F—Ú[ÓF³úîÒÈÒǪGº>*íÞUœ”†HéÑ·»æ¨{NÊ垃‘yïA€ä×3ÐàTê¯ßµQO3„ŠëЗ ö÷GlCÚöÆ-ƒ›µ.$rs¢ó"3ÂÆúè—>ɇ·ã)©ëg6­æã÷Ó„U¿öŸ½òÍüAÉB¼)z½?7ºËSc‰GÒ¹ws¶ý Ó±F£Š!Û@n•‡t[š+éëÌñJP\«'ˆ Õ8/o™d;žbGµû±ùàÈÑ]Gå…L« 5Íò²¶¬%z!Lj‘ö@&í³×<“uîx_DKþÎ닊W³ ßÀé¼cÎ|û›ï&9¢ÓÂ×Öfhׯ‹¥#ãà²Q¼–ÊÝHx¢UÑA·exí7Z¥ZºæuÙoÄÞa̱˜ÎãzÄÑùÞpÕ; I1=Îïd©µ-n|tçZo(ø/¢Y®´Ÿ¸NM09Rë}½X7îÊ!‚4yçkãtŒæÎäK©”Ê9ݦÖÉ´š[=¯åEFIÙÔ9ÔU­!ýÕ£å?u;³_>Í +<êO¦ OŒtû^U±·Û~"ÌƆ;WÜÛÊ¢qjrxÚ“?yxP†˜.°'VÛG% ‰CoÒ鈈&(ì)ær<ç¾/k åàÝЄ¬­·w¸{óƒ•[§ÖÜgÖè Ñ8 vçÅ2J§s!»³ çÔ|xQƒÅálœ’Føßú P ›X¯¨‘ÙÝux9IuÉ(ø´ô²Â°±]øË²Ì ±}Œ?.õ7íàÈí^„ )RFŪ!Á»—ê°èúÞFˆS s-ÈÃ\°†qC ”¥«‚Æ_Œ§ÀäðAU-ÿ³ÏaÛû¦¼Ümÿ!»°¤2Áf{e\–÷|mjˆË²È™7!5(ªȪ°FóUÕ%íÄ8q·nwµ¾;ë§dgm¿ýÆÖú![å3Öþ‘ŠÐÆ¿/ÛÒŠ´åÅ>?ƒgc”af³ n¬¹|óëlŸL* ^#ª(à{DMx¢';ö³¤z[м7Úº‘:^W€äÂc&gU°|–ÄX‡ñ«ˆ4‚¨’¬\^~¶¯qݶ¢V#‰yÅøÑÕú—áKÃ…3J§|‘4]Iùgd»òg\!"/ƒˆ¦Û¢gRô!®ëûÖÄs›o!Y¢GíA®is_8Tø«ÞºU"70ãmœÔÊ@ž*}»x¿Ø\W$ 0 †!ºþ+P%â9IyýÌñd+’¢CcL“Bk-íýjÈ^›  w{ï«$ý•TðÈ D…¤}Mæ=U“©¨7X ŸÙ#±@õUO˽N.8¬Ç¡³×T}vþÞï±tÓ0ôý.Ÿì#Ñ®ÂÝÌÂMìÔ•IOÁø Ͻßtõ'™i‘¬²ok%hIÄ.3a<¿žJ_F{DÛ(©AøÚðÈÑ,CèÆùf]~iþÙr Õ¦vÞF!`îB£¾!Ag°±š£jšŒ´; éÞomƒpkazŠZ(Îþ®Ï(/ô#@®"¾l™û+‚€Zý7ƒxçyÈJu¿éSpWhÈ(:ÉÇbøC’î¶Õ{™X‚n£ã}qBû?g}Ä\ùÇ LN6hJÇ…˜IíYª@r èÖL™éÊN¸ÍÑÚ mð@r?çuI~àUœ>—Sú@WîX|ƺ¿øÏ; Ô»ÿ@£¸ F¡V¹öáë£éÞæûebA¸GÿP_é3¥jK³³h˜ö¤ÿCÓŠÊW®%Lï2¤që!0SY(„À–ÚK¡_ìñU¯Ÿ/¿Kks`„¸6“Ê ¼tש½Y6ó{”CÈbFo†2þ™†¾ëƒöF­t…ŠÒÈXN÷§è}í OÅ‚çБŠt𞬠1Iø,Ç¢Þà¼|ûbÇKP•]²gÓª^qŒÅ¡ð­¶Œ|i²à0ÐèÑ¡i¬ —Kt’ö,ÍVµËÙhy%ä+Ï«e¿ñ'øïWc1[ÛèÐÀ÷ØAg0¯ä,“åÖ™‰a %H%ú6¼74bÑ…†ìM‡/‚Y(í )(îõšp@Ë‘ª~ìVnœArÐáß}4.¤ºï"¡—Tt¡²—f"Ѹ̱¾¨ß.+@·[Âlè»Ëm)"’"mX/jvLÐÚÏ©©ü˜‰’¹ŽÛ¤ÚiñV\PS9ïb¨ ðÁ£}äÞ¶D¡_[ÞÃMiýÅ· OWóÉ®¨÷#ÂE¿Þ¼}á3T¸jý*ë>|BÀtè†5¶ÀÌ׼ȫ“=(÷»º÷zw×(öŒED]«€j›¹8³q*¶[>¦±qF—Ó¹mËgÂ,‰yV8¹Ó«æŸô¹²uSUfŠã)0BûÁ’·ÔŸ\å*r©b‰Jº+»¹µgêÔ[¬.$Æ– ÷î´…zŠîÁŸÜ3ˆõ¯…F[gØ4 /–áSï[íèZì}¯vi«5´¬ê|˳ùÚÛ¹¨å¦Îו]®)dš:ŒwÌÔʲé(—W@k²Eœó£57ƒ[{|78m89Ö‹;  ÄW•3}ŠEjõ„ç†aäd@Röf¶R·<ŽßÞÊiù‡ý(7Aç#po Tã¦p¹Â°Î¨Àžd3„uèál¸YÇ¢Ço='E—û6eM¸%uÕzø'_°E;iTï-KšE·0‹”_ëg¨Ž©žf¾ÙB Lsë㣚èIâß/÷á?ø’ŒJ¢Â&:zŽ‘W!ŸzÐÐZ‰m~‚“ Þ€ÿ-*~ä÷®Ø¢\Øböƒ{‹g_‹>x'fjåUœŸIF`í!JÄŒ¸“X‘äì mŠ}qÖk <È’þ*V€ã€M­E¹ÀÚ'%YŽêU²TG’q¹ñ=Шžùe¨ÿ¦ÌKwêÙüú¦[u§t«©…\ÖûŸ¯F`¢ÈçøÊQéÛâ–IS‰°Ùä\í¶^ãLžÀŸõÜ%Ž!DtÇìç3OsÑg»O¤øªÂ5¼†6ˆ´>ü*ÞŽ˜ð•üK3„$mcr9FŒQ‹Ku*Ó(¬á›–Áº¹÷Ü™aÅ*ÖšjÒäçF–@þ±³3s f ¢DäÄsŒý8dšqw¦ÅfÊíÛ5æ¹Aîz·6ñ«.*H`·`þê^úæ9ÃΧ؃÷!Å-jc(R‚ €| ê·æÖË™qíǹ…3Q³VvHHœ­ýÝì~Ìc[œ@ÀÒ#ÿþ"\ˆ¦Ùì{ú¿²·_›Q½m~l§~6k+ÖyFÊËéPˆ°È!‡“ Éÿ+CïeâD/ú0Zì•r°4è í×ñTm¯‘§Nõú©4¢= ¿dj¬N²ø©õü£›íÔ1D†ÌŒR¦>àä\êj(ÎìÕQÕiTí´{ì3Ù-×táºùî*d UáHCêfËdC4†€Ãw ÿöL¥\„n³êÖ Ôãü øß*^¦î» 6YAX™ªï~S¯ÕÎ0¾“òÜò5V¦êòŸ°Ò—O N5'%[òí±ÝáVï*oO~=ù"¹FkíÊš5y*!±!÷·õ œm*ÿZ(=œ`سša‹ôMÈ@ì¸I¿Ì¹§ƒvG¥·¶ìJØ0€X#·§ƒxbÂØ†P£Ó‹ùÁ.77o>@`òЕáò”’ï€râXÜÑibAÚ5_,‘¨RPy¹}v K²4ù^Qu Q‚Tl¥öke³ý•ß0uˆÐ¥a,a¤­^)Jo=˜ë½‹*/«ÿH§ž—ü~z« ñúŸœrJwßÅ>RQ<ñÙÜ•Ê{ÂXñP§ð”çÛ‘é‘Eñq^µ·…Ò«hcª‰—+øRO€Â=ƒšu¼Æ­›¬W&êšKÔNŸÍÐÿ‚ BD òò)i€MZˆÓŒ #ÑE8]‰cƒ´•úWµê¥€d®#ågük<ýv—>À'ßHv…së¾ÑtÍ_LY#3ÆÞ gà0»Ò67 –®£º¹$Ñ–eŠv:ŽÄ(Îà¹GÒåšÔü¢Àu99Íæ*–)0ÓÐê¼u¬bÀ]ÀY"MžU—{܈öv2?ÌÀþÍv! ,~P„ÅØªlÓÂQÄ9»×º8Õ: 2)›¾;Ÿøfg}_ísïúý&fç…án‡„ð™ÝQpíïbªC‘ëáQ<†Jb*RÆDôÜ3Õ^PP¢ÏV=f1§rÐáTÇ=ypµè'! 1´WǧdÛb= ô7¸@YvöDÖ<#ÝÚƒúMÖგYå¡EÜØý­5½oqÏ’h°CwéÚØé¾Ãß’ÂñçïѬê%¬¹!™Ù± ‘QƒchÑ¢!Zrë Ù‹lªÀ(pciXüŠ®|¬©Z;Ψ¢$=ËgÓ»Cß’ȲSÖE!è.ýx QÆ)¨…"T$¨º\´N(`åö@ËóÇ.@xSÑgÔ]ö?dB¡Ð¤ö‰Ýn§ÑÞ—ø\WÞv\Ö²ó@0/]¢ZåCÜ‚mÑ´Õ¡Ùÿ;±R9ØÒÛÈm$Vo* ¦ë¦<™ý>‚¦lùàèÄ3Æ/¿øi°„ â3ÀãC»D™aƒ;¢’=ªâXäk"Ï€yuiªô#Ãã©þRîjÂDËhö”U–o‹X¯~JÄsÖSXòà<Þ¸À6öR¦« ˜0ý.(âónèÈöì1p€à`ÄÉO[TÍâN4Mß÷/»ˆŽí\]I*„8ïÀ 7Ôz&Â3£] 0`x’í’\Uä°ßÎÊ`‘À/Üij…©0HÁ ¬×òT…Àw›>aýyM¢™E_,Ää‡BÁn]æÿÛØ× Y0 ´h+µ¤_˜¨ÿpŸA=ñ0ÍMS´‘5ÿ§£ü~ùÃWNµÉ¤ƒdôÏ´›ûÌùB¿q¥ZÙ,®e¿þW<Öfž&iÒ6ªÿõfjж÷0šüÀ2õ–-Ip±„›O5 Â7aþƒÌ…ÉR%“í|ž*´°ƒà¤ áþ5¾À—M"Ýy®ÛS{jÄÓ˜.À^ªḧËrY^5—á{ üP Jý•¸á~ƒiù1„-M^®¯¨"­D0@2vV°ÒÜjM$…˜—ÄuoQ‡œ±“z[#:·l dɯ³Ü]‘:ݱ¼4˜€9‘áyð›J®ÿÛ Af»Ã¨wQy¤§ š|Ëñ߯•$K }¾á*>¼8 öމDlý?¨ïs¥5ǹ‚Qä·¾ú_j…÷N G̉GìAKŸ(p²õÍ÷3ºÕ ÅeòTôˆ/0³W>a=]äÏH;Ïy•u €Ýϗ悸qËî Ÿ/—5lóüè9: ™€ææYÕó£CÊà_êÃQ€·§3"‹þ*úµéð=Ï a>Ü÷;›úNäø¦ô¶ž¯ŸFz‚òÅÒZ-1daPª›ø†c¹~ýJÝ—D¨ÂÑù×_e XÍÔµ75:˜oã¾Zwåzyd†2À+H.6PÙ oµLí[Ø"Ò'º_üY÷iÐg1Á¾g“°{~xŸçÃ[X…Šðœ¶Å„;‡IX7O.:~‡*èŠv<š¹Îfú¿QTEr™AmtíÖ*wÓ pꀞ³·—²\øóãzÇG™òÚèÙ%˜^·Í·§ŽÓîîªòš®u|9pÖ÷]G¾îP]M ‡ yj> õÒÓ‘pÎ~S<ú§øHnó’~  “þ™¸)|+˜Æ!]KP’S8ºYWŒ™e^’.´ïÄ´&Û(Å3<äö ø‰gv͆†¹Tð<áÿ™hï:m–›(3ÿoH¾A_³E¶?üìØl†¼³¤ßÓdOIÿUg ^ûÞbÀÓéŽYMºz´Öþ¯zÈî ß²· nò†Ô× tareCÿ Ó­ÊF"™ÙÊÎhJZÂ`4N­¨™ÏAL¨„çX´vƒšëäA-ßïŸð°¡¸ÂM))‹"Ë(Ç K¼8J…6¾>âõe{…M–¢¦†l Zöî"lœ Í]…»nᣠ2àêàµo£V(¶Ô¶„¶Çk4ú­¤‚rS=ä§3­¬ÔÅê­Ç2¢WBŒ\zánø[UŸ° épèñi‘ .^Bü®ÝqÊ6¿=IÀÜð¨ÀÊ[i®1O°´‘¢²)I;5ö:â]»fY'ù{(RMfnÃ>K¨¿¬ÚpPÒ=”TÚØZ×±j ÁL/5í®Ž”s?çë$"BO>k؃‹•hp\aÞÅÞ7HÙè‚ð3EʆªÄRÈWW%ª%ߊʦÀÉŒÚmÕõ#²oÛ¨*ä7jPM†÷ò™Ëcèíbɤ%ØÛŽÀÈ”@d!•îîÍÿsxæé‰o9j[¯¸ˆ †!ºþ+1¶ `‡` J‘•¥0é|졦Z~=¥5•.ø•%’gŠÎiýg*gËzˆ3_µWÒ)ÿÐ8Æ—¡®æöbfæ¿Óäš3¿ åè'[tûZœn³’=Ø'4ÔG¥ßsüà6—ŽŽÑCâ\büÎÃð@·ÁßšÛÈ?%]…'n^G÷„xí”9dsÂT6«²Œ}ÖORÑ»Lv3îþ}ãÛšƒ'èütÉml nåBÝl‰ë£”І¤*ŠÊì›è$Ñ"y‚Ãá'MËVq>ÞMí|™á òw0Êc¬uX‡·æ¢%9«ph€Ï8ój,R˜9õ¥ÚƵçü¨tŽ…ÍOç+’x+Ú÷·áÙQ™n¦£ICÍŸJþÇ å*I‘“LQ¦‰6M-ÿn[î7[~¨ Ū6ޤü¤4Ñî£Cž¦9Šr` 'ôÊÁϸG1¡ _¡\·\O®ç„?a«>h„wØÏ#D£°^bŸº=¼“Œnµáðkí®ì—èü”°%|jÅÍSàdÁ‘<Ýßëx°ãÀ$Ï5 n›_{qát(ïjY/ƒ> ó¯àNGJ6v¬­Þ0ÚäæG ë3Xþ #°«ødÊÇ^KÜ8Û÷dX¤Y¿8®ûÃÄÇÂȸ$I»v¯ÊÎ@‰¹¦ƒ¾Äbb1&DÃ6Dõ°]õ›°YÜ1¾oÕ!u„í›e£)À4 ù¶ [äê_%R¨ìœû˜cIN ‡§%õ ‡'¥]Å8KáhEGJ_Äà˜Õ§¨uÚ…ƒoäÖ:ö†ŽþÚ߈­,ûY™c0|q†ÈÍÉø¶&–pÂ2ÕvBe_íFÔ•*OÖŠ Ã/æ9Åf4È=çädë¤XtUßlÆôµ™“ÌcG[»ŒFÔvÝ]½ÓÙc85±áMµ-Ä£yý©÷¿¨`UÛj HQ¦ÕZ†Bõæ9Wyç2-ç‘—gÉ%œSS~—¡Cß„Wª „§ñï³rÙÎâÏÞY€ge/@EWÛ‰Pù™¶ÜƒËßÿ ú`†¡ õKëá ÍHÉAN@Bßµ “ïT:áN*´ýý@ÃÑ´ 4hìÈá”ò(NôšsQÔØ§ü°vMÇÓç€åD°ÒÁ6%¹8ö:¢¨~©"ú–ÊÂöGcäffìo‹ÛÌoÁ#Ë|‘;u@bý„*"8‰äW¡÷ ×’’¶ ‹’—ø¶ [ä¬BxtcµSòëYÛ¾åãs^;¿¥[sÆÅáe†oÜ„+ÒU5цô÷Wú5†æ¦øp³#ôߟ«[©ß~Œíë¼4Pë—-ß)=˸ßÞ3ðœ0S¦ÐútxSúmB. Âu4I.9¸ñE iŽa3ÌãÒc»Â¨{Xä/@‡Õˆºú5ÿõm´­Gï }”bpodšn›ezÊÁéšµ–íºmøG„^ÿMëfœÛz·$iŒQ©ïô½ÃÄ#HémV‰Ü]êö8À²@Mfj‚ ì.°Õ¨¥l0QNyVh2Ÿ+8?·ä.„›£ÚhŽG[æÎúC©¼ÒÿµóãªÝlGzÞþñÒÛÃ9I÷ûÉò‹¾î·d…Rô8ÇÌcä=T© 9ë[xe»rÀ¹éÏâáÂÌ–t¥Ã9øŒìîªx܃‚*‘pƒ,šÎ |€7›ù’ÞXˆ¶ åÚŠóéçš°¬Cxôý¤m}3›|e!³¼N¾Aï_“g?‡îC¼[]én=`šÓ4rz€¿QITÑñ“ñ»•#ã¦zôø†œ­‹“Xñ›þ6æçôL½cËF`q¿ya4›$§<ÒI)©u£2Œë%JÕc¨0™Cà€l\‘>^Í·jKަ(A„Ü{>RÍ{iW‡-*¦|UMcÊ€‰IŒƒO `U¡ƒ8|ü¬SMªßÐXn“°³“~Ñɦ–ÏWj¤,2‰e¸Î<£õÐvj ÓÙÞ¯öu¦žÇqeÖ ‡Uo`û‘)'7|Li­ ·ÂÒ*>1‡¿Hû}ºT&–mê„)(aÒä\p<=8Ò oˆæL»ávJ¦ŸÄ1YìÒÞŒìä˜ìøŸý2Çoçê?Ø45 VLËn£–û× azˆ/%ÁµôxI£t‰Uàè%®Ú`_;‹@6 l&”Ûºø‚øÞ°@”O4íÖïÞ˜•8§× b Ò ÷œë ¾QBLг‹žêÿ,IbÝjóûèÇôo—}zzÒ|Ð=våj#@rq!Ý_¬o­+q­4ðîDÀˆõá×ì?b/RQz‹">?—¦È o÷BDs»þ¥TŽ/&B^ßÛ^³'¡n`Hü¤?¦£µb²¡.þß¾N”ôÈØ±{ðÃzkûá2P& È«ú€°tš òîfà]zÏii}ŒŸS°ta”’IïɆÕVÅãHç£JR‡-üfÕ…®1€5©^j &.Ê”Ìa¥&O¥½©Q¨ªZ·DŽ6<7 þܘ?3’¸6P»õ Øéo~Æã›‘äã\Â:ú¥ù¸Ò+\w™M’ùJ„©+j¡Ö:¿@ûbÜkÂ%BS†u¹]Œò¶Éœ¸†8 II9;ðn€›kŠWì‹"mLî óLº£\㔃=½>{‰2ÜË(ÚHjYë›yæVBVà°ˆ{u—"§´€Ž/¸Y¾nÛ|»Ó\­]˜ÿåÐ_j%¹&aoÏlܘŽQH¤64Ó²±ƒ_F_¾.8²l(ÓØÅø(Iêmã¶ä22±c°FV0z~ݳU¤n?ÂÒ\˜1F”Jj~äÓXóã†Fþ‹:d ·7Ð$ŒVLÇ\M~ÁÇ#³0d>éË)rš©³6”•IAÉþ¯Kï—ø‚¼k}ØÅ8–湊éÏZ³,›ÚÚ¾p^ÁÔQ_ H| &DyšºQY“Ç>ÓJMër7÷ŒÍ>>W$D9NÙ®˜ô±ã‘ß6”V=]I$•øÇ$š$ÂBŸ}±Ä¤1´¢±èܾ(E|ç´$^:z ‡®­Ï–ôu}[Ë׈ÇzŸ³hkÛÉ'Fxø>ùdhŨʃ¤l{æ&c»­½Å[ ¾mÁÞW5 Ð&0”ºWÁUž;†¢`ü{? ­­¥¹ûVš(#WõÏÔÎà+1¬`W7dÝþ´4Çò¹^È϶:£[eQBçq;ïGÒFRî5™ç?Ó’8øæˆ5DÑȧ—;CÜ" R¢®×ó0x‰¢"¨0…uÅ¢¢)°i+i²ö±x\¼¢«ˆø–`ÁÄf«£ìvöâà•ÆDNé]ôEà–W™ÑÑ2[$Ž ,ô òYî6$Ÿ:2¸d–Dy¢ª'’µ[·B.„~Pcfõ±[Ážd'IgPе5;d(«ºÇþâÓ!ÉÆÞ?è£GIŽ_Wñ•ÍÑàåN} £Èøþ#_G>48(í3QOñmn_ØL®ˆáhÐÁm­d À˜­Kb‰Ë^9hõÓÚK([t›*W$¤37¹öÍü}˜þpÜÛ˱ÍíAª$Šœ7>,"¿WnÕX¿é…Õ3ô^Xí„óGôòMœIÏŠISªèùNÈ™òÆ9Rƒ„µ&ÿߢ02ý±ÌÝ¢*õ(ŽñÏ’•»wÿTðÌÊÂxºÍÔ©„ì¹o0Å3üHt½;ŠP¶)šþÏ$*tz’®Üì>³„xœ¡ ÿº™4¶ø~O[A¦®£¦E˜DzÇÝö0†SöIz±3㪅UÍ›µ­\\Ô¢ô„7[`0:Ÿ(JC7Âïªv`µò½a¥« È+µ‚Î*ü4W~¸‚»‘ÛúÖý¼åuªcV•&µ;Òÿ»þÓ8çHHöJjG‘T*iôpû˜ÃíƒBðêîWüêldl­ˆãârEʃª’­¥¹ÞMO;‡“™}[€A©™] Š*c`a‹Ÿõ~€•m?°@.òiY¬Ëý±~¥„ºWÅP÷‹œ07‡mF6VœÕ”þ2°äá"’ ¯yd¼1£âNT7sî3s´svzJì15Å;L±5¿äº2´¨T®¿„Èzë¨È!£o£ãùiù­ Cz¸OSZígJð\GtuªÍC¬·êÄŠ;${âøØ,¢—á?cA¨¹ú«ûÜhÆë]¢-r8|ëàaeÆ:¾ÙÌ’·jË·x£ìvA¸x½vëÒx,“ë«RQHØ>é;sK¹KQ7ëY^jN¥žQšIT1& B¬¼bQà[ÝúšÕß³`c®mË+W+ŽV~$oÿeмáÂ…œålB$ûS_±ulqɵïwé‚_Ì~ƒõÏ!ñ8¥  "@ùº,5I~VõS¨vr¾ò‘BÇÇÄÇ_•ï£xºÊûAÀ›AîÚËÜ@ë¹B³®+ÓÙ&Û«‘ncÑ↠S³Äc¤äYU$GE’à˜y7©@ ÝÝÓ©ˆòàŒÁA(5ÓÔb§ÞõJOÚ zYh—…6–(Lù §”¶VäÅþ•E nÕ»~p®lMí9<ñtN+ÁIÍ®½œK:Özf¯ ÐSdeðgupLs­Éû-;ˆÞ¿D䋆õ]S*ß3ÝWg´î¶‰ĪGi¢¡Ëü¹EnšP~W`˜(’äRÔ¦#®|‹ÜFèÆfí€sð¬‚yh¢]Z¶®Káâ¸ýˆ¾%@e!Ôæ <â@îñ’úêž8R)fiùwÐ’×Nn¿!“!É Ä´—¾E/šº•sóraßLžèüÙºG¢©ÎÚæst¾ù]”Ž+Ñ¿gXv÷Šk™2é$î#o bÖ"Ú ´çÛÙjm º¡åe?Æ•¬3VW?<ÇÔJþ+¶ÃȤƒKyäC‘A?Bÿ9¿ 󒙵݀ >O…“Kêoüö^{x(0=>Ù5Sd7wR j þõŽ¿åDÐa1ÓK±Ð¸^·Yeηû‹ñOÍGÙ#Šá݈›èB3ÌSÿH¸'Õ Ò­3ƒÁÍR ÙqÄ~€&tGí$Ë4nŠHFm`®¸b03SÓ Ö<éeu=]Íñj"Oe€U€ôëÿ‡¹ˆüìâ A#·ºzçJçFbp»TO†ñ7ÍEý0¢p1ÎBWZŽXÿ{é]oD× ·oIoÚ :YÏÄÅÎ Æ—^×VYm‹&ÞØ:>¤¡2§Z%XÆ/0"jzdÉ¿0­~rX}ä=\nf@ÅÇ–<«05ðóU€gºµaf|èÍ( „·ÖÿPjûþ˜Fë¦Á—,ÃÁ¹-Pö±ðÑè[®¶7b=ØÝ…æ\jEmîoHð…ï)'¨³Ä0N:è¾-2Â2ŸšPص‰éWYg_»¨„G‚ ÷; Ï…Ôàù L›³7«ì4Mî¬ÈíQÙ:…[c óÐðw‰¬ Ä9A‹Žó X6J™÷dB ~1~Œ'Ë0KM’%ÐpNÑ?ôªiIøER0ž²#÷&öê-(Áv` Öï$Ä)–ã mž³=wKg>ØÅ–™Ž—’úlSZœ²Ëø¥ü; ´ß'bþŒÎÀ¡Õ± ± =!µÉ“Y/((­ŠKžÆØ‘kûkµµ“®Â÷_Ôó×l ›†§•ò{ Ø(^ø†3üÏ:ðõý!7swÙããa>oK-jÏÝ@\AÙ½ÂkEô¤þyêÆ3’SkGLØI(‚6±þ¶ïM—s­iÉÈ-—h°ì9@ö–¬eÏø¨¥ŸÛ΂ôÔi{ç+{ÕfŸ¨¿ìŸu&Tiå{ФT¥N{7tâ‹«Y]Ã,ŽftJ[ÛômÛ ëvx\Ã_6”fÞÀÏÆŽX5з·û^äßåÖ-=J“‘馷SÃÙ çJ~þfʶÿýÊ’÷Ä"®8ÚâÉ1/âüt:©ä/×”J«©Ñ_ú£†$?;š"ÿ†ùŒœã´¨9”<’¦1ËÅô“ž2 hçòè¶+h*æðˆ)€ ;"¡ù\$%ßB¨œv¯×Y-~uG¼[mw²³ÊœÑguû3gu@Ýv{Í4;0.E-õV#dçÌÇÈ›py¢°Ú¯>fíÍ-[+he™°²ªúž[Š·£<+ ÔÒr½~Ï_ðÉøÈ‡§œÜÝÚ ±¢_SÕˆKÏô§“¦¢ø9²,WTŽª–}<)„£zßR¿ÛIk*˜½8h$ æ(H ÓEºˆ¬Æ—wwÐršV©§ù¨)—GrÃK$lbâÓa²()Ü«„ujW% Wy?³k¼#V8ànêÉ%Œ5Yôà ,0dCt¼.ñ ¶¨–)ǯm[´Õ÷;/WŠbœ[•…M{”-wœ%g(s›Š‚BK NÎ#S“ŽŽêEžèÌTž^2D£E0©ˆ %š 5mH5|5ŽÚÁ£lÐW¥–¦q,Ô[ YUý7®R¦ø¼†ª•Ù0ˆ¸£ÓM"=öè‚ô/ž+cY±MÞŠmõ¬æ€-ßM„j[Ë–c÷×ÖÁóxÑ=\P u·ä´iÊ–°4ºâ-úÄzý(­Šóþi$æ¤H„ÚÈ™à02M X.“‹·ê[†›W“ç¢gz°Aà°ðö°Ø‹÷©˜î<ãX¯?ºóOn&Œäá"§V#MKÇþ¬(~G¸R6„šXh²*†“¹Ï'`Sá(å·*{Ý75ýRʤ‚a `EØø$r‰&53ÆV [½&ÔÏ[¹d€…"/…iõªàSûG8ßÀ<&än<š‹§ŽÐã øKUÎP·^É}bª,ïmF¸ÈÅn±JËN«4¼‹¬_|–<üN·Æ€ÏQÓ¥ûð á°¿\r0'-~£¿Ÿ‘¢ïkæ"vR²÷Éé2¼ÖmYÔ1ƒcÙЇ “Ë}h[oG &¾éÎÎ/ä˜iF!7^•óHާ$«/=‰]!#Œ\æèÓ¹û\f¯ï{Ì¿8Ó=N£ï%®ŒJ â͙ڊˆºÜUû›J£ßrÁ“cÙ*ÒÀžÓìÅK½%îø„ÿµYn«ñ¹KP^*Ïã¾JJG<Ó¾Møœ0:ǃæÓê\³‚{ÀÜ೸N!¶Êc'±8Ø¿¬}-C<%\æÑ-mñ_nõï‹¡­ô=Ml§Ü˜’ wpÙ;g*ç/2‘¤ø:VÓ‹ºÆ®iä:?@£bÕ…ãÕãv’BÁqƆHMPã‰Ê»ØŒ¾MÿׇÑ'±gMÔ FÌrQºzv4K¾þè ¹ ÒŠè6Ÿ¿³§€$#öyQïMµ²ŒN¾Aæ—ÖÖ±ƒñu,’1¸EËšÕb3F¢Dï¾ÓŽK‰g ²Z)É^P{Ò{ûZæ-šDoÌ”ù&7‰¤©•¾eÃXâl"wnæÃ,|º ðŽµ¼„¯i nšZo:Q_ç$'gÑíƒUß´fðÿD‰/ÒÑ ØÚ¿ôoÕ—ž4ëÁlc&í|áÍŽ€( O“^U¹xâfÐ¥y~åó<†6!Ëf¢ÞßvHÁ¥’`è.çvÃøU”úµÃ–ˆr ?5ñ.'¹Nf½ âV’› !¬|/«+‚ô)a;ÐÌÄ€ñoþŠøÊïT¢Gç܆¦Ws®ú ãPç­®~!”ú5‹¾Ý5.dèÞÉ ÛAð„¥K@´^=å©Ä³ðfoµð.ð¥9ÂM !Weê'ó´?˔̫Ÿ™² ž Üì}úª×ÆZ¦j.N'6*`Ø<ïð_îú¼ ý÷·„*u+‡a¿óΑMTL¸&ÚÞûýª&5¼àÒG$š5þ0úÎ å_à•Mé-VT~mEÈ?)õ\‰@åÔ€]3Ëå‘YÃ~iÔ3hö‹‡¸ ë›Ï ³ÊÍ–¾SìmB`}©$ÿº0yü| îºÅm8®Œ^{Ÿ“êyUÕö“~ƒtVIŒ£³ï˜ŒZº×4w9€@Šnç©è(wdrÑs•Ôýu¦(6÷ûüG©’È ¢Ç„/Êí.7ãU?í» ¾†n¢zËc<šP!ŠØ¡&x–¤ƒi³þÌÇhXžøÒC†öýóU…4†Éœàk"Ï|èPwgâù¬]PˆeA:´œ;±#3sOkïë}PhpµÐTHîÂz<ßË;˜—Òúˆ¥5_0W!áÃó§rEot_æåW‡.‡¼³™Qæƒ\w5.õ1Ç_Yƒ¾{|ì¦Z†€»¢C© ·-‘K›D<¡Àe˜Í+úêó7'¿Øm=EáâõâxÁ¸ÍÁ©HVæ fß8Ž!ŸK]±cÙò»q^n^rÈÍæÕq´=ÜE«îšNàå¥,ÀpÒj„êY­E²§=¿?>íË«Àá qÿÿêfÆ^·¢ró+vßDEšà˜žœ6üosKÈZCƒó€Çp­¢nÝuTÐF—ÓM…‘å÷…Åà☤äLþÐÁðÖ5Ù%í.ÜNo®«‡™ü O…¸\Ðm'Ãl¹9¡DU‡“Ù}g£@gtyjò‰ÛlÙ šZ£Íhpí=ˆ’+Äc³ÉX µo3浉 uɃº®öè’<%†gýAÉØfA¸"#o“ KÕÌ;2ã`ezX„á_Ë›&Œ–tw€8#ùgf‰<,*[¸{ñ´vfXÔ\Û¢™Ô¦›¿~l°£HšÓGERå¢ý Ú-ÚýåY'ݰ‡«Ñ×'åxL˜6–*â- ²40Q–ò+~J^Ž8'wÕ¼BéwÂOÊŽ_ÍKÇGR_£‘ÞS²”7nÓÒmÇÔJ»ÝpàIù•öÂ@Èðæq´z…9_@)2‰ŽÏ‹ãüWgÅ!md›4Ûð]që—‰¸¹ ­Ðq'ª\QúÈ‘\Ù6?¸uœèÿlÈÒnÕ2fó( ³šÑ!6âdïúÃ3/Vv‘³8ñF/ ×CdâË!í3°ôZCªþFŒ ØÇ«êœèBr¦ç*!R“C¸È»š*z³{j]Ëãá•YL ó²È«ŒõÅÐÅÔÉ=Ív"©­å½!ßrv.­»¹¬ã6Gß*ôKᮋ®[KòVr }Í%Èdqiÿqéq”+¢FƒÀÓiìôb ±+|ä±_dHíIvŽ’tÚDÚ=U.¸mÒmÙ?,²ÅLˆZ6t­¢U¶¿3 çø¹b2M±=ßkq´niäÈÞ·¥Q{ÛÝ”´Ó•¸<ˆZ4êð„0‚lN•”gj] d±‡ÆúŒ"€3vò´¾Q_š, »4ÙdÖܸ¬di†Kü*'¹Y6RDv<&Ö7wš«¿À7¼B_+ÝÈÙ›ó†ÄO§^”+ +©e •¥ú!:TÅàIS h­¯Yãß”K‰3}f¢øVéÉ,³„îiŒZY°ç·ÝT•eì”±G‡&€ÛÕ`Çúöö™ìcUÊŠ-Ebíc 3®Wñ™–REI`(Üf¡a5.¾f¶…šíûÝ|ˆ†^ãºÒ”$ðhÏÞCÉÁóìmƒ7Âñ%Þñ®Z ”2v eK’l›Ê!”¡"s÷dV˜“ž_5(=%Q{¼g2°ýæ e˜6CgX‹‰æs‚¢»á¤Øq“ñï–*YÔÍ)ÄwÞ€!z=xŒ.ÜÌ«-×äpnÑYGÿÂ5ÿslôµ‰Ý5õí:ÁN‡ €¨ÔÓvgÈB¿¿ÆI½J&£ÎNò̓n¿BO77 wGŒLCž§a³„$£G–ì㿃¯$g¨áøˆÎßRÂù´÷zºd û6'¿\6çš¡kìÜœÝT9À?×"IbÞ¥>9¶ç.´¨Âÿö%ÎzñFWÏì¼S-¹é÷Ò6x_†\ÊÌ"®|Üù©·«=ýŽÌ`¬Å™}‡”äÈéÖG7µá•ã27HX‘(…eIð3æÜrŸ\9ç0òh^^ÕO=“Y¯?¢ÚBV™–ÑdtǨˆƒÐu¸€K¯ÈXvK3—“bKÏŸÚ Üê¾EŒùgÛÜœÐî¨&ÍÁ<³Ã]á´z¸p–G€ˆlí™Ê"F)gï@U}á3´Xëü’ª&dÏ<1¹%Ä–ôƒ.9Õq{0 ‰¶]ÉÀKÑ‚Aú°ï± V9ÀÏ ª¹•„ë³RÕÁ‚›Êîáª÷+G[ $zú)ÅEÀ˜‘¹ÜFÕ8¨£—ʘ(¤Wh.¢ê¾¶Rû;k]tpß ÛOmGÀ$/œ€® R+ùaee¸iX_!ç%Ee¼íµÝ“¶A§¨7ÅôãLé9B¥.*¦äÇ ,Éιå]jò·†=›z¢f¯1DVN€—ýy4: æù4ð·¨×Ni7äÖÁušOa9ÌdÐ0°þJ!>aŸMFzæ-èßœáÒFÀƒÒüëZyÚÇëÍðY¿¦‡Ôa›7~]7Pc 2‘Å¥(ÌÕA™Ëçûøo îjkªC4G |})Œà«&|art¿~`ƼŒªñ¹ïo¾ÒÎ)õ£ýˆévP7­é8»ãVj¤îˆ«Y5å Ÿ½Oncss,d¬ä£hîPàº+ˆñ‘¦ ß9!ŒÛL3;Üá™dÊ1¤Ú[¶”‘œc7äWÊø ÂÃÍûWÌ-ñ̳-¶Úü¤‰¿?[¨Ö8d [° ²N7; -ãþô³ ÉALÈ[·ULBM¼§r§¤N݉”ß÷×8lÓ#0‰—\f%«Ò®=DÔݳ•eƒ³‹ œOã}§pj½´¦'ú/2´ò vÜ §&©{'¼Òÿ=ÿÇ̪köÛº!²w(¡—ÜnáSÇ›s&tWU…áášé‡Ç"ë÷^aÆfçuº*:/=YFAóÔ˜÷¼#j•wΉÿDUꟇ¾z“R'RÀž™¾5dÊãHiÞ`6y‘-¸í“St‹ŠJ¸†Ë‹4B6üœJÖí ÝQ?úÉuÚ40‘Åucõ5'5ï‘*g'GÙµñú÷D#èËg=Û{d¯ãgJ7 Âùûy‘à¤W6ô(¢ÃÃv}š¤"pC¶ìsoºSoë2æo?BŠS»“a¦ÝxxÛb”ÄòÊïaçI¢KôÂÜ\œãGÕë{Kù P°]efìrt!$Žloí—„X•8eõ»5#^Yþ³HÐÿ ò¿¥ º&{ù;gš&7X³Rl›&Šùë’hj“@/)©¨‡Ÿ\D PîEÐ@axgô/‘ý£ãIXeûUÇi+Mˆ8{àð­D-¿Oì1|wäàtí¸ñoìÄk¥QÙœ-ƒ§Fm'„aÒq@àÙ? ½Ð»† µïsnhTêmEHmÛ•4TÅ"4< <ÏêFÔ¿Çg %oÚèªÚ;H¸¿:Ãáɯ%t(6‰$8Ï~¢½\Ìá<Ç;è¢çÙ—øÏÕ3Ák5+C]±A¯e·°0–5Æ_¤,¯@ <[ÎNXœÅÞX7ÌŒm߉Ÿöû'¾¤QÇÌâÞðº¼Ö¿˜œ°HËrÑÓ¨Cñfc.æCɦ³Áµ½mikn¦Ý§ØÕøÐ©e@j ‘ðô|â kháR×gÍóµ–]ìµâÝÇÃðÚÄõ– u($ñUˆðmù|ò5ÒíÁ¡!ÒîÆ|^wªÙ¬#%˜F8½ž‰ó;Ù¢~VCYT³}AÈpÔ.m¾ÖÇu®[EOr<‘ºâ ìPŸ]îq\cçPcŒ:eÞÉáQö«û‡[žh"<îüÁT‡£×âŠÙlg¾ï´dÖ~5ƒÛò<Ü@Ü.ui†L¥C Y ™ÃNËXù¾ó¦o³õåô½2 b$çžšr>¨³žoÑjº Ïæº¢¿†NϤH”T$ìh€Ì­ÂsÙð{©èVž6ÔÞ+n°M%O“ð#îƒV’#åôM¿Æ•á#M)¾à|l[,[ð.ÿìÁ‡Ž/ºcƒ“¨i‡aÑ È“*â,¤ ãÁ¸ t¦ÁösÒ ìÝ1ñ,‰Æ‹u¹ÐŽ< j¿x×~ö;$ØÀ¥|7yx€džËúÚÅ3uiDy.–Æ}°ˆR9žMd·˜É2+4n©égß©(ôvº¤iÊã8’mn»m³ŠÂÀ˜BÜOÉìz@S@3ƒU7ˆ¼~âàq`ÙI´W²C€6Çëã –¢]“C yñ àd)Ñq ‚g¡®Ý'õ?¤ƒÝ1!–Çî’D„«”¨YIœÌ/Xz‘27x;‹Ü—EâV_E]ȳ8³t‹ðÂÖ$O~…%Ö5¦”6Ÿœ?ù–ªtÌŒqN‚¤Ÿ¬ô ¦œË,|-Ã+NûU1"ôQúMSké˜=(z€ÐX÷]‰ï)æFYΩÉÛõ£P0‚Ñíå‚Q ^Ä‘¢;ª ¿UÛg£B)û%h /ÏêÆk˜‚S‘OŠ+n—æÔóÎtGá&Ðmu\÷›-iÎ^ ¦’Zþ-Î  ñeI¨(ˆ˜éŸ+å¹4àyX½%­åoñDS ·áÐw% '¢OªüPþ-錸 ‘‘‡ÅWÑ€Ùð¡ü^îAsêVÞ¡U“­Á¾ eS]pÙô£œÌ-—°`ØÒ¤6wñHÉùˆæÍôšÙ–çe\ÔµvÝÔˆï^;qúqò)ÝŸù¡Êµ3ëW à,ZÃFþ’BqƒA>ÿ×xÅo¡l”^DéfÁ½·¦Žcö{Ÿô¡Ýv»{š•Ÿý 6¢t2ôü™ÝîÇr– £˜0µË†pÆRÏͧV÷=¹kÉ á«PÝE˜ÿkêF&´£O+hEýiÒËòÓ¹˜"Gï~ öh>lüüƒBñ‘pJD ±/gZ›¯Ê—ö“À^Î)» X²í#HßNhª}± !*ÁJÖ¢C"ÊD2š‡‹;nþ·±j+2´›-q½ÈvÜ€gÖ $•M›T2Ší΢/Rþ#,sáGŒ²w|êØ7 ùÅžóRù®Çµ“²Y4ùȹ‚lñ;«W‹¶0Žù²É´”áœ\spcÜ Ê‹¿‡KS%âíà¡)XáE“†´R¶Pê„©+uí#®ÐûÊ-ª4ö¡)Çß<›¤Gxš§ô{9úßÿDP¶¬’à*DK_ôUÈݫْmIGÜ«Ï{‚# ÝØ—–‘{”Õ°šocîÌŸg¯Ûn©—Ë4eÇs¨ðõlø§ÂÜ<„.^†GÊj–ª‡-F†fg BF.(4M-©üãÏ4z›-½ˆ8­GØî›¾[ôì²” `pò&º¯IàmÇÔoô)pG’áÓJx”Ýv.|fTä'âÇOq–Œµr(@pW¯Óü ¶Ÿà*öçP)4˃4D¯_¸»°.Œ Ó&Ê@wtô*ó&QOù>…¢odvÀ#sa†G’»ƒZþÁÔ?¯5 ˜,5W3`Êì9\Ói¿)Eb†˜Ž¨ÚÂ(,ÑŸtLÁàq¡Bnd‹ÚD°`•¿µºÛ¹âoP¤­Œ+DÚ€nÚ$tCêªQç˜ÁÜçA„ÏbÓ.špQÊ‚B€þñº“%H+ñ»j6 €…{BaOùM¼Úhö^ÇÚ“ÅÌ·i]~Ë„Dá…  Œè RÙC‘m]sª—X¸Êˆ&Âß,¥³,&-g»sq€¯Ò‡œ>Šøĵ§›”ì’·8Ño_"§!Å”)BD~Äß[[ÀU6¶á¿+ÇéÐÒ=J÷]M'_Cb¤ô=’‘,JÔ<<_^}Ú ÑBM²&‡¤6wÿ˜j3cï¤åF1ƒv{àAðç#—APÔe"y*KVŒ´0t5íXÍ)2ˆ'Ú¡•c;5»~ô¿ø%?™ìï’^!ëü¢´3¤Ð“`Þ(Õ}¡(¬6LË`Tå7§¹e µS=U÷J/Hçþy…©]ƒ¾¾«o$š‰`qã·[~°dh±f GU¬dž+ÂÓ?–_JÌ …µw7ϾªÂ°cZÀ'Küåà¡¯Ž‹K)$GB{‘þþWT©ScpœÒ¶ª–ù!y"›²{õC9Ø<È»=‚Ò8ÿÉ€¦Ù‘wæ€BÍW} ì¶aLÉhµð°{º†¢ F‰ù #¾À¥]~ƒ“£ä8Ò¡›˜_¬¼¦ä$äÊVÙ\ó>…° /¸ÿã,ÆÜÄiïóZ}§ç¼*"¢9¶Æ”EûE€Á÷tˆ Ñêçâ¨Q²HïJ¯è„¥œ7Ž–&ù ;ÈdZsÙZèbq9gÆþ{Š-R):˜† íyä¢dÿia-~¸6ÿ:ØS# Ð3—ÔÍIãbÍ,En`U$ñ™ë±ÖP@Ž 0 |þ®×e÷á׫3ïŸ2¦*zbÃl·ºdÚÎkR¶Å+…Ò»ÒâTq?2.±è$Ή‚9 û³Wptg°.¦P‰·éq_ûð/ õ=ò„Ç$nÏ¢~o-ò -”ØŒ6Û߈£-;ï-fŸ:3{¾ .KŸuÞ2aމŽ«½…ªì’U 8:hxU p ˜€dýYý… F}(ͨã’Eõ`ã –VåBìÖ˜ yÅñ{ÿ&úU˜ãçGªjºª–å‡9ý=Z“xŠ™EÆ ”åM`üDæ'1:ÖÉ9´ ºt¦]ˆèö§‡›9aß˾¦WË(‹IÛäsÄ •Û:Íé!:ô£WUúð€øD‡P¾¸ÿZÚmÝAáUÄâÊfØ¥ýþ=èâŸ;ÙÞzí‹Ç¨a½4x2æ5’\âHú¡ûÞB§Oø² K^«pÑ€Ô—q}TeãT‰³\üÛ¾’Xvˆ$¥2)`íÈËé’Xæ1K=GxcÌC¾—t•Xã0•‘?Òèy Ä“Û_‘Ar|)]¾¼ÆÛÀCûæcŠ4$£¿M[Zß×(ën u±Ò*2Ùºz°dí´ÃînȲlÓÚMån“³¶¿ÅEM»‡Xð†ºq}ú5}C¤_z¦«ÐPÞ~cµ ^‹|¿ #Ø)Ö(í]Õ¿èCz¥äYeŦ°P •ßðCÆÙ¿Ÿ%m²Þ1b°dk Xâ4Zs^ú"®£²Avš·Ì·¾P& $WLÆ}ñËÞ:– ð®Õ>#z´ÀùÏhJWdÓ+ðcŸèÈñDö÷vhHùXôV±GÆ\³ùù¾„RסP칕 ðCÏcÁD¦ž3~$ø·Â«»FÔMöò¾â.\t8+y_+Z¢CéDèIaA ¥+ aÅñpM[Çw„#úÞ-ÒšdDI ’qLç_m¯N·§™]™L:ç³-¥|O%˜cÝ>9Tö.:03y(-(­ fªb‰’âˆË 1ò*98¡»cÉ•1®æ4ó)BÒíâR]ˆ¨—„þ³%–Þ®7 #°_“\Ñ ¶Ê'«?³MRÆÊUÉóÖrÌœt¦{°ÌïŸ;!æ$ŸŽ<Òhè1^BVzî—û¶úœj?%!vqÌ¢b:?†Ë©`&£rUsó>%ÏÁn;™d7»¯’…›¦Ôã–9I~ȲMA…-à$Ä8AWNÉ\±ÚQ¡ÑÀFÌìvíŠÞK%NËÞ–Œ!zP "uk÷çÎé3kb’h©ó&…Ã.ý0Ý`W¬d z€ly¡*ú¤d¿Àqùª4“çû1ô®”Ï×2‚8Læ$niaO­D|Tùj9EpQG¤æk!õ-fJ1?·ãÔ™/üÒ Ý´z[nááÉ@ðØw IZÏnºÔ‡ ˜¯`-¶-Y‚Ànš‡æ“vë÷7T_$Ÿ5ï•) ™ïÙ—Þ&£z»u‹>)2¾'Ê&ÛÓŸÊj0±vm­»®”Aûûlœu§ˆ­J5° 2¤Ÿo9¥il mZj#‹ùíj|gW&r“þ¦RuUì9Š•çÁ­º ãx‰•9SUW)С–…h@JÏ%r»Äô÷Ó³Þe «éÅý¨úì a®+ÞNŸß×ÌjcÐrÄ«ã®XÛ”À†>HЮ×È ó[¿@4±wð6öU÷š»z+”Ï Ó«gFpWOzŒ·Ž#o 'Í›mc‡Œ´í>Ú5æ:B~—‚ùM„àÐ15ÉeíªLÈ2Íÿ~ÎÒU¹Ñ'(Ô%ÈL8B’–¼"ï·å¾ÀœèOániH^Cíá`ÝX_éÜdaé~žªj÷vÖ½ä½ Såßú\3ñÁý)PÖf`\-à·i ópBêÃDP¥„—Ý̬=,ÒͺÅ|äZ¬´93‘þêb¥Ž—÷©¦ä»Æ†‹u[ÖÂvŽƒ(R' lÉXˆ—¨™ûªÐ`¤Þ*n¦H¹K|MÿbÜIg¯Ð‡=_¸'«ÙíÑ—¡^Å m™9‰ ®æ´.ç¦ÔVð@0zøØXR™º|Ûûà†©rÍIA‘b`Ír×Eç%‘þ°+ܸáxš¡ÃðÃ^Mȳ±šŒÌFk’5á‚64õëùN,xŒb÷ÞÄ·õòª¼ó9å̲ŠAhíõÞs4"Ö³Øp/hÀ–%DþõQGçéÏÜÛ+¯­ç"Ý_”A,÷Û ìb‡áÅì©#v‘6‡måß¾/†’=Ðag„¶6ød"«AÎ×.ƒ“0¡'½Q˜Ìwj“YËáêšÆX‚My5‹£éa(Q³LüˆzÑO0O¤³¢ÿ"èêÅØM¥¶XÔe"C4j¬?^Èk6¦¾^‚+·ôÃpǶèüÿý&íV V†vž7€DÑ’p ÞƒÃ߃ j2¤d:±¼¿[iûþfXœT_±ä.*T¼mð®»r(ðë]x¼!£ž‡àÖNv²øÛïømss ©Ë¯ÿêËÍ/j6$ñ#EÎ'ç,áöñÎn4íx5ÅâžÚ³šý¡”]ã!ˆ,Î%õæ=ÝHaLl‘K×}ý¹‡\]Ä±Í º×sQ)7 Ëˆ`õ¿ÃQ¿ÙeÞ FCs|üèþ¹¡þÝë°ÏL+5n<ýwF^_dåuþH¹' \Ãüê¬áˆœï1kÓÚd ´260U{²ÁGÙ,:,ƒã¶N1NÑíE5¢5ˆLœZu=›Ü‘¦è^ò0sŒ>SƒœY9  Ïú^žˆ§ÿÂ&Iwi|>RGL5î>R)j66,Žáwú2Êþè>ûïžÊ&¸‚~Üñ¯Á´ÀЄç{@·Ò¨è±£?êüX¾ÈGƒ *ÝMö{XóÐhÉk¸0 ö˜7r+ôæT|FE˜óƺ¢@HÃvA}âP$F%À 0 %8;2 •‡]-v$ŠðÜÊ3Ûr+ø˜Lý}ÀâB0šùÕŽ–˜óÁÚøÇùRtöaó<þ¶YŸ2`ˆ_VKxøÂ)^£Ê’F'nI£f $y>4Ü”„'iän…ØjSú‘Ô¾Må#6¦ð*øž˜ÿØïÚµ?ý)Øsvw{!ÒR°ñlÊ‹²¸ú7—Š8úûÐÌý’!Ò‡ûGË I7üI…lÓÔîØµ‘LƒX= ¥‚›¢0“¾ñÖ˘讙õ«oç¤ýÄÙoŒ1ë’˜û#ReªXÊ â‰ÿÊ Öa…’ðaì›8l\«Xàø•#ÛÁzYJ<‡ª3Í_QÖY±s”l†Rõ½š‘¤Ú>Åq±ðDYÓ×`‹MkÊSødÜïŸ*\…–zÿ \Šf|[šlVÊç¼eî ;÷^V2_éÍ@8Zˆ8°á¬Ðÿ×èêa+¡eÌß^†)Mgê+_þnI³&ݯíÃ0{Àç'þjÿYñâXt"ŠöÈ'—9§ˆYé„ûöˆ9ƒ/ðÔD¯v]í)…×lÅ,¢kLê¼Ð‰ÒˆÜY:Y|¨ØhC2?í¤xã)?ñ«d5ÓìËUvÚnUå+KªH !=¹y´Ö[çnö‹B–¸Ñ×PeUŒ¤aÊþé+'Xé&ßBè•yaÏ"ƒ;ÇFGdÎ.M´®“v Ü/ˆ!gv£Y–ö›(íõgÅ ã‹ä{ñ—i9ʽÜêÔ/r föö|?è0þö^ùu>x±dåfà•bó&Ãàj ­Ÿ¿(f…XnÎÃ6ÞýD|=Q²r÷üò¤”~£+Á©3A–®2Øš’JÛ6)~v«ÐbØš¿ŒòÛk÷ÆÖÁM÷u©óbËBZê\±l6ú䉀Töò¡u-o7Û Jve¶ù„.éñ4eâà`µ”ìÏ@|ý˜EpmB^¬’æœo+äXYõŸþSjG§Yª_K '.ÄÚxÛ Í 2+Ä‹ ð¸ø|QàÒúuG×Ó7òoÙŒKŽ?à\`®ˆú€Q‘_þ6=Öé‰(O¶> ªù’2 çzb¸»#˜F¸4öÑ ahêÀo /ŸˆiL嚃ò¼ÌSRÝ:ØìÍ¢çHy†ÞìŠ4U ÆJ|u3Aoˆèz¤±ôWB¿¢ÇVB)qŠ÷ÂÀªÍ£þ›Ö¤)¿þ&†ÆOí·–Ð× zÉ2E ÀŽ”Àáä‚ô:4çÄcAçp]ýbºåºñ0e÷6̨Þi¼‡åv|ðÁRFK?/פµàs«§5³Ý7øK›b›E¸lE›e´¬xµÛùîO¹Q)rd)FM?•hkm™ˆE}gí…ÙýÛIýd…úÁ†´šÀÇ~Ü©X«Î.æ2U´0ÿ5ê †úÅ<tÀ˜À¤&&bÏxöÑõG Ü¥Kš+ÏìÏ™#†£ZÓ¹»¯(í™Ì§„Ö5¹±ŠX+fŒèFŸSW܉Î@G<5ü%ëfK?¨ÉŸì[ÇØ/\}'IÛÝaõmîÿE1'u˜ËšD¯ÌàÔ\…³%,!<`iW®)‘8!?Õt9ñü¤_ï?K#Û0Øß÷¦ºp0d¦œêð%T5eÐÃ<ꢂðY;t”?2×#t-ÀÀþyˆQ>ìâšRcàN|Ò V„±¢±› 08b¶)Î =ßߘQÊÇ¥ÈqôH®ZU?r†êøz;_ˆO‰±p Ï×g±ôÜ:=Dè³I‹ÅÎõ·*Ž%­Þ¶ñ1ÄE™¶Ó'óÉ»¬-Uq€/kF>Ýh±ËÑö©,gE)kéÂÇǵ_Œq;í“eÔ½8ƒËóÆVê¬ô·RÉæëˆm”0⺕7l•V`JH¤]ôꀩAR`³ÚncƒtÎî W<НtÖŒJŠZæ ·7!KÂUì˜*’ëA¼;wmv™ëµo@¸‡C”fg§ñƒ‚Ð$½¼ÙPQî±~­*†Oõ_Dn™Ry’·Æ‘vjíµ?_ šRX¤/ë]N]½åÂOû3âù=cSožsñy¦TdÊ+Åh-Ö̵ŸÝ\vùŸ”…%=.e]‚+k”ºäÎU2±=#Ü8³ ÕþÍf'Û©d—]­›M¨šFD¼ý^rª\e3 ¤úø…!—Á bÿ”ÌðfûI–XÊŽ^ž”…z ›š(áªOO³š~¤*䊰´Ìêڢ⩜5Hv4–sªUoŸÇ>4Îâ¸T÷Î »äwO! ý0ºò/ò +5"3ަq $@.†v:2çI£ ïÇ€_õ,ü5r˜Uö¨'P7ñK°ª­Ò>J¿³g@·ÝèAŸ¯1Û„™e¤"›®e°]™!¨”Ÿ+¿ËÛ[<¯ZG©”ö"ò+ÄïFKƒ…®™ô» Wx=·W„Ú’æ9MZþÛ]6 IÒáêåÁT,DÒ`ž‘Ëp¹»ŸÎ!ªè”“—i«Œ†ájm ÜBé¡PB•ÈeÿNÞ¥î·æo\?}aH_6Ó­ŸhÍñ=§Âú̳ cJ‹~‰¶<_z7OˆŠ8¢®)Ø8­U¿F¨V,xìþkZMPè5µº %"6YH6 ›‘Î>ox ÑÑ@‚>EYÙtï$ÆX‹,c†T€ÿeFh5wET?àUÇè²vAöQ|²®Q… Þ2Z>¯nk#ûÐ9Yš¹°2/›¢yÔ²4H·k+ÉÑ £Fzºd€€Ù0ö™Ø-¯á,»¨;Ðiv¶~†j}áÓ·ý‚`úÕug½‹7À(ñ^r5"Ý]ô‡QZ[HT&C‡‹7ÀU䯴€8j· ºü}NˆC”Kiéí›4ݽ» è¬ÿz€"m{/Xíl"X†ŸŒÁÓ8$bN«0û ¸'1ùߦ“;7ÆW–@˜WÜ#ÿÙ#ü`’q"3R’à0ýîö©— :Ë 7âÎ#«ƒÉä>¢tKA} 7ìð’ºØ k¤=r¡,HS]íðœ²eÇ8çû‘/ÅvŽÏÏmî%¦¯snrÍ1­Ü'?yëÖêé§ ‹”ŠRöËÀEè,Ônú>Ãy› ½_ÚËgob5%û¡ið`þ§¼~ Ø~ÜC³]ÐYÎÌ¡{E—Á é¼€3{ÝEs¸'Bø¼µÓÙÐñ$ÒºV’Ë3xâÍáë[êÝèé]Fe@„‡¦5lyŽZ©×›Tñ{w€_›·T=ó8‹Äà„­’v#I½Ê½¯ö]÷&À§_uèušapÇM0Í¿ÊEJÄ&åM¬äé?Õ€|o íc-žëêXá´²ŒÜ p•[‹:RbïPAZ×Aö~©}CÕùÜw¤MÇôKt“p¤QÆ,tÚPg@¹z%;ã& ì²F1@VwÚ¼Š @?¬Äüël•j5[Õ¾™ jr1›ê†Òªù–à_ús^áÇ”5<jtET¤©uE#™È6UØxÕª8hÀá)ežKM<úñX­‹púVUV”Ém´©ibgiÖb±E¥{Ú}XÒ4R›–ؑߋ€åzñ(º´w±œE؈|¨àÂüIè–¾4=iù²'°Þ=r*¹¯lRˆVeP®tzRB5Z@*Û‘'ÞÚ3äÞ¿±t8Kú›5Çý=±»!¦¿è£‰)7DvÌ¿ö¸²Š^T­­ôeŸ‰@§Ä$uY͘ 4ˆH@ž«EÙ4˜¸Èv_€3ˆǺâT¥g8)¿¾†©Ñ™þ<å%ÌÙ‰£×0•pµÊÇ‹ey<¿Üjé΂Úŧ[£‘ÓÇ×€ÚùØ\{µ†¾ ÷a쨷ÅÕ—ÛE"XE^•‡é”î;}IQ"IÒÝHcb¼2Òÿ‡ ê?ÜOÿ¿èÿîÀÈÚÄÀÑÙÎÆÀÑ êÿ®âÊendstream endobj 16 0 obj<>endobj 17 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 250 333 408 500 500 833 778 180 333 333 500 564 250 333 250 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 667 667 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556 611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444 500 444 333 500 500 278 278 500 278 778 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 600 564 564 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 333 500 500 500 500 200 500 333 760 276 500 564 564 760 333 400 564 300 300 333 500 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 333 722 722 722 722 722 722 722 564 722 722 722 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 564 500 500 500 500 500 500 500 500]endobj 18 0 obj<>stream x¬»ct¥]·&ÛvvlÛv*¶µcÛV…§‚Šm»R±ŠmÛè<ïQ§ûWçßZ×ô÷Øcm %U3 ¤ƒ½+ #3/@ÍÊè ê`køºsÀQPˆ9]­ìÅ]¼M @h `e°ðððÀQĽœ­,,]Ôê*š4ttôÿEùG`âõœ/M+ {å×Áhëàh´wý‚øVT®–@€¹•- ¦¨¤-£  –RPHíÎÆ¶%7[+S€¼•)ÐÞH0wp|þ¹Lìͬþ Í…ñË €1ÀÅhjõ¥ô4:þâ8í¬\\¾Î+€…³±½ëW\Vö¦¶nfÿ8ðE7ÿÊàˆ£³Ã—„Ýï LÉÁÅÕÅÔÙÊÑðeUI\òßütµ4výǶ‹Õà`þ%iæ`êöO.¾°Œÿùâº[Ù»\ž_D€ `fåâhkìõeû ÌÑÙê_n¸¹XÙ[ü—ôg …±³™-ÐÅå æ ûŸìüWœÿ¨þGôÆŽŽ¶^ÿÒvø—Ôú`åê´5g„caý²iêúeÛÂʎ韑±7w°0ÿÝÌÍñ?xî@ç%ˆúŸž¡ùrÂØÌÁÞÖ `4‡cRppýJ8€úÿ­ÊŒ€ÿ±"ÿ”ø¤Àÿ#åýÿWÜÿ^£ÿYêÿíøÿ4ÏÿZÒÍÖVÁØî«þµ[*vÆö€6Ìÿ!ilgeëõÈþw1Mà¿m›ÿ„Œ«ñW‹Ø[|ífƯFý§­\$­‘“uC¼ŠÒU úÚŽ¯L#l¦Š¦E¡„nV&\=ŒÖ^ BóŸXà§ífÝMÇ\ òaÈ$,œÈû9‰‰ùÒe/ß ó„08cy”'TÖ.ƒs~c®™L†a0fÖÂìÑÇþ=(ù¡åIàŽÐvN_å}tή8ºÀ{…232)‹Å묑†ô-ÇÞe×Å­)²¬¡«&´•5íòÓ8}~¯±•"ÏY1`Øv­Njð¤Wxâ¡aÍø}vÏ¡À¯ßÁl֯܈Öy2:ý{ƒÚ[ÑRÞ+©åeíö}ÌS?]HlÄÿÀ_!M€§?þ‰ÉÌtîú ÷ЂVf¤ E3Ä¢©/±ÿ§Ðr×Åš¥©þ›á,,qÃÆýű5ö»:A›–…ëXšŽfèäÄo¶O\ <ÃÞ}åq'1bN1M–„„"–tøçKv&K ÷F°'>ÈHÔUg„@úÝPüÊ™`9˜ÇbU |¹À’§YŒÕ|Ùq >'²¥:o ÛÅÎîÙu”*®¥2*ìNäîÉØí·Ó8žþ—*¨­t.ÕÍZƆ²½'B^³¿Æ{™X¥ª Û³.„à%©†4s~FÚÚº!ƒDgEaàÈ“5ug‚Öæ\ï³qi^ÈW XÌÜ4û5$Òj·ä Ã?šÆ•üöͦ^ ‰ Ù‹ºAúLbª‹¢yiŽÝ*qEcØ^ÿ¸Aºßšìš³a‘Ëq¨F2…•Ç‘AŽ}¶UÔÌ|oÞ&P±ï]¼³»5õ LáÒÂj Nb¨aØÏÅ êbWξËBW(6ØÎ`‚¹F13öÿmwµKŽÈ$Xÿ>¯˜Ù&)Þ·]¢±t[@3/ÅGŸ"etðË:¯,†·µÙ;»·8œýZf4ÑtnLDz¨š Æ+}ÞT‡9÷työh›Ø7,£mœ{ Ïœ: v¨Aû«ø#;vôzè‡|€bŸFœŒ”¼GW˜“;UT„ÅM.Ÿ*î´E>ÜùŒ•NÃdÄŸ\ÞÞx¸Æ¥1é… YiÈX¬z6ršs¼Œ|jQMiœ¥]f|,úÙJÍAÆÉ‡(Z^åA‘EH"©ÓÃÄøÇÌ*8ca½c´©÷Dn#¿×'4ë]ïç‚¥.»ˆ¦°uvy‡{êÿЬe÷=:Hxïs!¯=qètä“ÌhŠèŒµšßbDíÐ~û=¸}T‚™ØHbѰ»›OŠSâ S`-¥É!o·Ýö‘ðZz6m0K ï¯M`ì6š\¯Ù\ªm{ z/üŽ~Åœ‘w¦TÕ;dõýr©‚ÿ?Å© ÍAÖgi”0ÑŸ&gPe(C^ &M3`ÊÓ<>¦¡!¼_Íè ß–ZÉrúŸ‡„Ï?ØÆÔ Þ¾0âÍk(êúT!æ6MØQýÆÆXVYÛ„ â¶z8`>N]ŸÓ<‰f®lûa“,îf™xò^†œ)Ì=?%À%«N/‰f±•Qxã`˜TPï]„ K~• +€IŒ°’¡zQLåôó·;ÊJÈ@¯y$;a…9„²CÝ€RêÑ3Å~È#ƒ`‚b‚;ÔR`à1ç…Cm‡åà¶(:FmGÓó`ž˜ø¢Í}fö”E‘æËí÷  ¬hmNÃHÍž¦ÏBZVQõ…‡,™vR÷¹u 8ÈT6ÝÍ÷£ÀÓ)ÌQË¿ê}Q³©T.••ñ01Hj ƒT÷‡îS :?Š«6`îa•*óx«Ì/ílÖ”QF+d×=SéßøsµKbØG¬Q†µ¨x…’Ë(ð^ƒ”>*õ%k1hQý RC¸Ñnس.¨Ö^·y ÖÖ4`„+¶-™Q"ÚVEF<îpm §¢Ÿ‹'“ì³ÉCfmaÇ௞#³¼Áýåˆ\4Ý©b´i©OÆå²þUéé”ÑÇo_šR†µ8¤¿l“Åxb“jN‹öfñ&mmÎ#SzÆd‰ý¹Í7$m$à9VwEP\^E¯É–Šca¥ùÍ LßôèD{Ã?mï¿ÂG!ѽJTHf ‹ÑC5C©k ÖÍé^Té.kz¦{ÏØZÖ©—Ï;îºBèuŒm0¿Oº¬güb6ùÑ·Y1Tök÷ý8|ÆŽÛåh¹˜^{T•GQ³¹O M.’çtĶÆÄìJ7y XkéxX;TË®]ÂçüæHƒË%½ÃëuO3!1½ëšå@/!Ê\¹úgiô¸RO»ät/ø©"G½@íúÞ[¥öY±Kõ,]¤WÆûÙæRÜÊO¢e×ßÙð;û2©@zO¹!¾ ?¶ê}µ&5½M þ‹!G%… Ù Ýñí8bqÕB"ˆé¨l8½ø¡“Œ ¼„‹Ð“b”T­:=S2{¼!Ó²®ï·?ÍÕZëâº7ô‰ lU3lR‚×>-µì*î^ñx‘a?!ìeù=µûŠzÕ;ÁÎ{üvEN@}%).j+…Äùœ-)¾€G²Gaºß‰¨šŒÆ%4 icøÜ )Ý_ú*ZoÖJº29‘t½'¥Föc‘ÓK¦æùEyâ*Wôõ±Õƒþ¨éî$kj!L!ÊMâ+$§´™)j™ä ¸]«uƒ:XqVÕ ÄÙãEx,ç¼i9ood¡bîÓJ ñ >à«™§´²½]ê4ç뺩ób°»ëPð÷™ àˆØ$ׄŸ¿bZˆe<âÐ5Aõñéï~;G/ —©ñÅ∳ˆ®R¢¼Oçϳà WgÚÈ’³‹¾Ï¯.P»ë s¡§¾¸1/xÄâèÙ1)/ŒU±ŽÞ̨mh”?S¹Ÿt “ )OÈÀ£šbCiØhMÓM¯o6‡¸ÒV¬˜ä÷}¬4¨Uæÿ–‰`؇[ÒvÙ&$´·ã” ޵7K ²xjR¨4áM‚1º%¹¥ïÁ[ÿ.Âeh3¬6m™¾A Ù0[no¸{ƨ!€.šÃ<°+ŽÜ«sx¶88£z³j§½ç{¨«òH3GaC¡¸¢AžÔ'fe]÷‘ óqO’ìàMx5RòDå6éåÎa¬gyU4ø8Wô˹—Þb´äîoØàÞpòƒB±hÞlŽM¡3~·ƒ€D™-å‹ÛLXÖÞÌø³ÌÌÔØÔ©1Žy_½‹©ž¬’޹°üp…®.NU væx±œu·tåeüyAÛ&p2º&àúãueÖrkDþ©’5×õ!C¤á­Y’6u?‘ lfþ"é þQùêf¬g¤ÊòJ4W6'k)þËr<öñ“f…MV¯ŒÊ‹Â×W‘/eZäø(µ4æ\möl\ɸªn{/ ¼#Ñ¡Ž²8z¸ž{$, —PõØÖ±yãË%¦ nåŒ 9EzÛ `Òñ rºéGBiŠM.ÙJIØ•TEKËÏ7æß”‡¿«¹©¥©ÇfÁèV¦l1›«å§.e¢·–Š¼ì´•ê2™P6FRéV¤Æœ=¯ÅuÌbMIOî‘q×–q:MüýˆµŠÞ¿_ÃG ”_æÕ»—·Ð¶3΋¹3 ïT¡úB4JèÞm!š çê4MýÕ®F=K¬˜»·Xʟн|[—SÈåÕ„ßlà®Ôôª~à.ÿ1fÄ^€ÄÇ~@ vcÎWeçK» R30=4ÜŒáE˯0Ê5JþH“¾>Q)P"©ú¬¢;ÕqÆà*|¬­ãèü Ó'¬ IáGä‘c~+¯Î"íˆàÖ]H±¨Ò®m3ÎD€©ž¥}©çûOžÝ­ N&N¤¸,KK=”å7Baš@~*·¢6"NÒ t‘åEá:ʶ<ž‰œÕ\”êÊ-¢Ú–ó®Lz˜Z³®!Þ™RT›ÉD~‚¾¥Vä¤ÄB@ ¤Î €]ñþîš·¥=ù M?³–þãÐ××2¡ñ4'9¦Õ¨îümÏÅq—§'Úh-ÈfN©84ž&„¯vkñ.ûÀò.xÁE™Ÿ˜+q1 óÝ™ü¢‚Å‚-4SAÎ¥s—ÞiøbZÅ™Ð2¼HŸõö^Ú¦½„?ƒŽÛÖAåÛ¤7Ñq08mDVnŸVJO¼ì‡ß'Ù8C7ƒÙng¬&l13CîBN˜­%•g ˆþœS…¿Š ¬™)·Ž™~9éì`üI‡í1oY•ûèsp•ŠÎ¯Ùã‡Ô\]¾á5+Y™‰G´„Ó%ûƒE«¥¶áOÉÀ°‘b›¦´yÁº­9ïÌeŽÅ0iš,é}9h¥‡å}Û4„ÄßïµÉ€…ÊÌ`z90¢sTšI2y‡©I.Õýxª²k ΩdûåP@K¼\n€Ãæg›=dnÒ´8j“TDò»X>± P\Þô$!Ë>#½õû­nCcöØ}|úïÛßâï·G¬ ÷=b¡ñЬJ6"÷zzÃg£Aç„SÆ/†'küË}i'èýT“eZßß7Èc9b‚œ»x¢wûv§,: 4äžãçÁ —p¯¦§ØšÔ5^gxI`øš®=Çb¬MÄ:}»Ø›Ü…Gyl‚i×mg­Œb©h÷ÈÛ9¼<¤r=ó‘šaó3W~š³N›dìaCbîxÔ×W ¯\PHŽú–-¾ðì}¢3ËaÏÅu8ð7ÊÎŒ¶§ÅGw Ñýn¨´íG,[ÞâB3Ϋ ÇÔ0NsJ¿Ïšq½Ë>à÷<30ðHØÄºî#0Ñ·ûœMÿ¸ê¯Ìo1”CcÞüµÉ"¥ÆX‘«mÜúõÂvHéL¬ôFD*ÉÁÒSnöT“­ “2¬Šg vϸSWÇÚUg˜0[øQ{Am × þ¬3J0>ÑËKqá°£@UvóÉœÞ'‰t@M ó¡3Xý^‰¯‡=úc" R/Œ§›^üœþÒÚáhÝž&ÌŠY œ“)§›Ùìxß=ÞXy ¼ ÿWâTNà{éUë÷Ðf ŽÑ‹1m³²€Uˆ4TpÝå¡*ýTû[MÑ6ËŸ¯VEГ頡âîÞÅßQHÎ ƒE³'oW¯Y*-636«½p.Ž!ð¥xÿ^ƒÑ§h9ÍÎK Ò͘ûxòß„¤k/¼wÆ|¦òñöÉnŸŠØô¸HäùH>ýP’FI-Tê IY†xu ÷wSì^FrPßVÃ¥n0««’*öçwã¡UšöÀË@Ea´dì&« õìÚV_ê3žÔ >³Gzlw ˜×ÎÇ·TG£C2¢¼ß#È5Zï!Ô\ÀÞY+‘Öe„#V‰®… Ó‹átÒ]Ê]ܰ5?UƒŒ±\Aó‘>ü®–,_ÿ µç7¦B!±±ï‘%ÉYj 5{ ÌÊçDÇŒf€{VZ]CdPŠ)õPÔ¥|—Äœ._è 3è¼úžOõ©æ~[ KÉIm'Íðä«-¸'r´£­ ñEÜ}Úñ ‚y"ØØÁﺬÊiWÑŒ‹+à|[~‹÷ëN¬„Õ†@;åÂ’øÞn T„pT¯ê…:Jöù]k²™Ëóv µ|ºþgVc‚±c¹D2ýþ—Tt­Ùbõaþ¦ÐSòe÷^Šøí¨ó@£¨eĨnß3LFºs53d×ZŸ‰:ÊÓÍjû'{Ö÷÷×?3(‘Ó€øáø¿¡A:°óV†dù/Ò 3:Q‘mÞ*¦ÐhèTÇ&½8ªÿÑ;…Ã9-{åãh„ûŽç·lÄ9Y™™öMÐ ·C­¾¡`>ÿ6‘d’¥Ëí~¬°‘±ÏÂd´gST­‘¡}D‹Ø\5ª‚'qÿòÀ³DùdeÚp)ÊÛ&¶v¬hQ ]r8”%Vl´ ’ûû<"Ý£ ”<ÅÖ½]ÔI)óïo¢Æ 2hH¦»m¾Ñµ1k/~ßË!>¤x…þþô»6:»Ü·Fc\Ä>=¦¿â,—˜ïèp?0mÈÔ"À¶©”ÒŒŒÇB™]غãåo‘š³çÝ¥U @)ÕÖ˜ÑF7!¾lÍ_)™#+ÛêNÆpê6 £Ñ©V“ñ¤„WUžŠ®HCüœ‘¡³ˆûÖ2<4l;¹›,uû(>B¤äPÆ\¿­$öÈ& ·üêÙ{ÔÙyüñsó“\ä¹0¬s ÚHß]Ê)b3®Ô¾eĈ¶ùDÊh5Qþc!˦ôñ=û§|Üñ€R–‚(ˆ5¸3½· ».× ÜÍn›)¬H‹ŠÌx” ƒÃAÆ£Ä:ßÕGšµG‚NX…7²šuT…[^ÏþG±P9þ —<§DÙdØÖÊc‘ø;b¼¹3îš«ê»ÓRü· ë$&‡öêÌreÄsýÜÊwŒBê!mÔì t9«²Nyñ (èNù3€AèÏ¥Âa)œ³ÒäMç´»l®Â^«ðx ”_y£xYKÊñá œ‘isU¥MèM‰êEëG#¶8ÊKV9©¨+û@ݩ͛ec¸Û÷\HÐ èêÓɨ”2SìŽs­ z"ÅhºHË’‰ùÔ\Ð#¯þëU„ -ƒtCL€Pb_»\P­¤™Á*q¹×UºÚÚÈã -€ÿ$‰Ô7^KXVxÏÅ?xú´\SÞÓr·£™ ›©jÞ­!àåž™¦Aº•4Ú›v‰ùÕg¶» ¤Þ)\Õw¿êC¬Óô”SÓL”$(ZWì2+UÒó\[ÌZC¢Ž>¹-½\rüC³yV!ëd3‡çÙÙ%ÅžgJjÛj¦"ÿ2’ 1`^ü],ÙÀYuݹ"›¢TóH±º&Û·Û›‰Yã Û#Yj[ =´Ü—¯ýz™™8ü»Í»vŸ÷[…âu›ž——(‹WÔfI«qz»2ûR‘Ó0M"8jPúsa®¨†ä­ý[…Y6úìÛ'ÿ¾‹‘§Fוּuž?ck„èi‹a{ìI9jXky»Vz>ã°°L&ÚC¼nA‰eyñ‰4#Îg°èA݉Ž?pñtSŽØc‰–E'ùb5T¡$˜D‚Æ‚PDÎãE§ÀpFw¬U&/8`õØð¾•¬þkzvrÏø™½«¶ ´­'­ŸIÝ•—‰ƒBËØ("QüÒ‹Ð@ÍTåÔùÔ&Ö¨ôCâhnÿD*õeïXG9]µ@¢•K×…“œÜ﬈ø™ùÉ–òϱø%Ì'gøkèà̼gp/"\…i»ÏMþýNhÐ ­ç“¡·¬¯Jú ëI; ºÓ&ìÉ „Ѧ јöF‹³úUe¤ÁÌ; §fEëÞæ Ø(—ºÓã/¯Ð+F$Ð[™:¿Y$|–“i%w'ø™='µ7cZ-’߈-o5‰X7ÿqîk¨L›Í1 Ž^çÜâk`µÇÙ·o™¿FÜŽÃ~s§ÿÆmš:âpžU‹¶è ƒRüºÃ¤Ô[؇²Ì[>ÚÆßJS· }Jÿ2²iŸY” ¯þÄNÃ\¢œdùaZƒïV^z«ª¢ì;±ÊÙ©®3FTì( ØU»À(bt®âƒßq‰néb0Ž;MÑ-í;Òûν»$R¶ôüî|qq·N¬Ÿúª[³\díàGr h”;”ý€˜eMæÇ€zVŠéiÔy(¦ ©h œ‚dßû¨áEÈ|öNp~”Î?öê®6ãÿ´X>TÉ’ªÈ”ôýTW­{ÑéW'G„Š"1³”›ÍÀ°Â¬]ÅG–ÕqWØþS´psÎCô=—‰×á]3-bfºÔ¶ ÃËê2·±¢–kH©Bêm¬r‚:ñjªÎ4R€"8ñÉ8ãöÄs½Ó8–NuÛ]MJ\X®ìŽ&êâ<+T\JYSËf Šôh`9£yŒ÷¬³€5 W¬®FyBÚ¥¹ÆåZêãz±+•µû³+í5«Ø‡ßnwÏäÙ¬‘…mv/ÿSŠ #’¾N~«I»$xbºm‡Ø€WH\2ïqÔNê&0ÙÖõžÇé‘*;Sãu"“\aiLlž:„‡°@Œ*íÚÈ+@@—ª&‰z ë[ÜÛšž]ZŽ$xÚÈdưБ”etÉÛWÓ÷GÐÔ©@\k4yNņIí][p„눺I63 Ë>ûZÿœ´ìˆÏ7 O «‰ƒdhLÏ„*9×µ;þ¤ÿªØ=47»n9‰wÀ+9;)«aª¶Í´O6-ú;~R#©[$»ñÔw1f2/í />L FT#o¹Gw&uã˜äjÛŽ““gãÝÛ_Ú\ûðö¹^=JŸàÃwñ'©oAQ¯¹öBRU™I\eÓK"¡-ñ½”„Nsƒuÿç¶Ç‹{“ù×äòÓ1Ü ¶î!±Gž<‹£ç\%¾“Y‹Æ\|<¢Wµ±ðt»$ÐSˆ)õk»‘%P±íhoîN^¢Èk¤é¤€Ñæ”,Àç—SÀV+’æ·>ålÞäýO49gl¶xˆ7ÑÏdѹÖÉ1å>ÊÇùðÝ7Ú¡U„e©!'…$çf¨Ê!/ñ!/ôÙÛ¦ñ˜Ñiîéf¬‚ƒè W°q×`áô4æÞÐÛå,ScüSá§ÛPöm°÷m£¥ãétøã‘£1ó vžGAn<¤XŸ·Î¤IN†²L_׸ÒAöj[ƒpÄêä!ì ¦¦Ý$Nîǽ†ÏB’ $=DͶ[“'…fÙXŸ—!-_ð„HZ<Ì™àÔüe °Q¤DÿÇ%Õùã~©¡ Ö¥²W†YøqœžüÔk¦(_`ľäà[Ñ@Âå½Z|½ÿݪ‘…õ,ªÕ (”i¬ùëq~µàŒÕÒMû)ÌŸYmð£Ô;TÀ„•¸1E®×,6N••Ýz•ž§‚+2]í®$F5_Wú)T©Zwe«¼/ú;Y0-ä'b˜«³ÎŸ íîb1¿ür;…ì‹Ï¿uï¤lø?~ù@-*r5)hòév\¸\ÀUacD'þ)èlÒΚ£cuàhû9½£_hËv]RL\ïñ;G†ñº˜Ì]ò“‹ü~üÛú¦Jl~nïY3e¶L¿|ÒûñôÍXÒO¨øq¦“š£&knNI®V-Y±²ðWÍY‡ÜÈ«×hšù½SýhÇÙ€áþÎ$„ßMì‚‘à€L"Ø=Åhê·ÑåöI¬,^Î#7{I'éƒ ¶VÞP×8Ê„Ïðâ­®ÕlY°ô˜y4ý´GŒùî 4©³2ß#·¬Ñz²z¨8i¢Š±ÑáŸìèÆ?}8cxS˜ . gÏBßÄê·ëËÆÎUþòàv! Ö\Dš¼?ß‘^ ×GL–}•fîKEàÔÞhzBáVw©¥&uð‹ë³WÛ~çÀâuq~ü\F}ì*šª© 7и—a"…€eèEÔÍâ°R¨xZô s#šܼF >ŒË—²ÏÇÛð÷–ðI‘ºhê7O±yè}u E2^’rer¶C- —Ñ)¡ûcìê2*MXÜå’ÜM<4m'4±™ýäÇÆmcÇ”“ÛRsÈÃí¹[ŠÈ&/Ñy-^¶ªMÄt ÒÊ™Ygi´–ôk+çHF¡Ý§¬1cà'=õÏ÷è¿Üyû 4™ùM‡˜DÇÛd™ðIL£8Bx;ŠS 1#ioàfQ çß2{°äê’55…TÜv¯ÉDÒ®áùpr°nn·Sç [“Õ–§rÃ|RHq{דßÀȳU¿ è}‹d‚œöR.”V²K_ySö¼q½-ª¡4¿Ve‘ƒ.M-Ï¢l¸ïJÏZÉv­@EQD`h&·=éû|‡“‹ë‡‹Îæ8ª~‹và¿wKÇ9$mÈÒç°6Ç7®\¨aôµŒº¾ã‡Hñ*ˆÈ µº'‚ß lfÃ>]ê«å­ Ël­ìèï 6£¥ÄÒÞÅŽÄ! G+iXzç´Ã>ã{?a5ëóøÇ£“>_ÃBÚ²3Ã/]#1=#JD~×:›HMx7Úåÿd¥ F»2Ío£†ò‹[ÚO| ëeؼ"ì)ø€ ôá!9óÖ8ÀÜ›5d\ òÏ©nÏ$Ä…¯T¶)µ;ãÝ .MyÊÓZÇŽ=©Rãá†aê½è.KúëÓô܉O~Û±uo¶ÀBÀ%t·êL çJÈ‚ê$ÉU7>ÙAÜ00Hz†L“…ç‚ÞB¬9ƒ0T>À+1ã)Ç¡êfÛŽ®ÛMYÀr?¹þMò¹*ä@ïétÏX)ÑC R—cï@ϳ›ÆÖ¹¨×Àƒ ç͆‚²oœø+.øv±ˆ… j ˇ4…qŽž(Lǵˆ@@ŽTŸ*Èo†—Å5ÈZ€œÄ4%ޭÛ»™OÚ‹µGê :„L è¶& Ts¥ ,[ãMÏضõ@üÌxÜÑΫ§û*L¾}†P”¢Âñ‡®•+ÕV¬üÁÓ5¾¸q0†Á{ZÅ›Ñ2ëé öÔ¤º\Q™<¶uŠ,ê–­¤ \°”W -Ÿu^õfb˜JÎõ”‡¬)ž…y)\{ž–´¬¨½¹gѫ霛h „úÑ>{çÅmòߢiè w†}·N»ãeæ¼QUä«Gn½w¸t¸Lö Á6˜Ø*OÓt¸`WëúS´ºEæT“®Vî¾ ç’Á7¤D­ØŠÙIfÛ¼§Ì¡0‹eã»ù7ÿåà&Ýð#RùóSŸ Iy ýÈ. Åî°Â;åÇ¿?@ª(þAãMFˉbÔP.@å-–Öp \O).›)É, k€¼Þ3££MÃŵ?„†¢á²Öm±7Üve^6÷/Í£1dZ‚Kp£u¡ƒ^“W¹hEAFñóÀq.qËXÐ#ÏQ¡±Žº?Ó៽*{Z÷ýý;…|i" UÚ9íqý=äxðQë ®'[îTduÁYµ‘Tâœj¶ê…®NZFÒpOS£H†Æ_|‰Ôàòg<•t´)é‘òæ&:柴ëÓ§V °„«Á‡ò·Ã¼œŒ‰a ÌÒVUoçÄò%"]‘ð# &:œÉúZ]Þà2Ùxy ÛÆIì¡paëõ•’o+9*“–ó )FA§dè²Ø-%l(ì¾Â¸‘T¤¡äºes§F6AA¡XßU'ˆõˆSŸ°¤Và,%º 'æßÀ¿&9»TZCa*ûu-w=fKu®µP«&@c×}ªo´ôæ&#¡×¼ sdäÄpN ^p…Z9‘ënv)9=ÖÓ‹%Ê?í³ç[^K¯Øïu„¸nà×öèû½t¿·KÊ|Ëí÷ˆVàbF6먎l‡]Î'ÍekQ`õßzX/û Iõú·«Nxzóšm‹{müên‹áß‚ºÖž£ÉôŽ£b±ÅpÒëëØ7†[†Óû<‹“ûÆ.C?½˜G" ÄòG\çÝ?|ŽþÙ¡)ðC@UJ-O=z|'IóäWʵ„ýûúeFo³Å¶¬ÍQ³á]ã&;™4z±ZÕmj¶¥ãõ’‘žüÝßNÅoÄǨ–|üh˜Zbß5hz¬%I‘T¹úL<¼“Jeqûü”8úô·Fèº×XëQdUÓ |¿Ileÿ†=[5“KÏ06éÈ‹ÌèCŒçØŒǨž_ 4/þlíY¹‰ß›pÌèP-“=—„‚Û^"‘wÄÆ¾ :Ô¾}zÚš°¿¦¯%®zß÷¤Ê`¢sbÅ3©:Èè,ˆtÎà+YŽŽ…Œü¶{Òú™)šÔuz8ÊùLܴȸq½„„ÅßÐÒé -अ€k v&¨3a­~NýâƒÒnðK‡cA¬Ì%QߡѡVù7í´m¤£>„6~Àa2Èw™¦â忱2ÄpN<‹Ð‹%‰%(e¥…|.÷üé¶­0Ì™HRê^…#r‡|ÀÙ¨¨¨S4ç™ ­­@X,õ׸|å8½Ïl¢œlqöSpr˜Üf¿Ìù˜ûÎy N& F°ò}Æ@ÂæÚ·EŠËQÁï%/a¹=Åö&>¯~Ê?˜ß2¢•;b%0º(¯D¶.¾Å@õİèÍò ñÿèU˜Æà`¯xy27­¹] ²÷o„||†%ër¤]šý‰6„AhÕ'ÿ¤*örдyfÕ1¾Ópö4!U,’` Ó"K‚ùm þÿƒì½/ÑÎÿü­ÿÞïçfPP˜ƒ]2¡êsSì£CÙ¹|äIàâõÒ§á°Ne,åA¼ü½Â~›J‘+ ¦½ä†„ZïJMáp/›žÔ÷oå¯ÅlÌ'¬Ý«Ž¢4Èú8•Þ='©oËõ+@,W ®²‰üqª@ð‰| šâŒjñÝã«&EX‡G¦·-0ÅÀؼÄu#% ÔùV%'ù ßÏPcuWÑÌTÌ÷‰ø!H h†¨ô ü Õñ6Bû‰‚&q· Ùâr'Ed†~û&;¹ËÈñ­© ˜|‹—&œút÷ŠGNSbWJ|Tp4Cn–#úc¾²™ä,aÊD»€)<ÎEz«úŽ‚¥‘4p [¨‰f¾ü¦p››M)¯'gÿÒqaBL—¬H¢ÛEEkT°°­äsó•ä† ÐÞ4hõÊk&¬¢ßaAhJú—ß÷Ô9QÈá‹)-dÿÞÕ°«ªÔ?;¸7Ø¢á·}­´ëæ ÒÌÕAçÑDy@iæùg¼•=Ø»½ ›ún­6öU°OûÀHÈË\NEé^aCSoÚ«™2’U Ú&åî™5x–EÝ¡ÉêÀô:-ƒ+9ÊŸcrpœPŽ1¦ê™v!C¿Ë‡>­s௦@O¾{œ{¼‘ò zI`à›âQ®ôÓß8&š}{×$K-WÁ’Êÿ@ز÷j²”Žf´]ÿw8èû4·ážÎ%ë1t}û“{D©±ÜÍXÓC×=àlZ³âÊ1lëáÄ¿ƒ~a¨ÿ.úó<á—:…Ñœ|â,š“_¢ _³›ÔõQæì¢ø™R DeúÐmÊPì+=˜ÞÊ‘Û&£¬ÀJ‚¶ø¤`Z$âr‰±\ÏìfòÃ"qOKè —èH[a8Å÷ „ÃØí¸êm<,è£íg¬ËòjXÄMjtèà’ÞÒ+fÑÝ/_ÝßÄáæû™«O9Ah~á+sÕ¶°Þ{/‚´Z?nœ×J¯Pºï*¤YñºxÎæZð=Ïcå¡}ÊÙ2ÿºbb½õr÷Ÿ´p0Á³r9ÑkþG7ƒÚX>Åסñ¢aúmkaB:…sú„é–p³G/©«Lªš-ɺV1C¨GzW[R욂ԣEF¨t!-wj·Ý–¬F†ƒ’ôwg©ÚC`¶Gêþ){ÎÛrAFVÍŠmD-¨#Þý‘nþg|{KfÅ¡‰ÕðÐO]¡´9DACœþ>L¨½]¶ðM¸&Õ]SD9"?gå”júÍó>”F¦¨hIß Cï~£á0”eç~–Š~ÜGã³,6bIŒ¡ß€ gjn້pÆ¡`‹ËQ‹…H±† Ñ äJÕFó0c䙜rG€3ŒÉt° Yoò¬#qMaEÏyð)&O’KìJo#¨DOf‡ÙøgrQ5ÎÈKˆf™£P %-¨RT†xÊ,CÞ’UÝy˜‰ìétêÂÐ:Wpæ¢ÂlõÃ) ¯Žq®µ¾Pìz©«}Å[§@ט7™í=Ç’mW²ŸeÀizOºÄúI‰ÂÂén\‹eÉ ôL·)eå0²&‡”äç$W°Ð šç†‹mïÆ p¦.2’°˜Àùãx¡Ï‡AÝ–(,eBYëI\}!HŒ¯?_éfÝÞDû›™çW£õ^QÅI1Ä6 ‚çד2¶`Tþ¦Å"¦Žð¦õL/Nqnv'Á¦yÔ‰S\ìB Ê.UF|úlÞe51¾cª9V—"šÙ”¤‹ÖT¬Û>ÄÓüJl¡½æÍ™$á*q]«Gª€ÙD Ó»—²4sŠMÕî%ì]‚`¥ƒ~òF®›BskDoGüf#Iæâp/ ×~ênõë0Êß~sŠñàvXÖB¡(ÖCLZiäûõƒ„Ra–„zϸnòe•â9M½—OêÂdÙ\”S‹a»Çç/«P¦…J•PõѪ×(éM¸ßHö•D8™˜r'о$%ý¾lä)éB3èÖùµOx±«?`8Qx†òÜ77øv½¿ôNW€Ÿ—Ë ÿWÎÔ—P^úI…ÌØX;ª{5h”ž ÀÖMœGàV·6'š¿òx&þDб|ˆÁÚ$`À–Y3•p¥Z^\<;æ/Fº­ûærúäTó¡¼ 8žIˆ™)Ârû —¡©Û©Ôf(*‘vc'¥véêä_× ¤å‘ÊGr1Á„ÞSTñ=÷¿ŽDwæ;sISÍê#p:åbÚ¨Fòþ9GìBèúªX]a?0Wý¤vƒApˆÙæ­}¦`ñȱÑ:¿`ÔúÛĺt&üí/jÀ¸KXñIè®Ì<Í E˜Çt4±R/vA}ðîÔÊ«I»EÆ·oö~£½Š c †DA²<ïõ.Í[ñʇsa×' è–¥“޲Û}¡þæ}¹Á&á+!9DûÆzóøŒ%ÆÜ W) <Ú0‰l9é"ÞŸî­EÑ%è…Ïá¾¥À‰°ˆÙµ7ìé²–¡ .þaSrCvsÏ»ð±V—Š2•$01ñ»þfË»Lcµg¹»*ß…ÙIàRÚA+á§æØæŸþo!©‹Ä6¬³ûã·´íú÷Þ˜è#„ú{§ýñï M=ݱΙ 5W÷“!wzÒgj9Ç¢Î`EÊÀß5Ø4WŸ&Y˜zqŒépíL³+ìºéE „$6ÍCçÖüŽ¿þ“…û+¦y÷®MÛlJÆ&Å\$£æ7UWϹá€?ôt´Ý“óeéòKXÖ©dßÁ»+z ìîÌyqƇix_¯÷äé(éÏöl|ÕüòÕf_¡#ØlôXÔF‰]«rå’‹²í‘MË DÀ) â¢{ Gð¶ÿ;@Ä¿w1[vŒ´ˆ hødrNº„“!âTeç°«³‡¯–y]ÇP8Äà;œ=cœ`èÇýÅ¢?–¾™&ÿãN+Íé÷”äØÐ}ºìóy®å‘yÝLÍO9ÅÖàu“p3š®¸w³üò·3"ÏóàS¾†åY³}"å‡f»5Wˆ'µfúÍÈž±å‡ŒóyZûË(E³ŽiÖLá8V'[ñœ} ºÉÜÑQv+óœ~KývR’lMÛzŽ3¬]Èžo!ÓïLçÞ暴«9BÐW”ê®8¼Ž~¨\ Œå¡ªžTDׂx°›ÿŸït¦=ºßd‰ÁúȽ|4¶˜HOîíi9Š»"KàB°,ŸŸ?üꬼ–Vªûúó©$K¨¦‡l%+¥ý™‘9¢ÎNùÍ’2„7¸òbåª\‹ì‚VðPÛ:ƒ=•—ZÎ*”eÕ±R>CJg­[=ÂÍ å\U7°Ã[,7aëÆ:9¬,´ŒÑVl/Üò.·ljolHë•Ò08íbЦ/˜åÞ:™ÃÛ*€C@QFÈà S€O“‘ÿúŠ}öÉßF˜ø÷°[Á¢8È?.2Ð<àœ÷âˆdÁérf¨ËMÿ û-–Èù–ú¶ðÿE} T}.¡n© "öÛ\žŸ ß2 ¯¡•á4Îb>k\àL#‰Ñª2£Œy×àÊ?4‡ÄäôÏ_ QJUNB–‹™‰0×d{äÒìx°Û´Ô’ºü6å×TOúþBêE¦‘4ùlÔ#†Â4©æúTîv5Ðñ~’²ŽpÖÚQp–uX()7Kï….–dˆRýp{@íïÚ0Ú•µ¢NIt + „€àê{`žoÃ38å9æž•¶²¼“EÀ”QX$U¬üÁÛ5ÆáNñâúõ:”8ొôK”]5õMÁÑœ©è;™IÐUYÐjâÉ™ÁµÈ½ ×EÄÉðA/›ú‡Â9žaö©g!séHhÍ#ýÝÿ²,­)€9´Ç'nË"€¯è>Âû\uè‡ò‡§ÅÁ0«¦6(ΟµµQϾO2{a†º¹¬xµ ú\ºüÉýý÷üe¡1`¸K!ð§sð ƒè´Ì©`Ñ)•ƒŒû:á;†çvÑqÅ ?A„pUR¶öÀ‹±â®KÁsí ö‚l•ñFŠ8,Šik?Ô4ýá2›ÅRi9â?*b !ft~7¤ËL¿ç¿1WsœoWÎcI0??j[(¨Ãaa:…rÖú¸²²Š:/†Õ½­Œ-g5ŸöàX¾T¥†wªU–Žºè®’½ÁèÚ{-~ÿµ¢ÒYÆ' *äaAék3Ö1Å`ÑïŒoËÝó2a_*—Óö`î#0ÇžKúMw uá ³sAä}4á–_’¥¯7;°åù ¼÷°.Ö,¾W\iš"¯£ ]#q~Ì^E±u_·xÅ@ͬ3 «ä|-t©¦ iĬµ…äSxCÞ}»ѤmEð¸êb¨Jŵ±qœ|(ÓiE›eÍ"GŽ c÷4`B{-϶¬IáÄ;ß©í+…º€Ö,‡ÿ,uJw˜é|ó+Û®¯ütóS]«I «ëBÊvǿˎ{Ë#X/#Ô¤_œ¿èTGJß„W‹Ë¥šl1müqʳ÷ÍOÓÓ:5t> œ&¹zíˆ×·U™,4ÿ–ëŠðù9gµ§A²R÷Ë¢f§ôþJõ;à"°Šièd8«nZÃÊ’Àe Æê\Ƨ”÷ýQX ]@&^€.—ó¡ƒ"é œ¡ F,£á÷J¦ì.–Ð$©!9H#7密gÀÝ¥u^n_&;@ðüŠ’ä{³Œä{¯#¿^õ-œv Pg9²RËiMkDRn$`’í»ïdý°K<`±Ðž_w­] rú6ëµ1cì8L”³Çln¤öù6°Ĩl—Xß/¦üb·Gb$ãÕZâÔÊoífq‚³œl":…›b(‘]?Q’>îWötŽãwÙNT@ƒMQDŸÒ¼­ë›q¶ý` z•zŒ_—¶éŠœÚþ?©òc¬³€ /ßmá¨tÍ2OÑÈoý‘ÞC“©àV}Ò’Åó¯€HˆÕ% HMº Ú°‚¼‚Ô*uŸ·óÅvŽ¥ø4;Ì$³´-„•±“˜83o[_õq]›\‰|ëXâÐàFôQ·Rfß-–¸ôL­ö³*Ìi/~}Ñ#ÕŠäMõ¶ª\ÏèïƒKäÕì^öM'æìó¿0•[ãŸ?í¶Áx¹ÏÇõ—9ònsȯá¡ 4,©¥øA˜i@Rµµ•Ä<ˆÒì2´fÒ›/±¶ò€»h¹NØ8Vb x• ¿šü¦Ôa÷ÛzÂ"¿OuCP^E ðX<ÎPü¯E¡Ë™Þ›4 dñ*bý§T‚2¼vYñ¸ÖsÉëXÕ0(^hÇIaþvu]§¡1ß0_Åûõ\ $™‘±3~÷æü[f™€÷³á‚*ù£l'ËCÙTN¨tj S)l"o5©Hc­[$Ñ=€ªÚÃK{œ˜Öɾ½.zªc¦ÿ>“HÖê¦xþÏ :55 c}E»Èç!Á^ù^·O»Qe!¬×¼bÒ¾¾±÷±ÿ‡J§ÌÍšdq´e™F2ñ©Q#$»Ñã¹³¶x®§-Ñ øl©1SÞû¼tÕV­år"hý5[J˜™“<ÚØ¦gzåÜ£›Iališ0Vñ›¬¤ciάNÙJwfNS*ݬHƒõµÃþ‰ ©Á”¯rÙV²¢f-`•·ÕÞ)ö-\ µ0¬û>[ï{”$D8î:Î4 ~R!dL$û‡ éw»¬Á±ä,OrsO‚ŠÈzÀß9â2ù’\¡¢íC/ü ·Çn:>y€›í0/5WÐPbÄÙ{ÃÑñÉ:n-ÃðåêÛ¼³1åzṪQâÞ Vp  Ýž¸6è ^­6 ÐùÛ”sp±”µ] ¿¸í®ò!YÚDzw}å\ Èw¶õ}„«ù,áW=MÂü§®Lxµ —åõ–ÜÿñéÉ‘¹ÈÚ§+6hÊ 4Â9ÄþéÀ€þ/±ŠQ€D€I’¡ƒª‰ÄJýr²9êµ±Lj2é£Ff ¨Ž¨vN•íG‚´¯ˆAž)x=‰ÕnN•ÓÜØAì&Ÿé†ÈÔ‚4õŠ{¨ßé9Ó`³“܈’j±Æ©çIf]ÜÂ&Upsò„hÎUòXwáDwqâËrk2[ûr‚'=«Od‚øÕ]ùÃ\ßiï›åe*`Í¿àÈõœÉ>Û Ð§¤"°dí¶¿¦¸êÄýhn-Z[F}ú¹KCs<­hFևт³N ¤y4ëen‡à6·fi@$«ñluŒîI§Tƒ…è0ev$òÅ5DÇGhʼwÌð£gž÷K|³‚H„¡U°©îÔI$ñCQuÉ(ÎéG­/ãØ·&;ùÚ' `G˜É'Òĉ ®û<߯d÷‡(Ö%ðšÊÅm5³)aºMÏ:õÚæFñçD~ y6¿2þœ'¯›-nÀ¸ô·€lÊóØp¼7δ¹|È&ÕΜ¨ D oÜèžÒä[‹“<¸$ÿòTÖró ŠõϘ£$Cü»6„æÀá?wf0C¹PÆ¿`/O ‰{Ö¹ 6al“¿v:‹[Ð_:)á “>‡6LðNÓ,1JÆsk²‰±gU[ºS˜ËxzžK Eý~Xl¿-ú3çÏ$ôÝUwúD³QÏ›_nSŽSÇ=PÔƒ{'K›¬ÔÉ1‘Ç}ºÆªÏÄ‘¾ÿÀe™Þ\pÇlïãÓ.[|@5pºAÒm¿šФ…¨-ß|Ö 6s±ÁìÆ4’–+h_è²} ™]%f©+°¬'+€ææóÞ¼¬2aMÿÀñ0þúÎÕ¯µ„D—l5×"äýp·;q/Äur~±[k©$€úr¡ÑÖ£±Ö¶ZJXï3«*Îç–Ýfê5›Û† ±Ó¢]±çØŠRgïpˆ÷j!£pD&ô°8~2€&ÉËñxÒß±¼l,8GÇ$”óÏ_Þ‰ ÆŠé£tä¦Gk^»þWJ_ u,úÕÒ‰kªÝoÇ<|^=ä•N_~›Ö6øÿqÓ;rÈ>¢Å«{‰ýزÔ9•åïŒq½Yˆ뮼iäÇPMP›Á‡qúvµ9NZ¿“ÚöTo<ÃÛG*.M‚Y­Ž¯%Û;mg–S§ÑdÀ4w_`ÚÏ`àÎð²¶á*ªÅ±ÎBèÛ Ú3¤cÐ:³6SLâL/‰Œø) 2[¼½uC¿ô~•šXhÖm¾™‹÷ê„LðÜ$ ˆ“HCÿ¯a,¸¢ÊΤª2O¢}²üÄ7Ýî9§9JàHû-Ï›_‰djˆ™cר‹J¢¼è†[‹7¬0T“*'ÍT?ã/ýs’óÙ<õµž ZêqŒ‡}„F4 …²š2_žhØè@?¯€8À}úŶÀ™äØk5€å"Ïspˆ{<;e.Úß7k<¸VØ›EWÇ,n¯Œ >;èC É~òÑŠZè>H)a(iÜ~‹S9ÇG+iŸèÿÒÜ#Ëâà¯'„|B”‰±×j[ ‡¾ï^M¡ÚÍðÄ3*ºkÕ°óÕ"ä Šcm3P&‡YƾúýåŒi[²>ÏNø–Òº¾|¼¸åø“ìsY¬@Æ(\ú21tE¸±r÷ÛYð½ðج+“M¸ù$ŠÜÀ ˽oËh²””˭_,@8ãµüèü®åŸêdLM½–‰Kq÷„©‰Æè\î¥a]QøÀs¾N¸±ÃîÛK`¯f¡)ë)ÙE¢KSå:E {óiüd$†¤þA·×IâÛ2Mùv 3YרZ³=ǘá'k&­•„.µV?hV".¯L VAA&<þ7K¼´¯ø$5ƒ ³°2†% ¡VBKéËŠpˆyPŸ¨C†XÓ´( "¢å8üŒ,ÐL—Áem¤.ž†ñÀ0NïÊ?IÊP8¶8”Ó¹û1a¿zÖ¦H#•KJm¦a~ªwvÝðÁPç Ù{ZZ»‡úóWx¼•¨ì¬š›SS,¼Þ³D6M¥a„¾–wCæ¤)Á <ò&ârþšðæ}–A…¸Ty\˜q÷ºe1Úk:ð(üÚÀ¢VÞsüÇEjmå}9PúmÎäÌɧÛÚeu"¬‘$r⋲™¡¤(…)F‹vI´Ø`JN7¯ß³ò«YãmãÙíä0X˜K°±€ìÍ€¥ÝKÁè>‡šf[ .þ,c±p‹xö«ïO¿¢ØÁ-3KåeÁóB<,êà‚ºQzeØ]}ÑjGÃeÇSY)8åS5QyŸûgNã}~ ã8Þö‘Þ XîŠoY¾8WpϹª{ŸNlí±•U½øÕ>XÚràñgœ Ž™œX¢ °é8¿ÖX•Z>相0¢öš­ä±"o)» ‡Í?´‹ås&á­ÚgNÌ{Ó&ÐQ‚É>Ï“DÆäHiQfçdô6>ú¹R½—ºy/m`Ý; yf!~É Š}ÒË`]i88Ï’?8Iᕞ¿ܧ L:°·×5ï#¹åÈ”ÎUëÇ©òáò䲿¦O°¯ÄÀƪEÁûéï­þpžZ[XSª{›+QqòuÛÏVœ@&ò¾Ýdê]]dÊNù[lñŠ c•‘ȃDÑÈ/°¯ÃÙ3ÚÓƒþâËéV``âÖ©—e±-³‚\° iÛ=s–„Ü©›:Çi(ã)è+@üßék„ýxßÝxªÿ#ø¤˜N\l…ˆòàË8c¢L–ÙM#ÊÌÖs±X¤â «á𬲟Hé個$|µ‘…T'ñÑW®QËân,àí…6[7k /“ú²ÝI£§ÕVWw=H®¾Õó–t’ž'Ü&ÁGaN°JKâ…‚%Û&¾åïmÝé…rÙkeP–¹,©>'} ‘ê5‹€Ëáô.s›d…íaÄ;>^d"‰OµM‘ùü4Çõ·ö%·ü3ŸŠÞÖîÅnUÞ¯6¶uYŽÆÅ7Å\T݈!'=I¢ð2&"’© ) 5›ì8Ñ3•’©8ÙG3Yî6$Ÿy¿^ëI´ lh© nNëÜo‹ £ÕìÌSz…»?7§CÃ4ùV÷5HãySýˆùxäÉ<0}ÜLg®Ix¤Àg¡Áìk TÎ*vNŲ“ŒÈ7« Ìâ«£/˯jw?ö4€ñ$/ó!ˆ¶]:=š¦yÙÎ{L2š}õPªµMGâ©/FL䯷pä 0¶€…W>C:L¸Æó¬þGu›A<ÖŒ=ÉÈ w.ŠÏК*O,°Lt²] hà)u¾"Ôí—3`MjYÒ0øH‹ý ÕŒ<6fa Œ€¤ŠOÿÙLôM(([óƒ=gПÄP¡Ç^- ÙÀÁ{«>±”^7½WÇšÒ¥Â+˜Eò“\HØ¿ˆ±¸X÷x)Ü/RR 1;*ê!¿%)ˆ†”bnB±7Q0é䥟)Ie&G®ÐI‚~ß÷ͺ¬ä¢>ÄÚÓLÎ= _8@°é­îŠÖoa© ï³ ywzd‰b“¥h™.åŸIðÁÁ_ß›?}È"†…83Æ­Û ¹Ý/þøÆ³sátËúB¾sBœKõ½ú}ÌÛ°¶`}db¸û†„ƒì®î£A;6ÃÆ…SÉè›ÿe_9J=j%mÞ‹˜ý¯À˜Å ¿’ Ï•Ì>4¾›Ô|”ü '±,6A :Þàúav;Î!É}¯ý2  ša‡ÚIg7ðîÑW±WO_|çõäÙ+Š¿ëÐΙñ^þ\\_7æÖÈEµ›(2pn¹¹ÏÅþÖŽËã!•½òƒÈûð{ƒ3rªì#ù‚ÀÆÁd PNg™¹ºA¿`x…²i $ýæeÙç߸ôÂS'øp£æŸÉ»Ò½:}È<Èd“:ç¯,ȳVgñë֌9qT}k×uÇk†‚"ãR¯yâOsZ^]ö÷U/‚¦ÃÏ*áBÏç–oΟó›fI |È «¹@ûLrFæ­[‘æ‰ί“VÝ™ö3QR8ÁÆËعVUüDr•da?ŠkÀÒ^°ëœy¾$ËdÆòñ“0Ò²@ê®î2á÷ªk¾Æï´ÙÔ NŽÄ™ô6™œÅ¸ —lN 8ׄgÏ—­û—Æ&ìøåç%„Í‘×Sœ«KFOظöä¨ä÷\,O#:·Ý.Êögâôá •Î8c¤>з!|Ð5뼎ēæcØ€«êxãô%4§3X®åÂ\Z%cÂt%« o©ü˜Äl’«ûW‡ªœ°6»‰ÝâHˆæ}t6±'ÆÐ;uSWýŵ 7™†'r²AÖ²™º,Þd µ[Û™¿êØ7ç×»è²álÌ^ý‡‚mBj_‹»7æÞßas¾öÓ|Dæ©e¹ e¨S1.r±±Ø¤ vš5í#å¿qž &Xh1ó's=r»yÊŒ—7Ù Úæ­Ç"ðÒþËv‹¸SåYçê&㎃{÷¶=ÂêQ±jæ‘éÛEpc±l'´X¾]î¯}ÝÑšàÂ(×÷„ ö––¦hNžw ]Žm§-¨fˆ)n[T¦½Àk ÒY±×SoþV­íDì˜'q]Âí–é9©·NäV{_NØ´ä6±h…““¯š¥æ €ïjz­XœWƒáïÞU ?|‚ÐŒ V"ÍîÆáJ’lâuÉU\œ{`Šæ3;ÓÄlRí/ÓŠW« ت¯§ß^ \í峡ó#Ú¬C™»­©£Bî ÕKð³·ªe×ïŠÌú‹dsˆ1w.¢xaï=·]ã¼î†Cô2S¯¬# ìi­ŒæÐ0Š-LüŒ‹IÄôCʼ…t×ûY±Œ+³;Ÿœ2Y¸üï1^ÀWÌtÅô±{ ‹>{P‘ ‡K©ßIwóJŽÓ€ºÖ?p…ú?]&8Z"0´g6’£‰Gn»*¸fÍûÍúbÏ“‰-ü­-%¾å>Þÿe]Å뻄°`rÚì(pŒÍÏ\ŒÊQk…&÷6ÑjdÔÜwŽø¢°ÛDÓŽK d–×—S¨àbÚ7¨Ó¼ŽZ ARÕd¾Û'1—ùñ›ÛÇ>bM•O‹ðƒù¼ŒÕDPÛѩ؆ŸqÌÿ@îRÿÉf¶—6ø"Ñõk_Ä*\§bô¸^)ô˜o½æƒ ˆÙ곓 |FF¬‹@\:1#É.>RAJ›á ”Šå\Yk·¯G¿Î.u^š×-‘ýâRÑ@†*0 wÞŒAd¼cVT«%ÏWó5¤æ"ÑeI)ËN7# ¬9”;ï\œ~4z1Ô.̬ ­µyÓ'ÌÚ¢™ •&˱l•>WÆu½Ð„q%²#ÔÖ"Ö~Ñ-Q°4*—F:ÅMeÃÕö-f­úÂn<Ú,©¹ …un»–µ†’Ü÷«¡ž¢«±<âù´Þ´!¾åQ-ps$Ë 8ZA³7b˜X‹ö¬È;¢¾{@½Sa±)hFa^©” ¶´ÅˆxœÊ³TãäätB÷¥.0<)0âÆw H¼\gAq9Á! H‹)ŽÁ*âTßË+Á¿¬îCh¶i,ÖÖe]—¯ ´Xÿ½§Y"Rÿ  …Ï}½Aðïr5v”nöBTQïè¶Ñ÷GLÈ<ëì€MÀþõ»<û©ó Sëþµ•¹›HŽK~èì+­#&òƒÀté_ü`ý{LBø‹,°Ô{xpK[‡D —Œÿxö?—tczVî…áþëbímjœKÔ«4”hÑÈ:SuÙ-d]%j~±TdDÀQ¤qò¸Ç:éÒYl™Eq°•æ$Ë\ÆÆ*—’ó+oÌ]œ7Aü‘†<Ο5wÑw…Që™ÛËàï}oðU…l׎Ç Äýv¶Uê¬Ru€z"_£_;I:ÿ|@üàTCÃï)LÏ¿·CÅ·,Cu¢€œÅ탥xH¼¸÷hþÃpe)Qò£+ù{@Ö~}ê¬åðÅ:ëMÝ՛˿歸?®â6™b’‡°%˜™rIeftÒ /Žf-žêÕ7q÷€P¢À1°ÈÃH/]ÿ™¼…{´×*˜Ç-j…ß;g%ã+Ɖd× Âþ§E"gPÈQ‹ÿž°9€³†—ϱ¦€-ì…u÷ìðu®õéÂ>RfÕÔÙ³U¨±„&˜Yž¦MöVÅ$á\~]Ј¢^÷…Ô4MX¹xØV[\), üž®â~§Í£Ÿš:f¯?û‚0;Ù=-¼°nFU;ÑÐiç!Çž|´3!BíØ[N“ £çG¯/ÊPt±îìý^FÄ–óÀ Ý8íéŠ/M+qq&8p–{UûçoÊãolkÊDÃ÷§&D‡À-Òw·™Hœ¾'¤z°5cBäHt&™r5=&]¿o[RpZ±™ÍtáÀã6PâO¥ÝÀ2¨qûÈÐÓg+¶íM.V”·Hnðò-‹Ø¼ª„ƒçúr+B°Ã íŽ °‘£Ü;dtJǾ4ê8tćú „f¬%Ó†,|ÛÍqW&¾êÌÞ’Àêíuäx囿1›óØ^$%v!`6 ×Ó‰ã+Q·£NK†žrv¥ËÃÉæ\zNý'f(óâÆOͧ˜ay©58›F ‡ ìd„ëá]ïqJ(U’—(”œô£ã”ÏŠD€H̘NJÞ„Ú~cƒˆažº(x•³ƒ)‹×x8JÎ4½lt9­4g»ð6Èv¡ ?eßloU5;JI½ÌÐçR ò\l;%H£…‹Ú~üÌÝ·øo¡ˆÕ²„Ò‹)•Ðß5ª%›ê}¡’Ò!DÖ#tËD/%£ùô&ãù°'®Ý:ÓÌóMJT|,î~ºAÂ,÷¹‰Ä°’ú0L.˜ï`¶Ö7Q¸Í‰)Y¥´ >CÊ—T?E®® b1˜‡7Ȧ®<wåw ¶Z<à2a«²XCü‚ò]1̇”·wÇäøt2‡¡3¿&ûÙ·^Ç)…€ê½ä Ú"ø åÃt&£kç†Áï7Þ¢<Ë÷A-ll8×'£xžÚ-œ½øEÈP“‚><¢Ô‡;1ѶÉ@bqU*êºG¶@€Chá,ípZòFì3_‘OÊ-¿ÇMÝ]“es·rVëÙêµ›€v‹EbUèÍ<é%ßNNaýÏ+¾ ƒ)Cò¬•õ¾H‘ÍXKï=ö‘›¯¤×úYâε.&|>óé<Z¹þ#axO×3)¾ygÌGÒ4p³–Ÿ€ž‘Ù§µ|Ýç/ÉXÂ¥%á@]nô‡v‘Ò¬ó ÿi]Üá¥` Ó˜"g-°L0¶.W6S۪„èö>9þ>­†%¨)FÍý‘’Ì+"F}Ê„[®ÙIu1wþ˜ M_Yós¹ zç&ÜÍTòæ°<ñ&Aµ€X<„k*;%÷›EdؼñÁ`a7«ˆãQ´Ïl ™Êl'„ÍÉÀ÷(((é1xa8ÙìÕZåÿˆ )#»Ã„Á9ËPç›aŽK9 B®›.f¥äE?é.^gÏz=džJ}|¡;emì`Ê6Å<ð­  Õì͸µ_ìÖcP ›öÙ›Hw3‘»D“L^ÔCONšÇ±NRuéål9hN#׌«€»/ËlÝbœƒúTÖÅ2¼U?ÖI.3iy¬Š)yœÞúª(bo¼ìÉ-77€Ž©À§T¦%#Vú–è?7ç·¿Ϲx4à¡èŽ953ªKk™zÉØofSÃÇû% –ê@-œCÔhaj$¢tåð$›ˆx~I™“8_iïÎñ*Á¼6ø{°XÐì¾ÖðÎn­Âd.iB–ò"à0Xü-éu}¶„–óŒ!*„è ¨ùzœ¿ú„žË5\m~_{î‚ðytb,¡:e‚×<3#O‡ºPiŠZ§Û—Ž“~0Oz¾t Qnæƒ2,RWu‰|ÇiíÏ2t~¡Jw¥6**Š£Ê ×0vcüéR}°Žñw¾®;Ÿü ªÆÿe\ÂìQ-!ÓÁ‹C“;»Ø0«tãa½WB†¹ðoò6è9躮t¡ `Vûv-xϵ÷+) 4Ø€{o3цá$è(›d®_Atí¡–RâlGû½Ú¢€LT¥køËñE“Ú~øÞEmí<-Æ>ïìc+&ÊZ ü8yRQxA©ÿªû®ê<bìô¿”žã²Ö‰Îð»r(uýO_:b„f‡)ôŸ¨ÖaýÔl̪ÖQæöW…?' )¥^Ió Æ¥—ׯi `²<{aˆÍ®;âÐ1otϹq Õl+—{W¾ªyDHÙN>ËÿN4÷R†hÚqeÁpmÓ.•²Vû ñ¾iüØ=r!ºRÿeÒ}–Ÿµl‚A¯è>Ë@ÿý🹹åTÉqØÔ*±C¦ží¯ w¢QP­h\°|µÉ¡§ŽÓÌ•c´î%ãߌ–©x’1Cwè`>ÆkD{¦7nJ§Yù÷u9DU@RFÆxý_)KYœÇ«§o#"‚%Á}*ÚÕ_¥ñµð}óaSB£”Mà=(sRy°)Ð9”;“»^ FQÔGëñœ¤æMΉð¡SjjžéØ µëyRd,ÅÊw‚ûš¦œsKHJÝÕÃ<´wóNÕùö+ݽ&¾TÁÒ ÁÊïbh8®Iå,´÷N6ì¬Âžª)–&À‡)Cl¡E°©bÔ)U[ý¯4CÈ£úš»×±.¨ž],è¥=Þ=MñyÆ -rUT¡V­ Ǽr^½[1Áçt(‘W8¤ 0ZP`@=£—ø3yî!¤+ö£åoO23ÚŽÌØˆB#”ÝÖB×b pá.5 û ɯ’˜ÏïZL$•5e•s¼À‹Ü:ÿ ÎfK«NÒwß“©íëZœ<°U{êKGƒƒ’Ç™k¥#ˆ3 ™°oI×±‰z²ŽÉ*Áï@€n‘_"z­³ÇSœuéUiiÞM|Í „ÿÍBÓ«ª°V ’ŸYØÚEÝš¨öG¨šDb/@_ê§øyýíjÌïÝkáÆv¦ylé—¶÷¾ðÅ-)÷êÇ`Xe'Ì01¦K½S£7Aëï#_—3ò³#Eó½ßá°Ä ’Òc*ä5q•ÚÔKR¤!=èòÑ¢~¦°4çí¶i¤>b}â­¾J£­íEHïG}Ê=c´ {ó˜æ;9 æý«ÆÕŠ«’8yÙéþ³ÖÖø=ŠÆ…J¸äÜPž¬‡à'€yý=&~vÜúƒ*™Q¨–n< Œ`y§%{RŸp´šØ}ÑÆLƄƜöw+Ølú»©Q#bü0‡F´&…(†â?&©³=E ÎLM QÇ~X¨b u2pЋ­¢Žøõ’ï¶ý‚É$¨s¤¬»ä¾3’·–±˜*«îËá ÉãðÜú—P ZÜ ŒÊÈ¿¬üðy *O6¢tämöü®Ù„€(àYÆ{™Ó¶ðé·”XjœÑ„ò vv$)?36ÕvÔµDk„Ì:÷” ÄþPÞþ¯sôVHŒÞÏiÔ³ÖC̱!‡­ëDõ³¯Y¶¯g+k³k¶C‰©eu•î/« ÂxœÐ*{PI^´â•m*ºÌa$I3«X°Só^£ëÁåpŠÛæ©=ALlÆÕ0ŠŒ‘Wh¦d¾(ßq…#%ÄáË“ìóŒCrK˜Â ¤‚º"°‰Tµ’äŸÎRyNPå8œG.`E{B½§ÑCpÉÿ|Ú'õ6Égʘ¿„ÿA}éΦCøG×Lz ¬Ïè¹ãÊbâ³´Ò™–û;’4çJå¸Î~抚ŵΠr6l”ªú´ B5•íÑÌbýêCBŒoìÒâ::`= _Ýí"É}7U™P«C¯¼A²;3Vµ:ô5Á „oe"Ú MÈíLE¸rõæ,­9NŠ€öWÞ;›,(Ö—Í$€)px³Qá.žĺ4åh»MâìÅáí;0Íæ3™UéÔV²Nάö#uϨN•³¿[|.JÏ#Ô½œtÓ^¤³¼©‡$¦mœWjÎÒ2&xôì@•ÉOøÐà›7T÷u%ÞѺo["ëÛ³¼¶ÂCš?M‘(O©Èd…}B ì×iÛÔüÂê¨Ã>#(=»H^B1gŠÕ3¡ã^J’ri‡]¿.}ªiÛ¦Á#f5çR[=²ìß:ÎñnN8ÁÕn \óS‘³% ½µQa}q-<gô±ƒ×BŒO”4a2Pø=Ÿ£RXµè­ØE˜½8©¹P{z+§WS®ý`÷CIãìZârîS©_>€"6U`·¸6âÙ µ äÓÛb)89Ûµ*Š´ ïþù¨«“’ÞŽÌ(FÒBÛµQÜ~EK¹|JRN[‰¬‡9¨¶Ô(]§ )é•¿ î:" ZÃaú§¥hcîùõX®­%lÖøþÏ7Y. OžˆsÆŠdQ¹>VIœñýð߀˵Æä:Áα *!¹ük¯·‡Ô¶†h æ˜Ï&²§T ðíB/O)8H·÷^;Ù¾n|‹Ü¯#ÛFãéI§k°oXñü¶;°h!y$ÔqN^'XhÌnfã`¦×W!÷‹ui˜yZuƒÔCÙ[óN”º¦z›œ::9Ò‡ŠÎ‚ѼÓQE=¶  °·ƒ…ç²&'Y¤“@'ÁZeŒÖ×s0ÒÄXm¨I|`Ub0 Wø°š´°M)¾‹TYS£ &qŸÆ¯#ó:]ù^Zìþçå¦Zwk•9Ò*ÙàÍwq¥ïës¹Î«˜¥å"ÿb®„˜D'gZòE.fzˆFbi_=¦á;æ³A˜EQÁ&oHññ ç7V|JõÔîíàœÀŽ2~ЀÏMò#¦$Ž¥:ÙúÀËECå°ãj"thŠ8†wTA-År8ËÀ¬.ʾ/þŠ ƒóî¯Ó{§0G×qÉŠ;«Ä¤O‰^]CÂXåm,§¦˜Ók&Éöý€L+Ùu§Æ„«Ü³‘gñ¹-5©“PV>iêÎ\lAÓë?NÎ&,UÁ4w-vïÊ$Ùúªá3ê„&èhZê„2–-ž¼{£æLù…Åí·”l“½9k?ðw•@+Eâ!ÀMf. 1¦)2üxÒ.jÆöy¨öh—ñ½²gr´ EmËchpÎ~NÞû€TTЬ¦^%ÖÈûzH7x;fÆ`§CuClùt'qg‚(ØÌ/CP…q= 4#é1šS1<þ`Á…5Wœ•ÏÓnèú¿ò©îaí!‹µ¼(ØãzìãI¼g]ÇÍ?l´J¢B>ÄJ±`‘…Ö1T6^oº!{N†xË;i׳ŸGˆáÿ y·°ušuÎ'A$èZlsr¿†@$ ^“7ͲìX­D,þnµ¨6äΤ¥²š‚çúàÍ´Tw­¬RCtvèM‚»»·êm@R¬sÝÇuÈý8²®í <ñ:Ù¢, oVk{¨Æ”¶ U0ñ¼îè1U4’ÅÑŠ}»&â;í„Ç>»÷âÞ.´i%mk e¥Ñyj³ÞÚM go””q£Äpâv€Ò¾ŠM‚Òo$ =k<Ð>p »õ+ù º1Î%">JV.¿¶Ô÷š£,˜R,WAR/æ¿ö¤^6úq‘´/þ@™ –aVÞ¦â÷ªqÄqŒÆOâùÌsµ ÿ /™™z¹œøµ½-÷s:èz1>IŸ,‰Oõ:˜O”‹„W«1£úŒg?â¦xr€ê îHþæN(ОR++4]^m’ÿUj«ü3J»Ô–ÅÔ‚Ÿ +šÒ]M'™XÏX+oßRDè’6.¦³À@ÑÚíÝzÌuCó>J3o´Úÿ“Աάøf;¡5ö´XÊ­æ¤ñ)üŸý~Š)®æÇ©&9u¹˜KÇ ¼õÇ„‰º§®z§ ½˜km•¶#—/7ë9î!uA¤Áï Ê¢9±ÑÎË›Ê` ü­uÅÈj#Ïw¬î.v¬‹Æ·Èñ±L`‹ø|r *@ ƒÚŽ=y®”•§&V C]']ù˜?þA<žÉS(å4Ø;÷™! ½æ¥Ù®ˆ{ &ZbÛ&ø KZ†ª‡n_FÈW³ fÅ2¨"’ª¥1Öà’;Ÿþ«C;žéѧì‹eSBŒã;Tó|.ƺ@Ë´}…Sµ·çťЏïj&nN5añ)˜Ÿ|Ž ŒZð ¦e¦#Ô3Êâ« T—ÇÝþ'ãÁðÑó'ñKÆ^ó4–Óâ£äOF ìål;ÎM@)š[÷F%lQù©¬Ö£Œi½KÓ&Ü ‹Üµ€.žžÀï Z‡Ù&IíµÂ¢0™~æ =}c§LTNe/[žŽÐMȽóÛ}‰+[“lÌ8€›Î0b‹YNÉAÊÏÞdSèäµ<á0°j# ö*¥\^AÙÆëN‘ÕÝ8U¨™¾g>|vW~›–FØ~¡Û#Ÿ” u y‹ù„u»Ž2þ](qÅ"]OìÝ. [Ýφɻe·9q~®¤Zïÿ‚|ïÏi´¶÷Ø'vGÁ3Cœ¬;¨Ì wR¼´Ù&÷TeZ<†(°l8í!Ë ¶L·ªØ Í~%}±ƒ¢ 2„ôA$ìqøŽ ’QÝLh"¨˜50W¦Úë.ŽËLã*3KÊ•;6wˆ>µð±PV=Õ㎵Î4ÈšœC ˜g¤yœg}âAàdhlÊl7^ÌòO¡]`˜~|¶ÓãˆÇŽ-}šãø»6ᵫdóVþñ¾§ˆ¤5ZÕúE%žQYŒp®GéÚƒ¦½É€K¥í1q’åË“gú€ûå±ÐB=i7'dí¶øH¡Ë=žKŒY“´€‡Áô"MËjq¿hrÌ¿€½ï3õ.ÊIä?gU¯Ÿª8Þª$¹µÛ\ž§e3—ðIbrâH„ñ‚x‚ŒHÒ„—4åùÝÌTµÆ)ÔèJY '‘ŽÍLSþÜÁžjúSmvsƒ¥ùð~c½Ëþõ³”Ím£ÕY Ðíæwošûös´ƒmâ+˜’·´šÁ (íŽ7‘ý¿VÏ?-® ´‘SÂÈN[ãg°C>S²ò%Ð9¥·Éš£c—RP"¹Šì“ÅÜ?ˆBw5‘1Ÿÿ~'·­ÀÍÕk ¿—sOD86%”£iC¥:3û™Œs$¾îÝ`@kãÜ™ ?¦d3ËB [}¨ÍÜJ»r…ýSs ÒKc$ßõ~Å4ùšÙÛÔôjÝZõr1Ö@•'n–ý¸ÅŸ­u9Ô[—ÏÞs<»¥ÛO«+@ä]±BHQÌY„è– “¼ª†¸æjßšýý|Oô6µçA1dhv|®d Ôî½,:EÀŒÏ?XdáⳌ(„¢ÒL¼Š!d~¬üüc^ÉŠ¢ø™*HVuõsóZvèwÚ{Iev‘Ƥ¥ %ðkæs“oax˲L~Ðà3ÄâÙ©´ÕfÒ‚ya‰ÎD'íhÞ–XÎ3syŽY¦F Nˆç—ͨ‚nc¨ñ6P‹¯ÂB’@¥®qï>*ˆjØÃic»á.ø—úê…Ê¢'3‚½sÇ8Èç÷znÛs?‚¹Iíy° êõ 9…•µú9ÜÊ;Ôj~ýB»0|N¹Óå½°Ö› 4õÂbE°2Éç6 ¥ÖlvVÄ ÕADI–.Pƒ¤È®m¬Û ÑX! áÓl4ͬOÆ|}<Sw[ŒrüÕ–²4Å{,_ô—úÁýæú$…¬S…~¹‚:¤ô¾6*FÛÂßši¯žoÍ£×cýËÇùÖ& ÖþRK–`¥zG.Yö9®µÌˆ£Ï”¯:¶”dbR/`ו“ãâÍÍPˆvb! ]=¿Eq`o:±}Ê |QöMÂד &&fBóÄI$ ”çT¸ôÀn£HðåѱNáÇõ‚yJÿªøèC|º%Š¡BìÙ57“/ Fœ¼3\S9x0†ÌÆÑ\7I S¤K³/F[áõ=žî–1%ÛÐZXÇÜ?NÁœ{ãgÁ›<»¡§‹èN¥uH¼zK§ ¿~OdÑY eµ©<‡%”MÐáëíÔÛ™(‘ª×µ%— ÆH“ý@ CÚ·§–tN†<é-j@²¯S?îÉ®~-’«CÐ~…VüKÞžú}Ûâ\t\Õ@ÕôV¸ì8á·ôʼnWEêÿ–*Õ­ÜüB²hà0¼1þ&÷¾,–5#ÓëL¢Ü͹ ÂÌZˆ'¬OQ—“ÁGžj ´2œ  ©B9X«<Ù ŒSR±UÀž—%BŸÝõÏWÍ„]'“©Z¥ÄÚ!þ pª4+CÊø,D¥&Ƕx–ðÉvWŠ×fÚ¸?å>ü¦¥ "Íæ¢¹=Й»z"!ù䂚Æd`Y6;˜·Ò™7|6[ÎÖØRsz3Æ„Î3#T‚þž?þœ—Ô L+®w<ܱr(ͦà½urXÊÓzÊÖ—h¢ì"p9â}sÈŪt“Ÿ9aîÐÛ_ÐæT!£‡m_’7”Jáµ%•aßq¥¾ø×ÜbjÅ9 ¯ógK²t^¡Ç2rJfyfa.:bš‰U' ¤ª2lðîš–Lm"¸Sã–q¸‚EXãërð@胷出ËWo<ŸuK²¦‡™4zÈmu& ŠB& ŠcœŒW0b¼È±‡Éhï0Ÿ;@‹ âU9Ö„,V%æø¾ ~àêð{‚SYE-~_}±áýñ/µ4w´Q.ìã›p[ªh¼ „³î¤Ü ë@NqÌ­ð'Z½KÒ³+_I=O“–Hõ±{]Ì8[çg|B±§òçÖÜLØïá²ûêr¼2Õ&Ù9§.Zxo%7,ëΔ1§o‹Šý"ùؼ ð¤Ý,°8¸Z+C?ÕÍé“ÒðÃT!Œdd ¬5šáG×þ`$•Ó %áú2ãO+ Ä4seí¯ðs®6úÞíçqÍxmùHèÕëå^  gÐõáUa¿oa©köM¼åˆ§º­Ì,`½ô’NÏ|³4yånW‰b{àœÕmgNÑ9”‚Q‚ºO·"f\;`ºÍ¯©È Éד>™{P`¿Õ÷=6À;ÂMÓ-Îýy¶*ÖºT޼ó«Ã?B×g"öëh›£¥ZO”$ó¯d¦ðcÞœKí>möŠúŒYUî8å[#cüÜåË™ÚæO¥}@1\*ÃÍ#2UÍÂ(YvrÏUÆwÖw9dÒ¸&c1ÌGÉ‚0ïØô%±$Øå úKP(êï$î=.”=KÄ–\›§»Tý“>®¶Ptp/yJy2ѼÄ2æÛ@^' Äü¶„÷Ž-Ug¼Ÿsè¹Çl:<'ï²O¡âü—á§L0ûˆÔàrmÐäˆJepõèòçu€¬´A½õ͉Óøw/nP˜ ~ob”­ö‘ª1T™àÇ îè:Š9¦Ö†Ð4W'3±Y#.F­¨?Ç^ŸÛÀõÓw§óÕ WU*=Fxy#ô_ßrËHJ>²/ØÐf×x9œ/¼bvø€‡œŠ)ÜÀ–MeSál÷x«ŽÕ‡“еsýÄÉ<œéi}¿¶9!†E4&K+жÁçÙÀ!à4 Ä™À[%[¼ùóê\np Ò3ß0]’+uMÈpG$"CÉž5ø€Ì)@®™è1fÝ4«‚^-Ó 9;AÖhO9 Ctáe¾%¶øÈ¥PWƒýM‚x¯M…®¨õA`Ôc#50‡{¬e¬-§›;+²luÞÃåî<¶êv„!ž‘lˆÈø ¯¼Šz%ó2ì6’ÊilÀ¾Iö“žøïo5§oyvJÜ?)…}®Sªýø¥%t³Ý!¥†;›hÁ^'‰Üj¼­1‰þ4MeÇ{ˆ ͦ{«„fŸÛÎÒì)ç¯èŽ2r#üÙË,ÞªŸÀ¼šòPóYÏò‰Gè`ÃÜɾ°ô¬^\"3§Å¡¦¶Å¡NH8ºßϳÂÍ ¬›<~ôO{ W娄¥üËoÔfô}¶£e ¦o ýcjW‡®{Lî­<·’‹V}T«%?4ªäfðáÅŽßav vϺí÷kº‰Éì¡­…2”Û ôº¬Iλƒ%î¿Gs¹òu|‚Å2½¬Œ6|[øŠÒË£þB€ÄÌ_Ý›*% â²~1JL1-ƒkU꜡csÏÿ3Ȥ VÿÝ šºAqTÓ†Tsèpÿ|•ü¹ÕÝ…o9„û¶=We±§ú;¤‡¹=×2NæUïË‚jA¸mõQ‡ù)Æ£_y¨•»Ë—B–•0O“ ´» Õ˜íÓdFÓø+OºŒbÀ/\ý' ẖ4(êÀ„váv[@€•ž«ÀÛz‚qI~¾¾‹£lƒà)V–2%RÚØŠ™E¾ÚØùyg⌅ꙪԧŒË&lÛ¡P•¡d_¯Ùù¥£<«" a‡b¡<¤…·ä ñM/$å,9(ú&´¾¿»A¾yö: ɧ@ÓH;Äîf¤˜¼l3ÖH†œZ¯¤£õa•82é`ÄŸQ-$»Ñ„^"!uAF'1]¨î‡+À\1ˆ14éYWYô Ûþ Ló=®¿¾æSEdžŽ¬EGk2®ÿ†ü DÈ +GªáùY8ÃØæDy}VÒ Ì”8‰.÷.{4`à*.êN[e™v‹à˜݈}jCŽä; ·±¦ÂP}¦ÝP4î°)àå툤ªÑ\ÊfAÀ4ª~·p&Ú–ÁÚuÜ\VÓ’tu¾m-¢j%÷†IBšö"úî¯þðV'•9pmLŠG7°=v·Ç.C¹aiñŒ¦´žÃ|OÙÅ»4å†uBÅNÙl·^J‚^~·íC%Ój_‰|ÌUâ›Dø±æÂ¿?_1ÉÊEÞƒ5ÔHÅ«%gw€ÿÑD©»"ÁÍñóXòTœÂH*Ôvy耷br¶¬íL˸¥A -õ®ÌÅVø±NפëӜެɓÑà:>C(yþë鸢âù»ÏâEÀ'šYƒGêÜé[,_aú[J\KêÎ!­cVƒ}ï󃨸@¿ùtù9b3Óœè®1ii¶£Á¼£ø8U5…>Öôzþ¤,Ö¸¸¸­Ÿ ¢7ÉH\ISf±“ »76ãX­[ß"°$›,·_Z5›üJ;o¨‘‚†¬29¢‰|×…›Ý4O°Ú hEB7ܳӳš¦î§ëû 9C=îN¥ø4 ×{ÎçÆo¨z½ø¬œ ü¹ôzìê-i†ûºz˜á ü)Ò”1 èÐ`óºÁäÒ”âGž Ò§°Óox?«[¿+×YRªÖ=–9T³FëšUHÏ´ 5Ô‘oÁýwÂý?é-ËXê½jTã­ïõovêó­õ¹²µ9~D9¨šgý f®ÆÂ,Ǭº1=;}þÍUÀõƒ½¾'Næ` Ѳ̿¥Þ¹þ!ÂÞ´ÂÖ=¥ wû3äܶ$ Øæ&õí¶oý˜g¢û„äV$ ÈÐDŠÒIª§ÿX”cè9`õȇmýzu?œN9ÐÍìpMc¶­2å ±JAôÕ?y^¢ï¬’³¸dQx%·äÞaìVúDžé‚9$'ðû»ó¬gBœ6aãiìϺoáîååM dÕ–èWŸ ‚pìGË¿¿s)Jy ¥aŒŒ`KÏ»-J½ºXR ÊK}9ˆ»J˜ÇÇžÎÍê¢KílG]$9&wË"õÏ`¦Êëµ#ek9bˆQToc„ɤ fVÕÒÂeåø~©çb!£x =AÏ ÛtW†?i’µO\¶ì…°-ç6DKI±Gõ…“‚½- ¥ìäË|Jq`̹± ¼á GâèÖWþÄþ¶)‚3ëкÐüù_¿MÝÝ* ªÑzdEq³„FÛX…;åi /ÃóŠEg:B4ï/ÅÚHŸµÅŸ¥QÈW&g<<)€_)£eÁzb˜~]:ë 2ß,ÏÿÒ(š&…J*B+ÜT`~]²v½ú53éº:6â~X:MÔÃÐìÅ0—R¤K4;ÞßO꛽%6wÀWkuÙlºÔÇ=ŽøE‘õV U¶)YP¦9¯&]¨Â% ¾‘d#ÚÈPe©”þ&lX«¯ÆHžË,'êâ€1JÍ ­:Æe[õ%h…uJäxêÌÃ*ª »®a‘kŸCn4­§bõe–Ò6êñ…½0u4¥M`'lä0ïâE”9æyŸ$ ÂØ0lüŠÁ|jàÔI;ÝõæÞV÷T[L»Mpå¤cïÆ§–³´Ñïâ/‡¦€aWÍ¿ñ2-¸Ö$^g ûη½z–m„J ‡9»Æ¹ÅeQÈ2SHe·&—ù0S’D™Ôj,ÕZß³ /œÇ†52é‹ÈV¦‚“sÝѵV7Wè‘m½p¦—¥Æ–àaK»Ú kåîÈί?äÄV¿ áõØK Ίëp„:"+4 zQ…;«~ ¶íð1+‡r<Í}%eSˆÙÖôÎòU¯‡U&žC³ªwéÎÊ|›±^šN×^,/ä!ÿ‰•õl—o—HÇÍT¹Éd;°]y÷Ý…çR›ì]†H~’Ũtƒº™*™¼­<¸7k›Å&àcKëT-ö錜"=¨UÐMTfêØìš~ÝNõ¤YÅ~dVŸy©b‰»¤ù³ƒ»DW¡é|µÚ±>ÚªOÔdð•hÏl¹ ×x·óοA·ÿKÛ ßZ Ìæ?ñÙ Äᄚºñ=‡þíb¹ /¨›ÐSQ·|)çB½ cë _î`]¶ˆ§\ÿ”¬hB»¸IòâàÊ6}šá¯`nä•-ºT8^¶œR;x –WB¿d#$ÝïxJàüÕ†üí²AçPŒfÖÄwUvglH¦w7%ëC!ƒïÝ~w¬ÑŸâöQœj†¦›|>ìÃÅ›hJ ¯H’ihQy˜È÷ ›På,È1ëdmuàõÉÝkûSG7ö÷‚b·õh'õ{Á¨YòÙT½˜WL¾e3¸Ç’9ôCÿ¹wÒ‰¡A4þùÒm¾¥ÈjÔ‹Nw®‹æó®ËóPláxÌ÷jRº— ÿÊ;?`}ØÒûŸ‰j˜¶b«ƒ·‚ LPƒR{Ï;dÚì¡"e¢%Õ¶Ó„°† ë¬ÂÇñÁìM?²Íªg5ˆ Ô»òêu±€„—¢Ö^þU[œÄ§q(ÿl[%c¡Ó˜Q?.aýqµÓf¿%DÊ **Õá3cN¡Ö@F1FÌmjžEvœH©ˆ‹ÔP>£dŽ7%ã«™)Œù˜r˜¨ùµÍ ^9³*ÓTt°ü"õªýWHʾì»~ N&¤û;C0Q ð1›ýx<2òn²dŒ=<~¿ùúð¸5\·ˆ Åõ¹ƒÃÍCÜ@Q%j‰ >u›çp9jiǘËÁ ´v²c”ðcòfµ¸ñ_/øH-+__ ´+Os2ͨXE˜˜ªö¶ö@nV }A~ì7/î{ƒÕîï²c¢.““XIøh¡;ðÎïËɼ`yÜ¿×ËÅ,¼½/:áY(,[’8ª-„p†òÆ]Á>£[ÅSŠh^ûÒÝÒ/’ß„¦gÆÝDN¾GÞæÿI |…¬ëŸ!Š®G~”wñ‡/‰ò•,Þ7ï|”Y@Öþg=ƒ÷gÿ®×¾(åÁôŽ·ŒÃuT `ddt>¯‡¤ö'Òa-…Ìú4¼Èm¶˜§jYõéK9ë;:qêBfä{Ðï ªájóÌgèyaÂkªLÁnu0"\-LÿÔ!·"|t[°Ó¡,vXt¨ƒ<𥋠»HgÑÊ-Í”Õþè©DØ;Š<ö¯T{ëÕ¬åÁ·m„{?1íkÅ›¾3ãýÓŽ>ß³,[¸§7RwɬÜ9ž2í5gWËÝûu3 "æ ;Û=™Á:^;$ûX &D”1øÍ®Æ#ˆ%GSÀ· ,+˜DF¬Œ$­Ò­!ºÛý"ò¥x‚Ý$®‹Y£ûÓP,4¡k0þì( ô{D¿²+KóJÿeñ³ûð1ƒ…7RÅ¡®°~ËÄy!C£±É=™’cåå ’ö*MµVš2`-Nó-2¬µÿ)ÇUû÷s¸Þ*{X_û`À x¬‚n úr1†ËdàZ-Òúž0µ¸l%Õ)É?•M¶d"æÍ6âÝÇØ²x0e-â‹=ã"õz·Kö:)Àìu'9Æþƒ_Åûò’ú[·s’̯©x=<¶:,- *W³ÃBüXnk¼PäüÊbnòâœ&XºfÌð­Ó½hPü}Ú³Õå„%mKêÓm=ųC(?¢ ùÔ—¢Xû`öúpëë+ª)@«ÃMl§„—+¡eæÔ(™á…Il‘9e&6iýâÇiœ`€—(«¿9Ó#Uü¸”Ý}µ4ßÎЇøÝ¨ã?¥È½î|]öñì‚ÏÜž9å3Z hDz'Ê„þHÙ»- uA´¼ ‰ÈœÍ×°ºdŒJ[eŠ¿Øâ˜© 9!nûŒüXà#l,þÅVÿFX®Y°öFˆAæYëÀ¼ ºú4H쮫š‡‰bœ¸0^ÉÈî‚èM†8e‹'ù'âRØè‘‡Vxô‹k,²Õµô‘bkýñ›Žhz~`B£ –„kº¾|¿¹Ê‹âxeƒ”„×·ÎΩÛÂ&ª%„EUZiŽ!ÛDû0mæNš¯5;²þ›âzõ*(%.?UÔæ›Î®FÛþt3üuÎôs´/Ìeo¯ÙŸò' Ìø8LðÑ¿êÚzIŒ;!L¼»ä#¸WH ñC«¯-ba¡ˆ*é ꘥#mª¸í­pÖD“9F£I*„M”Y]Ÿ\Á±¼›Sž¨~„äÿ–æv ÇÎB²ÜxH0 ëTÊŽ •^ÒbÛÄû]ÁÎ9Tòà 1ò5LøÜ,F Ó ‰«“ôóL“qe¼ùë·hå³4R…Ñrþ´í|—áÞW>úÓPþ4ç¦E2¹`ÕËi6R”oBÌ¥0I¯J?¿âÏ£±¸÷=cõN0é•[÷Š‹_4†óC·?ß7É—Ãú‚¼P1Z LëF-j&3A„iìŒ ¼>¥ØKµó×È‚¤c´Œ¢c1ULífQ1 [Ü¿¡ÿœ:‡aV3(sÕ ’z—h²’M¼Xi= Í¿ÚÊ¥!œ°¬Óà˞ìlí¬Í½Fñ€H*Ô-Ô–}nÓжkÑøÊHÆ;O˜N®¸Dïœ!ýÍMò¼L “›ÍªNæ`Uè{4mž×<ägÃĽ„—Ž\P\-5½²ÑO³÷7‹òê+ª„øÂGi) Nr?†~±#bÚéöÚ³«íJ³*íFò°Zeë'Ú¨}Åçàx påt hþå6VLälö\ÑQ¨`²¦ùM‡Ç&BÒï´³ ·†d²Ä«qÜgåûB6¢ØäŸ©ƒ‘á? ¤Çñ è[ó²àìÃ(ù’'áýô›;íKÍJ´^˜È§Åê ¶oDˆˆ›xö»ì ¾”h{eÍšfw1‹;¨§ÊµºúÏåPšƒ`É6&#´xè†À#ý¿íwŒÀ `6‡ÙùöSã Ñ'W„T@É&똲]ú)ȆD4mŒð¿¼nÓáýø¦áö[åF`zºý¥ãFÑÍòšÍˆœMÙR9a<’&ög¨ˆM[£)$èhÜ>òGÏ2íZ´c¾†9œ4j=Õg·Á|.¤qsîƒo… îÞ\R U÷·ÑÿJïYÝø4â¿62þм•ÆJs—n*ÀœúÚíî#MÈžÁ­ºÎÄ$9‘·’A ‰¿ï‚[2é«F­]î¦nŸ°™òÅ^pÊ u™‡ì¹5x˜’Ya>7z{§1u•ä2Štg(^>äîc”dD!£Ån˜¦°ðÖ.b´Ã—ŠêëÌËýàM¢ÿì.,t¹É"²ßàhŽuks0’THcf‹ûÅcŽ‚YÜá4,z Y*˜MA?8±+÷ 9—fl$›Íã…c³90f2Ò‡Ô]·í—æ©~‡r©ýó%uBÙÄÔTìMZ]¶DQU\s?´Í'”5àäÞE ç‹6„ArO9¸°µÿ}úÝg‰ÙÁ1îVr;À‘9“X%€ú˜BÂ7z‰m+Š®N–úv¶ÕPif¶Û¡‚mîVÚÌC„JX˜„|»K Œ—‚e‡t:´µÿ¸«ýÈ›;ÊgÌÈvmÏ’•Þ˜ý)X¤k2JVIäÛ:®U‚¨j¼¦8fª§QÙkj­,ÉGRwÊä.kc†‡ æ]L’{8UξD›ÖS¹é(âý¡)ѵ¬Ó²B7k)ü¨Ë¦›_?Ü›p­ð 7mRŸv'hU2«™áBñ÷Š`ÿ:<ÀÃr*Dƒð”5Rr»Ø¤¿Ôq Ë)RTÕnœ6бç¡C ŠèpîˆgïBKpÏùü²éƒe¸ïúÚHBOAtÈ,ÏU« l[˜\_/nó$.˜—¦ ÷Cç•üˆâúwïÝ šA"â ) Å4³A„›)»0Xò’:UØYF;ºöì©¢7F'O±G³Mƒ¸hýLMbFãhh˜*¯^ÅÉ£Ÿ‘ g ƒÏ ¥Ú[/ˆŠ É{zÍÄë•(|•ü½1»Û[ªÒÛXù°=è9r•—2õ¯¡*åÂu¢Ä¬ƒ)“ºÂyÅê¡õßÏ&0„„Á`zX¤X=ë„Ñ;׿uG½ <·\’=P›\žwAÐövJi¶À`!tJ®r)ûà_þÓž9uî^Ü:Ù¬CfÕõH«ÏºzÂýŠQª±±ýañwû}JY¶²cBëâœâ?W„Êr{½µÎI‚VnîèðÛ±É+Ш&qzÑ’éR¶áwñð‡Q*tº•å•ë«ZkU12{n|'–ŸŠ£Ù¬  {ü´Ñüå½üÆ#gÝLŠOšªÃ%.C’["ù¼(âû GÕB z,‹É©bJS²…W»­%Á5`—vbj¢Š hÍLÀc^ƒ­öþ.úŽÄŽñûðÖhˆ-ý‹]¢?ýSZÕÆ³!–¨ÛÓf•VQ¢¯ðD† "1ÄêOÞˆ®ô€¯ƒ7˜QÞ¦ewŸaÔ=Y9ÑËÿä`"_Öí™J{:R»6ml°~ÕúÌI~õdÈ ó¡<Ú̉stùjî ;8ÝØNïÓ×M݇Uf­{±Æß7Ñ‘Z`7 º-ÐyÒ O: $]™¬sY7eÿ¬Øã3e h³à{Ñ¢xtÜ‹ûÚ-šIžÍ‰ÞŸs2Œý¤³hÛ•ßwU)ƒ?Õ‹NA“‰ÑPÒEõÏÁ1G‚pU#Y—©·¡ÑØ®–ܨÑÄIt”‰¶txÉzŒ¨|€Õ-|Ý•lp$´$ôžzšúø$}›Ðœ6ÿmÏ&µ%Á\Ï_u€ yÚÅ^ÊÌÀ˜=„P„Ö¶ËzmóŠdR[Ü*ˆK òùËî%Ì'÷rÁìåÎ#JW ‡ŠC2Ù ;‹†”õdR§æCµ§¹l šØ `m`Ùˆ•wñ×Wjã*ìÓŽ2Ùä:¸WT‚‡Š ‰Ð±¡ß¹œ…<çÒP¢ ª0¡s>ÒÍÚäûTŸ£—ð ×Jò£'w¯¼Ñe¼°N@H³Taÿöõ”Ü3Ùrq| !¼h^íÞ(£»CËFȲôÿ¨êృ®âô„Sß~¢ž±Òê3黼㷖hÀxóôñ{Ìz#3ë~Í»ë‡^WA\™£m–jeÇFÑÕfÍ!ôêŽVCŽwz|•Äeqõ亿sÓá8‡˜”¨ˆŽ¬KC±?Þ ú?Ã+ËÀŪÐ*€:¤;Ðþzè:#=g!oéJ}ÉŸ–¤ZÁîþ¤I£ŸPA ¿°ŒIÞ™_ØBS3Ä…Ž/¬–«Š)s ¿|bšÆ!kQM‚ÞË £cÑ Ý+½˜!/Ëå—Ø)ˆG€Ž¿6÷w¨¡³ò ZP%àš[Tûi_1ç5–³E/GdäIç”9ÂB©­žfOWH‡ýéNKÈjÃ5CÛ¾Ktrpé½±O+OÀÓOSÈ^üK̬ÌTQgW_Ÿû˜ÈóÜ€I=„$r56Ú%D¾qÅ™º1óºè¤PÂ,¼¶,w ð6Ë MGÄôÐ4‰3U½³%ìƒËb4êÈ¥>U]â +}$|71Tn™j‰p±Ï{εJ(¿7 ·Q€åc­(ùìaæoªª“ÌäâÝo”zé‰o¹™ã:ö9ãlAÔlk¤é #{Ôeù2½p²×¾JŒÀ\dÈ#¾øˆ™o©‰§/\¦SÛ…›Ï²¨ßÁO’¥òƒÿpØ4Ô«ì þLMañ‹"',Áó'9qØŽÌøB\ów/6’±×…¶1º‘÷wÊ×<Ö¹PV’³¢4â ç‚'±e¦á‘·ÊÚhÕG‰ñôḛ̂­Að¾’D”À”4‚ËQϾM»èèj@vA|ìv¦½ÃC'ò '|ÀR‰~§E²V_×v´ÃOÎ {ÀÙ—ŸÒ–Ï䓊½¾ÊÁw][ªÓ7§KxvAÐ÷¨åGõŽÿìGáá–†û·² Åuhp ýÚ0qoüEJŽóSúžŠ10Ûï KÕië•´Á&)Íʆ5£ª$ÆN Èÿ¾¶}oQªÎÇÄûtÇ¥£Ý5NÖêêYÞõÓàÄÃÏE£5ØDÏfˆC6L±íä >ƒS95Åã³f!Q2h& ø-SzW|åìÝÿÉöïgµ ú_®5³¡çáÌ’ÕÊ‘Žä¶ŠTØÇSlÜIQŽZˆK–)³‡(gÍ|ùžœ¦C Ê'Ð%ÅD 8ú¿¾ÃÓaÊ5p¥~«3èˆe‰¶T5€b>ëR’ÈÆAÓIÿQYΫì2H+81ÏÙÊ/<Òý¹Þmþá"÷N*WµTO°ºåH<Áˆaâ“ær’! bƒ’šEO¤º¨»”-ûhÒ‡jLŸ´Á¦þrÂ|ŽéŽŒ¿a¿ ã®h§K*@´*Ã'~Jïr 7ºÓû¸!~{9àGþ­byL¶ð«f¥g¬Ê¿)õ ’)ê’T|+Ô7;&ùN@ 5m{ͽ­ÊšT`Þ䮹žÐÒ»u𙞶è7°F „âÞáYÇÅfŽn‹*§j®­ÎHçRùŒÉ ¸¸æ¾‘pz(¹P ¾Òÿö9-Ï©¸,s ”ÜElµ77ë¡#œŸLëKö Z0±gΖ`Ì?•´0?¹áM¤Us"™­Âºåíòçk‚Et±WîE°.3ƈ¶¥B[D¥¯îi¾åŠé¯èzA;毡€Û:õ‚ãÕ¯ZÀó‚!ŒÞ„øÆQžS um6Vš¸^¯Äk`ÿ’IDB-‚ÃQ°fÝJ5–‚qËo¥ÊS™q£}º`š»|¶çUϾ“–™<«“®ó?ôFl>ïþÙOqúmþ§ê>|õ‡LÊd>þf«å{j·j9Òp*¬s·Ëãîu?mKs{§Ûš¬y;®ÊsÖS  A) >Jî p&ÓÊwœò~MŒ#êËü¶Â3Å©'üâÎzë™r >®<°~$b÷¡ÕøBÆ0¦^±%IŸ¸ªÁµêLª\Xô>æDá“o2= }>?0Ñ×mñ{“ùxÿ%hê>b-é=G_3(ãÀßNøÖ·ŽË²Š˜«-lÊŸ/c3aÅ“¸”¬ßœžO•@¿$ýåX¯ÕŒü`ãÜ<¨XJ…:ué%Ól9Љ‰\7ÀLÆ2ÿ•ÿ_ð0²h?ˆ|å¿2ª»Ò5q›(9D: w¨/½^BÖ¼Ú†½äŠ Ý‰QÂS ¬†ÆÕµX?`N™XË€Ïlþ_{Ùu×ï2y )û`Ÿ|½gbñÀVIÄ™RåïàrYé2ur#AÝ’öHýrž×ü…y_ÃuKÁöý&.‘˜ôEñòÔ^ÁlìûРӢgžñùVòË~ûÀüõ­Xì•'eQÁ£&0ŠidZ,RùzAä‰ÌhÊ J¶}ž¾?ª#ç9ëç5@c}°»%(gÊ:í[Áù4‡=9²”åŸëá³e£‘ìYÈNѨCAÇKr9Ò ßJiíb<Ù«~‘3‚ûS2‡¬QÊ-åZH _€G“7 m§É 6e†¿O‘Ü×"=·¨—²ìcàØjȰ¤æo‡ƒ”ß]!?”™3ƒÀÊÒáª_Ú)êçOþ>dmľ3œÝ9ºwTTÈW‰¬xæ­ÐyT~—PÖm?Ów†\ñˆ3‘“š?‹`êyÀ3—‰G´s ÎâXØíú  2#C§Z<¦bãj^'K„µ¸9OfàµìJU¨òmŠ(¬±ë†–Ò ÏñÛY‰órýþ±NÈépl÷2:ì`ÊI‘zûARÄ<¿´D›x¬ Æ4¹¨$¦þU¥æš»VÉ:ó*Uù˜ØcÄL{5Òë7ÏPÛªÀ5,©¥%çòðÔ•ýM…µ}½ªM>çÚS•‰„d5HçQDWÞßqæ<…äšË¤‹šzc˜Vkª»ýÈœgkm×ð˜‚&†Cpóû˜½bhÁ¥ x@ @ì‰ñ×å›ü8Ó5 ³½¥³úx·4(@·ÝÞHÕ®ª°úæ] ¨^¾»ÂÍ#?#¢e}!ç?÷. ùõ̦ûëyïµpïÔ&,)¢r¤X=K®¢,*?;(Ñ¢À¸Ô§$4Ÿð]7Í,†ƒ•Žt?›ÙÃwÛ^_ ¼I¸ñv`Ý“üÁ©ZÑ7z”:í?ñÓ ~²¤LoÏȜ˵çUÎSs|@…hny¹š¹E¿OR_ ª‘öEƒÄœÈ¶M^)`¦òW¾Ø˜{?6¿Óô&®&a8írø(òÁ.ë^q­° õMX‹³Ò)ƒ4ÚqWÖ)ÙâeãâÁb€–q}ÿ¨T®ìÍWË]ôq9•BÁÌòÛH®‡n×Gæ öýÛUŠWý4ÂÀæ?ÕïÏv+î³Ì‚¬Y \ÕCÿMûT¼j!Êñ†“yBÐKŸ­7>ÆV÷ºÞ0TלtoñÅ_lس¬L¿ q^ÿí!ƒ0¸ú1½d¯-©iÜíFjö ¹TeòM¿cŠ«ç#&ç乜x{E·NÚÜÁ„é‚ Y¸¼…n5)1ÚôÖÒ³|øŸo†RôK+=X ­ähËEZ# ±èM]+(ÄÓÌž2ð®.(wt;öeqY™f«É©Æ2ÃÃùµ" ”™½¹ÇíÞÙTŠJôšð«ªÿó uã³… ™‘æóPªÅBÑVÕ_Mê@§„ìcþüWrÅf:+wI,¤Ô’† QöÏ]: %U b€Ö4„è’¯-`øGé!mTÜÓ³â6áøŒÊ+rcù‰3Ý|§MûD UŽœÔŠÙÕ' \“wƉ+µÄƒvV˜bˆéÿx`þñLÿÿ¦ÿÞÀÔÎÜØÅÍÑÞØÅæ°ÃIµendstream endobj 19 0 obj<>endobj 20 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 250 333 555 500 500 1000 833 278 333 333 500 570 250 333 250 278 500 500 500 500 500 500 500 500 500 500 333 333 570 570 570 500 930 722 667 722 722 667 611 778 778 389 500 778 667 944 722 778 611 778 722 556 667 722 722 1000 722 722 667 333 278 333 581 500 333 500 556 444 556 444 333 500 556 278 333 556 278 833 556 500 556 556 444 389 333 556 500 722 500 500 444 394 220 394 520 600 570 570 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 333 500 500 500 500 220 500 333 747 300 500 570 570 747 333 400 570 300 300 333 556 540 250 333 300 330 500 750 750 750 500 722 722 722 722 722 722 1000 722 667 667 667 667 389 389 389 389 722 722 778 778 778 778 778 570 778 722 722 722 722 722 611 556 500 500 500 500 500 500 722 444 444 444 444 444 278 278 278 278 500 556 500 500 500 500 500 570 500 556 556 556 556 500 556 500]endobj 21 0 obj<>stream x¬ºcte]·.³b{Ŷm[;+¶m³‚Š“J*¶mÛªØÛ>y¿oï³ïÝçþ:wÿX«ÑñôÞGGksŽIN¬¤J/ljo ”°·s¡gf`â¨YÚé¥]Œl,M_v8rrQ' ‘‹¥½˜‘  4ˆM,,fnnn8r€¨½ƒ§“¥¹… €J]Eƒš––î¿(ÿˆŒ=ÿ“ó¥élin øZ¸mìlv._ÿ׊ª@ ÀÅ0³´D•´¤$T’ êI ÐÉÈ äjüO,r–&@;g 5ÀÌÞ ðEøg0±·3µü'4g†/'„Fg ‰å—ÐÃèð‹àt²µtvþZ,æNFv._gàb°´3±q5ýÇ/ºÙ×~88ÙIØ~ñ¾À”ì]œMœ,\_V•Ä$þí§‹…‘Ë?¶-¿Ø{³/IS{×Îâ Ëè˜/®‹‘¥3ÀèñE´¦–Î6Fž_¶¿Àœ,ÿ冫³¥ùy@pš9™Ú¿`¾°ÿ9ÿŠóÕÿŒÞÈÁÁÆó_Úöÿ’úß>Xº8mÌà˜Y¾lš¸|Ù6·´ƒcü§J¤íÌìÌLÿ¦›º:ü'Ï èô¯¢ú§f¨¿œ02µ·³ñ˜Íàì]¾@õ—eÀÿX’ÿRü?’àÿ‘ôþÿKîÏѵ,ÕÿcùÕÏÿZÂÕÆFÁÈö«þ5]*ö¶Fv€ϘÿCÖÈÖÒÆóÿþïbÀÏ ¹«‘Ógÿ[ØÎük(Ð3³3°ÿ»-%,=€¦J–.&3#›¯ ð¯úT·3:ÙXÚ¿úõ_ãàK‰é«Æÿ©ÝÿÍS³°4±¶ûj+û¿Y@;ÓÿVçÿ4È¿\güÑá(}u³‹š§ðÀòö_£ã?6ÿhŠˆØ{¼é™9¸ô,œL_]öÕgÜ,l¾ÿVþÄüoÿÑ•7rq²ôè01011¾þÿó÷_;½ÿ#ngboúO÷«ºÙ™~ŒÿMø¸-]Òb_Ѳ0q³rþË–‰«“Ó×ú×Pø î?öÿ¾@ Ðî8vÙ0¿îçyÝ2ƒ¤_G‡ýÜê7{Ò°­ÚX»~2íãÒFȵ™l¤e–KƒÓæ¯8Ûgò‡ˆãë!҈sšœOZÚMC¸= … 3azEâ!™A’Î7u°çþÛ-Z^@Ò<_æËùÜBNdY[ Ë® CÂo%åll‹@;±†m÷Ÿ üžLÔÙv„4:Zz£~è°‘S–ŸT>³Ö½ðð´b,Ñ.@t„5!ól£Pl[³b Ê› lÒ!'/LŒ­‘ªÉ\ÿ4Æ€¿O‹ö°¸.Ù´Y’ü,36‰/k‰÷Éê£al!âí3Ë[{œ£¯+ÝÊ—fÛ Ú±–dÿœ¿¬é€£5øíÆ_ùÇд³%ð…u;èÆãão´ÄrÝwµª€o Ôö½Âs»µÉÇ©M'‡)¶ŽŽ,¡·““Ñ¿ŒÒµeøf¼™&)WD5Ñ+§†Oªƒ*oTîÞxÂVÓ63bìõ*Ñš.‹N›D}Ú^âä™xÆìn3£|唼ԷúBoòæUïâmü ß´Œ{ÅØùä_^Öþ˜»CÊ?rjØíçNÕÊ('yªÞã–ÁÈâ5gÊTFU›S~R7ûÑ*¤Ûjzm£Fñ`“É ®áqÊ=V´¢£ç—Ô8EñÙÄ“ÐÇùû¼n¬ŒïÎãsEb§Ç½'ïºRu´Â¾¾Í·ñχ˵QÄ•¡D¹¯¼JáÔ…ô&A75OÛ<Ùdªê«`ó Vu#uš¼òîó¯ý2êÙìí3œÇƒº‡”}¦Éwo€èúÏ=Šƒ&ŸâS qš ‘HL™°¡½VuØ œ²éGè’pCíp…!‚‹Pɬ)Ÿ5UÁ²€%òk­>ÿ0áÎaà# {gG=F>¾Y8 u1¢ÿ´‘T$û{“Ó™ÕïÑT)qCÒLì<ﲢߟüÆ”[„11×uè9ÕyÆ×ÑÚGÒÃ¥–¶rŽÕ™t>…’xØíé7Unê˜/à­áß›·ÜàfZŸBi;ÌÃR>³~ú˜Ö%åLÚ®c‡êm›KÖÝß¼A(?ü*B>³èFLäŸæhôeI¼I¸“g,jìòWîãÛT×}èžÎž†Dòkw3üÄš´Í£ ¶O!q~3Wé§ØÆ… Ùn¶ÒA׃CÓG3Ë/Qd Ÿp–ËCcˆìqÐvìÛ&ð²9IMÒå+ñ»9ù&z4&úT6Í,ûÛ,’«`⮘ ˜©eoÓ¨2·=T/^—¦Op?ÕiiªŒ@U‡LVçjÌìz«0!¾·&ÄØJI4&ÃWn¶¦@æÝU*Ø›]±øÅjK„_¬Ciu8ÛÿSš~µcˆÇKyW@âÛÒªˆ€¡(I‹#"õ⾘¤§ýÞ‰ÄØ·ðŒb®w ë‚Ãç¿Dœ"™]ù¼¡UMe^eCå‹ùl]]¤}÷jz"½Êh¹¨™K&³§#Nê¡W\ý„®&ö{uu£öF[‡ EPJ“*…ÓeŽb´þµûx‹ÞWë]¾ G¨‚HµäRªE„H7µI“ }Ǫ_Ó«ïל‚ iéÏ¡÷í­€ªvÝÒ†ÔÊ‹ŒÍ‘ñ@™E Cž¢;3–›‡×¦€v¤šðm­^'&´U¨Oaì³åÃa¤Â¨o;t7Œ±`]ЕYßIWUÅvþ:Å@õ¿]vÇðÙÏ¥\XeB„" èB©F‚݆žù5¢%_ÚQî¯Tã?ÕM¨3`ˆ÷éR'~O,×RïS¾{µ}h»æmIµÏ:Mü¤5<#¦0¨V:Ë +/š²oâw€%%`bí2šµ/ý}OvM Øo¾oT~ìÜ,¯æÒ©ùlbÓñàøÉ„(m´/(àÂÞüS#gOy%uUeRÜjSµ$›Å9ühWô›ûTj…{}ÔA;ø^‘ße|tEÍÎФ¤±1)½YÁ{Å+bF÷**ö†±ŽéÛÁB9$\~®ßT¯y¥S“Çá» ië÷ñ€øÌÔaöüòˆ5æ’Z9š!ßÜA,Å_ûxFŒô0½nå¢k»PÜ»žÙµ‡Ö†¼0·2Ä¢ e^ ø/§Ø©1Å«»V&A ~5l¼@É·©,çõ}ìõ¶ÀÙ\Á©p–M5¡Ï4v(¶<ò!©ÀuHéÝŒ ††êô4ûweƒ.ùa¤¿9~7•µ¯ à\îv–}£Ý `½[V}˜@?ü¥­E 4ÞiR!WFrÂt»%oÝðéÀ3߇ ›T$f‡¨™`ù¡–î5Þpuï¾(j:_¸Ö ]ÇŸõNq²…Ó­2{êvÍ •ì&c•ƒjä­xE­œË…èHz©\uù’ l¥‚Ø<¼û)<µÉô£4º"ñ`ý}8…ŠË˜gZ(Ø®^ç).«“~„Ú$¶@Ž€(XÇ»'i1L<ý‘Ʀ_‡Êi‘• ·:§R-ì+*lÐcØkIEd?æ)¼<ÁU“ý¡Ï·r‚úƒ®%VŒùWÛÉcð~ ?åÐ IÅ‘*ÝÑ7oêÏÖp 1:ôäxÏ3mö Ö!U={(µ•×cÝÌR Ç‹z<쮆ïàùiÛšÐ&®`’eÒyñ¨Lšž»LeÚ½.¤Å½Þ]ÁÕßP‘Nr½ßó~ߘMѲEP ìKÁîPP=ˆXt¦ößÙ“¥ôk@‘˜èÌw ûl †NŠTÈ¡æ¤ðäâ ¥¤5?ŒD0¬þ1rý“mÌ Šˆ°C³hQZæHÈ<èæáYf»ÚñJÒåwû'€lÌ%o=¦ënR¬… ÄžõE¼ºK]Ê¢Úíé¬`+yÛqÊÔd¼§tGWcÝõ×Z+14<¾JqÔ;ÛµF|PÚ©jQ%(=òaDð·ß—š3ªÆÝl:ôr)[’xQå½@Nåç¥uüÜz0u=~9É0ýù«êŽ•ó3| /$%×0‰Ú~~ÀlסÃÞIÛâî›$f=dȨ )NêZ=µP&V Jm%Š1˜ÜIo8¨¸’Œ1 0~ú¹G>“!Þ9ªö`Ú)gúÔ:nûÆ)W‘ß„Æ`)nDª®´ ù´½Ú¥ˆò§Ê!ׂþæTT¢èÞ¬YêàgÇéÀ@gÙù;C·¯ÔZ׊rWÊΑq^kzVZvÏdSnø`œ›ÐI4‹XÙ§[i‹)›þìÀ©C6d™~ϼUѺ  ^[¶T§Ou‚ôÛº öч²N,"úo¨»Š%ÿl9ùQQ –eo š)tU‚‚S2 b¡¶«3!~bÃ`5›üINØ-^æ\µûµd(ð'Kît7–Þ‚;è|½!£npmY]å›l޶‹mÁL@øNBœÆa®çÚÙó%šNÔ¿õ`©ÆrÊh òû^QmÛwfDsÓ[ì•b$u17áy*|ì寸qSöß÷Ço}M‚a~nhp!0ÐqñC?^³¹H÷Yÿ%{0ÅÛÈÏéSÉùt1£±”¾Åoa”ïrˆ nK'’ôºOX`:oQÆ2çBÝÆoaöZk ž‘ˆ ¦nïqãoS¡߸>é;ßvÖÓé]WécsÊa¼¡Ö²EF+‹íñܘ-ýMs‹ß®53\vôè*¢8à øØq2a¯7¢ç–/Úôâ‹”6cÏ6EKÆáä&]´šÓ[(ŒKØW²ì¨Éç<_´9GAÑ~ôm Ð|7¼ÏžßŒþ¦¸ÂSóºöÖJÎ8±Ê7WÚ›4ŽH×FgW‡ÂñÆ·²û¾W@’ª¶z*1µ¬|¬6‚K°lÄ­\6m6Ë —`AÐ(ö0vh¶²CêB. ó 5ç æp#ˆ? ÐL}¡DFöfó-@[`ÈR‚ zæG[Ëá¢ëO|MûÄ‹¨VYèüÉ/”öVmP^vrœµîy‡ ÕÜ¿Ìgg ¦ê*:´—¤vþZ1¸w,íͼ¾ÿGBx¶@þ™µòs³úxôeÙA/öe§ÀF¾ 65«¡WpÃã|w¦ÎpNƒéÉsÚ¼ø®\b½*b[³œeÏ1~œkDº…2*ðJ­#FÐ2 8ÝÜž¤ƒ‹âý©¤)jr^‡è¢C1ÉXº< PÐ…Úö!7ÃÝ.À-¿VcÚ®où{ %îÛŸõ\Ñ5!œŽ@ "øs÷ó ^¾ÙMvr{‚§¿Ü+¸wåö+ÿÑ'Œ}V ø:îHÏŠÔëmjcÔ›•'ƒµ‹4ŠUÐ ¤ݸÊ_9¥ëDŒ”Éøšû÷ð?lãôýžq{+¸ØÇ}¸h¤0²7åß:œZhöÏ7æu6¸ÜÃ2:~£þÒï“Jþ<[­[ )[U2"ê¹Ñpä7À÷Tùç¡ÛÓû›U]Ônê2§ªkå4«ëKÏiE¿Ö‘Š/ÔË(sÕ-8Ë+µïè/ZŠ'a¬ïßÕMfmŒtÜÅ2õ c¬Mðy6”à‡öˆ u[íûº5äZU-òd=ÒÈé IÄêjÀ/ÿ€‰$Ø1ÚBõ]ßܨÖÍš[jš¨Y˜?pœ<´î•œ5¸¢²I£ˆ;0÷~ñ²4YW1Fm²l³ª¾B{KdåGÄq—¢ãðBdÆ®¼l {N¿„ˆyX¸PpÏ÷MÊJ¬U¥ºá=††Wø=c0J’ðßÛ4[{DËÇ)ÌO¡7rÅìT'1oš@Ü|œþHß—Co/äLŠ·u9ˆ2C`3†Vf9äl½a—’ËîŠß®Ìa¯K)ØÀ¡ý™lìlJ“&«#º¥{4Ÿm¯èfäœHÊÿþý‘ Š ¤ÎsE$¸}KV‹åä®3œ8™+ksT8y€G©ïÅîëðæ_ú„³°8¶j£0Ï\ãl…51Jì…D;›oYôo€ÅNÎõÆ`¶ò'm–¤ï1vÓ¿jÀ³ Hž™e>DB‡™ÙÑxðC8–Q©I£…`M ó˜vª[Z¨CS¸?îN??Û]LAxðöÿzT[|® [²wÏÕ7Ë=¼Ä"á$ üIeõœ‹ÍØ0ùœ8®¼ÆÌ"¢šˆdIÏ2›îñÖRÄM âÆàÚ¶(/ ©Ðeö—ºqà²PÀ“€eìºô@Wä$Â,ð 'â‰l@{K? ì°¥Ã}z$¿.¦'¿”¯®÷CK &šÓÎð™†ÆØ®`­·<}Á+ïå‘=ǸÑ99®fâÙ*T¿Îý;¸‡…'œdeVKDo½?°¦›fS93c(ã /ðÞþÓ–ÞÅž¦/‰å7–˘ÄEöbëSÃGÓrAÙ:'!GÍa‹ÇŸC‘8¯½f|®Ë‘˜milr˜.Z (B5”KÎ…9œ#S'Ò¯–Âv‡º çʾgÿðÁÄäo6h<Êžm) ´ {@âVñ¨óMá×'¶ŒªûW _‹cI$pÿ Œ¿+ï Nï‹üRwW¨°¤frÝÔ¨K¡„$†$Óà‹–Î1\ì I½V~ ìÓ}rTˆqºo[ÇáÈËÌÅ>×õðÇg¢Pº>Fp׸M®½Ó@~žm_´s¬S´H8ð ã~K¸ÐÒ­@`_oRIRzgÃh<2 ä/¥pÜ(”(n=üâ÷\‚íiî|RLo¹êÊËzOq3–Ãw\²¿ê–fG®œ©vÊěԠÛЗWTýb ,©¢"eꉾ–ª·W`Cíž#,,Á 0ÏÊ¡âí¯”*M0KVà'±ŸŒÀQR’?£Pw¡Hæu—ÐCĘÉ#%¿§¥X 2qfrÞ—ylE2úGåCÈãÕ=z>~,¿ÊçvÜ¿÷ŽëýîµÂ)’XyHî‰ÝŠãË”E&cú¯º1c,HèÒóÛ(Ô!€YåáZÂùÅ}Ö°^¢nÊ9(ÍÅß‚òŒ;ßx`?IR !QéxÛS@FS‚{ºêö¶öWIÓÛú°\CŸ›_^#Uð=ªî|w,e…ÂÀsÙÞùôR3f«MÊK¡›˜=áF´lp).Ä…0³¾p’&× ", ÅUŠŠÕ髨dÇÐ YPE«õyS¼Mœ®=]ŠàÕhÖ–˜«ÐDeå§Ä‚ŽÛf§äš*©pp>[wÌ&ääQJcÚM´°hxÍqàÞó]ªžIë¶¶Æ"2S¥9!HȉòTÆvŠ=Ül3F_‘Ÿý(³h-´%@‘59H€ƒ¢OWöbïÇÆœå¹ßŒÌ(HHû&a-ÐÆiâIª`ž2œÃ.I·›\?Më“6+ÙiOû‰Ý(ÍïÇÍ—ÚIÃ]‚ö&•Ðó–/Óå—À3=œz Zâ>BÆp±åÒÛRHµ˜³¬ 3¹XÅõ¢—ÊI¤¬øÒ[†·'ëñú K$Vþýž-þÒ;à Õ^‡”²P×K‰\¼ý[µü°Ê_äj¿<Ý|2¥@h(§Œ†Ñ¶“ö<ÂMø=µ"""k?Ã8(“96¿`ºø’Žò5 ™fƒÏ?_òÙ7¦¶Ê(«¬;ŒcmWÎél)Vyú\/¸ï(»ÛôÂðhÏë[k‰YH#viÍN¦ °„¿y|_jBw^$¦ „¬]¶ˆƒ½§ÞkÊŒ¤)üþaÚ¦¹Æ`¸V Ýq`K¶É€}ŒÝt€p:Í/ô53‚`•ªjþäxÀD\£x*vˆ-à-ÈxbAv¬9Câ;¿ÕªjC f1“¥U|<¼TØ V‘'(z‚“ëp»Ð¤ŸCH’õØÚœi|É¥q´0cÎ¥ÑÒ¼]†lóv9 ¹xÓ¤ã´z]óÔK±O(r ¨‚rwa­žå(¢‚B,Þ9X&Ði.fáqþòt!”¿^Z„qŒLBnå,Q&©V]`8£ü{¤Ó’„T^ø-É[)ìç5Ÿ{n ÂdØß!â¨)›Y§¦®,¤+”zÄ0ßLÕ™€„Õx-²1Iv´!AK~aÆî(Lëw°;àl¥,€±¬Ft‚’±z rI]ÍÓ€ëƒñOãð Væh$ÇZ)Oææ£d”C4ÃÝ»‘¦»T´¾X¸Àûï$.xmˆ‚¤ÎÏv ú;›(@|?ºê˜½ꂹ=/®áú_x¶mA ‘X½RñÝÔJ!wŸŒÎ$¶Ä®±¢Q‘û!¥ÂÝP[15 É%Q¦ä»~Í!RRي犪¹ËRÐÐ$ éx¡@âø–KXEÔ|Hƒ÷ÄQa73m›V»"0âµÀÂÅÿ»§U¼¨ˆ²ÿ²znì”9ÚƒŠTy5t"¨[‘Ž®YŽ'‡.Ÿ2Å;ô˜0hØÝ¸Â‹YNÇ &阊[$‘†Nçœk¨R•¹ðåyúôÀ¾Âb½[Dî®"z龂le}"yî06¨çA⦷ÓÅ“•O­u¡[¸_‡Æ¢P·°UسÛFz \V2 ™Jo|ì7ctõ¼"\ªì†ØOŠÛº!» „&o$þÅò{ÝÎH‘¡òÄNÁ9MËö|©IÔ?Ø[ž‚?‡Úë͆!8+1’ý&¦‹ ¼q Ð}pu>ÌPc‹ég/á=cޝ=¼šE—‰® lå#W[·Ù¿×…Ì™Më2K7gçI!;Ø¢KÉ.&ÊÖ uã&¹ü„4TœKÖ›¼â†ÌCÀ‰i+Eâ½c0Ó¸°<™§ÜÊ­j\x½¹Ð E´±y>;CëÖÐlÍ‘K¨<îbÂya±ZI|reþÞ/î³Lv‰£š†¶ea¿‘P\[¶zªƒ¶3A›áþn͆ï+ššƒ/qd¿MX›$b‚þÍÊ¡ Âë ë!iSÈ7Z¹ÿ®ÏY¨Þy Ô" ýGžuF=Ö'C|ÙŸ¹øÜ¢{†Ø‰…Ø?k· 9­Ú^¸hÍvA`­³Ú¤ÛðÈh e>ßû<*Ÿ¸X%ÉoCÿr<ÑYKûÙ1Íç8ÒÇT«,,  ^] ×’÷ØhX¹,,m\ÜÚZÓµËÙÇš'x§£ÍþÌÓ¯´Ù’^ƒà€ó¤$D³ zÜ%GÁÜh°êJ„®iY” þÍ4ðm-œ»ó޽`æ€-¾á ¸q¨htÇv°œØx*•$£Ó.skŠÌtIÔ‚*Å%G[GSµÌ;Ó¥¬ÓOëÌœ)oî V’|n¡,çÏRt‘QÈ7)MHr:1úì^—bp‡?óýff—Fækªj½óbï¬ W÷Ä¡þùoÍæ]oÀ:Ñ»Eªkwº¬–B¬‹ÊbyÀ-@1ˆPFÇ)ŸœWR'çÇ=-ŽWý·Õ™g›ó”î So8¯pGYfþt•;Ê€"¨peîµÎX@óå|Uj¦gÖ 6‡'y-ê;c Û£²ªó§µÐÚ_«+s­­²}…*B™lx­ªŒ„³"?Íó„Dýe/^ ËßëXKÎ"€¼MÑ®¼ÁXP%lQñkøD}Ö'†çùý97yänîb¬)b‹Ë´; ½ÜN½¦%ïá=™±Î' ºXÝ£íñ7¦f³è»ŒžßòAóByì$ÜM:¤q{:ÇUÕê™ ­À¨‡õÎÃDÞÙK—*ô±§Ç·EdvûQoim’hõ*bæîžB½]VD5ÆŽ“I¦{]ØeM¥yÓ4($“ÅÄ4ÉOsÛ:ß{{þÖIý—8I“[Óçò¬érB¹‘d3>HPDÚÙŒ×ÎîáÕ´¯» ãuò:ÿ<Ȉ¿’b(”6=éf%Q¬ðR·Ëø‚ÐK•˜4¿¸d†ÝKgQ4] WÎ!3c¾Ùí$lw ¿YVÂê}à+M<€—SÝ÷ã¥Z¹‹èbõp ÝØïu¯ëïtÈ~Ĺú…Å46Ð ¹&_™,EÒƒÚjR¸ Û÷¢gbÚ‰r§ÑFå[ÙµèØÐ¬},‘c;ÇŠ‚ʯ"è¤#’üd÷µµýB’%7¼±Äð±ˆ?8Þ(;5e³&ÇŒ°šëÐʥȎGRè r)´&ÁøŠãñŸ…fã³HŠÞ€¤?áÙæÏòo™ˆ>”]rK6ùøÃf7U§M™¿ÅÖüg)FÔ:¿ž-ãðó1ÇŽ›‚T™2`»ð¢ŒX"¤5oÀìÝÝ"~Qžh³xoj®°±À#YŽ'ÏZ²RµªèÜk¸‰Á§™ŠŒ3ˆÎŸÙU;Q‰ð€ W½ÓF¼|¼ˆFwõ³¯²íÀZæ´O¯nÜÞr°Ày Æl‹ÉB¨ÚÄ?ò(þJo_!Þv8„ê"¼Ï[Yîymýv¢-â¢åj wì˜xÆ{ÙÊÄÝ)Têv êóGòlæêö•šR9¾.,cØèÿ‘yªØœeÅš^$øó¼BEök'P‰Ya¬`7áí°Ý`†<Áãàš“è0À?8¨=áÉRs©w,üY±™Ôæ³×cÊùÑ¿ã8ž4oïûw4”YXÖüy0ÐVá'ãß¼TëÍ’]{¾Ö"fnUwá’TWïû¿-—X~÷ðˆß[SÎMšT×TD‘›4Mì²BýŽfòB]„&ªÒI¾ßd) Ͳ‰”äìþ›ÏÒÒGd·œ_=Ž4µËó“ÚDѪƒ3šòÂË-¶>zàr’cÿ6°ÏIŸ•õÅR…|g³úõ×´Ä,YR˜©+E} ‡=.Îf[*Å£¾G½›ž~‚žË!¯„쨵 Š1ës§EéŒ\C›DNßõðy½Þ¥Úaïatl0%w`Ä=\hCÏ¥¿Ê4a¹ÈÐØCM&ý­×ö:Š ê™ÒPí(]êñ%§æHM”™š4sb1¡Û1Œ5’ähU“ zdoCîÙïãVY!¡%Á님Cί×CŽËwQØT•» °õT‰ ScöNüÍÿ$Ý„=3­Â=1 ºñ@Εrm¼ªüðØÍoÉ÷šq;.À¹Š –âÊfRa“¶…Ã¥Ö˜ÿü­žg+øÃ*[_[8ÔáUq\õó—Ÿr»2«‚Œ«Ó5‘mŸYÚ‰öž‘;Ész™„A …íµ5ÕB*³>rË*qÏ¥Ü-¯ Ì¶/ T˜}~ôH=_/oDÎÇRÑ$CG¹Èls²|/¤ "Pjíìº pò¹f€p’‰CŠÿŒWŒS¦ï‘<ù¡P•n•G€³UºÁ¨åμ;ˆ…ˆý¹Nd‚VÃ@è5)S$…µ}½ a,°Ç·¤J'³ð²ö:róî)W³=êôêjm1¡ëÌÜ™/rÎó|Ìâóµs)xÕìè$ž±û÷PsxFgex$•9ˆ îü÷ƒÀ,‚¯‹Ìa:´ ý˜ÔÆ`zÏhÈ!ÁÐРb5w†r›)Óг&†ÊHç*÷zZ†Àú;ÚdU|­FF¨:C[’PºßœÖ3}·´’âÔÆEÈÎäz ­ìûkB`nÎpê¤Ëï™)ÅŠ)öóªºròM¨ÎXNkéVËÈ?–?ß­ÆZ»¦çü,økUñ§paJíhS0„ô3¹A °¬~Á¶qåö0݈µá72R”>]ž¢™Áû…‘Tªâþtžà>*ªïÞ¢¥¦n¦¼šKŸÎkèðéÚiÎÉ='ú¼MüE‘žþ9@ ³K(Ûžò:5²HÆÁÙlPµiˆ-êXËÆJÄ["¿MƒÑI´;¼w9þ®ä…³È{ŠÅØWå&ˆjÆÞ&ºVÔ¼!&ŠWÂòæ[ÕX`èøN¼þ€¨›o188Ý¡øÓ3Q€¨·ÐGØm‹ì½û2ß‹‰ûÓ÷ùþôݧ1Uû¹)ªÓéçÊ‹Âíëì|Ž –¡!y}îY<œ<ÅO>” äl`ôœÇ_· {¢U^¼¼ Aí~O/ç¹Çò“JQωŒ±9ÐDJä·f ®‘KL³±ha‚Àɪy¤Ü=QvF[H¬µêqõî4fs¦‡éÖ“*ÏÀõ‰–ØÄF`Xé-WÛK ͽ㛴;­ÅTI‰º¾Ò^ýÛ°ŠÂjh!ôš¨.ä:àvÂËÅTð<_‹° Mjö݃%ʼì…{qG57z  Lº—¢ †ÐåÜÅtjâ§.ùø7ý^WQüÚ&§´’ÅÍ´Á<J®_„á¶{36}SÓ.ðÿÄÛ»=rþI*·j*ó&ÒJ|íõ¥ƒ–N­¸‹Šã¨qPl#$ù…÷‰'¶\˜xTHÒ´íGX¹m§èµQ¥†aã3Ò#t/ž;«Ð[¯cä¯ÿäž‚#êÆøZ)„뤪 ±•nÎÚ!Æ4›×¾–À08éCeââ&€…Ͳ +:§öaÚ…©žýkÌ[Bèÿ[I_>¡¡ÈÚd'Ng“YN…®²fØ‹M‰&±ØòÄ‘¿ôpª¶ŒDÎâ…Iµ¹šÖÑ*›SZ>š?ZÓlOºÚUŽ»c+Š’÷ÛlR¬¸ýahÊMMUÂoT/º»šqº2çEèÆâƒ–ª–;¹ŸáV­½›ÄÒNrQ¯àÊóùh6)†…-g·Ť7isÁ½=÷l!Ç>µk¥#•í"¾÷w=^tªh˜ÄÃÝò’Íi À5 ~ì2Å?ŸX¶Ñ¨Ü“áú«HGƒÅ¿ZmÏ9Þ‚õHA“€÷`Z§ÝêÛÛíÊrêû¨uî€FU†câ S”v-ËfÌêú«ð ù¥U2’ƒ›Ý|ÃÁTzj@S`̦n°/¤]'y–ÍP‰„똘ùµ?ûÖÓ\ˆ´kÒ~p¡ŠÑÉ£Á¤lý7¯ q"@ {sAêªÓ õp®‘Ö†a:Ö¯j‰Ô¼V*Åfô¢ìž¢4ñ7LÌ3˜—AH• ¢¾Äª—$ïø~0\ãÜ®UP•œ¾j'(hàêhëwq_oÓÝ ’®¦=¬I-%غ)%"}ÖöÐi=´¬U«)=«1,AÑɇaz…I™/¢Ç#S[X£5 á(ýD>9—…(ÙíÂ<çG ªZÉÊr1áè±³·âv{eEîa¼à©‹”&§ /^…]'zo9’ߺ'^ sÑ7k~ zÔéúÆ"«<Œ.8Þš»ßÞ‚y\T`ïÎÊ›õz%ÿ0Ñ] ÷,ùÏ|½.H*l‘¤M7Êè­šx™â‡]ZÝ÷]j–L³9¾ó=ƒ5ÇÎ"ª·„M¦7£~˜NŸ B„,ñZ)ŠÄ£)?"Wp·½<ö¥ KfèY'<;Êo‹,j½f Ð9IÀÐDÃâÍÚ8ïEp•ÑjšóËvi;!LÚÒ+‚“®á—`,„ dý›w9g^NŒ3ýÔí«ùðÙ {R’æ’göðˆë¡Ôï3xGìz2ùSmglˆ˜nI·çÏG&g½¨«Âý qÐÌ¢Oß;O‡ŸbH+µd!›0Å|:ÂHþ½Ë²›ÅžLws߈DQC]¯õx¤Eú ¶ÅÌ}†AŒ,wU¡¶M-LÆ.“Ð$@_¬Ãm-F ð|:R‚·ÏÊP=Å.)C¨"MâP_ŸßZZÃ=ß(q% OÐÌKÆõyþý žörõµf•µ®ïÞëœøé>@öuÕøw2Û£Œ*}ò§öóH’¡ïÓÁB0QøÔCª1SsëÜLZFÍ0ü/ÖWJ$CÓ/¯ˆ£‹fÓcÁÊ™|öJÏWÿ ›|ú?]¨\éV¿„Š]\TÇ<öCutáó?Š(FÉÐÒ5›ñ£å_ÐîË{É€‰Ïð^Ôoœü<šVÊÈo‚!% ÔÙÝLMH×.e¦ÌøÓÅÁÚYµ·´öxÅ5×$æ™êË#omCaÅ Ve¯Šp~ÄpðçTË7°œâéy«û÷¿jˆsç ÛZ!ïi#§p‰û|wói…囡fN¢Ýõ‘Ï•Ñ\/~äÑ@ýHaŸXÑbÖ;œúŽ$fÙaãg-Çs!,$MA˜¹ûhݸÚ"g«^ÂJ  6÷ƒ%˜RÁŸ}Å!<Ì'G¾Ç)·ó u´2¾¥ÌJð`h.Æ"s½Îï3ÝB5 q'¿rõ3ƒL¼u1ÙÂ8õ»]v¦W»\ÅìøÍ õÖw~37þYìØöõWÞCY†O(¯×ÕjŽeð;\{0Wüьݟ}Ùᚸ*“ MZÞwÜø¤dˆ)AêO†vKùfœýµâ'0"â&‚?(Ô•²%¢×ƒuÈW¶ÃbY>›N¥´HJœ®FZ›ôN¨ÒŠÂAw…h(µ$)¤U|%ÕO»ö'¨¶Ù™ÁÑ,ȯܕÂñdMÖ!bãcpá7dšƒaEùuHÍBu˜’)Z iü²õÒ]ÈíÚ§RÒýŠÊèWû4¸PoH_Ð̆þAx“nb“¦{w9a>“‡L¾ÏF¯èßœ–vüŒín’ß%ÖxÎTJ#5ßÚwdò¹˜“â’7}oKT,í?Ú›Ú°æ«eÇŸaË%ª49ãç-3æ|m._­¡©NÞ#Ò{Y6YdVDé_`>ë$‡‹÷YÁóhbx–q«vÔp›/IP÷M›k‹ùÛœÎ{Ê,‹ÿt¿š>û›wœbY /`ÝîÆaÍl‰8÷ 7?#˜;^ƒ·beÛÏ$þJåV{)q°A"C:g‹iíÝ×+ªãA,í mö¿E Wç]–êhĺ”Î;´ãb%Î=ŸhûXþpѱ Rø<–£§·£c'z.4ÑQ{’=Òñø äˆ*½uнS\h¸*];ÌÄ\(ùÁ,à ¥ÐØ-ô+£^I£±f1ùÝH¤{€o!XL2ΞKJº¼ò ³ëBÄ4-­›ÂŸÞ•mPÊTêm lV¹k´ ¯_€Ôx±d?ª:ôê uYÅÑ ”˜ÀL«”QÍâ¢ëa;N9\c~ kEAÇÁâ«âui»õ*š±M鲨ÀM;TF¶Q¨©¢åˆ´îNRkŒ2À´Ë{ÍÓÛ%ŒÊõ“~Í4‚Z’ñ5´!ZçÖ^ÞÔó”Àé0Ñ…›4BÁS© W"$P¡ÊýÓ8Q2¬8ƯE%ë’·Ýû a·zð‘Rdͱˆš3R® ÁC³ž÷$Öç-âbó¤yw-=숢i%VëÛ.fÅ’Âz8ëI .zQãgra‚ÁõÛhmôÖ¸v¶lç6C!ÃØs,Èû;–²åoÎlt‚ ÷Åxû(dÊ¥ ×_ó͢™™lÒ·¥t¿,åúw×hÕ”šIÈóô°» y‚JãaèTm üÂÕµÌR¼qC‘[ÏRéOï÷nn¥ ‘”‘æY¥h–o‹ž Ã7Ш£ T¤ÌqÈâp|Ïp GFÐßã x¤Ï5gNÂ[fì‹û¦‰÷EPñ°¦¯"=Ëü¼Ja™—s¶=ŽÙ¬ú°Õ~„ü¥kÿ®æß`¹¶U®]eâÂÞ‰7ÞL>±Ä€%X7á¢çM¦qA6ú{¸3_Ãõèx¸s"ž4ÊFn4:pĆm‡¿&·J¥*K†˜:ðC‡šK—ÛC¡Øelî¬@sãZõjH÷eïUÁ’ ‚–ÇÛñyºßi ÿ]OŠè XÆt©d@fO¬w>®˜ÿ=æ÷\Ju¨ÊšòìÕëòàˆ~V© $°Ò¿eR¢w|íÁîR‰’µ_æˆ;í5BpŒ‘U±˜žÔrrÌiåá~ðŒË=[g $*nü üÉL‡1/ >ªÓày†ÂÂ>©/;4G{mA[V4¿‹·C¦(¼öLK*ˆË68|Ln°˜Hˆ‚fÙCS±¦Òƒ‰Wª;Õ ¹ûþ2ŽmŒåPFìM=Q‚‚–âräÍmåzŸWÛ‚‘Hý³G²ffyäÐú—®®³&à £JüMw™$vŸ…J-$Á~‘pî$ ³úJC¢Ý™(òëA»"µ©,=DÐO)®j²À:HA?Ð7ÖŠ)ôÉWÎeÍîON¯áݶóõž;ªNfƒ]tàEƒÜ˜8‰Ùãq¿ø ‘«UÉýUì4 ºJÎåXò5Ù+$] •70cmgMšˆ? õÇE^Ÿ¸._¼k€ò®n5Ô‡‘Ì£é§C½Ìݱy )îÒ@¡4£‘MŠæ€%Á_ë‰7½8Ê5Ì£æ¢\¯ã1÷4Í|‚VÒ ñö±>t‚OÿM 7x[ÆþË Ê}ùz¬áãÑÖ -„ŽËZE)CtÕÝY£«X(c ìPüBæ6äíìºtX©U:R² ¹jÞ?å½àøþA3ÖÄß•Â*ï5åœL;%ѧ7"“E;p¹œ/Ö´©â'ÔÆdR¤“ÇíÈ’Æ;¦ŽFqw‡íGÍ¡F,…¬‰z·»ÙRåJhg ÿ={V«Àn(Ó®ðçW²£›ûH˦‚¥UØ-óYU æ•0g5·vc?ªfPçùõ;\_—ùªo÷1ŠÖIºa0þ…P’Ï_oÄßVö3ž«XÞ ”óQ 8²›smR evÝ^\ûOä'f]b j9uu ú!ÀÓlwEbÊÚSþß/45J8^ÕyCïšl—7Îü¼Ñèé¿X”YÙ¥åçÏ’Ø ³‚˜!R‰6ç(¿7.½…Ÿ€ÔüúŸÛõ{nûÐ=WæI ´UÂç)ŠO Ù8¾gÓ,œžrÙ"°A« W仞oîü³V˜ódDrœL&#óu…ƒ<Ò¶À-»©ô‰XÇ‚fŒƒn4—J«GO°í- G¼>Šs,Du?Ñ—ɶÿxüf™©±Æx•Ž£,›^$™^SmîLf’o­ë ³øͤô Ù•b}ÕèB‰Î,.Eë¡ùCÿÛö»í’Ç]…¡k´€¤™!°q SÏçóER‹«.¯ -ž|Ý2;”$BÆuµR¸—£IÚâ׆a( (d¿}µ&?rKÿ¨ú’£5¶iáR y¢¹¿q,@œ 0àóa¬ª¨ÒO`»åü™Ð°'ôRN_=ì©‘Ô]3¶Ñ^õEÕ¯}¼ÃÄ]Õqç´ØW°¦3®O üÆÉio[Fè+Î¥wêkžb›ãºèš\KI8íAúÞ­?ò[hÅ.ƒ~È çÒ>ð¼Ù9Ô»@=C6/­öð¶s{š`87yç=bo¶g‡qÀü fôØû#ŒK~ãÌ^´ÿ„*.ÅêDƒ¨/bC-'ßC—.)j\aµÂe{Á³5|]B)øƒ†Bç/ ㈋éd¿34x7¥2í jÛ“)h>„‰²ÁeðÐé6šÒ1Ÿ“Ñœ±#s«¾ÞEËSŒÑmrv±CÃõÏäi¸5ä´ >G À›Êdý°¯~)Ãv°› ™"JŠ Æž¯ï·QÇæ%%0@ 9óV± J†PÄnzóˆi¥DYºˆ òŽ­–½³æ`öPN<¤r#–9qQ\HD ¡ƒDìtJaÒ{¤}E³®4l(º3LÄëÃ÷°ÀÌÚ[× #ìÝR˜å—Ù7Šââ}?ÇN§ýÉž\}Äg¨ ÖØ,„× kÍ¥p,M.­ñ<ìTå6¨°g²£ró+”%êzÀô0. ŸU­² OgÂ=Œ»í"è5¦‰êÒ` i§\_}ó »2Ú‹´¿¹‡Ú[ã7ÿ-Q¿²lz #Cò½G\ð8ÅX‡.Ðùj ö]Y¾tt׊ù6ZI³¡Oé}Ëë U`ÈŠâ þÉ:çÀIMçèng…3><ïØÎlEfŽÂ”Æ+Ç·…Αt–ä …Š>´;9§èЮû–§Œr:|¢Çåþ-¦s4aF%¦Ù8àã^”êdÕçO#£r¿¾VV1d´âªKz…¢oOìy6ÉÂÈã"I©8ãåB‡œ1$ã qBºæUÛF»°.BïÎ ÅÉ©oq_‹+¹D~tvp¡±®³çGNF÷´VH]w)p§fèO$ÅëG|°;² 8Ë\eCË^³VÅ×òxm+B`ØZ(ÊÒH…Ü‚.7Wšf‚ü•gÑ,-P„' ʼ7Á²ô’õúQGïñ¼5òÚ¸w ­‘ºsPÒ`þ«­¯Zót®eiÅüü{ò›+ÍkVê¯ds7a®Ü–Gê•âró™þ)/Ù#;óã;ÕëB 鬠÷æ*¶ÓàUôÙ½}•;ñ¹?Z8ÄB-V5÷³ŠÓðãõ‰‰e]j7M‚•¾ÏB£‰ü|c#ZWþVÑ„?ÍÑW4MÒgrGxÒ{{þNˆ»;1:A4ºÎÛbD¸fvÚ>ÙÏx-ÛDAsT*cLÁyúm‹?*§îo¸rº_Êóy–š %‘¯É(Ö…A…Ry,ýê‚3êØ×'—‰ÀäÊô«ÐËà3!õ¥‚ùÑ\«±O¢7¢'M^&e}‡æy65MNzíFg¹;ÄX&ûÔ¾ú:ΡDýo)CôÉèwà҉ݘLÞüˆ¿C½*L©ú­Ib+¬Ôír(á]Mæÿþꘈþ›%_Mg ÿ‰í5o"… ¶^,ûB€öK•Mñ†÷¾ ¯3ë^h¹]x~+Îg°âL‡®Ø¸øïÈ×­ýŸò.?æ®ËzììÑH–!‡OS“èrŒâ¯ˆÏÃö,”F†Âýø<àCJZfÅŒŽ¬bšžª ëo¼´$Äm_Ä›Ø;W¯'5=`9VŸî–¼L)ÝÈäWè!§¤Ý¦pO(ôË´6÷¦:¼a'8ÕÇðÚ`óX—eŸF‘P,føób²ZãA—€)¼9f>2[ –R&ÄÁˆÎº\EX#øPúñþ^Ö¬¬¦»Xe•Ò6ùq¶Æ#…©‰t/:_ê¤l,rÅ*£G@Cqœ†βž(BU{qùþ²G]\k.[Ên¼”³™'ÍHO$ɲt}ºE}'bXPp ¿i4È &”ëJC¿ji:Q rñäاk„,v³‡:ìlÏ%ÄC‚¾Öî>”!£R‰ZˆïêU³=—!]Ä6v±Ï_ÝüѧýF!±ÀmD7Öæ¥ÎZÎ~>•·™zlX‘¨Ê~«“$.okPfÆaN×b2 ¯-êt¯8̆¯g~/Çè ”5ÄÍìQÎÿ–ÙKúu'À£Zåµr§5(¤NŠh“ZÁyWûWè¤ô³ yö—!fd3ï²2fŠ}ôà{„ VXà=_ýe2§%)»—ñÀòé²­³¿t>L£õ>]Zíö«žíÄÞÆËZé„D•ÕÇ8Cî™í#€,‚O_º)ßkiŒ3¿ÓowÚcð¤¦â<˜ñà(au¿ê¤«<¹­Îä…" 0ï𣔠AI›Á¹þ³;M>zŒÞsÀžA$¤£®Ê•oRAeÉCšáʄ߹Çq … áRE>IÂ4ˆ4±‚•&@*zkB‡¶ÃÕhWQB’—â=ÖGΠ±âù"ø¡–¸f_µÓûdJ»©Cô¦yº²¶ÜäÓ)ªiŽæãÇz{^4mÌí©?¦D"ÎÈ/ÜoC[鶇½HnþÖÞ[TÙË_ôÅZ(4ºŒ¶òm™Ön±6LËù)BwQäÜû 4Å@Z5[\8§ðÅ߉÷Ù= ъ׾f£ïmO;i8\.ÌПZ¯±_¦@ëæåsqn•­zâøî$ÆU³æÅÖC=Fiìz(È4ööÄ¥`DË6qÕúöÍæ–SH–÷©vÃ-“%J«Ÿ¯$¶ ©$ܧZ/ÛçÙtHuüË þ£‚{gUܹ%L`mê%€@ÇÙIíîÌ:ÆbˆÏ¼ýSŒÝŠzyš!kô?„âžiÜï5ýP™¶€ÜéZ•å÷QŠ”¿‘Þ…ÐíÛIèw/ðæ~á”;ùT€(™ï<¢S®R* ùÐ0ÂÓ°ÉÕÊbp¶™*·aV “âB?#8‡÷"ƒu ëÙ¼ÌéÐÝY‰˜‹fY‹–‡vÀÝL¥ûÅÞ$)ì >z÷î“¢æp&všO K1;I:¡Ž®¼†ž.´4Û÷,ËôE­”o5¨ƒ¿ßQ“¤K³CV埛¸Ž„GC X™7ÇpÖGœ{B_ýÇîµýsÄ]‘ Íe><æ<_qÚ?BcMrÞõT•{i«}Æ鄪Þ6Qwľi~ÛZƒ\q±ØÇiŒÀòœ`.×GÊY0(ºúR!Åo ySïŸÞHÙR´²ó9Y.n¨å›jæì¥œwåÈ´|c+Ʊ¡´’&1*¿ò»žÉÇ!í]ÕÁ¤”vÆœ®Pݾ ^¹(øÔÙRè¥p©ÇãEü†ÙL¨³“2²/,CÃÖÌÖÁ¬öÙp`a–[6E®2B[ï,µ®gNæ²±½_&¡ç'ü¿¼ƒ„ ){Í)â•É¾ë© IU'KóI«pÊÀ…ÀvÁžÐtARP)¦%ôWe8C ]Î#éD9jIùÙp§¶¬÷š ˜M”›µRNðú)Þ©ÄoVë½éf éòãå€Íøé¹êÏ<0æ–½Óäbü\Ÿyž5ÂÿäZiBÏßpŒ°¤eÐEçYnûA9ËlçÔ\kƒ!$Ø•HŒ#Ö4ÃãáîP\¨¤´:ާlÌ®¸—Ñ`ñ&ײ ’IßÖb ƒï©" rö@K¦6Û¦ˆ‡Öi’ Xn%Y³kÏ+ÒýªöuÛ]zÆõ›€Ü'%{Àzi¿¸i–S±’¼þ«ÂÓH툈'Ü/çà1éMN`ç.‘Ø-¾súm–¦V×úÇl²B¤4ɾÌ)«.©ùüÆð ÝÛÀãÖê™/ø«s^eÚùÙ‰_\LÊ?X¯fÖ 8„gßÌzM0Èðü^)¼AKðkQ!’„íE\šSW*ÙÙѦâùS¼õYÁ)‚‡VmKÐv묶4Z *Þï–åS(d*“ž\ºbÍ"!Öî(ÑPƒä­ùI+ÇÅëî¶í*^(ðýŠ;T5õ`áÛï¯DóÚ÷sa!ÞÝ^œJëç7UbZÑiËBþа€à ÔJžeŒÖ7ÑafØqiKV¯Y(·ÒlÃ`#8ÇOñ;kà-ü»ÛoÙmÃÛ½‚ŸÚreè¬ð® Ç ŽRú£Qg¤ÇÀÇá‘òV 4ÿZr‘Úq6’šµ6ôÖ(PÅ×"á<õº(n$ì½P„7ÚÚ símoBñ-h–±ÈÙ9k$pR*йÀfáR|½“…_Æœòk¨â¦¯ÓdÌÌVäñz;[Íÿ ×`ûBMÞga××"Û‚þ4Û¢NJ®Ÿ¯À$–iÛjD™¤;´ž ÇøÑÇ=“‡kÆWX¦‰ho?&;ÀÈ6we¢‡³ðiIÐ%ZƒÂså‹ÇSº©MÚ„óÀ´â™0°Yk„mqâ-|2Ýj%¯îvèË=PM-%Q.òÏ¡};äꎧåºÅŸ§;H ¦}NÃ+ ‡êÌ ¤NŒ:¿LÁƒ$_s<mº yÈDEM”=Ê»¥nò†Ãbí-l4õÈimÇ`™ÅT}ÀÏ¥€oøÈfž²Þ„·ΕE /ÕÚ5–>Ÿ!”Á´†Bòó• E!Á Ý ü ‘UKiúùïz€úN«£»Tl5wèzÞ“Ôãû´‹ëç¨æhÀµLjçqw>†‡\¤üÆG]7x0¸#JŠUÔDÒ;_!(9Q¶ÆôwuËÕž~½r4ØäYmÚŸ67ç6./ƒä zßëŒß§lêÀj*ÛrçË’ªÇ&¼¨õ7Ú~w?ÇüºÀ5'3}ÈÖ$€Õaê«Wp¾×c³DÆ QòVh·ˆbQUòœ¦Ö«ãOtÞv¶­² ¬æá¾1[`ªÉ3"kÌå2$¼P@»wÒˆÕkÑTókM©G)Œârîhë Ø!ø¹•‚c[Ã!ÂÅÜ/:ò‰fKÍ.ŸßçB;¦'‰ŠNT⿦¼ô"ɤ¤kËBx†pH¥Ä‰¶²(“îBœßHª‹c›Oõh}Ô5àîéW70ÛçømDúeaòÓ+­¦]¿ ë©ÞóÆ?¡×‡i ÊZ^ü%蟔)d¯r‡…ª:¿Z ¨ß/pó[ÜîÚëQMDPÚ x7ÿ7huc‡ÅÕßå¢63‰ª´âÙ¿O'ájþJÃX5ëF›HWQ—. ”p'¼ªCAJÆÔBÉïr³¨êIV ZÃðÏŒjc¿8§cò aYÑUó&{V1äËp8KZ»e…( ®~ïÆ\}(½Ê-2O^žMÍàì;º›võx˶XQ&õ0+r­Uw<|¯ci —NqG_×Çi ¤Hd ¤À¢ä cá9*‰Ù£jü, `²†É~‰O©aTô¶ÜO"phfg˜—(&ô‡b¹[‡`F)³âÌšMLç?PïÐ$‘zðzÉî‰H™¼.=Eòµ[ Z²©oèl™Ñs59Áð:­Ó‡Úu@úðpùGìdçIC}ÿÌÈÖxM‹Ív”䵤ÖåòÖïÛ&D¹ž~T,»nP”I{Á•6^€¥”é J‹OÈ{VWðÿ"w|mΣ{8îSä)ðLïhYÎðÍXv7ª¾—8i–ˆ¡á²»¼žñʰ#òöú°îi?8T–C§aJ½3‚º«Î ¤ä·“X_ôÏg íŽö2õŒŸÉ©Žä¢t?z5ÇL…K<7`c"ûÿñJró¶ØÁ ä딡/R Ç$Ë€\ž(1ÓM&ÅüN¤Gfk‚èNÆEM?#3•G¾¼«2ï>5—ƒ³RT­Ð  áKwÊDJ}qSï¥e)p¥Éö$añãB-x2c×ix¹!ªñH˨±HÑçÓJõº¥Ý.cLˆ%ŒƒÐØ{„ŒbÝw8 IW ¦[­*ÍrÍé7U`¨¢^ÜR)!T¬ú[Âã‡¥ß %Ý“Ònâ µUâE Ú|ˆº´ {#SLâüÑë;ý—ä4›ç}˜u¦á-–$”¼«Xª¥mø*¨'­¶L\ÿèi^4×/ˆ¢¿n‹ƒ±6´ÿð%k¡ŽAf7[Ðá‹·'n‘žœÀr3´ŸüqÜfòú‘í0Ÿ­õÍ•néî5¸®’yùÇÅ.pã‡!Fb¢üõw.¨Ýƒ"l%Ã&CC«—Ù¨ˆÌ€´/ÌÃVÀªó'}Þð3æµaùñ €xASö÷/€ñ×™‚«h ûYjð \}cˆø[“<Ý댒Ùs„õŸ7¼ìŒ†žÖ>ÀO¢«àF£®—U~€T±É;L,ãKûãÂ.+›2£üäBQ›OCÊÂL#¯£!ÊîÒ¢<¶lÓÉËM˜È‘¹§òŠÜRGöy&Ã>°5J}[1]Ÿ¯ÛO Gl ¦ó#‘°zèZ£í¢¯¾9ˆ`%WªŠ¶IÈ“Q‘rÚjÌÀ¦ðð4qa§‚uu ¹—›æ€´³ÕÖ6àà]J°¿õ§ˆ±¾ŠBF©ŽØ* §#ÏÝøvÐÍ/º ÂÖ!jû-¨Ÿ+˜b¡$E6ç‘FUcUSíéÌÒ}èΨaMQ…Ð-êØÿ7—AGjXƒÄ†„:ÛÈCŒüu—ûq—ƒñ¼ÆqÅÝÆl 7ä×G¾Áp”!ðÉÚê‹!Ç¡Ýè¼íúeü®ñºpºû,•ÄdOtŽ÷ªSI‹ì19*‡¥—!›v…þ$`¥ß¯¸èLtdÝZï jƒÖiÉCÇ8÷÷…C~Ôù.®¯>¤ê¼œ,eœ8®œd5ÇÓàíQÀ ?É::öÇοO©çØAÃÚn)rÑ”sØ8ƒ-(Wþ/ò‹G¾HBùg»q¢¥©eèxr`\¶ Ñ)À«‘ÛIÞâ—ÑÙЭ÷l~œKÃPµª-® é¼I”¬¢lâѱ٧—«éÅŽsÁKœ=kó =CZ?÷JZéÒžÀ©ƒwºt;úô›hC7WñÉ<µ{JvWˆºýù-YWS¤ƒ´…L[¾6‹‡?øùp6›vÜÁJã©ÞŽWœöeþ@tâò| ¡´n¸Ÿñäíº“žBù=¹uí›ðNˆî¹ÉT¦¶0-,¯ãp›3|'ñ“R\ c]º})iVCª5W*»]z$Ú±oÙДTÅ6¬0)žÒ«—’N4»[”_ÒXó&¦½?p²€ç[8×IOö>ýO|=©‹%¸ÙÓU¾,e{“ìÁ\Ì‚„œ\ê–ô$q¬[CE¸Kàï¶óN‰¼’'Éf :%?ÀnëÑã­mì0=»]äi·“:ûð¿jT»qk•#\’…CnXhçVx'ºpwFã[¶"¹>:¿¸aétDVÆì^°Î ‹{žÅ’ð—i)­lapžö¨‰™þ±TlÒÉ¾Ì JÐE¡W,F‰C®]ØÔŒZß°’—¯XÒ%Y¿¦ìJÝÔ[àê,³U¥ ó í4™½€p²ƒÎpnüZ²)UTúìÿ85eܲ¥–¶`ñÅ"Ïm7çLRL÷ÈIü#Új]µ’ÙÈAÇ…”ï|Œhü»r-bQÃØ°Õ3Lõ‹%IÍu51}Z3Ñ–÷Äšl+ØW±ö‡†M¦W, ™˜ +´îRj.®$fÆ@ËI '°½´E¥Ùµéïö“Ò>ìG½%{`¨Cªj05Óº`I£¹¨(Z,DÜ6Â6'/ísKDí>Yçi ùí¯ÐÓàR0^[‰FEÞ¯r)¥NHkY†Ð©nöÖœ;wä‹.1ìò5Y5¬¶£nkkLšÛ`XA³ò¬p^ÏïÆ+Ñ"Œr\¦Á7Iö:ð–©ÓòºËÐf ŠðNŒà1YZQi×·ýÈ øÄ¯UœƆ,†%úŒ©ƒñ*û0 ’F2¡WEÙ&¡Í³¶f£‚ )ÕÃZ¨¥ƒƒ ™mÜt©{—½ŒÎ;Rc§Œy¸¡•Œ®áYŽ Jå …‡*® 0¹euPDÝXÍš…8Ìä¤ÏªLÊÕCÛçðig¬WÒ^M-„²p”žOU• ˆt©ÎëaÔnJ.ÈuÉõÝÆôYjH_«ÝµaÑDAÇ]w¤´ÏKäÄxÙbåo¥à³‡6®Ðʲ`ƒË®¹8ò†ê‘Ní8ÒèeöÕzœYcF6²h{@±r™&z c‰°¨Î0åî6ŒõA†ž:éÌ{` ;f¶Ëq¤¥$ý˜³Ù¥~¹-¡jË{qü„-h ¼4‡ÈŒfï1×-½6hÂ…±lÜm…5ÈŸÞÝÿxÿ»0‚TrËpœxk ï?¿xû(wcnEÒ$³…ª_éîÇYO9ÊÁ2âÚ‰æÓ°1ÈìûZÖT(m\,-Žóƒ $:µ·´’jU–Öà¤g^éËBšr¨Æ~ÀšÑŸ+“R®v èÚÁIŒº¦BѶÇP¨m7,ÀèKʆ'‘O½‹OŒg[²´û†×·È®F¸ Y~ Fû±í)•ï½À³T<رÙFýç,hh¤VÖøiˆª$ÑÓª¨†¨JÖ’ ‘.¯4¹/<4 WÁ’žš¹k!þB–‰ì0¡ÿç¦Û®&íGmH­Ê³ãâÛÈ{¶dcx¨ à–é‡õ{’Éô¨Í>;a€§çé¥z6Ô^êȹ¶ëâ†üŠ}Ó9¡ò«jüB·Ò4x Qn%Th’¸Ô§õ=£¼„¤° {è°”Ï⮚þxQð*-UIÝÜö#»åÒ!`Kà¥[5?a5h–cÌ@@½¥¶`0 m¶ð½rö'þ±^hñ°KÜ@µLL&ĉû“G„y³ŠY‘Šåbî2Ù1* µ®¯kô²°¯áµ£ZnŸ¢D‰]³Úx˜ñ>•1þœ»´°æeíÄÆµgüê(¥ï ¢H™S/PÉÍoç,Gú 2òSöt˜÷×nd]Á¯Ñ"®k‚xáF‹?†s%±¶ûdѹKì–~döì:c¯sO9ÖM~²ÄÉþ1dsnk³Õ²ÒF_KyL …Çbˆ-‡¤ÑHýÕ7!¸Q&þX#W»I‘ýó3&ß;$€àŽS!]ëQ6Î «Æ@ª*gi¬7‰Œ‡V®!{YÆèû ÜlÜù ¸å„þ¬‘ë§K>á¾ì ?¤O£@»Æiöbìð±k¼ôŸ8þ“>ê½Ù'pôÞýüØDYmÀ•ù'Y]p¸£éu”³:3hŸH|ûzls¾Äb5hÝÏ£˜Eaë(UQ¯Þ58ë‚V½;¥lÓ¤©È=AKÚ[y&(þZ ‰M3ëyv¯êjº›ËLòî©ê3vO•Î#]ìI(å`õ)µ "aéZÄô(ÅñÈczj‡âM*l»"ªȪ°F¯3‰¾?û]lÙ˜C[Z÷Ú™¿;{ O Oâcé×(t®! ŠJç²Þêî6Ï5‰›uÝbsÜPŒw–‚<¬‚×o3YøÏiÜ$ÿvE98¦¬‹¼*Ýò'ɺú*ú«C™z“3ö¤–b†ç˜A/¿¼Ä8éeí!:¥ÊdÜžaÔQÑC°Rß>Íîý&B½Ó~㟊#Õô¸÷ßm5¢úûÒˆåU$rICLtóJB&gêôR¶+Ú`éÀŽšr9]|Jiý*Õ¸ f°H› yb±1þ¾vA‡tÔª=¼G´¾š¡ØôÆ#´LþØf0qM¶_^ãƒûXß" B<ˆ>÷nÝ`Å OÊÆÀ°NMt fzòtÍÍVÏOꧨr×Éw¡D,}-­ñMxë5çs™|SÿtÛ0ñ”>!æäxr4KÕÙµ r¼ßbwøžå÷T™uêr9²V¢ó쎮¨´ÒÝYíEcCë§þîÐÖG „OÃôbZÏÛ­o½:7{ô ¯ðˆq«;\¤è8_û1v© ~ÎÒƒ‘:ÔÅpåp¢ÍŽ ^M°°‰™vê$Ì\ç?–¨ÍÓŽš¹tßîø„(š±é÷,ÑAz¸cÂa_ÿèÕõSv@öA[Yä ·= Ýu¹¸x¬­È«á"e:ôÜdÅѵͅE)Õ \´69•äLÔÜY"FD»V5á[)Ó‘“-ytŒ© ~ì*ãäq£&LóÐé&ž¥~Z8z®…­ \ºýƒ„C†•=y°¬ó‡˜ ¨‘ d÷dÈŸ¼E²q*ÅÞøcóÈkÐN?Õ†8¼ïƒ-Œ0ÉßÈ0sÂ8›m()¥.’y¾˜f¨Ö#xг|àœé,¿Ð¤`’¿Ë«þÒ×Hª©ú MD޶Îc«FkØÿPÎwv$1+ä3n~ÁTóôüÖ¾áAº°]·q! ¡`æ³*€¼•¸hkS%¸áªAø§â&n¬Ùµ‘$ªÝ{–;—ß)à—Ü+ÜG@e`ò¸ÚÍN9 ±O¹a&ë—‘äfK$Îäê ëÅÿª_8·o5NI—ªB €51EF ÉJ*\ ÇrTò:ÇÚÏ‹HÁJ…'­Ø6i-<ðˆ’ÇžcÌ ì¢›˜ÃW7LÿÊ vû3—m| ŽìK$,`³ÖÀfDÜ0(ÀIš<¿A›JÕ ¦h©ÖwÚ GÐBD]ÃIšxíÚÔ=Ôa,¤Ôqå¤N ¾ @®âµÆuÛu<¹"&86ûVyO 8;LRŠ€èœ±‰¼Igþk„5êÏx²$å¾çPnlP±#Á‚QWQƒ‹p…þó=1“á¥v2Yü¶:ä%Ií¡í s640 .ER¶UãŽæD—DDÚšB?é¶D 't||žX\;È»‘ˬ3P%KfBv+7ÇÄèÊ”93Zf ^»Ê\{+F:&°‡;}ÊyO¢š*}FJ‰¼ˆ‹–›qÚ«’¬I·iö®¾ç¸€èòG0zåYƕܯ_»\£j{©+Ÿ0þÖkÙ)‘2ëè$zS×ÀqÓå1c@ƒáäJwíG¯{•4âÒPƒ7¤â7>k„ê4™X ½1Ï™ÞGÌ4>ç¬]yV†ÿm9Fö§¢´á8Žj6a;Р錯VCO°øÖAÜXôu£‚²Oᄹ°bØÚXuÒ’„y™œÀÊû ëÕ¯ÄËôÑÒóxy¡wÑëQk ‡Nª¥¥?´ ã7Sâé“a‡äÞQHhrG ¿TÆt[C†Õh[§¦%û[¢Î›)u‹m¥#¸•Ö|Ó˜ßMîi)d8ç ¾8t&ÇÖVÒv.ZË©„m.úŽI@t¡Gs¼Ê¯ü² ‚×÷(©Íî¹ÄÇ1çtO”Wõµuë‹ ÒYÀ [6\ª5I Q[´¢áíµÚ²ÖA§_6B7VÊô£¶ÔµR^¡L|f›ÛbU?šµÑà7ÖÚÙš=pmä›#N ¬cÛöí׊}âÜhþÓÞ¹²u†àF·ë);ÀKfŒ\d¼¾þœýýHiÖ$»ˆEª¸ªÚÙ±‚^ƒÆ¿'–Õ›}  §Õ@|:\Þâ«tTáWöA›{iûÑUkþpRµJ+‚êðÈ¡¡a´šäËq«>ü÷¾5™YMÚkÇ 6E9úoú-stÜ$½†ºù¾®[¥¤®Mî2üfHRos&,ç)7ØÛ 4ª‘²0t_Jg‘N€°HdŽÍŠŽ@¹ êër¯ CB/f㥑–*t›•Gà•wB1…îTNsÑT”ѱŕóbët%§s#ØIÛΉã•õÎÿ?$‰d `å)«€[“aH¤îËgëó›“x¼ø¢-é`„×¢ÐD{~UÁ ŽmªeM–Îö½ÐEä Ø…4=mïSWñ¯……ÏÍm#Ùý X‚Tša ya€¬„.:6ÚŒµåù^CØ•@qß º¬£–#,YàØÈ†›ØrA±$TVÉö÷Dg(¡¬!Ô¨8ß…–à ˜­ÈˆzTÏÈa~¯/ëf¼1Ð*“­¤ÌX(ÌÖêU<1WøÇ$Ìoc—2·Œö¶?Ñî‚;œuð2àY<ÊwuÿçÁae6ô[š^)…9ãC6ü§²±Óö(]ìõU*y¸‚N+{ Ÿó›=AðS>©×ê× en bPaè(#_-cc*Ý€Œ&‘Û¡ÇQ³xùÓ(èAÓ”( äÙ!ò,ôUk› ]jô>,bæº4õ°@&‰a¾Ví‰ؼçx›ä <Ÿ!FûÙŒmj‡ÎaöP|´oôPGm¨®dSˆNîGÍ…f³êUË­r% ¡ž–k¿Â=Ÿ§=Ô5~=Sù'c#©9Ég²°Ì³ÄZè=Èà(¼ÂýC)*¿qZªPpÓJ”X·Åú17ïäœÅ¾Í*a]dÆý¾ÆÜaõÖã©fðþ™ìbUa#ƒô|üʺ:eÒû0’ÂÑÑoéŽtY4 †ÚVìƒöoY£~­Õ#%µAá¹]‘¥‘à8Ò ¸/j­öÌÊ#fžeP´<‘`sõ<þéÜ]Ȇ&$·=[Ã15ËrVj~døÞÃí¶ñ.#òZ¯l; x×¥3¼ñýžOí ¸î•<7¨#ŒæÿCÙ·àð¤¤d¥òþ½CûoÖüÊA•Öù³Vö·]˸êj ÿPåvߦÛÍ×dtɲ;ê¥Ðþqc­ma-T&¦]ó^¿¶ÛQ¯Ó§¯'Ê<ªÜF¾Fu~¡YØ@eSx¦(‘>‹ž Kv×/v>Œó„õÏeØ©ï­tïÊüÂ`R4$WEýËü¦ Õ‹É<9—2YúÖŽ˜V¢ëd’[^ÿ̺ÉÜ5 AÊgtt‡l Na`T¿ò=sþë†y³²ÒûѪѫ°àZ„c ­d¿ÿL¹³Š''uëÒÓHbÈO,Ž>¤a’‘u¹Í†ƒ²ƒÌüž€qF³› Bš€ÂÆOßpQn~w:áõOHÆ}i·ê`˜®Øûƒ—zÆ¢ ê!)}²ΑIКî) àŒcú»éÁîÆñ${÷Ä»àÅ.0êsc¤v–£1ŠoØã/#Ús, ÁyÈ-ùçbØ`¾LK¬4ýX e–œ!þcïmbss½•'“ Þâfß6Kš‹óôÆ…ùK?Âáæ{\.êÚ»÷ éݹ±¯¤¡=ŸÀA,+åš»gQM- 0«G}(=áÐg}Æ“<<õ*ˆ–zåìÒ.´Ÿ Y*3—°¶­gÒl.¶ŽôGäLÈ¿<ìú6S¤µÿÇ}kÍ€ê¥Ä€lgîÏib5‚Í~´>I@Tšt&¾ÝÖ mÛW@%)©ºdp‡¥o–Z“QkÏ.'«#~+ŸaÌ‰ÕÆËogÑB¾èšøšVÿMÂie{ð¿Wñý{êÂzóûè[óÿñUf¬)N#õ`BWK·­88îæÌ  ÁÝÏqz’a¤íV¥ºy¯(6ÓÂ*Gq³ð…ƒ,ݰ–T ¦>¹P3Ðö Fâ\˜yß÷bÒÿc—øuù¦)ƒ„T;u[JÜ=ݹ1݈¢È·K™”!cÈÙ<aBÄ1Vö¤èâ­;Ò‘4›«Sš¨ü<ð+¸÷+ÇË•:¿'ÎqÊchCNÕßZMû'²¨Pb¹ 1¿²Ü»%êjP’$Ï#¢Œ\ô¬•HàCBa žŸ7Ò……¶Õ‘cí^?j¿)â ‹•/-*Œu+x¬ˆ(Fb%z^!ƒ€Ó]5flé,7Ê7ÁÚgv€¾cöyîMñUξlÝɳç¶sH‹Ë’*×ñ$-ÙO—‘Bmf¢ºAÅcÉžWeGÍ%â Å«ì"›C6…Ût–j³¸-ÏI¨Ù…ÈŽ 1À'o¹ž_³I¾%œÕé´[GÞ¼‡Œ|[Lˆëàqíÿ.$éÝZ´Ià èE’OÔTög“k2Pç1[‡”OròVfà'Ë–Y™Šµ„ˆ¶%+Õï]Ãa—Ë ¿ˆþS>úШ=t#¹Š%5ªG·é¥C­]Ç¡Àà;qÝÊÅ[–v ÿ/ÔÜŽù»n\D„¦^òRŒÓL«¿ßh°ÝéOï:IOòâ̱È-9i§Êòî_e5*E[h))*ÀªdV‘°¥¦]ð|ˆB&ŠñÍá&XסٗVëõxUÿä"]­>wZü÷ê’¿Í7ƒÂ_e…A®”Ò_^x¿S¶Ó ÁÕ@åE©¥ä˜Iú^®£ ñùZLM˜D9•¶ÿ„×t†e@ÃdrøÞb®JX£š:ËBņ9'ëX(ç_V´¢‡ö:™ˆJamwà_KÐêÕö‘¦'wãºK(@†»ÎêÞƒ93ä ¡4#Ã`ž†Æ‚Êíünç*M—ñ,lý‰©8lñ¦}Àm_”ƒÜD wrv®ÞŽð‰^—¶¹ &`™¢§’70±³©AC/™ùšÄQ§es8‘&à/EdU&ç­8uüu]½éܹ‹çÆNguÂñ3êg=ŒOzb!ïðؑϓ”‹ù_ˆß1Q°àILô!d®^óæ5³'àâ§üŽõ~º1µt>ëè©àßRUNâ-Iä ¹kS[ú±ÒwD¾èÉw/¹˜‘ÐÆ’"þY·’Æ•à‚ßWøh‹ÔõdxX­CDïкbô8à#PFÔð"±Û«gGòûe'`¥à‹ô[,w.©¡^vtqîÂÕû2;ÐyY»¥Û¦»"ðz;Ñr.0ö†'€öêicíBKõPóʶ4ì¤UœG%‘ÃÉÕNÄF.n¹$`J]%æüÌ^hžùÏxê²aeº+Ûé¹Â!OwãQu7œ#s¯˜.AYÿ/æUoÃeÅ`Êáñ£K[¾ Hz škkFØ~äÍþqHïu ýZG|Äã k ÒiÝífjE[Ó(©m‹>¤8P>é|m°#¶õ¶Ö£»fˆ6Ùó_o]4 s!¤ÍZ/ùB½R‡Ó·eq½ÙÀOÿ¾ãêkï'á¶ëVaâúE"ÔI ÒiîåÛ}q…Ê2òQ„ݮƌ©éèÁñ6Ù8Û.èåÿráþ¶lµ®qCë¦A’¼&ÛžEeìv¡†¨¬ïsw­m’yü‘”â„fÎf|8gìWd÷íÜU즊ÁŒÅ1Zp¹ŽqÏ'Q˜ôÛbvë½.7Øk ÆjÅ¥~Æ ÷€]®¥„,-€Ç2ÁîŽ8ÙYòÇw¡‰$®‚:ð亊cÝG¯Õ{6ÝB†"ï$òyÍi´ôá̈ç=ŠýçdþÈAFÎ’SßO‰é¢}æH¯`5CF¨TZˆ3|‰Ú*,¿Ø2“˜ á ˆ5+æcÎ×Å*š/ÌÕçÄý:?ø¿ÜÝ–g¼‰s .öËéx¬›ÔË”²368àbYý¿yQéí¹3>PQɲe§œx0 ïBîBó¾_´­ˆ³¢¶rû+Óá߸ëÇ£Ò´Y£»T­LU´£Âý²˜tc`ë~ò­\™{y¸›ÙD¡éÉCç6_ˆwBMÀ(ߨ‘‚ø›/æ:AX[æà™DˆQ¹½Nn%#ç$»Mp;ÆÌÜ CÏÉL²USv©Qd_ŠØ–-QZÏgÐ6Í…Ôÿ*Ý–¼RüYJ«o[2Œ ãa†­q¢ ÂE`öv¤ÙW=ˆ‚¼[ÆËöÚF‡ µ)l/¹S)rÒ’-–GÎÔ}£# ÁFÏTL¤Š9"#÷_©?…ÆVcRw¸?û0Äœ ‹ódï\tçíÜCæ…Þžn–§§Cè©0_„u—¥°ÅCx•Ùs©ÀŒ+çR» 'îž”^ë"®4D¦ð0´êGdLSl§fN¾ðh ¦÷w^s À–Ú»+վʣ]k€Õò(í¬ñ6pÅDúŠJ{ƒ !žÓà©î¾/²>³ raþj@-Ÿ/·›í#qï~/dðQ4or†kÉÉåÊP„›A}b&‚¯©zÂç¹N2÷åþãS#ïÍ! )þöýjïSAeÓûæ«*Ü›P­†û€ ;ÆÑ2P¤eo¼|HôRÙdñ×nk 'xÖÞV¨ã‰ï»Ç«¢BZÎ+nÀB¿þVYÈQoš0Ü¥ß åÅÄâ1Áª¡g–ô‰º½E·ˆÓx0›Ž'‡"ZóM(uÔæè>Ú~Äh…^¯c;¬=ÊpèkGâ&%þÈó*;¥¹Üã¹á%Ô•fw“—Nhdžˆ7m”RšW92ìshUÇxë¾vÅUí{ ÞsáÓÔa¯BÛ·!äÿ)SO}&¸ñ”4Í™~;ãYœ „ ‘ñ·¾²ÞX}eL“¸¸S4³z¶fôF`n²N8g/á/ Òé8>£Þ@÷^»WlØ)Üþž¹6qØîi ÔE#ªM•râƒðu¡U•Õ¼–!úK&ŸX,jІó‡ÄS¹= ÚCÊ3¯Å»UæG¦~ͲðOÉgF£?ÃRûíA¯Ê ®´çÍí×–%C¢Aš7¤!¸Â‹l#ub¸ksZ§¢¨á^µ€¸È9QµP´O•!Åfwýg[›üP”ÛêBÌ8÷‡=)ÌÝãú}·a~F—ä¼6Þ¯×,ì‚dœêOÒýóR±(,ãZÏÂJ?æ!†¬‚΋þ«›P`ˆÛœØ×(¸Î*z)<°,Éæ¦kîîm€dì`Ef9Ôœ[7eAí§¬É ?yŸB3 S“H¯¤Ö)~Û´â,„\g‹&¢§Ú)œY ”Ÿ8O$z+[òiˆ·gÀÁÿŽâ/•¯f»7{Û0ù~kA½­áz?ÚyŸ@õAañ·G¹E€u%ÿ^Kßù£H|Ê:KQ²…´Ï݈t}¼Q¡Ô·¤ÙñvÁ‘Fjd Ç t½3é¹&äÈ@½üÍ ²«Ù¤Œ÷…ÁÛ:üIVZ­‘_¬"‹›sV(ÎaOP"·¼Ž›ýô¥VgÚžD‘˾1{N1ÐÞ[쇕pªõ”!-Ô {ëÁ•Yh,§Õºf'yU¯=Ò^X.#r˜{m¿Éøj5¢ÿ§¨Žé‡ûL]ÑÀòµÓ·5|mã½ð¡µžaMfL)Ý·ÏÅÕ\6doâÀ-ŽÕ3Ü…ùÚ]%óº­"tÉqs–hÕšh€²ÇWw±î †4u@©sĽ¤0jlth¾‚A€Õ8¶s묋@bÅo>wKìæ}ß­)~Ãþ¯债)¿ÔµÈí^};‡!ÄÓŽ† EWäqãÍ‚¿»Ñ=’eÕýE>Ø÷]MàC2oq |øTÂÖþsb!`-„•|KÖ¾î}Û—T…÷­“ —¯–;>À%6qA·@Õî3c=|6 ªmrh7ô>¬gìýo¬®3aõLÐ7¿‚ÿ Õôà’ÌLËpz`PwÌ(® b[4èê]* àñ_¡qÌÍê:T…‡Â©|;ïz=òï<¤u½ÀÉD¸MºÆš`ˆÇÑÚÅñ÷Nï…/{¨­U¸hà€Gê=ݠаìº8“.aÇ6ا5ÕÀó dÈriŽæŒbD¼o„/ý”@¤ `ZL1È ¡uÐï[¿ï#yöIÉ-œ¯”£§j߀”c.îcÁt²þU=ƒË"±è^Âð”«ÔˆÂ{'Èç´cãΟfŠÓ~Œ¢}œæò’ ‰îÁ¶1tb[ª×Úsìën€}be{³tíÂþTl7ý5›hÞF%©j· ”:B¡ŸºÝ©j ‚ž€Ãýs°õ!?KÁýN¡Ó¦#cCºyåØóéŸrŸàÝ–½Ò¡ ×(ÑQO!ŠpGTpy+ÞóýF÷9§hv† ™Ýé3wù…+CȯGDGE’qì¤*£râÉ)Kt¸¨°Q⃠?Ÿ›ð鳓`MA‘Ú žò§†Ófd—›{ƒ‰œ3[ÿag¥L0ñ"K%oÜiK-ÙŸt™`ðVÿ)D8m˜§Œìá÷(pOõÒgÔÆÝhîWòÉãÛÎ;jx¥vìbtf¤¥<ìté K扜aŠ;ºoËÊ䉋“:¤ÁA þM¾~DÕ „3vÎ!$ªHJæÒåFŒ1HÍZšë§ˆZ¯2æ\§ÁbÂ[¸æÃ£—,m´º¨'VPþ(Móë1¼øOÌGG¨Gmç° " Æ>Ž “¦±‡7ÜE°û4GŒ@xýå@º¦rć3pà ¶Ë¡ú”Ÿ!.qìÞqyd ðØÔ»t‘S»X ­ ¦7•ÄÆ®€¾ïPvÙ±-íîS$ryêmu[¶Gj+m{ÎÒ±$0KìBÍobaè˜ûáèªáÈüËdüÇõ|à"ËÜæŽ'?|®aa¥@[S²­‚7!íÐí3—( „ǶmÛ¶mÛ¶mÛ¶mÞ±mÛ¶=³ï?l²Áv^TÖ}ê|õ/¥u €rE:~¬Açíë΢T£€ÐMPµ[îø! Òãj%œ/õBÎì!XWø[Wü7l5´/©ÀšqË®£?yÏ#B½à¨lÊv·@qWÂFOû‰œý ¶¹ µ¡È’°$Ïiè+À‘ (/ÍŽ§’Ñ Ù¤%ñ~ðseui5æÆÎh±]2¶’Sl®B34Æb`±õBkéöM‘ô˜EÈ ¢·àoû½²02¤Bó^ùÈGNŠ~“q½¶lsÄî0ƒ2 € ]¹£ß»çØÜéVª%2£…Å`°+†0í¤™w+–ÜÕ,=eÀº/ÎCŠœqÿÀR;£‚a•ñ¢bÉ«–C‹\ˆÛ |RÒ„@Gds ÂE¶gŽgЍçw3ªt0òïº/ŽÕ#vÿ÷bG™¯¬Èû‘¡ü>Š寱«Úë³Î§htrÏRƒe9wz©Þ'e]pÏUn¢Wûm1a_ðcÌ+E#'ydؽºÀ62£Þ )úŸª{bã4ŒFC¼éÇ&™_°ˆxù¬hý„öh÷¡]‘‚çîËôCÿÃ,ÍD9àK„Ž!Ï|ÙÞl@’¶nÅUÌÏ6jœVÞ=Sl æ[KÂAïJ’Jn&>|‘¿2“£ëM òêüFT_`EÿtEÈ6’ñµ»=j–±°aÖ§/·œB#šù¿9=ð%ÇÙnI¦=?V],¯A>b/«Ðx/Ôñ£æV#pÆ#W©äœJ$ªïÑG´‰tz¹SFïJ‹9|R¤J‚—d<ž-ƒyAW >¢!Fz±J£i°®z°Ð_EοØlȇÈZÌ~ò†Æ””'² LõÀ$3ËÖ|ÏÒ4h‰ú&µi¼€W’•}¦4*Óta=È™1æöjÌËg)&_Ó‘©r×¶ZhI‡@ÈÌ[qžQ<Æ2z‰ÈUÌJÓc­õ@–¾xÈpÔ ®_áÑ«£2yKmÖinØðoì%ù+Ó͉׿E@¾'9–öc´š©‰Ç€œdYѨ/1NöøÓW*N—Ž1„׬»–ª«¯ô£ÝŽ÷õ¬7„IÅy ·y ܱÚâÁõ í>zè@ñ¤0ý~[¥›B¶,–‹Î6¨xÄ ¦GÔèux2uBòÄreypÁU]`#¸ƒ#Ÿƒ™lÏŒcþ¥Ht)ªÒ% ¯/#°ó~“¨=YÊŽôH­aXPAq„ßêžñg·n±×Íx`šrh¼Ú{w„[@¦¤{Q=ï&`œÂú6^ø¸0D™z‘¿Úb‘EœçŠá±Ú%MV¶P‘ENo÷²)ׯÐ‹È ¼¥¸Ê35çõ9R&h›à$o§o‰\SÝ#a°Ç¬%ˆÆ±;Þ÷‰\)]çf·-K'ú§ú‡ä3Dà t®ú¦\£ˆx´nƒcSïêá´ÐŒ±¼éhf7ñéU’gþü/â¼£ò-_Ïb·Å›#ßtzòFE.T°È¨¤ Û‡MQ§gi—è—rŽÆX„`‘ZcL@7·ºÆ‰ÿ.wOãYBG°Ne†eF"ÐGG]8uŒ[ÒÙṲϩ’[kÄ9|Ì‹ùÀ…D «kË^Æå™ÈS‘òœØ¥rò³Ò?¡ðG®Á`"˜’r: +m=ÚTý¶Õ6š"àJø½!ÓQ烗´G5–ë@1qŠ›ïðšòVÅmÐ_5n¤P¸9d{ߥâ¿–hµ=çI3pýó#ÔUšFœtŒPàåi´|/” “lí„À€©¿ÑÒéÕõ=ý#ÌR]¸ß™­Bµï‹ÞAPÅha‘ŽGÀƒI~57Ôy ?šÄJÁ}ïG€âe«È[¹-ÿiGjW—cêÓ‹¼bàè(ëM@>bVÙ;Kjt~íO;uVõñ`ïõÚ!_Ô3Êç³}Ò±®ñ]}3¸È#”èJ¨$ø£²üÇÁž­Y"º&ÚÆ\Ç à+ð˜¶ùæ´Ò„a_ƒ­l!ïšžB*5¦±þ¾ÎÍí­Æ]eýX¼÷Ô ëÇ#^ÚUh[ö=!9 ͯõ",HÊ»ìýͽ9еù,è­Dü_=¼A`Û/ÜÅtÛ>æø(ã•a݉‚„×¢¸§k1*yéŠN àtóŸëR dG»œç Äz|á·2-‘aK¹')÷·\lj¾(5±… G³og)ZêgÏJâæ‘ùÔN±ŠÒdP­ ™p._G20''=,Ìú¹óÑSÒ›ªRˆžp"q¿=þev·A5ì3/{1ÉѨKû±,WãëÓ\^¼£ºY”„VŽiåDþŽ]³M€îJÛ¬D7€{T/´X¼cìGWÑ÷l1òÜ·;+E>K(ǯ+/ýwgí[ƒq…ƒAé{öW„ÏÕ\hðY‘‚ ÆÔÂÞ|°s®LUÿƒ`]y9}™ÃØÖ¹ÄôB)µ¢(ÊV`iî¨ –„ûsª«•t  ŸûŒ‚ƒï 8 #¹óÎ0˜k:*ˆÜô«¸EŽÕ§¨è¶׿?wU\—C¼4Û"19ç’Rp]ú˜µÏÁZž£t$ÅHa –NGé65–¹‚+6r!Þø ¹È«ÎxÛ¥žzGÇ’•¹ª¾^½xÍ"æµ[Á¼ï“y_66‰b=…urÌiÞF"V=¹Ÿ]xï.þ:¶` +-Þ2D¿V£è†RË8Ìɳ‘+ïô°õ cÈêñ%VS+|dÃ÷ð¯8Eâ'wËZªE‡ˆ;1%8ãYˆQ~Æ“}…¡‹'Ìî·«OmËt²¼R%¶cúQ Øc¬y·…îB³ºÀº=bÖ¹€ŽÛüÀî@ä]¼bd|iG#¿´8ýTVV-lÃìúß›—<¹É8Àƒ:–ƳäÅ>E“’Våk›å{|£MGѯˆŠÿdÔÇÐ bŇçW*‰xÕ\ø‰Ùj{ Üø9`›IÕczQ>5ágOÖ®] ö½›aK‚›¡;7Æù¿ÕÆÅŽV#ÞLQ¥‰d2‘œP¶™ÔÅÁV¥ -(vÚ§b@GÅSp&ôøíeCÎÔ ~ðŠ›gãóí»h0òð6ܶ«¯&<±vèÚÍðI8ÒØÔÎçÇUúH`‡Ô+÷–\òùɰªÎ}Ó;’Ö¹æòb<³š€ÙÔÅ®ÝRtÍ4寅ïÂü®ïôV;æö¹a··#Œ&>AÂ‰âø¤yÛ÷š¼L®ÇúÃ$BÕèæçƽsѬ bê>ºÜàîkƒK,&YZMHû9Þ×…Ñt¯Áö2X󮯠K!QœBÙôˆ÷Æ«SGGpœmìƒõçGQ¡¾jWÆcÑãM¨"c3Ö½´yÿO[±Þ–!FÅù÷p ­±<™Ue E£:“rÇKd·þüwsRfUk|yTâCž]ýi'‰nÑ ut“¶àëÚ-µ¯V„CôòDöóÙJy0j«//ú$¶×BHôÐ’õè{=p1¯B{‘6ëТ¬µ©åz‹ ÊfÂ\dgî¡ÄIAýˆýã2Ÿc”l YS¿:¶Ô;1§"äQò3BÓR^ö˜­ðÓNõ¾ÃÚ£Ð`„±Wx8‡ípõÆÅ±+7¿ÕŸ9,ýµ’±|Êq6˜:|™«V/T¶X{¿… WÎMë‹lfÑäSì#ûû@S¤j¥75ÀÕp"c_þ3/r¿õ{œŸÈ›-Á3VµL-oIH¨!auºRµ±œÑ}‘Õó—úJlD>¹÷‰†&Œá¤zWþmN“îŒ+…g®f2i-òÖÞ{ó¡$Ë,GWŽ5·ï¤ß®;0“ŸfGó'9@³lhá¹ä*çÖ{͉Ùú›i[‰wZ/i±e2úå™j>ޘNJŸ´ãÆÜÔÁKŒåH¯.íò¬)}1?ÏÔ³~Ä54 Üúüú…N/l6›T޾ÿs/íf¤@áÝ;û¤Íƒß°'/¯ý0N.²ä=NfÒ àûª}’G~A<©–ƒ¼.É ä6“xô" ¹#µrÓð—rÜãOz ñ_9K’r«ÍeÃïŸï„ñ³ô4ÒÛnözºO³nxg¹>óç+Ü;•Kr’¸Â]–¶uÆGÏlŒÀüI‚Q'{-€ws“Štó™ŸIˆ²"Š#ãݾ«tÛ$tŠd¢Á6ú) ¹fŘÈHùÖ¨hÊÒ/l·”ɺ–q°´èF]‘‡bÞĺ|îÅߌ…ú!ùà (jWd†T™.òA"a$öñLJ×=t$ãªdß¼„ÅO zìýéaZ.c¬‡wMú4§*–}f2À:PÓü‹Ó¾¡'*ý(r«±O·ŸèX,þïNÉ“´Çï|:X_ÛÂY³ÂÃnV£ú½ð˜nk.ªa¬$ÝW¢¼táœ=ê%«¡°¶+s»³œA…ÔGDà¿€-dÑ#Ã.m ýHx£,­Š<…8ósì’3“¨ðsX¡o ëç°õ¼ŸÐCTC‘+/c«\5à$cÙ¼V olHí™%céúà%[¶1ˆSn.Orn0P‘耘’U÷cœ”³Ø´lÂÁîÞGí,¾ì¢jAØIì¼. ÔøH±á2¸_öse+Ý€Ón~,ˆ¾%„û&—ßµÀz*OICmcí`oZêd'h‡ÝàÖsÍ`î¡l‡>É•Ûóö»øÀ#ðos.·‘K §9NCG°»Ž MÄëH O¯õ&f=¼×_àߦ` ã„ý mÿâX°8¸®ÄJ‡âŸFwíAä[Ø:ßM6hPĈ/GÁPÖÁn[%J÷g–pf*™/:Š]°xØá>8Ðx¢ân4PÓÃNp¡òõšôU·¥Ÿ40r•´éd;ËT#Ë!¥Ì>Œôˆ!fMµ¥_øKbRI áSŽNÓƒQ2LP+úÈ£xàÃC5Áÿ²«8d ßr)€Y;­bä?:™ä]¼ ¨òÎ,”øàK¯!ÿåšÄÖQöÂëØSÍ›Û#.|ck1¾õð =ïSû|1Õ›31¢QɨŽÝù5$š0Cý«j¾†=‘ßਫ;‰‚ë+°¿‡òêRM1N\zO#ÜGiƒ>Íå6AÚŽŽ!Z2ae6v3}@gLµFµnëÆç1s-ÓM|;µpà®R~ŒÕá*ºf3¨Ce€E<(Û9H F‚çêä¾²aé½8Ý»®’0¦r€M;¨VÚMùµâö¼¯ )2 £yÊï²y '|– exTav”Ò5åÄÈ ~À€¦Q©Óæ"ΡîÖ—_\ùQE9éY2ï‘îQ‚Cõ°™5¿CMTÒ7²Y©Ñ—ÅH"Ñœ„ùíeÌ'l«ñ©¾}Õ~œõª.aW§Ç¥³‘ *·;l³jÈÙ˜ÊëÐäà)¬#d«p×÷fYhCC±Š1}—ܧj#¬‡w–šéh9ôlÆ3z<Ko‰ûq­3úq¡kœ¢ êúº’Xm;Ö~üŽaȲäÓî5Çÿé½(Ž^7˜ v ¨Ð¸ íhŧ qSrm4Àˆ~Ún= Ù Š™ÉRܼµhJâ@õ¿’¾YÃ¸Ž¢!m£ºó™v‹%nAŸ˜ÀÖ&e"“^æ°l9Âk'E-Í·W“MÅ1C ò5“ÊÅq‡µ/Ú鬢 ˜o‹âŒÑÞ¬NK¸iR°4 o+C+Qá“Møžæ   {ãÚf¡ëÕÓ‘ÀÔ··.E° ŽÛœ/™yîœîÚk›´èW³c挫’k§1îkÁv;§ã¬@þ–HlÉ‹þtT›“–§+•Of’ÓSWƒ\&µ Fñ|Ø’MÈ×Î¥˜0`8ú‘Gd5ÿ0ٮꀎȱ÷7L=á㙘•ˆ6^K¢ÌAŸ¸4Y{STäŒF)S*LÌ_Xò}qÜB~”a>Š_ÆJÓ½ôQ{±ñITäOà@[ÄD+òÄ ÌW -fJTY>¢Á»ÆëÁÉo \˜ÅƒØñv°ko¼ÉkƺÒÅ¥Rèîb„½rÒ‰ÔÓI›m4¶Š­?”·¯¥j\ýø î(¼€èé§ÅUÇ/Ü*T-•£þB¬‰E}¸P¿u¡ÿÅãµ*麜0ÁÒ¨Ÿw§p„Ÿz{z"ñ.AÌ>÷Ô_褑+}ÌpþJ} þÃ÷RtM…•ÊLF°SÝãÄVˆQ¢VFïת;˜Cñ.3 /E)Þ|©' ¦’x?ÃDAeJ’£p¸ÞÌ&T‘æCø"³ÖNU¾©YX{ â!ä¿úû1VùÊ.þlÏÆ–qÂÅ[Z$Rbc³ÅC1 ±ûµ‹Bur ²Ærµ~Ù½ÎíŸG#)n%½ÐA?\Á]L2 iÈT©HìËQLØÁÝÙË¿i—–‡¥ý÷À»)«AvVà³ö¶h–_x;®ž° ÄöÕ„.¬ïfŠó¶­õç½5Çjœ#dTVõ"z9öölLÈ'Ō̗ï£`CAüYÏI¾f­SôÖEOø…6ÖÔõÊ(6º¯D9´Ü¢s!E‡qR1áϸP\ÇqSžÂ÷—½¼lôÍ5Ôº¼¯€¦§|ý¾üP'K~¶]eªžoXœ{nT²d?*WIú4½E¬(´KÁY“ËU˜¸EoO…bhó§ýérWÞâ…€²Æ µJl]àÙG]—!ÕŦüMGQzÖÉí3Óë6_šXì¶“?&7V•gÇÌðð÷ª1¥b%×Ï«"¾ÿÐov<Ó¨q^\¨‰5Ð2SÿM©ØŽâýþ÷M®] ¢²²ˆÅeB¾Z~”€v¥Ù½†6YeÔ½Ö ]¯öû޽>{Tæ7S)ÊÁ5ž€vO䎎t¡€ÜÐÿœ’-K‰®µJ¥Ö"ͳǔ$e{©-ÊÊŒÁ»’qÍþmÌ¡‘a.ubC£Åg +ö¢rDÏÞ˜›T3Ö¬Ÿ;eOyÚž §j „ú£OiñàN,ƒŒša‘AV­JF^忇ê§r•HP‰|‡¡3½—²´¡Vñcs9¤˜j¯ ÌÚ¶­ïž 6yÚë͉!-mUÖ”±ÏRKÍ‹I›Š»æNh›Ã«©ûNú‚€AloÞÀÖ«N¼F¿ì'À¥9ƒúକ(ØG’2ãMWÁ§ñN‘•3h?¤Eަ@™2ûÓpéБþ±½9]òº·¦3}2Ê‚VÅîôNWóŽÊ 'F}\Î )A ØVµ=ãÑ^îµvä–ÿ`‚Y‘)Ÿ,å&$§/ólÚ‹*ëO ¬¶Ès0¹#¡í7­§‚º£{Ž*dÊ…w)Õ©‡ßÃêä'Vg~_L-fÛaNàM]œœcã—®0ss*Þ•‡âsÈ& Ôý4ë›Iû)ÁP-?ä…L!üz¹ÕÍï±”ÜøT¢^³T#sÃݽöª¹9•»Ý9tÚ»Q¬T—ÄõÏ@ËR2_‚Žðädå6¥¿ÄŠ-\}ËF9Ë$yÅiÁª"lDèYà\3Kêó*Ý[äòR $–Ç=tÆÓQÖ>äÖz̘E7d÷ •4û•×Îßi<•úö:®ÙߌJ`Oн[Yê쪑šùlˆ›;,»µËVPM$ã^9³Ã¬¡¶p…»wTTëg;ÛñY,„XÇ:óû £ŒÇÙN( á›G§§5(R¢ üÔ;&ë†qAÖv"f’Rui*Â!¯‹–gM¤`]ßµOŸ©¹ÌèJ¹ò.k$kJÜŽï *\uF©'ÄŹMaÔå¬{µº[™©ú²pݰ€ÍßYºÅ×¶Tå7äP~—Šz8cÑ¥v`ÃëÇ' (Ð#ƒiOëä ðgý¹} ¤ýýþd<½‰¬ió/ogEÛïÏš ¤¿&jæßŽ; ±‡Õ}ð±è ýä’ÿpF­¯K¶Ÿ`s;Ï@9!$ä™ö´jÄ'ÏjßL‰äˆxGéœÒÆšB¶ik=õ¶³Éà/ƒ;\# JÆ|dMÛ—ÕO´QåÒŒHXúE3— _?Ö×t+Ï«\mY—tv×]7¬"³é+KEÝý–aÜížÊÞI(æžË´u/ün­ë.÷´"?$gÒÄÐæ†l ùò6Þ—Š?Ioç4‡÷"qÞÖC}vƒ]{ _Ç}•C;É Ýi³ÑÇG¡•XvŸ´+‚Jg”ùX¬çŒ7×vµA-TV$lo ˜Ë•G—(Y«—”Õj¹zÚvPaºŒ3à óÃ!5$”S¢Ø8‡ØÒ22ò!ØS»@ʈ—~˜±ü ôí+?`éÊ.Ʊó¾ÏŒ^/Ô¯F€ÀUnôôD ¨zïhPÚvÜ|¶šoåÝ!â_I„hù_» ìÒ¦ëeà›ú–ðÑDc¡xònåJUò•+eLϸ’läP6Â-Ioð ŒåÈb×ËêkS®´¬˜`ËUó(5¸ýqÃð¨IšÀ?>Áx"ïîkB’L7 ½VwÎÖÄB‘oŽmë¨ÿP'‹p²>W¸ÄÕäõ\¤‹ò[%ãÃÞ³7“²:ý.} Nš{Õ¶,°ÞÆûä/ÙühÄÍ! ºöN‚ÉÁtoƒ“´¯É=혙„þÈ•°™qn€a¨ë'ú²ùõ@¡›gÚE¹OêT+jIRUBƒõ&VÔÝã:æ3 ×y‹¾pãµáó|¿~g¯I¾Ð›Î98"LKRWa •ož5q÷ü…‰9ÿÉŸäÈ÷WZ{³V>«¡˜*åHL<·RP}{Xªò—‡ŽÏ“Óz2IvìkDõ/8\Œ£M ¤Í좫)E\yvçŸï#¾Tã9þ¬bJeóeÙC"«³?æèÕQ¥€ûÑ#¡ôιòÚÓ0b;óÈ×FEå Á¹²§:ªÁÇG·;Bvñµ‘„ñ9Z[»z¼ J¬câäæYdP6À 5÷eQ]…©mü½¶¼[ïßäÊåÈ]þÿav¶ÅÏ~ë Vƒ‹¬{Œn¨ó–JÛ¢¤Š`À,›°°û,›"€›»½TÌ·Oá¨Kýu„\2àÆªUÁ €3ä`n:5X1öçÞ›k Ý'Êecÿ6ÂÆˆî¼Ìt¤õ¢Ë´$²û@‡úUU˜æzÌ´,jõ6ù$Û®èÈ;##MtLÒ«Ö"'ãö;ZÜÙ3øü˜l®î¨ìŠÉ—ªWfhý²ŒŠ)ëø¤ Ææ ’„èRÕÛü*ÅoÜiÍÖ£ƒ®OÉ)œ¶˜‚N9lãR~ô›BæW½KYH< ª]áÛ=Ó»^d[<ï”~×ðf+"‘<[@áâé¥ À |Ì}zfpæÙÏ8|o7ü AðÇ¢”æˆì®ã%nK%ÓÝà €d®¸ô*9Vù\«ÞÀ™¾]š)¼Yª§ÓHêÚƒdµ¡¬µõ²0ÙEŒÇ|sºê;a¤×qÍðškk¦¯>RK ÒÊðáz~—ÕÃñ¬@TRïí„ÐüÕñº¶•KÈVGJÓ ~P¤Pì=ä{Âo“‰:ÒŠ¯é|Õsh.|U%¸é‰¢èÍižx¸°7sfâ½ÞCtÞþCïtH *ÞÖ¢s;²£¢s?XÇØœáÞ1_wªˆ¨Ó9õ n4ÿÓ` ò9Ø‚êV¶úöù4Ôã¨0ïR½4ÏÇiX !ÿ/˜¸' RÖÌI˜N6yF•+XÍ´R[F|ì%¢á¦dZ¾"ü—¶\ºØî#ãôç|¾j !¡.%Ge‚w,?#÷¥qeµº7`ü_.»^ë¾WzÓ²ÛÇ›‹ðÁ¹ÙÐßa /!K¸®±{ËÜçÎzL”5½ðÖYe˜‘ãhòkhg4t@‚nŒN””¾°‚¸>\• ‘üÕZF—}%Fù•å:5X´ÒXødÌúhJ ™)h™1ï©-(Í÷ãÇß0½¬Ž<ˆs’ê]@fžl2tfv­`e þÁrs:ò`¡ò¾›á†»³Èô‰mÆ´ÂÞ†´Ð’(ðÃáƒî†îŽi µop±'¼Œ¾Ê^Ä\ggAw]xt/Ì¢@GE ›±¦Ó )].ã¢ÚëÃ'9 8Þ-ìr>×f”Gç?öžïjÕÒ”¯ ‘ž2IQù^ЀCnÚÌ ‰-ˆ}0‹·ð߬—d¬>H ŒQø¸¸Ù'ë‹á”‚‚Þi¢H›C`VÇ„V_êw°åXYŸ¤Iù'VnÛ#I~Wéý#aÿÀx@|aKþËc…ÂÑàž-.Šú [倆‡19tjÝ{êhH•­aâÞ0ÙZÝ1‚"í<œ™H«ZZÓËW—‡°•®UaZù63ÑŠ{ø¦ÈÛHJñK˜rm°!Ÿ#6ó9}m&õ$.?Y×ñðe’ª Wî%›·W™ë Û¿Á©}F%c5߉Îù4÷lîIGç~ç?]”BÖ*•/Ö™_Op×7¹à‚°3ÏBú~홀”ÒV’Ú/‡vnPËÖsBypÛ ºe€8[Pª@L¬sÀDZzá» ÄžgSxvPF×[#ªÐìn™ÚçÛbA«{ûß %œŠø ó2Åø6"qd:ÃLMm“ÐJ»r^#J»÷Çø,m\µ·zê-d &º§ªè9Î Žñ€Þ †PBȧÇÞ%pú¦ `ùAΕÛðÖC9p°_h’:)xÙ—Fpw5(­ÿøús פAvÝsm°ïæ½µ§\÷zœëGNH•|£DàJS}eJ„ZeÁqqD<ê‘°# ÑÏíeUúML#¬ÅeGÈï¡Aâ_e«Éñ¶sX+¢ ×^ ¦Tø¼ýøéV㽯ÀÊO´Ò ÿËú_êþÃÿŒmL \ìm ¬¡þq8ÁÙendstream endobj 22 0 obj<>endobj 23 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 250 333 420 500 500 833 778 214 333 333 500 675 250 333 250 278 500 500 500 500 500 500 500 500 500 500 333 333 675 675 675 500 920 611 611 667 722 611 611 722 722 333 444 667 556 833 667 722 611 722 611 500 556 722 611 833 611 556 556 389 278 389 422 500 333 500 500 444 500 444 278 500 500 278 278 444 278 722 500 500 500 500 389 389 278 500 444 667 444 444 389 400 275 400 541 600 675 564 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 389 500 500 500 500 275 500 333 760 276 500 675 675 760 333 400 675 300 300 333 500 523 250 333 300 310 500 750 750 750 500 611 611 611 611 611 611 889 667 611 611 611 611 333 333 333 333 722 667 722 722 722 722 722 675 722 722 722 722 722 556 611 500 500 500 500 500 500 500 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 675 500 500 500 500 500 444 500 444]endobj 24 0 obj<>stream x¬ºcpåm·7ÛvvlÛv:¶mÛì˜tlÛ¶tl;Û™ÜÏs0ufª¦êóaW]×ÂoymýɈ”é„LìLÅíí\è˜è¹’¦6n¦.–Ɔ€ï+ ™ˆ“©¡‹¥½¨¡‹)7@ÝÔ jj `f0qqqÁDì<,Í-\”ªJêT44´ÿMùG`äùŸœoMgKs;ù÷ÁÍÔÆÞÁÖÔÎåâÿXQÙÔàba 0³´1ˆÈ+hJÉI(%äT¦v¦N†6W#Kc€¬¥±©³)ÀÌÞ ðMøç0¶·3±ü'4gúo'„œ†gScËo5ScS‡X´S'[Kgçï3ÀÒ`îdhçò{€¥±«É?|Ó;ø âàdÿ-aûÍûS°wvq6v²tp|[Uÿ·Ÿ.†.ÿØv¶üfì;%Mì]ÿÉÅ7–á?0ß\CK;g€‹©Ç7Ñ`d 0±tv°1ôü¶ý æàdù/7\-íÌÿÛZ€“©¹¡“‰©³ó7Ì7ö?Ùùï8ÿQýÏè l<ÿ¥mÿ/©ÿòÁÒÅÙÔÆŒ†‰ùÛ¦±Ë·msK;†ZDÊÎÌÀÄøoº‰«ÃòÜLþ• Êz†êÛ C{;O€‰© ƒœýw;™(ÿϪLø_+òÿB‰ÿW ü¿RÞÿÅýŸ5úï‘¥ü¿ÿæùB‹»ÚØÈÚ~7À­–ÿ‡ˆ¡­¥çÿ‡ºé¿—Œ’©¹«¡ÓÿÄr1üîl!;óïMÀHÿÝ¢ÿ´ž¥³¸¥‡©‰‚¥‹±ÀÌÐæ{èÿEWµ31u²±´3ýÑmÓÿà©XX[Û}O€íßp¦v&ÿ£µÿ™‰¹Íð_±ýDá{z]T<¾}ù7Aý‡ý÷ªøË?jÂÂöo:&V3'Û÷T12¸ØX|ÿ_Lü è?ÜûG÷‡¡‹“¥@û;Îo¥¢ý×ßtÿŒ˜±½É?Ó®ìbhgò½"þ‹ð ±tt5•ý•™‘‹ñ{ò¿Ógìêäô½”þµ¾cÿÏû¿–­©©‡©1Ìi ô²AA?í öˆe:ñ€¶6Û…U>[∭Êx‡^ÍÓÒæÏ3™ËL—F§­œXÛ²ÇÁ[°Ó›a®Æõ²ð êAì/š-íØ}r¹M3!:y¢aé!â®wU—»CM@âOFª,;jíOxMÝ1?4èˆéÀ•åg¥¯Ì /\\ÍhKTüK m! ð<ÛH~;c67ÚX©6Ù4n·\YR›ÂõÊÔvîYgâé›-€aâQ’òêûÈ~jÉ`&O¢ ¢±”—léÇÞ»µ„çaI×m]n ìIAƒV¼™qˆæE{S/,£ ¡ŽIÆÊÌqðÊ-6xåûŤH Ì1&IÀÌjB'÷DÁä§‹s„¹P#¶ÅÎ<%<è¹Ñ(pÓ®ƒ@ %~oÇäþ6ÿ:Šùดg—óÓýi^æbd×ø”s}&É56‰° à*û"Çú*¡k«“SÙ÷Íúb¾—)&Á¿á ×@®Ü6rÜq+#›ÍP5%öê(á`öCò?©†¼À£Þ5È‘ÝÍt:•œ•ÎïZ?9ä¢ç"ûóõµÃàMhŠ.±l©¶Íbrü£ªYsM¤lY¢|#©n‡=«nÏÕŠÓÅPÎb´ažƒ€E™Úàip~ù_ÈœzV¦!ñv`p'*²ošÍæÙ°"w üÌ4.±h±Pm­Ý~icÚçŒB¿Ÿ»œà-Ýy2)]~yap×þv‚7úºhp28©ŠÃ½¤G¢Y%—Œô»Ñ|²á9øÂ÷˜})bìjWíX²ÉS)–%OtëÄz1þ«^m%ó¤ž]‹Ôcù }ìN‹œ^k§ªøæ=d/n…Ö)áÝ'Ð@¢¯H¬àã@&¼1øH§&$hУüã´ ád”­V}1™§h¬Ü­–VOìðÏókœ¼@}äÝûrÆ!ârõ•˳ÑûxÈɽ¾¶Œ¸gU6€)ŽÌñAŒc%Ê=Vu ôSË‚9}®šA“a /íú~±+Zî雀…\!mcz¢)ûÏkéFˮ۲µ«žô€[O‰«g¶Üª7ÓË9—P8ׂÌrðäÅ+­"êI‡1Ü0+IH¨ZØû•†š?¹ ˆ‡€MPv嬤wµÍ;!Ï¥“ˆt^œ"uJ@WimUÜøƒ¾Áì>¥ëRRŠ·à`\‡e]…»ûξ­0àÌŠ÷KåèË€ú‹‘â°àº?ÂJ¤¥‘|÷³*˜fÎÐà œ·z)Ò‚Ñ™áŒq@yÊ]”-ËLJlS™¤Œæ’B'ó¦Žj9aϸPž®öD0Øw3ƦK’)=i]^TéµN Ê¥)7œøBïµ%QbpµuƒôÌY#)'#Míe‹°ÇNêåØIÌ×ý!Z ’ÝeBCH1Ý‚Êð¦‹OÔ8¡÷„D§¹%[¯\häVÒÈ™=)“"‰b×B{rTçPOžÂS‰Ûª싟¸C5AUøÃ©`#›9cßéI2 &ß—l®>5ˆJû‡M*x×ú\U ZËM….œ¸4,¹ã;zlï’äSÚ"“Ðs° 1O2)Ú†'ƒ&<›]ìBì¶õ(°yhë©‚ogXyÅK'¶F @ØÀ!Ïâtpkø²J æ§Jë˜SÙ' Ín‰îè#ßxÂ…©K@®gx²àSžn¾$ €ëf(^’ò&d†(¿Üdzïî3 4á-àôÒfÍ(û¹£éù®È ”<£{ŒÄ_–•õè‹o2²…G<ž›½Â:ùW»mÙÒJäy’ý˜Š?È(Âpì!ä7Ë»ú¬ÛË¡‡žxï ¢xìÅŠÒúøÔmL’«pSÜÚ|©N0üC+¥â#ã¨äºÒ`§3c&ÆÅôk:lÅ*³‚'.tlÌâ<:; |VwNUñC¿Pð!ðÚÄ©éì |.#G!7G®K¢†„F6‡#Éwñ½²Çtc—lW¿ˆZz‚‘1Z²JÒpÒÒï]$Ò íÊ­¿èÙÐ/µåÆR°sÖÜËsÙ ¢ê¶ý+½o}ÆÏ|¥fz‹§Ê¨÷ s¦ ¹#¡‹+ºO׆RS™}# Ò¡¸óŽÉ1G½ýµî°y\o×T0¡‘dÖßÜiòÕÐ9”Óa/â×ùu¦ÂÅšÛáòÏ—‘ô ä·Ó-A¾$è<â°ÐàÍÆ {ÄãÈÊÕUvçÅ5héqp˜•½ .Œà€ íI.ä+e@ÂYâ#•½M|ëÓBJÚ“Áí¹ºê\­÷ãHr‰/ª"O‚Šr:³Àͳ¨`ج,ú^f¸n“3K†_›1^Ø*ËË»ˆŸ•Ý6(t’/õ#Å9®Ä`7‰§‹?t‰…*×­(Qm«ùF_EY«n÷ù¦q•­6‡=_“ïSw¦Òç<ö¢ü¶àÍV8†²†ß™9î°;ÌçA¨³v¾Ñ¡8Ü$x(Ž¢‚xÿB†c’tä}*|éWÍ„¢è¢Hb˜¹R,E"¨­ñá&U[©Œûœè~ÆÃ¾¹KSó:dèÞšß ÅñKý¨#Éë’½Öm”‚ù¹¹KäÔÞ¤gM5Ù¿+=–Îì¥Ã¨Î}xäÆ: 8T¹ÙJèGdÌÃI¨Eˆrf"·®ôp"»8o[Öà%‹…Ôb½ÂNU'кŸ&ì’?²ä3¶k,Ï_È5•÷ˆû*üW”%ZÒ U£ž2yä/ªòN»­€©5Ksð5˜¡ôúKE|®©1Šì ¬Çof„¨£ŸÅ‘ütgäDa»ãÀ`~w¡¸P"H˜’×ÛSLÚ†Oòå•'L?Èl`mæ+h”\Ao·#<*Cƒ¯s¿£xÇ{^†”Ž·×ÍM÷;Á’ŸÀø@vI~˜cÀiº+Uo…'ƒ&L—À®h`*¬ä£”Ò߇-¾ÉœËïñ$Y…hëߟ ^ïJÒö5ò:ø‘ÍB…ìxÚ¨r3'ž^@ ^³¬sa°é5”¶56W&¦éžŽ[©:kžÔTºD¹?ê•ÈÖ–Á©ŸLîî3' .añaGöÜ9ÿ^ã·1{xæÆ7˜%ù …Ãù\øû½ é÷NnV$gÑ~•/ªo¤Aщ Ì6T쵋÷…ÀH€ qSr˜Â"¤°ÎOë_AÑ !2UNûºbn ÏéjÇ(ùÓ“ì6»¢ñÄ0¤8ÖƒXæÖŽ"ñ–se²J¯ÃrÝÌ ×æsµ;ÿNðìf ¾Ð-ƒu–È=ŽG[ž¬Ì’@Ú5U{œ2 Dñ³aôÕl°¶·µ ǽߒ•$)ÿg¤p£[2Ãܵ¢–Ñ:àé¸Á¶£J‡Ýº&¸4G GŠn»UV L¤f¸ˆMñÎx¼«WBÇ~<ûs ·ó¡Î=¦HÈv+êoý-Çæâ=²´?˜¡wqþCŠÈ úˆñ!É+ã«ⓩtÑÓ!¾nƆ#„ûQXœÕ©Z¸P‚ÌÐXÈl#gËØjþà,ÒU mĪ¿põ¬¢1@/Év„’Ѭ:lØà°—ôiaT‡£N N­ÔGž)OÄýu¿oX9F)à±´ö5‘½i’(ˆP´{˜ïb¸þ‚·`ÃÍùá2n×­¢}Ò'vî5 &³¼YÐÀÑ»sï×Ni'¯ìa\ªDś؛ ;›¡ÊÒ1¯Wãú0®þàgFÞGƪ¾¯‡Ž)S9Þé­ÃBõÞ³’4»VRŠº¿¦Z ý¬e=ÇŽìR1䈭©ÆLµÊùçº~n½_¬žoòF×Ù>Ý‚9ƒ7?ùÖÁE|M †T3òÓ E¦«ÐÇ×¹³üÝ/ÀmaÍÙÙŒ z´…òK=aPcBÆ1,B–ÕЛ½õ¬‡Îg?H~ËšíêØ’ji2ŠXqjÙ†©À¿Ú“ƒ¶æœ,"¬W¨‡±FO¸±:íöDŠ8–;ÊCkützÚ„~Äe¶—MË倔×{Ø!h5òòiá¢Ã›ÿ†] Jl^{ØlŸÙ€.~/3–ËιwàÚ›â¤D³U—Î$”µc1O°É¼ù™8j#`« üƒ‰µÞ“c@°Ð˹·ŸMN\f1êË(ó3ðOj7ëÍ{ˆ…6(lOL î)-Ÿ•öìTÝÏ×>spÅ ½/þ‘É÷<Ï×·ƒ9z }¢’¦B?ò è“'Õ¾¬Î€ƒQ)@Õ–Ådu@í×óã[ð6ß#pH¿€Pg´ÝÚbªÃN^ìpr”WLX¹ÐæF[›â¶ XñE¨–¿°v-^OâæŒ8=¹ÄôfjˆÑÀ j×>S ä:¶ËÏw¦?(Øvßx ôäÞþîûY\ëê\˜^Ž dêÃ`àÞ¶/”sá%˜ÂÁ x8?ˆI4H§¾Ûv°è8È\÷‘P…ráh¯ Žx-2å'få[èFîÊ“ÁIl[K)¨Ü¶çæÇpKÿ|ƒ”$Bì›û³i‘ìŸ,nñ•÷)ZÄ)‹¢ó3„þŠ×¿Ti!·Fz¹MÍ4ðŒÕ˜y×óOƒÎ ›ÂvºÐ&ÖÍ Þz z’ Æ/°1¹Ð>¥)AÎîçïX•'D†óh ´ÀŲ¸Ú›ê °xÏv+|\ ÑÍ…Mtá3E ^¢þÑ£Q«‘÷›ŒFS©¥}|‡¹‹ u|\H&¤Ø ÊYÒÒû_Ç[õwE¥žíCÊw»©”]Š£\µI¾J4²ÀïéÛ&µv8E KgWEtéi…¾H‘t Î9üýj¯Õ{Í!Á †5O²¹*œjb]E²‚éÛf).~e`®nÌõH^X€ V ¼£&Øâsʼ3AÿLßõýÆ"|E°úŠiÆd L.R y¥Ï_á¦$Käê%”ŒN †CŽø4slš ÜúȽžØr_EDU2ǹ î·=WªÃ61ÑKä[K9»S “T"FÿO`Ç£qÖ6þ±+`UžH°1}”¢.º.=!^×Ǻ“–›µƒºqMKÏ oâ¨cŽEecÁ¦õI ©Ó—|LXB P¦ú­ž\Þ~9´¾~w½KAM7ßýßö8éö0ب÷ê¿xrb;`ÞLtf¦OJªåùÏ®“†•ÛF ÜNuýÍ4•†žåN8 •ïÅ`a숸y FV¨…T_¥„Ò ºø,~4¥PIÜrAoŒŸIЉrzHüµ±+ƒLÁ­©¸•ƒVº¾Î%ŠK3æv£¾u\Ô­ßEÀÓ8šn©š£–ñÛ°ÓêµìÏ:—Yƒr·8-M,Ág9Ì{Ͱ£õb—~tæ1Ç;hiØÝ†.,COLß Õ­5çXò’œIŠZ»sï†q ™%ÿ)owÀì—@‘PµSÿ5¡ø~a{òL•í@Új‚oú­µÜ‰ù÷¸@s7ñóÛg_›õÖ_´¥7^/_¬•ã©ó–l@0bTA™AðŽ‹[\q>ÆÌíq51‘ÊQb»-\À¼¹Êú_¾Fnéû\ÌGÒÌ®± ï6ìÉþ8:”XPÌɃ؟–1Ó8§×žô³C*S[qåQ¡>÷éóŽÌ=4ÈîšTu¤F&ÊòÓƒ¬¿à#Ïòü5f_ø³VÐ m@¨Ân–bÆþüzôʥȦ$'~µq»ÕеŸJ\S[fŽ×…®+uñH?YÅ @ªûÙH_„f‡Ù÷ :(”lN9hÇ ”;ô ›’;h¿ÕÞžìõã“‹y?qo?{xˆaãœh9éC»ª€ZÊ•=H¶)¼$<0ÿ*ôkK'ª*k W‡êŠÈýY)´¤IZ8ò4i N.•1!€–£Q_B‰f•{b¤5Ã/I(Ó•&aUê :оcÕ§”5m±Ya« ¯à Ócšqš}¤¢Àòź#ì*m}߆Ö2â½öCßëóª\åñ °×æÀ|§?ÞŒi{1sªÈŸÇµ¹Rqô†ýC3µLâ‹»±æSíʆCG5òåƒU†£ìö‚¹(>•Æ“\i§Z»1 UïÚGȼÒp™ä$ñൈ“ YfâÁŽñ½Y ³]€™ÎŸ7zxú·úXuƒ gÛ䉖êI/_BÊi.Ü«)A7ÀÞ®~ᯨ¨ß´Em’Å#y‚´Z…ÖÍ“ Æ3¦þÄ:¡½ñìù\Z^ýù=küÙhÚƒzë'àÉ#Ø©sIÈ¥zš©FN÷mŽß×¾£QJ¾bý-šï¢k`ÝíB7ÅvBH=scžƒ9÷` gt¥Óà;¤oK0»FÿAY~µ€(p¨2—žwÊVàðþ™pø—äÆÊâ¶× ü8ïrÔùSæµ/æ|ÈAYŒGyOî=“|ÔqU“úß$üÍŒ7M*'?¸iÄÂ.Äïˆé¨Ð/#21yu.Øõ('‰"ži-æÏö6[ Ï*ä,ñÈW³ÖH‡øƒiå ?°i¡Œ×IÆgÑ™·ÀJ!ÅT º\ÿf¥j–Ü­–Y,…®AgÄ©^WhCÛu¡½“Õ‹Žaºtd†Ô/áÛîAʈ<ÌPMV]öMµË'Ÿ“i{°ÍPÚëÍ2ÿe–@I)Š.+ш?⃠%š%ñÀÛÿŽ"R6‡ÂÊòpˆ”G6%ûOÔI·íá´®ZÖ[@­¥Xé¢äœ-ÔgÝ÷sÄ ò¾—c‰d ΋¥Úþn)"~6S•!æÅ.5«ý"X챚¢_Ñ®­Ø5ØØä2sFí×7jèzÓ|ø"X³Ä|ͱÒ+©q¸\M ñq°CÖ|I¢çñg!§KÞÌe΀ ûûêbÚ¬,òìqKWR[Æ5PJóÑ(§€-PpÒnVÀà!.QË›§’”«é÷p4£d°)S2èma^iH+í]£7•ŽÒ¡¢Âö[‡­Ÿ“@S䞟+˜êj]ÉçØÈK€vŒ!´{s¶3À„àŸè¯×Bйv’çh=º ³þê¬ì¨ÚöôÍö:‡»n¬€X»îmÞà¸ÛvMµ:°‹~f6†G²1:u_å$Ÿ® ó,Ëž*ˆ1Ž¢yhÆ£;<½Þ7&ö.4Ð’n`ãX0tßί?r Ë;¦µïÞ³ïŸàmõ­ç67>$²x1½RgÅÈ3\u̧ ß…»;‘¾ÆÇc3`Ò·ƒ¦KHH8‡Ç^v•ŒÒ`ÏâxUÉíY‘åÐ|ªK£ôõº,V¢ãÚ±à§]ž 2&ˆ%¦HóŽëLD´ó:ßb爈mµmÝþžfr§ò{=µzwû8”ÙM¶~)½èÊ+Hiíqõ—nÞƒÅÎͺÊY†ÇÈ9]ý)L'äÔ\ã±ü<5XU’ãªo5Ê/E–̬Kw•ªx6·Z86Üh×Ö“dW{[¹Mˆ¬wõaA5Ö¦²‘ØYìÖ5ê°s§Å?ŒÐ~À~OteaÚê÷@S–.瀎B—°àiv k%HÞ­NGÌU¯…b[šsX³]ˆèa·kVE^©Ô+è ºâ8Ï5`¹^ÛŠ²èŵKß7BÄÙ’ÚO‹#²>ÐI)”q’_ïì;à^=ò°£‰vD/šªBh»‚FBè¼¶»2e ý¤¦ÍÄ–%•ŒóÇT¦VÂã‹Ñ„göÞ¼LÁÉ!wBÒ‰jª.×+ÐÁmè«£ß`òzsþrþôø©‚î »£UÀ-ðsúr å‘jN³êpñº÷é7 ‡Í“¥²–óu7 áJ*£¬]õµHQäÝ:Ó¯í?}àöbNCgÝϪS¡ÐÕþìG«…U™õ¡£Í½®[0›3ƒ›˜ldÎcÀî£2êäãÅÚsšcZû2¥¿W7öšoAÌná *ç~5ðË1ÏÉëi}ª¶( BWøCè-_&OPÀ½ÍX‚ÇLÍÓ)`Û6Q¼ÝJtš®¤9v¨"U%²æL$R~è^Í{8þJ»%ºÅçʧÈçÑ5aqe¾P–/òQ 8k¥¾âoë©©G˜YËêv æZã¼½]IöA1dúŸm²c¨T–gÚÔäͰ@OÚ ’OP1vàc`¹B£ÎLPȉú/íLó hƒlRŒ1²¬Ë(yɳèyÆà†4xñã^â!§kŒdG¥É6OÇà˜L­â¤`#³˜]ˆ½^e8Ó ÉÞ‚5mÌ1ÿ=!ð’jFêA7ö‹)Âë ;á}"âÔ X¬ÇYˆ9-xhÚ¨®opzƒH/ÎtF3Æ8NIôêáó¥›Ì _ ±-±Èye¾Ý^:*_Æ.Ü’¯™$?é×Д\–X°öZÀyYþæóX¦1Âö~ÐÖ ƒ=Îу"­©µ¿4n1áļžöŒ/‚üÕšÓY:=zZ1aµ½®Y*D(•=‡bVp+¯t;ù×óç\¥ìÌohn•µ‘¨E`ê}§ªAç$e«‹¬æB&jÜ4!œU/ìÔ(S&µ¾»Ì Ì@$¿{ËM7û•‚WΤõnÚ“Ôé•÷»EU+?Rƒ‚¡‚ ¶#<ûGœ~U’bA˜'ë;(^c´Ô»Ô\z Ç"Œ²Óꃗ ¦ºKhÏ*" w)b3Õ‡VüMõw¼£ѩƞKèĪҰ±,ï‹ ìî (…Ê”ÛÏQc]j¥ó‹þ¸‹3Ä[R©\(MI`á)ÑÜ~7žÄvg#|YäËýZ0)𹉒¨ÍÓ¥wj ÞÏ}·F"°u]Í`¨ÎÇÄ‚0Û‰&Í~RŒ_š§ÒÐ:+V¾$•¹ÿM©…œEÕ cf™w¬§ ~NÄ~¬ ‹(–ëÁ<+"ôàLò¯n+‰Z6-}°\˜}„×?¥áFäÛ‚­:¶·ð!‰BƸe-ÝŠÇ¡üÏw<°û§Ó”=^dù í^s×…0/d\3÷~sn÷¨`òéÀÛXàæýYe8Üëk'7ýdœ§5PÒ)é.*¡†wò[<9õ뤓)SM‡­…Ž!{}4Z$§™:Y8Á9Œa}¤T‡ŸÀðxÃ#ë¾8E {õ&‘ˆ¡9J‹˜FBªÂ5ô“ZieÎ:ÙÄ'È¥‹ê›ÄS¶HØ6^U!¨¾‹Íþªz3úNÈçJ/EðKo ³¯“JlqÎ1¦eŸÌ¯Y±Òbrü……4(\Ш:,dÖ‰p ;fjXe·­ô@Ì-Õòä$BÜPâ’¢Ùt:½a¢ø¸aU 1­[ú[¸îë o -C¥ Eg&r‡œëàVëyO,ª­ÐB„Åuz)žy¬¯¶à¥°ª¡Ëá÷M¹\¾cZž½p¢xC{O¾Ô@&<ÞÎY ·[R5Ñ<7¨'wœÅvJBÚ*EÉ•Ѳ Aõé. å‹÷"ºÕ$%lŠ?P::~[£¼â£â¨¯lBäæ%aೈU§sÅç4Ô7ËõÔÞÚâçk\w@Izù·|/ÂÍ öë"Å–0 £ÔŸî¾D' wàß®ž,4óÚA-Ä ÂâPa nå8ªìh¥Ï)ÏÔèƒÆ=‚ÿiæ?³ÍU>KwùœUÁoørš^¯¹èy€eŒÿ$PrÀ•l%Ô½)tÅ:ëðÂÕ0‘âÐ*7sÐ+³+Im-7kL|(›ÐE/ElV_åg/¡0Oœ-“‡‰N A˃ÓKø[d·(ÎÊ#X ˆÌÁÊgE—LRßÞ¶|Ìùc±y »b€J=û*Vº•«„“U»º½€ª®o!gž2[—èí³q¹ê–”+NZ!{@@²£³Ç»ÅbQ«ßª¦ÍØÃl¤oÞ›ðßîPè_–/ö‹oiK.šM¯.4RàÕ:¨‘D›1†‹¸L9Råhì^™/šÅ=wõ?ËäqÕÞ› ¸à!ßklvÚ¶4ëÔÙøªÒ@ ,[ih>ÀìBOŽxƒÛô˜Ö¶@R_E5è=<^L2ïBCª¼ÞÙñ«>u«²r5ópöM²§s<%§<}*™£‰}oRËÛøîëú%ó/ŸÔÌRùÜèRv©`Z¥_´ÒN×#™³Þþ(7¨ÇpÛ(¹Fµ;D–ÓÒ9_ôíõÚŠäZÁpï;º+LèzdÀËî’튄¬È!1?æJ „,XsÎHÕƒqÊHF²T,;Ô~‰¯4Ãܘ/nÓüÜÚâ0%ƒY³ù#© Ñ=˜´ìȳ .Sjø & pÏ'‘ˆ›æB5¹ŒÍ„=3û3jr¨¥U/ŠR9j~žÅÜßÛUßì"Üeã~{±§Ž@-_‹ND-‘-ìña€üˆ+¥: âŽ,O½jXcx"¸D+º²K/’͇;ñÆx/²£ü¼òËÕ–K¨à­Ý¡õ™f(KZA–¾uõèéÜ>—éÆ AvãfbU6A}÷íGý€Ž‰qžJj. ¾j\X^¢ƼÓG?•㢙éMüqoW‹oj]G¸@ž>´)0üÌBs*÷J±m¿H±b¬Ù»F> ‚»±`A¹%°¤mq¡ÂŒò`»ˆÝé¹ 6¬žjTÚS©k^"‚£Ÿ þöÏÑIç-!U¬}3) Ô09^ßk8Ü)fßÎ3m s79Á›«ÂžáKòzµ$£ÈÁØÆÏÜÖÇSÜØÍ|rªê"ñ¢Â4_ª½â¦ßTôu$íá÷vQ'°,õDú¸Å¤}Cªa–Ù áΉ<Ê·ƒêB¥ò&œÀ°¯Ç¾w’œ&ûtïðþ>å¹ï­"Þtö ÇÐù§yv“Šþyb"3{_>Lyà^©¡9ºá;Ëþ™« 6´·]/Gvʕբ|˜ôo(*å¿ç¾ßK—š›zÛ^R¹1öÆD¹Bí,©ù vó‹ÔÍn`ò(™~`Q'(—§[£þá}™÷Ǥæ?a ÄŽä܈!~© (Æ^‚‚‡³t¶dVà%²¿õ»õtSŒ¸bxšï{r®ØÉ8T7’Û‰ù‰˜mß©ÅÕëÑK’ýàêîÌ=Ìô4ÐåF Ôxú*Z,ò1ŒÉ–­ÅËñ/×ÃE¯ê;Ì4ó\ùX™s>~y§ƒÉ¾‹Æ„h ïì®Ôü±Ô–Dç”ûP-OȀݤª÷°»-ñ4³U…6ÛË:„x é¸xÏ9ú¿Ô^ÛK䩪9‚ ë2*:aãOŒªRßxB$:mÎiŸ<µf³ÛRÿÆð€ M?HkE±¸Ëm¹Q’À„`û½ùŒ¡Kƶûy… ¼M…Õ­¡E?ÉkæÕð#Wˆ=UÚäFU2̬½ÅQ_ -<‡e ëÔýDjlîj§³u,¯ÂC>ãÂÛÿN'úÁì"Ó²½@–f2¯w•Vƒ’ òˆ!ôpIc¹»6Éñ‡çv4 ô­SÁ=>ï¡D/‘öÞµì›×®À‚€+ Z†¯râõÊ~-?o@5´‚b¬ì±T|ÞÈhîÁgjÄ/„âNƒ¾‹ÃHd¾-&¾oá#P»¸ÄÆúþ §°+±¹a¦SÒ¶®ë—ip»1Û¾|ÅÂm9§¶Bû ¡v/ýq²5¹}Ìܼ&ª™$C4GŽCC·’–Y¡M&uقÊÕáNÕs g‡ »E&•«Ž}vä­¾*Òû_$r±î%ã•ÍQ&Äšœžï³³ž$¼°ïÕ ]!#çt9RgzÏ&ƒÎ8ÕÉ`†n‡Ýé­`ÿÀJ*uT÷9Á”ª¯âߘ8-W$™mKõ’³8h§Ì_¹£ç#‹)yé͵°l"ã4YÂT÷³íIiŠw‰…én3ùÙ‰@)ÅkÒ7kñØtËHE\_ŠÖ˜UQ¯f“â‘D¦œý0〠€9Æuvd$+ÏõÄE<¨ÆÔú©§%´œ 1e8®Œ °e·­Qx¡–ï6i¡Ý½€d%³÷(YHrê”4Çaû¢'l"ìÁWúMF®2qÅ*æ§E< Œñô©Gvÿ;.±õ§É›j¢Tñ¦p5ÈÊ<Ð}vr¥®/ÉÅ ŒM‹ Ãîþû¯PY-ÁäÐŽZÏþ-øNÂ`kÌ–wŸuôÊÀ@ýsÏæáÍf6КCqøÛä±)®Uß§H±;ܵ<“ý;´ËKñsÎDà*á*~BP-x?Ïl'UQˆ8ºpí4=³"wâÚy×Gžz^¨ÚSPrBBõäÝR úF_žjx×6ö>mÃT³zÿfˆÎ%Ô©ÀÄrEs ç ¯<óB%JD=u‡$9F"¨$™'èû‰:âAJg‚çùtp{ëõΧ§ª‘ÑìöÔw ´½ÞPuÈʈˆî¹Ú5’V޽j7/Õ4¸/ÒÅïïN'Õߨ:`D”M²óh‚ù DWwdš ((¢dxçÈ/£)H¶hì®Ðƽ8ôXºˆGsjl /9ð1n²:Ù:tbDÿ¶&ËrÇ_z é¤èè¹”eÚ‰}é¼!´¡¢:Xß#¢ö¥jz¢x|Ò6uë|©šê;30ÍNÌ8•¨_‚A Ëº ý´zT^4‘/½°Üo l^ë¦MÁÿs1}4íoe!d39$!óª_çmÛe©ŸŽ“$yÖ¦$ª„KžØ YìsÖèEìû2s'½¢5}T3¸4×®„p‘ê7z T÷—všÎ¡”ÚÀ¨)ë±aÏ'ýSüŠP#ïåÇûƒû Ý¸¢(÷…0E HO X²ð¥Áø³‹¢P+×Ûs躡M\7˜{qY[õÉ›æÛµvlÁŽ}b§²Íç£l„w¤Bì|°Ž˜Å,£ŒVÂI:M “[E.Àz4Âö°ËT¤Æ¥KˆM 2¬v*´l_vèU$oÞ9p,ê!gdÁŸòcjŸLMw³!-{ìÁwTÔéEéÚ°n·#-q_JMŒºÍH—ÐóºÎÓlÃáãÃŽâÄRfv~.ƒø&Ǭì~ÿßjú$Í ‘ËBáo †¤ĉtóüV3Q‰Êk@6Kºº¥kU“ý.1\²¿Œéû¶Œ é›Ë˜k!¶TÞÈçCD7Ë܈òªvm»Ý#;¼cï/7ÆiÚ?¢T÷Ί´>8:rJ€úXpL]L¬y‹°ñSR\Øa(§æ ÝtKL»ül7ù´Ïp[|µe fÖР×À]˜Ï#´^!32÷…B—r3{Öõe!“(QÏȘX燌ë*$ö ZqKËþQ#}ázÊ1 õ\Íãm*Ÿ÷¡ƒ9Â÷CS>‚D%QŠIXÜ?ðòÔ ÚÝR…ƒœ@^+2ª òFLÈ'²öw»0ЃÈ\A\|íeóÚ÷¡1Ѹç_FqÞ³ÓhÚê%êÖ`—î[óuqõ™'³G k:m+ZÉj,”ý-çH ÀÏ­A63ÊÔªë÷\³Àʯ ^½-Y®~Öö®9ëbô¯@!ûZ:¦(T´oÃAùÍ¿inöûrP1â8úâ-`½ªû¶0Ö(’Ê ö¤D¸ G<å¼ vï®9á?ï%e\8¹.œ.èÇàò|?ݯâAË‹"wú4’àFmøyM˜Oçê½+öBÉI“eÏ~µlñ§ÖåAÚ’¯³¡ª%W§?~‚­>vjÉ´±‘{b`õÌÍ9žQ!#"œÕý„ï&n<ïÁ}D±ÜŒEÁ€r0ÂVpÈ|²¨£cBÿyï0„ß´ìÌ®{k÷‹»´Ž<"„Å>šçƒ¶œE¿±ïV7û’ÑZþ¾Æ;,-úÂ\¦<}ê8[phå2kÑEmn›¾Èz©Øæë†4-qŠÝ ĔaaÔ-öõ*jmºuúEÖI#•9ß·ËLwG2Ê/èDã.V…s—}+è…5ôšˆ3¾ßq‚»Á–„YŠ1µÁ&œéUAÇD1ž n§â`åêäz‰Ô y²Öúꛨ%¿lëEþˆEЪš=SZaBõ÷Íþ4×ÍŽ"ÕShkL=]æX†uðkóièû€±q†d–… Q?é¶(R9Ftºy÷Ó­H]ÜýàT›ðg 絟*w‰ø{©64A \Me`A—dϸD\mylc#ÉUÔòA÷a|Š*©àœn(Í,ŒÄHG/óú¨Á½íº¾¼KGØðP ]b÷Z§„2Œ5K/¬°8”H¢tÒÏ2ƒ ¿Âì•ñ>ä?3j¼úîRþ%ìæo4ØlýìJ},\{MBbà9>Ñpthá·]ì7þ,'¶fZìÊ…šìðÐÖòvI-+ž}2 פ•aù¤ûjÕ[lk{ '(~“}ÊIåú§§À‡ÚÀîÉv•Í—‰¨¸gîž Ð´ïdž—­&rE7QÀ7Á¿.ØÙáY5â—‘Á=”If¹µn”§ol)zBî?-¨0T^Nº—¡@ç½¶ÜnÂN[‡âÍ3:\î”Ú»·šÈ“5z‘„i ŒvÍr-öÞ– ×O¬d¸IFR“®iæ[p¡ÁTÌɵä5U¨ë$ÃqF4–¨P¿hê|(nèÚƒ¸¹^È(3õ²€»äYÁ°ÝפÈf¤žƒùƒËeSI'++ɾŽÎ®ÒS² í¾êh¾.° j£'Ð0ŒH”¾Ÿ³sà¡>Ú¯Yß»ñP•÷¬aŒ[#œé\Ö¾í³"ݽÏp“­Ø ¿ž÷¯ü ýÅd±  &šY‘_¥#ãC{qÜD"¾Œ@ôòªê}ÀÑ¿E‚ ñ4,:èÄׯ¬M%¦«ªðß`¨KC/]Ò7R ¢èó­ uVaÃu öO&ýFòÙc‘,ôb¡U ‰ò`ú(Ž)áðÁâ]'›Ìßk …(¿½â-¢}?¶ rm? mêN÷>Ø>ÐÖ@®¥š0¶ ÈtP[A"VÌ;z„¢úÛuMó´9"Ø Æ[PgsN+9k%F„\ømýÀP´¿–|A‰æ!"ú\fW¿v5øÞ$–-ÌgÆo2b0 š°ÚQ~½IíƒpÄá°ðü5å¢\Rdäq£ÅZ|á–€ß0 ùq`¹X…;•ÎC»(K¼Pr îÝô7"™zc«HKˆÒ_pÊÕ·t\Ë'[?Æ“ò@¦„ÅÌì!$d„­}l-2c×,q–þ˜¥F÷8­‚þ¨‡¿Ùá~—Mº@üÍ'³÷ v‡C¨>gA¤h+†©LV¸ Ì©?áá·sZ3•rèŠÈGNvÎ…ëîÁC=šáQ¶†vñõ¢Ûc!$" I?o]œn½{g‘%“*ÖTݵ®žïa"¶›IÝhɳ *{‘ˆø‚nA6Ýß¿ÌÀ 5éGc%¦´ç?l`dÜüt=L˜&š¥çgád°a»J±Ë¬…²ì·OÑ? ©’–¸8* hÁÒø›ë-ãgÃh¯Ø&çfþF)FíÕö¨…ѹZW¦ŒÕm’‡*»j¤XÑ¿)cqäÍšZj9˜ÔLɪÉùƒV(••ļ Ó¤×öæpFúo™÷@´V³—j¤z=d—ð|Ç6Žg†°¥ó™Î ZÄûµ4:q7îRëÙZ#&­ ½ ò.å îþ öÁTã}ÍÖ»_ÓlP Ø_<*4ÜIÔC5*ƒÌõ·üm¢wŸ(ær–,QÉõ¥Thkˆ2"×T?VÌk‚3o0il5Í *h:¿ñÄ*+µR®`BœdÝT­Ê١ٽÎO ¡h!¨ÜÂðOÎüž\xšûª»:Û´è+ùCO/ݵÚêN·6AoHñSØ+˜¾Â_/I¿×¶ÔÃaÆó»TÆ49twæùÇù$Ö‹éÏ{žÞM´¹jƒÄK¿B\±¸W/×ÿ‚/Kîž8R ²Î[qOk¾·#>>'o›ä¦áæÞ&,¢6h~²JÝ©…nºÊôD¹Ï[÷/ ¾OÙ_pÔBÁVµá›û¬Š XôDxÈæ®­ë"XÀÉ›C/ÑlªÇêaëÔÔ^–ÉV_‚#­ú|AV¢’‘.¹aàf|Lmª‰‹XOê¶÷ýÜÐk«.çn*º‡ˆJÜÆ‘žÉk jˆL‡ !1VŽ»…Lü“ã¸MNûÚäXòኅ 57.NjÅõÝíyÆ6;#ú¤ÃANýq‘m/9±TðŽ.³]iˆ“/Ï´8T‡À?í‰ìõ"%„ês¥­–OÞ/“fÓ£éý® ‡—W¹ÙëˆB›v•q81ËÜ£ï]6CI®r÷Ü M9¢¼ ’Áº“Q®šýš¶è,&JÖ1àˆ¶~J^9Û›Ú_UŸFºx ã:‚=]Bx5 r›ì¾• ({X$IÖ³pɃ:Õ¯Úq¾ÝSÃQ9«Åsue*Í^ J3T_”šº`„«›þ¯£W_;Ç(@UûÉVªí z½œåŒÕ¥û¸Ü%iYܨ¨R#Ë;sÜ`[À{fÏ,'åsUç–1/¨’%• gP—2¼ÜÃßt—T»žDî³hÜŸ©õ—Å  èÖúµõM@ëm*Ø8æ3ª Ì5°,|LÃ6Ðí7sn††+åõyÕੲg 3º*½~~Ódå˜5QlRzI¤ºÙ+˜~‡µ¥?D8ÉâÝQa˜Ø#-^dwûG3†h> Ÿó·/™Ð9¦¢Ø²•m!Céã+#ýä<¶…ŒB•Š”ón¤Âȧì^c;‰ f€\`Äé™LÕÜí"ºì¦D±G3+”'j §\Χi(bû¶ìËíYlçvÀ,öÆ‹@Ön™4¦IéHM=ý®—ÁŽ1²ôíZø-HNayq„œ^´>øÖá饪"BßæÁÜ`?_aórŒ“H1ÖØ÷¨Š"¼‹Ì®Ûú§…b] D qp-¶1¸ëùj ‘ú#-ùaó&1uU8vÈ=­ /uÈçÚÙ¹häš¹Øè” è+½e˜Öƒ|¡zàWË„ôšèßy@/´Ö­E ‚óZ Œ,¢7:ÎíÞµõr0²f~âÿ­*’ÌÌ:3šƒ«<³}æ.¤ð›hç°/ËÙ¦@qšÅ‘P¾Îëø{¾õ£•2ÕØ|TõÙÔV¦§Žµ$,¸—;Ÿäàj©/,Æl+l3ƒGt]/¨sÿçð²mÈþ kC"ƒä pät?ÌGäF´f0$à m–u¥ãJмzÒ­öÇÌJ—j0bƒ‰Ø‘ÆŠ\Y Õ ¬³q2‘wg¨Æÿ9@Æ¿x˜ÒBêeÕCw=Tæ¡;I+p²ÚÐ I±´Ã šê ÚôYØX5“p`vÖ/L@ï0Wm"怒öªz€‘B.™;Wx•šµu)TTŒ{G}êc~ ï8ž”Ë%ûù)ôÉ“¨þ,KY]™ïkçèô‰Ì´èq8Ó6}÷–¤i þÒǰSªSË)Ä%\‰?wIÄF¯nÑü»À¬¾§íuŒzöÅc£X®.ˆS×®•Á˜‹‡¨#9>IÒ1pŽï$wWeÅ6Ïö[_e̼Åô.§$23M}™ìLžòÃ$SþÓ®©ð"ùÉô6Ëb >èɦóYw±7ÜH᥎|—QdNSã.´r¦·`ØJ”w\×ÀÚEi‹xÉÕ !ÒÛ²‚ZfÑA).L3Daˆ¬—Pc±:­ä)Q kÜm+®Á»ž«.Ê®˜é˜‰&gZ—b.Ò~3=§˜…^Di ´ZÿÊ„‚¦Óß"0ð¬t¨r¯o++S}„ÿÄwc¬ c¡W÷lv¬¤Ü»¡Ï¤ÚÉëV/eÃÛ‰Ò AÉÌ=KnÒò7+@Ÿ!!RB¿'€ûF‰m:Ç!CßBã¬=”ÈælZŠ®óZƒt0:f ‰@cƒ,ÕÙ÷9ë½0-ò«]ƒî;~Òô¢‘„<Ýñ“*&¶™£Ï îH? UÏç¨I'¸OÌSÉÉÔávµ ¹ƒAÈfêíŒfïß`2Uµ¨*jߨÀ]î¤Fx(FÃ#÷'ÕF³Õ8¢®ŽÁ¬ ¶“A;·£š 0ùÙS3ȱÞ@×'Ÿ7?sË|&TN«\ÀRfU mȯà<ˆþAÅÈØ¹ÎQ«r É@û[ øØÈææŠò›þÊÿ1’ðñ#Ë— ‚ä}Á€×ÚVb˜¼}ϹƅBvÿt±uÖœQY úÏ ÊËŸ[š&ÜB²R âà·T;-¢¦+ê,,œì UÚT [¦]š¡a,ÜÔD¡vˆæ£ºþ¥²<ƈÂ3åM¶(ºU¾f¸‚‹C߸ÓÀJ–l„ IkѨ²Xë㇛]½óýµùRapïêíÕ|¶ñÕŠ-íÛ 3ñyùœÀË;rC³\:ö@«ôµW´Í”ûlÿ´ÿpWN¬¹¯M#M#[_÷âK#ø¿+F‘%iÄ{¨/Ä&ÙƒEþæÀUAÀÛB>åÄT^yöv4ç Á‚ûñ„eyÛBÊO~¼&MÞr:E¼I„Ø[ôýQŒ-È¥3YÞ,ؾО––o§ Ž/óûÁpÝN¼Ý ünhÅ ÷?À˜ëŠºTž?oj9}‡!¾öjà,áQÉ2·Ú9ÀƒØñkæ^'â‡vs†„ŽQ²åç^ÃÊÞ[Ó‹Ï.dÎJÀz£–o–”Uıè>Z ÑÇlŽš:ŒÎ€eƒ¼‹TŒ=è˜ðŸâ~nû…y.xèœàL\6 Ð(ž .ìy«®¬?ç?¼='Aìš¾²½áö…¢Ž…Š«. Äâ†ßõ4Œ”3òS]C¹ÝxÛ™.{ï¨{ž)¨ow¼<öt¨8–æ)<ú'ÄÝ ìVÓò·8º¸²+‚£SØ÷B‡W|û±BŠÝŠš\Û}èc£”€]8~ì­oÒ^fì‚=Ó1ÛY¸‹")#FX:Š¿5Õ¡zÿä*`]rø€3üŸ*Ó™»HjB‡vÀ’iЂ‘ÞAýH{–O0snùü»ßjÄ ½gMwÙVP¸ŸýrËdÉÅvÈ* ?Y|ry•X#ò¸Sð»åf±óA;ði#c~è´ÑÐ>*}îeSºG›Ä=vkd›Ú/•Æ®ƒ¾{•Ȇ±Ó”‚D}zÔ¿(šÞòWÝ{æ×[é\q*Ê?Ň’4­aø†6œ¿ðÚ+B¡øªô>SLJizpÆQ²<à T9ä¯)v<Ф¾gÏÊ*X’6T Nnüµ°/CGûJ)<Ž5OÊuiíÌtHÈ]г MÖÅ{ÿÃ6bOºÒ˜a©±¾ÂÁÝ/!& l—³Q t¹]Úˬ ¼æÖê|›­Ê4?AäxÖ“pŽ^ cßím«ôgal ¥ãÇš‹À­†`òÁÔâ´äûn îBÂÑ‚î ,}òÅŠ'BðßÁ<üYa3${ØBܶS³"ã©äXSEõ*A¤Sæ$ÆÊíøŽªÚ˜E÷ÔÈ}‹,´4ÄV/ꋃºÈ募O¸ê>Ár-#è’©û ©$M‘ZÊåH´£ìøÈ%•;zÚa”að%yñ˜ðj?+]„4®÷(Ýôëî.ðß&<岯 (~D–Íq>Hd¼Âu‰•i¬jù|%×ÓTôÞôËß+ÔàQG­ÞvLäæeòw¸í[°mö‘ÂQÚ:Âõuô©yÿñ][]§@aþŰ€ÅÝ n áÆi(þ%Áš .€3( Ò-1ZGäm¢.’ÀþÌ+X²…P3m¡KžÁg?«»zR-z"à…íV‡|_f§\v‘·*ÔB½fÓ69 ;¥ˆ{´Ïk覊Ù1v+p',m4ߺœÚ`¥Óü¢M ö‹íf)Œ§o0×þƒ^<õŽM,î€^$;Ó î2éorÎ$gãî š‡K¢3€ÖÒÚ@„‡®^Ï>Ã0‘®A'´ ²÷zÃU¹°-å²™àËÓ{‘IÓ®bþ”(Ô…\£Àú‡šÇm†‹¯R9¸ù²Tz(ïÐ{œ\eÞ¯>õÞéW¡§3†ÁýXsV~ޏgÕó*[ÍE‘¢ÿʈz„ÝP}™üÅ©NH>Ÿ*ñx4Ìš\2ºtuÓÎRXþ›:¹\à-¤šœb5¹  %øè×¼÷ŽÓ"ø°ÁОze}që—6gË3n˜E©Dq²’IM ¡{àyPB¥Ü=º–l‘¿ƒ¯F2Æ‘_œ~GŽICšV£ÏõnŽ8Yéê[·Á;è"“”zDÒÂÄïdo›aAqÚ¸ø¥Ë­Š³$ÈÚg‹ö¢—“Š<˜nч"ž-È.‘)Òòød‡Ð­¸ÎɺÁO3¿—‡±ûŒB‡,B$^#üg^h —Ù@·«”Ì4¤èã$¾DÄqù]Í땹^>”~à”`ã=°f¸è„º¨ ¡üZ®"HøH;4ðœk…ºú¸4cL —ñ®Ét8Lúòäf„û³óY©cœÀ˜@GÛã/”t;w&ÓÊå¼ib).ºgUãXðíJû¸¹1‡¡!~šž2œµšQ˜`^y EˆZdã=…àœˆ­ë­µÞcQm¨j(ž“òÛ,W™ 3w––}Qp·ùÒTÃmL¼YºÛŸ2eÂ-µù05tòó,”bmö¶+{…ó‘è€S•Ç(RA9¶—Àt^1Î&ØóNŒgð°¶.ˆ`Gcη7M±Ó½ä,²j"•ég46}?¶É¸x~¶_§CP±¤tN’ýÕKÝŒ„H뱄¾KÏ]mXž¹n½»7{»À™2Nn‘ñµÿüäiô–ÁÞåУý¤—HòUc%ӥРr‹†¢yìœä0(?Ü=˜¬X¡ØRÙéß5ª©nN9Û« _$Lî¤xqSíš’ÁA€íÚ-I×Í84¢K6NÚ[rÞýÌÜ^X»µ!Õ9öQ|赚¥ÊƒÑRŽõ´3ó@ã ȇˆTßÃÑ2³V˜œa”'(+ã?ÞLþòuö.r«7»/(îíÿCPÔ=o_[ºÊ]dÉOS3>o m“¤åAØ …ùKÐR#9T€Pf7]°-^‚óùTMš¤ß™¿Ãî_*âvÚ;ûu™°.Z0ô3•E ­M¹Æ§4üßÞ}Ú§)’Á˜¬´~>ø»§ùËv<Ø—ÇüF3Ðä¤]AÅîòZ*m\ùò‘É6ÏL1ä]]⮾„éät¶˜T7aÕ"x4劌‚7‡ÜÉð3èÄb„ÅÛÕ.dú¤7ΪéU“/͵à…ÁÎtÕØ˜l ¥8ÈW'ÆOVDgdнÍÂVÍÝõ9@B^C´!Ðyót)×ÕÖ:ìVØc-®Õ&~°dÿ˺²Iz¹P\vî¼ß14Ù(ª¹»ýöƒ—ƒD8°`=¾u2’YÇi“ª0Ñ«2·ï¦jX#á=ƒÌ„šq½¦ ¸A¦†q³%²“çyE•ë9@\­„6’餋Ù犅ÂÒÌ TÈ«{_›¬è¦d´™ÐŒõõðPm˜×û§ž çá bfÕtÙß2-Mà­÷aó!SKH7Å6 I¹Ì†ÒÿäÄœ-4,§T×K& 2Zèê_§Úîÿ΋ ðçCDL?°°?‚ù‘MÛÎèíº!7ï;oš\o0LdÇd N´yîî fˆ )M¼8È_™Ò2Š[‹È»¤ì§«ï •34°´¬À­¿L1o†!¼ Pg{GD4ÐL2ô>öèØOlêÓéŠ1ÃOÑ€³?dTiüGk2%£SL­Xèœ7P€-ö£¶hc¼h§B=F:¨ÁbÆ“°ó¤CehÒ8|à‘ÐcPwôáíQç–D7 WCé±^Þ»x¡@`¢TQt¬Í}ЄœKúÄàYÜ!®ì;j‡Á« ˆÖÕ¾îrKo…Ðd0üRÂ.À`ì4|ŽöJK5ˆOù©e¼ikm¿Ü{ý,à¶;B•UÃ, ”Yl€ ôj|i¶¼° òÀ¡Çhüò:Žÿó…Ùxln8´O3Ó_ÛßÉîQ ÷Uýý²ŽäÉÊ‹ð®‚þvéè "è^Ú>OØ Åï:îÆ7]â=]íSÆ\Ëí5ç¹À× Ðþùp`,;vÜy[TZbUí'‰½Ó,+#„1ŸŠ&¨6òåÙ;Š-¶ VÆTv^¡4Hš½aQBå1jzF¯Ë©r×D { Êb”M+‘T¢©O|?A†•ÑÝ—p­ÓZL±¦JE*É ÜÓGÂ&á6‰t¬4âU¸nšbf¼jµ–tYOïu»ãã‰ÝQ6Ù¹€p';\2ik¥m¼ªµ(C¹³?Ïí7dÑü`TäÊÞ&è – éNf÷9ºÑ÷e¨Û{>€ø±ÁºX4ö¢xÔpxÖt-V¨HH`§îÕŒ°Ilö­8 ûä QÇJúf'vâŽc¸9¸Yd‡pUEÉ@ÓôYØÖGaá/®,úâm²Ë:€W%¥ Ú(ÂÜ5O|rëkxÙb6Eõ1OdŠ¯Ð¬—‘ùa(ÛLÇ£Ì4øR¦¦–Ê›Ö<Û͞Ю…s«¥Š1c;äàZ$3½iŽûò¦[Aï¶Þ¢ ò˜ —7*οìMÆÚÏ‚?ÅÑkÑ'§0ÊÈ:Ò_Àm"†0ë@ÀÚ§M]N(Ì£J”¡¯«ÑŸ„ÂÒÛÍ[ð\7îË–T|:µðC|çn ˆÀ+Ü—uFgC"6sw•›ÁW0.ϹµñùrRÜÝ  qó w¯ÏBd½;ê¹b­*ö~‘ì+‘‚D ü›7*ÃÛèZßÏ/ÒC,„ã'ñ^ù' +[Žx¯ñçña§QÊn;¬|*Ïõ©Ž¹SÈý(3 édW¤VZ½B+Ç TÖ2»ÄMÎ=g»"uت³å€èœÝ1NXééÆ˜ÅVkÆ©¢N/ź\1Hî°„»ÅYÒ¦B0¬mƒAcTÁzšþˆM “ãD|’n KìÎò…âÆÉH¯!ЍEƒ_¥â‘à‰<_£"!‚RßTe×3Ãìxb³»t•ݸ“öÉ VÛ=éÍx¯.ê”)•A6˜OwÉïNjܨ(ÞÛâ?/<&™$ dç/È®ƒ[ãY;Õ÷ÄÃËoqy`KïØé 1²÷&=`NS {MC~ï€1´ùËKFÐ*°^!¯“¤\»P^î½AkæA á´,7ª{© ´¨vLjRN*WéݾV ŒVUßùÅ“+ }Çn¹þpj1ts>­º3§‡|ïv_å6F™¾t‹Œ‡-¸9ˆ¢V\{R#z7Rs5?@€sTì¡UI€á;7þ&¸WPäs*û€¿E$7syèvˆsÒéÀ…»°ƒ0òo}<­äâöîªäÄg¬–HmÌúI¬ê3G³%ʼBì óã£tƒ5|¹;þáÐ#)*¡!á{Åï®››•ô Sø·¶ê±n¤¶±ÁSXz Ñ< KÞ\~_úçhœÉ*2xd¬…d¦†š`†2Ù.Ù„Ä*W¥‰Šà—GÓwì ìÕ:"”Í Ê¾:§€™ÂÏJBb`?{°ÂšÈuùÌv™÷ZqSõ&\`Ó»Àùì€ÝkfÃXÀ±ú°bKƒó,XÙr×-R¢§Y~Z}-ÖÕhGëõýÜdŽŸúµ*–S4^ë‡;7ÝðapûÊË|ªCÛ“f.šd‚ô;êdškj÷Ôk‡E}`aù½:á®ãæã I3P„CÆê±meçÀûUÓ*ƒO°¦ªvÙjŠÛ_ ~ËÍŠº;îu0)cnøKrÞë9w¥ŠxW¨úOx°(ÊÃî<~}aÿ Ö€ÏRÔÞìEã“ÉÇÁ”è´†.{ñ•T b1s%„½±OÖR¾ä¦#J7~0·Àçî{5m?îÈþÄ">˜¯O#à ÚU«×|0ûR¥#¦¤8kr”‡w+‘¾”‹z›öô žqfP¼RÞ÷ÿ!i6îËÔ-‚B!nÄÞ|Ó)×»z»€¸¸yG)Öák­m3 {뼞ªqr¨a^8©—h¾â¹¿@ÀnKWopþU•úEU'»©Påj2öÔ:°„–vûB ÕÝ{ÒêÙU{µ«£XfÿYqªÃs&UšÄ©ÍfÊ{v(ä/‡‡cŸ‚M‚Ý’t ðwŽë*MQõþ–Û»bܶ¹YØÄCÖ4œíûÏ”‹­º6@L‡윰ÍÞù·î)ôDئPÍÔUYýÿc“Í…mg~ȧÑxƒþsy¢gBü÷…È”.î‹ ÒðQ„í̵<žnÉ0¿Ùæþjó{¿Y•ï0éÑÊÖa?:ðÆ•'ëÒJ9™‹ˆíÎ .½K³TxuºO “q[tØþYÕ£­'Gê2þ´aöŽHØKlÿâ¸"Ù$æ{ñyzF†²‚_þî·Û¸]~DdˆsÖWOÉJŽˆ³Ðn+øgª EŽô‚A§ËÃ7{yßUæ#š,ç©ç‡ >ìÆÃìõÏ+œ©'ü&­ÁÎÅÕ…„Åœ«Â£‰î¢pß¹áï}oðU…lÁïâMhw´U¢}ªáC*Ñsv’R8°>ˆåÑðªÿæ¢MY6ª Î¶ßþpo8gŽ6qx 6ôfÄú€‡£ôÞãšeÒ»L§€m¬™™ƒ÷zË'\_ñz1$ŒÇXÄB,<—`NÓ­?©â¸£1ö:òVO:ÌÕÍüM;ʼnæÇ¼~ü=É—úž÷[<6É™oõF%ÐSc>£å€¨Vßç „g/0¦"†l¬wx>Ö {B•wCç£k÷Ô£å>SÙ$é¹V‚hü0)¥õ[Çr 6ò¢)Iío©üÜ;'£wŽûz6ä%ž` P­•šÁ}V`mûÖ¹ZuMÕÛÈÆöÇÛÇjòšººÿ/U%ôFœÙWšF™=>ÊÕ?eÈ}PÕÏ3I•nƒ9æÛ€ ÙÁ÷ZG ®‡s.¤ˆ]1)§M„\Ñ«ìö%>þâìÁ£+TEíwû/˜gFûë%»¾ÑcêDåÍ£ÇÑTLô ¿Dj>_S£¬qÖÀWé!%Ç-óthsN£`|FÄ¿ðrëÜ{‘ »«¨ðTÇgÒ|U!ÚØÒ`5º=ÓmQùÐΚæÿk™oó¾î;^ðD3¢êV'^¨70Ÿí<ðöûû×ùWø^G‹ÏâfF‰½VG¨Ú‘žpå5ÙÑÖG±Ïs$R:£Èô1Ý*´tÏ%¤ÊVÙ÷íu‘.qúC§Žè|%‘+E|ÄqL¥U :ùó¹dÔ,ÈþƒÄO­[KofÌ£•=CPí,!ù#FXüqàxÔìÇz\<—3ÆÔB/¡Í‰ö‘3­vqßRÙ¶-Dñ¡àœ£@w0ïT¥Rí miÊB·žRúW0äx6ž/Èå™#Øý©öYX! þ×Ö%yrçRœÄ/Â-Ö´‚îÇØŠƒ‘h`¤T-D³ªÐòB¨",ØG±ò‹6V»Â~„´{äÂ­ÎÆ0ݺä¢ÅµÔ^ýˆÌ%(,Á}W§;•ì§~›ÈW*GjY €[4Q&MÒÍSƒ¦’ÿHÁBú d)mœ±îªéßʸò»âÅÕ4€_‚Á‘>…¹V§g…˜s` )Í:ºqâ|xè©®Dž“[‡»¸ÎL×~ ê}˜¬•AÄ==â|k¸eòlХߎ‡É/fؼ½©;hmø¾Ë'D?Rü.hï«P¦„ˆ/ZúçJ-+ C1.¼jœ™ad/S•Í¡V)ÅpëQ€³\V&Á¯Ã@¹Ÿí@c—íÿîÞ2÷«ì$—ÂØãáš ×Vc¯\7Èó^…غߦMjød]‘Ú±§ÉVµ(àÖÙ,‰¼Uîk³ug# à×X1f?´w}F˜¡—3¡ÓÈNÁÉÇþÐ<Àkï ŠôEЦ~Ñ—È$¡yÒÑA4œdíBÿ31»T£µœ“0c Ü)d£Q*ÀÑe˜šKt%ÃÂç±5¡ˆBâë´öLöcÈãv*¾™¸ëÆíï´”ËdB6¿7;=K7]ÚV>)Ó7Jý2ð´ü€Q0$ ¶VöV¾²7Þ͵ªÇCñ1V'Pµ@ÌKz¦EEË…8rU BÊõ ú%мw‰Æï „ _¯ÒQHw/Yµ!šß<_Ü¡‹Ú‘ö/¬/.)ïÒZxXÃ]Ÿ›‡}ئ7cÎ €9Ê´Ç?'¦hD/] lV[R¡\EQˆ÷3½ÞðÒ Ç>¯¹­ý‚õÏ…ø<¾öË—¡çݤ¼ú.’a£%Ÿ,ònf K1ä®Bu=u*ÝÍë:>ˆˆ$w8¦÷Š.Ô,¡›þgôˆØ“Ç2ò¬.íDå´ãÎ^a?ËŽx–^œÓÅ8&G½Ã[­¶ß~žž87Ü1hHv@"¸\6A«=r|UIˆƒp/^k)y8S- Èœo{$ÞCî> ]µl }i3N¢çYãJ§»«Þú×|01µ¹b²:Æõ=×ÂÃ?„{¶íæ´¯ÑÂ8áÈ_Wú§‰¾>$ê.¿ßleGq’…lEÄ-³À]§_ƒÔ(+#”Ä£ ²FC mpíža[×Y~œ†I2F;¿Ã8)§tKöÞŒù9cœ 4:_Êø ZfÙY¾9:Âêï?ògëã›ë\"¨ ^ž¶8ýâ<7ØYJfë*l…|ZùûyGa“S/d­ZîU_4»÷^ÒG3?öðµÐÌ G’Ò¦Iæ-ù±ÂÖœÙ:E‡ Û~<—,æ]ZUçnM¼˜}’ÌI*·‘ð«e2ÇñEù0fÂg¡[MíuoösS40bê (Ð,÷iÈ0-C¿Š&þÔé(¿°@÷ò q‚` ØFæ–UÀ\ýj÷t‹ïƒNMüæøŽšÄ¦r½cÇQ]2 °z0àS‚:/߆ª0¸Á÷áUˆó¬ÁõX”äÏi‹Bè<7ø(Ô×ÄðZëô¶÷=vŒÄŽÐÊY›Ñûäm¦‡P R(Þ–ì øÞV=²ó`¢ù GQ³’Dv.Kfþ×Ôq=þA 0ºí?×…¸Vþ¦±µ«…õV”¸‹O×1Τ5E9‹ž®uŒ5.‡õ2±tûu¡®\¥Õù3LÄpM1có+Ìÿ°õË©¢‘:'o4ƒ«l«Éä=áö.ìú³Þ@˜ƒdŸ¡º5`Æ]Úð„ZZéc7­–½dmŒúäùÔ·¸7nbùJøiÊøÂ,¬+Ý{ÙµÉLÄqëÊ+©ú×ò~°Ÿ¾†ûãÏ«ôkZÍYß´6KN-ÊžùW¦~ɆCŠÍ~ ¡ æj½2Ɉi)ºE!ßé ŠwÔ ŽCiVÃȺ?s´r_uw·½$ç‹n3L¸;@VÁ™ÕE `r~§…žþjIn|w: `– iK{™å%JƒÛøÂ›€Ï0½Eë}÷È1ý:Ò5^ïÜÝ{»bT£Uv:Cîúà}ÆVÀå RY†ÕJé¾l³yÍ„sJQ O›Eºj¦z{Z—·¿x"lj58PE—9ó·3vÄZh°i:ªl=˜B¥2ceÍÇ»ðO2P0%¨MÏ^ænÁ‡ì¡ÌäR˜c!&np]h\Evg Âu¯w/ÝF±#ø#C®[e®EŸ¹Å$dP³V„‰RJØ4ÔUD &K¿¹ñƒTtÍÙ3³Ïÿ‡ØË²°I°RŸÀ˜«jÕÑí­ÿ!‡uÛÍ踯 = dù?ói’Œ@¸b­DïšB'óñ8?*æêUͰ¢NP¯ðòÐËv¦üYX8€ÐjÇåç—ùÑý™Mþ„bû¥ÁÉ•µÓ÷Ÿ.PºÜ†&wJÛL£è)å, LKϙ݅¸µíêÒP¹yº5y¾°QEržù׆ŸÄ³Ø±) ÕŸ¢ŠCT)n×±äÏó®”zYüÛµ754Ÿ…fЂçú˜?l¿âD±©ÀƒÐÞÒBÌàìÃÅ7°z4§ñ¥)é¾»êBâö‚‹pˆžF<Åìµ»ê[èr ”Fr ùjÖ# ÇC¡¿75&ÏU Úóê|=z4 õÔ)Üý³NŒäKCM/æc<~QÐ8øåeZS`¸[8 BWjœ”¦`hÎfKÌ^žÄµ£zñ¡a› Ø D³ÄèLouä ÜJPŠA-ŸÑÄUJ`‰+¹«±a‰äŒñÓÉEȵÊKlnç@3Ö¸ â,òk©H¨Â`’ [Ô fáÌÐ"A’oâ®Íe‰ÛÃ¥§ytEšxxFzé_<ªF;¬3ö:W‹b¡(¡ÅzO²ÂÊN‰ö´{‡+úx¥`®«…󃤫rQ9X ÈÇ äÐú}M§ç¶e¬|Ô¾”›7Ý‹8s¨J*|a<´M,„i‹SÌ_éÖz37œ™ kS‰¹Ú$LN ·vþa'—ŠºfR»ÛÆ´ÈÄëß¹Ø2©pX†¼·éz>ž˜°GêÎÃ{ÈxQrù¨?ž/žb1âl˜loJÍwf¦ã« þâihkYÚiCOG̾˭«p’Ån‹Ì#6ÀQ! Z/~jú,Ķ…B`Ww¤“õÞzåM>×k̰@ëµEdp¹VÊå´™®XkÏ*€Z¹Þw6õûD¸»××ñ°H0¾C‚w A©ž^ z‰d$/‘¿®_ô9ïSL]9€ð!›iâfPÙ(/ƉŠ\±ˆîŸ(ƺbfç@ÅqO6‡ßTízÒVXï¯ì©X:ÉÞÿ‰÷Ê´PµÏNªPñ¤Æm Ø}×Õ(íÊ¢ŒÛ¾QÅ,aŸ­ïó÷ŸIûX^µPÚ9 Îúâ„êäÉÙ¢6²À»3n$P½wzç­“’>°#½B$£¡nþd3*Ÿ]|¯Ý‚rB64ÑŠ(‹å²A¨¤=i>õ`Dºz¥¸™ÜvW¢øc<,AÌ©õc™˜É°µÆ×²wùOi ¸÷¿gK²³p“7”›çþ0ÑP÷}6% ´ ,k_‘Ûûçcà`ÝÚ½ö¥wÂÖˆ«ÿxØc4ÀìÀmm¶iÅHó(VP…ªLú ^8gÆý¼mú“»y]ÿJ5tîròÿØýÅ ³q‹±i$Ï}2áuŒÄ‡÷zŒœZó— csÏ­Z^XÔ¦’¤;ºÖT¼at˜|ûº“Dd¼x§þæ/Œ5c‡A#zÛw5 #‡É®st”íyõÈtsvmLf5}|xáÌűݪfǹ.\$ˆ †Õ7ו:œ ³)°"ñÎuuÄg³xpËfb(ä˜È:k”N Ð/IXhL5Gf1-zó9Ôø§Yí ü‘Vs m¬p«CUOlz®˜äÄÈg{â‡Qކ9ÄSN«8;u”|YöÆ­/*·øú@ÏŒg¸ÄJ!3‘ÍvÚø-¶#cÕ ãE²õÛÐÊ–i:ÑÖeò—ï–%åX­ê9 Âdm?%#(18¼xñÑÜtÅòêWm&ª)‰‚Ú¿Sqá{èUe{¡ZF冰Lz`߉mØÜw¶Í½¢"[«Tµ>¤°{! ŠÀ/úMZ[•º.à$îr€ÂoS½5I\›µdžHíË>'îôï‹/c{æNUt?ÂÄ%Ýë8&!ݼޓrŸMcÃÚÔܼY(®h@:ÇÒëýÞ|¿ß's韉ZáT-ùºåšêxëáªCüÞŸò)ež¾¯«qoÿz’B£i´Ø.Çc©yn–u:¨¹Ôc1–º¢Wn_²ÿ¯ý¶  ä;² hö¯äûï‹mD,„TÀÖ[é:SÜþö$†;âŠöì³VKýç2J<€ÉqͱÑíûŠ8[7‰çÏ·AP•¶Ú$iþíS¿ÅT¢ïoáÿðÞ¾f‚@þf¼.§8ç·/úÙc}A”ÌK]ï2Žeµ|3Ûh‡ü("" ÔiŽŒÜ&†œIï4q´ØQà§ç%V»ÿ̫Ė`¼âžËñ.Äã£QB»²œlmX²ÆDÚ°&*þÙ⼓,cœšÜ|¿³Ý*8—Fv¤dÔÊP5üE môWKõH=rË·»ÎMF¢}8{@³ j¼rÇ'ë6›®©™ò @QJ#³üþ†9’ﻈ(fíÓ eÙ',lðÑ} »>Í«Èû0®1ˆ‚áóØA©­e„wtŒþ6|¸MAàSH®¼²¡¡—ÏHèn[À¾€eLËhµÔðÅ~Á½;¦6LpýDO60%'„õþ@ <`G/eÅIŠÖg¹^%N½°¿dmF™Á=¼.´HŽÔà‹w,¿®yQ¨8+q/³;ü4±Pþ)¯ABt¼Â„]Úª®hh€ÁA€ÃD˜h][ã`·b±-ˆüVóϳë^ÝLd Ô¹ÏHÜä¶P€÷Ö Ë)P‰°° õ›¶Œ§®ìâk^r{ÞÂ_·óÁ¶ÖFÇQ"†nœyS•tÂÄž_¤`¢™ ˆFhÁnWA†îDôü3ž¢ðˆóí1¤ÔS ½ÙÏXÇ£ÔGQw½n#]R5hqT–m‹B‡¡(‘Ú‘«‡v|§Q@à9Í‹ä³D9Ñ\:yùúÅVÀ[§-,„Kª .÷2úÓÒäaȱÓèU€ºÐÂPOU$Üó8úê|aæñ®”‰*/P:!³ðn•ˆ˜I0C‘xÌÊY3ƒº¤J!•ë¨^m(Â7‚ñÆQ¨è´×€· ËNªÞ&Ö=ãÁ Á‹“#îL†æöX"%´qUi ž”¯ø™Mct¸øiRé{'üªNuQ&ÃÂŽyV)§õ†ÚôxgÆe/nnÆwеÐMŽI``¸rú+Á"íöl 7nëKÍ…Ñi…JõSžÖÿ®#Qéþ:Ej,¡.}ѧò*5HL¾ ¤¨2¯{›jýM»€–gúsùirøÏH—»»v °aq€‡[y!ˆ·nþnkòslLtV6„¥¨49Á”4œÍû¨Z—ÄZ¡Ù‰FK¢àR+‹rúÄ¥fÚ.“eòÅÁ:šRà|‰>”ÓíK½^³ñhã^ëà>Ñ«=€9pv²Ùùòøº#Ñ5ÔŸq=Kå‹g}%HWbb)мû'þ*!ùr ò‘ÂÉèWÃ×çœ1ç+JŒaõ]•Séa"¬È¼ø!ùCçÞ ¿Žô~нÜÙ 7+äa ãp´Ö;xݴȈ#ºþÿ/ê€#]ì³ò^ÆéAxÌ݇¾Œ“We‰Õ*¡J!O´èG;B› @s¥cħÙsÿ6><| uiÔg%‘/¨­˜d¸«ÜŠÉ{1óókÝ¡ ( a#ýØÁâ½K^ÒœF%jëºx(lßG•¸Á•ß+CÂH#ˆÄÃÉ‘À%7.νÑÜw&~wã+  ƒ)w"¨Ww:'Ð5cÐþc c'ñ_G&5$E‹ü „ßà# Æ$íq;5=ψ¿Ð?gç;Ár»½{še˜Lɹvã_r vD,Ûg ÃKx­Žyq®[¨Ç+Tâÿ½`~E°F˜Ž?8³=é¤jÉqÐã.o¥fh¦@í„w–ëKx¹¯•ˆßè ¢7¡ŽUIŒ-÷þ12-} “!CŠÄÈëçÍÿiSÑŠÑÂW3ÔQžâ"_Í"Z±ü×îÌ:æîÐDÆ#~ˆzÜ”—Žª:¬ËFfOÑ(ÕHÏIÓ>¿Êǽ0Ä­md42÷š­Tª¶)`…˜ˆ ÑUv,hœSZF``]8¦M€»ôŒQ¦õõÝÒŸýÕ V,¦reoãp¹l`}Ä—Ysù,5ƒ‚¹L*‹c6¨! huW\â ?ó¥Á'N«ã'ÏÏèÎò?ŽLV±‘™X¢ßšR­W øðã…tQ4n8¬enÏ¡a˜“fÍÓ8A‚cPÿ•â îAYÊÁ†5<0ˆONШ6cÒ õ…>]šY8  ˜×⎠4Ô Äê8°ƒªBÙ Uðm,çô0˜ÞÙÉf•þP1•Úß —ôa‰½Yüi;:Ãàˆ¥A_2 Ù®F›ˆÓ•ÂÐX€¿›mZ6i“RØ… pê²?A€O­_Ýì2Ö×ÅœLƒàfl°ڀëúbI>AE˜,S•Ìå0€¢©ñ)¼ÑŽ€²Âs'ßøZÅ×Dµ°az×肹ëÉygͽ®®Ÿ!ó dÙrˆ*¹Z<¶Ý¥¹ û!Á™Õ‹<ïk•þZ$›YúPc÷Z2l@ÄÞg¡Æ;µD‰6Ù9ˆ!@ÿpnu.ã©Þ\v¡xòÇï4B’œÅJ”ä±O3‹Eô:ìú¢ñß‘å‰5Þöjd›ÜŤ9͘•?gÁä8K›Žø)Ét§vª(RÅ» L–¾H%‘IÈöwUë¢ñ —Ê× 3oÆ«`Š\ÓJŸïôßÛMß.n|{5†;;“aòl‡:hHíï4ÙºÜka%aƒ3! ‹íJ9@w¯ÌÍ‚ÏÂ3Æ—i9QbÐ99óQlâ¸ÑòvÏO™’j‡+sê¿öɳ÷•›èšCÓðÖÙ¬¤ûIÞfð§ÃI° Ýv„6÷Ž›ÁÒ"Ô?¹(ùnED¼ì{º´Ð\iŠ¡Ûè¶¢}/‡‡aÆŠ«²j!sÇ.N‰4Û£bdckp9¾×HfJüft;A“ €»?>`ÂqWì nZ€ B5Ïí\óÜôì|l5ø†$Í9)Ü2Ëß\øî †ý 6èÝd™¯9J?õ÷ê$i^ÊÖé(êè:UnPÄ‘;l-L92’Âã  =¾Êíî£&â¤=¿Èaþ™OËeÐD”¬ §°a\6R}‡Ó N¢’"›báöut¼4ž—¼ñV˜û¥îPúËIÐ\w'"ñDV—­Æ6Ô½ÃõOaW©Y*sµb³"ùÃjVP¸Ç}$dŽ„Q³©3$Œ§Î×QÅëa-ïEŸØøÃ†±f¡#Jß9‚ÿ<¸}T4†|e ?·g‰êÕÔxkN.¯ rqÊ©˜îK£ôûa±Â2K?JëЯv*1hÒóS.…·»:é³ý¾^wìAÜ‘‹Ñ"Ÿ[ØT”¦¼‘X¯™Æ˜ËÇ#„dUyȈŽnõ9^sAµ#lk,Qáµä·û\¦iŠRb7^†ùž/†h‘à36€Æ´ãX‹î}“²áýû­6CÉcÇi{«(±0"¾¬¬Çõ^žÈÉ„‹fÉŠ`µ¾í×–fÉ"4Õõ/!öŸFÏÔ°D1#fÙO;-À^yö”üF5Þþk‹)Å«ëéfçÞëÛÃæÃWÍ;s– Ô—a™œ¼§¥%ãõó+P†#·çÜ@$yáÕåÑÿðݤ=Qs:j„UÝë— `BÀ8v³Ý­Ä U;(Uõ0%1¡ÅÉ€ÍA«½Àè2D7Òæ4Rx ZA"#¯­â'¯ðHA îkBÓîy¥e“ãñYV 41- ûÀ½ë¡TI®G‘ý -¦s·<qýå‡'狼yÅgWj“µAãÐ9+ðþñx©¬ZÇ ‰ƒf‰«ªW2kßêÜÂõŠHJç ™{\¾Bb\qéŸý…HÂOδS¸ËÃÌ%¬aÝ—[!•ÏøfÆD˜”-"ò¬9€3=sø¸(ÙÜZy %“ ÿ"´ðNÎn$›DI}FOi§Ý´'o˜pGÃfÐã±;¢ú‹›«~M­UDÓùºte5ö&(p²ó_Ì+œì®í®aY˜‚°]%v$³îZ0½ÕyÞˆð%Ü>çBRÊ2²TpÑÓeâS0j'gè2 oðû\³4-èþ•sX£^¸M·Rƒ¸[D̬yÓós\ß8­gËÅF¿ÜÒ”o_†uÐ=SÿòÁ}cù F²fIºÖ6w§¬êô¸¹¡‰ZéiÅøX­L£M×z)>øY9–KÁö&{ŸN ÜOª"sï¬Ý¹Û® žáуJÅ0áì+À×`Úp«/øÖPÎ<äß"Ï@Îu·Ö7Ç›¶¯¹ùê¯b[ñ ™‹’dÛ¦-åF1×—Mh¤ó¼/°8ü¹–í5HWbÔPõÎðc#ÿc&MÂöÆuÁŠŸþM)ƒ¦£6 ®LÅ©C\iH)·Hqå+³©Ö§YcUçT1M5…è¾>À; ”vh/5i1 b¶{³KE×ÓÞ<\c{«‘Ã>šzWcQ<} ¨Íþ– ¶¡Ýdãpª½&¦à9PigØÒùŸ=ëÜ­-EŸ¸‚Nºðì=ì§JS:¬|Š!€X:p¾öàÇ¨Š¯Çñ—ë¿Àœ^s‘uôÚ^èbu}Ѹ1–Ì«6ªBªÛv˜-í!2IÑ:F…zÅ?µâ¤){@)º§‰Æ‹<ãbb|ôš…E§bÏx>DZ[Cð7UeÅs`Ì£¬b[z© Ç`s6ô½únª£fºr/y9·RÙ,&%Á3â¹=£pÅhd¢ßyÙA÷Õ%¢è—þ<¯±w¼©_œ¨ý:n¢nÌ6ñÇ‹Ðþ2²bxý¾\÷-Kð¯xîMYÐíȵ¸f¿GÅÿVøâX}Ô|ÞÄE—døÖ°ÓáXÈ/pã ©ôƒè’'»i&Ѩš-í6‘W)ÎíH9+{òá}!”6ËÚÖ®âÍ™AäU’ª±M~ÉVåC±âÃä½ÍôüZí¾ŒuuÐõ°á—f®OG<Žû×"ŠŽ[¢ú\?¦Ã5éÆã/¼UÉ¡é æë?$¶ =§–Æ]?¶ézĉQõHöh:#™+®•Unò¾®!Â+–VçcM¯ù¹O|¹ é—L)›[¸ôÙÑ*&iÖ)æ{Cä Cš°ØCÁŠÖðy$oYqåë¦ìGQ0ÁL2\jÕ$#ðʘ°"©m1£ŽäèœÑ˜9ó©A†• êbw"`p­eƒ!Ÿh=pœà²Õar™;ò©95O»î3EÞ<ÊŸµOrQÝÃSo ‰–§ «ï¶s§ÄHŒãÉ}f6ìOgŒ'±JýDøL¹>%}DkGÌ}½ÜÍfù´Mù?Sf„ÈDœ.á /¥"K§‰ø=ŽýbP,%.Vº;+.Äã8§Zoz!®Úñ‹'Ýí]ñœ=ÊÓKîDÔ£Rñé(Î' }\|^~±å¹ûZ9u€t*pè\ƒÔÅ'=<ì™Þû,»àÙî…Þç*{x{¯ I(ÞÊ#!QŸÈfZ -=•qÐóxàšs͡ѡG,‡?° gk<úBè^w/LÄ<(ÛI ¸ú.K‹zç?Cé`;µ Ë;eˆ:o¿ÑñR9˜Ý¢ë¦+£Þñg¡‹<³!Ï }(È‚ç7gFÉÏŸwšï‘ôÿ4ES¨SŸ]ˆoc–È‹< [–·„/{íêlK?¶ö8©€ç¬3ÅP½bqíDûRµÓ ØI£âe¾_æEj£—ÇÐß-çû-ôCÀPd“Äd²DV­§"œãaÏ12³bSâ¥W¼E‹8ŸÎB#EwoU=íœçÜ–]`gE.#åfb ›Ä†Å·KêôRGAXoæk¦.5ªÖ|Q­l›³ÃVó.èµý£øúþ1Ý¿Ad¼‡ú •ÇlÝΩÿ²#›;¼Ja¨ ÊE—&Ç:èÀÏ@Ø´u ˜¤G0Üä§–e©ÌÍÖkÙä¶÷]ì±²’;fŽ£ü&±t#Ëä6B š T·I÷ûñÒAi®ušš)žç`¼¯•Å–‰\œ¯]¸*ÃÍhúVYÑOB\W“³8•õ<š„àÃ<ÝÅFEš£§œDL7ÂF§¶‘Cs½$äbBu‹Q±ß¿nJ¹1·AÝ>¡Â· EÄ„ï8è&:î^b0øuüü8ÓÔÖ¸¾óÀJÆ€O8ü0ÀMŸtºâ£yuMg}&‰ 8#éôǾ+Xžù+ X¶¹IýѽõüHBÑÈ€Íküxˆ x!èY¸ðJ­u ¹ÐÞËš!ÿ‚sFmp>L8¹8À%n±W ö¬D¿»¬±×êÒ“Àã,@—˜XUÓLâQbͪ4·ö->)®OY©úŸƒ³1°™gmá?éè4ÔŽôd‡¬Èÿ­]‚\[óÙAÀ{šâã §º©+b†d0Õ(àm_Â~®ŸEgib³„¼K†%¬ºÍý´9ÒAº¯Š‰ÓgÊ@iæÉðà[RS1h¨©¼ŸTJYH©›¶§ånxž4ª¢­O]Åä’ßšîá,m´ûp†¡I_DŸ¡c=¸µˆõMËŸ¥8Qð/&#N5H’ß¿QsT6²ªUéŒWYV<ç;çSb]ÖUEâOL,gÀ(È‹‰8³¦ ¯~)Œ…ÆÆ(ƒÄÏHmÕ¶êpâ&)eøãÕ5 j²Hìû©‘Þ¹dV%â$â–sÁßëôciDËçmî@R2Vlî˾>Ü Ë™"´£ïšGaùÆžeÞZÐBmI´iPÔc7aŸ†¯Î¥¡7b?Vi AÛRbÄ$ñŽ£úcQrÓÿ6Ñšµi­äÑ䥑¼qÎ ‘Θ;æ0u€‰%½x‚Ñö¤Û½À&`[0ô¯1¹> p ¦r[Yyë‰ãK?•¤ŸßXjšñ1‹7½–É8ߑ泦ÝB²ï£õ¥ß–ÁíÕÌz˜‹ÌLwAL5ªjÈf±°ø5"æˆêmÌC:ì!Í)ô> æÿù6!­F§®îJ'ò©–¶q@ÁØËMòù¦°Ï˜oÙ$÷Y¤$) £v4ø#%Ïeqñ"Õu»08Î[HÍë\Áâ¤ã¤O¬g»eÉÊRe_œýÃ}´Ox—ãf5Mÿ¡©„«~ÚñL¶úlu“./)Œ]ÿŠE«îk‚—Êã\îÿhðè¯)Voô uOLOýÉ”ÀBTVv·÷ÐJÔí$'ëHOÕ:…Ä3Qám¾ "ìm=ó7ýî+ñÃð.±ÊÄQáûå=S¢‡0‚°çýŠ8È“°ü{w†Ë’幨Õq‘º}·.ÌØž,o;F̾4eN&TéÏëÕ–í!iƒ¼fv;€ _‰pN‰6©î@"d‚Éreòœø­íè ³…7‘->_+‚hnŠZz¹€22WJB 0Á†‹_=l­5»)6‘jµ&3]Ò+ €€À«Ãm÷É ³§soÕßEHŒbÐò-°Rœ9}¸Ø2‰lÑL±tÚð~ës²s´R~RYy"<ˆP^­nïRp[ûƒd:Á3zåÿÅôbT¾ˆm¨ {=ì’eša]÷ÅÊ%ãÊì$þEDeØ>hÎ^ýio^®Q«Õ’üžXLkÈ‚ˆv”|ùn×ué»N€v|ìs%ôˆÐt"ijU¤â®Ê=Ü`3®:<þ ¸‘Ñ™Jh¡÷Žn<1Z=8A¼dt!gbA#_Jp€áݰåôõ–¾ìÝÙ8ŽE«¿¦b[¡AÃÚæø·DW Ø€Y7MϪ¡úYŠ:.û1°¬dRn §‚àmª¦|YF IöLôK|׎ÄV_JenÛÙJØ­IÔ/Y‘Pgð œ&+&GªÜâŸÁ° ><ÜWãÃþîŒ0>¬»ØÅ›l?°2Dk¼ÂlŠÖáºÃ1­:÷ å}¢bbS\5†BH5k´³H[À«¸§»ÅVC}7Í`A@—oûà%ÂÑ—€À¤,0 »?¾P¨£íë? ÇŘFÓP„dØŽí™K$Œe­ùmŽ ¹Ì- ÇåÌmdX‘¤Ì¬¹E5’“KqHÖèÌmmˆÈõq EŒœó?œ7Ï‹ç÷þ÷}ñ{ó}ù J{ôÚ{—´NR?‰ÙÞDW¹XDùcÍÛSGZ¶hŸæðV ·ÃëZÌ:18Íðo¸Ÿ/¼%Ã#õ–8ô{•–úñæRÐ1âcÊRÕÕ#˜n÷*¬:!¿ñÖ ë]qÔ=Ü£ìVRX ²æÞk»¶Ypvk•uæwZFúÁ.Ù-õõ;õÃcÍHxøË?v;ߥNAf^ÏâRájKÕC2ŠQÁç7@Ždíí3e– ŸÑÛ3»‡)¡?Dm"~‰+ÊëdqýE8Jç8Äã~Ü*Xþ/ÑÕ7KF¤î ÄZµ°q±°¶åN7k½UÞèøzØ8jÁs@˜I_ø¥Õ.’gÑBÉQ­¤¾ÙŸv&k°eo« £ð‰és ¸ËBBœ9ë¤yàô¾GV\ŵ!£$‹ìÖ´pyú¼„ˆY_^CDh‰%o¤ŸQ¹Ÿ Çá_é'ÓÄWtr?Z*œ‚tó¾tm;+çÕ—ërìŠBš"HÁ/›ºTêB×?¤…ýZ£‡Gq0z&Ór5âÇ¦ÊÆ½u'šv¸,Üåuí ûižªÃ C¢XBç>Æà„Æð$ÑunÎrÐXÛM·uáøå2J ¼RŒ¬Ý:QH]É–<¬°OÎ%á_N»Œt3DêȘÁÞµNŸ$.æè/Ä|Yé‡íü*r'¨T6ß²°RmÄ:”¥Š>uâ¸+e¾ìðgêNa˜F!ÿ‘ þ`)ÄÚê ‹(8eÞï¿r‘Ç«)1ï wY©´ö+Ö¶ùçÞÜè(MŒ}j+®ÒàóšSü9ÆëÊ÷K6ªW™×p&ÀK÷‡‹“-æF>ðÞç=í·ešGfYZŸ“…=ÐI9ŠßQ—l<µU‚U»;ÇOóNr-Ôk76ch€M ƒ¾ÏÛdo·@õ.Ê8&+ê #ª€Vù Gt‹žŸ kËÏ>lÆú®UòC/²°³u{hÛ{fÆ}O9ï/YAsb©>LK63Mê-°)Ú7òÍAQá5žÃ<µb2Ú W‚gm-h®XÞYTÏéUÓìÈIθgmíû‰YÉV£è*ÝE¶—É¢6ÅnÉÚý õg–ònÊZœfâ»T07ûa›x]k5"Ú“+nî‹à”›ÖŒ|ÃFQŽRrÐ:O)׿¾e5ƒ®fš½ö-è Ê{GÌ = ñ³€àZ¯9 ï’”‚- pâÜyäuúd"$,gïÒ+béÇ6"±H²÷’Fën7:-;šÈ¢ìZ ùÔC#ìFùFÑdF ¶/`iwœ9¼Ä}\NüýH¶CE Uƒv0ö+ HÈFBB˜…ÿ2ùjh®p…©¯óuÙ„Fâ–Ââ6YÞØ·Œ»‹(éœénG5¶c!µƒÚç24Štú|æUUÝÊúGAßnËë˜Ï*–b+õš'Nh§´¯«l~Ù«êaËoùrÔ]ð:Ä]Ôó¶Y5D²C!Ð1ÚƒÑ7ÀdÂqy;ÿ‘pϽ!H Sá/SÄPžzÜ(ÐyZîl‰hÚ÷-mÒTÁeÆ‘§ÀvuðOÉYR¾vˆ*ƒ@¾XÆû¿Àè$:½°à¡YÜÎ2i®KJ «*³½ æ„oÐ72©¯ù!¬c{ïdúç+xÙª_"ŒÀ©kŸUùÛ„áÔÙ}´ ²•=à^™þôÂuÝE ÷EÝràúÒ^¾öð¹hˆû<ñôG«ñÄçåaU{ÊBY4î>`éÙ>è«Ö™NØ]}(ÑÊÞ:¤"‡rW§0O J§\Ÿù:n·Â9ošä kud OþžhbpIµþ8B_¨júÁ«o°"ù‘é÷ý~P@'tð[D*܉†ÚÍûÐ}úŒ›U¥" ÛlŠ£5ÔŒ6¨8¿4j¸ ¿û:’™Òép{{÷øÖÕú SÆŒï×3@ì¾Å+Ä íIÕ¸~²¶]ßûûLÈ,«À~ ½vÆé\‘Æ GÊäÆU[%ÿo>×Owë¡ QÛ/æ¼ó_£orD‹“ÃDOŠâ_ô/ûˆÿÿ ¯ùGÇF†ûGS@än:–endstream endobj 25 0 obj<>endobj 26 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 584 584 584 556 1015 667 667 722 722 667 611 778 722 278 500 667 556 833 722 778 667 778 722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 556 556 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 600 584 548 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 333 556 556 556 556 260 556 333 737 370 556 584 584 737 333 606 584 351 351 333 556 537 278 333 351 365 556 869 869 869 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 666 666 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 584 611 556 556 556 556 500 555 500]endobj 27 0 obj<>stream x¬»c|e]³/[³³b۶ݱ¹bÛ¶mt¬ŽtlÛv:VÇ8yÞ}öÞ÷¾÷|:w£ªF¹þ¿µæ“ŒHQ™NÈÄÎ(ngëLÇDÏÈ Z»-Œ é„í¬M_46822G ¡³…­¨¡3 4ˆÌÌ&...82€ˆ½‡£…™¹3€Rõ‡: íSþyü'ç뤓…™-€üká ´¶³·Ú:©ø¿>¨ œÍS k @DAQSJ^@)!¯ Ú ­Š.FÖÆY c ­ `jçø"ü³ÛÙšXüšý—BNC€“=ÐØâëÐÝhÿ‹`t´±prúZ,œfކ¶Î_9p¶XØ[»˜üãÀÝô+‹_Jìí¾$l¾x_Ê휜Œ-ì_VEÅÿÃOgsCçl;Y|±v¦_’&vÆ.ÿäâK—á?j¾¸Î†¶Ng ûÑ`˜X8Ù[z|ÙþRfïhñ/7\œ,lÍþÛZ€#ÐÌÐÑÄèäô¥æK÷?Ùùï8ÿ9úŸÑÚÛ[{üë´Ý¿¤þË g' µ)=ó—Mcç/Ûf¶p ÿô‰”­©€‰ñ?è&.öÿÉs:þ+A”ÿô Õ—†&v¶Ö )ƒ¼ÝWO”ÿwU¦üù Äÿ#þ)ïÿ¿âþ{þ{d)ÿËÿ«yþwÕâ.ÖÖò†6_ ð_øø_þ?r†6Öÿ&ùïBêÀÿ@šÿ“)gïÞ²5ûÂFú¯&ý§ù,œÄ-Ü&ŠÎÆæSC믱ÿ]ÕÖèhma üÒa€Ž‰íßx*æÆV¶_³`çú hkòoÍýÏTüËg†ÿŠî?Ðó_V¿†ØYÅÃþË¡ÿP­.g÷…ÿ{óÏYaa;w€ €Ž…‘ãk¸Y\¬\>ÿ;ÿRÄôŠþ9+gèìháÐþ –‘é_!ÿöÿk§ûojÄlíLþzegC[“/¤ø/ÂÿΊ…ƒ PJÀÆÈÌÈÅÈú/[Æ.ŽŽ_Øô/,øJÜÿÞÿ s@w 1ÜŸØeƒÂ>Úœç ‹Lâ~mm¶ ˶¤a•±½dšÇ¥ÍàS™‹lçFÇ­¼X›g²‡[ˆ?7C\ëåáÔ8Ÿ44[Ú±ûäò›¦Bt DCÒƒÄoÞª`Ïýw‡š4<€¤yÞ¬—‹¹…܈Šö2æ=(ú„Ef¥ló[ÑÆg·>FªÛïÔÚˆšº£¾è°S+ËO?>³7<ñð4£-Ð.A´…4 óm"Qùm‰‡…-yæ£6(“ìÓlβ|Â$6§ÕÆnêwE ^“aµ‡Ç.%®9mè‰Òõ˜ÈW¹eX‰|U‘j›~¤b‡hÏv½PØBà—L/ëgÞuÞ%–>Mîeà€ ex½¢My^¶f 0”ø!ô¦ü>ZWš*Ä`÷سq3Úùü«¤„þ%añ ýxJÜ?ìH]0¤žÍ(3.ª’Qªå$ÂÌ6Í‹ZKcì:c‹9'I–µT”§·…ÕÕ‰~ €¥Do¬yhaWÞ1öæW¡ þu\¡€J¢G‡¡Ä]{P€,ÏØîH~Ž13²:‚gz¿\OÏJh…è6RÀ|W0šiª,kyE‡†,(Ð7n¦p0ú•žÕÜ="N¨xsšz?=GáÞžƒZܳáþ’Ü~u=2šþj~$q$û›Xíi…´ÓQKn-_ÂÛüWÙ­Ÿ'Ø ºûO˜Ýx“E+º-(ü+¡“T8¹ “ñ[=‘$vvÊwŒÄîÁÁÏXÁ©K¨4/®x1Ú‹Co-§g»âÝÑp`ž}¹ã¤_F¡×0hî{|ÅK‡öÐ(&Eš ~ºd)RHN##i„ÿ;‚§ø#È«¤)^0-BêlÛ§–žgIA"agƒ{×TØüÈÙ€ÆÖ0m±+[šF»AmÅß)Ïyé©"YíÆj½õèŸð»ê9ÎÞ`?:‚¬^‘·÷ïw;þüé²ÑÛC¡ÓéÍ+˜å™MAÅ_WB¨ŸséõRx†üînö •oI0äV– ¨Í¹”ÏPFŒøy ]äFñÓSÅÝÄ*^ÙÚ%€üZô1Lºâ‡:1L~þDµ¤ÄžÓ¨|%Ÿ9¸IJq à÷ÏOr)«i«äo…O©vÙÞÊ|Å&j€‹-éf.@©š!nhÉf虿ʺ̣ßÛ€ÌôëeY­BÂÑ8J÷‡††ª´xw“Üx|‹TbƒÂ«‘Ó•¨û:v«?]3®Íw…„_«cܹlÙ&èdÅAåØó\½ÛRX¢i’FÓ(óôVHÇ0`ú?˜àT3€q)Úœì;g„âÖY|IyvÜÔ/³:¤Ç¹ãw,Œ6rþWx¡ì©„Š>%BÖÇ‹OÇ 7O½a•7U¬Ì²å¢la “©—§e/\GLuwÒ ¢ƒ/¶$g¬û[ã`C;ùYAµïÎϪ2v4Íe¼ƒxŸú b—ûMSKD®o•¿öTŸÓ¾½+8.`äÆ9œ'ßl£¸@ŸÄ%˜²Z¿ÛH-ܯ2øðL7¾jýð€à7ÿlÛZ‡Ær(kʦxï{b^ƒ”`Ž¡˜ƒ ‚0,:MàõPi‚/TžÒÁ9K%Ygß;E8(•SÅiúQ2Zó@ñàVfšáŠv5¼FŠQǪ„·R'ðRÝ[”Ç·aÁŸ–œeqé,_ŸÞÖfÉR“C}ëhYgKÑ·•‚ì’s{⥛ïØÃó“,`ã§l¹q¼†R)ÁÍa±§Îá‚B‹‰^ÓV†Æ=ZQOÂ3ºhÆIˆ#§æúý™§kH”³`kDº¦3ÄÏñ™è;ìÃý´?SyÑÍ¢v¢Èy —Ø •óL'8” E†NÄ¿hK´"“õ®‘z'‡ï×ÍÄ’f{ùO!“Dìwþ01ÓõÀ‰† Uôkä̺1Û›´nÿ¼¹JŸ‹T'¯,ôw Ýs£ šC…ŠHÝÁ‚¦›;4fpt˜”—µ¾X6aø‚IHŸ;º.7% ¿¼üúÓ‡4߀ÂõWïª{”ÇÓk„Ÿ/òO‘Nƒnè\êô¢?rç¯û'M>N01=ýŽ~DŧU•m ÚÄ$tÁ]Å«e'.¼«ëï´hÓ™Îf÷qÒxÝCuyŠÓlåâ«t$TºáÁ";í¶¢ÌÃß÷û«$h³|ßsó¬Z¹C"½wÉæSSŒ"R<™²ª„þœpˆ„Óß´(^Ú¯¯q7È2Š!¶d{nóÔ9‘3á6tæqK:ÏM&ª7°lúaž8húùkÇX*·1r â-â{àj(Ø×S¹îaö:8”ã#ã\»;Bõy\$ïEÊyø‹X¢Eºéšs¡T[úÔHQDÒ<ûXLåq !:ó&•D/F“*@òòÊ)|!ó˾éàòó«”Πltòzøæ OýtùqŒ¶\á´po p6oñ'B‡}_K­Pc"‡8úô(Z)'‡ï&Î?à¦O eOµäÖ›ÌïsÄ~åJ™Pþ”žK²‰Èg­mÔýðµIÜßp/f2G]ªfT°°U­2£þ–žÛßmü›Uªr”Û…$Õ¿³ ¦P’>žøÎ7îl—Ù±ÂñÞk€µýTVýìMÙ'Šž;öSÇÁ5 2–ž¨cû@/ä#q²‘0.O=Œß1¢XÀ6Dfà’Û˜„Öz²\aóS_E _|‘ »¦>aÅ÷õ{˜ïç-" *ëŸ eU¨gƒBŽ:HýÉ×4yÏ8r.vgíÒ¼q7£o.k¬ëéÈ 8/C…)NGSæ©1ç’|r“›X#±»ëƒ|á̦ðú]&Ì. $gnß©s±œ¦Ôxc‹Æ qíåÑy€e°L¤*ã#òþÌØjÁÍ{ÏW¾pä|DÂFw ëèM¹1}õ\.Ã¥%UçÞÁ]?4—sI¯Ð–4 m>ÒTÕ£YÝ7õèîÊè$Ç3/¶¦ú×Ö¹ý:;_Œò|U¸°ëŠÕœ$}Ÿ-6!ïªùNõ¯nªoýd®UÌ4JE+,5UÙô\Jtjåzâ+囯ªêüŽ'O.^< _ÑñG0R•Ag(øÀq[E—ïGž‡\‹ëˬ¢óò"1[^òjc)T’»FüÌ­,NN}ªX(7³vt,®dE¿¿þöÔ`Ùïªa¢î,}n_ßiiI¿CífulÞn§Û×1Ò±(óh(Ρ5ÚèÈ™Åïv,¤Ì àæø†aM¯©§”r×[Qm£˜ú÷ePìѳL)M‘ªú⊿ëÓ$`Š éôUuñ€ù¶a˜A.ö›ÊjÞb”å9ˆ-Ñ­4LèÂS0 Ü¢‡Æf…‰Bnõ¨ÿ„kíÜïÀ|cú&RÒÑÅA«ré9ðêžíÂô©o¿½m*S²Žæ¢L4(%+aoÖÅryõö,>´¶Þ[’[×lñn)Ó¤ñ/‘`kRŠh‡Ÿ7M©Ê@ý¹¦jn§ÙÕÄôÓÜMUÊzsknÏÎ]÷Å75Ü÷ çøz³/` Sš€hù"A@üŽ‘4¸B7t…’¾¢AV4Y€ç-Ô¡ö§¥ñ°ÅüT†p*-Tã–ªLs‚#©ã¶ë¨Ê¡ }Ðz]®ù7’zÊ·"N ©Ò•XHÔ%81­Ë„M[ØVõÏÛá~W‹É0AÐlpGŸJ5,ƒ£°þîˆéºGN’o`{X½CãºLí‹a,TõÒäâRúÙÆ´Pݱd=|ˆÖ¡š-ä`åxÃáo ²§o ]jÖ[·¿Óµ(þ%+ çIÐT/,„)¡¦'[ùØF{¨Œ){º.q¾ûþѾjD¡Ø„ÑÔŒ‹ŠÂcMÆÝá¿æl{³<ëBûòÙü‡U©ÿ iû1ÖuØÂþ) 4h sóùA/8tL 9ä:Û¸yÏE·ÒÙ1Ã<ðÇÂáˆMÌëg âøb¹˜¨ïkþƒÑ,)«ªÉeZ|!P&ÕÍ’w½ËݺȆ³NBî´Ö/¡èK/N·#ᔉxe;Üåæ!y Q6Å#÷Ì!íöõՉxƒÎç¢)¨VÎE²NáŒoò‰m!“À–Å—MѦÛN8Ë*™›ÖR¸MÙ€œòëTx1Š~‹þe•§ƒª“œUÃp½º<ùH¡ŠAiŽ(ΛuOù7¤ˆ jiÂã‘Ï®ùÏ `äø=¯²€¸ yö’ÎÙW)þ‡ÿÍGÑÔ´ÊbaÐ0íàpP¾‰|~ì2W†\UðwúP¢H1LqY»N!©!5³óÿ¬f˜F|Œ›MòêýWëÖÀ äØãtV´¡•uí&^HÚ´‘çz?H WƒWªÔBÀFq˸AÝIù'%+ZZùçI£Ù{}¨/|8ffÅäqŸ¯ÿË?F8ÎåÉ¥¿xM¯Á0ƒòö¾¾¬°±&Â47,Jô6¸—G´L镸;uU%lùY;·K;þŽÀüPÐOv”ÅF—Ù Çîü%Ñ 1»Iôò9 ?î;¾<š•ïn뵎ÚÔK3.ªñÈ­+6…Èшówþ\w 1”|i=ÈRŠi³Ú;ⱎþÌÕÂÖÆl[qø‹´@¸‰¼ß þП˜^)óž‘_5­‹g á`÷øënFµÖÊ®ÐuÈ«V-]QQx ¢’8! O#ÉyÊjìjz®ÂŠ ¤³·ZúvÑ|0MœáBRŽ>”^ ÍÎHx¢æ2æ åF§À¢]ŒxRZdÛ+'&âݳcöÔ8ÁK…—ÐÞŠ)"æöcмTÚ¼@ƒƒJ›AãDÓõº³ó÷¼Ç”¦m/Ii©r²Y Pá:*É™ƒÌFÀëü“ÿÛ÷ã9á-ßÉ9z ¯’)8uî€à¨L>®¯gùP›?g·Új^ø3dkeœØÙ[6vüŸjIݰҴÌV¢×½&©÷ CMìNûwÑlß½°»aøDkTâ»,•úß&>uaÒwÈf½Œ}ÈÒ”çQÑd§þU¥±î%*ëžHH C¾íÐÎ ØžÇN-µzÂb/ÕßùpeËÛè¹±üSÁ] äÊ£Ã%¾Á”!û¬õd­®ñ¥š{U8 <„I YëµíUuñáWaM˜µÑÁ Ef¸Ò}üý_ݯ€\ÞyÕ t)V“L.ýúu[)÷à¯NtX˜^a›ÈûúHýÑo Á úk×DQ¨Üò=p¶˜w:¹-Ky/×fnt:Z|ij-òÆLl…„ä}HP8Ú‰êáaq‡<É«ö  È•WpüÛ³#§ˆ/â×ÊÅia²nÿ#dÕaÎÃ(.Ìvîfª@¾ÍZGŸ7Ï›ƒfÜÄ‘y¸ XáÑ«ë ŽÇ°³¼ fJ ² ¦s"äEÁùv„Gß°cBQ±Õ65ëXöëzùôÞ–ÙG—l­’÷Ɯтj˜&é†j€D¡„‰ç¬¤ü#’t'GÓ|‘ìÇ Ù\?˜ôŸŒ´6ÍÊÛý-ЬœÜÑp–•TLÒãÀ´´8ËŸù¥¥©¡us§L%%I‡&¶ ”€Äµ,]O‡^ͱ%û:ŠÕ¼u¿7…ûÔAánË«ÙØÝ©u•sLBûóËùÏP¬häXÙUY9v·qé¤tÚª33JIò-ùÍA!uÝÛ'0!Ï@5òˆJa° UaŒR›¢· *N#•-rCÑZý;Älª³Ž;šÃû‡o’œ ,WßjzƒûËÙ—)K±®ˆ¼ôiL¡¯ò¿ï\ éŠc»—zÍ";Ð5ðฺU;’ÖŽ†#·ÅÄ BZdÁóù(Ò9dßAÃÝÙñtK'ÙÁh8cTGü^óF¥ñ?XC´ RsO޼ |b¢{†d­X¨Ûˆ²Œ©ÿJ…sM/7TúáA§6 ·O]Ãg픕¥ƒå £µžÝ#ºÑµ3Ë2v(EücˆÏ)æíO£µEƒYŸ"™G²¡m}¯ãú3Äe´”ÕôÏ‘Ætû¿)ž‡i/ŽƒS­Çq ëËyø¼<ØÓ‡‹ã—F°„¥+ÃÜ”v»w7Û)L”±·…%m¼‡i߯‡É»¹RB3ëLG »ÅãÈÊ(€O:âÍËHµX¯[mBÞ(vuÅ Û1_ˆR±¢]ZcË¡M])ÓÝõõðA€œ­AÖ%Tº ¯{6—«.O®ÉN¤·°Ô½Ïôx§ O³'r´…êé@W p:?I’¥ÚFRg—‘9¾Gƒ±áÖ± ›² ÂãvîDÄr¡ç¨ ¼†>ŠnP®‹ÒácH¡ëv#|JžaPk±þ¾ ³EëaªAÅA6oy¨áV=lnëÈUN3õÓÄì'Ûé-.mâõL¦Í ì–½Vj"È:M&•g.u‚¨*F¯6wIK[Î)h¡1" CVãH‚°G ¤Ü&ÍpԟȺ­½DBï$³\¬3A}±õøZ bY¿Œ÷gË|Fm²÷%·Û€†ŸÍ‹ ù«ž8YU|F‚ô#é}$QŠ9t¼0 ž Yhquâ¬Óç.‡Áð-m/¯$½1DwüN¸˜‡_©ö§ðŲû¤ÆÔ¦¶ÍGžü¸+YHüß;J…Lìõû0À)Ð’NXã?H/<ó¯ZÊ0,ù bLQVÃbÏÔÂ7Ì,#.ü>˜OHÔQà§ñ¨U|¹w¡,|ÜÑ=Sf«Ç`äúÁ¿Íæx…ð}Í&n ´oÓÂÜ®ˆî½Ê|TI™|Î*is³–ÍÀv+7¾ºUB-eýææK¢Ü‰ç7×éÑë )©G Àï&Î^„òùïT¬Ë-–Ìÿ ¶¥ëø×a-šÕ2a÷D¦h¨l (ƒCŒ@ÊiZÆœèn•ˆ¨ŽèƇù§€:ºÖN¹Ÿ°ÉYá†/Rãë—‘¨y‹÷Üê6Ô¢*ö¬Ã»«?á4¬&²êýl×aÌÄ= s»÷(¼,æï¬R3ÍÆ‘|2H=Ë´ŒlÞ3+¦’{ $/.›¸hÓÑ-ÙÖ ­’·X«;.ÁèÅ*‰Àu¸cØhÀ–Ĉ¿TQ–åµÁ†Ãg¬6ѬGo¿ì`ȇFœŒO@¼V9ЙÕw‘8(zyÔã1²ešZ<ÿÙäT…¼)ލ Ñèë£jÁ‰ À£|õüí“§a×SFjQóØïW2ùODºŠ,‰'k&3xBë©×wl½gÖ•à´Ð»Þ¡ýSàÕåqp5ÍX»%8EõÚÞº¤µÊ°d„"ô]ŸMŒJÖ8 š“"²M2Œ©u\¢E‚kýÐâZVe1Þ­5Ðó8²îˆ†3Jzœ¬-š¡I•8vJèÅ©ò-W¨@aÓó£µaªFçÔ[ìS —T~ñxÉrþ֪ÝRì¬QÎ=ØBxçEEâ;T× ªjîjh>¤N«:|ZËOb¨ÂSþ€pJ©rÈ´6IVQèÑÁ ¶ë£¤êE|ÚÞj•!ÃãþAòÈ#N®4HŠQçÏ5ןbA2J·~K»âblqPMUo›¶8ÆÇéõ¼Á›_ãÿíïuTü¨»¯ÉO¥c øó!ugn›PDRÐŽƒز–çšvZm×ºŠœûÆÉüXüÇ_‡Öaѱñ©ÌÞO‹§«d*Mº¼Ž‡ã·æËÍõÙR=ÑS˜h*Ü‘d†ëˆ³DŸµ-­»5bH_ÌaÆD¬Åßbo3®jFõ”Y¥»Ta/¸L©= ^ZÝ-t¾Ðì'Xsr Á¢¢Rë®…D‡~)Öð(uî8¼Å¯!ÎwzT §ÏEz**¡RÉ ,*Ã&v7ËkþÔz D¡å$ã†"Tƒ¸9t c Ù¤e“NÚÛš ŠËíiÈžŒHg öµZ¡àiᢼT¿õé6؈_ÌL‘óYæß›ÌÀøØÚ¡º]äéù%•·H_ èr¨ËèN]&qÏ›»‹Fì=¦2¿3k+õé›JZ²+ÆVîû-Iwh¶ª(“ÒØ±ya)„2ZËëEÓàùïŽÿEùåfVïš[ØÐ‡Pþkk³\»‚º5ÅÜSñ4j¶.P°ò'êïÔS›nŒ9Ck” 3û³û¼}”³ÿû%¿ø¦†BE]gs|¬XÍ>JQžÓ€¢“r=Îë7“Äå6ÓŒû(À.H†Ÿæ˜TßÃŒ©áyóù-{+Îåm)^9uâtÓª= Ó4§Ný ˜éÏÁà”«|/£¶¾4…(5/êlZõ‹õ2ÝlØ(ù™ÓL•^ø‹‡ZÞØºûþ DF¤êtÖÏcN¿>oï`Zàïh[`ñkgõ-j9QÿŠZYÖa1Âñßn(—Ǫ²Ü]&±=#™ykŒŒŽÏ¯ö'®Eý¬#Õ|ñ²‹ÜÊΓ†}ù~)nºÏüwñÓçj'#ÛKÔ¥|~„fYIqº *y,HÑ]käÑï4‡AøÝn$öi­4œo¸ásû̡γÕº P Ñ·2Ú ªÈ¾/¼¨…^ö3¢„0½zŸ±?þ4?Õi-X…¥¶}/ÇÞt„¥ÿ žR~ÞACÛ'㣫ýã‚$*Å¸Ñ ÎÆvî_ü—oËhw£Dg–ƒP¼¾õQŸdÛø.!÷¹X¡0f7’·±w€=Æ9H3¾ àú›ßĹîÄKììÀN˜½U}ßðŒî™=7)ˆàèñUŒ« ½Êèm¡#)=ìõ»[¸ž¸=ì–jqÕ_™÷‰$c]çT©¦Àã ÛìÈÏQg–q§f°ÀNøÓ@¯Ê-& T¬ðŸtÚ@¶ØE‡vS¨œ§î ›.§Ô %UÿC×ïg uƒwwµêÛžx Äh.¾˜SýoC3=9ô»ƒîå˜N©å3®ŽgC‚¯÷«Q{û'Äqt`ÚëèH]K†X±…µŒ'M³ pmè¯b},Äš6Ó¨PÚŠì99IøæÖÔLòº…Ú?’àë(bR‹ŒÐL%è'ß)mÕ(ÿ¥4[Ôßé$¬š©­™êc²mòµW°—bEò£ØäÆ¡†¶2Æ@÷éÞ«`õ+Ì=ÿÎÏ€ÎùI›>ýÝö$§FÁ꼨ÐY¤ýæÒÊÌ»3 Ý Oï^t¬.¯BçE2o=n.œF¹¢6¹–é*CsV1Í#‚âÄ(H¬D×L¼IÔ{‘¶ê¦íª{&ÊJE@`þɌ݆æÆþ*fk»Tjoê©Uqs×v¬&ŽY&tb{u‚Î*…bÜ™L^Þs‘Á¢Ül–CºÇõ-›—°ø¹u^zËЩ–¦·qW¹1iÛÔ׋—bÇ+¦g÷=©„ª ·Jõë†RñóÉý«ršô%/'#ÐZ$gEŒKjA¼ÊaGëRµ2 ÙÙšj°âÜ܆¶÷D§šõR…ƒüï5=¯IÙhÅìØ”9Éß¡h‚1ǃ8×BÀE”ΛÆódÿPÜ3ú”=³‰›€{õ}™øŸg)$«„IÁþ/ ÀÍM­$Ÿ«ÁæMþd!²¬p¿#GœéÉ*(g™j—(‰Xâ,ÂÆÑÅ?F¤8&ql}¿E$½õÔrfņué¶pô2»:Ä.Ää®­W-ɿLJgÄêVuEÇr*…ž6ª5À_’ñâAqÆ©c!Êü*?J¤¿Cºh5˜úÞMm @'}$ù†ö],Å$®v äweÌßèS±z¢WâlbrñÊûžésZg*jôz·È¢Y•Ú½ŒÔ Ô„o¬QDqîzŽãçüõÖYlJE¦ûáýI#‘²wÍç¿NdN ˯¥[»P"ð@1ž…,?•6bó8½FgOáÈ£!D¬V¢O©Ù4Ρ*Ñt±$† &^¯ ‹:¹m™¥•ÄŽÛøÃ*1èÚnº?ùöµˆ¨öä©ZÂBGÝ÷ƒïnÊM0IXNѯ¥Â—J*Ì!º {@Fž¦?ÔÊ ³‰&• _xVºÕ{“ô^"‚Æ:jí$1²ï-,B¸æ3©AjÚ_O NîÅ„ßÊËÔëæm¬yëüh¨agü'Qz5\BoÝÃÙ8Ö¤&Ô,•[Ü6OV†NÈ1uôAîwÿlóÑ?ŠÄüùX©:˜å9ít©#¥{>ÿ ¿`¦§àO½Õâþ-zsíÍÕën¨u9‚Aÿf@µÛŒ¦ÐLD¼ÄD^I‰º—Õõ\ üY²=3¡š©¸ï̪ w…rÃ5eœá1AÙwŠ\âêèèÖí\/Âa¹ÜÛ#1NfŸÜ‚{.fª5k‡‹´TÑÛÍ Æn î¨s)ÄRGX*i‡oÞê²G  ±YW9«ºl=ª¸EݧÛÛØŽÕòñ02¼ƒ[ÈXǯf'Š"ƒ¡8vÇgÃÛÞñp“ÂEÏYk—ÂÒ¶fäÊ$€´ Áʃtš@v‘êKI8‡<§ºVY刨²ÄˆŸJ<Œ¤6ÑÔêX#š öõ;1íÜx!Æ[ ›³ÕM¶#±Õ \Å`ñ%IÔ̾Ó™‰êLâ Ò6rºšRA:Óñ·Ã×+¿ Ë*KY»M5“õTó DVeóâŒæƒxC¨ocñ˱T9›+ŠòjR˜6°ŽË3¼UbIó Ÿƒ/Ÿ?n7tgãOdŽÝºÈ ŸíæðPŠ’ôV驌*-娗ƙu³EºqÔ…4 žÏ¼ºÃº«äqòÐ6%’¬€«ÂœßŽüp 7zùËe³R'bHš~‰(4×X¬ôä³Äåd?F‘wLñvdo˜P­h£)IO´zÇL Ò…¬Ôðé»c Ö¡©È$Qç5!©§O:UlfØêîBXxó‰Ûw•ÓÖ#“—qe• ¶•'dY ±0Ô% ~qÑ3ŽJØNCíÕl˜®^š{ÁŸÇÖµRsvöIÄB¨QÙÐk?/ÏØÂ²9WÂÆç¹}ä£!ÙØÞc¿Mv |¼ßóÄŽX(ýb9l:»Ó™üP p‹W©g½ŒEDŸ589Cô4òuGÊ.”´%pÌ;ï/û±ºÈFz³'PÖ ì05ø™.0¥”5"áLصD„fÝ ðuÍIµE£¸>)…œ;7#o”hÇÙ0ñ‘ ŒÏGM=QSŸcäpã2r"°g\ìò*·lÂÂ-LwõÀ'¹TÄmYؤÓoì·wmE·ß0qþÒV#/£)c›C‰ëñ‹\ð후ãC»§°HœmøímËà³fêâô-ÝÒé€?õêòðìGø'Ö“L@x)‰¬±i‘~·L©ÄÚ('y§X”Åc ìÅ9!z“oýº)æo ãKñâþ–øÜ14é1VŸX½p^"?Éù“ ÞÜ˯do(iW³!Û_ÇF€Œ<–/Ô,ÝÓ¡þ¥sœ™*‰;VîF’ülv‚ ’º"ÕI~}ù­œo!z&Ù<ûÉ%ƒ¿-Q0ë Zð ÙyÂ%”õŸŠú8÷Ñö Áåüy+dYªÍ­;êQMRÚX'h¾Om/U)‘ƒZêÜ­GÄX\’C°¡Umôcn'!x˜h¤§$ñÆßa{™SaUjŸ—j ßëÂtžÉ”Í–ß¿¦Ðãβñ4Éwîß:þï(­¹*Ý]Ó»¡E[o waŸJÏY{×=Tá÷L ¯b“ud=ꆘR©Fv\áýuðjFÎùµtžáª0‹þ}ôyÂcApØNíü§µ2dǒߢe@I,wC9Žq¨[nD†MuSC $§y{›ãXO$ÈŽðã¦mCÖ_Šp¢ZjY$ªOýÕ0„ÏmC:V¡}zÚuª•mÕ?©‡‡6Ù@ßc’¶FÒDØ4¦ûb¶ž v+質±M³|=‚)‘f¾Ø÷\ß.Ä0<ãæv;FüšDÕ‡ ÇA×¹ ‰¼tgà-4¦á˜¢b/98ÃØ¥T®²š›'}õE3·ñ\É 6}Þ‡·ëº á/ eUü Ë]éà%ÊUÌ0É+è HéÏÝ·ŒaŒ? ¦ä “5W ³K-H…ðG÷&Ê(L³3]ÜŠK«'ÜÖ‚«¸…K‘ÞwFã0Z”eqÃÄ>ºF…Ñ+Šš ÙWttý ñs“›~3üÝ ŽnÝÊ6æn µ-%/h¬£æbDóD¬]J-«¤Öø‰ì‡…kiW‡¶R^ÒŒåèÍ&¿.[¥ªr˜&…ò:Ê\ñžË/F‡Ù‘¹Á”-p}{‚‘¤¥LÖÿØÉTúDS[œ¹¹˜;ÝÎx²m¬ ¤^ïÓ‡€ònÔhë »zABhóñû ó(³C¯ÚVvæ‹ðrc&ð ¾›Œün#OÍ}&w³XfgÉ×½—ž®É]xGNÈâøYy—*™V4Æ<˜/Ç‘Ë3vt˜sÑ}¹ÇvC\0](©˜.u9aØøYVÓô[tz.b–wÍá“ÏÓ¤iéq4"|‡q°³¾bËIù×¹ !b™šh‡dšÃC Ý¾©^B³ ìV'0…’Ú·À)+’²ŠÍ§Å©tÁÁn£ªÝ eÓ”ÂwÀÿq¬Œ¡e`,躾ºCúp²x.ÝK-Ùʬųòƒ§¢¸·>¢p$D»”­|µPÁ‰Oq)h£g2!ìþ#b7ôȈ{I²_2ò_b$ÍÍÚ²û3 h¨ùHÔ÷P¼9ÄÇX§îŠæ”®@Û¢ aúîú7¹C¤o+Q³3=bff1Þ%E=§îðD›?Jܦ©ÞK[ްUÕ”€ÐèLÂw&"h ¸Æ+–Pþ1ÊK­Úšucê %mV:@]8'‹4Á—ïž_³@È)¾yo,SlxÓ1©t\ÿ›ÎA²%Œ õ™y”$FŒÚš •Œ‹6|~)mp´ä“’ §Zº÷öÍ-ê SK\}kû·ˆ©úõŒèɦ–{{gÔs¬‚Iqß¼( %z=T|‚ŽqÒ³Î쉌[Æ.‹P|Ë?šm©ó:H‘Ish›þ—£>wñŸ7¯,W Ù©Že÷·ÁÀ4F"Ò^0!…!m¤-»XÜ.­•¬í’^‚y/ÀÂçt÷hJ¥€òwŸßÃN“v¢k†R³Ï>Êb]ý6*(X¯wv¿·ÎOb6­œx$‡ ås³ÿ°ÛŠg[`!t3ˆl¤Hë`1ÝЪ‘­™@ÆÊ—<"»ôâ†vÖcžçi¼Ÿ‡œ àˆky6m Š‹'4®mÆòɾ6/£1{˜Ú¶*ûÀ"õÌŠáeÆæ&°B/ ¤²euŽÀ±;D=½yQr‘œkçÆ=!rÈÄѸh› Þ’f– 3N@H8ÚÆDfS¹QÿlR¸½"r™, ÍyÖ¦ÑPîùe C]¾Ú­àŒ\ÇÆÝ”]4\Àhh3;¼šM?ºc¸IåZik8þQõÌ5.!%ˆ)R˜­½œ#” ÅÍ6º$¾MÛ8>ÝÎ)å`þÊy£Ìnð1xçu“Ň£Ñ`B|ÙGù]®øQ ÂëøaC¯Àvu‘ØÑ(õîXD¶åŽŸ×dýw¸"jÇ¡_³hæ3œÊ4ú(L»áGñзbê]jñÔ_CÖ©û\äX›Ü#«Ç\,Iœ<'¿zöeƒßFpšpJ"Êø+äb;È÷àxÁG& šÉêòÿMíøPÕ’~ùM×$:.¸ô¸Ö­O_’ß‚h›(]—Qåágµ`ÍõÂA¯U0ò7”éíè6fWQ‘²ÏJnžYÞ…û¯ïÌßæj~|ù³Aiy}n*añ2ùd½>RðÌöç¡–ï|µ=v)ØY”\êÙ½«Ò‹Y&HWA7 Ùr ìºÊKá7Tû1ÂY±‰0yP2’öï¦ c.;þ^íœôÞ—,Ó”(&®Ä•¯ Ò™„ ûEd’‘gv³ˆƒL˜øï«xi‰Ìö”B‡©9jíÁ]˜äAP™êªTRO.9†)pª“Ù´¶QZ¿´ý+ ¥ã ¾  ½ì=´ìÉÁÖw¥ËðÕé’ËÓ}c¹¶Ø ôw0gĸã/ôûxæ‘b¸ükñÑÔðõÔ›¥ÈL`Wš+b´U.öëû ¿ k‰Ës¨“ðk ž{B^Ð2isäÀ *(ÌHp#G`£ôk,ÊSžç]‘L²àÖ̘m“l—æ,µAfÜà×Ò"-ÜC›|42EbüP¯¼‚uB¦M¥Šû\Ò‘}T×8q¸¼}1³ÜÖBi¾Óßâ"ª&_PÁ©ÄG/-vó‘5±+áÉšøZ¢6:þó^e6Ôû𝑬E϶k÷ŒúûÇÑlt3Ö2Q3qS^ «Õ1‡ZòÆA®!Ük›–"Ú˜Âu$Ys½ð¾Ýè¬}.¯Ž ðÙñOaÖÏA‹ï’XD)—Rÿ $@Û¿çX‡1À€ºWþÍmP·Þs½¹w㘤ŽWaÙ Ðó³ÂVu íœÎª2NzÅ5YÉ—{’ÉÔMƒp©Ï.É´´oä½Ñ¾ËOXàÙ¶@ÖÑ\òð/î[ºz_Öñÿ–§-ˆçNhõƒpoôI‚às[LžQY"FÓŠs[ø Àì_CÜ’³›±HÀZ2âì»ÑgýRáû ¬af3ý©ú¢váD¬OnEv ñ-iE¯µQr3ê˜sZíˆu2ÌÌAÍ,mrî4Ÿžœêé•3e°»#U’zÞ39h}©ûñîô§# ¡ç‹u2ø ÛLpÚ„¼s¼Ø@`—^a·ø¿è°pl)²!I* ?õˆg1HðL ê² IÎ{@CœŠŸöº5Ï@½¬µ™«ÖÜc³Ñ%À€k"{F¦H¡QJ¼Ä¦ËÔ«Š&Ý. !•L{ò¹X\øa>1¯eE[¿üzã:êƒ\kCÊÙjTÄ.l½6SVI½ ÀM ûm05Y–RèÅqp•8ã²áêpƒ¦#8ߦs}þ=‘q½.M£¢³6¬ÁcATþ¸a+E°*•bu2ö£ÈË‹cÒ.è>Áóî|Àò‹GdC¿ìÂшÍK4ê:é" E1«:œèÃd’é:ÿ'»Ú†¦´!œiã>ÃXp òzÕ²¬ãv˜+2©lzSMFoµïÉ‹FæÝ@¤œA·®ÃžœùÉZ"eÅò‚ذ¼rÌIÜ$|޼KØ4-…åÚЋ%ß­þÓ&T½ ¥ßÝÂ¥Uáé„‘ð‹˜ÉW=Æ$ÈŸùË0m…~Ñ ð®ã³\m$;ë)a¾ÕkÜ ß<\×' «—_9f jÅŽå˜ÑDíQÌ>9>`Ùá<Š˜‚Oå[x‚Ö£·$Ùq¬g'/’SwÊQ¡BÜæ`«~;+E¡ý„i‚ý™¦ÂüO2ò`êÿ_Lã >5J‘ßD# “|‚òQ¥–=xbü$ëËA¾q¬mfº qCÑGÌÓï}ÚF&[éIcÝÚœCßAGNWò‚¡Þ Ioâ¹7KàP=¯Õ£Ænôô|îÖÃ,·v}·Ôß{?YëµyŽºˆjI†Q˜Í\æ(2ž%âÀ'”Z,,–ý\ØÊ®6:݇ô±ÝÚïxôOeÛ¦Ý!ÒÒaòæVöYÆ”ŒÜ›'º›Ë—¸ÈÞøÆf!uJÅzİfŸÉBtãøn2t©¹­‹Ýv˜xÿ^nõ’Õ#kxî.¬4(Í1# ®æó0&™ëB(¡ bã¾ø©B¸¤¸ÀvâÎFT(]"sDŸçÒºÓA™$®ëQýNöC¾žÀ}g„]ÅíeCLÜ©À¸tk¯†>¤’ð…lÜï„ÌGâÅŽ}õ¼–é ÖÃjÂ,7ÄÂ_ÿõ\öé|¨{ºÈ·qŒ4L»W™Ë_A’!IKM¢ããúI¼„Xk@-±¶,u^âì âd÷iì—BÔŠŒ„€Ùåÿ÷3h¦0Šªœ£ #*\Ço7C—LŠà«4yìÄôT'Ã;ŒYhðEY°­vJ½‘€× Å}ÙÈ.H])Ùêp#H­G#AÆ1œP kÿ¥ÖIGÛ9ÃEšú9m6oÊ®¡©åñè«yÃåóÍŠ\êƒ?´n8²=·_OÌŽ7~˜Å“ ®J–¡žñu!N³’ªÒ!Ö¨ å e¦–±7JÞxʹ9VÞ)ŸáeÚ¬‰ÄVóØIXÑMqjåÈAê·n¼aÍÔËß×3,•FS-„âðCyQ cÛ*YGÿR¹çúÙàù@ãœÓÔÛ¶7L£÷ñE}åwAåô¸RóNHb+mS^q€{E¨ñø§j6{²êƒ,¬¦/¢þ½¨Ø¾bź×n©xÛm]ZQên%³Ž?fã=  vð¼tİB«¨*záF4løuN³Æ''´}Ðð¨v…äøó4êh©©ôÊfø9FÛ¯:åoåuF§N84Ζ `91T×M¨îë“¼ß ­•ô}Òq¥ïvÇÝÒëºÞlTê“m‹1æŸQ§šsÖ®$ÁQ®è`çí¹6.S²£‡fB‚ŽªUÇꎟenCÛà%6ävº{—Ϫ–¯u°‡µ}ã[ÁËûÎð(DÕ o4Þ#5bòn¥…O-¤³Z½'šV³[Ü2ëœ{NÚŸ>LÀw6¥¬Ô¸ó)õ_|Ã")KçÕçSúƒZ.·÷Ì|É¿£Ü-Š›Ó!Ô0š»0TB*n8~’[‡ $¸;€æã,™Å8 "Ì'“’ÛÒÉkN.å¶NÓØá¯s«yd[bñ]9òE±w0øÃo,iÎ^‡3ù íÚ#÷P&:’ȈŠé7”CLcQ. %tÙ­éêöK®mã¨'u‹"ÛIòHÑzÅètÉq#|ñóÃ.[n 5HŠÃ»HÜÐaA‘B¿¬pã&>Bei/å*– –B…CÐd¥|>Ó˜Lùgí'©‘!÷A/*‘{—© *·é7‰Š.Üš•ù6¼çµ€ X ‚z²atñÄcË{*A®ô:ο¼È Rø”€l¢ ê‹«ìßüþàZc3]ááW«ÈQ$fÂ˹÷#fÀL¯ 5­Š|øõäOýݹbbÇïË6 d߉BjMë‡î˜î M‚1 ð¯šo‘Ú|+T£ÓžÈ{®Mæ J®ýÄ‚µN¥#•Þx´¢Ic„˜©¤y|Ætz'…ë+[÷~7;.X"ñ(ASU`%ò×ë ØhNLXɨf Ç\*!¸¾gM ªÿQÔ€ÍT{:!§íäg²ÿЇÖK‹Ð™¹'˜/§oÜsNS³ e>Ö&<Ñx.Xa ç›ê·Ë»~ÛŠ«ésBªÿ@yZNBHBY<6®öJSÜfE^F%>¸¬7ìcÞ)]^‚ú_õ!t~t–ÅhjªæZînB…sT?}K}ÃqƒgÅŠSx7׃Î6( гÒÎÃÙ •HÏRÏ0E‰Ì9È:ÀtEGŸ€„S¼TÐÇ OEÿ ·Y>.úª:ÈÙÆTŸ­<¢ùĒȧnqêF>±.M<3t6ÛXø´”#ÌžúçU‹¥?Û< cýÄì•N™Þ$v d‰š-jï@%…ó“(Gw„õ׋ºB" Ü7[ðÅg¾®{÷Ò|ÝÉÊsM_õvF` ú‘\÷©7¾±H.«-¦_‘7J+rwn#<#ý';ûWMMåAþMgÅìcä=û;Ú£8£àÁ“w±Ul¨nÐáFÉhÇãŒÉ¥UûðŽÝÉ4•ÐÇ67~|Ëõ›çÍZdö¡ŒÑÖ>\6 N¼’ì$ÖU™GuS¹g+Þƒð#*«sÙm+ÓZkÃ}8Ýâ±½ˆMÚ• =KiŠ¿BF/RMË©ªß™°;x¸¹è>7D=É,•qt1(ѧÝu¹§ÆsƒÊãh¢ÎÂ}Í5â7X Lš‰D«°U‰v`,xÔöî¢:U·§Á¯J»IÓyf-§&‘J»˜}#NPÓ?wU{Èraî˜@¨ßÅÄÅàå‰ZJ.Œ!ÞûùŸ½¤­¶•g•€–¨J184éãIÓ:Y>çÚtb(ŽÚ`„ TœjöšÒþuA9Õ5Á‡z‚y´ÀW> tµC¿ W$¯Ù˜R”gÜûïbl¸´Yî{-šC•OÜ뤟 Ûí¼ìU™Æ‘7þN³Öz%žï:ZÞ¦@Øß‚Xô2{w£œ Ž’l¯3F7è ‹ú®wiìª!ox¶ ßt²€^3óák±ÒÿVц”¦K1Jm6F—)ûì[ ¾·ç÷ Òç”~OaçìgÏԼ鶚YVr1}‡Œ ,žº'‰ã>ÕŸ`°m¸BÞaj’ÀÇeS‡Íô™!¼ÜΫíBw+3*«Î$þ7k¦d*ÿ‰ç¢5ú^aáXs"vŸíäBÖøîDs‚¨üÜ,»[MóÛ󶳘ºÔíŠÅ4eÒ~@Î_…B:åqÄÒêŠ}T¶¶póõïÚ| GhМÀÖ$mHÏ7oGó꜎Ä(O¡aGXš-=­}M¬¸‰^\Ö +ýhbuܨ{NÊ垃©´V°´§Ðâµ1Õûæ(Ñ™çqzW‰BÂ&x™rneƘb4–QN UÐ6€ ð{Ï»Á&ÁBâsŽpÁ÷ˆ÷ò‹JªjÏ\Ÿ 7ŠêÒû^ü¼Íš)tzÉ×VsCÿ?Ó‘^” q9´cV ¬ØÉžx¨ÛQæ@rV ׌¶ÑÍÊ´îÏ}ìýx#§#”ÿ±“?ªÁñ¢9¼»¼ Ç@Š9^÷h…ùßJX‰9û@6$P¾f)>]M! áõi¤ÀèžYUõ¯ø ¨8Ôð>M ‡6é?+e?×%‘ž+`:éÏf¾K½Fè\_púyà˜¿Kä¥{Û9ð/hÈÏ=iûy…BÓT\;±6^FÜ`ÁÓBÉC"î–üÏ’…WoOGΡxj,ž{ëCßXf8µÄŸVAéþòB2B}[B=Ë—×vÍèD¶‰F>â\-4ϯ¨ Á¦Ëôn[Šß|Q.ã锩-VM­¿¨3#¬ò ±™O9¡ g´³-´«ØÎ÷ ¹Ñ¼”‘m^ò©—ãu_Î%~… ðØý‰·Û8ÑeRÂ3;Ä¡§2a•_<„,ߟéÈ¿K«/äò¶ëe ¸Œ’ÿý3§{ỡÛkÎ3jýaJ˜oSJ¹ y¥˜¬Ü4ËÛ/­tHîÓ¿´Kð?ÔW ]»˜™û=ñ‹7\€%ƒÜê¬8>D‡ƒ[Û}ª“pÎÓý⧺gC—cøÐôš"ÄŸ•‡_4b+±ÛÂTAž6Æ6¼2<v]Þt)Þ¡P rWôµ<e¿UÙXÐ,æß‹ç.àt{¸…ˆ„õ8C· ÄI»•,wÿK¶yO7ð­ÅêÝ÷h‹œÑ1·ðKˆ‹k@‘oAmù%;CíïÙ°/쎠 ²)^à_!¨O‰`]ñ´Ú×w†Çþ´P(U@è üÊøà½ýÚ³ÄN]%âkæ.A)ácÙ,–‘…¡âÚ@ö՜޿V¡¥`ç(šúbÌóﲎ”¤VjöT©ÇÃK|4ׯ1ÖkªHëåFüÉcÓÓ궛Яs±â¾?ùµm>èǼNN)r0‚8Hú«åPcNWQ(Y¸LG`Ùà ™øbqïMÅñ$ý÷AÍ¿7,Æ@Ï©÷¿-~Õ|1dv;°Ùõp3Ÿ¸“?'ðöOö‚¬ŽÞÃó°CQS`S¬ÅÀÿbŒžëq=¼µµßÙO™óPþlCF9ø”Ì\¿‡nNßi5³²â»W%ñQ#ÕŠ +M]<&¡(ã®[gÌ݈LPzZ7ýoØöuŸ’zýŠ‚°ªxIŒà™øç ±°ˆ½é ìpOŽ„èáVé`¾Õ³¡VÊùbÖ ð0iö &†=dÇ&Ƀ³7ÿ Gö9‰Ž =ÊøM oâ›Ú«ü±¶5dv›ìöÕÝ’¢ˆL-´c•-%áSœÛ&dkŒ\¯D\Ó†ÈW÷aÝîÓ|*£p-Bíϛ¯±K Å 4êTŸ{…‹U­M`…í³e.æ)òþë2Õã¦n1y’d¼œV_n/&²7d3ú4|:ç‘®5®Ä͉$Y65âªZzÄ„kÎXxãNìþ쉥IªM³ÀLTd`"d%ûs»!ëƒ**â_Ôùñ£g%óõ.å·1¯mW°Pœ¥\@úøÅ˜RR8¹‡!åï2`…òÙ¦O’¸ Í/ø…¶5·‚ÛÅ™îÖÔVí˜{ úLƒ¹g®Él“ø¥äí>k½a£Á1ÂÑåg‘bej^£ExW|ÎÑŒÕî ³÷ݲÁäqÁq9aÓɶd©¸Š ‡f–$ ûíw°Íé¤îkzss¯¨,>²Ýoÿïÿ’le2](—@ñ™n:!BGÌ(JTZÆÃÓbƒ3¬ý­RÒ4Œ¨8³dBÖ›)k€æºæ2ãðXÛCäq”L¬©fÝÌ}¸Ë1¿¬G0†êëhIÝë– îM²­ÇºÈlªªÀŒ†-áøqÁ#÷W:þi3­ó0õÒµÜr')håË|ºÔ\ØD›×­œµî€©LA­8žg˜ÕS§A¦)ósÛ’âI›G9_6B’'âtÙz4…=,ÏÓ|­¢ Ñ~ü ."¿ÕH¥Y| ‰Õs¯…H-öÙÁd»Hå]«ý³‹ÕEóáÊÓ"¯¨DˆkJ?”|±QAš¹0&ýïToš¾VpJÄgèVÿ¡h! X\W{í':ËkC âK9ç;m«ý¡’öÆ4aQ´¬HƒWo½?ⲯšßs aÔlà:)‰v¬öUÿILx7û…±¹4mtÇV¡«ÎÍGf1Pë¬e‰ÈIAóeW[ì žgïÀ ½+…,KϤ+ J¹ß™ãÞV#èªÖ—¾%¼¢ºž† œ—Ž€Ý¤ˆf?¯‹!P×h8¬ó˜‡<Ù´lÙ<›ê-Wl«Ý‘¿<ø6›ÔÃéßàap‡ë= d€a V±QÁ_‰[lšÆ?ÚÉAñmv ÎÔÑ~„KÆ¢XsÄÿƒñµ¥[Óëöåešú#p a1¹›š’¯1æ€N]ˆRJTedg¢zkÓÀý¶P¼wáÖ‡Òé±w¥mA@ ãŒš´iö©Y}/Ùq…ÈbkìƒñdÁ6ݹO¸n 4,HÙsÕÑÜû›$QÛD¼cÅå _gð]_hiP_К&³%¸@Èþ—áÊõB†e»ì¾Çhš­E|`_¥±D)™gdŽ¡oYË(¼Ñ¢ÀwÓÅÇ&{ïáôc7ý#KÈ+ƒ kWË÷Au®ðÓ­œ0§Ÿ2‡ùÿg?C¥¶ Ÿ!ëì.=y»ÉJÐ[Wb4â8ß“QýHöiz¤SÁ,I¢mϪ \÷i«¹9”Ã2xý"J§o> P†•Ìzü ö”šCd,‘¬Î ,füµ8>ÑõÐ|1mØÎ8¤îä)Õz˜©íp5{¾­ûÐøäÓâÌúÌ :÷µK¥¿¹Û0T£ŸÖ‘=ØÙúD3¶%i¼5cýŽ)óêÙ ØzöäKKÒÝÂT'×Vó*¿yÍÏ37a&À¹'Fè&§‹W–] #}äVèK2NØ]õë eœ#¥BÕ?#Ž2ÀÊ]ýÛBïEþd-üƈyªH¡ÔÅ·dX:™Ö¡ÿÛ}õiçË#ññç“åaˆ-ç4Úw—±-W'kmøYÑé"×òj8•åç‹Ê­TnÆLê–‰+ï‡ñ³%#vnÖÀûœˆu¸ œø'µˆîÚËKºïã`1‰Ö;¥O°2Ϥ.R4ÍÑÚ |ÂjГå sÁØ<”sÝö%ïx^…®ÎÕ–²Áê‘€º¥L Œ£ì9c^ØÌÅAáÇ÷ÃCËþ¢‹ ¥àn>x㬣ӹsubó$5l鱤úŸOj—ÞÒuu»× ÓS©›Ô*ÌkžâfûE” •÷»^DY¤`+Ý.¾2£6@}°n…ì:ù€’1Hf2d¾6ANòünþý­7—•Þ\n¡ƒ©¶Ð¯c,(ÂêÇZP¶ªaC¼ÖoÛÞdËë Pʯ|õ9•Lç>U¶0Ù¶ñ"Η‚¡]°{òÇ’ ôGt‹?áJL^o“ye^±C{ò†ä}Œ‰˜ÊA¥µøÐeÏ]÷„nÜî…â.–„Sœ¢D¾³ÞöGÔy¤Ô „È­¾¤1¤»TkÀþ ûSÊta[à|,‡­g ¡š´ lºÉ»ðb„šbà9‚°ç)ì…H}/",ß…–ËO‡ö±&?© O" eú…RÚ3.÷™¥²šçKS`{ T âÌ­§17*×ónð“lÛ',ŒÈö♓__ÿWÙ.xú޲ÐMCpùíCÀÏîḆE¦õjÄøúݳ@ã ;>P¹WNëUçˆL<'´Ž&>l˜žÆ£H””‡¾OJˆèXYï@”ÀÛm'LÀUª”dx·‰sàdŒuú Ft FÏØ¯¼û³ÌQ­­I;OoP±SýHa²ÇBõÎÄî{TÍßÓû0Tßôo ˵¯,]î}öxd·{Èè.³þf]ÜÄŽÈ+ÐÞZ½ ©3cª-òDM®;æT£¯d¢g¸ÑFß±a|ùÊÈ?ïyaW?ëæ×Ïà–V´Èz»â1xú_*kE™ñLï"ç›å¹ëÐÂð^üH¬).jJ÷nÑL´êoÜðs?L%žõ-r¼É£äÂß'˜?jÿ¬¯WïV¥I/tÊߚ؅[ªë•± LcÉ-H+³#Ý)#fcljÛœÉË ¢™íñÏ&ša®ÄRÛ=Ô W®¼²ŒäwH9u|S¾Ò‡êÚµ¨³$®éîøŒÁŠ˜èÙ†H°zbP‹êúLgÉ)Þ²Ìîï=ì?{‘oÁk0mµ9‘v¦èxqߤ‘„/x>(u…ƒþ$u’.V×n nª­¹e¾ƒ’cmò˜8Ï2ý:üTY]Ë*m§XônÌÚÛÎòÛ‹§ ”¨ÐþŸ~«à&*ô•‰žï˜i@¨AN^ã8+¾ÑEM h±ÇÛòhëÑ‚‚ÅØÇg 1ºœ—%!V˜D+«ž»uõí&Sײ¹õ%NN2¾¹Õ·W’à‘ÎÍŠÁ—2ƒBÛ¯>Ê¢ÿy¹“öµÒ©ê<{¼âhö¦é"dNJŒ…9öÀ½}®‘՛ɩm“K*[mû{ÐÅ‘ìÒ!£®¢K“i80ÀÇúþ®OÀ‡¹x€dð;øÆ;UŒ»M/ÕCk ¼ßÖ<7&gqz[ÞÔo¼2‘2¢áå0R=hv@üÇæ|”eöÁ+å&xOíŽkU:_hº&–[>ì™ÿ`ˆN_êq‹€¹“ãçë׉#UÔ¸%šñt¸ o$3¼ày,§>ô\q5à ,U£¯œ:ÚŒs•_~áÖ!µÄu ¶¦œ·–÷Ñí5ß!‰KPZW³ÚÿöÌ kÇ3×G`E ÓÆ¥8J@`7 Ô ´1Å 3@)€ÈïÂ/@ŽÉxÀâ ê¾2¾pF6auŽÒânªÄËClT_¡4пðM­lTÄ4o+4n@å.×0黚iݳ¼ßìë©!hœÝêÁÝÐÍ|ÝbSç‘‘ óB_zÔ­]‘EöS˜ ‘¸,àÞŠµˆö‘sTMž ޡė¬FpÅu&ªƒíJ`hfÏ+­ —Ù¿´0ÏËã–·`ÂTôÕbñ¹Ó5ÛèCÞuÆŒY"ËGcñšØŠgr´ÙMݰô‚çéÍÈñúÀ[ÆÞ=]χ'Cã,EtŠž …~Ъ99•/'ðD­6w³jœ‘ÍBþÝêª3]†fó×HúNÓ\ÚÎ&¡-‰ÌÌ Ü m^ˆ+%À‰ãTšé)ƒ»¢hI”„‘àô8?w–•É©iDÁE“‚åB§ížC*…h÷󸵵𛞢Æô>:€%ž&‰ù¼_Z¦#T¹·yL@!æU錷¸“à Ÿú¦@­MÞ e¤ÅÒ„)°×Ì&ŽÙ˜ysS‚(N«Ð¾Qðµ_Ÿ>Î&ƒŽÖíNVÖd0 4󔇺Ð*¯’Ž"ªöóÔ-O­P¥bõs„MÒ!Ȱ왋DÞ®<õ’É=ø7ÈP!wîç¹{m”û&“G^žä—.•¿¤´uõÍ™²»ÝjøðÙ賦™¥Â,ˆ§ nQÌï]1žá& ðg mâápn_1hóò%j×K_ZŠùv+‰Œü (E5…+ŒÙÅ”ly†•KñÓУÊgÜ®Z%ûšvœ9afŸü´ôoΜ+…hË7ÿ|Øgn‚ÖrHøØ‡4:vXÒå)™Ì5s·ŠÍ—O$÷5UÓJÅZ­é©]ž˜¯ÕPmws->ý(¤Ÿ)˜‚8 f·ïÃV\XÜlßs­'%8šzãƒ-<2¹Ñ§›MãšÔ–Áåâ«¿n†Ûl­ëÞÝbE¸:†ˆ–ç1~qôÏëR\lÀÚ×ii±ïž-¦§ˆ.ä™{‘Ätßá¤çïÆ³ËMk[þäTÿÅAì.+†žÎÍцzãI®¯æ5Þž¨-¾_É=HÖq¢åÖÐÆ/ @ å=zkfÈ0óXuLTð"öÿAÛ•†XÉO|ô f±gÛ"‰O“Õ^ÇþUÁ?Ú\jv£»£ÔæíÈ–×¹ §øI8)©ï[%=›]tŸÐÁÇŽð)ÓH}÷Œ)ýÅI$½Œã¬¸'?b‘'ÚÚXEü M¥'+±9ƒL”ˆ²aªñ›ëu–GX~4º¶Ùl¨›èMŽð„õÔÁýæKæÎàÛ;»YöZ‡G³ªj¸£pѹ2âf8Pl¬7˜/ufÐKÉÌ ˜Ñ`]̬v§U#OŠZY=´‰tâŒIòVŽ'¨HK.hf…zkß.ükí=èûþã”D–®ý ñ¿É¼Ç–‰lnû¦… |n ö+ÑDÕš¢:&]Ûã•°dC¼g h1­3ëvZàœœÿ{»·œë‘+Ù·B@DÀÚè6Ÿ.NSPuÈnCøà QHbý5•8L5èðDêÿÎT®.¦¤Yƒj’NKÉ×,N$¿èCÌ!,i}‘úcÖ ,ý)޹PyC‡)ç^“+Qmù Ûœý{eQm#ö×ýï$?9w¶To7duÌÐÕøTØ=e¸ã mÎeBi³Lº–•v„øm“ä9Ni+ŽÚ±<õs”•`Ñ¡ yV6'`£ã!?›·ð›«<—Û«ÄÑh|_ ¼Ê‹¦_]D×鋈ÅaLUC·þL–ŸÏéÍ],ÓL1L¶Þ±“ÕwƒµÒ ø’® f\sfNäˆ8æN3¦Ë7k1a«DlðÕL§þONxâúÀÝ^VÔ%×L0~¼Ý»&[ÌåúÕ¢ÔÊ—õÊ,éåYÎÿ´÷ÍU[ä8赫r5”ú3GI6ËOÝ[½ípy¶½Ï|õKºòÏ*;™ŸËYVåyÍq«&10‚³íiž€Hð»¾á'øÇò ¢±±ZAX) i(‰‚n4öDZ’„¾bþLô9ȹc–椋æ¿åX}w×”n‘c憡æ©7`5˜Eñd’ô;ÄXŸÕv£%°™*™¾×˜YkŸêÅÆÐO#5'½9ÅaëyµET[¯VÞuF²ÆÅ›õ·P¼‡ €×ujÚnИ/O'¡Úú+·?c”@'ŸZ^i½ótˆUÆãh–³y×þ’"µ C¥‚$«úÇ›ò –† î0o›ÏåbÇ­{}È!uröçëC{/UËJ¶Ç›bÉð·yøðjÞ6Uèì¡ö|¯'†(Sû·ÐÜù*®:µ¦åÞd:§ 4‹x‚'öž;Ø ü©uMOŠ÷åqžbü6 0ù¼ ‘F Šm·/{ˉD]ÏÄ,<€K›¥·˜’Å3¢Ÿi´e¿dhG‚äÖØó7n²ôŰÓfÏ ÿ$¾ Ã]Wœc‰Ç”µdj¢mžgV• ˜àßu8Mç‹èrl-§Q·’kC“ D¤ö䕯úB¡º__®æë`óç”;ߎ­ŒË«™ª³#މO–.#6†Ë»“n†iê¢!=.7Z7EK‹Žõ°@[Ÿ ¹@äRŸeê oO?7¯½oAŽ0f£Ð=ÔØw" 3s?”Uн.Ú‘©âCº2~ÍËV97ÿ0VZœ2ýˆOÝ}&N”’TGƒ®ÌmŸ/ÐW1¹ã %#ýX({dÐ{].Ö2ž¶^ÐìVoA×ô” ñî˜!á›À®£û‡Š`Š÷yäÈÄŸ'F”‡$wÞyØÁ9µÑÐ2+ÆøÎ’5p`(øêóRn€¢°!Ç茷øJ <ø· ¢¦õuö³hÃßC-!z †÷¹|OùÜ¿˜y] þŠ‹¢:æ!ÊwÈZ´°Q…~ŽAìeÔsô‡ÔÁeñÊÓé6M-:Už©ç¨Ýš…ù¥{ð)B— \óaÑØô]a…Uà-Có%zˆ±ÌÔ¬¼óŒÄ¡s©­†OܳJ ÔPð!d¬„¦ÈT¡;Ÿóçl6JÝX†iÀY~”éÈð¸âñå àðõ (üˆ:U ]¤aøå;K¤’§ÈT}e—ˆÓFîâø=ð¦¢J¯ªL&[ŽXJL¥°°^žA]n(AäMɇ=fûº)g[€Î…ÀÕTæŽ}†scäáoòÒƒtÏ­V(oUïðV^ˆÜfKþœÛúVÃñ¿<œYdÂcÌB@ƒÂº›kBÕw'Ó‹žâSó”yž°¶›3¶M3^Gø@¬Ž ñ.åRxh§ÂïÞ\E?g’ƒ6ŠŽ}e4<øÞî–ÊöŸºêW¹Ž¯ Ö|XÎ]¦™¤>†Ä`ÒOj0ÔZ&ÿ³ ©¨/¢?ÎL¶>;©”Ïi‰3[¯l½ã¾½Y²ëjVE¢å~ˆ‹¢_Ž’D½SÊj_’À­ÇÖ´éÝÏ—~ƒI!m~Óψ)ZÑqxf $½RKŒ2M9HÈmuês`Qºµ•Sw,¡É²<Ô4LßûΪx©d,é/™ØGfë’YæI17C)‚a „Ñ&lÁk ‰™/ÞŠòøpLBÖŽ?©Å) é‘j7ÿî3p˜oCÉ»)Ûõ« –÷a²¹g™ä˜¾†mÔÝ.ó¢”þÇÚUÎYÜ®]§„­ÿUýÞ~#ÑýÄsSF~t2À2E‰½ÊžT!(F wêTZ ì-,ÅTÐ w¢œÂ~‹v¾KtvJ·=‚Ÿ9ðSà2u;y=lWåèäy*L}CO„ú)Óš" h‘6kö@pÓ@!+_ÿ¡œ?¸ÎÂihÌ+3J$Èÿ$À9³a˜›LÈêJ:zt›ñšã0=7?UlMöºm®P­î(§ÅúJ¹9"øu‰ÄéT¼'Cjç£Øø€ PøL ãG:×ÈaBãD} £ð·ú‰Ž*5 ¨:t.ªmâ3ÊvÙŽ]ê*Ešm±êØÒ “˜F‹Pý£]%ë|®üÎ):û‹âÚ?ëÅöú޳”ħiþC Owöá-«!¡‘#àÒf5CYžkÛ3”Õ‹Ð`ˆyOv¡>œêWÏüÎÄB™×Q*{|RC “Z'Ió隥í+«ö±ÏÙƒ6b2Öçèiïñ+}ƒû*? hFÐ^¿ùÀ‰F·CÿÛRcÝ’d3Ü¬Ãøš©«ŒÐuÑ\ŽáÇÉ7í‚7…qPý÷%ˇņïÿë±aK8Ò“–Xm¤Å ·m È~ Ô Zß_5ÃáÚv¸äèå×l†\ 6È5Æ”Ž–B`ÿxb3{´¢u3 éÆEÅ_Hr—„/¢ž‹nRjнÈG! žL®«CQi3¿ â@û¹rƒÝX¼Qâ_ÞÞ`Fõ7ÕRìñzÒ‹ô„ `ü:îÅîû,üö'£{b–3GÅUa© "Pk:zº½Üà¢v%vÿŠ(*X"®iXÓK%C;‚¨l±²ÇÆ·(Ö:Ü‚ç,«‡‡qÁÓˆGWºök€0¦Ã;‘ÁW™sž´OÁC*dzڔÿÑ!àòÖ”ÍÛÑ€g);èʼÎ6ÿÏšw=ci¨ ”4•#"9¤Ц+ðêÔ4†°1P‘ó"þ,o ^òɱ.×w¾›ƒ:‘ªHlQIÆþ±dGšn<ù[Ž ÝÌ7ô¦Íªky”ÿ‹Ü’0êá‡?¸<µY&¢5ÿ[.eÌ£¬Ä*ÍÒÚ~]žÞC“®âÊ~p¢&Nrs±ŸÁ5eoîõ„{²¹mŠÄNÉí\<làŒÁä™lâ¼£w?ržÉûwÆS®¶dýŸmÀú!! ÈK;–§ôÏY,B<eÁ ¡oÊkK3;_¸Õ+ioχ¢1OrTÍWuÄLÃé9a@ýX¶%÷HèêÜ31ùœÜ+Vÿ‘ õ@ÊPûÉD W;°wP0Ñò¬ÕÁ®&Ô53 á Ë%O¯¼ t¨-–Õ275EéL4C£Î~£ü;àsþ.ëà,5‚©úîb7@Æfñ ¡•µ ¼á$‹òÞYÌ)kØÖšãRŠþ»ö¬pGjöiн¨¨|Z(n}±¤ãÄ‚.Tb|Qƒz«e—ìÌo(G|fsåÏ6=¢€Sû·å¸ƒä÷XJÎG0Š8¦ª%:®åiè‡w¸Ló:ºçÄ‘’³R“ÀäÁÈ]}ã~øA˜ö›¤Äi¯HåÝ^Sï®GÀ>˜U¡ÂT;î^GQü° #kqü ÷Ë!!b'‘hB3˜äƒui%§[¯£Ù2Ðö·»˜Q½Ó=waaöëÃbò?Œ7M„îé^ý W®,BÝsýxé¾i}+ »¨7Ð#¸»”ö¿‹‰îÈ‘K‚">÷MéIÕãàRY§ÿ#îtuÎ&–Ç'¶fX—¤AÑàÛ“½j-‡ìÝLâúå+ÿ{bû+†;ÕÛ:›9:¬~Ö•™±Ö6ÔG袺ñvœÁØ~Ó¼TÓB/;É®šVš‘¼I™‚²ÎÒÖ„çÌycäÈtûo#n _!LED±%ºUC0MO÷³ú/¼0Äè0üÙ«VäóǸarÆÿ.{ž¡Œc¹‚ºŒoã‘ W3õ˜(Ù8&]ˆØ«stä…é‚q,å܈c5 }ôgÒ»(ÕúÏò¨§`ñ|ûbLH»÷q;ÄŠY ðDnå(û‚|œgõFñâþ!áÙ€ƒ‰z®÷ºë®Î©õÇXð† K;mÄD?˜-ÔWc4—ÚËÕ²£@¯%`—ÍDû6݌ߣ¬††DK€ßv†F›ö·½¬vª^§6à³Â¾v&éÁxúï¢SÒ]•/œ-#l#N\WNñ› *Š´¥@ŒY­g|HÖÈ´× ÔeñO¦¯%»,Â… Ÿ^»ÏÎÿ´£>K81?€p N-WâÁ“ò í{l¸e#””2V’kå ‡Èà(1 ¡gx«j ÷{s (˜\C1aÑä½eŽžm…~±ƒ=Ò—;>}DO"ì‰2€€T[·¯ÝJâœO Þ‘ " ˜>yé á.=h–0ˆÒ¹ÊÖÜ*"Ø5Ø€Arº_¤Ó­øü€á¸€D=¬‹¬ÕeϪ-ÁÊNA€De;q4ð~Ò“ÇÊ!6ÇQòcüyfýŽeÉOà{;OM‰Æw-=rýØ‹ž+©µÊÛJ嵄ÃK¾²ÐE3åå³}×ÀèRÏä•0óР9K6’k“”º[y7E2NQN/ièy”7û”£tÙ‹‰­“añ€ <).·^3“§¹Xûñü2zŠXâ¨Í0 iƒÎ¥ÎñhÊïuÒ䥠kWlÃâÀøNÃb~§ñíà*µ¤ÕùL˜p®šæRIm¦‹Gøós-ßè ã|ÿÛ˜>@j™tùÖf]õ±&TÌìáÛ¥NЊ½ûì-‚#àu`s iº(œïÅ6‰zBh°Œ¶âT ©«Bñ¿îØ€ÐÞõ‰Æ€÷‡ ¥…š»P^ÔYY|Ò»Nü¦…a›«ó*D¾lœêYß)N9ŒkX7˜Ÿ¬µ´4!‡«f Š ÿÇV¿¢¿@`8$…µã#»–ý"Å¥¢GŒFñÕ«ø­v³ê´œjcJ(ëbã ¾)#b+½ÃÞÝ;¾B-]„í¢Ö冷ϖDÆ…#LšàŽ.åÇç¾z†£ÄÍkÒß®ŽR­CR_Y†´©¥ÉßȆ޵Óá¿ó*š•4Ç¿þ­é’›VXÿ¾ëöoz=gZõZ«n¾‰$#Bûº'„Ç€¼Û²úÛè\Ù/ô'éfïüŠÑfÛï?7#˜Ì£BNùîªB¢šõ5½PB‰"•záƒM´° å÷¸C‹éÆ\¹û ‰?yó›ûçÆw öLiˆl¹Í§Œ[C€LŸÌçÀÈ®¶Àדè7=~¸øéXÿ´$âGá|³©fwýì”\èã÷“Y3cñÉÊVõÇ GPö…°ÜA'×R³= =1î’£}«ÛDLé8½Þx?bð2ÓÁŽ„Þú^$G (ÍZÒ¤rHºª*mÛ#ßêŒ)4Õ÷F÷,+÷ÒÅÑÉÐó¨_*ßøÖVD¸¨?ANCÒù¬³­u¡V¦‡BŒE‹S¢$ n¡$ý¥X½¥AÔ«´;1§¢½’J@•ÊÏia΂æ|ð–£:ŸúÙb_òÝÐR”öýõ›Ïï„…¯é'Và 1ï*Á°é˜sŽ9˜…[Ê¥ ’eZ( á[vr7?™LTÔìÑùF¨×¶v!‡­7ÔŒc^432˜‚Èœu³Ù?5yD³ ï-fþþë`Ò¤˜rT¦ƒÁ?ÍYìð1¤\n^¸ïQ¢FXŸgµüï )pÕ„ERö úBοÌÀ»°( "¢å8üŒCGÓšú¹à:픑£™4-Z­âr‘s9x¿G ¹|E?õLªs÷›B3,HH.ô“Êaпµ>üœÕrÖoXïlÄÊ>b΢‹nÚ¤¼~•8Xõèå°²+tM…”%|‡MP³Ä†< {»‘e&§Ëš‚çQ(P8O+Güƒ¤(»+Iåγ„lKÜÛàwKy ¶".ú|·. ø³&ø¶É_zjÏ„2©‰©Ð´“uЬ”„;‚É ”fˆwœ1 °¥Ê¢ŠnéY7ÅÄ‚I;Ó¿#Ô‡q>ÄRjhÐ<ˆ¡-&÷ÑVøQÁ£Ö$.©vc=¸|§æÿXé¹íõæ˜4tåâ‡éò>iG܇©÷ ë¡ßª¡Ö˜ùb¦2ÑO5>Íæ>ÂZNE圷bMl<ì±ýn7éQ41à¡Ö¶3Ï*б'ŠÍ‡Åu¨¥-ÔõŠ»¡l_ëáœQ|d[¿å¶ÁÃÔ!W}7vÀ·Z6¹|$Æ$d•j†QØSV´j8´Kx ÅO2¾Uâ„Ç,|UÒ f%0C×n± 8¬ “Ñ9^.eߦeê×U Ôm“Ð<_ ½ï òt-s°5×Û{Xâ˜XlÛoSMYÑ)ƒ–y%?eÓdV‘wJÈèþ®f€ž4Æ)fo Ì™qWÅÈ…ãa“ÍÚBñ}ìâœBÃÑžÐcÄHÍND ŠPÝI3޽VÝi?È>ª˜­U¦““‰çò¬¨Ú6%'ðµ7åÎîfòž}×þ#¯|à±&¿4ÁLþbøì œÍJÈhxÉÔ¡ÆÍ]‘³®µ3c˜Î‰>aèÔÙ£C“ X'!ƒwEÒ"ݵżo˜¿ÕÞnÚcº‹tO„ÅK,õK>±—lcí]é?ÅX­+†)L’Ü QÄ0ÃP£\"¹¢!LšËe+ãÉ‘{Ü [ŽuE®qTkÈÉ1‰©Ñ±ˆÑö?ôe?ìûþÞ‡÷íý~ï÷^sË!ÌFk• N8&¼~þVû9ÿĸnÀ˜7ÏPÕ:|‰Åtœ×ÌÓÑô¼Œ¿;Q 4ØòÝ4=aO¨±n·è¬¤„CÐñÞ–e£®?Û1;½2 oÕMðf3ceqEfŸ A¡BF‘iÒûö!ÂYê£\¾XëlúѨ]÷©~H|]æx¹ [Û´†±àšâ6c ½Óçc[ObÑa®Ÿ1\=ÓMHï:Ì ×ƒ­Úñ¼é‹XxÒŒ²¿nQ©¥íñsEž£^Âé–øùÆ&ä3ê*4Í+ƒÕ‹-˜Àw­¡&˜œXsåÅñA~%ÿá)ùU³»(#ºš,LîG2ÄÊÞâ³@¾%oà›[3v AòòŒFnéWåV*ª” A‘gXí‰ÏŽú&ÅüÚ9]Þ¢ÿȈ­ŠŸ'«¼ÿóCQ5ˆ‘–xhdÄz80t²Á “ì)©f8>ýšøx+k|jrñh"øÍô4bA’ ÒH/l5nûSX']‡ ÿ€ð|‘ù캪÷¢N!YŸöölÄ7Æã**ðÃõ(hˆëû‰Å…C¾`Ëcùm5$ñ€Ú’/Xæ³,@pkî19Âiy®~Lë$¾qPËŸž3ê~B}°UtA„Qz Ch¢¦÷>‡Îs˜êq‹€î8“´ÉDq㥠8m.iëïÒ–3.ä÷¸^y ”³<$>]‘õ¦¿§ÙDIºÐ ºœ+*·’La-Õ—wœXiȆ;‡{Õ£_»¯tåx™rϹ¼Ò×+’±Y©Îˆð¶/Ò”1¾˜sÀÂÝvY³v‘Åå¼ ‘œûôRß©(ÑOAƒg$nTOj5̦«wòiá^,ÙÊA.…ú5à îG«ö¯;“¥KN?/öD#_ÚÔÿý[y2B ËsÏ­Ë"6NWPm•‚|J^ÂÀ£úÎ’RÄ$…gSûŠ+±4=2Û •ç[)ÈI·¶š—ô´¿v˜ß ²/õ*n‹E¸âŽBÞ&L«$‡v5Z&â>„µ”^—°ŠóSŸ©™v£ÄßÇÆu˜1êÿ -›4”’¶&‹Š3¿×NèÖ¹†UæcE¤¦@W/<.zdQ¸–iÚ2\ó¡1î2úùmÏ’ÖÙt 5šõ«úæôeÜÕ©”ÙU¡,°(Õ†­ÝzoÙfëYÖ‡ÞòI­#⯄ïiÍDºƒImoSV¦Ó’j@MÈSdbbV¥}Á fèæÝPIs\'Î/”>ÊV0Ë÷”Î|©q`(¶µÏÅjÂõ»Œ£F'DŽWì6èƒ`›13”Ä-ˆ#MBÈ…9è¯jv¹Ž_Þ}WÀ ùŠ^‘O¿ÎÖˆ?½h¾ön•À¼u+Ö¡ï】É⬕ƒ¦rýéRU­K©v÷T~õÕ.bÑóÍØ~gÚ_Ìï鱪í;6È^ˆ—à pŠwÇüsç´t°ífÚ7“º6†ªÒêéu†kd ›]6ëlTMž ×ö+®‡R5Ï›So @D_jì{Õ¬M‚gz2úü‰Á.»uÛ#Á…}WúN¤XVM8•¼Þ=¾‘Dý#KÉqßâ}©sçøjkÉ_»û¼(S°¬ï '¥\yó«¦Gß´ë¯ Þ9yÛãó $šœžÈ—°, cõO ¡w8ኔܜL›Å”B¼˜ˆB•£ݯ:õžÃ3[՚ƙ6]Æþ–_;æÄì••½èb pàë-Ÿ ½^áæ'Vœ …ŸÚó_bëÉÖHÀÓ|ŸA”]J«ŸŸÅ<º`¸ÃS.ÎôÇxŽ”Gß À¾ˆV”èRþ–s8Žygßp¦V.ùÆ ¿Ñ_äCÿ€þ<ð ¹î‹'†b}ñÁ¢ÿ€Y]Àendstream endobj 28 0 obj<>endobj 29 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 389 280 389 584 600 584 548 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 333 556 556 556 556 280 556 333 737 370 556 584 584 737 333 606 584 351 351 333 611 556 278 333 351 365 556 869 869 869 611 722 722 722 722 722 722 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 556 556 556 556 556 278 278 278 278 611 611 611 611 611 611 611 584 611 611 611 611 611 556 611 556]endobj 30 0 obj<>stream x¬»c|¤_Ó.sbLœžØ¶Í‰ít’Ž­‰mÛÆÄ™˜k‚‰mÛvvþÏ~±ÏsΧ}ÞÝ¿{U­ºªVájÜÝäßUè…MìŒ@v¶ÎôÌ L<)µ+ÈÙÂH/bgm¢`dmáà|ªØÈÉEA@g ;[1 3ˆ 2ˆŒ,,fnnnr€¨½»£…™¹3€JMYƒš––î¿%ÿl¹ÿ§æÓÒÉÂÌ@ñyá ²¶³·Ù:Bü_ª€@gsÀÔÂUPÔ’–—PIÊ«$A¶ G 5@Ñåó4Æ€ïÆ ['5ÀÔÎð)øg0¶³5±øçhN ŸA;€'{±Å§ÈÍdÿŠ`r´±prú¼X8̶Ο9p¶XØ[»˜üÀ§Üô3™Ÿ öŽvŸ;l>uŸ`ŠvNÎNÆŽö΀O¯Šbÿ;Ngs ó?¾,>Õ;ÓÏ&vÆ.ÿäâ ø̧Öhaëp¹} íF €‰…“½5ÐýÓ÷'˜½£Å¿Âpq²°5ûïèŽ 3 £‰5ÈÉéæûŸìü÷9ÿ1ýÏÓíí­Ýÿem÷¯]ÿƒ…³ÈÚ”™åÓ§±ó§o3 [ÆÚEÚÖÔÀÌô¿å&.öÿ©s9þ+ATÿô õg@;[kw€ ÈQÞî³µ@ªÿ»*3þÇŠü?Pâÿ‘ÿ”÷ÿ_qÿ½Fÿ=²TÿÇåÿÕ<ÿ;´„‹µµ<Ðæ³þ‹fÿÐ à?xæÿµhcaíþoÿ¾Iô¿ç ×I;?{\ØÖì“è™Y>ÛõŸ6´p’°p™(Z8›LÖŸð/¹š­ ÈÑÚÂô9®ÿbƒO#fæÓ©š[[Ù~N€ƒû_*­É¿µù?óñ¯¨ÿëœÿ:ý—3ÅÏ©vVu·þ#* 9»O ùÅ?""vnOzfNN=+7€™™‰ÀÍÎêýÿáî_@ÿê?¶r@gG 7€3àóù?ÿ½Òû7q[c;“X@ÅhkòIÿ%øäüóR -`gbaâþgò?SiìâèøIVÿ"‡Ï<üçú_$ ¹ŒŽ¢á {é®pŸV-2HúttØÏ, ؇lTGÚõ“hæ×‚®LeÃ-²œ×sclžÈïû¯¡Ž®¹VÊÂÎhúq?hi× ubv(ä×L…é¾ Ê t¼z©A<õÝìiÑògø2ŸÏ¦gsÂËÛJY¶aâ Y”²qÌýmÅ6$ƒñ»3QgÛÑè¼#ié û`‡û/.<*d­zàãkEY`žƒékBçÛD  Ø1n”µ´ýÐ9Ññ¤ pÎð• aIKFëÀØjÒªtK¾ºžW(kéuðZ”LF=Œ£îÿŠPÿåiÙâj3 ˈ&4ŠäÎæyq,mAs‘-[jhÒ5• ±ú‘¸Œú"&ÔM~¯äyÙP^8n­Šà.o@“a³&þ|>#‹!¨R©µõ`ç«{-Èr©µ_U[n×! ºlsçÝUýJ­‚~çd‡W»ÔhtDŽU檼ýˆíé=Îu³5G·Qî*/¥ˆ=4nleøôåüÊÌõOÕ,`œ6ûTဒµ æôKÆiìuÞĹC|ãͱc—3:ÊõE¨,« 8}…›©üíð§BÜsìYwP,8ÊþÖ„Àýûú´.j §`ƒï<{·néÜDæXÖ ‹¸l|5w¨íœ,á7Ždæþ›õ»¬† ‚'‹‘ßóVGiuÛ Îs®ˆô^ÍÕu­´½E¥­Ò¨z_’MKW|½îL¶æ 7A²l5gtÜ×Ý%GüÚñHLh«´c+§^ÔäpæÎ5)‹>´[ù›G‚ó{—.?ì/ ^á.ié72ìŒP,[ËåîDVÅã“•J·è_9Â5S L‹¿ÜÓø•\Ñ 3Ú†&:Ñ`¸ËÒ3ÊÙ±<¿ïsDD³c½ÇÔðÔr¾^3(#â‘ÌOp–„†K$&zÏ"öaë¹ö>ø6þ¦ÿe±pã>ÜŬ3ÚÓÐíÅÚ(wå&xìquìÏËÐ.(PÄð¸ÒGš&¸ãnôgêw×ízôj²eŒl¯›F±’¡[è¹F®ù.Õ# q3jí"œ.ØÜ»½†miBõ'Ó¼hÑÚ/Ùþ•üz®ÃL™5í½¬¼ë™Ä,ú­[æÐö©üë8iCe 03í^ÿ@ÆßjÉXÖ%ƒq5yÛˆ ƒžVÄ38°ÕÖÃÓ¨j¿X9¨Ê5ÆÓV¦êÁ=9ÅæéKˆ¥.åWDtI½¿ð† –e׉Ò{zÛL?LiU^éh>]3¥yN¸i­C@©{nû"~×&Œâ;¬Ië ¥¤É@ô%NwY[$ßžJ<á¶…#÷Dã’½d*B¬$e3¶û²Ç7½ø¯Z`XbsÄi¨èÆë@‚N$FŒç,ÂÍÜœþ:T]Ó´.8;>þG¹6ã´¤TÁµóô®V…šÕXRè**å« gÚ.š4‹[Y×é=<,ÌB»â¨Ë“I;Wä{¿üŠ+gu1%0d¨R=üºWfM+ñïëì¹ïóÕƒÌ[—V1¯x§ “nõIº<ÅaA©·ž&–.rveÜ>ÌžbKåÂIú0é²k¢Þ»úbÑäÙèõœËËe4/³(¤¯{“Œýá'›=*=°5¿]`³(bq‡¾¾Ð—ȨLsê3rZ0þtX(Žh=v­Ÿã7h2¬a¤æ¾!Kv¨Ô/ÙÀ#—>æg+æ?çFOÙù)Âa¥|)¥3½ÍÉûªvòÃÓÖ=A G$ÖwcÈÀ>zÔgÿ{Ž¡‚ø2>¼†µ•\Xf]X­½½w5N&ÚÓPÐû™[>Gîµ~6–;€ Ó~ÿýg—Ðå1'iÞñÊs•ÛÄÅÝZEÜôÉ{‘K誷Ó@œÛ•†/–”¡C/*pŸ’ÌÖmk7„ñÑ‹¼Êl‰z<òàÌ$¾(_Äçáx2ºr²o>¾^EÊWÕ$·ÈÇ—+îwø´\IF¨Êxe?¦ ÔÞµbk4&wÃÉ#x}ñ°ÂÉ<³ÜÈXÑ`‘]|Çè¶æ 8žvþ2¸“ÄÿNOPÎ}d33›UNwB&æã¬—Û}wii£´¬›Å÷§A[StÌB}ÅÍÜöZ Øà,kt6ý‹ÖX8Ú‘VÕ™ÃÄB è:'õ9Êþ™-#÷%²xko Ãô8)Z&àKµ,Σˆ™–@ç„Û®ŒÊßb$Ã5ÿTu”Ã^Mb¬sb°7$°¯¦±¿òÀ'ÈUЮÄ; ¾;Û4ÓŠÁŠûù=µýþ"‚Ò/Ž#ž‰¾Ì­pc ‚¤‚¡l•§FÂÊ3åSå±ÎÁ_€²Êï…˜ÙÝq¥WB(Ù«+äÜjý•í²íªŒþ&žÙBmÌêþyµ’ÛI1¹¿‹ï *åvsY(ÿÆÙméQEÚ‚}jg:ú%Ï%)Êœwb׿˜µQÛä¼ AÂ×{…ïNýy>ÊXÚ Uœ;ÙT{óÛÒh× !ÿ0zzÖ#ð’) NØ$lýÃD ¨Œ¿»g²ÇF¯X†¨Q³§NléÎB „O|"̢ыš+a5Í!ÌÏÉGvÚ’qê»zyEY,à0`>“:>V.CäÞ+zE™k©\¦ãé¢HPK x†ñl;äâÙŒðŠÑo(G1•$f¦)¯.! m\'¦´×¶Ö ƒ—¾¤w£·ÜUIÓsî4¾vuF#ì®›ÕÍÑÝÉù¼¢ýÉB´ɵ&ª‚Ø¿Eºéðxމw|qG…p¤ÿų;ÿ«ê ¿wŠ)&†!ö±íFö¯7[U Ý« ç«Ø ÚQadă™q®Vޤ' úâ½–NFôñ—”`&Æo‘ýY1¸3ïŠ!™"U¸§i7'Muã4øØ˜ýëq?.xÒĤSμMÏ?°¸ö¯¬ï^êZÀÞÖ‰ô§ nÓ“±¶ø_¡²äÉò€ÕrU©'ZÇúç–þß­œ ƒ0Z8÷@¤Èà_}Øv®bñ_¢NQ°Zˆæð=$æãUÝÔì$ÌíѨάì™ÉÅ$29ÌÀ‹ÆÞHU ¬r&K,PÑëQ5y…\w$ÛÖêÝ·H5/N"f^A##λ¿uTuoë`ÙXf#%¼ÓéOÿ¤É.VØÞ‡ÕÆæÆŠë)P³ÌSE~±:Y.&†œkR»ØG|ÝÔ7Ñ “„ ©Ï-æFY‚¡w¶îÖbL×5Þ²Ctj8`#B}àt² |n#]HµìÕhS·›à¾wÉl¿×þªR°Í³nƒ˜ídà/³§WñV9'þÎø:G0‚/ˆsÒã¨)¿e1‘æ-ŸÇy[$.h_År›ÚçÝ ûÝó´vù ·r $òt háfvNŸPêPªI‡ÒŽ=[ÊöG%÷žl‘;^~Ò¦'z°¹KœU½¨Öo ;~õ”«*±ãŒo 5áú†]œX$Þå\ÂÜ‹XøH Ã,Qˆš<Ä4PmAÔöò·ÆŸ1É]]Å.`¸G«ÒXir‡ºf¥ Ôî®ÒÖn0þ¼ÔÿáuÊ%ÿ j1ò«2(ø›Ãžæ›ÓÖîŒ*€‘(õT°%’†T‡}4¢Í)WbÑŸ³„6s/]Âøä‰wäN™Ù³eF[¨üÍ;Ö{{s°Ý=åïÆKK¹#KÊ&˜„ Ï¶CDÿqƬ–ô¯´çî­žË_¨&>æU £¾œô“cÈ$ëØÙÞÐZÇ`Èlƒ›ä 8l¸ÒO؉']¦·<Ó¦JŸ£Mv¨_èæHSOßW0C"\MoPT"ílK\kU™*G‘ˆ/ƒrl]XA_1{ŠÞD¨‚Ì¢6ø›–•£Â™ë±Æi^æ‰Wk¸\ü¤ãž „[°3«A±Ê&îÊ‹""Û°fÖ—ž/½ª–-26¤ kÝÓËÐV:øê¤V#xÖI@!ee«…Pƒ— 2J(FÓFÑTL¡U·'k vlÁÛ£õƒãœÒ çœ|>K"0¸Fêa#vÖšþ¨àÄ-@˜S/ç!ᨒ¿æ,éªxQm²‰;ÆmJa ‚ÕJC-AŽzýT÷ýÛý[ºŽZ >Ë Îà«ÀS9?5Î^М%ĸ£Õ%„}‰‘J[žîA—ÕÝè…hŽÏøïGkô5äà`ôps¬—lCìáZ*Ùk[!ÉœNùµ:ešY13Šm$G߬)eCô@@/œB÷¹D耗¥©5Å»° +d6Ñ­†8éënJåÀ ”U›ô=H‘2áœÄsðGÄ„êßß=Éðb¿ 'g´@I·þ2<þíÇ·¡uùÐj1¼K&£¦K³äl¿*£Šè¹C:Ï3±àÑ\“Ûæ%ß•¥¼È…‚î«å‰ë&eÀñv P‘§ƒb 2jÓÒ`À+Èó¼$#6D˜(z,-!p¡¹KwB”=šÔÆŽ‹­÷€ç âd‘W˜Ñj†¾Ð6AYN Ùwaf…bFh>‡…XžüÎXÚ•ºXìxæhÉNî[Å'I&X_–UtÇ]ü® lr6mžl¸*ç†N&Á_׸8š?¯s:§¤j0¿Î9¾9ûžo“ûÑbC´‘mÙáx˜Ã9¾§¥kR<ý¶Ž>òb€¿ï¡ÝoàƒsÉI.5£´£SõV~5 ßT&%vO"FZŒ–½®Í·'~'³&À2qn`|¨Òp{ 4`í8©$l¤··F)ãªù TO"Gƒ®ŠÐÕ16 IÒüÈX Ý—“×ùC&-„JÍcŸEÊÙ¨Ndr€s'¥b‹ä!äuSq k8ê[$)KbãÑ”í¯R#õÎÀ#ì^ ïW¸ù2oVÚõâ.&ÎJZÙYí¡‚¤—A|G@ÀDxGCG‘yþWÚBÒ¦IÔœüaö ^è‹M7óÞ• Þ%‡!*H—èÂýŠ, úÕS•FvçÙ²dŽ:NZÕ@Â|äÉ¿™~f¸yÁ17€K—ŽZ”l$»ƒ—Ò~Ü1I|µ·pa{Ÿ4•®¡1‚ŽjzÇæ(Ôä:Ѳ¯ÝªéRÁaå>P†öç.9é_UNìBÜB_Óªf%„Øb+EŸ8Öe§¥øNIIxÜ™uõ¸¿qùì÷¹‘èáï •àòcŒYxb}Ìø#:Éæ|þû´U;^ù1y"åÏ«].ó¦}/Øš¼-Fò„¤Gˆ@Ï[“ðÄã5U‡”.F·àÒÇ£'¶caRSw›2þø]š±ð»³c"È` >M%;å A:ÔJ0,δIV=k±ÁU’Ljj7³øì1£%n·<`̦T7ÏØžÕ²­¬N©ÈÙV{®zœÊí­Å·\Äob4ïðöÛ̪™ÛhÈR|>º»:*¦­+UMå‚4yTNè=f é¹BxžÞC‚MžxO£„äe†(‰ÌçÊ$yDné¶Z'^ ð=™è\ºTõ ®ßæÖW?ê'쉅pb]‹äÖjî6õ“Ö’I»°t˜–gJƒ¼JÂ"àY=°ò’ŒÅ^¨‚Ëõ}¹²³%þ å$³Åè÷rS¹^ªºz¶Z³Þ{ÒÙw»…½“a.ÉyÐÖ ~ÊHl¢ð_ ºdµÍï6^ s·År(4›…EÓ).i •ªÞ]¶kŽÕ½ø³‡×R§£Ѥ³ë~’?øjä3jo4v à¶­KÖ;9Jeü›ªV™_¦Ñë  mÌ¡•µŠy ¬WCáë1ªì†¤jà'^.®¼¦}öM¤‰ô­Ë¡£åÁS„)¬‰i»‚æ`Ñêíj Âú/ÐØÞgñáþz¤ø³«Aö¬¦Îq]X®Yö[ÑÇ¿V*¿L‹Ô ¦¸ P´8˜·ånýüÖkð¥‚j¶qŽ09Eºîˆug¾GKt nÑI³AêŽ ŒŠ Ú¦.»§pAwy ·÷,iýþ€Lµ¤Y}„+ë†+h믿wÕ‹0©É{Ô¨xÙ!³×ÙtÁ'ôAIÀ_¤ß(Éf¾lP4g| X$ÙœÊCz"ª^Ò82?¶î3è&¯b%–}²!QÔêYoñBM^%MÿÌ&Ô3&ƒd¯q5Ûààè¿ëýVhÊ$9•X_QÑŠ†“¢úðU ²?.€ oO||J-|¡m"ÊR2ºç òþíf ‰”VaŠ¢{úRÃd)ŸŠQ²b8|Ž6eb鎦S»ß©[œÖñeÙÙ½ì¡FP`ŠÚ€_¸k‰c¾Ÿ=m:ít·2M–ÐCB'„Ã*QúçMb|ä©.`FJ·D“¤Å‚cf­ ’H¼s9"§Â‚7²†¥/>zÈu}µ»GÚÁq"‰Á³5¦ƒÚ_M>{¦k(­4ôû^lËT/JŒå×kWsUqP dp˜˜».'ÚÍ(àÛ¯«ÒŠë?[ ï™QO"7›Î2ì+#ÂPÝ C0JeÑ6ð5…硉$O6SIøpëØÑž9÷ýîø»â…|Dc©:ä(Q4´°j\}X¸:oU¿±nŒp+G í[ÑjýôdrÙ¿Ë7—Ðb‰òæx/éŒV$Þª8,:fo¹ÁiU .hû¹©K?ôÖ4½W£®5HçÍÁ;È&‚uc"*¾—ÓÕËøîS¾ˆîrÁÒe"k¯Äi+Û¾_ÌÊÿ¢²¹£>¶Ä²®CåoHŠVÿ¼ù‘òæÀ¡²È­Ÿ¿Ê«Y´xIÐê[T9NØ6«ì¨$üá±ï Û5«ŸÎl¡Ùûåhx6ïkæÚ¾²\v¼Î|3*Ÿ(Ãò)s·ñæX®Ê „ŒMå½2+eŽžˆÀŒ0ûKµ"'Nïæ·'·“„‡6 àÑRDs Ó¨lú`˜v¤¸ ¿„Cq"b£L"^È7ez-¦XZ –ä»Ô]œ¬8þ§òA -Þ*.žOS€SÜÏPÉ¿ša ò QÒ¢¾o½jµÔM4Sp­ÁÆXôåøV˜ýáB¿àk=ïþ.o9mì[LÈ1³Èè ô¸÷[+(Ú':&ÃϬ›Eô_è–Åþ€<ßù@t|öç9áì¦oƒX!'ÑŒ{ñ¦ó¯ž¾¯4b‡ ¯IÏq@‡˜xÉ4uï °ÃNq¾oç’Jk®È/¸ŽÙ•Áé}Ϲ´~ ý”£®ƒëµ®8^-i§F‹_ÔöpTv誵]<µñpæ÷-ééPJ¼ø[ÄÝvH*|\M†Ï/-xP?N‹# QõÏ4*aÇ N˜Þª ¤­ô½²aêa±1Ô{Eëdº±[ö¡i‹pLCL@UÙoôóÌ5ˆ?º½ÇŒ[J'\“\ *úMŠ˜ºË]z"•pƒéb œ©QƵ¥šå9yñ\¥6RÇ{FZ[å„NîUÇðAÏFÆ,pÙÁ77o‡0`Â| uÝÜþú>ÉJ§†ÉzÄs@ÖYoÝ/w#*ÖõÔ”…vwí eV˜–¥w–´#REÝ‘$é9sõN[fiŽAÉ Òb“z6ÌL°ÉýŒÒÏ9É[·ç‚R½F ”ùKÎhèI 8Ú97ƒ>\‚ïg<èF)¿jš¹“”ì£½ÃÆ=„ƒtù0>„[e@æã;‹öŠ+Ç _ú/>Kš[èYNá2Ž nw8^:èU ΰëtÏÛ ûêÄ:_N®=¾i¡ôXaðŒñKO¥$‚žå]ÃZˆu'ãÂ%¡Ñ\H‚c{q3Ô•ê´a顽×8“)¯ »àÄç'?™Ø¹u~0˼t'f—Ä-× xþòžM²¤cšg»Ì¦‚v¤ƒºÊàå†R=êWdË"K2™ÙfÀ™˜ˆc,CXlh®Khit`å7îƒè-·ôåd ¾ƒuFå¬OÐ(ê *†±¤.Ê¡„­ô*;%î.ÜýR&°¢½µÀT ŸºßÔk€ÛÖ³Ïõ$[Ç-ðãv«D_?jg—„”¢cCüÍ!P…Blñl÷±Jg D \^é]"Øl’ r!áÙÇàuÕ@RÅ¿lO­…Ä_w‡p t•L¸óÑ_ÇyTãñöý³–Üòì’õÊȨ”Ø; p?‹ö>ͽìÆIëÚõý‰|Óµ$‹Ýý†”)"ãtã0xÜôí•û¥B¤ÿANËò–-ÂFtÐ¥zåÏp}ýÝaÑ5~Hi“åž×¬ XÁU³G»ˆ®*ýkäì‰T=;û¦€¼nñ%¹°‘ì„ßDÅŠgh´ÖŸÅò¬íc°9Ük5™²ÐmÚ¨"ˆ€ºýN7úó'‰p×€úáÓl?9ŽY+l[b $“Ò¤r â‚`—îèÊM.Z*ô¶$Ìr@z˜€òz¤ëÁY9v„Š1a8\@ ó.ó[»iø-xŒÄÉ~¿×òŽP6„³DÑT>ü!¯0ªI¾¢)þƒ“I4o*] œÄk"QŠZÒ&‡¡è×P±nÁ8»~ÖIkacÓˆ­IœØÄl ë¼ùÂ}LºŠ=—”Jo:í1‡¹f{ÙlÖý®©8#c€×139Ì¡üyÐÇ­Y5V¨¬—ˆü÷—ˆ•©§jTB‚mRµp\úVß{‹‡'¨QÊ._&’ãâóm3`qq Œ.ËÆÎ w-â"ŽZaÕÝ1-´# 28_ÄÚÊPx/!LÕÜGÒ'ñ0ñ‚¾ñ1½n/Õ<¾¨ÙüpÔ,ùýM4a•ÚNëÕ<«ÍÉÂròÔ…x™òÆC¸Ò<.Ah‚{%~­÷*Ú¬ëŒAÜèt‹Å4}Iüç¶²¨frÌ㎑x°Û ¡{X/Îww¤µ¢èŒ[ÙÛî­îik4!ô”Lõ-1D h2¯ïžkö\Ñš–«Ø¸º³9§î•*ÈñbÛ2y³ˆcB|åÐpCkp³@ñâ}ì‡ÕŸ ìÕ!FÇ›B©/Áž>ŒÛ–£Ðà¿õü›kä ^ƪJrmýy¯jJÜ•x?Š è9%:V¹¯ª¡”åÜŸâŒE!ZÄQ#†ôçɨ¥Ï–ôÈWWý¥‚mt#Ìþ×ÕË¥nÎ0E ì½_ôz8ÊÎJZ°ÞÊ8;Zà«ú¬ùFrqW¿ÉsîQ:ÑÖ²ÊâöàÇ2ï•ÓJO„ý¯L€RJDðÛDO°áˆý]¿2¼A@ÿãו#0,øž ÷ó8Tû<²ù´9\ ôó^×b4'ÅC8Gú4o܇¡«1Œ³góLT½ð!+#‘*7›MðA‰üf?7ìó[–¥åƺ6z†cöC*øº®,Õ³zÙå<u•ˆ­îÎíu[÷¢ º¢Ze¾øùÊ–Å|¾QбŠÄº#µÚ½¯cä»ÈTO¹‚ýüãì™i¼û…‰ºjb¯w`”^vYþÕeÔ¢%UšJ€ZÂV¨yî ÂšR¹~`ÎXÙ„/ ßÉ{ †5¶Ò;‚\G_1Nó#ìVaû+´¡Š"ìßdø<ÄÅ/þ㓃ÛaGƒ6nµó¨èiK®~¬ý&]¸ØàéçÁ \†ºÄñÌ”>ü¸L‹K"s¤d{^Â=£êÞ;í»˜¿ÔM~7–`·0Ô~— [ìˆÕîE‰Z?Cós‹!ÅÒZ™zqØg-a;@ Žf÷ÅQûNzé Á?ó‚‹¥O—ŠËCŒpXikG³zµhÆ">Óœz ¢¥‰!¾aë#AeL[£%™xYXwÓÝriýf᛽ ¤Ä»¡2Ð-Ô‘´ÐpwÙÏy•‚{ã˜÷W‘ßå<³Ç„áª|– EÔ*"A„š„¨2…ª~)€7 ·ŽkçÛÝZ ¡.ÙdJ €ßäö¨ékŠ«h“ýü2š~ÜFæ/æàĸ©Üï˳9!³»¿ö¨¡!—½&'éL Åôº±ºÅ53tf%ªuÿdç‘×–ÞÃå’¯C îõçü‡=Ķý¬¼ ʈh'sñoñ@•¢áZ¿$Ó.¡í‚”Í_‡ì>:¼»\YÌ×Ðrœ¹™Þhm^yÇl{S¤] A +#]G „Q+RDœh>îI>ˆŽæËÅaßá¾ ]. s>5ëÖ &\å/´ê¦HñC{i…ŒÒu_{§`»Õâ*9Çòí»0‰÷ãýmŒ'þ,Q÷&о¨!^Åú"˜ó•{ÔÙ qè 1*7n˜lÒOã”Ü«“Õ`4³Jæ9Ž×ÀŒ—aµâ¨wưoD„ð¨Ìà’‹rŠù«ú»¾Àßd}ÉzÍ9C'†¨Ÿ#›½ê²:¨Ì°iˆÕLÐ\±Ÿ(+x¾“nwgí(¨ `_5 ë·ã ŽÿyÕž«ýîÇEuWÚö‡r5”äp-å´kÖÑÅV0mâ(ÿSZ;Äè $òB[¼ï¸¡¡WŸVHgK–Öˆž.ÙL>_ ‚³Qä}µv“6)\×—ªÙÀÑ€òùo¦Z¥åüY-èÐ]© !”sË€Mo¿zû ¶Åª’W åKÄ'¼ÒX£ Â £vá4Íy8'ù‘Ç$¤& kæZÊ›×NøO¼K×v ¼…Š@&ÎÅybœôX#yúÖcÐãÃ,`é·ØÏ{•Ì©;ç¾Hšq§ÙÿÂãÒåù±¾¹¯IÐO \6‘_Žij ` Ff@ƒÈøÂù*Á6˜_WüVŠ[ŠýŒ”åG/ãé•°U£ï]!& De; E^ÛyQÈšGÚl09ðRE–):)v5Ô•SM«j Üvªqƒf}¶7çÐØ¡Ño"þBJ Éó— «õø,#$V8Ô¯ZV–ŒÝ±±Øý4ì°¥^QëÅKék™Aºì‚&ŠMÝÚØý\ŒZ†3G$4Ó2ŸžÆ–#øŠW},ìú#TìŒJsõ°rfÏüßr·‡¸!YýYãæ?6æYt Ç%ìÉ{˜QZ8œ·ÒR\Eú¢“—•ûm&¬•éyX] ßûŽ˜I­ x :KÁÂaÎ B‰ãsNhy¢sf'˜|„Hº^Ê!$ÎIùÒ¼h›ãŒ;ÑEÓg"S «R[Ÿ[d­)™Ï ìˆ%üd” Ö»þIg»§-t7B¦ OÁdkRBíÚÙpï8ÎßY S^Vva#?ÌEz!}AK‚y V_‚6Ëü×[‘&)¿ŠqÜÁ£Jä>ï©åØîn{}UàÓWЛ Šú’&£ÁO`ža$Ñr†¥Û™aº¡ÞŽî²@O;¼Â e¨EH¤@ïÙu÷~epÝsŒk}_iÌçBU6ÚÂ…¾wMþEË·é„¥Qä쥓èv¿NŠ)½”»GuÙò¦Y'[®8w~+4!î’ž$ÌøvzÅPв«ÄwMçzlR9ÒZeÖÀph×Á‚3žÛú®‰F)›àFQ¡ uJ±cžð­-—SzÕeÌo))Zš8S^§Ãmq7°©llcz­&Bì¥Ö·DkZNŠ»þ—“Kë­¤d+áŽv¢ûò— 6‚Wþ/ÙÇ¿y›Èq±!и‘$ü…“üä‹iKjÈ0»º9?5„Æ×Àߟ¶Def}šâ¼¬ÕÙX×ÕÜI¬Oèñ¨0Ãyc™F"ê2Ï‘Ì(Œ„!XßvW ³›ºlÓožn‡Ó묭Ì<<û;!Pù¨&Vc¶?qìø=õºdZ“»¬ìÿ%ÃâNM”AUF]÷ é“ÒTb5Íïe,Ã7¼YV‡É÷Wz˜Â†~&d/•eÅ«Ü1\J©<º ¨,lʇöÛq€¤…yï§ÌOôqë§ÒúÎ$¹öÿ®C®´ÔãV~_®”óKMØx”¢y]á6ËäɽTxæë OER(óD|¸]ÄÙqä=kã° ªfÔŒ™c`“t£rà)]Òçäýr ¯ÉEÆœ­˜_ †ïàÖMàxJˆ"‹l2¿È2ÝœHk¯%î7¶X{ÆÑÆ*Y› /õÕ®5Õ^MŠ´;?+|™ÄŒ…€ÅýcÊxÜï!NüJ‘Íà„ÓL•C~þë];ÌißÝrAwZÉŸŒQe€ÅIAd×UúN)½OÑo¥§)O™ºI:~b_2¹AËü¢ ¥.ä É7bG\ _ºMãV=(ä– îZ2;U´,"ä”Ò!ëŒþV{q>½š9Ò/v5ûAõM}Î5À9g*T_O¾xð+ jÁã®÷‘ =59Ù NfPPt®‘žßÎ:)ËG7rûíý¢7‚(,­+)¸5Ìþ‡üÞ'á0#SÛØA`ÿïéï›&Œ7ú„RÖ`ú–•Ú[‰D‚ì±XôR§«>”$c„´zæk£@ûïWûÇðn:—ƒILÄJÑ›41'VœzÜá«ÐNwË"Zþ¶ábÐ×Dl1¾ÖZÖ‡×Õž÷ï„ì %PÐSa~]âûÌð’ *',ù:s°ƒàQÍ•} ¸‚š‰Î±ûAãß—P¸5íÜ¥JfŽc#™/°<Æ3LÊè(6q¦ì’?æÐÖ*鿹¿Öj`­ç+ ŠÔ#ÓrÅïê} 1­$ÈE lÝ'ƒ½ÈüÈsï6Z‰ ð«$âˆä}úÏ[9°Î{@2»ÄÙ4%›½O’‘üÂ×NÛìGÎHÿ~Ò Ìí/ˆ»‡põ{GS?‘eÔ]‚‡i1x¤’‚zôþ0Oz'Z}N³yÛN1½ƒqO|íEq¡qÁsžX<˜{ó•¯1ÅFà ¾*ÝÖeG7Êí,Àqvú"àJ̇X¯ô*"ÝË@ç sDÞpøÜ›Œ¼Ëª¸ÊœQ*X™…“r¯s9ó”U×MÄ@.”„T"->ÔÖ' Mç3p!Ÿ™ÖÒø<…+jÕ ×§9Ë(Ýè ßj,Þâjû[šxóžËÜT¦ñüÕ3Úò$us‹Ë:)ÎN+™0Ê C¦“–,Z&›¨®øœ‡ÎŸŠÃå¶­Ãó=÷øUnêž;fR®Æ, ä>ìV7ÊTdz{Õ3VºtlÿU<·Œ—±ããšâ.‰Ñû¤äD£P)Æ›À^ô¼‘à¹}nY€T5~6Ž3‹œÊD(Í;QeoÏÛ‹GÒo1$z46¥=þöm0†;`@óþm÷>Ô½öñ3gCÓsŽíòLï)¬kDh¨Ë)x8tÌ $œ1b‡“ºø6÷;ÿÜoÁî¼&v” Ý©) ùFÊ[š_Ác¨2u’¶üJ˜^Y{ÿüt=\öwi­‡=øirû°‘aEb-:ˆgóÚV’8ERk´7]¯f½‘ûKØt €-†Š ì…O¼ðÕã$”ï¬2¼å|h%SÕ|2úÁ_°Œ‚¡[NUsºUè`ö‹J«3yøt1+5æFÞM°ñ“á£/ç0Ì9_YòÏçÔ|d¡jøÅ ïZ0ß0áejf££¦l»ßÿ:§`vGvz–'.µYÝ ÉMñ$³Iª¥øZQMŸ\5ÍÆZí½»†‡pkúm‹¼È ÇÑÂ(c7qt;ØH®ÉŒé®Ó~̽)[†ÔÖWt®Fç³¾uW²*ŒWÖHY ­ÎbÒg·\·lÅÒ¯húþF«x1Ö DO0XR0¥Ê]­B¬:ï£ÊôÅôu¯€{“Š{¹m9çÝ °3˜ ¦ ÿN4¼Ì–Ço¼’á¸c(Á³Šä½ÛÊ4Ã|ÝÌíŒá—KÄ,º¿òîpzüì°òðU-t¯¬òNgfÞnìß¡8g o\ñßr¦ºHÅ>”p—ëDpK=ÓŠÔ¾T˜PÑ wty\Ì_ðÕÁ»šþv„KnÁþRÁSa!ðð°8º•$²}îÿJ¸Â(A‘ÛIgSž9ÉYÇDzØåD£y]CÞ_ÃÇTÊxO¤›¤H¼ŠZ@Þ-²ÊT±«µéO‰‹`˜áP½?O¡©TÇEa"™³˜ñM(³Š.Ü sBöªÁÃ6Ú9a}ËA g[++7¬Q,µ÷=ë&ÙðF€K扨üú€©÷I )VÌíCz¤¹eH1øÄR(ƒ\{™XT¥€ÈFÐi+!S>?KˆÙEꬫþMkáõOÉ3¤ó»ŒsÏ?`9,}ç*Ë"R¶<û žKÆ¿žì)¼qy$>ÕOk‚N{z  FªC÷d$t@ø †a2%£Á^ãqÌÜgÔx‰<¿z¼KÜèH<ϰshœÊ£Àd˜c3±˜?YAGÔ×¼_ÑÌÖ®´n ½'ó,Z­^M[1_ñW¾\¤3˹¥c€Õw+êM¹”rt7¦gS˜š~?4ÿHý^¹ÊØ®9~ºÍB cì|‡éªåÖaUÚ÷-&…W{éÙ,?Œô—®÷Af>"Dþ~Ø^oL†µ~•Us—6>XVg‰2œµR°Š#<Œbv¬ìI'µ`”GA¿jš6úO£÷_»òó÷N/oñ°- ÞŠCÞ%H,Tô¿lOºY©®¬#Mõ&éuBÑ>FµeÞJ„á0…¥4mt‘èQ©ß¯{×§ÌÇ#yRÿ¨õÐ)=:þ©f=Ný<†•{Ä—šÁR£ÏbK Ã?õÁ]†a·†÷‘«µÁÝ Ôˆ„gÿJT½º\î¯Éb!¥3¥pŸoJÐ%ê Þ³ëK«to¸.KõŽ››zÔqãÒ~Ÿ‰ÿÅ"¹Ïý£o¦ŽÏç$Þß””bà_«>]ª#ù{‰á+IØê¨ñŠszhC,˜ëÝ©»ãÖis”¹è°÷ö÷K%¿T8cÜ}ÍÂùÎ#êÑh0’>xÚ„Kðœ3ØK{Öã…®tU‹†‰”ã©zÊ90¶3K<ö›ZLêh—F ¡•ï™×٫ܤb´™ØYü*Š‹¨¸û×Lúò'ÅÀ®àãã="9Oÿ™*rÛäKâ2š"ê…m-mëв$e-EHоb­™“¨ß“««‰fÓ¼¨XFUÞŽÆâà*ÍEŸÐRŒÆëÁ *P­~[D,A€PáLˆ|~I¹3OÚfŽ¥¿ÍÂ씢$ºI)4„Ô³–›0Jºåë7…ŸÑ82Z¨ÌsŽÆ7,kö4ý5.UÜEæ~ÚBPÔϼ×炯8f綃rÉsà–þ±„‘›\[øô{²E½O´^ŠtÚãš2üE÷C³üP›×÷ýØÕ5©"<ײ9„d[LKþ=œÍ®ÇZJÕàÉ#L~k*?ˆÇߪ™©)‡8½¤ýù¾iκN¾Ã†B²×T_}â§3)Ò§”ÐØÝ[Eé›3#Ÿèy«EA*£ÓÌ"p5DÐ7ÅT½¤ï”x«$eI¹:â“ÇwibsÔt¹ž‰=“_!øð˜è•Çê„ç!ú)™ V $W=ßJ3J—ÿ²Î÷ïÞÝŸÿ(xng·b‘ùñØû…¸é›€nñ©Á© ajY–9Ï9¥Õ ®O§ª/êíÕ[<éZvü~#½±õOñ¬7 ˜Üˆ6Hkp·2^5¶Í› î¥ ljTM¡Cõ¼§ ¹Þd‘ÉûàD…ÝñÂü-Gvv þ9dx.‹±±Ì¢Ù^ŠêÑáž³ó„xâœnJØ[&¥+ L=ËÄâ‚> ÁGcpK5#ËLÃ*[)ë E¦d)qyììuO§ÙW£ú†R;óÏC§ÄCísLO‰Ø¯‹G6;ÈŒò/dlGR¤² ÷¡ƒ×÷´Ð¼PÔ™Ôþ>7Óa({¾NG«ñß*ÒõßF¢Ìº¯Á×¶`rA”RKYçßò‡h=Ôªlù÷û7{™éãu8¿ìO r&õf\íÝ‘Oü ^ ž÷ü~¦ò|¬—¤xÂX Ô¸ü{©@hq¶ÿ,fýÍVQöRY·ÏH ‡!rÞ»Py)–J6Õ`¦lîvѧ¸¨{ÿÏÜôs{¹‡`‡­æ¸{×á”þ#»íòŸ¹ku4ׅ؉7G Óì&E”èbus‰vy6‡Ók_ær:äb8¡ÊñW\KRo¾CÉ»‘æ²÷׆ýÅ5d‚Y§Ø![{`Ûè/y¥„ wæQ²£%áS±®ì-‰’ØË“AáýJ&3Fñ†Rœ$ æÆ¶~r ²»±«®q³„ã§{Kbý³bÚw©Üã²fÆ9I¦’³‰ÅQ–Š˜š‰Š„EwOXÜ·&ê? ýˆ|Eê.-èÕÑ” G&}Ú*AEw£Xÿ&k*¿…hÌ!JYK`¹D­ÿê•Pìí“ÐåfåÅfÿl‹3nœEF¢Ù¢”¸”ÑÙzt^¿±ûc±âÁ&©¯D¬"Ã{6ŸK@ãÖíôë¯Ï»¦ß‡\t\Œø_}úGÔücÊGXkq[H«Üà‰¬VÛÀG¯¨®.PѺ­[0°šºX<=¾ýöb41îÁ†Ž“gwhÛ‡ó¯L$ª`Zä Õùœ4ÊF&4€ê\¡2p]Ò¦¦Ãí°nvc ÃpÙ©†y4å,u)Õú¡>!²cåãªÁ¡ì`C‡T°­Ä•ñºObºX÷ñ׳ý–ßOЃÊEË/]ùw‰^^»)>Ïü´öwÈ ‡3–K+Î~\( Q‡i_sÈô Ì¿^.ç˨òs¸šRÜãÜ]Vc"Åý+cZ \&C•ÁÙ/7F„¸TœýܹïÍ«Ñàøš¿)2+£tOÛ¤2<7FDà`ÈLß±¯ÜàeÇ=¸è'‚ãâÒ ‚GÚ¦›e®¡Å$*+0ô’Èn~™ü¼$FjmòÈ£$û¸#øB`Û"Pÿ4£ê# —Fè$A;ÃÅ_ÊÎs!PO¼Â×ó}¢]/°ëgWJ. (Êä›ÑKbˆiæTæŸóã¾÷L8šÚô­‡$Šà—Þ[“j1†Zàô [¼—xk q>w‘SåUY…y Š WK á„ÙyÁbN°ž(³×\_¼K)¼!n@¹ ­èÂ\ÀL”!w­ÁHõ=½è“Œ©†øö)@>/ŒW¤± /9œ€ô¤o íêÇ0è:JZçwÁœ7ß—SàÏs©—”¶/ól”–RýáW× gF2·1RQž×þ èqú«ó]ž ‡<œs±¸Ç#0lE}”¦ä±\«„°l¹'%}¦`„I>åÏdí`„Ž•î­º^óá4å,adN<%râißg9“E˜“l×çY„+XÎ`öµ”pšÅqÐk÷uµ(%•S&«rT ßa?ÎAÔãÐáÅ3ÉÍeüðr±¯äÑ ¥”6ÙÔÀõÅ#nÔ:Uýò^7ÀlZsB¹EÓŠtÔjþ#:ãrú;vã]}›­Ð‹Tïøv>i{‰=ñàJ †Å{m]µçš¶ÄýN¡·AÓBcÙW/’/.¥lß~ÐÖ†VáJп$ž1«ä“†¶’Žu8}­$¡ $ 5êùt¶âÔŸª‰çAÚê@Qð…VÎAAɲÀ6çW»R-h§Sõüb£¾3V-îß®uû…££ŒÒ¨'þG8³Œ¬ø}A\>}ÜÑ—§ú6÷— ºKFÚåh€ëíã©‘ÔŽÔ÷ J—ªê U´ðË´YB)ç«k–'æªõ/[" Òº4 ˜tm‰jX`·ü[øæŸÃ@:LÑ?­˜aY塆ˆ>©ãUL?¡ŠçÁ¿Vð|ýBÄe3ŽýѵÀÌ» ^V/+ÊÒqœ__ κ“²x©ÀJæ´›Ž+b]ÿ“Hªù’‰ßÓTc®ú Ç/6{ô9WjqÚ: úy—†Ç1à¸Aý~r:¶^J²i¼•äXíI¬Ì) zBYø,Â}g~n1‹¤öÿøÉZÇÆ6µ{ ˜çm%DÁŒR÷ººÞ¯oÉzç‘‘ UØ8G…’7óέG÷|î3®DvDÔy{ý‡?aåÌœ~`¤ÂÉØ:J”J§éo©}Q6qÓf{;Ýô8BK­_n¡É)Äî@£ koü&ôsÕø5sý8¯Àë‘BØ/Aæcyo ŸÓ!~^dÎqJLŒJ~T²ðMAu8`™E*Oå´«Cþpç*à"Dg÷6ì¾6H¶P‚¦«/¢ƒt Šì&b>­³°u»±T…õ"‘†“ŽUïŒ<Û‰oÒaáÔ>ÈWH]êh. {0ÓóDçyVÙŽ°óOÏÈí!‚¬²Ô“b²·,®2®l5xÆLàs0¿ÕáVRÝxÀ[N®Õ}«(fîˆK–Jôº‘ôvÃçÍOjY>×öŸA_yGÆ 7 Ô(>$³†ÝØ<Ñþ<õ‰öu¤D*Y‘×aæ-s×Y¶ýráÚâ©z]‰ÀºA[ ¬û/¡VónåzUUs®÷Pî¶³s;I¦"4žD2æH6` X«ýzž‘áh5¥onžèÝ#Lì¦ ‰€¿ &“³¹ÉûêY6j[6#!Ž•¿Š’^ß«Ma’˜Ä%:€@tÖ•‰B»¨éÖܶÃ?CÙ½˜€æÅd~O’ìChqÒÄ|4e®‰8Ä–v1Öû4°åôÅjÙ´ ÊDŽÜÃ1ËI:Rƒ]Õ&$ZIÕØ§”ú'ÐþK@´¿º‹ 9°€`‚z»úqáë¥*1mH ’P¡îÞÅ'¹xDÉÀñÇÃŽ /;¡o/ßå>o$M—.Io´*n0”o kP~"ViŸMʰ5»ÌѸ¿Ëm–OÃ^é¢îLNÑóp·)Ö»­;‚:ÏÒúÔíúªÚþçŽî ÖŒ2iá:èœÑǰÁˆÝo³†Õ7Ïä³!¯&Ì’ù@,/8Ta™J}GÌ­ÛBgSå$4†FŽç´œUÀ£æáüéB‡ÇÇp#‹ü÷¯<ÚÜâþmà³ÖQúþ æ|ˆ)CªXùhÁy+ŠtÅTèr|èþi½RµY[3:c W¢¯¨(<80‡õnY ލ¥§zKUW"6ÈÉÇ›ãº7 óÁ¯ì‹ ø¥§á™MÆàÙ¢W!Êlÿ܈‰ߨËQÑüÐy_ÀWHgçÐW²F»$Œ·Yåø»˜å¢“BÔÈv]=Ùg·s½0®š]>èRWc\r…TãOä ÐX×·¦$¢NšfA'ÜU¬º(1p‚寖,ý<´ð×®Î&HFfÈœùŸï"ŠPŸ®'†sÍÓ­®•´7)v³àµFiIÔ1ß)ŠvÁÈì C[…¨«¼WN=??—ÚSÚ@]˜2âRn6¥=Ô"Ñ~æôfñ‹4?ýŠ©a°5øÖ²™'Ux˜«@¹ÆK:‰Ëê¤OÂYïü‘°T ½ÏW`H _`«£¼tEÞ†äÔ’ ­ÊŽ‹ýtCеÚuÒ W€çW+¤Áø(I˜1Ȉ ¬}áËKœáö"îWj_Mþ§àѰ]Æ­9‰³¸0Š8éÌ“¹®c‚\0 Ùø6ÍãØO ]¦pá3>h¿â¡l3¢XðrD­œõjOFð&Dý*û‘"D; ¸™Dù×7ý¯/mêU~¶¾ %áçBÐõܨe¥q¦12ŸÑÈGPE‰|…U¥¡H›„ZhY&„ñ“–Ŷ¾üWtg‹OÇLV•÷ç<„&鈼¨¹ŽQC=×n ”¾Õ×È‹UßÜ£ŒÿˆZ EÚ’°æªúµ¬(¿ñ§…>¸5ÍéÂYsÈè)Y×Afl¶1…È9ZÆ—2¤žs‡K={qSOÝÛq»-¥äab¡ÖRˆ ÷@«´ä»3·ÚØóÝÜ«ç0'ô¸¶lytZAU/•÷„Ýôb3¥¦ç;›o²àŸ R_ÔI®É;Éâ‰Xn€)£˜ÚYGóµì=qXŠ jX:jì41R¼5çð3um€=ߦz>A½TøÌ¢Rƒ~jîµ>ú@ÎoÀS\ðscOà ~×q|ž·ŒKB³ÚØU“‰6ÑV¬ yÛ4ÉZ„ÍúÌ]~J¸¿VÖ<|»f¨¢N“°-Y{懽0ñÃB\A\s2v7ÿëLË ]õØõ°ý…«G–D ·§Òfsv‘,ÔŒÃ;xè;ÿ¼zÚ}ÏüLîñ%ÉŽS&Ä”Þ÷±ˆOg)2º;¬Ujàe•ûÖîBqm׺/<ÞÅ’b„rþÀKÐCMlèÑòWVN§úNqðdªïéÎAG©ÍO^G Ë6–±Áûü‡T– Ɉ㽴îRÙ¸v–P3i7?š›3º´Ét{V ³Vé; ´2¾\nG62ÍÜÒÂÇÄO‡ëJF¾ œSp_‡h¡5ëÒœSœ;œ-˵3(³JÉr)ï”~ªpé\Héd}{eþWû-óYä Ô+O»3·Ú í~øÞ·áÎÿ×U‰‘â†>ôCiiñîú¬dvb¬Ú¼Š§Ïîk!³Îq"ÈÆ˜ýù ¹C(üÈ–Ä»æà§¤AXBÀ Ýo¬»K œjµH‘‹=—_Xu½51²µðîö!¸dÒúQ¶þtŒºradaÀŠÕni†ž–[@ä/Qb›‰ ™Ô‡ÙøáXz"ëNCs!ØåÉ›¨“OÁ‰† šÑ­kÞųր^“Ü¢ƒo˜¯è¡7„•ʶx¢Ý=h‰ò©fÕ€¹$Wº¢í1•GÓ6„<ðOz¸ççÊŸ°×ð‡«ªÅ…í²NK›5ÀbÂ%&,,|-pâ±´Å'mµ›fdÆ|£ ÆÚw| ˆ ­l…G)/BU©ÒÝTUäªCvÊ 3O(ÚúG®Pn}ü›ß‘GPFê—/emÇõqÆØžÎZõx¡ùeÚØ|ŽºOì­o2YXôfjþ0¼ß~dV|€Ñ‚ÿ;£—;³ë}`­¿°?G5[âµLä•ã¾C„T¡¦¿Á¿‹+Kšöû3c ]é¡K¡é)-1œV'zv …]e¦z„¸¥ý1lçyt~¹Kütžê=îÀ"Ž„.Ë™ôçHZfk6ÎÂ/Ï›éÞR›´XXe|ªRV¶žÿTÚÂÄP>"Î[êt'I—Ø´(m!”óÿxG}ް€3Œq«‰Õûœ’pÚjþ‚{í) )ˆç†”ôÐË>­‚C]2Çt5ÉßSÞá_^Dϲ& €æÎS2ç§„ZòÛ)ЍøÑ79G $ˆÊ²ƒqKJ°³óÏ8N<ÞVéx¯O>÷G j¨óæxÞƒiñªÀk×}Îä£%¶ìº"ñ?iZ̼4õ~í¦•µË^_2§Ñ͵áÿ÷Ê6Inã·C˜ÑC¤2›Jgÿ”V}Óù³Ôô-†dõf2LÓøŠŽÅ‡W'Ããc‡bæXü™QQ*Ãè#¬îÄB¬hGò³)æÈWhò,ÌJþž|M>V[𣠒”~ÓΞ”¯î•áÛ×·¨0,d˜ì­Œ‡œ·E¤;ÿWþê&Azì@ÏŠéä¥OºPe»I&l”÷¢M¦ˆÜLKi²ððâSº®a‘T°Ÿ©;CYÙR~üÓ‹zcúü4Æå¸£>Zú`yC©¼-E(Åní%<Œy•sjH•ÏÓëU"Îù£ÑiyÕÍ8Fz©É·”‚n~õ ÎÅ¢†h;O^Zûà—[EÄP=àKøôÜî‹)\¥öl|±yWâ#>oãÁa1ÿ*:Û|x|s´^Ú<÷èØSͧΤÕçZbgj¿Q~0üRù}®Mõ­ö“ÖÔÃé¾ xM|¬rÆÞ_ä]ëÛ‰òQ]áÒù‘Öþ‡$ð÷ÿFûXMoá¾]@#IþÆ…5mhð?.åæ^›Z€Ð%·§eiµ´£Äg2Ù®<8Ú?6CÝÆ5%TðvåÁ~e©-#O¨¥ŸÀ ~GVuQì«×8€–¾ÚZë¿5ÚŸÒΜH;f)üv½Ç‰ ¶%ï8 ô4¬ÁÅõ·þjØ­;«8ÇMîs$C9:=b–ÖŒø   Úí(Ê8CV#_…mh¡ÝñËAo©Â}õÚà“«k(ÆÀA²žå!‡žO08[Ÿjç?ðj ®Ôó©„ý<¿‰ßüº­þø5·»cj,áå˜û ßÉ£@êÆ‚Ð~›€wFÁèkµ¦9 ȤLniÈõ†:T;)|ýWM4 ò]ïæã†`Ô¨/¢Ý…ÜÁø;ý DÉ£Ä#Ô7oD Â6ON¯a$òM*Ö5‡î¾1À)‰Je¾Èœ6&7~%Ó?Ì$ªqøÁ”$cÕeCŽ.ãáìZ=‡»§púçq´YÿKoò;תåârÝÄ4§!nûëæïk²Þè…=ÿÄd¹yiïƒ>CTYNë°®B•ªŸ,>”k;ÕyˆWòñµ¨~&.×í!Zg{A-€‰»9”­cÖ(kißIÂÕÅCÈ3¿È÷¿·´ÛÁ8 NÄT®?>¬°v6™Øü°àoýëN»Âœ°\øœ\l¼¡¹Hc„\6cyG𻿗˜>OF>ä+ jç·®°÷œü‘½v7mŠp⣛ÌWdÜë£ÐH·ê €óîòòß—<ޱþ'bè4¼–V¿™ Dí˜IO€,NK‹@Ñ5q­«é/ žü¼›å°½HˆV>>=}ÉóA_÷A Àn%ëkX]òšâØÙ©œiÉqÝ Àª1òÐìBÙÇdšéJIqÄÌf¦“ÁËÈÊa\1+pÕßÜxŠ‘¹®–_aêΙ‚±ª+÷,B?ûaÿGëXHi¡¼BŠ)÷+?/Õ‹º âWg_c«ÿ7®Íi Ô64aVzGo28´-1KuM•g`ÿ[ªfþD«»µý—±#jDGÐâ EhLc“u¡Ì7^w=‹?φìŠw&J4î¦ E…9%^EÄ'p^$.ÀD[VuZ(YŒÕÏÚ%ÞHôvxí2ï¢ã¾#è‡yÝ3sâ ÿV.x¨zñÙqK’ီ K™©y Ù‘Õe™¡C² Ä8l{šïâ3ì{Ô‹ Ü=&Égh&û5*ˆéX ~p-2rj F*tЛ7‚œÜ¡ä™UÝ«0EMê²ö\~<´µni`¾SÖ“~c €ßÞþÞΠ؎ÖÊŠ¸fãôeU½bühÅ^aéÖ׉f0´ê@ŠªcñÊAIyÜ2¡™³C®™g²³—ÜÄ}ã¾ü ¸…ÁøJ¬ú^gù$írîªb¤ƒm+yƒ ¤n¬þýI ¡È‰6ü|¹ò8g÷äWY¿´!âÐ#®@á.IÇØî•OãÆ5qÝžt ³¥N8µp5ׯVŠ?½ÅÉgbì\£x9K釻kP)lJR‰‡-þŠ´Ó„`h¬ÇW¶Ÿß¸Öª#‘rUûÌÄmjÖÅÎhj¡O£ kœÆãã÷èqòÄbF1æPnÌ‹yï¾²Üñ‡õûhS^ÀßêJô{(ËÄ>+ļ̅éÀˀęiòw›LödïÇøa¿sÂs Âë d¬$/;†mãml½Ë—Ó3à@DµOØUD¥Š )Ž»}£9Ô^Fl9N(¤³ñ­n^þ‘òJ¶|Ÿí+p1¤ðÐ/¨Ø´ã- Ãw<’;GèÑoNÅv'îôvXj¤«‘$EýZ]ñ„ü0@%cƒ-|§Ihàõ}s˜ƒÁ‘Èèecn\úuz¬c?Ø·Ýof>q16÷…­×!ÂT„¹"œ¢E| à sëçù¹yjõ èïºæ˜»‹}²éÆU5GNë¢W*õ­UòJ™eú w]Z"—듃^Àl©÷¨Bôœ?ßí7mvòŒ pm c¨u¤–”pgìÊ)θµbßO(Ÿg¶¡F²ÏX˜ZŸË-#pO q!¹Çæ’ƒÝ`;¦o¬‚ÒSØ%RgÈðhê]É äÉtùÀIjéuÌ3Ö}ŒŒ#å¦ ôý‡ý%<|&@›­­ÖÔÞçûôÀ –a¦.FOæSRõnx.ÎðökîÂÔD5 Æ’ƒ½(r>cEY7؆D—ÏÙ SôØ–Ç}A:ç n.áŽZ›áûrmHÅ/LIvUIxKÕYÖñ;©ÿóBPÚ¥Ë5þv\ˆ[­'HTt?Çœ#<ñMë äá.‹öÍÇëIu!lm󞂦SÝG5´b.ãîm€DÂ<€K ”Ìl7êι%e, …)˜ŠJk6wâ\ ê¥s_ÂaHo°ë¥-• w ¢ 1ãpɵrû–û²`Æ+ø(|'Ö+LÏÙ®ÏÉû JÛjÊÐR Ô¶/fYÇ/>¬C·ü¥w^YêÐ/$!ùª+ÊÌî©åþ2p°,…Ž|-ì9ÝÂõ)1¶× ã}­®oK«l$8#" Ìý.(̶Y/2V‘òÒô„œÖsÚ ´§;êM7;Ê–Õ%¥ÑA%é =¸X¼=Æt·ðWñ*ò™ þM5Ðο‚};ckA%_HÆ3XZi\寲6ÓT”óÿï°ÂQ+H7ßÎUìe9û0m"Uˆ˜AþûM5iø[’܈xÈÍ ‡K=3œ²§{DHAœ|”`ZwÇÁh¨ŠeÝ~´L#û²tþÙZnDgÑ~tK’–-½{ÇŠTµÞ= ›R¬¡ ùV”Ýû€Í™·ÿ¿%ÙžÞ!‚]ß:- È¡æ¼É“a>ý¢|Âü¦– ø!Ò੆›Ê,s“±‘F ÚnZÞ×‹ð‡Ø¸Öà{T%öW¹…­Ít“]ÿ-¡__ùߦªVåÛw‰¨‡š¾^}é;z?+ÎäÖQx› ÁÞ ¸©Ø²_Õ8ñKIä]¸g Åû]”?â³æMšnþBUçõ=ôׂ:|¦öµÎ¬µ’à]çŠÄÒ&1ÝKUÓ0ŒWsK9àÓ» æ9)\‡;MGðÌòìKi/‰¤‡kp ùþ|ÏÁöþ›]œ¯èì5‹wËÈ'Æö `–,€¹É¿( úkÛÖZõÞ;;«úl^ÈÍ„o®s°nT*ô–×±…¬;|ÉU?üü¨7å±~óâ&âÓÃŒ@Œ™tg‘ÅxRV¸£Z+e§%Ý”·«¸ç^L„ÝcÇœÀVš+æzï9RR×J”ôG©quáFÔ=km4á¤í”E©™i›:Ý9¿™‚7e÷ƒð.q 1$JžØò#h‘”qàË!5çX½<ÁW¿òÀZfúêKëË ž'®•x¾(‘%äùaÿq@ÿ¼^«9 œDÑ®%íHtËÆØ}÷2 o®MÇÂM]玪«ýój©¦Æ 89{ïÓ¡ #rV‰ÛFáÊx»{j )8ŠÐtæ¯òVè•űGúŽ.¾ÛoºïËïŸ}𬨖.-NZúÀ6+[‹+¢™oÍoD%¦í·¹Xe'ˆõ«2|‘âeÍQÁÜÏzµ‚‹N˜vnªëAè-2jíâB{ÞËþüu¤ 5C“ñä°ç[õ×|e %¯“ÿs}à ÷OWÃ7fºs‹Ä(=é­"~¸Ž'™ÃHøQwÆ™‹§Ö‡×§åá¸'0t”³4Ñ åÙ±Ç9\ÀЧçYr ŽU:›~ºN:,žOÓ5fq VŸßûsó¼V.éƒÑ= ³êÛá5ÛÝÎYÑy°^cŸÝÛ ]Ã[¶Œ<›]mò¢¡·ƒó;¥š“úQpîúú)DY³@45mô¯'”2—3/Û” Ùn[͈ääóÃS(çˆ×h%À€›$m©H%ÒÈþñ©•7¡bØ!Sš}Zt±G!Œ˜}fNÔ¶áXh{Ä»äˆÌ­l<“^VÀq/ïc þFé²9èñ{©âè€Ï9¶öÉ=f0ÏåxvÇíŸ0ÍL±nûŽÅ_àøQ[÷D*­uT\Kàö{V{*.íÒÓ(®RŽ!âSÁ™{©ê›b“ñ»ßþ™A[Ä#­hî,Ü:ÚØ-* ÷‡ë}F Ÿ†hÀ$î…11ÓrBÎ}-I×±e¶ú$@C˜¸„d'ªB2]”²cÕN“Âò ðáQÈb°Á­‹·Þ`P}m"Ø>‘j³„¤ ©ç™Ã9Pr9P‚EÎ EcÎ¥ŽxlÜx ê±ApRÛã»h†ïê„9ŸçI«Ÿ¢‘ Ððn~}¬oU–+>sÚíc¬0ãÛ€Ö4¥{Õ³¤D¹›ö931A(v\Êf”h€Î¦L°²Àíb€?ef\S]ÆS"l#E‹šÚ'GL €}ÂgK°„| é!"0×­.åâoé÷š"Rò,7•óÄ·ç5¬#tûÔAV :×`D0 Úa„1'¯#1Lì€ãÁ¯ª@¢Ðr!÷Ÿ#Îþƒ^]>/W ]½ö&”¹|í}-¢Íﺃ ɪwýMí\`‚?P„úÇ9¡+HÖ3À-êºB~š@ Ä_[€ ÃcüHM‡ÅôSWÐVìFX-°•s&âW-ŽŒ±xYiwƒ€®¶i§ûñêÉ9ÑwD£Š(ׂ†ç甕«ºS£/V»{z1 Ï ÍÈ’gƉøI ³xì#qéñïÉåvÇV½•£*ØU{?l¶…pí8Îr.x=0Á¸s3ÚɃ#sJºS °Êë&Ê¥øµµ9Rn¾±-x"Ý4äÃg_ÎÙb‹ìoGÈÃî ¡¹wA<´Ä$¡wqôž0D>ÛÙ-2òåŒÑç%+¨ž.Ÿ/ äûT a<‡l ÕÛ†’Ÿ²ùÌZU¼ó2·[Ý÷p° ¨ù8¤dg1vðþù5‹ë÷¥®Œ!C.™·ù›Xù_ÆãÏ·5p™žÂÈïöÜÿ¿0«¾Bá|´>¶@6»×RÈ'MÎ=¶;ïðT½&+Ų3Eg–ò«-ë)/¶´Ió!D§†åÏÔibº.^ 9^)+Š m^Ô·¤gz“»wà‹9ºw¤mFShÞN¾øž—\ü¾ÿØ Áç¤åfV*܉ÏiŒa¸­ºz:°|’åxžK'ÍÇÒè¥ð¾÷˜išE1&_Ü%ç’¥[¢·.À –´o;vlk‰–ÄÃÙç÷ó§}Ûê6åßWoì‹G/¿»J½‘Ôfª‰üRNaÍ®p: 3Ì1›·64$;¤8У°Z‚ Uúy€¿ÝE ü²Ö‹™›’SJ¯ (Tôk]ÐyÝ®Éwò†«x™¡JFUsפ´}ü‚(»¨†ã1ÛÆ4ÁK«šÿË%ÌÈ'M8×9!ó¨Õ§ó¯8“ezg¥:*<0_‰º™*:?¨Z°uëȸÏ4%ÎHõBgþ[Twš’ŒŠÆs=´Zñ;¤Wb± èѳ6¯Ô»0•)iRLfo°Ñ¸ý¥ª¼'Œ8Ùôab&¬FtyïVgú¿`D™j Xôê½Ü‹©Pw Üœ¶% Ù !n>Qø¿Åʰ Ž\F1VsðÑÀgœ‡a­Û…6Ý//e®_ÃÚò>Óh`qC²žXɸfV5=Y»RïߥP‹ÂmìËÕ®øg¦Eù€µš˜ú¼É`HŽ[$ù„+ !ái|Ä>ÛS‘W¡÷pµóå?;¹Šßc{”î´Å–Mñº2¥·šý¨ ŒSÀH{8‘üjvHËŽ`è‡q-©à¹Vê"Òõ™4ILàT4CˆT †—â/ÔP†õým/þ‡6.÷§å ÁzÄ8ɃJ…Éô‚â_ÀHêiÓqv hœÏR¡³”~J–ÛCÖªðr‹ë³¹he'YrÂä^ ê3"QGWøs¡±Šõ±Ëœ¯§EÝbÞ(V! Ì› âÙ%Ì5&ï¥_È~G˜h&Öî`†1Õ&™®HU[¨V¸NSp=œÒG:þÍ?weÚøŠ=Ö¸¢Û¸ÑÆÛuØkX‹gÂL‰k*#ea9¿ÂšOÿŠ#twwU§{G±š±M­%3GÔæšû#Æüg~><£©ô }Q‰^:LÊWg›GŒçŽn¢ø$Ù+‹˜~LWøÄ"a{âœÍÐíœÆóOÖÔÌúÞ>;¿´ ç-®°´K¢îu¡J F%´ñÛèa½E}OËsú2'F¡œ¿HÌrB~DÕÑPCo‘:d¯íG6#™Œn°UÂX«I•ú¥€ŠñtÕž¿’;}²z:LímÏNX…“mk&aæßúÏar‘<Ž–’ bñà€ÀU‡#„ÁódV3cøM%í¼M¹ˆŸ¿<µYïâÄÛÍk4åÑ µ‘ª˜¿U›ó‡¸ª9«Ø: Э¬åX§J»÷üh±qDÁ¥g–ùÆ;$Èw¨|¡”;Ùùp-‡ê<údÎQð] Æ_¹ »Lƒ†¬èc®ÉFQ©§ÅVób u l’FS®¹u{”2¹›NŸ^x—ñ…rivÕÎ4ÿµú¶Á~,Ó0lÚÔS1¨yóRW«Î©øuNà$0u1jÏêìp¶œÕFÓ< n”Y–zWGFÁ"tèž­0ƒô?bˆ>é±—ÝYÅ ¨ƒ(´xƒŸH¾52f ô©×ò]'ä{äàÞšþt_Ý—Õ"ÙBzà**rñx%>>9´Ê9k%R½Áˆšä²újS¸3+™Ro ªˆ®Ó(н9óQ´"ý(iæfìSo#9¥Õ ß‚…˹w[oeïYj|WÙjì;wPû[æWˆ,ÐDZÅ`þrJ¾›òòn«ñP£»ŒñéÆ3‚—ûV·jÓîQÐ9íHEâź´toùâÅüÜú³7gîr¿{Ñ•iey[g_ÈÄÎV_Üo€Gÿƒ*-ÜBPõÈÃFfÉùæ"3Á›!%§0wtEÉžpXt"Fz±ôºê¢=ßô ””\oËg¨bß•æfùEkWOÂŒ«ýßÎmKy. {æRn5PþLÒ F\4ZY›“¶J=ïö‹nÿœ¬è|ÐŒ- ‹=•Œc²>4šïaÄçN«I¯ âÔÚZè©ä6¿›ŒêZ£qcL¹Ý×2ýާõEØøø+öÊ7Lé꣓ÁŽô­]8r1ð‰þÔÃGG{â1/D‚[¡¶ï¶JšN²4ð³´w…{`0ߊ›êÃLq¡‰Féªß¯J³W†ŒI΃xÈXç·~Q«,Hð1µq|EœÃ¤ÛÆã_~‘`x¾LHÚ¾,°|;„cµk<æfï‰K ш=äv«2AIÂv QFà;G{mr#ЦCCÎ×Sêûí.eSx tÛ¨*E¦Ì÷ îÛ”­ÆDuãâÕçã—>,‘v*’ÿž­ƒôcÕìÉÛÕæáù“vAÂ#cKÔàOœ:|eC{¹ï~ëó@ʵãN»ª ãï¤ïÌ£ 5 [G]!wu€ü©$´H²hÈz/l.ÊžÃþøÛ/°»Æk®}ŸFŒ2ž»P?töt¯äƒwÈ4U — ÜlßTô4¼£_‘|`•óñVº7 ™X»·»‡t&”åEWð´ªEšû»©÷B{µ{ýPë…ÝTJð.WM6)gX£-ËÆÐnßZ¼ï…‡ÉïD8ú˾–ã&ï»vS¯yS¼gDäÜ­>@Ì…P`w)rèTûÂåÝÑõe^‡Èaëíy†ÇÜ­0bu Žv–ŠÓÈÔ ¬‚¬ž²æö¸ŠÕヹ”¯<«˜ï‰˜ð3¡à"ôƒ|%Ô£Ãú-.8iée¬Å‘€²‡H[*Œ‘áùjJŽ€AcF‡€‚Ã’Ú¡cƒì2u}ËÇ›â‚P¬Í8?ΩÈbŸ9r+Œs:”¤Ö¡Û>…éÇ+Ev·<È…6hŽ,u×F áɇ>cç2‡ÂœÑä½vªysœM¼Ü£©ÎzKïmžÆapÌ!ÛÄÙãÁ2­,ûS}ö`ájy¾TÄ,"0)ƒ¾¥9åàÕ#S pFŒU×fŠ6‡5VõF“Vs›ÓáOÉÙ'À¸]Âx[B)tô‘W àÉ"“ÿìX+Ï“>~S1Mß!ye%ˆÑ¢³9÷〠å=Ìoñ x£•uøì{{õ0'S•¾\ݚ̌ð±þ«Á…òUUºe³R„G ¤ ?á÷Ķ z©Ôå±ö_F:$ ÏB !„ø”›,é¸}FUº‹.âÉ•ÔUFèÃv|]nw{X>HÄ’ÑZ†Ê6T\S”P䉒 M…Ž–‰€ùÇ›Ý7=7ùÔÿ« Ðó/æIJOÀ¢–Ô`ƒæ‹~ãɧKÐ]ƒÏÂÿíV•,M2|ÔÉ"tlê\ÃnFÚw¿Ý‡4Bå‘JþJ‘²h-ôlŠ Ã3m}]=pM諸NÚ¬èë5û!ÓèÌR’óÔK°Ú¸n5€Eˆõó íŽm7"ÞÕNè¶Å,aùù‹4!ù€ÔkÆŠ£$ŠD`aº”¥W„­„pQŠé˜V#dƒx-pÅŠO‚W¥ÛZ«=kçÊÄ ÌEdcÔó^<橚»"¦v:¿4¯[¨êb†´ –òìŸÆä«k:Òšœû3*s°ŸQ²E_‹››g“BcÑeƒ«Ó'RÊ'6„ËlFô²zÏšŒvd¸ÓÛŒx KfÒ_ÆÍGú„/Mù®$P1–¢Î[ú§“m tH ;X…–2—“sÄ0ò·ù™<ërªþQW‘%(‚ô±C<à¦Ñtz£ȳ[y.ä(ÐbZ9Ç æoyÖ¹vàÅÓ†xŠ:ÊÙ©4J¥fç–ËdANV±…ä¹o×—E‹±ÕZô'r©Ø÷šÈ7³8j¿H¶ YTÊz­P¹)Ÿ8XXJó‘U»°ðŒ»VgäáEV4g¬ hñŽøfÝ£Ô—ýÑ3=8U~{£““ ó^É'ÔLŽ_$O±R »TÔMr~”—ëå9ð}…Ð=…Пhôx»¿e%v‘5Ua5.øQˆNa<,Æ\Acz ýíînœ,ºÔ+zÆÄ(ø¤öšÑ‚ɶG±aî9rÖ_¼[l¶tw{85±FÃOº?]¿$‘Ç;ô¡ï†ìŸážy0²›iü½ —ñÞÀ¦ØŸ­Œú›ðãÇ79#bGYïR— UÈ<±Y |X¥Aía¿A–çý29ýœ{mBÐÅqvm,Ø#B7 lRîvȱ‹’S–Â!C'¶"8úµ)àÎÒ¼A¤²p,\)i<),ñÚùYLñ‘6¶ûï›)R]œ>ÊS‚{¿Ú¶QóëN^Ï¢ÙÙaßùYPûJöý.öá’EJ±78ìŠam%äBw ,€hH‹:±HÅ3Øv¤oB4¼üE×dŽpÍ­5ƒ|üßj XÉ‹&I%†–^F¿Ù0BqÒ’ñZWÞ‘ œn¸FXiè–Qªhµ3+¢!wTŒ]¼¢gß é|ƒŠ£–¬oyî˰ðG:k@ ˜„Ú®jq¨²õWz¿XŠ18œ¶wÖÿ)Opê(x‘0¼«Ã‰æÍ·RüÁœËŒ-à;™M‹U0ƒÊEí·¶ÔcfO¸(µHè3´­;䇾ýî]ºp÷¤öC0aŒ¿‰På~Ðgé@J Qõ!1=h ä~\¦&Y¼Qî¡Û–@è JðÒ¹uPéåðdù,] öªó®é ¼¹A4D6ЪõÄ~£¤„¿¶xSâÀ_+e&/£¨±‹¹YQ³v^ŠŸÓJ2 n6éµ=0ùn¤kºu«†xÔ ;XØ¿ì |Ð)û 0Êœ‘ró0÷c”ÅÓA uY#œ ¥–-9EPeF `,u#Í®i|û~`l˜ut]ƒ{>×Ì yunÁ;V¦,Óî2sü/;G'üs-vo‚ó¤Š~ù ¨"“¹µíˆâ>þr0Ø÷¾©Ý+Þw »­• ´¡Ov8Ý‘ç…kjW߈"®Ç¡™PíÛ§ÏÎÔ¡Õ ‰WdðnÅT »¿ý—Ôû†C¥TÿµtaAä6™å+k¦ 'òщ î÷ƒW$)ãý¦†D¼£'ïéË»èù^û6ˆ”ô—AÚ ³¯ÿsQI²¢¥ÿ ËP––Må†÷FxŠ9àVt0ûô¤NBUðµ=šãt ¤•;' Pe)°“TÕÿ)“²qÊ‚ëß=Ë¡˜×/Qœââ ®cÂ"k(à¢7V/Ï\6UkÙ9G3–r¤Rýù`û("®M…C bW«`ßEÑ b+Ö7 ¼Š“ šQ/.·nºîæ›M¤?Žê2t° ` Ÿ&yŸzíVwƒ¿l´΀õWÚn=þäáê x[øçðÆ–B§ ÙÍ#P°ÿ$ýŒ#¬iK¾ë‡«¿áA%gKü"±Z{ePéΑûGÞ1&D2O„¿`û›üÛeE¹GŠ„%‘s2CͤiVpK†æN6½/¥\9ŽI’h¤s§W{¡üÒ•²u‰¬‘¦8£öäö¿))?-Ô´GÊõ[Œ¬Çx°‘d`B?8³0Ó¡»Z_wxiOÝCÚ<MwÑ~ª5½}Û µcw}ÔJž¾ é24‹Ù[p –|ŽòZ"Í‹`VtÉ'SYXH"€í£-˜CºÃÌapfn—­jBª N'âaÔV&»)6m7T-Ý%Cç,™äöèâŒVçß`Ì!»á¬î~?ÇP­&ìuY‚çëh€aA{—>›ÙmBÓ"µVêº&ŠF!¾‹ä‹1|Òzþdª§˜6$z¹a­ã­€7£.d”È9vMxq°”OÊ?Œî§ ƒz ÑêÑ ÌZˆï)öÚ²›zr¢O5ȤAd{ôLJé¶S¨ƒ‰Ó½ÐBÓFBÚ{›$õKÝõQÕõ¸À¶cßñÛÊ‘]5h‰ô8üWÝ~šK…Ùq‹2è| jr!†ùbÁà1®ŸšsϤ{Æ3ÔwÙÿÞŠÿ'¶9„Vû„ÇÂܲrÀ\ôà]ƒ‡`7ò±B{ WžðJ ¶¦—‰w­`ÙÒŠEêh=ñS6Ðzx:µzô_¿“þí£œ)M1ØM&éBü´-¢èõÉYÏ>”É«¢ýžƒ’}´os&|ê@­‹Í$`ˆ@sUKЋÁEg—›Ê©.&Ð "íu ¦â R…ý¬RÁ€<£ú+ßÉšžÊæ…ŸJb³]mb<OV!÷.%]£:+~¼‘ŒÓ¦ÔÚ/=u¨&ºŒ™[.3û"ŸÀXN½)„\P¥ÜÞâ¯^û\©Okï¬X/´8N´vÍ®tO…0ŠÏC?¨G;´Pd¼m  ••‰„íjˆ½Æ(÷ôèwH ×@£pu+éèuÿ'@rY‹_Fš…ã{€€õÌ;õ'²m UrìOg²k†Ïì‚üÉÎüV;7×'êtÌ8ÜjM -eéÆL–’N¦üÑéË…j>„Éá[Û'záøµçчf«T× %®ôùÃÅšùv{wèv*Z³Ti¦lö`‘ÿ%ØÐÃxe¼ýÇÃ?®.@v-åI_˜”• qE¡÷!så•}øjÕÔÁ÷•Æ_–ò¿5ý¬‘¦o¯;¬'hNŒ‰Túª¥õO"ÇQ,¼/Šeãåçuâ–[ã†Ët¾ßÒ ïueÂAÞoÀw‚Ú. ƒy®ßî\Ä5’x4!À[Ù •qé\¿˜Z’Ç—¥CÊr¦‹Ÿ¯¶œWôp`ÓR»mRpšîÃßä°ÿ•1òaÙXÜÚZ\aóU€ÈÀ‹EF{ÛμÀ,3äÖÄ»Zµ¿~ú•®s—¹ev‰gViÚ`{D÷®ly'¤ÀžÌÕk’ˆöðp"£éO”` qPQÝôÅ?šœ$“„ª¡é‚¹ZƒÞy}vñzç ‘V¼áe«°œ•NQjÌbêj#¾:êH^Üb;¦M9%¯“ùcÔ>(ÇXú;LêžäiÙ:%±lúäÊK^q ;2K¼ƒQá½¹à0X\÷@ѹœãÏøˆÕôTbÐeå8tÅöò’r£6RmÚû剃ö/ì}ññd÷¢/’ú&B"%ÙÛ§³hÙwF'˜ùE–¬î2ŒÀõÞŽÑ̵¦åõ iKÖ.Ce”fåö¯í–ÐÕ‘{Há~T‚÷ìuè)W¦€aŠ-ùZé¿[FéŸÑ®z~ÕèF=¢1„ÚÛz²†Öì<ø„%W–n¥ì]¯-lÓ²ÆÊ6´`ïx±·<í \SѵšP@@¬Äýµóü8cИñÉ+]“ÜC‘Ã"ïÀïzQ1Ëõ¿ÀÏYp@âѵ^€ÃRÜžÏ:Jßt ¶Ùï ùe¶Ê¼3q NSdĆÎj©ô0±n“lú[©ølU¯/t|Q­ä²…bô*)©,UZdïCuTbzíìª$ïTlåÊIßßžŠVœ £MFøñÐ3”¨Ì¯3]Õ4ü‚&å¨÷ؼd:´õÜOö1ûí=}!RÍ¥FŽ´l<^6~Ü•¡lU×e $F10ã” í5D öQ"6+ÇÌYEʰÇwüÊ"ؾ”‹‘J~¬1ˆMÖ(}aRe±€käí—D0>œ"Aï7/0O£÷$æè΀›ÓS¥»Z¥å•zé]ÆŽ1ŽŸ;Hó:á~•bÏ4ñwSLñ¹÷‡à×|b”¼û›t8NÊè7Ilf{×—ìÓ;©ÙÇ@ ´~žÿ°·z•ùaŠæD¨Ÿ§e‹°z² };q,ÃÏr¿lD^ëÏïÀÒ‹ù5¥Ôh¤yžun¹·Ö.ΩÇá´¤Zó—é$ë¥Ñ”×QX›‡ƒ^ì!»ñt ä|’†¤ZRŠE½¤t .qÎ z$ïö‰ÛÚlôÉÐìŽÞe çç©1¿¤Õ‡Xšï¯xqåÎáÁ~ÔöÍræËÅt¼üÀðæ ^áöîÌóqˆtlcG½@< N ¾Ó­·Á4¯vÍ¥K[JÍD—:‰Hu¦1g¶±¶à^ÿ !-樛“pW Ò½ ÐW~ÔÄ AôΞš0òð¿Ûyž"cËÌä »®Á0΋'ût'­}›RÌc °ÇšBæÔ<ûžèžÃÛÒð©º~rÓ É +X°Çë:èAOl o£RúávêJ9Ô{‡¸v«Ý;6†@¿Íþ´Xµs[¹Õ±!n~—"1Õño¿”ì›~2\Ä%MŽhbÙkÒoŠÌê´¹èîòZZñÕDÑšY#Hr]cYA|”arkî~Ñ¡ÀcɼnÑ4n |ÈAíßž¦*rdk?Šò€×T7r8iMQ“°$§þÕT¹š¤>g—¹Y?™Å˜ÒBÚûÖ4Û…9bt-‰Þiå Ïy F¥Pï2ðôžþ²ƒÝ©xñåþЬ@q6(eý¼¾AJ5‘±óãjdϳ1 ÓY5%ßZT0% Ÿd´ùσ)ˆ›»·âÊ 58Çÿ^ÑÿÉ-eñu«õ[´¡¥À¼ø¾Ñý·ò÷Ѱ§÷]»­»¬Yq¯¡3ÅsÂhs/‡<ù[½UÀ³Ûñ´“wJÿ R Óh%z©¶‡ÕÇúT¬NæüZ-æ2{†2ãøº7Vþ”'ñ` l–üÚûïè~éá¯æÍß`ò±Í» j4¥7îViªf6“Ö —£ÜËÓ‰î.$öV®È1FŠ~ͼÑw;ð­…µøqµHþí•wi¸"P¶[X(­¬Á@Ç<> [:7bM3Déì¶ W‡C·"\å1Öñ?ÎB,O?¢6Ëis‘hq“9}4—E8”C½ ”m/*]?.CœÜ„Ôm25°©M@Á0~1ÒŸ¨ ÞÜùiU€Ë1M¦HðÜ{×B—ϯÚV]‚dý°*=>kš˜ŽÓt\¹’%¡»Ü‡­ãã!—¶?PÉÊéïô»ï ê¤Ã¯)t­Í¬Ãá¨Ih(3”WµâbHK$ÔÒ¿øa>;ËD–ómPÉ®ÒqMçÍl±Qòíº"/1 pÇðqfn,!³¡ ÿkKeQüPÐR«@¨¨×Æ#°!ËêØjwIÐÅüW~°ü­škk*Û9år” í¶VéÔ»Ôµû’WD†.Ú‘ps6!áæº;èøMÿý1¹LˆÖÆ^é’N#o5ùðÍ7—£ék}5àþ*ïÉœ„£F‰&ˆ|½5#7Û 5KÕéòªãGzšœµp6sIºGÂÒÆ¥ú"V´6¶~õ_bÛÆ_rÍ%3 #ºÌ6ßË£b½Ÿ†V zÙ\YõÚÏ,¸&ç¬O÷l ¥#½ô46lÛ§äSÇ®6Óhù$s’Œ€m: Œ5Üšß›]ëøb•CÊÓ­hó;FzdÈ:_¨Ì'–ß7–ïÝ©ªºS6X©\œuzS·ºö—¤V'óá˜5Ñ…¨¦‚ýÉëƒ&bÚIÍK"o¤+K•±®m0Ô…’ÊAÙCªR)Wþñþµ8èûÞ˜2? ªÉÄr¢ZŸ“âB1¸¨\xÔnYˆIµkQMӵЕ`IeÅ-„~Uz˜§“÷šÁ$R÷l™;·`:bÖ>È(=•WÀ#½ÖßÛ'¾ébÏÆ“F(²ªFñÞ+Ò°¹Qº†â­YÉ´¤|Ò9‘ÅIºß†ücv˜Oò–$Z´7s£„Q”t½d€ÚN,žbUPRÕ ‚¹·÷·»z¨JKxåèÆ÷0’WLâÙñ+ËnþWøBe†Ý­¢}(=SÂωYçþàØ1² DååJ€/YÕhçÒ“˜[8£R°*)ÛغÜîY†¹ê­oÊ|ƒЫ/Œ‹vj~‰£µkÓ‘ŸÙ†ó£%€ä$ð@‘–r{Niç䍸-òû£ÿÀ"ùýzZïE¥;a<ö ¸’j‘H‹ìÉ8Jà"²=÷ª¸.\ÄBïêÞšÉ*®X¶ÀKàiêåë{1ŒÑ¿“^¡½”¢÷+}»‰KÁ7 ú³\Y+ùkÐK­-$½9/¦- Ñ™X³A-ÀJ hÒ6ÎZå¬ÖPÄßš´ñ}¢©¿y‡Å‚p†srrT­f ü¼‰’$qÚž‡’„3â»ã8Ϊ›a§Ëߨ֖ …ÈŸòÑŠcv¥ë~ˆ F%ƒÉ—œXdwÙâîÖ'¬+Q%bºXDº{ÓcNú¨æ`Ýõ·,L77RPPžYJÀÓÓ6^¡œËä¨;øüÇãj5ê`Æd#“6K73.ü·¾]";¶gŽ´Ý¯ Tbib@6é±-­!w5a`ÂhüxÓ„ê‰cça'ý‘š=W±v·wŸ[³c¶¼üý]|;í-ÒF¤émƒÕšÝ„ײêí Ó;Ùì:žG€€+æÄ)ÌÙmØK0ñ5D|m7} ßþ`Çâ0>-äVL(ñÆB¾|à)ü¶8/Ä×g ~•ÃÁ>…¾T‹qÄkÓÔ©ê‰×)hR¸Úß Cö‚&Ý|ð´ƒkØgOµ³›ëíY¥¼$$ž>endobj 32 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 389 280 389 584 600 584 584 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 333 556 556 556 556 280 556 333 737 370 556 584 584 737 333 606 584 444 444 333 611 556 278 333 444 365 556 1055 1055 1055 611 722 722 722 722 722 722 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 556 556 556 556 556 278 278 278 278 611 611 611 611 611 611 611 584 611 611 611 611 611 556 611 556]endobj 33 0 obj<>stream x¬»w4œ]Ô6®G¨Q‚‰Þ]”½F/!ú`”Æh„è5‰%D]½ˆèD Q¢·ï–§Dž÷[¿õ­õ{ÿ±Ü{Ÿ{ŸëÚgŸkŸs/˜îjhsI[Á- òp’ ÌÍ{¤íéhwñòO¼‚¸LL2ˆ9 ‡Éš#!÷@:¶® ‡–HÅeÉÀ<P[$HWK¤ ·Fº›# œ×ìÀ@a…ç•ÿÿ6J!m! k¨$óPÃPI]Ī ® R€À s†«…Ô¤ µ„À\ l k8®@–p˜ô ´ 70£´ Èäⱄ¯A<,!NW.Náuq~A]@6sbBÂAP˜¥ƒ«ÕÀn ¤â„€#Lî‚t±D@ `V Yù¿p"mÍ‘Ws»@7n Œ´‚[º:B`H –ùUÀ‹4‡Â\@Hˆ`„ƒ, +¨‹“ƒ¹'07Ì ýÃÕ ³ù€„€Ø˜#¬ ..@ öUv~ó¼zõöæNNž¿Þ†ÿõ/(Òâ`Í ææÑb…áò\-¾Ìóþe·ruúÇçAüJëßÁà0·‚Ã>Ñÿøtl¡–ö0`ƒ€„~¹ 0«ÿ”ëU©ÿÂÌó·ÎýŠ®ìH¤Ž§ä¯újp`ûÿýpõ΃pX„˜X”Ø)¢¼À0¯÷ÿe‚_‘ÀEºzY͉€z€Œ–¼à_\¯øþñôø?aä`–p««-Ì'(2G Ì=A¸À„À£ È ˆÄãJÊlA<Ü08`rrEzÿAÜ«íËÏâqq2¶&`ÿËÂâÞp4ì_“ˆÇ½Úã€2þkñÀ\-®v¾ ì·Yèê}@Ù5»Ò‡ ƒx%„ùÛ&â1w¬.æÀü;RÀäjiûK&ÿ1 ð¯ æ±þ@ü·õ¯Îòï`€•9€u±w4GÚþZ çäàêòÛP³„;:šÿ¶´¡°ëcFF(ü7D€Œ‹ƒ¹ËµÈ•'üw€ö;¯‚¤ûo¿ i‹ú×?¨ÔÖpW@Ûÿ^ A­5öß­ P"ÿ°º@Ü ¿³”Ï_ûéß1T°#~¿ µ„;Ýìß!W ‡8Bÿ´ €¯ÚȿÄÄg×kk* ¶¹êûß …Ðή—«ÞùûÕ_i†Ù \¯/¿_ÚÁÉöwò…ø Èk½Œ-ôw ¼,Äáú¼œ“ ô:!aºÆµ·„ä æ×WY@.w-Š0€Z ~Ý Z'ÒüïÜÂ\ iþF' ÀU5w´°ºf«¹þ~À«~íûH4âZn­àÑøÍPÀªs5ñ¿1D¬Z¶¿+GÀª µ¹V³"XóßÓˆHuÿ“+°Q¯°>tÎ ¿§à\ÃÀÕpùý ˆÏ£ëÐD°sK{ò}) @²‡€§­ß•â?£ÿܯ¢~`‡9B µ¼jÿ˜¸^‰º‹å‘2s`°¹ pÿÔ1p|ä1ÿ£žD>Y^« 0/@Éê‚ä¨óÿdÌ 0rúãE€ŒÍ5æh\Ÿ Ì  ‡^¯*0/ó»¨À¼hû?ª Ì  ô÷zY¥ß+ Î`€úþK @ÃÿSY`àÇãô{ùÀ`󯢾ö€q­¸À`ó¯:¹6¼V^`0€Ùõ¿¨áWÕt@ýËö;Üã&à†À„º6ýä4òý]7?j Ì@·¸V+`>úU5Z}uÏø§,À|¿J8‡\|¥fï‘k€¯DOÎõšŒƒ¯4îª ×1øJ㮤ñO5 €¬ùÿ>ð•ÊAaÖPéùÓ•ÒY;ÀSü5VàFaqÍäÔ jîÜS®¤ÚBÌ×^ ÐÆÃÈ¿¤¯48ÀÝ-à× øJø~™ÿÌå•þý2g‚ß!>¿ŒÿÉç•þ²[ÁݯÁ¿RC+Ю£(]5Ü?;*Xà幺–\›  õw3ùO^¯ÒÑÕ î+¿Ç_ %pÛr‚#®ò}­+¯8+\?¬ Ö¿Ž<¿Ž6à+å´¬k©»ÒN+¨ôzî®ô8.ýÀ0AÝÑ];1¯tØÁ¸ÇßhB @}ÿn£`€è¯ô*àz÷›Ñ•¼þrØuñäÀÕpAÍmQEº"®¥ýJkDN¿Ï"à+¡U*Ñy-<ÀTëZ®î( °H„ùµnèZB–ÿ™û+¥ýË÷Çi |¥·G'¤§Ëõ‹„¯n«`ÉÿØ|Wê œ,¯uC¾+õ½ZV`´ëÕkø®Dè)€æÿ_|g`Í\\-þ| ýO¸ÿxâÿûçj¡Ú×Ï*|W:}UÿÃP6ÿu;ùgßð]i5ðÀ úG€+Å.çW'c€ú».ù®ÄÛòŸï#ÿõœ•±‚8š#ìÿë8ä¬\Kú¿³ƒÆ÷ÆkF€¬ùÇa˜ ðt€Û\uQ€ÙµÁÕ¿í×Ïå|W ÿ·ýê Äß§T¾+‘ÿK,þ¾+­ÿÇó‡Þð]©þ?žk’ÃÇwUÌWªeeáð§êð]u\ßU#p€?Àl~+ßU3øµ.ÿ™àüï*˜Xþ¥ÁwUÓÿ.Ÿ.€øï5øÓwqŽ–6?Àüßë ò·¦òñ_•÷?÷˜k[œïê&ö¯ÃâÚj𼯱þ¿æú#@ÿšë€@ ~µÉ«ÌüÈÀ¿Gèomæãð¯çXý_Žës_ÝÊ~¥þ?+(P¼Ò`oü¾ò]ÝÉþ±^G#ûÇþGt€Ù?öëP€Ëü_ ü5ë‘^¿RûËóG,€×oÏÑþ&œlÿG¼««Üé|×#^]ë®û®Ç¼ºàýJÖÿŒø÷ÿurù#õ‚¯ñ_®¿ÃýùqMn\J² A^>0?ÿ_ß;,]Àmùëp®ÆýûùׇRÄb‰»‰3a–Õ¹CyüšDßjd$¸i—)×é¨ÓSgò’ãp|:`ÇZ%š‚¬@̤G93´íb¬ítˆVLå…l²·Q^rp̘E-2«O[Ks=¼Û¡ÜNßpöTí¸uoÙC 7"ž|²9<ššÿáßÂ},î˜L >ÍT [?˜lÅÒ=E“—-FËntA`ø¸Û‡'ô“ßç‰#­Ë”¯O¨© # $4[(FÒ˜Ža$˱n·‹}Ÿ8Â÷Ö+™x¸É•ºLrYi¾ ~Fß“"¨ÅAŽS‰ŠPS³B!Oީ߰S›Ã=ó¸sÌK\NäMŸª+3Õ’qÙéÊà6Ó¯›CÿÀ`õh‡d÷m¯Ddá*CÄ.¥·ór"3¬%ÄTpûøT'eA\—…1Â:‹ö®Õé“R{˜T÷K‘ù~ÁVªÅF¡!Þ#ÙÝ óÂòj¥ÖUho?JJW?Û>}}Ï*z@™4»•ÖK)ŽŒøvïÑó:,”žÆ~ÍŠê +bä½!eéw·°Ÿ ‹‘Š›îâÜÁª‡îF¶ˆ}Ù%NE¥bGÞ@ï¦WÜÔú]ÑR5‰¬ë2Í‘õ.<ÐJ¼q{gþr7s»*(‚OjÇÛ$?ói›kd+Å v·!»æ^ït›Å«›Î÷>’Óx¦ƒõv§´xž2áÕ^l§žöéf‰·‘ XำØomŸöêÏý>Ù y6¶ê'ôŸ„1߃$ñfä.RäÂnØqYy‹¬²\–è4<н»UAžíºÞ¨¾-•,Þ¬á>G‡ä”ß”éAĪò-…yX0ZŠZ?ëiµ”rÐRNs‹Ë e–9 :nl~³qc3òbÝæs^mÉd£(ú=½@ˆpÜõCi¶“çìê¡€øøÊ…×ûÓO‹,Jݤ‚½A‡ºÆ~3—iïÑYbL£÷ƒ8øû~‚•ÓÝÖg»C¡ˆÒêêX*»pѨ½úàQaÂÙÕ8tʽm‡ò‚É…•‚mÕ\›ÍêA$œž-ÚØZ,*fñÃÕ¸‹QEn«[ì¿{Ü%ðX×Áf›Ð‚‹oÚú‚ân ôK°ì;ÊÂV̳<*‚å8ËM1.ub¢É/‘ 0O|¸^˧pÊyW&Xø‘Q”Ö”÷»¶‡ËÜú%Š3Éîä$Éö~åf±ßªØšÔÀã\£ô-™õ¤}pŸk®Ñ,O[ËÀ›`1-äÏà<î:þRöŸˆÏª*ÔRXËíôapý—ŠL© ô÷Uë§Qì JÛÏ××—iÕ¼° »J£¢_O¦Ò£òåê6ݲF9c™û0íÒåzC~—æéŽœïÞôEˆC¿RžÔÎ8fcqµ¿š.™ÇÆýQÓóZëFÂ|–z¦oà,äÊø”‰jç{Â{î.TYoïQøh}Ý]{Š&´&mKµ¼ £« Çꙺý2oM(¥|œÝûÉø|ÁZo:LÈZü÷m\ŸAä=6”/,@±÷uÔ#Þ˜?wg,é@~Cñ÷8ëHçœxm—U°i|ûxP°6#:y´âz¸<ñ¡\Þ¶Š p“Lð!ã±ë,Ð+ŽÅÚÑtwá.òbGN bA”IP4 ·ß|iœ›rJþt¹õùnøûŸ”Û {3»«ñ5˜ÈVQ”._£½"näß&/€î5bºî[µJVµñþÔ-³¦u…¶&ù5”úŸh 0Ä"ŽÇSyŒ–âØ˜tß="hØ#È¥žÎ¦è7pmäÄ@YÚívÒ{¶:GÚÒL‘ëp˜rë‚íæØJ¦1£\:t¹½`à»f¨O»PÛ Š70GÓuÌxB‰ 'Žo6FN™¤H)¡Ê¹†1›žÍ}Ls_±\#ª³f0œ}=íæbóe¾*hk¦g~»»·]¥­_~™Ô™É~Dª\¤5²w|„å‘A±bƒýN|#6·2õ—©E¥S~ªµuN3Ð+¤DYnSÝðÏ]¹Ëé³¢º˜,,¢QágŠÝ?¯~axצ¤Œ¦®ö{*6œæ2}¯Cl†«›—.åчcè̤¯í»ì£ôÎŒ¡£?Ûò ýcî.óu˜©b¦êi¥ð¿Õ ãÊuÞ£z3ù¥ÊPËY‹‰ìÝ%â÷Îl¸¥ƒË¥em ²7D×Í;o)9~ÎÞžqsM¬»¯O¯¬¯ô)“:zÁýÌ@1º:Ù´“õU«Fç.SÝ=jC•Yþ2ÅÇ÷Q¶ŒÍX”/›tJQi"äMõêR1.j—¶ÜR¹ñÕ¤«_:5ÝÐÇTm¶©®t d‘>‹¥ÄñÝ£Û©ùDB¥1vd§§¡í´X~g –Wª±xOD͸(^&«¨1&;OÊÐé1hëìé“{Zïp–M:Û†LW¬Â ‘ ^‘àF·HÝ„Ü!á½Æ]~Öð§]о§…6ÐŒ ×©—Z³x½¶oÙ+œ´]}ƒ6Þ.BøÐOn€Mßþ˜IBÁzO|ç€XOMr"ð»[{Z¶k³ÙÚ|icGk¬ÒɉÞ{ç/@ ¬UÄiÇ Íšíñ‰;«ó’ëÑ•H‡Oa‹·¡T¬Ã–î¤Ë?Q7‹·«ÙƒòŸë¹¤‰(±Ù¤í ó{dËÈâkIˆíÞOþúub·À']ØývŸjifo¬ÔⲎ§!»VäˆYõ‘—¯.×7QƒÂCÏW1G½4<`;þ¨béFnD‚"SÁ”óIQ{ÁSéyùËaªÎúRJ_3õ×öF?É£ºmz’meĘð¹'Hl–eª£Nà2èEì€ï•¶þ¶n˜ÝÀ‹Ãs‡¤ºQÊÓÒ÷E,ÂñÆE#YS†1j(g¶ŽæÙ§M?Že¦åêr£¢dD‡xÆþ³Ë¸xBmmõ¶tñþìB~ äê^¨qr1$A|øÒBY#1%vBu¤Ï;›š¼a‰Óß½¥Ï¥¹ûÀ6ŽÖºH—aTpêÛ3çA½Þèù™Û)Z²}š4RuïÀ4¯ìî‚rÚ`µ¢ltf¢ª1´¼™¤EèËaèk<^~5¬hQÌBÃ^Xr‹ˆmj©Õm¶ªæpÜ)‚ŽNËã‡õû¨á­5Xy¸G„AJŸQ5vi›ƒpTùz¢ï¸/­¡´â…Ý~t{o”·%Ý¢—bÕŽþLÄmešùñæ£ì_·ßS(Ñb‰Ù…ôÿœë½“©ß±xÚoßA1$šÌ+9Ïn®Û½‡±ÿBÃ¶Ž¸^¾õ[ºJ7å#º•)©×8û9¥·Ãܳ=y -¡ûè2ž¹ÖÍÝBIBGñÔ«]& ÃKÞ›{θì³~v½§_h䋃Ø :ù¦›ŸÀÞ Õ÷äw^òeyxMÅÊé1iÑs6ý^ž kê!²ikë´àÄ|ÍAl›Q|DmxOg+¶§Þ²P\zÇLr4á§|DÓ'Ä–@øÖCÝAm©’7¤¶]T«âSYÑÞ$]P>ÌVbaÜwe÷R÷FŒ8¯¹V…»ÐÜ¢+áÖKIȌ֙å»KŒŽ¹üÆeI²cy…öu©ïmìöS_ßiñÝŒÜ%¶:c?]AbW{X/÷ÛΘ†ÜF £n »Ø'虺UƒÊähBïÐRÉ`y‹|É ý’/á¼ñÆ·zÿ5Ç„øjÙ'âò„½Ï°›ªÛ¼ºÖ½]¢ïxå{–*=ãŽ*Ƕ´ýZï“ÀP«=•¸%ðƒ<ÌúLÞÁwNLåØV×àF{ȵ­ }Q‰«½sËó– öM×9°Êt~‚Tˆï`Ù°bµdÔ;¼ÏP _G.žtL^•Éb¸nŒb¥öƒïϲd£¶£QyVÆ ÙÞ߃Z”nü8ØòSq(‡ö ‹&‰IŠùL¶òt®ø¥}ï.?E ~Ç?ˆ7àñ‰^‰¿n„ê=Mh÷˜™üg¯ ŒÙ‚wÑ 7ä²O˜ú;úd¦ñ ôkœ-Ü#öë‹QKåÉ¿K:‡·°¢Î´–²0…•0ãQåÕ«Pì)|÷[|„c¶‹­¶qzz=‰Ú´v£1—XÅ‘åçÍUh‚\6ÕLÊrc—ûDkg}¼{¹ëÔîÿí§…—¹ol)ãýŒ ÏÉîþ´…Ô'Ä‘cåW»—ôT:ꪠQÓ/S‰õðøN¿|×"¶9­?y€_B-¨¨UêewHˆ®uYßy'1ÎØáÕÿ¢w‚_‰vù´ÇÕBãB#.¯FΗ°^¾é'—ZDqß3„‡Ât‡š,ã]XU>ÞyCP*4:¨Ë¢nq³Ëµ}ÎZ† ù0·£Bª=pqVhxAèö1dÈÑ´„>FÉÍ“|kyÄG… ÷ž°àYÃ`̳ŕxYAÛŽjÚÏ?ñ™ÍñÖµž=Há¨Âl6ù:lÓI«Ø4볺|GåÀ#f Âį§æóh÷s îkϯYþ[ÂQìâ>³HáÊÑ*þ˱’¹G^4ymøè=±^ÝüŸýiy’=-jV\ÝØTºŸ}Ôô)زù ’À`XÕÛ¹©läDÏeÍÁÆ-¼Éd‰GY0QQ÷Q²Ûp]æRíLÎ$ÛÈt9gñ¬Ó'ƒÝ“²,óý̧GçÚŒàIÚ8ߘK¼-7sšeT°êM’ze¶@i^ö-¨6h¹#qÜSV2ï^Gð¸1ôí~Jjízͤ BâM(©ö,²Ö ç+º\N¦Ý°¹½¾¶ðíÜI1Ê“Ül°ƒÁMÚ~ ÿøÜs¢ˆ´cÑ»·1ÔÉœ4?ÿ¸¿œ|¹«ûÔYd´ƒ×–0n¦:¸ß÷ó0)7yMò½Æó,ضf¥•øCmÉ º°æÈCDÊÈÉ£?“µßŸLôIâÑO†´Œß˜æL×Ä:º§EëªP°Kiöæ×zÌeãÞlüa×Ú}/]ƒÉ¦À .¡ìI£‹‰¥HAb?þfJ ~`ÅkÊÉJ›Ý5&›‹à2ìĬª çQ1Ö÷-s†ÍhMh:V<Œ?†h» Y)§ vŠTîL–¬q6-Á(!µÏÊ"Ædf± ~tw¨~\›¼Û’…+4D9á9>¥Áäv=4|úXSÜm+}†M³?Èéþ¿σÑçqÃþ±fè‘w׿N6¶ºèÖh›èî*ç ÕÜÇsáÜE¢¦_l &15•Ö¬2|¤¬Ç_h«ïZAâí ,>yâN8ò>‘»?©+C¢=šâBGÏyYÕ¹fÿ›ã GJÔBû£UdO¦"Y†\ným›Êë(z4òfß绞¸ýÃióÓÄÒ}!b(f§É‘H°ØZ‹ó Éz‚TQ» Õîð;µÛ‰e˃*6;÷xcTzt_år‘êm¤ÓGë­ÇÌÉðÍzÄ–‰ëS¯p.!ßÚê„,–o(&;.î/žë.öÙzæLla>\ˤsûÆÀ#Vû/m9()凓µœš¢c÷D+}óúB“ÃfM]„ˆ^{>k­ÏüÜñÈ ™¤0°câF…®Õ^€š}ýC¿g5q6ïsŸï,ZÛ‰õ鋜ð@h‹ûdœÛðÓ4˜áÄ+êûËŧ1瘋<Óš^xô9BZ**-H«ºC™ÀA¬ìø¦Cù€“Òá|)ùÄ}ôy˜ƒ¤R-6–87D¹cã«‚>¨¦?(%ñmõq¹¬ˆ_²‘Û>åÕŽ)~ çY©§­¾9óFÚØeÔ$më]-.ø»‡­õ®tôËC<i>Šœ6.¹âh¾ç6PÙÉ~,"fñ¥] ÔAò3Ö#šV(•Y«¹P)ÕË~ø×׌,FÙ8&ÛÑF2ŒSÞáTx”0&£qœÈúû¯ G“ÈR ô•Ü3ã|h¼VÁݯ¤f´¶Ê>Ùi+¤•øö›é ØÛ=/ôø¦E±%v¢u|î¤5U^~$ò´€RÔÔÊ=Ýjä¸"ëBT¡ê-jUxKHÇP£Ü—fFfÆi¿¢L0ÿÌX©ãz“ÇüÁã.qý­XjŸ[©e8˜ Þ ÛSâO;|Ù–~lÀo§“ªn ›@¿¥‹uÔ)*áø¶éç½…£Žl‰-9e=[¤E$KѤÁûUÖ "þcE13c( ø`a“ùÆJ)JB¢níÖ.Bk’4ýïùŸ/’q3t˜]šæ9+8´~Ú{w™4™ã÷FðÜ¢m:Žê£À±”M%GK;tpž|^`™¡É°§ËÕõ“·+¸ŸF2iôh‰ì|ÔšY„‹ÖŠL½èÈÂÀWO6´¥ÈŸÁ¼úðCõ®xç}óéóÄe Ü™î‚ 8a†dg[ʰ=ÔvÔ±äûõÞYe' ˆ`ùÞ¶ï_f-ŠË/)µ&&w0ØÛeÃÜ÷ÌÊÕ2Vü÷vP_– U¹½Ô7u#Z|àëëA:©|¸ß|Ávîß²²¶x0WSyîï]±RáCr;®c!™¿»4)¸4æ«iRÏö‚![dI†Þõ²xŸ©ðQ‰o0H÷d¯yU6§-ЉóÞ®F†ßÇ.´ço‚Lª‘“ãkVÄ„*h]1—Þ¢] šÜwõßcsbÂÖI5¹¡I,«ë'7Ù¦?«¨GfÈçïE>׋š–\[’™ÊÝêúoJãÇu_—kT2ÉÉ·LHkM6ÁKâ ŽœDEÓµ„™‰‘6³píóx“¿îÓ%ùYPP³jbSÎyÉzÙå ›•QbñnBª[¦·ÞÖËI¿‹ïFñOðs„ß(ßÇÿ¸ïö|(ÃðþœZf‚"}ŒTLàöB1Î…*£èÂOýt΀ö·"¯ªJÂqŒ’^cª¥o”·ùí鹊‡× Æ70Ê>zÆŽy»Gv«ƒ×3áH„šë•š'dqo>ácÌŒƒNï 3ƒ$òµyOm8ÂS†'ø0–ü»—#K•— î ÒŒg÷§q¤èD¶ï ÿWÿ¯ªÔ$©ñÓ™`ûæì \¡ÉÇ<²´u]÷ãɳ´Û<6Æf•¶xÅkøÙÅ•2Θžì#t´ý€@í’g…ܼ]ø:0éþˆ˜±µÝ°tO [mðÉ(ªЬ˜X)¤÷,ô¹ßÉÑ“ís*ÝlêØMÇø[ñ·5›6ñê·rc/íƒ_½ õ¤é YQpjòÞS÷àh öBOD3B½ã]Ë™9å“d»¿¶ë4Až&-òuÁ_Srî¸ZéŸðA¤trØe1Ûn¶3õSÀVqå+î^Õ=·Ï÷± îºêâêVõ*ƒm·GalÙxMÏ;Ü‚‹6ž „X#sÀYóܧÜè1õKì4¥¯‰§OñJ©êHÔð`=$Ê>¹s[ÖG8m0Ó¢j”À‰í®Ã‰èwV»ÒëÔ_gkNi&íZø…ɪî'Þm (µóM]bÜ,}á4˜vv6ÂîdÞý¢ñMÈmõ¶G„Ê"èV-ÜÔÎ}ñ©éâGge>ök@ßRääÑa᩵Êjð_y`ñ¦Ðï]S²ž4œ¿]Y®mß«ñs§Q>•®ÔÊ”I¼ú÷Ó«bÇØÒ¡Ú²Jì“9P¾AK4c¼ HÀýúibZb%(—VJ¯³©ÖÔ3[|BÝL5}Ë®åHXh_¨_»}™Ü3m…ÜWƒ´hÔþ"§-ä,4P¿Û¾xÿ&.Q8¿†ç@pFkÉÛ¢·â!sŠb=ñ„U2OGZêïCêíÛ#óÊzLü=6°ù|,o–gVâ£ì{ã˜0ž«ÓkmžGGzÒ5ýB½Øóæ0ùJý¥‚i´<7•|ýç¼ñÇ7f¾¢G¢üŒ+Û(=ÿz>1av:ã•ßïQH¼ùC7*ržXô°+Ô;Ž"D6ºH·û’Cð“Šî½8½…–Ë!Ùòç$µ ™ W‹CŸ”(c6¶†NõµùOWÑhX•¸ŒuÜ"PØ…ì‚8>$Šâ-/y‘Ôàzõ?VøÊ s'I·VÎX{ï1û)ú‹~âOÜêTÊ•Œ9yt# µsžÚ²ÎäK?ÙòÒÚš©ïl&.±´â`4ìmO0ßç+ò"Lu_•7߯UŒmíë„lße“åR¢&fÁ Évˆí®‘^ŸÂî|&œÑe‰™5EixÎ@&uï»%š° ÜUD³W0d­0ìæ¢ëg²B|4&sœ†£¹Š„™iö¼|rV;y‹=÷pbãŠ)Ìa­|ë/_“Ó¼}E›öÙ8F‚úGîg‹üêyûnôx+³ùýG¹†Š(f¦¤ü[Ñ„xKŸÚÐ6{´\äåüaU TÛmó³'и›”¶d¢ 7+Ã[ƒ.À»Öûóx$ÕÊg&çé ¯`öDÖmgÄ™|×° 3§ørxÚjÙ¹pÄ ÚpWês 4NOì\—Ž v‰®!9õ7ž) ³V§+Ú¡{Ró0w‰Ékè‡oo+-×»w<2íæÎrlÌU5é{EnC5e)¨ÒªPâ6?­ øÝ#g‰λq°dcÁ—d2¥«xIS ô5>“°d0=p›Z_¥ wÚ…&5¯DØá¸ù°ÙYÁLfF$¸kr‚\ üæ ·¦¬‚™òØUº4WlJ¼ÑΩ[Mù¸c½š%¶9_ë} 4 Ró«l;,zµq®¾ÊÙ*9r(Ó®[ _ðñøH°Ò“A³ÝÓ4ÇFÍ|×®c(ÍvGo4Þ·²èЧßÕýµï†Ô¢ýîÞ»÷±ßܾdÜ®º¢f¼ÞóŠÍ»¦Ím¯z!lg*1Bè‡æS‘IÇúþ™šÄ,Ùœ&…þakv´Ú‡¢…Zaw/ó/„œêOM-6ðoÀ‰éKeÛY±–Gž%‰žû´J`µA~Ú8Ó—»oÃnybµ0›ˆË®»v³nù1Gy—WÝvíýz¶"óƒjÍCU9™K½t¬žYs"ýÖs,³“h*û‹%m+›&‚UøÏìŸo‰Ü6´Yœ[‚ª:\¯Ùõ,o Œ€ÆZo…a>”-ÿy@7ÃP íHA.'Ë[%¡ÿÙL‹¢cÛ´˜nÝ;Û|ͬåÖw˜lƒïºçÓ;U÷MãVŒ>=˜ÖM{¿ö$b&t­„]G1á`ùÕ&ùx€¢v*á\ól"[ïwùǃÂ=n·×G0E*壬k$Þ_lp¦V¸É»ð»Ízw^{Ør'šgïÆ8ÌsáO˪å j+ø <=ñHÉVšz!¾üê`ZoŽÍÔð°šq¨[AðYâ¥?ÌÑ6Ñ@d4>Ø®6ª_]¿$£¥Zêæ?nMW‡i#”õÃzèõíô$ZfC_ÍAÝ÷34|¤EËd»iË ‹K¨x%°ÙõF,PøWø©f›|³a Åï ‘i^8”gMVÛ§„1Gc/3;­ºoª§ü€ËåÀ_*çiFpw™ Y’P[£^”Í?!ìWy´«Èû…û5QšjͶOzoÝ­íkrŠ-¦=%Y¹¶’í~ Ÿ+m;ïhÖ–ß3vò†â~¥«Ê¯ ÝQo”²eá‹CçËÕáDá\úÁ%ÞžC”x†òêüÕ­ñ™\Bº³# Ñ.W¡¤˜&¹b—áÖJцH·U$ÄäIÕ£ãì¹(⌢ ßjüÒÝB ÊHS§ÖLMLÿ˜‰}áovûÁÍ”ä¢xî˜þD7: †³Ñî8z’¸bNbä,Ò ü`À0½×†›Ç¯aPäFÐ?+“Ÿ¬i­uêw¾†:œÒ:¼žØÆSÓû×ø ½} ¡×9RD§v¿¿wÆ+xžÒúœßü.~;‘\Êgó¹ì<î¯øcᬬ'ãZ"òMÒ¦uíèÝL4¾9æ§Q¦C6ç’©Gu·ßr1 ¶Ð½R!Àí\³p(†š>w î•ÞrÇ Ö™|uš}/= ÷… }¼p—q~A‹µÊ·:ã ³‘ÞW71Óò;w­Ù¸ ŠŸgNo4nO~Ñù4ÖK¼âŸiï̺ýÅz£þƒ¯\Õ¨»Xþ‰è„Uu—äy®ûômaÐ(-¾’’’0Oò7šy×KExG!åcèm°xâ½Öšôôøý—L²åE´DÓ[âø°_Á¡uöêë EK»H³àSO…'ù:”Õ_Æ*õ¼k}àËæ’d„¥`SÒZÊz¢Ý“ EÃüqÊö[65W%Õ|õëæñA+…ðŒ§„.;Cuwðï0›Rݺ,<ù`‘òäæWk®è¶pÃ)ŠÕö‘J$†yÍ_>’RT@=bUÑ¢i)E1\|¥‹"ç >¶S«ì=û9‹swé[Áse¨1ØË“:ÿí»!u LÒÊÖöÉéXŸtÕùÞÒ$Åî“LÜo-;ŒÍ^îò̾ú­©T<‚I °¯|¦*G)ˆ*¶¤^ŽÓ|žóX5ìÆ³$jv{þ°|•>1ˆïexý‘VÜSN¾j«ÃðÅÛʈ\¬³EŸo˜£Q%-lÝ 3÷¬í lÛ"ÓÍ‚¤ä¹“.çù51IâµAsªƒ­÷ÖÃT4_߯,ÞG/höýìÏÛÈÈ3! VIõ2 •‰L#tëýî¾3yOÓ;}. 7Cd$_·…ïg\_óŽd›)÷ £òƒQˆWË“n²åîÃwÞÇ£¢ŸÌ?ìÂÌÓ¼Ÿà^VyÌÂÊÇ-ëÓÝóû]O> VÓ·Ž&ydóê“™ uO- ;£Þž§Å$~Þµ¢Æ[}¿ûÔCP4£™:Tì᱇S…Ö³/.®Cæü‰/õÄ„éNkøÄ¥1G0>àRÈÙNÓñ}{kÃÈ lûŸ>' YøìáÏq ­|äa..Óò¶}iˆlÁ²úëÞ‡%_»µX7Lž¸ “e‹CÕž´Øc5Í”øâ—.©`(®,’ gÒ—E]y7nzÌ¥Íä bU®2Y·&–L»ª/XFõáòfè>Á–C»üñµz­œ½;ªÌEäò¢w‹î„•9Ëý,§ð0ªmÑ'œ¯Må2íöÀ¬0–©æe UŸ2ïà<åðzv›Ã¨d'ýë-QˆV)_ÝÇ̉«,˜¡RCÍIß8#:_Ðéƒ÷õlOÍök¡”Btß‚oîªÆ(ÛѾî~ßÐ)×ygyœˆÖ¦¬§æ0”Œºä(êeJ„/´®Áh:3>JV-á†|c¼éi½ÿj0ã²2^z¶ÉT3ï4n‘J¬‰ ¾FC£ÌçI(OÛh¤›(ïß~¿€ó%‰³¯Ð ¯t1¹áÛÊoÖ‰’­XhL+÷GuÑÕ-õäV?íßí°U}Ñ|•ØÎ™Å ·¥'ó£[ˆr…6¬j£K’íØRSP†|I´°¨CgþSß_1úÌ-HŽÆàÁDnª‰©&†VDèí(V;i²ÚïÓB}bTØ{wt2_ò²Ì ’n &§¿º4ã7×EÞ©°NϾ+bŠöf[Sc":xµõ…¾忨¬ŸÓö|èû[$‹lÚ-'÷öîÌ4zZ[m Æ y”¨ˆ.ü‰“èâ…„o{eœ[·„y*Síjæ§®ÊIçC_¶*¡É6;Óuo¥Ë9>|±çû¹ÓÙQKoçõïz·PxÈ;us!„úi(£»ºo:àu¹eL.VŠèŸK®x*Â|Ú¦%òd¼-W'°ò6.ƒÊôQfá:²¤¡rüš‘ hd#Zúu:¹h?6*>¼Ø€âð¥ÅÎY9£^†ñïäõ½-6:_·†ˆ6å{–MMšâ=+Ô àž- ÏéLÊÛŽ‘&éaÓÓЧy´™¾³0+6míJšµ`oxla^Åþä”ññ·­8™Ö1N†¨:ÇÑ6î__K ¶€Šý\‘œâ?yöZïqÚ=,èA]'nõâüœøÉ㦌\쮸ï<8ìíNÂd.^ù˜,ãS6wý&¢iÆÂ¶S‡MåÎó2=É m` äÓ…Ù©žï46—DâÄ„$Ó„g¼u²_:(‰$¿á)X»»–[šÂ…uÔa†—~ö>xÒ˜®ðP‚¶¿,|tŸT¬°Ø„R¢i(aÞ®li„<Ìqæu5Ó²Ö‡­|‡£Ïœ;­óG…‚a!µCä1õ¨¤5¶`r TÃ.7k«J±_±Ñ…Æ„Ž®xU`XOõìªÔj'ŽÄ]zRÝá°vSŽpÔåŽÍPïrYŽ¢pæûËä–G¯Ï‘n¼3ñjZÙêB2_ÇžÓ¹°3ŒæÿL°ï-Q¾‹%¾ýæÆ‚¦ý‰³­¤@¹ù¨\[{…“¦º#®{PðÉêí$«‡<ÂÆn÷M"Â!§Ï݉XÎ4ÊiE§C‡”ßÅUê «~? Ì WØ:º1Œ7òþyÎöYÉK‡cçQqÛOÌšý!Drî¡/ˆ¹ÙO¼ô°h[NLn›ïVç¾IïooŠJØÙ¸ãxî2;þD9ÏãuvBýí³+ïöùÄ ³¨õ@ h‚rÅ¥K ÔXVßPN©vF>þú85,ÈË»QRô°Ð¶G7› sa1ð¹qˆH‹êä™f½†˜~Ž—Y·Í²ß‡(¤›$¸ÍFe6ÍIG«Tf›8eB¥ú¾Ñî‚tšQ Ûý¨ â•=BÿÔí)¥sÿ'N¦U¨ŠgÊ‹·ñö=?¨®f{^TpaõXÕà—VÆ–}{å]Ê1½?¬‰œöžº…’õC/_-r𛣖øÙÓŽ¶*OÔ¬&0©9‰ûoªZÇqyø£žZìmêrCT¹–J ·£Nš'i¾Ìʼƣbk­ %ÒU¬&V o?‹–›7åÛÇúAà= ×-ÁÆäßË÷ΠΜ¥cg.ÖŒ¦ fiÅѾat–ö ƒì%aÂäyÒ|ñWgMa0›WT¶:?f£íeÞMž-‹ÏäûÂ_eé˜Æ„:zTe ¸ÍÖˆœ;<Ì D"ÐI$ä(Šçð)”çÎ÷§Ñ™‹Ò¿N1ªTVÁø)ù®ƒB–â‘îogÎ2GßžH Ÿ^ ‰È¡x¨c_fîçK»Çg _èøsßêe•#«Ú{¹bK7I¤‰7uBïÉkÄäþÈ*;Ÿ1öcùÆO`죲‰TzçŽòëc†8¬ö IGŒ éF‰3…ðAñË#ŹMŠ%¯ïUíÆ¢ÙÖôÏ÷Úf«Šw„Ê6_ZÈ,°•à©-œÛÉr¿µ3É©ÚX¦¯l3#­G_5·Q¤1Ln½ØÂ´zóbIйtj.H‘ š©aáØû"ÁvGù8÷…¯òmÕB,»ýÚ-4MDŒ;sßOrZ|Ÿ§/«gÉ;Ãï Îõ{p7oJ§s>ºdü‰išSœM6`y0†’}‰©k½åӻ8ïº3¨,Ã/¬bŽÝ.Õ¡ŒßéÒ÷b,DìÉÔG,Û¬¨·O‡Ù¸»™Ñ”qz¼Î§â;7±gp_V´BKw=ËÞ®â @ÄÏWÈ:§xj£ÅGJyj+¯Ó¹Dd©BEFZ²)Ã5eBIe}™øA½û,Ï‚Ã%ýMK¼3 Ö,šs~$ß›s;ïa‰>67' Ùó~;Ñ.˜%ôÈŸÞ71í¾ÄLxâ-?ß\/‹6q?ëÏ.©îÇß„`h~N¬œß¶žê½ÁŸQf Â"ìµwÄ,™î”i¹u°-„.ÂI½*i¾öFD°å .#Û ÓÊÒh5ñÐhXìà@H˜z˜!ÁO "ƒÙ~;É7¬È¶Ž©bïy+W¤Iœ†¦>¥2ŠC$Èt}e<¯ ð1½] Ÿ¬ñ«cz7q„¤–zZÀìœZ¦?ù­ _œ)8 Gí²=$æìiÖúºÝR°Ã¢½ŸÛЗrmUf"ŒaÁž—Ma©ùèñRºWÌÇ&o0ªÌUS-´’=!9§T2‹å~¬Ó¥ö B›,4Ál×¶æ3WbÄR\ÿÛ†?N´qĨ߲í  ¢ú¾e!S>mVŒÓyüæG/Ù1iv åмK[ÁѰé}¶ c•þþÞKIÆ¢‰»õ ÓÏ«îJŠL–/šÆˆgÒ9sר_•Ì*«ì>PJvŒÆp³Ç‹r¥QÌ®ÿ(Â)Ú[Þ(*¹ƒ®°Æíx’À îMÛZ¢ì´˜iìù™2Ñh€<ŽÍ FǾ½ö%ѯtòf»ÈÆ{?Žn{X\¹F9Ëúcà'…©ÎlÍíÎß§±·=ë΂wfŸÍmÚëó‹V%÷guMAw˜‡¸ê­€íEnãWÞŠÏê‹.ï„©š¤YÝß×dmÅê%ßHeèl<§3ÙO‚ aÏ¥V·;×ê E™†ú8E.8RÑ‰Ü 3ªÍÌ®hŠÀ>Kص*zSØêŠÒT„Xâ¿éÞ¥†œqÝúJ("°-b¶Ðb­ibÑúÚ aÒ`Ö°çºüü {»)Ù¨s‡âì\ýu][K­áܪÉú¼;ÜÉì—¢AÎŒ-ä™)&ÍÞ²s¦T‘3/Üfbå` )Ïtk‰c`@¾ N¤sb ºî¨—Á¶"ì ñ $ O‹¢ŽáTÅ5Ÿ¼òö˜ ( ˆ·h3ƒ¼~[K~·¥eü-¢-Y[-ù~õ¼šÓ;[’çκ„ihTÈ᜹ïc’mØœRŸ¿j®| :Ý×gg÷%¦^Oüˆ‡"7ÜN>„Ÿ¼á'IþSÊÿ‘ûèÌ g¸R[¡‘s3mCtt[¿K·ÂáÆ]žm}z¿ –~à#c1?‰èã'4„–ïfmþ|Ýó<ëI¯K¥ù ëáZÊTŒ·0Rg‡ ey~7á2òÚƒìê=a\sý–—8²_-1“ü 8ÕÎŽ:àÑÙ1jÔÖóðdØD$yp%p¨y0<^ýZNk­‰BêWcúY»,”í(á6bÛµï¤3Ñ’Ž[ó'²çõ·…“š‘(ž$u¯¥’e7ÝFWC&Ë'hNÚGI §V„åêÔ=ÏèÏ}ä­QÉ$/Ä'œpßÙõ zaÅ~Ê·G)#p‹01Ó U5$3óI©W:ºxçÇ0­ØþÊêV,a]%¬òN飤,Õ¾Ó_ƒÞ“àöÊg²µ=^[ñ¶iD~üg–±dYµ]ö¶­h à?F\v™GwŸ.¡Õ­Ã¥v)ï(Kð§<£ŸA_~§Êô~/Jüãû+ªQ•¯xnv§‰ÀHjHÿëS^Ùñ»‡¦ö޵;ã¸Ò'/&©'{¿Ÿ=]™€K)‚à¦8¨‡ý㢛X]óO¦j>ÆçÜ?HÓªÇEe&· “l•:—bY/2¢ö£+J#·¥X‚½CË*zµ¥#® s¼VÅàÿMÁ÷¦ÿ ðÇà¦ËE¥"¯<~òâe—º?t,1éÖg†+e5Ä7¹¯E¿ghî"ô׿_a ©~`˜æ™‡C(ø‘3}Fúfã¶I®9¨sŒC\Šf5?ÍboWÖ¨UŽãb$‰!küÒÌî=T‡ýúŒFßsrÏY8)âU€y8î¹Ö´xdÎst˜Þ3¢á‰j ƒIýSœ ΞiX;‡Ñ_(‘”~“`'lcç¤MÑ® .Ã*g$&Qè8Ó]‹{4À\>CÉßd`WOn¼G쪀aõXmöǫȰriÚ²øvYGIv‹q—pjåtЖý½§w°¤+5¸´2#ã§o|‰îÚHÈÐ3-­ýÌYÇ, qÌÖMöX‚­˜Ýuc5nhYµmmÔ£ú"wú¥DéZòí0‚çZŠ(åæR׆ÏWbþL¾¹Ã‚¿EÏ#fô–º]›ýÁṳªtxÀƒT3À;™÷–ºLÂ(ä8"µ¹''’Ób¨J#\ørçÀØk3S>ìVélÖÝ÷‹ýúÆrÝœâ>ànÚðçŸ*Fž.ËÍÄ,weaLvjY¬± · Õ)~ýšÝu0yz#ž¢÷#¯(©öBqÓ|,å‘ aK€ Lš†d¬`¶¥TôÛ¼¤|¨xMq]ÎF€J¬ÀÇÕÁz#ʈ¡°ÌúÚ”Ôèú{øHî Šic\PÂËHÿz&UèÐÄæ`Õ©…8¯[JÖ-õrŽ^³Ç´Xˆæ=b粸K}ó#‡øx—€âçéÈzìt$8ìÉ%jfœ¤Âžu¼Øp°Kp„CbºhA™“ⲨÓÛ®0’§®K)1oùÉÛ1d­–ði7$?º±+áÞ¿ˆî N\û~v¡+ÑȯDR~}¹±AbÎâF£Bþºê™ŸBÝ ™šE|ƒ|‰m[¸1Ú)&´ªG‹ÄüÁSÝQ½KÇgÏ¥}ÅÊ·BîÅ{.i¿  mØGjÚÏ+(¥”r¥ºáYL/mm8åž73ˆ Ò8¥ô3ÁOL-ræ;Šû2<.fh±J+TÖÀ-Ú\G6IC$g; {ßSívôišÝ‡}8éð.}&¿~ŠîñZD-Îé˜(3|€7[ƒ±Ø˜½(êIy–«øy3Côƒï#ìÈìg<_åk%ƧÅïÜ(Xu¢‚ð†^ZÝÑHÍ/ë!ŸÜ-”ô!óÊFõßúö|ðtê\KÆg߯ôæî´³yv^2Ú­ñûç…ÏèУø„7è5"tÊÕ±2òÏ+Îì¦ 5o ë¥*Ýý.ÓñIHÒŠMóÃ,Jj¥#3g©'̾Uƒ°Ú¬p~¥ûBvÜÏ!KìÉåÍ7j1‘‘Íqg7>ŒÔE=¹ ª û?íC›. ¬¥Ë¶mÛ¶mÛ¶mÛ¶vÙ¶mÛ6÷WU»pOúÜI:ódQòäÍZA …Ï?²ï÷¥Z'Mëmõ¦¾ÊŒ[#‹6Né†F© å œcä€ÇXæ ”îØûŸ+ù".uÜfRÍŠð}Êq>þÔi_ñz,aŸÝIŒCM°~ÎQŸ’¡pP´±ÿ¹\ CYÊ8ñʲd™L ÞLDûúPòŸS Ftn2‚F@‰k#¿iÃÆÆŸõç^‹¦§-h@˜_ýà?»M…MT^_«øÌv2 yk(mçÎB†YeÒ§”‘J¿b6²¤b$f’Òí7æT’cËÜQêž±l0fû c!· J}Y¦B†×ë&Úº0s+Õ%CØÜ½ÉbÕ°BŠÛŒ3â²ófÎDl u¼ ÀE¹"ãvuÇ’Š²dwmz¦àï™ô»Þ¡')ŽYäPyd7¬y<€ñ’6IbrLíùkÚF ˆ ½BMê4E+ÞÓa)5Wg†‹GOÖ7¿—â2Ùk'ôÝ´.iSQìÀÞ*Xù7’½þÎ Ö€ÿ¢4TÚ®Ûø?Žèm¯CtÔBz÷}²ž­4Ÿ-Ff?O-'ùð­ÁTÝ&rÌ]šúŒ{“ák÷ØÞ yêâÚsZªD¶ J5éœ<0ðûdŒ{s¿C™ÊK¨ºÞd°1BIx%?øYȨ ·²-½V‹&“X«Ê[zïÒ{ܯ·Ä6ÎÄçÏ"ø@Ær7%9½Ú`‹ÇÕŸ»$5=Â"hq£9mçòN‘àf÷»út`0³ B^-Œá¸w÷Æ×¬›íž«1ºÝù èŠ#»%óDqºŽô¥1Ø=Rç¶ÒNÎÄ&yk’@:71û\‡óE^‰§õª®¥ÍÈg6”ñ6ýS˜à¢hð œD~á`£—Dë_©)šV5ð×[(ÿî­¬è¯S½8Ç£iÕŸsfܰ$'»ZÔ¤;±à›¾h€v×&qå¡f¨§Z÷L'×ý ˜:‡Ž­€M3”D)Œ®%“¢Â·7&Ž$ÅävpîÅýÁͺ/œÅ7’]1nLïÜ»¨2˜B vyõC ò< á´øfîX†fÑœ}ˆ°cùì-Á6·É¡yÒt§ÛÀ /èlqkù¢NùºSä‰MéROÛ,QQû¨­s‰µêc…Ö„iÁÄA>ÎãéÔÚ͉§›mÅ&£Î–m] 失õ sAy°*bĸïÂrœ‚>¦].P Î}xŠUÿ{1ÈŸ÷÷ÍRÓîT™¯Xºgaz¹²ãöøïœÇU£YîOð Î#ʾ¸+§—M@e8§ø!ðI‘Oaë=üpŽgÁÕþ:ÿ9þ½[ŒõzÆÑO=˜¯[ýÎðƒUœ%¯ŸèáæKí„9x¤–ú~ïÿ]6‰ë´^“ëÔqH„^]&Žs†10ÛZˆ##ʬ"û³õüDg‘Ä΄F,]¯Æü`Pú—'N.4|¯C€sÓÇÁ6‘ØààÔk“ªœÍº·à#j-·™k´}¨ªM;ƒ/éj¦ÚîÁ@S_:j/.~”§À²D,4Ä7s¨Ø#gÙ¡Làbe‹}‘œ6ð$Þr‚G—R°%±Hõy ]§ÿlvM¹]‹í:q#mÐ fïû ¦W.ãcRµk á¸ÛƒÝ"àc€N; åú„côpŽ7˜yŒ¤{}GŒ,&:ÞɈܸg|ÝªÊ ¸úà{`~&ý:/•ÞÌÈP®1ñ‘BEûWRZJI˜¨t^€C”Æ…ñ L¢sÔa…<Ö•i'«âÖÊ£õ—‡ò:Z«ômÓ],®Í§çFJÛ"Y*ÓÊXŠ©–ùÑcì΂âvë~QfåÂäŠ9η²Ž,”P³õ þþ*ýXªz·¿;EóéV8ù‚¸ì.𥖟“]®±*‚ÔIÿús3ïp¬ ÛÒcF_Ô›¨GÏ¥òV½I.ù±ê„:°º‘ ZPCI®»C†_ Ù šÉZÆ?­‘ªµ¤õõØ–Qr $탞™rë¢è­¡ú¾såfJ}íhÖ]âÅ*g“ïnD Z"NrGw\’J~¯†õ`ó@PÂkfCpÊD&ýî+†ÙèRùW1¦½ì?Nyy®§¥O_ŠWÁÎ Z4ÆÚXN7›!j#RRá¢é7æ&Zpë«Ê¸ÿ}¬Ì”^jpíÚÏÄ™LÕF(®*Ô¾/U­·âMO,^ÃÜÌ@ýšõeíå•sÊí±ChuÉG§ì(Yl 2)Ìó¡YäósBˆÎûÅ­ÛDH›…‚•JŽQ‰äŠŽ°Zf1ýüá¾Ãæÿl³¯ÔÌÒOû}y×1î*¾Š Á;å?lhÝæ˜•¨¡ùÝ®š÷ÕÏÇð"Ï‹#UÜÿM>+@=<Û–Âdúh°–¸¢þÐ%:Õ¶ò˃Κºè…—A Eð‡U#ù-‚cöwkˆz ã kåo{§Í±»f’(å™Â)F¥pDöÄt_ðà‰$k§£]EÚúà9:<mÜjï·Qaד)Û4€Ëv¡‹3c|ŒÚüU Œ¶°Ú½—ÔÊ^L”è›ZU_n[æÇ_=…–ú÷ΆJ:à›ŽÀZ”¬7ì¹šŽ‹Ÿû>µ1œ„°L2}QÝq.OÕ¸s' 3óÉ­cš!fÎÍQµÓÂW-æv§B3f æ?d:¶ÖYâFn‹ñagzßÍkºר*x—ød9aDüB{t{äJ¶¿4z 2ãå&¼ {Î YSÃZ4p°sN$>§oÀ_]ð¾I/¶Ï¼»{6þxÅïÉÍým¼\78ý˜©Wi3lé9‚Œãé³HH6 Ëy>dëÊ?F!+7î˹å‡=uÏ&T!ÆÍǰbÆ©ö™Â2ðú@\Áa‘µ A LÀ*H§[2Ð\uEÀ½¨úý5+:Ñräq¾Æ ÁîXÎÀìÓy¾¸ Þá2r+×3¿‚²Û®"áƒÜ™¶Ñ Œ3ñ›ì³Â­ñ_*QeߌïU¨ïók1ƒ 0÷Vüã-ÿ]}:ƒXX+<ùHŠ%qiÂvA:»&æå¬—`úMó‚…ŠùîˆÕÑʽX©ÆÛæV4¡•¡éÑÅX3£O®Í[12 ÞKj$|‡E}¾yUq’l‡E?H›>Ÿk{Õ}vvMMn¡uÑò…M½!³ÉšyûUŒWú¥§3$ê[¥Çš‰x,Aœ8Ù<©NS"¢:Æl8ÂÊž¦j*¾I×ÙtA¯2hb‰oVcjøÿŒÛÀmÄEŸÙH¤<®…7 Ä%௖áÜÇò°òš®*˜—ŒÁàJë|©ƒ& Y$Ù4þý(v?…jÒˆmuðäÖL¼S¦×¥A ;¼ƒYE K:ýöçEôÏ<0o;R+Öož~LCÉ'ë3:§Õi&®uÊ‘‚xBÕ­²8nÀJ-Î|´Ò?G@†…çoÍL@‚Àqc.¥À™U8¯æS„‹t-«ëàù†ÀL‚ù©µ‚U|¨ Ø­Ñ™;x%£ß\©ÀkVëƒx §!vBk§áb÷2"]¼§[õ §þI˲ºPÖÖ+Eÿ@w·½ïyTØ /SÀÎ0»ÜÔ¯qÁ#çÂL@´ù:<â7S‰øû‡¢¶É»¬óö`±©f„Œsmìh­œ`‡º~¨’~f ¸ < °ìÅ0ßÞ*ºû^ùPU^Zy²­¦]'6nRõ¹n~ì‘è¾á³l^’ÃZ!ÌQqmèk–´™ˆŽ¿»Õ Róíºç‰=¤òÅk"ËŠ´™æ<±ò,ÿã+/¤È°3)ˆ÷ E¯ÑÞv¡$x™h^û\çít1'ä=…&A°}Z^QÚ3‡{…ÝšûÕ¹vwm@Tÿ0˜JæhØ``³tÇ8é—>hŽ<À±[½-ƒòEœRÉ®÷!æç·kF5¶®@¡øyÜÖæè_`ŸvÐ<+þਗ“j¿¦!Ò±æî8ìTï ËËùq|ÒRÔμiæ¿ç¸pßšxY×S]¼ÖB_£2Ѓ‚Aí&?kÛ¥Ëä8ÖÍ ;@àJ‰º·ÁÇȺê%¯_.§ˆ©5^.½©vʰ ¿f¾R¯†3£ ^@Ä«žîZ;:~˜úóŒÝQ5¾·éVw\^UV»ˆÃ.ùëâFƒ%.܇¤«@úôâ3ëåj’;áµX¸ É…0uSrëL¶‰)2Gí®€æí¿š#XU=QÁUÊT.DŽ«Ô·êÍ7,•`¦ré`ÊËèh19§ÎmÉs*¾Þh\ßu“"¬ãCô#jÊÖÛ±©hñ”sZ‘Æ¿9=<6 ì_gMê|—³bcQ ŸœSihßf/û8ÇŒÏùm"Òe\õÜýM¦.v¾ÕâA¨–snM¯õjvï_-h¡) $èm¬,\^šqå`¾<¶²®¶éó4d>š>COL’C+{pY# RË9û æRÕcGûˆÅGƒ»è—"bþÝÈ ç‚ÖÙ3AÚ/¤À™Ýð—ýpG¸E ˆƒúyóQ%ë/ ø™F5_‘è"P/ö¨tÓW ô"¯¡ ,‰Ö jµÉà‘;$%šŽQQ0âl*Nä l¤Îº›{Ij]TuÇ3@,w¹ kH Îßî†bÃÊ82tº$ê~—§Êe€KV.ZBqY@)ÑàÝÀ½ßÓþG€eÂî~E¯p8C¨¬œðª###Þàöƒ˜˜ümíQëá {ÉBw~™B&ÈÀyñ©^nowч]¤•øsy¬€·‡Á¼"n_UÖîðbn&‹qÞßþ ?¹Ö(jƪo¡ù›l–>òQ­Yrª.C/Uè4\}ÈkÆ ãÅ”vE0 d(É›pèQZ§OþöÕ{í9âçwß.IèiÖw â®Q>2'O›bÔf|_ÁOò>´t È—Î1@œ}²Tè€aþ¾7Ã+Ÿý­‹,ô6ÜL6ÁVs{ÈR$XYOµNÒáWŸ¶JAýŽûöÉὬ«0F¶4t4?0Ôg¿ùÝZsm\'v“š .[V1™ÿ~M ½p×ÊrXŒâÚõ“æÁ——¹Dð—n)]D˜V}MI Ä- MØÿ•ñyO¥@•~Oâæ3Ê~· ’ž:•ÂÞ²d¾P×£nGìÞ•LÞ_^½§.+™ U*Ú9Ö¨å,šº¸Û_öSõ˜F÷šØ"Gá"¦Ñ©Œ¡‡éȸp®Cï7:XåqT–±Dj†ÍÂøõÇK"%^Xæ8:xô¡SÅÀ†kŽaËÑ5¢„fĈÄO?_ ËV‡Ši‚òA£›=Šç¨hÂöL:â¦(qÔ V«,®Î¿0Ö:ù¹úê]òƒ\ ¹N®Í7~ »Õdé¨QÂø,qÒØ´÷·—ÿþ‘Oÿû»cΕ޳hÍàÏhãs\™Ñ‹6µ{‚MvyA%€`üf†æ>h1k± 'ìÿYÈgßAÏÊ€Y7­9•Sùö’ k –`8I¹Š ÇþBpÅ È @Tvñ™’ÁÆ'î1A‘ÀÀÑ£{£€ I¥õ,œéa)MÖÎû°• ¢Øë®í€“µÝ‘ý¶Æ‘ê·õÈfAU©e+êl‡Ú„!;ƨl‘}Æ7’rïÆ¼™Šá)Ÿ`¿‘Ñ\õ°Ü–Âî0)¤/©øºSdÓ x×¶:v»~‚Æï×´-gØÝ{1mP0+8×OúuÙ´l †'(ö–þ< ZìÚUr¹RT]·òãhœ•t»¨}VaG<ŸáxÄÈAߌOδO(Ôg ë¾­ÑæNƒöHÑ—ps2Ê<ï¦Ô(iØLèþ’£`poµ,ŠÉsLv<ø·n48ôî"^«è¥¼èˆÓ€šx`2jX PdcŠÂ{•âÄŽ³;Ö¬òûü³ðˆ)×Ãy³O9§ÁS¬ðÎKöÈ‚¼3©b>q„<@Øè±­ ÅH„'3•ÀX¾]U ®ÕÓâþDŒü]ýïãcuwŒÓ\j~Hó•Ehœ·$¯ ‚´¿ å²PQpZƒ4gqÌç?5{…Þ€ßVJiÇ{ð‘ô¹ë:Ä{¢pYßAi£¾ÂÂ%‰Ãš))å)Cõe™(ºËãÔMl™¾‘ô %`>CEfë(}Ë—ðƒuÅëêtϼmÇg_³DQ¼mÅmkkÖS©º°ŒÍK­Ã•»Ç"õiÞ KþZ–-·?)U5 ŸÁÛ:š16 î„ÃÙ|§†‡p)â¤úä°ì±»¹v§îûîN9ï:®v¾Ä?€•ñ¿ÌÑØú´¿T†íjÙ:jOïŒ_óßçúá ÍNÖ§ãÊŸþMrwA¾·•Í™‡DDQ^!«–ôˆ*èNÍb{¾Uå0qÕ>ñä'¾”‹Ÿæ_í-^©¾ä]ü”4ZÒŠ±â‡ñ0¡s(ÒƒÞ¸lK¤XKe?#©½ ÌwD¢ÙÐ\ïïŒDñ.é¾4%†®·HâæP@a»-eWFv|'5:´J“WeׯxdÍ‡š ·³‚q¡~eð²°aÉ~¿Kß9{x©GpþÑï÷²§ÞÙ#>^Ɔ³0ÕV|Ì„¬ WÑñÀ U¤×⺘«Æ¨6Ê/Óªq«9Ä)|9µ‹YGÀ†t+vðŠ(Z¡Ìh!`:+ÙDãYÆ¿†c†Ý0M—­ a™0Frv:Êçýn:9³7éžwEî1•ö‡±^|Ÿ®Ó|%Ø,¬ÇC6_)ˆ¨v¨/O^½iˆ  MF§²Ð:p®ê—²µ¤Wœ DçßÄW}Þ­¥Äâ;#fy²Š‡:¹sï+m‹_* ×ÊèîÚÞºÈ 0­2O!ÐrÇ!øËr¦ÿá»|´1sJXôê“ÅíiŒ2†öÊRÙ)w«óI'S…lyúœ¤šüÚÂÂfé¸ðyäow¶LCóØbš1tÆWªøû ¨qíÀÞÍ#ÃK8r T6=I”e™äûòÎ ùÊ2ðQ%Ÿ3ÈyFž[šgµ©jÜ­ED †[ÆÞ¯:Ä£˜ Èðvtmd#_H,{ºdfreÉñr­°ü s»ÍG¼Õþ«5³dÜD`S¼Èdpõ zâögÛälåd › Fë M5þøjÇ&ù›‘jƒ‰àí¤ý³yþæZ¨ÉðUd4ßÝ»`cçK›Ì¸¬(8úŽöŠ?,‘Á¾VúÐF±ëU öþ;0ÖîÅsÙ‹î-ñV ˆï·l²Ú)°8:$;e™´é 8‡~AÊ}DNᨮ&+?½+.fƒ>­”Ž[`BG†U5«KX¸øþ|có4“¦e®Õ:z9i³=U×åÚ(+óÖ»JÏ*ª Ë‰r`ôînWç÷aÄϯ{ôZ!~ÙÀÍå1:üùý­ÑYîvß-Þ8Œ'ø6‹[Ñ% q«ÞXvþ}¸)‡÷X_¦¦lÝH%ìY¹E"€•Ûì.‰÷aS¤•¥T¯HT˜ZÍn{Â< Õ?³ öâöa¢ãþq¥ÿ« êÕ?)bQº]*ål‘ß•ÙäÈÔg†/ÚòX~m!`=}bkòŽu¬¾„ßEÏ^”ŸüÆJ©2èAIpÎûe€ú=P“Ñ¿Ábà^Fê T €6ëÄhL·†‹U[2qê7 @PJóÕµCåâ{õy‹ñt&AöÅOMfÀOMZ1»0LA¤6ìóg/F‘BíñÂ;yx´ð#Œ©é³wûËüYܘìÞõðò1O¹nçwzùÇþÏ\g60¼Kƒ÷»JZ`ôuê>òüú*Å]Ó·>!¨“ ÷`¼Ëë°S=WÑŸ?Ewgî«ÑEÌÊYXõJqÚ9¾h¼¸†Çõ2!¦¾ž3§súXBOý#§ëŸý-û×=špû”@NMÂt.‚á@ÅKK4 ãÓ¤Õ^GM~í9ÔðÆÝjš¡¥²øEÑ"?Bs$0#A1_ŽÖOx±“Ç8n›®q«¸Wb_Jºä#ÂŽô{oÁ¡³'Þ4¥'YÖåpž°ÏödÀY f-hmœi™»ùÓW4E+¼nòÄoÕJ•8v‹ еà!^Ðý·â8OÇêˆÒ4t z/AÀÏÃr6ȨWбtÒ)+4£•Ön…™²dÈÄÉó\¬rÂ!^ˆ,«D†naƒ¬k™ƒÉ𒽜f@ö²†Ã1è}”­º]=a¡mج»PÖÐÖÝ7˜Jðûÿ”8Þ‰ ðp'˜QX ö=Ë̺°û¥ey™Žs`cê(8@Ø–p,L\zšÐŠO“DñCcr(ªlâÍvѵƒ¸´Ãɼm£+5ÉSU‡5i¹Û÷CCgÚ§åÿ‘êÐzà–Ò-ŸÏ•±(Ð&'©BûR@™¹Ž(s&PÏNRêå`ð•ò±ß„ÄS­’TW!Ÿœlïçñz¥7=ÑMOÿA†g~Œ%‘5Žû<€k¦)?ü3ìv¯ö‚¬4wÓ‡ûo¯e߃üÁ\sëAÓl[ºÏÛ¾Ž)ÅbAÐé…„¥µÔÇ“ôÜ TÅóò»iµ€¤GÜ~&+NÄ:¸ŠmU‰z"ŒrÔ„÷„e³=ÏúH¾{ž5Xmˆª²·3%uÈnþâl³…¤­kžxo=šÖöÚÚɟʶ^ˆcJ¢çW\Eµ6ÄcJHþc»æ2+'°y=ðœñ“°ÂNy—r÷šçÐÉ]\ý9R»¹Z,” ccÄwpÙA㮌 ºd „³CM7ÞN‘ª2ºðဲIb‡ÆAÃTA•À¥¬Íù¥†o0ÝYJ”µÂ÷ùžÊ=Ê%ö®p2ˆ‰Î®¸\“øP /öÊÜn)y…sO—jh¹¬n{#‹!ËW‰5ÙiÚ–2¾"Œ†?Fcá!ߨã†$µÅ¬=¹À¬Êv8°:ˆƒÂ ÓèÈÞ¡ ø©P„<‚ Väbwbm‘¹Àû(H î{ÔËåiÜ[œ‰×%'xéÅð·âtÄ«£Þ&Ü"VzC‡hýAS{¾(=*+Ù8eIl ÇGº¼¹k#–%åªékËÃ~@M"¥xsçÝP³.Ýöì5…w »#þ7¡l°(¦ruûi˜‰I#†R³|·.pûÚÀ# :¤9>Zº–rÝžôNÖ~ÄN5À 3ö¹j¥’qôíŠ6úA`CoQ[1ø_EÒü³ÏÕ¼²üØë—1{ ^Žé˜-£ùôK;‘dÁµXa ¯³îé®HÉÕ^¿AØ6ìEÔ›µ‡8llH¹ÕÔ6PÍg4u®²ÑЇr@yf.–kÏ‹°Å 36"¸œªB6fK’¡¡C4W™ß©áK&J×ëgÍæäº#ƒ>Ìt=ffF*®Lõ× hû߈¦¾v²íD”Cþ¨Ï–îíu:y˜WöÃÝc‚Ù%Ÿ±vLsL9Bð–}øþà¡ 9;ƒÙ­¸†sP|K@¡Â75*¯˜ÉÒÄãíÑÙÑ@(cRe™ÂN îšãŽa„‡á‡(–Ñ?^·‰ø gí@SN![´ÚåGÿ1ºßI…*G‡ópï¿íR¾Ž/þ¾D¥4CyZß=¤püºïŒ7ƒŒ úø ÜŽðB.eR*ÃÈÏ8[¸e¨‚Þ;ô–6Ïg¼ Ñî\Ëb˜žô‚U³þíݶAÜáªÆfœ€Õõ¸~@·å¹7$¤EH|ð rÎøØ¤LÊLÎ!Qc>·âm™îq>xß,÷^rk†”Zç <²É =xú­XÈ+I­9ÿP"pM‚EÔ³Ž¸aðqcòµè”‚ É£&ÖSLï¾#ß Ú»@¶MÅFˆ\{‡)ÚY¼\ÏŠÉbð§Áujéx{ï„xÍç Ø#ÐëåÕS­Ù‘;ï—5Ìôït¡Êž—Y¬eMÄ#9²öí¤á±EI¤9CU*·ÑxH«;ÛA(â/l³ %~OKsf’c…z± F¸Ê¾íÍgcÙ¥³dgÍÉŠ˜"¼ uÎ#ÑL´ÝBqÇ bln·j{¼&/ ½‰´ƒÀ%ù›½“ô˜Ø ‚±Im‹ÉÉ«‡³xîax5T¿Ó´„ã4,Oþ¶w”´chsÔ‚” NëÚ5NEÉ·I¥ÏŸË)2/_{üi4b(6€ÖÎ öçÎû ,—ú¼¼Ê1D(ö‡‘¬רó!—ÃöÍØp+0}Èй~wƒzD=bLõOîâöXO'7J‘N—|CVÃ"9³(/Kª~ù$ SP êÌÔÏ OOîŽWþNƒ"KñSf‰ÃÉ<jfyê*Œ)dÏ’Ï>¤Otf[><‚¼yhñ¾ÿVX)9Þ J`ñ c™yü!`óY£ü†cÖëÍ CšŒ®0Ç„EKv¼¹`~Æ£ëÔð>WΙ/\y(Ägg5m¹L/ SrmÉÉ3ª©Sƒ39ö\¹Ap³»ËÅǨÏγÿ¼Ã÷˜b—Á‘…m§OxnÕ0ík<:ß²d`°j=o,vfÄ•¸øÆùh¢pt|1ÅÛåÜ…È”ªÎ>›8\¯Ëátèmi͈!~¸ÊœWm:•qÓ›Hg0÷ é›rA€è+ðH£C‹æ•O©{s›Tƒ¬j U7l–ÌZ›»®í^Wá¾únr=Ùa”f\´Vñßà1›*šõ@Ïóûv50Û¹[u»L3>±ì d>mCÁÐ$H×gôù,¡òWAätózêkð.Ã<œ]‰(nqŒDObŽ©†}au)›™Žê:zC¢ïºÙRu§Óþ}ÜÒ¯"- ºÒFdmÊ”ôêw²®»Ì¹Cl'–f4†éG§uõ[—£we¿ ¥H&†ˆ¡–ÁoØEP1½ç7?£3£áÔi–obôëMÞGvkË.À9»‹½0´§_!¿…¿¥6X©ÌQÖÛ’šR_hÚd©/n,x\âO¶—Ñ0g,y!3ŒµS§5XþvíˆSL8‚劖(¿“Ql]c"É9ѽ î‰+v².K®„ªL)Ÿ¢¬®YÅa'Ÿž9í¼¡Ç/­]›q¥=Édd  ¶eû5/¡×ì±On®+ uÃÁâW:ŽÂ6•i ò{÷›V:]U† ³§ÃÞÔ¸òê(Õ5ú±÷ÅFAþý†dkÍ8úz†U‘;LwùšHÝ^œˆŒ¸pʳ@ÒÝ|Ót¹T“?œt†'÷쟪¼çî®b¶k³§â=I3@Ù›ZAú|êm­Mw)‡sŠÄ ›B<^9)aŠ}>pížoµ§Ãn9(@ƒ)Ŷu«”v5WòeWhQîD´ü r×îÿpŒwœ£O“2É„$väG£‹×Ľ-)Sw¹W[ ÒF÷a]æ$CtTéÊð¶>‘;GÙéq-ê,æðžôP¡Ä>Ó:U"ÑЙ†Êeä=*•7ððJ²'}7rãö7{‘ñÀïëO NTªÝgÑ]üš_(uîEìuüÊ\tP‚¬ÌLµX#Ñ“ùÕc[úg'úª#&ál{W’b?+`A¼Êo’³Øêÿ­ìI—¸¡:ZßÙ¡Š-]5­Ùäj†ÎÈ¡?O$§"ÿ|%ÿá gh]ùÏ'×µS6'ÒL뢂´¼ˆ4†n­ÇYu¥²5T%‰Ž>t)ZeÌðt”2Km€}GZ“vTײh0ÙæÞ‰eŒ›¹bŠêbg›ï⊮`@IÚ÷V«påߌàÎVÐ07¾œ7U+®ÄUWDíp{œž D2N`‹Ã¬š¬”ûöŒ SÂáõ F1U975 5+¸o=ºk³Gßêlž‹+Q&‹¾ñ&ø~ÎNË)ëÙ¬tñ¬0l²ìòW‰Çê‰VÔFvJã&)ïy&‰§Û1–O’xÄø›;ѳÅôà÷`Þb‘Æ&ƒ¢ò;7œ—ÊÆßgtÍg»#0IùÚqÚê}²a|ó>Ï4ŽuàÚÀdiUˆr\Áhæj¬¾%½×Þš2c¯Ø²O·g™õx^³òÀ±~ }|B5•û5sH‹^ò¨ ÔÖwš‡w»ÈA•ÑBåQS8=Ë!m*"»ûß ’Î/I%c¼ÚQYÔ©”H¯ÖþN÷¼RõûNñããz›9n£)9öÎýJs>ýüi«t¿!w>\XŠQalcK§>\ïOxÕÞVïÙ“©­üÆÅ„ß ˆá,‘m2ØõŠùf£ˆçºÌÊ­tmqQ§o!÷*„×IódõRÛʧ=tòÀËg݉¦0ak·­wËÃûËa=PŠF ¿(r <R›[PLnÛc 3'!\}Á>£{”;š!¡ìCœO"Ž«`ò„1h9¥>:À¾Ú2°UÒ[¯‚»|êã´÷exжËoÖî·gÊ GeÛ_¨1J Ô=$7î&.u‚;4šB–‹xßž³vì«w‘,;ÌW$ó{®I¯Äq "Þ€UG‘;h¾9 -,#v¦YÂ}~ç@áÚ„ƒ†ÇÛt]s~  $:–tc&Û8V—_;"Qgï8úÿͶll$ "^'%F¦œ•|KwiÂíqi Ô$¶XÍQBôðUmÖf:k‘¥öQËe;½ +‘D6RÝq*u]øÓyd " Z'YÏ„¢´q«ˆú(œrßßÿЈ$DOj{íš¿„Ší /o»s•(ÿ Fàì'!x7©þÖ]/‹ìÂ8¸4U¤Õ’Aå£ÃFRïë°Ðlø‡]¼V;{=VÝÂ¯Ðø&%{m•‹‰Âý2Ÿ9íô˜å`«Ër«Y¢‚FàÆÀg ZÃ30` ’=©ü}¬´Emº!ó,Ãø÷2¤’±×Äà pÞ4Ž ßæ`ŒZÂ|êÁT)ÌøèÏÐÅT%.í”à´M§€ Y`C•§î6#ßêtðL^ÏöV XÝÕžEŒ¢ÀOà«iq^a;*yû ­rëÄ%$H$€&¿Úl-˜e…ÝBÔàçJkÒ;§>8é>K;Vfô¹î2\å[Kß¼5<È`4Pñ<Ũ£LöêËZ ™_3WBŸz%”ªb¦€¿vûÂÃÈ’ãïܯ†1±õ1H®5´<&I2øÚ£öëÆÿÂüÄá?5Y!‚AK^Å¥dKêׯ¬Ÿ4ý¤ðóÕ*i‘_ø7úÁ1ü C²ù$ˆ­Œ-epÚùì^Lõ/*ç'WÖˆøt1 ¡;*O®Õên-š E³ë?§)Â)õ/ qöMµÓûË%u˜`gãëp¶ %/l²¬WiXïtÁ ·ƒaï>šU;•Ná BýwÆuìÒ‰q5TÞ¨Aåå€ï⻯.F¢ÿ‚L%D8æ¢äÏšìü…JaüÞ(å‡@#rzZôú~KÚþŽêÌ n¤Ôy%¹QëE ¿>‹«ƒè¥EY+8ÓG ©&½n`qT`N]¯–µaê6¹k7YO}{S-A6¦¾ö/^JF™É¤¼{æx`OØ“ŠIÈoÌÒ™g+·]Må æjÄ`™‹RÑ~$Ì,ÅR=iŠ©†L§bßõˆ=ú{Úzi0ü˜V±zçe½Ÿ„vÇ/ãÑ€ýGß|‚ï½¥~;[ “*·[ØRkÍx}…ô¥üÐp…âi5HeÃïcéw|íX{Õãõe(«ö€íÒ"ïó£îµÞæ1NÙIYD˜ªf‰FÎpH†³µ›î¼xJ«Þ+Ò)˜N̨/€1ˆîJ@ƒZªJÊõE0’T¨5Z­ÊçØ ÏÍÒó¦{ël!¿$Úø\ŒNÍ0à"zzÝ× §·{‹Í’˜Ç„vîL¸¤ûÚäCs(ûKà·š`³½PçŸñŠVjCwyŸNfãvsóh7# š=Š™,1¾Àž´µt ÇùÀb;μ_n¯[«{fj Ð×ÿSX‰6µÙÞÜË”UB$§Ïþ¢znîqÈòOº\²Z°ì¯Ptz8`÷u2›)‰’òyWÌk!¹íg6ñÓ:èÿJ3s’‘“Å>ÀÏž‘ðF}åÿðIå2y¯s½[#Š\+ãæ½cý»tù ¡Vú¨Ý錗êÚ0 JÖ…ß ‡”£¾z½e·³'ʸ^Šë°ÈŸ÷¸lƱ…{Êï~º( s*ŽJüª÷ÀÇQ°¶/*oqâz[C æÏžL9ˆS'S´‘ üÚÌÏ•ŽÎNl?Nt@ê¡àY©AB¤'P`8` 6ÆÓ‘†|äL œÞ˘d”ýÞª3ò·Kâ”Ñór…»þ(ãÔê„5 é0ÉÒÃ~¥ÿþ[½<e0ö¡‚êîvšïvLíäíÅóŒÌ¦dÃ$.{lu„¤ž¤›ÍÒõã »6Wóúõ¾¬I<Ÿ=K¾mÉcçaú_Ìÿ2Ÿéÿ`ú¡ÿymþg[êøœaþoºa‰endstream endobj 34 0 obj<>endobj 35 0 obj[600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 250 333 713 500 549 833 778 439 333 333 500 549 250 549 250 278 500 500 500 500 500 500 500 500 500 500 278 278 549 549 549 444 549 722 667 722 612 611 763 603 722 333 631 722 686 889 722 722 768 741 556 592 611 690 439 768 645 795 611 333 863 333 658 500 500 631 549 549 494 439 521 411 603 329 603 549 549 576 521 549 549 521 549 603 439 576 713 686 493 686 494 480 200 480 549 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 762 620 247 549 167 713 500 753 753 753 753 1042 987 603 987 603 400 549 411 549 549 713 494 460 549 549 549 549 1000 603 1000 658 823 686 795 987 768 768 823 768 768 713 713 713 713 713 713 713 768 713 790 790 890 823 549 250 713 603 603 1042 987 603 987 603 494 329 790 790 786 713 384 384 384 384 384 384 494 494 494 494 600 329 274 686 686 686 384 384 384 384 384 384 494 494 494 600]endobj 36 0 obj<>endobj 37 0 obj<>endobj 38 0 obj<>endobj 39 0 obj<>endobj 40 0 obj<>endobj 41 0 obj<>endobj 42 0 obj<>endobj 43 0 obj<>endobj 44 0 obj<>endobj 45 0 obj<>endobj 46 0 obj<>endobj 47 0 obj<>stream xÕ•M®Õ8F+D"bÒÙ^ó'¨JH~›u$Pm<$ºç€¼¶¾eÁYK«Æ°OZþƒ×®Ïßýÿãû @ÄEpÈI¾ãwæßO(_Ïð?¿x ÷ì-ùùÉÝçõÁ¤ˆ‡‹óI„ ó^N"”Ý…?ÓHîµä'Ͷ¾„hëÜm1L»•Fª;ï6aæ…Ïfäß×þ5Ó˜Ùç/Š·LˆjyÓ8÷E³¿mB =Ø}Õâꤟ¾)uËËVÚp§e-“ÕÉ{ÕïJ'ºâ”ã]Ê(\×2gY7t,¾PwkvÄýOûoÚnK¦Žg;ï²§“—ìym¬i»-i"¦c RædÜâÒø>'/àuÆc¸S­¬©û½ˆ<5½1K¶ Å.¼ 3EÜ«åei¬ÉaZçPq±z¢Üò.ûƒs"ˆñ™²+j'+{ï=ãVÛõ‹Lë|Ò…næ¼bå|ÌÿÉÓ¤f»q{jlV¡ì¥zàüIÄaíÕ…+ ŸðNDÿZóc ¬FS¥£ÆóD:Á—üxµÍ¯xó§9gËó%ݬ––_L¬ÏêÍœnÜÎNw9gÐ[ãS|¤ˆt¸Þ" 'º=…{•'wé¾Nƥ¿œòºäôܱ~ }KåŒ{͆®qý4äqb¾~¸æ-A™ÿŠX:¸W}©ÑÖo¤ßáè´ù8G?îל, ãªOÆw7îÔ­„ã§ñÍ™±ç[œd/>-ÔP¶ƒŸ™[ÑXÂìóÂßh¿qÏ­'0¼R–!/;…ê:gÇ+ΗZŒóðŒcm[߀Uœ ;ã¾5lͰžY-sL ·tpdˆ¥qk=•1—¼b~"}:Ùùk{ЯxƼ¾æ§Îߨã ~µc‡®¥—^> ­ÿ«àGÐÝØ{®ƒ[÷·m?‚úpendstream endobj 48 0 obj<]/Filter/FlateDecode/Width 256/Height 88/BitsPerComponent 4/Length 2740 >>stream xíZOlœGŸ±P Mg›´´ê  Do8p(¼­*!¨7•ZˆxÃÑÂëCo€ˆC…7Q%ÖNÔ6¸­#„(—zC(R¤VkSÚÄŽ“ØÞý†ßû3ó}ë]¤¨ñöÒÌaçÍ{oÞ›yóÞ›7ŸíývÇos l9ôü[k‚?Ÿ8¸’jü“3æh+êLc¿µlC½1¾e èœ&}6`†ÆŽ 0pFôM5K26§b°ýEU÷pP3«ˆ¡fÀ ²ßáÓ†Êw«–MUoÌ{©7È®Fus‚┉­¦Áõ7Dý£ÿ0æ}¬%=&’ £ß98½Ar‰=ä¯3ĸ6ã¾]`¼š$0ï}ÕŒ4ý,~À¨÷ÿbÂÀcíl±ÍUèkÒHÿ½èÏòê„\»ÉJÈÏ—‘Z¤ˆì½dÁ÷jpS Çù|Ðß~ÅóÌðàtC2ùº1Ÿ&³ÐϺ`ØïÛy@f†‘ú¹F†Ùìåàÿkzëû+Qïj[% O2XŒ¶.3¨Ð@ ƒ­š»dƒªFKpp"6Õ2òéÔÕÔ €¢1)Œ×ÒÞ¯bâ÷‹XŠºQ‘ %x Zeïµ{_‚øã"xà„€Ü(YyêùøWD2]CSҩ̨¾"`]‹bö°#EiÞS$ÖD6åÄ UC¾à=Ô,¢è Õütý™º 3®ài‰”ŒÒ–!¼¦’±QIÿ’ïQ4%ãw D9„V2Î5ŸÉ4…ŒÎRzD{¾Œb&¸°DïËx‘“áë{®Û¿â)Ñ;û‚^:¤¨š±ÅÙè²9ÖÜÛtÎÚJyãA,àxÓ40h)ÉÀúE$ „Ûê;El|kFÅhÑ%£ucÁ#/XO%úGoKá®ÉK°ð í¿¦„θÉÀ„€Ò’.Cƒ¶È·ßSZãó_QaØ!0Ò(ýFH`¥ àÅLH¶7ßÏóÌ.#J¶¿µjl¸s¼ï8gî.Ø/6ÁƒD)ŠN Ž~OÎt¨ I¸ÝjèÚ/¸ýU:æØò0Ú<ñ8X[„oôÏÈ÷&(ã’¯ |âcP‡³ûRieb“Wxm3pü½ [ïoþ$ðÂ×eO~>*Á2ivÑÒŠ´MʼEø„J¸l>dÝrŸ|Í|O™aJ­iôCÁý3×ÌÕ¬þ™†@ÐI÷ãÜ-+VFŠ©ºÀ…èJt»IƒþqåDGÌÁñ ZÒJ€«R1E’NùÿP‹IØ´Þõð¾XR•£ú®-mÃÿ:OÄáz¼f ?†Þ t Øß?nì‡^Rr[Ôè(i*pé)cyÞê$aqãÔSÛr¬ã;KÙðxØwþðÜÓÏ®0ýÀm¸,/b |%™¦©Æ|Ž.Ÿ}(2(•Ãþ¥ðª0É›4ÒýΞþÂÏZ~ÚX–d”œy À±/òÐFèSÕïÐsû1œ ©„¹‘´>©XáÁˆ’•r0¨¹˜—Nd΄€ûº JÈeŽ˜ÎŠ$m_í ñH;oì$ ?.mh"xV£÷+3º¶sY÷÷~ €µv7”ˆ°{A¶OE²6[ãÇrj@¼*ÉB©wsiKI9ç0×-6évôOîæÂ–‡E¢B+9Ûûíq™ôËR±?óÀou›dzD&I¡OZs"*ùËI°ò^(w3TÄþŒsñF ÈykÞàØ#xÐX)h§˜†;¥Æ ~A²^¹OÓáEá«ßï‚§d3.¾ƒ%È}Ž=ß=Z'–Y°m‹TÞÛ*GÚ¦/þ‚žVôàȸE‹r×õ,êz¿À /—yjìí=äYO‰¯§yÍÆÂ¥w =8ú¸ÿVNê ‘«¿ÈÀ}gˇŒÊ¡‰°!‡ãÆ€/ø¶E{ÄfÊ‹ähŸß©³X‚{<ÍoÀý[]Êiw¹Þ ¬y¸uü›IAùµ†4@ù9ÒÓ,ÆÇü±/à´öŠ—l¶öèŠésT!@6° =—–ÄUœ ™w´Á”ÄǪ1ŸÅÕ7ÆbÁ A÷Ó=Ù—h k¥< AzÐOþ}éÍHP‚”y‡íe;ϼJ>Õ?ª3b—q»³/Ñ®Y›[‰L ÆUÿzwƺJ'¸ˆ; ¨Žvº?ZméÄpI¥’ÉýfÒa€PçzÐtÄC̱A—¶+TSÒêÐ&©ØOitNñ¨ YÁ×à~ÍÝHŒËõd` @‰¿M§¡/3iÿ’uÚÿŒÄ¤`k4äø_w»ë®}µls=ÿ£ä*߆qg=8Ñ— +ñMöáxŒä‹ÆÖi@ÁØ~gr.¾qâpÀû³c†‹Ñ$¨“7C+Œ¢ŸD¬BT¾j=%fØvª•JðôR“Oôu?ïQôÖàˆµˆþTÖ¦áÓ¨’~~¦»pý`m¥ð‡TºbÙÔ£øØ}ù Ð-®Ð/C„ 7q±D¬Ê_l JäU¢"z'Ù9žO×GÖ/™³éÃ>¨áp¢ ÁˆaÉI€ú? Εü(˜¢9ËFs>ýkyPÄPn0ý½šë—ýˆ>Ûç¥BŸ©Y>/†Æí‚F0…§˜|#+ ½œF·ïiy3@vµEçzÎDÖ¬í©UHäΧüoÌ¡o~'1Ô"$ß Q¨Ùgž{ŒYŽéÊu…c7mÜXtÐÕ¤a\¹¶ó,d €’žÈx¡ “!¨Ñáñêd(¿GÔbYœÀöž7ß1õUl\Û”à€Ð´Ä®ÀD«~zêꂎãÞ” äJŸåÔÁ™å\X€˜ŸK ý2¹H–ßçŒlôy{!'õ²ªÇ7·0ö•l%ßW-áãl)½ß—Ä2öÑÔâË}t%§ãg­¨#7ÌBc¿=Ÿ¼À Øț ¦] ä¾”2ûÆ‘£õÌPÀ~J”)é›—0–•qé¤3÷Çeþ»02¨['Œ{äaDýT"½í«½¨€Y @¶ßieGÞ¿özfÜÉ“×^ÉP¶ûÊûo7ÓÑ ¼-ð?…(´lendstream endobj 49 0 obj<>endobj 50 0 obj<>endobj 51 0 obj<>endobj 52 0 obj<>endobj 53 0 obj<>endobj 54 0 obj<>endobj 55 0 obj<>endobj 56 0 obj<>endobj 57 0 obj<>endobj 58 0 obj<>endobj 59 0 obj<>endobj 60 0 obj<>endobj 61 0 obj<>endobj 62 0 obj<>endobj 63 0 obj<>endobj 64 0 obj<>endobj 65 0 obj<>endobj 66 0 obj<>endobj 67 0 obj<>endobj 68 0 obj<>endobj 69 0 obj<>endobj 70 0 obj<>endobj 71 0 obj<>endobj 72 0 obj<>endobj 73 0 obj<>endobj 74 0 obj<>endobj 75 0 obj<>endobj 76 0 obj<>endobj 77 0 obj<>endobj 78 0 obj<>endobj 79 0 obj<>endobj 80 0 obj[49 0 R 50 0 R 51 0 R 52 0 R 53 0 R 54 0 R 55 0 R 56 0 R 57 0 R 58 0 R 59 0 R 60 0 R 61 0 R 62 0 R 63 0 R 64 0 R 65 0 R 66 0 R 67 0 R 68 0 R 69 0 R 70 0 R 71 0 R 72 0 R 73 0 R 74 0 R 75 0 R 76 0 R 77 0 R 78 0 R 79 0 R]endobj 81 0 obj<>endobj 82 0 obj<>endobj 83 0 obj<>endobj 84 0 obj<>endobj 85 0 obj<>endobj 86 0 obj<>endobj 87 0 obj<>endobj 88 0 obj<>endobj 89 0 obj<>endobj 90 0 obj<>endobj 91 0 obj<>endobj 92 0 obj<>endobj 93 0 obj<>endobj 94 0 obj<>endobj 95 0 obj<>endobj 96 0 obj<>endobj 97 0 obj<>endobj 98 0 obj<>endobj 99 0 obj<>endobj 100 0 obj<>endobj 101 0 obj<>endobj 102 0 obj<>endobj 103 0 obj<>endobj 104 0 obj[82 0 R 84 0 R 85 0 R 86 0 R 87 0 R 89 0 R 90 0 R 91 0 R 93 0 R 95 0 R 97 0 R 99 0 R 101 0 R 103 0 R]endobj 105 0 obj<>endobj 106 0 obj<>endobj 107 0 obj<>endobj 108 0 obj<>endobj 109 0 obj<>endobj 110 0 obj[106 0 R 108 0 R 109 0 R]endobj 111 0 obj<>endobj 112 0 obj<>endobj 113 0 obj<>endobj 114 0 obj<>endobj 115 0 obj<>endobj 116 0 obj[112 0 R 114 0 R 115 0 R]endobj 117 0 obj<>endobj 118 0 obj<>endobj 119 0 obj<>endobj 120 0 obj<>endobj 121 0 obj<>endobj 122 0 obj<>endobj 123 0 obj<>endobj 124 0 obj<>endobj 125 0 obj<>endobj 126 0 obj<>endobj 127 0 obj[118 0 R 120 0 R 122 0 R 124 0 R 126 0 R]endobj 128 0 obj<>endobj 129 0 obj<>endobj 130 0 obj<>endobj 131 0 obj<>endobj 132 0 obj<>endobj 133 0 obj<>endobj 134 0 obj<>endobj 135 0 obj<>endobj 136 0 obj<>endobj 137 0 obj<>endobj 138 0 obj<>endobj 139 0 obj<>endobj 140 0 obj<>endobj 141 0 obj<>endobj 142 0 obj<>endobj 143 0 obj<>endobj 144 0 obj[129 0 R 131 0 R 133 0 R 135 0 R 137 0 R 138 0 R 139 0 R 140 0 R 141 0 R 142 0 R 143 0 R]endobj 145 0 obj<>endobj 146 0 obj<>endobj 147 0 obj[145 0 R 146 0 R]endobj 148 0 obj<>endobj 149 0 obj<>endobj 150 0 obj<>endobj 151 0 obj<>endobj 152 0 obj<>endobj 153 0 obj<>endobj 154 0 obj<>endobj 155 0 obj<>endobj 156 0 obj<>endobj 157 0 obj[148 0 R 149 0 R 150 0 R 151 0 R 152 0 R 154 0 R 156 0 R]endobj 158 0 obj<>endobj 159 0 obj<>endobj 160 0 obj<>endobj 161 0 obj<>endobj 162 0 obj<>endobj 163 0 obj<>endobj 164 0 obj<>endobj 165 0 obj<>endobj 166 0 obj<>endobj 167 0 obj<>endobj 168 0 obj[158 0 R 159 0 R 160 0 R 161 0 R 162 0 R 163 0 R 165 0 R 167 0 R]endobj 169 0 obj<>endobj 170 0 obj<>endobj 171 0 obj<>endobj 172 0 obj[169 0 R 170 0 R 171 0 R]endobj 173 0 obj<>endobj 174 0 obj<>endobj 175 0 obj<>endobj 176 0 obj<>endobj 177 0 obj<>endobj 178 0 obj<>endobj 179 0 obj<>endobj 180 0 obj<>endobj 181 0 obj<>endobj 182 0 obj<>endobj 183 0 obj<>endobj 184 0 obj<>endobj 185 0 obj<>endobj 186 0 obj<>endobj 187 0 obj[173 0 R 174 0 R 175 0 R 176 0 R 177 0 R 178 0 R 179 0 R 180 0 R 181 0 R 182 0 R 184 0 R 186 0 R]endobj 188 0 obj<>endobj 189 0 obj<>endobj 190 0 obj<>endobj 191 0 obj<>endobj 192 0 obj<>endobj 193 0 obj<>endobj 194 0 obj<>endobj 195 0 obj<>endobj 196 0 obj[189 0 R 191 0 R 193 0 R 195 0 R]endobj 197 0 obj<>endobj 198 0 obj[197 0 R]endobj 199 0 obj<>endobj 200 0 obj<>endobj 201 0 obj<>endobj 202 0 obj<>endobj 203 0 obj<>endobj 204 0 obj<>endobj 205 0 obj<>endobj 206 0 obj<>endobj 207 0 obj<>endobj 208 0 obj<>endobj 209 0 obj<>endobj 210 0 obj<>endobj 211 0 obj<>endobj 212 0 obj<>endobj 213 0 obj[199 0 R 200 0 R 201 0 R 202 0 R 203 0 R 204 0 R 205 0 R 206 0 R 207 0 R 208 0 R 209 0 R 210 0 R 211 0 R 212 0 R]endobj 214 0 obj<>endobj 215 0 obj<>endobj 216 0 obj<>endobj 217 0 obj<>endobj 218 0 obj<>endobj 219 0 obj<>endobj 220 0 obj<>endobj 221 0 obj<>endobj 222 0 obj<>endobj 223 0 obj<>endobj 224 0 obj<>endobj 225 0 obj<>endobj 226 0 obj<>endobj 227 0 obj[214 0 R 215 0 R 216 0 R 217 0 R 218 0 R 219 0 R 220 0 R 221 0 R 222 0 R 223 0 R 224 0 R 225 0 R 226 0 R]endobj 228 0 obj<>endobj 229 0 obj<>endobj 230 0 obj<>endobj 231 0 obj<>endobj 232 0 obj<>endobj 233 0 obj<>endobj 234 0 obj<>endobj 235 0 obj<>endobj 236 0 obj<>endobj 237 0 obj<>endobj 238 0 obj<>endobj 239 0 obj[228 0 R 229 0 R 230 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R 237 0 R 238 0 R]endobj 240 0 obj<>endobj 241 0 obj<>endobj 242 0 obj[240 0 R 241 0 R]endobj 243 0 obj<>endobj 244 0 obj[243 0 R]endobj 245 0 obj<>endobj 246 0 obj<>endobj 247 0 obj[245 0 R 246 0 R]endobj 248 0 obj<>endobj 249 0 obj<>endobj 250 0 obj<>endobj 251 0 obj<>endobj 252 0 obj<>endobj 253 0 obj<>endobj 254 0 obj<>endobj 255 0 obj<>endobj 256 0 obj<>endobj 257 0 obj<>endobj 258 0 obj[248 0 R 249 0 R 250 0 R 252 0 R 254 0 R 256 0 R 257 0 R]endobj 259 0 obj<>endobj 260 0 obj<>endobj 261 0 obj<>endobj 262 0 obj<>endobj 263 0 obj<>endobj 264 0 obj[259 0 R 260 0 R 261 0 R 262 0 R 263 0 R]endobj 265 0 obj<>endobj 266 0 obj<>endobj 267 0 obj<>endobj 268 0 obj<>endobj 269 0 obj[265 0 R 267 0 R 268 0 R]endobj 270 0 obj<>endobj 271 0 obj<>endobj 272 0 obj<>endobj 273 0 obj[270 0 R 271 0 R 272 0 R]endobj 274 0 obj<>endobj 275 0 obj<>endobj 276 0 obj<>endobj 277 0 obj[274 0 R 275 0 R 276 0 R]endobj 278 0 obj<>endobj 279 0 obj[278 0 R]endobj 280 0 obj<>endobj 281 0 obj<>endobj 282 0 obj<>endobj 283 0 obj<>endobj 284 0 obj<>endobj 285 0 obj<>endobj 286 0 obj<>endobj 287 0 obj<>endobj 288 0 obj<>endobj 289 0 obj<>endobj 290 0 obj<>endobj 291 0 obj<>endobj 292 0 obj<>endobj 293 0 obj<>endobj 294 0 obj<>endobj 295 0 obj[280 0 R 281 0 R 282 0 R 283 0 R 284 0 R 285 0 R 286 0 R 287 0 R 288 0 R 289 0 R 290 0 R 291 0 R 292 0 R 293 0 R 294 0 R]endobj 296 0 obj<>endobj 297 0 obj<>endobj 298 0 obj<>endobj 299 0 obj<>endobj 300 0 obj<>endobj 301 0 obj[296 0 R 297 0 R 298 0 R 299 0 R 300 0 R]endobj 302 0 obj<>endobj 303 0 obj<>endobj 304 0 obj<>endobj 305 0 obj<>endobj 306 0 obj[302 0 R 303 0 R 304 0 R 305 0 R]endobj 307 0 obj<>endobj 308 0 obj<>endobj 309 0 obj[307 0 R 308 0 R]endobj 310 0 obj<>endobj 311 0 obj<>endobj 312 0 obj<>endobj 313 0 obj<>endobj 314 0 obj<>endobj 315 0 obj<>endobj 316 0 obj<>endobj 317 0 obj<>endobj 318 0 obj<>endobj 319 0 obj<>endobj 320 0 obj<>endobj 321 0 obj<>endobj 322 0 obj<>endobj 323 0 obj<>endobj 324 0 obj<>endobj 325 0 obj<>endobj 326 0 obj<>endobj 327 0 obj[310 0 R 311 0 R 312 0 R 313 0 R 314 0 R 315 0 R 316 0 R 317 0 R 318 0 R 319 0 R 320 0 R 321 0 R 322 0 R 323 0 R 324 0 R 325 0 R 326 0 R]endobj 328 0 obj<>endobj 329 0 obj<>endobj 330 0 obj<>endobj 331 0 obj<>endobj 332 0 obj<>endobj 333 0 obj<>endobj 334 0 obj<>endobj 335 0 obj<>endobj 336 0 obj<>endobj 337 0 obj<>endobj 338 0 obj<>endobj 339 0 obj<>endobj 340 0 obj<>endobj 341 0 obj<>endobj 342 0 obj<>endobj 343 0 obj<>endobj 344 0 obj<>endobj 345 0 obj<>endobj 346 0 obj<>endobj 347 0 obj<>endobj 348 0 obj[328 0 R 329 0 R 330 0 R 331 0 R 332 0 R 334 0 R 335 0 R 336 0 R 337 0 R 338 0 R 339 0 R 340 0 R 341 0 R 342 0 R 343 0 R 344 0 R 345 0 R 346 0 R 347 0 R]endobj 349 0 obj<>endobj 350 0 obj<>endobj 351 0 obj<>endobj 352 0 obj<>endobj 353 0 obj<>endobj 354 0 obj<>endobj 355 0 obj<>endobj 356 0 obj<>endobj 357 0 obj<>endobj 358 0 obj<>endobj 359 0 obj<>endobj 360 0 obj<>endobj 361 0 obj<>endobj 362 0 obj<>endobj 363 0 obj<>endobj 364 0 obj<>endobj 365 0 obj<>endobj 366 0 obj<>endobj 367 0 obj<>endobj 368 0 obj<>endobj 369 0 obj[350 0 R 351 0 R 352 0 R 353 0 R 354 0 R 355 0 R 356 0 R 357 0 R 358 0 R 359 0 R 361 0 R 362 0 R 363 0 R 364 0 R 366 0 R 368 0 R]endobj 370 0 obj<>endobj 371 0 obj<>endobj 372 0 obj<>endobj 373 0 obj<>endobj 374 0 obj<>endobj 375 0 obj<>endobj 376 0 obj<>endobj 377 0 obj<>endobj 378 0 obj<>endobj 379 0 obj<>endobj 380 0 obj<>endobj 381 0 obj<>endobj 382 0 obj<>endobj 383 0 obj<>endobj 384 0 obj<>endobj 385 0 obj<>endobj 386 0 obj<>endobj 387 0 obj<>endobj 388 0 obj<>endobj 389 0 obj<>endobj 390 0 obj[371 0 R 373 0 R 375 0 R 376 0 R 377 0 R 379 0 R 380 0 R 381 0 R 382 0 R 383 0 R 384 0 R 385 0 R 386 0 R 387 0 R 388 0 R 389 0 R]endobj 391 0 obj<>endobj 392 0 obj<>endobj 393 0 obj<>endobj 394 0 obj<>endobj 395 0 obj<>endobj 396 0 obj<>endobj 397 0 obj<>endobj 398 0 obj<>endobj 399 0 obj[391 0 R 392 0 R 393 0 R 394 0 R 395 0 R 396 0 R 397 0 R 398 0 R]endobj 400 0 obj<>endobj 401 0 obj<>endobj 402 0 obj[400 0 R 401 0 R]endobj 403 0 obj<>endobj 404 0 obj<>endobj 405 0 obj<>endobj 406 0 obj<>endobj 407 0 obj<>endobj 408 0 obj<>endobj 409 0 obj<>endobj 410 0 obj<>endobj 411 0 obj<>endobj 412 0 obj<>endobj 413 0 obj<>endobj 414 0 obj<>endobj 415 0 obj<>endobj 416 0 obj<>endobj 417 0 obj<>endobj 418 0 obj<>endobj 419 0 obj<>endobj 420 0 obj[403 0 R 404 0 R 405 0 R 406 0 R 407 0 R 408 0 R 409 0 R 410 0 R 411 0 R 412 0 R 413 0 R 414 0 R 415 0 R 416 0 R 417 0 R 418 0 R 419 0 R]endobj 421 0 obj<>endobj 422 0 obj<>endobj 423 0 obj<>endobj 424 0 obj<>endobj 425 0 obj<>endobj 426 0 obj<>endobj 427 0 obj<>endobj 428 0 obj<>endobj 429 0 obj<>endobj 430 0 obj[421 0 R 422 0 R 423 0 R 424 0 R 425 0 R 426 0 R 427 0 R 428 0 R 429 0 R]endobj 431 0 obj<>endobj 432 0 obj<>endobj 433 0 obj<>endobj 434 0 obj[431 0 R 432 0 R 433 0 R]endobj 435 0 obj<>endobj 436 0 obj<>endobj 437 0 obj<>endobj 438 0 obj<>endobj 439 0 obj<>endobj 440 0 obj<>endobj 441 0 obj<>endobj 442 0 obj<>endobj 443 0 obj<>endobj 444 0 obj<>endobj 445 0 obj<>endobj 446 0 obj<>endobj 447 0 obj<>endobj 448 0 obj<>endobj 449 0 obj<>endobj 450 0 obj<>endobj 451 0 obj<>endobj 452 0 obj<>endobj 453 0 obj<>endobj 454 0 obj[435 0 R 437 0 R 438 0 R 439 0 R 441 0 R 442 0 R 444 0 R 445 0 R 447 0 R 448 0 R 450 0 R 451 0 R 452 0 R 453 0 R]endobj 455 0 obj<>endobj 456 0 obj<>endobj 457 0 obj<>endobj 458 0 obj<>endobj 459 0 obj<>endobj 460 0 obj<>endobj 461 0 obj<>endobj 462 0 obj[456 0 R 457 0 R 458 0 R 459 0 R 460 0 R 461 0 R]endobj 463 0 obj<>endobj 464 0 obj<>endobj 465 0 obj<>endobj 466 0 obj<>endobj 467 0 obj<>endobj 468 0 obj<>endobj 469 0 obj<>endobj 470 0 obj<>endobj 471 0 obj<>endobj 472 0 obj<>endobj 473 0 obj[463 0 R 464 0 R 465 0 R 466 0 R 467 0 R 469 0 R 470 0 R 471 0 R 472 0 R]endobj 474 0 obj<>endobj 475 0 obj[474 0 R]endobj 476 0 obj<>endobj 477 0 obj<>endobj 478 0 obj[476 0 R 477 0 R]endobj 479 0 obj<>endobj 480 0 obj<>endobj 481 0 obj<>endobj 482 0 obj<>endobj 483 0 obj<>endobj 484 0 obj[479 0 R 480 0 R 481 0 R 482 0 R 483 0 R]endobj 485 0 obj<>endobj 486 0 obj[485 0 R]endobj 487 0 obj<>endobj 488 0 obj[487 0 R]endobj 489 0 obj<>endobj 490 0 obj<>endobj 491 0 obj[489 0 R 490 0 R]endobj 492 0 obj<>endobj 493 0 obj<>endobj 494 0 obj<>endobj 495 0 obj<>endobj 496 0 obj<>endobj 497 0 obj<>endobj 498 0 obj<>endobj 499 0 obj<>endobj 500 0 obj<>endobj 501 0 obj<>endobj 502 0 obj<>endobj 503 0 obj<>endobj 504 0 obj<>endobj 505 0 obj[492 0 R 493 0 R 494 0 R 495 0 R 496 0 R 497 0 R 498 0 R 499 0 R 500 0 R 502 0 R 504 0 R]endobj 506 0 obj<>endobj 507 0 obj[506 0 R]endobj 508 0 obj<>endobj 509 0 obj<>endobj 510 0 obj<>endobj 511 0 obj<>endobj 512 0 obj<>endobj 513 0 obj[508 0 R 509 0 R 511 0 R 512 0 R]endobj 514 0 obj<>endobj 515 0 obj<>endobj 516 0 obj<>endobj 517 0 obj<>endobj 518 0 obj<>endobj 519 0 obj<>endobj 520 0 obj<>endobj 521 0 obj<>endobj 522 0 obj<>endobj 523 0 obj<>endobj 524 0 obj<>endobj 525 0 obj<>endobj 526 0 obj<>endobj 527 0 obj<>endobj 528 0 obj<>endobj 529 0 obj<>endobj 530 0 obj<>endobj 531 0 obj<>endobj 532 0 obj<>endobj 533 0 obj<>endobj 534 0 obj<>endobj 535 0 obj<>endobj 536 0 obj<>endobj 537 0 obj<>endobj 538 0 obj<>endobj 539 0 obj<>endobj 540 0 obj<>endobj 541 0 obj<>endobj 542 0 obj<>endobj 543 0 obj<>endobj 544 0 obj<>endobj 545 0 obj<>endobj 546 0 obj<>endobj 547 0 obj<>endobj 548 0 obj[514 0 R 515 0 R 516 0 R 517 0 R 518 0 R 519 0 R 520 0 R 521 0 R 522 0 R 523 0 R 524 0 R 525 0 R 526 0 R 527 0 R 528 0 R 529 0 R 530 0 R 531 0 R 532 0 R 533 0 R 534 0 R 535 0 R 536 0 R 537 0 R 538 0 R 539 0 R 540 0 R 541 0 R 542 0 R 543 0 R 544 0 R 545 0 R 546 0 R 547 0 R]endobj 549 0 obj<>endobj 550 0 obj<>endobj 551 0 obj[549 0 R 550 0 R]endobj 552 0 obj<>endobj 553 0 obj<>endobj 554 0 obj[552 0 R 553 0 R]endobj 555 0 obj<>endobj 556 0 obj<>endobj 557 0 obj<>endobj 558 0 obj<>endobj 559 0 obj<>endobj 560 0 obj<>endobj 561 0 obj<>endobj 562 0 obj[555 0 R 556 0 R 557 0 R 558 0 R 559 0 R 560 0 R 561 0 R]endobj 563 0 obj<>endobj 564 0 obj<>endobj 565 0 obj<>endobj 566 0 obj<>endobj 567 0 obj<>endobj 568 0 obj<>endobj 569 0 obj<>endobj 570 0 obj<>endobj 571 0 obj<>endobj 572 0 obj<>endobj 573 0 obj<>endobj 574 0 obj<>endobj 575 0 obj<>endobj 576 0 obj[563 0 R 564 0 R 565 0 R 566 0 R 567 0 R 568 0 R 569 0 R 570 0 R 572 0 R 574 0 R 575 0 R]endobj 577 0 obj<>endobj 578 0 obj<>endobj 579 0 obj<>endobj 580 0 obj<>endobj 581 0 obj<>endobj 582 0 obj<>endobj 583 0 obj<>endobj 584 0 obj<>endobj 585 0 obj[577 0 R 578 0 R 579 0 R 580 0 R 581 0 R 582 0 R 583 0 R 584 0 R]endobj 586 0 obj<>endobj 587 0 obj<>endobj 588 0 obj<>endobj 589 0 obj<>endobj 590 0 obj<>endobj 591 0 obj<>endobj 592 0 obj<>endobj 593 0 obj<>endobj 594 0 obj<>endobj 595 0 obj<>endobj 596 0 obj<>endobj 597 0 obj<>endobj 598 0 obj<>endobj 599 0 obj<>endobj 600 0 obj<>endobj 601 0 obj<>endobj 602 0 obj<>endobj 603 0 obj<>endobj 604 0 obj<>endobj 605 0 obj<>endobj 606 0 obj[586 0 R 588 0 R 590 0 R 592 0 R 594 0 R 596 0 R 598 0 R 600 0 R 602 0 R 604 0 R 605 0 R]endobj 607 0 obj<>endobj 608 0 obj[607 0 R]endobj 609 0 obj<>endobj 610 0 obj<>endobj 611 0 obj<>endobj 612 0 obj<>endobj 613 0 obj<>endobj 614 0 obj<>endobj 615 0 obj[609 0 R 610 0 R 611 0 R 612 0 R 613 0 R 614 0 R]endobj 616 0 obj<>endobj 617 0 obj<>endobj 618 0 obj<>endobj 619 0 obj<>endobj 620 0 obj<>endobj 621 0 obj<>endobj 622 0 obj<>endobj 623 0 obj<>endobj 624 0 obj<>endobj 625 0 obj<>endobj 626 0 obj<>endobj 627 0 obj<>endobj 628 0 obj<>endobj 629 0 obj<>endobj 630 0 obj<>endobj 631 0 obj[617 0 R 619 0 R 620 0 R 621 0 R 622 0 R 623 0 R 625 0 R 627 0 R 628 0 R 629 0 R 630 0 R]endobj 632 0 obj<>endobj 633 0 obj[632 0 R]endobj 634 0 obj<>endobj 635 0 obj<>endobj 636 0 obj<>endobj 637 0 obj<>endobj 638 0 obj<>endobj 639 0 obj<>endobj 640 0 obj<>endobj 641 0 obj<>endobj 642 0 obj<>endobj 643 0 obj<>endobj 644 0 obj<>endobj 645 0 obj<>endobj 646 0 obj<>endobj 647 0 obj<>endobj 648 0 obj[635 0 R 636 0 R 638 0 R 640 0 R 642 0 R 644 0 R 645 0 R 647 0 R]endobj 649 0 obj<>endobj 650 0 obj[649 0 R]endobj 651 0 obj<>endobj 652 0 obj<>endobj 653 0 obj[651 0 R 652 0 R]endobj 654 0 obj<>endobj 655 0 obj<>endobj 656 0 obj[654 0 R 655 0 R]endobj 657 0 obj<>endobj 658 0 obj<>endobj 659 0 obj<>endobj 660 0 obj<>endobj 661 0 obj<>endobj 662 0 obj<>endobj 663 0 obj<>endobj 664 0 obj<>endobj 665 0 obj<>endobj 666 0 obj<>endobj 667 0 obj<>endobj 668 0 obj<>endobj 669 0 obj[657 0 R 658 0 R 659 0 R 660 0 R 662 0 R 664 0 R 666 0 R 668 0 R]endobj 670 0 obj<>endobj 671 0 obj<>endobj 672 0 obj<>endobj 673 0 obj<>endobj 674 0 obj[670 0 R 672 0 R 673 0 R]endobj 675 0 obj<>endobj 676 0 obj<>endobj 677 0 obj<>endobj 678 0 obj<>endobj 679 0 obj<>endobj 680 0 obj<>endobj 681 0 obj<>endobj 682 0 obj<>endobj 683 0 obj<>endobj 684 0 obj<>endobj 685 0 obj<>endobj 686 0 obj<>endobj 687 0 obj<>endobj 688 0 obj<>endobj 689 0 obj<>endobj 690 0 obj<>endobj 691 0 obj<>endobj 692 0 obj<>endobj 693 0 obj<>endobj 694 0 obj<>endobj 695 0 obj<>endobj 696 0 obj<>endobj 697 0 obj<>endobj 698 0 obj<>endobj 699 0 obj<>endobj 700 0 obj<>endobj 701 0 obj<>endobj 702 0 obj<>endobj 703 0 obj<>endobj 704 0 obj<>endobj 705 0 obj<>endobj 706 0 obj<>endobj 707 0 obj<>endobj 708 0 obj<>endobj 709 0 obj<>endobj 710 0 obj<>endobj 711 0 obj<>endobj 712 0 obj<>endobj 713 0 obj<>endobj 714 0 obj<>endobj 715 0 obj<>endobj 716 0 obj[675 0 R 677 0 R 679 0 R 681 0 R 683 0 R 685 0 R 687 0 R 689 0 R 691 0 R 693 0 R 695 0 R 697 0 R 699 0 R 701 0 R 703 0 R 705 0 R 707 0 R 709 0 R 711 0 R 713 0 R 715 0 R]endobj 717 0 obj<>endobj 718 0 obj<>endobj 719 0 obj<>endobj 720 0 obj<>endobj 721 0 obj<>endobj 722 0 obj<>endobj 723 0 obj<>endobj 724 0 obj<>endobj 725 0 obj<>endobj 726 0 obj<>endobj 727 0 obj<>endobj 728 0 obj<>endobj 729 0 obj<>endobj 730 0 obj<>endobj 731 0 obj[718 0 R 720 0 R 722 0 R 724 0 R 726 0 R 728 0 R 730 0 R]endobj 732 0 obj<>endobj 733 0 obj[732 0 R]endobj 734 0 obj<>endobj 735 0 obj<>endobj 736 0 obj<>endobj 737 0 obj<>endobj 738 0 obj<>endobj 739 0 obj<>endobj 740 0 obj<>endobj 741 0 obj<>endobj 742 0 obj<>endobj 743 0 obj<>endobj 744 0 obj<>endobj 745 0 obj<>endobj 746 0 obj<>endobj 747 0 obj<>endobj 748 0 obj<>endobj 749 0 obj<>endobj 750 0 obj<>endobj 751 0 obj<>endobj 752 0 obj<>endobj 753 0 obj<>endobj 754 0 obj<>endobj 755 0 obj[734 0 R 736 0 R 738 0 R 740 0 R 742 0 R 744 0 R 746 0 R 748 0 R 750 0 R 752 0 R 754 0 R]endobj 756 0 obj<>endobj 757 0 obj<>endobj 758 0 obj<>endobj 759 0 obj<>endobj 760 0 obj<>endobj 761 0 obj<>endobj 762 0 obj<>endobj 763 0 obj<>endobj 764 0 obj<>endobj 765 0 obj[757 0 R 759 0 R 761 0 R 763 0 R 764 0 R]endobj 766 0 obj<>endobj 767 0 obj<>endobj 768 0 obj<>endobj 769 0 obj<>endobj 770 0 obj<>endobj 771 0 obj<>endobj 772 0 obj<>endobj 773 0 obj<>endobj 774 0 obj[766 0 R 767 0 R 769 0 R 771 0 R 773 0 R]endobj 775 0 obj<>endobj 776 0 obj<>endobj 777 0 obj<>endobj 778 0 obj<>endobj 779 0 obj<>endobj 780 0 obj<>endobj 781 0 obj<>endobj 782 0 obj<>endobj 783 0 obj<>endobj 784 0 obj<>endobj 785 0 obj<>endobj 786 0 obj<>endobj 787 0 obj<>endobj 788 0 obj<>endobj 789 0 obj<>endobj 790 0 obj<>endobj 791 0 obj<>endobj 792 0 obj<>endobj 793 0 obj<>endobj 794 0 obj<>endobj 795 0 obj[776 0 R 778 0 R 780 0 R 782 0 R 784 0 R 786 0 R 788 0 R 790 0 R 792 0 R 794 0 R]endobj 796 0 obj<>endobj 797 0 obj<>endobj 798 0 obj<>endobj 799 0 obj<>endobj 800 0 obj<>endobj 801 0 obj<>endobj 802 0 obj<>endobj 803 0 obj<>endobj 804 0 obj<>endobj 805 0 obj<>endobj 806 0 obj<>endobj 807 0 obj<>endobj 808 0 obj<>endobj 809 0 obj<>endobj 810 0 obj<>endobj 811 0 obj<>endobj 812 0 obj<>endobj 813 0 obj<>endobj 814 0 obj<>endobj 815 0 obj[797 0 R 799 0 R 801 0 R 803 0 R 805 0 R 807 0 R 809 0 R 811 0 R 813 0 R 814 0 R]endobj 816 0 obj<>endobj 817 0 obj<>endobj 818 0 obj<>endobj 819 0 obj<>endobj 820 0 obj<>endobj 821 0 obj<>endobj 822 0 obj<>endobj 823 0 obj<>endobj 824 0 obj<>endobj 825 0 obj<>endobj 826 0 obj<>endobj 827 0 obj<>endobj 828 0 obj[816 0 R 818 0 R 820 0 R 822 0 R 824 0 R 826 0 R 827 0 R]endobj 829 0 obj<>endobj 830 0 obj<>endobj 831 0 obj<>endobj 832 0 obj<>endobj 833 0 obj<>endobj 834 0 obj<>endobj 835 0 obj<>endobj 836 0 obj<>endobj 837 0 obj<>endobj 838 0 obj<>endobj 839 0 obj<>endobj 840 0 obj<>endobj 841 0 obj<>endobj 842 0 obj<>endobj 843 0 obj<>endobj 844 0 obj<>endobj 845 0 obj<>endobj 846 0 obj[829 0 R 830 0 R 831 0 R 833 0 R 834 0 R 835 0 R 836 0 R 837 0 R 838 0 R 839 0 R 841 0 R 843 0 R 845 0 R]endobj 847 0 obj<>endobj 848 0 obj<>endobj 849 0 obj<>endobj 850 0 obj<>endobj 851 0 obj<>endobj 852 0 obj<>endobj 853 0 obj<>endobj 854 0 obj<>endobj 855 0 obj<>endobj 856 0 obj<>endobj 857 0 obj<>endobj 858 0 obj<>endobj 859 0 obj<>endobj 860 0 obj<>endobj 861 0 obj<>endobj 862 0 obj<>endobj 863 0 obj<>endobj 864 0 obj<>endobj 865 0 obj<>endobj 866 0 obj<>endobj 867 0 obj<>endobj 868 0 obj<>endobj 869 0 obj<>endobj 870 0 obj<>endobj 871 0 obj<>endobj 872 0 obj<>endobj 873 0 obj<>endobj 874 0 obj<>endobj 875 0 obj<>endobj 876 0 obj<>endobj 877 0 obj<>endobj 878 0 obj<>endobj 879 0 obj<>endobj 880 0 obj<>endobj 881 0 obj<>endobj 882 0 obj<>endobj 883 0 obj<>endobj 884 0 obj<>endobj 885 0 obj<>endobj 886 0 obj<>endobj 887 0 obj<>endobj 888 0 obj<>endobj 889 0 obj<>endobj 890 0 obj<>endobj 891 0 obj<>endobj 892 0 obj<>endobj 893 0 obj[848 0 R 850 0 R 852 0 R 854 0 R 856 0 R 858 0 R 860 0 R 862 0 R 864 0 R 866 0 R 868 0 R 870 0 R 872 0 R 874 0 R 876 0 R 878 0 R 880 0 R 882 0 R 884 0 R 886 0 R 888 0 R 890 0 R 892 0 R]endobj 894 0 obj<>endobj 895 0 obj<>endobj 896 0 obj<>endobj 897 0 obj<>endobj 898 0 obj<>endobj 899 0 obj[895 0 R 897 0 R 898 0 R]endobj 900 0 obj<>endobj 901 0 obj<>endobj 902 0 obj[900 0 R 901 0 R]endobj 903 0 obj<>endobj 904 0 obj<>endobj 905 0 obj<>endobj 906 0 obj<>endobj 907 0 obj<>endobj 908 0 obj<>endobj 909 0 obj<>endobj 910 0 obj<>endobj 911 0 obj<>endobj 912 0 obj<>endobj 913 0 obj<>endobj 914 0 obj<>endobj 915 0 obj<>endobj 916 0 obj<>endobj 917 0 obj<>endobj 918 0 obj<>endobj 919 0 obj[903 0 R 904 0 R 905 0 R 906 0 R 907 0 R 908 0 R 909 0 R 910 0 R 911 0 R 912 0 R 913 0 R 914 0 R 915 0 R 916 0 R 917 0 R 918 0 R]endobj 920 0 obj<>endobj 921 0 obj<>endobj 922 0 obj<>endobj 923 0 obj<>endobj 924 0 obj<>endobj 925 0 obj<>endobj 926 0 obj<>endobj 927 0 obj<>endobj 928 0 obj<>endobj 929 0 obj<>endobj 930 0 obj<>endobj 931 0 obj<>endobj 932 0 obj<>endobj 933 0 obj<>endobj 934 0 obj<>endobj 935 0 obj<>endobj 936 0 obj<>endobj 937 0 obj<>endobj 938 0 obj[920 0 R 921 0 R 922 0 R 923 0 R 924 0 R 925 0 R 926 0 R 927 0 R 928 0 R 929 0 R 930 0 R 931 0 R 932 0 R 933 0 R 934 0 R 935 0 R 936 0 R 937 0 R]endobj 939 0 obj<>endobj 940 0 obj<>endobj 941 0 obj<>endobj 942 0 obj<>endobj 943 0 obj<>endobj 944 0 obj<>endobj 945 0 obj<>endobj 946 0 obj<>endobj 947 0 obj<>endobj 948 0 obj<>endobj 949 0 obj<>endobj 950 0 obj<>endobj 951 0 obj<>endobj 952 0 obj<>endobj 953 0 obj<>endobj 954 0 obj<>endobj 955 0 obj[939 0 R 940 0 R 941 0 R 942 0 R 943 0 R 944 0 R 945 0 R 946 0 R 947 0 R 948 0 R 949 0 R 950 0 R 951 0 R 952 0 R 953 0 R 954 0 R]endobj 956 0 obj<>endobj 957 0 obj<>endobj 958 0 obj<>endobj 959 0 obj<>endobj 960 0 obj<>endobj 961 0 obj<>endobj 962 0 obj<>endobj 963 0 obj<>endobj 964 0 obj<>endobj 965 0 obj<>endobj 966 0 obj<>endobj 967 0 obj<>endobj 968 0 obj<>endobj 969 0 obj<>endobj 970 0 obj[956 0 R 957 0 R 958 0 R 959 0 R 960 0 R 961 0 R 962 0 R 963 0 R 964 0 R 965 0 R 966 0 R 967 0 R 968 0 R 969 0 R]endobj 971 0 obj<>endobj 972 0 obj<>endobj 973 0 obj<>endobj 974 0 obj<>endobj 975 0 obj<>endobj 976 0 obj<>endobj 977 0 obj<>endobj 978 0 obj<>endobj 979 0 obj<>endobj 980 0 obj<>endobj 981 0 obj<>endobj 982 0 obj<>endobj 983 0 obj<>endobj 984 0 obj<>endobj 985 0 obj<>endobj 986 0 obj[971 0 R 972 0 R 973 0 R 974 0 R 975 0 R 976 0 R 977 0 R 978 0 R 979 0 R 980 0 R 981 0 R 982 0 R 983 0 R 984 0 R 985 0 R]endobj 987 0 obj<>endobj 988 0 obj<>endobj 989 0 obj<>endobj 990 0 obj<>endobj 991 0 obj<>endobj 992 0 obj<>endobj 993 0 obj<>endobj 994 0 obj<>endobj 995 0 obj<>endobj 996 0 obj<>endobj 997 0 obj<>endobj 998 0 obj<>endobj 999 0 obj<>endobj 1000 0 obj<>endobj 1001 0 obj<>endobj 1002 0 obj[987 0 R 988 0 R 989 0 R 990 0 R 991 0 R 992 0 R 993 0 R 994 0 R 995 0 R 996 0 R 997 0 R 998 0 R 999 0 R 1000 0 R 1001 0 R]endobj 1003 0 obj<>endobj 1004 0 obj<>endobj 1005 0 obj<>endobj 1006 0 obj<>endobj 1007 0 obj<>endobj 1008 0 obj<>endobj 1009 0 obj<>endobj 1010 0 obj<>endobj 1011 0 obj<>endobj 1012 0 obj<>endobj 1013 0 obj<>endobj 1014 0 obj<>endobj 1015 0 obj<>endobj 1016 0 obj<>endobj 1017 0 obj<>endobj 1018 0 obj<>endobj 1019 0 obj<>endobj 1020 0 obj<>endobj 1021 0 obj[1003 0 R 1004 0 R 1005 0 R 1006 0 R 1007 0 R 1008 0 R 1009 0 R 1010 0 R 1011 0 R 1012 0 R 1013 0 R 1014 0 R 1015 0 R 1016 0 R 1017 0 R 1018 0 R 1019 0 R 1020 0 R]endobj 1022 0 obj<>endobj 1023 0 obj<>endobj 1024 0 obj<>endobj 1025 0 obj<>endobj 1026 0 obj<>endobj 1027 0 obj<>endobj 1028 0 obj<>endobj 1029 0 obj<>endobj 1030 0 obj<>endobj 1031 0 obj<>endobj 1032 0 obj[1022 0 R 1023 0 R 1024 0 R 1025 0 R 1026 0 R 1027 0 R 1028 0 R 1029 0 R 1030 0 R 1031 0 R]endobj 1033 0 obj<>endobj 1034 0 obj<>endobj 1035 0 obj[1033 0 R 1034 0 R]endobj 1036 0 obj<>endobj 1037 0 obj[1036 0 R]endobj 1038 0 obj<>endobj 1039 0 obj[1038 0 R]endobj 1040 0 obj<>endobj 1041 0 obj<>endobj 1042 0 obj<>endobj 1043 0 obj<>endobj 1044 0 obj<>endobj 1045 0 obj<>endobj 1046 0 obj<>endobj 1047 0 obj[1040 0 R 1041 0 R 1042 0 R 1043 0 R 1044 0 R 1045 0 R 1046 0 R]endobj 1048 0 obj<>endobj 1049 0 obj<>endobj 1050 0 obj<>endobj 1051 0 obj<>endobj 1052 0 obj<>endobj 1053 0 obj<>endobj 1054 0 obj<>endobj 1055 0 obj<>endobj 1056 0 obj[1049 0 R 1050 0 R 1051 0 R 1052 0 R 1053 0 R 1054 0 R 1055 0 R]endobj 1057 0 obj<>endobj 1058 0 obj<>endobj 1059 0 obj[1057 0 R 1058 0 R]endobj 1060 0 obj<>endobj 1061 0 obj<>endobj 1062 0 obj[1061 0 R]endobj 1063 0 obj<>endobj 1064 0 obj<>endobj 1065 0 obj<>endobj 1066 0 obj<>endobj 1067 0 obj<>endobj 1068 0 obj<>endobj 1069 0 obj<>endobj 1070 0 obj<>endobj 1071 0 obj<>endobj 1072 0 obj<>endobj 1073 0 obj<>endobj 1074 0 obj<>endobj 1075 0 obj<>endobj 1076 0 obj<>endobj 1077 0 obj<>endobj 1078 0 obj<>endobj 1079 0 obj<>endobj 1080 0 obj<>endobj 1081 0 obj<>endobj 1082 0 obj<>endobj 1083 0 obj<>endobj 1084 0 obj<>endobj 1085 0 obj<>endobj 1086 0 obj<>endobj 1087 0 obj<>endobj 1088 0 obj<>endobj 1089 0 obj<>endobj 1090 0 obj<>endobj 1091 0 obj<>endobj 1092 0 obj<>endobj 1093 0 obj<>endobj 1094 0 obj<>endobj 1095 0 obj<>endobj 1096 0 obj<>endobj 1097 0 obj<>endobj 1098 0 obj<>endobj 1099 0 obj<>endobj 1100 0 obj<>endobj 1101 0 obj<>endobj 1102 0 obj<>endobj 1103 0 obj<>endobj 1104 0 obj<>endobj 1105 0 obj<>endobj 1106 0 obj<>endobj 1107 0 obj<>endobj 1108 0 obj<>endobj 1109 0 obj<>endobj 1110 0 obj<>endobj 1111 0 obj<>endobj 1112 0 obj<>endobj 1113 0 obj<>endobj 1114 0 obj<>endobj 1115 0 obj<>endobj 1116 0 obj<>endobj 1117 0 obj<>endobj 1118 0 obj<>endobj 1119 0 obj<>endobj 1120 0 obj<>endobj 1121 0 obj<>endobj 1122 0 obj<>endobj 1123 0 obj<>endobj 1124 0 obj<>endobj 1125 0 obj<>endobj 1126 0 obj<>endobj 1127 0 obj<>endobj 1128 0 obj<>endobj 1129 0 obj<>endobj 1130 0 obj<>endobj 1131 0 obj<>endobj 1132 0 obj<>endobj 1133 0 obj<>endobj 1134 0 obj<>endobj 1135 0 obj<>endobj 1136 0 obj<>endobj 1137 0 obj<>endobj 1138 0 obj<>endobj 1139 0 obj<>endobj 1140 0 obj<>endobj 1141 0 obj<>endobj 1142 0 obj<>endobj 1143 0 obj<>endobj 1144 0 obj<>endobj 1145 0 obj<>endobj 1146 0 obj<>endobj 1147 0 obj<>endobj 1148 0 obj<>endobj 1149 0 obj<>endobj 1150 0 obj<>endobj 1151 0 obj<>endobj 1152 0 obj<>endobj 1153 0 obj<>endobj 1154 0 obj<>endobj 1155 0 obj<>endobj 1156 0 obj<>endobj 1157 0 obj<>endobj 1158 0 obj<>endobj 1159 0 obj<>endobj 1160 0 obj<>endobj 1161 0 obj<>endobj 1162 0 obj<>endobj 1163 0 obj<>endobj 1164 0 obj<>endobj 1165 0 obj<>endobj 1166 0 obj<>endobj 1167 0 obj<>endobj 1168 0 obj<>endobj 1169 0 obj<>endobj 1170 0 obj<>endobj 1171 0 obj<>endobj 1172 0 obj<>endobj 1173 0 obj<>endobj 1174 0 obj<>endobj 1175 0 obj<>endobj 1176 0 obj<>endobj 1177 0 obj<>endobj 1178 0 obj<>endobj 1179 0 obj<>endobj 1180 0 obj<>endobj 1181 0 obj<>endobj 1182 0 obj<>endobj 1183 0 obj<>endobj 1184 0 obj<>endobj 1185 0 obj<>endobj 1186 0 obj<>endobj 1187 0 obj<>endobj 1188 0 obj<>endobj 1189 0 obj<>endobj 1190 0 obj<>endobj 1191 0 obj<>endobj 1192 0 obj<>endobj 1193 0 obj<>endobj 1194 0 obj<>endobj 1195 0 obj<>endobj 1196 0 obj<>endobj 1197 0 obj<>endobj 1198 0 obj<>endobj 1199 0 obj<>endobj 1200 0 obj<>endobj 1201 0 obj<>endobj 1202 0 obj<>endobj 1203 0 obj<>endobj 1204 0 obj<>endobj 1205 0 obj<>endobj 1206 0 obj<>endobj 1207 0 obj<>endobj 1208 0 obj<>endobj 1209 0 obj<>endobj 1210 0 obj<>endobj 1211 0 obj<>endobj 1212 0 obj<>endobj 1213 0 obj<>endobj 1214 0 obj<>endobj 1215 0 obj<>endobj 1216 0 obj<>endobj 1217 0 obj<>endobj 1218 0 obj<>endobj 1219 0 obj<>endobj 1220 0 obj<>endobj 1221 0 obj<>endobj 1222 0 obj<>endobj 1223 0 obj<>endobj 1224 0 obj<>endobj 1225 0 obj<>endobj 1226 0 obj<>endobj 1227 0 obj<>endobj 1228 0 obj<>endobj 1229 0 obj<>endobj 1230 0 obj<>endobj 1231 0 obj<>endobj 1232 0 obj<>endobj 1233 0 obj<>endobj 1234 0 obj<>endobj 1235 0 obj<>endobj 1236 0 obj<>endobj 1237 0 obj<>endobj 1238 0 obj<>endobj 1239 0 obj<>endobj 1240 0 obj<>endobj 1241 0 obj<>endobj 1242 0 obj<>endobj 1243 0 obj<>endobj 1244 0 obj<>endobj 1245 0 obj<>endobj 1246 0 obj<>endobj 1247 0 obj<>endobj 1248 0 obj<>endobj 1249 0 obj<>endobj 1250 0 obj<>endobj 1251 0 obj<>endobj 1252 0 obj<>endobj 1253 0 obj<>endobj 1254 0 obj<>endobj 1255 0 obj<>endobj 1256 0 obj<>endobj 1257 0 obj<>endobj 1258 0 obj<>endobj 1259 0 obj<>endobj 1260 0 obj<>endobj 1261 0 obj<>endobj 1262 0 obj<>endobj 1263 0 obj<>endobj 1264 0 obj<>endobj 1265 0 obj<>endobj 1266 0 obj<>endobj 1267 0 obj<>endobj 1268 0 obj<>endobj 1269 0 obj<>endobj 1270 0 obj<>endobj 1271 0 obj<>endobj 1272 0 obj<>endobj 1273 0 obj<>endobj 1274 0 obj<>endobj 1275 0 obj<>endobj 1276 0 obj<>/XObject<<>>>>/Annots 80 0 R>>endobj 1277 0 obj<>stream x­WËnã6Ýû+¸*¦ +âC”´LÛq&ÀiÝt£Út¢B–2z 0?÷^Ò"lj]H||x.ï“d¾,8‹á‡³T0©Ùf¿ˆ£¾™~­ïRG1Ó©ˆ2¶gy)jöä¸$4pY%LðœÒ سTF9Ó àžqÎQ8‘vC)#B0'˜&€Â†™8«à‚Õ˜CÆB¨ 1󬕊ÔÖ18K 2ó„<ù´B®l”nI€œõ„"ƒ"{Ò ÁI,2çIBäl€U4±$UYæâLÀi‹lœ£TBâ=K-¢RE½¬5*  2€ÔçiÀÙ-UFabÞS„PhI™¸Pp\!O ¬)¸kX¤y2ÎÈ<…j*Ȥ!ž 1°‰øAJIhœJê ¦-e&\$Øey2ÁÀ*4´b’'•;0ZIÀsžeÆ$!OB8 œúJòdl‡Ý) M¤HÑæ …¿yRÛÉä2†BžL‚飌XV '’r'„¢LC³[€Âb ¸³'C ¬ÆÎö¬5Ëc G»„&g9ëÅá\Ê™EHþVŸÉÝ3»YiÈ+vxjë,eŖ혛víWÓåì¡lƲþµøoq³â™[¿„$â¡_l?ü#tÊ,­Kä¦Oà‚ûfèÚí¸ª¶™e¦ʺ.gšYMS5ÏÌ…7Ë¡×q`«ª6ý +¿×娛žýÂVm·ërޱ'Sv›ˆÍ¼¢KPÕ© ·ãв‡vûÖY¸7c)ÅLâ£b:z2T˜nÏ»­é Ç_ië¡íÌämØ^WÚqq®öÕð&ïÚZJ8ìR¸÷ð :×ÅZÛÞ™Î4sœÖâŰÏmKéž@m6»«¾š73ò®ÿ7«Ã°9zªÏ}ã\eëñÖ¼ÒŒÉÆô=#«Ù^Tð+“û8?c’¨™V¦ÆÎ6yØþ›êùe˜ß±·ÃÐUÿŽÃì1º¥óð²f=]ì»¶¬{V6[ö‡i*ø|Q}NÛûT5ÐiOf_6Cµ¹Ì—C¯¤øB?7ˆ9>6`ÁC¹1êx ÏÝ1Wvü}Í83¯xK]–€Ó‰„ L÷ºƒk¡œëÐ}ßîªÌ]Ø¡&öì;yÁJ¶6p+›-^©Ï]¹§°ÃÙƒïÛÝЕ³²z\-OÜÛWÙ]<Þßÿ=»9‘ø:=×§‡åc³uÇM˜‹Ûº><=ØÏé’»ºíû²ûvQeO7ÛÚ¸kã²®=“ŽÃ‘g*Êsÿÿà{RæJ¼(,IcÉ–iœã ŽA|,-¾Õ­¯endstream endobj 1278 0 obj<>/XObject<<>>>>>>endobj 1279 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ #¨kW ùÈendstream endobj 1280 0 obj<>/XObject<>>>/Annots 104 0 R>>endobj 1281 0 obj<>stream x¥VßoÛF ~÷_ÁLjý²,?fih¶´q»ËÎÒɾæ¤sORRÿ÷ûxgÙJ² Æ¢F(ÉäGÞý˜Dâ_Dó˜’ŒŠz!¾~ìšÊòEÒ,LñwŒÿVR5ùA>χlÄÍ’`FY”»:ÿæôÎÐ'vJY˜á÷…‹c ÷×çkwt6 á­¦$ rò‚¦»ÉJìv,sf ×uÚ‘ m–<9íH†Uà£íH®)E£êQÎQCï¶øî%öE9p$Qä0Gˆ“î%Ö.¸à1”\¦(ÎpÔKÎt$C›q˜‘v$C OùX;’kŠ“ Ž¶cÚÙâ™ç„Í<¨4F²^ð…bÜeL¦EôÂQÏ\¦ó¹DN`]ìXäe)dzµ>bÄîÀž”È lùËrr~•á-+Bó˜²4 ’0£eéF.¤eqrkÍ£´ ºM/ôéòû$?²c¶,O¾JÛ*ÓÐE¿žÆa8gýùÕ‚bh+š¦qDYBS´'_¤lñ¡é¬)û¢ƒ™?î1„4s Å¡!¨jI`¸[£{>¾VÔ°Ö‚E}gjÑÉ’º4VÖ´uh©2–*eÛnjl)-‰¦$ù£wVB“6kU4ŽÂP J<€¶/ Ù¶pc*vN¿uüx ú㦸ì9u“äÏ`H;šsÚðƒsÙ^Ë®SÍšî:aóuÂs4|”ðFpÆU¯õnÈN„”%©†ž6ªØ88} 4­ª·8·V²%ÕqÖ5JÓ¢b[M6.4£GYVZÖÝIÉö/²½“®t©ÊuµwærãÖd>£‹†ÖÆ”ô$vÔÒRX4beún\OhVÖ<µÒùj»¾Äi!ùS4g³…‚%ÿY)ÈÝFà+Ö¹xJ €Þ×v ê¨G_P`ÅaÙ¦·bÍD0TPL­ú ­¥Êšš(4ô …4öžT·9`¾?a,7¢éýéÛýü,A=„Ö bûfCï$¦TCåÝA ª%­ú¦Ô0‡h‰ÂÔ¦íý4¶ þj=–³}ϵ1ÈÂѺQÈŒ)¡]§^ô•h@Õ!óÀû¡B4´‘z‹ÂÅÝk=9Pµèa±ašrÁ˜Áú1FZíü<á·)ù¤øÇ°?Ë&hM)WýÚjÓne¡*U¸±l_Í a–ÀHÌÃPH® ŠoªÎЦÊÃÙ¹<?W Õf8ïV&èQXeú–Ù cÕºçt^$ƒ`C1æ[¨;ms…¸?sSÊÃûñâÝgÒjeQDÌêý‰£Èa)íè ¼#¡5`ÛY,yYÞŸº->¸¡tKp4ÆhºÌþA[—W»ŸNèú×/t-7T·ýJc-~T…l°bîOãûÓç ž¼]•ß­–ûãÖ‘ãÅ ãí9÷õyÏ”aÕòæC‚Sa¹P#|߇Špó:°ÓyóC{ý>ÎæûT†Ò;åá¢ù]è²–(jàâT˜Ln?üºq|umù<ÿS°¯Ø½ -â[†÷.•”X‡ªi®Þ|ø†eÑɵA¾ ÎåÅÝåÿIðWvi~ºä,äBj›‰Sdö;Í-,—ç» Dz¾ÍþUò ò÷0?'¢Åñ2¾ÂrÀõrišG¾ÁQ½Û¸m;~hŸsÓáÔt.øÈËZºeóÔ:á¼_N>Mþá í‘endstream endobj 1282 0 obj<>/XObject<<>>>>/Annots 110 0 R>>endobj 1283 0 obj<>stream xUMsÚ0½ûWì©…™Ø± 8CfÚ†´=¤I¦'faËÄ©,QIN ¿¾Oþ íLm0Öîj÷½ý¿¼ˆBÜ ÷IK/ BHž7Ÿ½Ñ$ÒÏ„JІáóJЭÈ;m<a»rÚŸúM¯œgÀGL£pˆ÷_Í)÷’8˜Ð Žš(QŒ(ÍÊùù8óŽ/BšÐ,ÚdŒ—¬Ò,íåJ—•`fÞ3ÊÌûAvï…äGa0†]ˆ A›ú¹%UKÃí¼·9ÚÎûäŒ{:›'ü–¼\r=ï=m õÏh'€ysïGà2[¨|! c;UMÁwØVЉ¢ëP¼ÄøŽºõöè©AÕ 6Nðšó>¢ã‹!EQ“>?N\Z>PV˜µ`[ÅONöUPB¨ÇB®¨Y‘2Ë 1ºWKh™¥Â®$) aªÊ’É {%?ÂFM|ÃʵÀb§´ªÞÀº‚ PvD¾Öêë‰s\§ëÒúñ…‡Íºµñó¦B ß…ÕLš MÕÎÞЩÊ:åÿ6ªä/ëÊ6´ÙzÍ™6Ž·K˜CÅ5™Ts._‘/¹1lÅ÷8çZ•Ô?HÚo/g¨rLå³ óÖ¶ôìËôêfzI×7W?¦ç{Êf!ƒ) `¬“Å)¬kn¶Y@®r4bëü@²Î›Þ0o5Gª¤eº@¬”.ì]i2º-ÐE¾¥T°Êp@HçýÓ=À„+ã¥Ê0Ä ~C]r½âTd\Zô¥*Tótý_{[ªº¯%›Ò–I‹IÈs®¹L9-¹}DY»Z‘kò+‹h5Gœ‘Ÿ¦EÛj¾ÇŒTV• È$ÓZnÁ*g•°AãáµeYØq”YJ +¶ngɯC›PßøÆÒ-Om¡ä)}•Æâ @@%›ŒÛᎣAqš_b¤K&+&œ±ßÙø'¡;F{C'Ä“àäÄý@róãþIÉ—o%M=àöÄvަ3ï»÷ÐêÓ®endstream endobj 1284 0 obj<>/XObject<>>>/Annots 116 0 R>>endobj 1285 0 obj<>stream x•U]oÛ6}÷¯8/2 fD‰¦¥í)C—­C»­‰ÛnŒDÛ\%2!¥Æ.öã{©[Í: ƒaCW—<÷ÜséÇGBŽuŠL¢l KèÍéÇïb™L`•zNéë5¶‹Gpz½î䊥ૌ­ ¹dIrñ=Ez…Žôh÷ªíëEeŒÅÑu¹Êx]¶În;ÛóÞººvO‘Géš†Ú l"SŒ“IÙŠôþŸJÿ:%ü â†ÃG2ŤU4k¿¯¬žïúÇ’¾²Í—­Åi÷³~î$ŠÝ¶õʆÁUA“𪆣Ùy>/XObject<<>>>>>>endobj 1287 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ 3¨‰¡¡ž9ÈÒ ßÌä¢üâü´…ð̼”üòb×®@.´$úendstream endobj 1288 0 obj<>/XObject<>>>/Annots 127 0 R>>endobj 1289 0 obj<>stream x…V]oÚH}çW\õaE$plcŒÑ®*¥Û¤ÍC·mJ»/HÑ`Á©í¡žqýõ{îŒ dÕ¦!xîÌý8÷Ü3þ1ÈÇO@³&1¥ÕÀ÷|¬>š5?PœÌ½ˆ¦~„ï!~IùàXžYñÔ )˜N¼)ÅAììêò6Jè­¢Ïì”b?Æç™‹c ûíîÝ`ÊÂ0òbª(ˆüÃSI_Á4Æzo £ §c÷²5N7y ŽNæÞ¤{bãÔ¦>ǶMù ?8¯’·uN{Û›Åàò&¦  EN%!ÅQäMü˜™ÅɧE:üÔ¨Ÿ²™ÓQ·¢¼X< ¢Ð÷âØ,²á7ÙèBÕtծǡïÏØ~y3§ÖœÆQzA<¡qyÉ<âwm]õš:¿î@Ô¥áÓ8L1ö-6’´u&šŒÅžTNÍéY*4EËa°¼ m#·Í5õ¶5”¥¤TÕF6 ÃR­‹T”¤·2-r|5œ<< Îу‰‹Žs25­u˜ŸÕR4é†DTÒ î"‡ˆ\hÝ".bUòÅfa8UÝ×HˆÁžäÅû¶ÊÚTj¤|]µ¦¯€ƒL¤Tê;Á/ûqæÎe°F°Vb¿’óR¬Q6=fCY‘粑µy^‚׳ls®h݈íÆbÔjÙ eTš‹T"л¯·•«æø·u†m™ü)Kµ­dD+€_࿦Z˜tÚ+™Á²Ç*@“<ú€–û³ÒEYr?\ˆU¹ž%±Ý–#WjEYS«™T| iÚ²˜†ÁŒiˆ¾N®Àšn-;nÀ}yó”{3 ¸÷pqþ'\ú“]Áàj 2r. 3vІº]iiîM#jí¶­ÇÃíždËáWÍÄÙ–Ü+#w†dVÕŒ,r‚¸š€$šWAö´‘Â<¥’ö–}ó®Zè†m'ã×–B/‡ZéåÅ!¾ï%\&¿’vös»ì—ÃÝhF³Ó!VyÏ/ü­dµ’Írøk´ƒuüšŽ Øî~Î#È:»Wù}YhÓ›ÂÀa|Ìm­ÐÆße×gqšãÔ?ïG¿\VýÂŽž{=ÏèŒ% ˽ºH,ÿÛÍõïÙrTu2‹ÝøC¡Rô4µÒÄÓ«‘Γ‘æ‹N¸P°ÌúÆ:z=Ñ'WeG4èÁirŽi—7>3d²j>Î]Oü8Âéõ ¶g1Xªí°üËã·W­-™ðXg§ˆP*Ek±†ߥ­8We© ½Qm™ñLC¨¨0W8^Bò­ã†  RÖ–A/5îþqÇ F­#üâýõÇ»ëôéîã·ë·gFw¨7¼3Ä1ɆԻ{ §rдs~ øŒÅAž]Oð†}±Ý½d‘°žyÐÀ¡7,€ H²ü%P¬ø<ü V±ÏØë¦~!¾3¬NçòFUô¥¿GíÚóÔ;Ù|–ð¯)…øuw ÄI.‹õÆ )Çë·24ÉEëî6ŽöêpmÛÅW¨B)2{ÏRmu“'´Ð}ºkבBÿo§•Íð¯úö†®ì¤“ê"$ųě'Vûòo:ã~×xæc’^|y‰æ3/I"÷:dß®ƒÏƒÿ’Á»endstream endobj 1290 0 obj<>/XObject<<>>>>/Annots 144 0 R>>endobj 1291 0 obj<>stream x¥WmOãFþž_1Bº6HÄÛyí‡J)„z”øú¢R¡½I|ØÞÔ»>àß÷™];/$©®:@‰½3;/Ï<3»üÓò©‹_ŸÂÿÅy«ëu±²þ¸¿jõÇ^]ßPN~wäuë·Œ¦-ß·¥ý´œ®•o´Þ z;Ò±a¯_¶ªîÍnᨑ£îZ—¥¡ßõ|òûœçë7··çjˆÏœ‚pè ë·tÄ‹ö‡^ŸìËF6ô±Y¯ç…d_6²~ߺtFí ËÀR8ö»¯‹oû²Ÿ¢· – zÙ#ß§hô£!E‰½KQÜŽ–’’T‹ä‹(ŒXHRsªtZ,È,SM¹4K•žÌR|H*Dnµø9-V•¡yšáQS¡ -Ò/²ÀºUU•iäÞiô¹õþHÁ?Ò Ï(iߨRR´Ý’®­ÅKXt6‘w‚!*Š ²sc“Šãªd‡9ÛA”X‚Žég¢KãÚeÐs.W¥ú"Ë1uæÄ*m]Í´4^Zð›cÀIÚ¦…®—Ûôã¶ò£“!Ãp7ÐŽÛß l¬“,#Q.ª\F“˜YZdNšÐ\]Úù®•ö ¶!ñ4…Þšá×g$Š„ A‡A˜IVÊEñÊ߯ª¢,}’ý¾Äö¼ÊLºr€w°'à䀵e¹²)W¶Xå0•ÀF!á ßÚ0/Ô쳌‘ÆC;ÎD¥9Œ¹*a^àI!1Yæúá”#b* (½ÊRC".•Fx(g¹ÃN¹ŽS$JA¹i[uˆçuˆâ.r°Þå®.³È´B±\q ȰµŒ­1o´ŒU‘pûÙ{ &¸¤²L=sOlÁnî IŸÕŒŒz“—˜ñ:µÿ`¢ÕÞåcM1ÇÊ£ôëí§o™w=§=’™]]&ʼ§v˜‹3e–Œ']ãpv˜ËûnòŠd;už–Ú/õ•4†‘ža@»4ÖôsUºy$i*E/]ƒõL[<â‘…zšµ+O¢HŠ>éK‡;‚ô«62רuöZ±=an>;A {0,b úÂtY‡R£0ñÓ¢TU‘0y\'‰ŽOáUK€«mĤ7é<´ŸS Uðã)ÍÐbâÌ·(ØKÏ·9ÔŽ¹¸‹¾Úï."ßæv·“óèúö@²“õ´î \ {c¬O¤z*Œêëл #7ìŽÞˆ¢Ûá;ü‘Oa÷é¤=âÕ°‡Å1ÿc‡•H<ñÙä®ðvšâ/Q&n7\D­_[ÿšM¨endstream endobj 1292 0 obj<>/XObject<<>>>>/Annots 147 0 R>>endobj 1293 0 obj<>stream xuRËr›0ÝógWgÆV$Bt—tbÍ´5ÓU62– ­@T@’þ}¯’°é00ºÒyÝ+þDœ>/XObject<<>>>>>>endobj 1295 0 obj<>stream x=Ë Â0E÷ùŠYÆEk&M—*v'(Ì„¶ÆJ8¨ßo¢Tf˜Åáܹ Ê ˜MÝ!Š= Õªÿ‡=¬{ ˆ@WÐhZ´[Õ_K òÌù=q'—^.¬è.šEm~®DU±)´Õ¥”Fyp!ÌÉÃ’î9GØ¥ü¼M\¡gkèHâ">mé+Çendstream endobj 1296 0 obj<>/XObject<>>>/Annots 157 0 R>>endobj 1297 0 obj<>stream xVÛnÛ8}÷W u€XÑÍ’½ ô’ÚbÛ»/ Z¦l5’è’Tœûñ{†mÇimaÇÔ çræÌŒ~Ž" ñ?¢<¦$£¢…Aˆ'û/½æe³yÒ4Lñ;ÆGK*G?)ÂãÜYȦALÑ4 ¦”EY±©Ë›tFï}a£”…¾OL¹__?Œ’< š&9”JÃìö§š¾ŽÏ¦S¸?Hã;Qên¥.àLµn7'P6x@axÆX¡-'hY«âÎ{Çõg.Þ^}¸ù|êçöü‚A/ÁüG»á*9Ê>ˆá±Yª.µêÖçZL8æ(|TÄ\ •ˆfCv´uD{jÅYN}C'ߣøö8‘“x÷0n…6R“‘è‘Íÿ^Ò¸‚¤A«Ø¡tè:ÚUuM}B/ÔmaéI+PŒ¢è´–mN-Ÿtõùý³Z䈳ÔRܤܺ0PË{ÑZŸpßÏ­ú-ƒœŸ£÷QYµí†zqSröC½Ðâ•Ý(L¦Bt†aÄÀZ+ýëJzºß*éçO±hN“iŒñü¤õ“V%Wܺ\5øä؉w5¼£œ˜+´÷ •XÊš„µºZvhZÚmªbãä¨=„¡UU–èV´ ÷)<)ÖPÒþêSÖi¥Nçð˜Äv+…ö³æ8ÀÁ²Ïþ0HÐln `4¶rÇÍ€_V,£X«­ÅÎàT‹±ŒZ˜Êv‚Ÿaf/€EÕl•¶(9ɇB:m®‘c*?ZGU…‚–?» ]â¨ÕX Þ8û+dyþù¹ÎAKL8xv“Ù£Ï:×Ãì¿=y¨¾¡oˆ<ºzü·ÇÖó!ƇiÚ'¼¦*|™–¯,¼Î¸¥âqŒÊ(:ü;ÛGšc=nkl›•wu·}}´=Ô‚1 JŒ®Û‰GZ>"p7Þ0ŠÚ‰Ë¢¡’.Äv Àž0Ñ+i`].î]‚SdõËë=3× ¡ôÏ<¨cWnožÙ^ÔˆCµŽx=ãÌPˆÿã™0¦kÜ\øv†µŒDgû”>§´azMþ|Â/÷Ì¥1ÆÔh=|}ìC/+5¦Å½Ð•XöÍ>¦‡_»ø}Úù„Má!ËgÁ|æ‡'à§ýøÄkMòÍøâKu:‚Ü¿ªGÇxµ}ýy vendstream endobj 1298 0 obj<>/XObject<<>>>>/Annots 168 0 R>>endobj 1299 0 obj<>stream xWMoÛF½ëW  [J!)Y–)I mÚF@V ¬È•Ä„ä*»«Èºô·÷Í’KSTä61l-wøæÍ÷èë ¦ÿcOù'-Ñ(“ö×_ï“èvá6M©¤É8iO}LnÇx>NîG ß΢öän'ÉhFãè®~÷>MšÓÓmr?…LI·ñÈõ©s;›â©GNÜ©s{w[ëuȉ;¹Û8‚¦ø¶¾½gí‰oÇw øÄcfî‘ëßþ<ï;AoèÅÛˆîi¾†³¦w3èœgÎKÍÓ`­t¹/„Y% ³¸‘ÿwMVÑJR%7ÂÊŒD•Ñ®)>æÙ­$£ ¹±7óσˆ† >x@T*mEL©ôF´'!«l©ÖK~×]½x ‹ãšã0™2ÈZ}“úžyQÕ¢2LÕ©õœk¹ÁßÝÞ2[GJ”’ÒBì4$øÒ=^ “§¤X¦FX¡m^mXÊÓ;/F n b$HËõÞ ›«ÊQFÊ)b®ï+ú`­„\}x­Èq„ò†Ôš{Bºj¸]9é+oÌ$ØdpI^¥°æ¸¼¨VŸejÃ5Öä_¥T틌*ei+`ØZKIß„ÎŪfD¿«Cøä(dö+#-Ã{ÐÑiX²²!G´qD&Ó<Ã6¯ýár†°*U E¢pV| BìvZíÀÂâsÊŽÃsĨKTõ,kÜÓäÅ=ÅwœCö7ê×ù{î}óžÏïŸ&—l'…êôH¡Îu>åÄë8×Т-B°Ê¥àìIUYÂÙæ‰(p- Ñ7›_=Ø)ó>̦«jêÄC~Û-Âá‹ú]t5W -©SÈ€9ö$åžXcAÅqÚ퉇}L×þKè óÍÖžcI›Ž7uV¡Ü§œ;ùÕé=}#š#•Öª(Ô‹õt$³Ućä£(w…äL–¹éüˆƒHS¹ã®Å¡k/« r.Fu‘¦[VÖ¡Á²MœÛ–9L&u˜}¡,¸®Û'‰v‹àÑ?é˜Â­MüQ¥ÐǦý°¯¹i™Oà˜}¹sÕRC> nލ¿céZÔ†#xQÃY£^ƒBöhi¬Î›†Ð_>xÇ3Ã}ZÜ\Ô·7܇¼à“çõÉ"S%¡{g3Yª SË*]Gbíðò‘=~ó„R¹7–‡šüºEnséèsœEb›Wö$ÐÏóÞº& h¦Î“ÒÊŠP{­Ã~aÌS‡%¼œ ?pV,‚¦œ:ÞÂ\à [õü’ÀÓ賿'¦_S«õo‡€òéy´Vùe¥–=µŠÆ—õ´Š/)œ£ÒI}Ii3ºvnòoð[ˆpüö°…SÙå”rWò’ÚWu†~×JàH½Ó²á.®§A>| ´DbaXAyøZÜàgtšU×~”˜6O{ ÔkÌûµkí²"ÇtÙa·è_Ü“8 ÜÀíxI‘Ù˜A/¸u‡€e°Î ©LކwÄ̯RLÖÊ­f«£ß/°ñxó›Ùþst/j)²ËSìu3çøíÞ4åì|SH޳rƒ³‹Ø÷ÚýÂ+ ²óÆ|±­*TÕ$ŠBôÆuþ¸Ôœë!=\ýx…Ui8¼rÞ¿&l ð :©Ð†û©Ä*«›fK3<Û|í·?ܽm\¶+h»”/: ¼Üš‹¸Cí?µVŸæ×”"TéáÅÈË•*ºÅýÿÕ>“Û^)^Ñ­ á ×ÓN ¬˜è{«–ð¼Wt+„Q@›Å¾€1“oã¥xlŠ?¤IÔƒ¸FP¬Ü`“…Û‘Š¨ &¹<ƒ%Úš_Ê3ÎL ïgPTºä”Z?ô8´þ¸v nº×0Ö¢\›ÅÌó™_'î¬Y¬®ñ,¦é¬Ùý÷‰ßD…ÎÏÂC/3¼‹ðý( â„OâÉ(žð—K>/XObject<<>>>>/Annots 172 0 R>>endobj 1301 0 obj<>stream x¥•ÛŽÛ6†ïýƒ´,ë`[rÐÜ4¨{Óæ´¾«ƒ€–(K©Dª$µ^¿}R’×Xø®k¬e†3óÏ7Ô¿³ˆB|"JcJ6”·³01sýúöÇ,I³ ¤Ízl¨¥Õ* âqÔÐ#VcÌo’öØÕ8ÈÆ‘]}9ÈýR'{4%Ù6XÑ:´61þ§r¶‰ƒ-%iû–¶)œ {ÌͰ¥(Ì‚õÍâí«kÁ‹éoûÙrÒ–ö%Ý —˜ö…Ë0¤}îå²m{ÃLýÄÞéðп9 i(ï•âÂ4ê5/¨”о(ùÄÕöaÿsÒ"Ž Å¾ð:Å‹:g†ÿªàêàýýÁ·[¼_?¸‡ÿÅÿzãiNWÒ—ö(;‘ó‚‹œÓÁÓœ“³ÛsÕÒg{d-Nnæð`7®Ë^䦖âê9ô#ŸùG¿ôOþ/þ»ïÖmÿÛ_ß‘Þ='72ÎáFHqifo&çCŒo^e ÿ‘ oq赋øæ0÷sNÏpÁ4IGNÎøšž†z »Æ’ j-w[ŠÒ‡Ebiðœ¦$Kú˜(4á‹þ¬µÑvöóñ'϶.w+Š¢Ñ8N‡zï@‚©8µRê˜2¾ºâ[{S¡^šjá¦kÑõ†Êºpúð@5VVߘ0ÙÃø3k»†ûdétñäL€ºž5HåÈGÉ¢ÄÁìµõ3x<צ¢fŠY1´G`º6=—Âq®ê¼¢!º–Ãò…”ÖçT\ñÀzÀ…°ˆ7èT(dOòÇmáò÷dw°¤œ"åK‡ˆÇzLROjy/©´=T’9º ™ ‰8ľª‰®‚ÜÊBÒö szí)KS1ô †B²²DYñèÓ½ÜEÙá" ²ˆ&óC¼IǦ Üú5ÅGÙò¡Z¸Ž†‚YPNÖòA£’¨4b¼³aКÙ]£Ø¶j ²…œŽ—Wuë–ƒ Gë:%;UãÖ˜¤"VZ‡–¬‘ü†΃¼ÉÞL4ABÎøÐ•@€S5ÎeÐü¾nSåï趈³ ÚÒÂ]µ€ã“DÐCy*&NSJWþïÔÖÑŠ:2G@¿kØÔVËÆQËFD| òJÇûƺ?N$ÙÖcWHZ þlÐh¨–W86‡è×c0€½6hÉš5tf—A&{ÕfCK|âφA lÞÓǑ߷¶¯ø.wŒ18Œ€c’ØWD_ôhkW©iÏ" ñ¾*¼é6²‹«m¤› ï0,D‰ú}?û:ûoN‰endstream endobj 1302 0 obj<>/XObject<<>>>>>>endobj 1303 0 obj<>stream x=Á‚0DïýŠ9âÜ¥DàªÑ“Mö‘Äý~[f6sxy›y(ù0ô&\3ª­(JÈÃÙëCfH‡”uÂ#§b>AšèlçWkKœêéYßW2¨ø§Æ_7â,`MY’SêGÅD•5­ÅÜa7c=_8ÞÜâ­®CÛ,.¼íE]Ôœ,>endstream endobj 1304 0 obj<>/XObject<>>>/Annots 187 0 R>>endobj 1305 0 obj<>stream xWM“âF½ó+r¹Œ:ÔH‡9x½‹ÝÛ;„}!b¢ (¾F%5Ã?~_V©¨{66:†Q©ªòóåËÔ·Q@3ü´ iS’fþ oúŸúÈ ŠWk?¢Å,Âsˆµ¤Ãèx½4â…R°˜û ŠƒØXÔãS´¢•ô ¥xãw âªÈ<ýç§Q°ö×´XÌ .§Åš¯˜EFŸG7ËœVsh¹î«e6§p¶¼Û ƒÐ{±at]±ÜÛ5î®XùUr¸ZÀIgÒ<üùÍîÞ®®»Qt¿¯8n;Ñl~·îλΆ1‡É®Ø*Žæœæágr –‹~eva%îv»!ôFÝÊx½‹ë.Ò´¾ÝдŽVãªYØ›ý{xÝä½háÊ|fîEËÂb¼÷ÏíèqSÐö@­BŠ9³˜¶©ÔŒ¶‰÷\—/²^Ó/¢hEö°ýs…·ˆ¶©÷»¬µ* ú¡=NÃÙlÉû›5ÒÉR§QúA<§iŒ¸­#¾ñc&Z-5‰"¥MYçm&´½u¶Ìh®PÞž$ý”•Z‹úBÏâ())‹F¨BS*ªP ”k*ÔÈ:ŸhÊ\%t°r'”)¼Ù„£ µÛ¥C]æ$(+*U¥*¶úƒ¹ÕÁ/Jž}Úž”¦j`€NjUõœÊ35§RKúªŠÔuRÅ®¢ø*Qk™ýU E2µÆœ%Jó kjJÜ–ùÀ€¤Ì2™4êEfrrIó¨Üÿ‰ÝAü<Ÿ…€¦!#a|*èב0êUARԙ‰åì[»=äbjœ@ºsÀÐÍ„\V9¼Q.™Þ¤§©E¡3l1ÌeÞÇ•ñéÓfBŸ¿–™ÌÕ_‚›•…ß6ÜK]xßcçÓÓkÌ5¦µ£Ektø…ÍÜ3ú³óþ378^üú^{‚ÝáÒ^BZ^;Z…n¨^‰©#µmÖC¨¢'€.lß±%Œe1åA_ò}‰~¯ÅeX$‡ÄÁ&¿.Ñ–TU OìÉ wØyF¦·w˜ÙœöD}ÖŠæK0!ß÷!Ú½(Xë•ÏÍ“!õN‘G®$U³jS œ0½èJ@;Ïü.mÄ¿…&‰£òtƒ¾ËÃÃðÚß;ï#Óë~÷0™vÏv^²{°CYß‹—aé( 0)—ÉIJçLIç“JN´W#’ ¢5O]ú^Gº’‰âɳ«P((¢Q(cÝB‚÷nê| JQ¯cÌhæaZ«ã©™‚èJÈAîy§‹ñ!p †45#2€" ñ°ª3å$¸£#§‰L S‚G]pî r¯é‚•HÍIòðÎí¤Ša H}à¥|x r•a2s-Oň˜éÕ†f;t €‰Ê5 Ü)s°Ä׆+fmGÆ}«²fŠè¾-”ÚlãòÀt²—èèH° >¿†îÚJP-°öVÈÀ[ÆžQ\¬Ì¬ÀÂÆe5XsÄ(£$‘õžÌsñUÈ(&ÄÆØLÀÐÿá[Àê$Ú¾c.øNÅóÇCŠwÌ—ËÀnQa?0V?]ëà jt7dZ#‰ÌÍ,à z'òA ‚î¤9¦/øæz5åØû„Á !…~ÓuÍGÑÿá£ÔÞXÁt–JþºÚ3d8™\Vl±fß‚'.óÍñ¸q#mˆv`¨—K¾2ã‚c7À©ûxºSÓå ÜýýïÑhøK÷™,ØÍoG¿þ 0Þ3endstream endobj 1306 0 obj<>/XObject<<>>>>/Annots 196 0 R>>endobj 1307 0 obj<>stream x­XisÛ6ýî_±u;1K´()””«u¦M'Ò¸±f2ÓªD AÚVšö·÷-@Hä£ít’ñı‹·»ï-üq/ þ4ù”íõü¾¬¼ýž¿P8ñ3£þÄ›AJg{­aFñ?h͵†û~¿5×f {þ£Öä`2„­~?ô‡°8Žü ±Éö˜m·fÙ×~0€±Œck¼1˜ŒüŒ p\dÐÃF3âÙS÷æå¿RÐô…ãMcL¦‘wZÊóäºC"é´Pô­ŒRQŠ*)råNßᅵÀ†9  °ðkì­²y‘*3¿1Ðí³;KI¥u,éR”‰˜§Ru(±•È+üz^ç›!eëв”q‰Jn>¥ÅEñ®\bñ¥T>5¶).(/*v¡G]L[“KQʼZH%%È2aîƒÅ:,X|Z—²œP)£â"O>a­’ø"Rúä1vž7žh$\ë­'¹¹{Ø€ëÁJœä¢\5;¶¡ñ(Q$hæeâ:ÉD:;$U•I~A™@çe‘¼¥hì£J–ŠÌÈkvoøÇQ÷áñlöëÓçÏ~ÿëëo|þâ˃':»þ×k¬‹JÆwÜ:GÖšt”(ÙBaq’£Àj-éÝ– þS¦ éÂ&³eµ¢4QÕín™=ëÌøù#š.PVº²ld#¡ä¿Ã®ÛûÁdSÙp„ ˆéÌ¡$¨tˆR]W8§­5Ø{¡ Ô°À…4” ·û Ýà‹£¹s‹'fSFt.|4óDg>;t6€DENs i‹ù®Ê¤ªdNWIµ(ê ¤¾¢«ERIµ‘$Q5Üf’qÍ8çkøZ,yÒDˆÍ‚pi!.%Í‹jq3 ›BÅ@y-²%ÒȱúöÈ1 r¬shZ™˜n¥íìÐõëÍü=4Aaø2Ó4{Y zÿ±)kðil(v£4y0ò׈ï d!-ÀÕ±ÕŸm÷/­}¯rÊ ¥ ÒӱбÎðvN#d Ã(Ò´¸’±O/[ »¡ÁzÞ -\µÔš­5¡•®~vXút¤ÄZxÍFš­r4ØGEIÇàÁ¤¼Bô"¹Ü4m äBÙ‘g›"E)Àõš‰D¨ïpÇõQ‹,g¥NªÕ$;UÑÈŽeüÖõlµZ¢HÓÕÚv­5™Ï]d²B/‘%y­èJ¦©v .éK@ry¡ûž›ùÃv·ªÎ€ûÊVWw²:Z €&sB„ Ï¹4ÛÙ`ùÌ‘ÓTp‰i<°WWþÝzÑ;܈^K‘#§nÉų¦™±6LåÖIZuAï™Ù«c®LÌ9òc-RD¡ÉD®/§tŸm›óvBô…»‚ëä³›-;g;ÑÝ=ûó}Ƹ ¶½oåK÷¹»Ô%©§÷ºóôþCŽ÷Ù‘×B§›öÀx\ŽŸá}nó SY±TQ™Ì1@@uq› éz+cÝÈ3á¼h"Î^´®fÚn>mÓ¡¦B4ã²LŠØ°#Ÿ¬µZ·į̈­¾Ýê ý»¶ Z³²es†íãaÊt½ Ïjúôš`<òÃpb½ã«£ {Õ”éúñ<ú†ß7Fì#úµÈ!l®Ë°ðJëŽzVÄ äσp臽±±ÆáÑUxjˤéèxñwÓ½÷þøÞpendstream endobj 1308 0 obj<>/XObject<<>>>>/Annots 198 0 R>>endobj 1309 0 obj<>stream x¥VÛŽÛ6}÷WÌÁB,F’us hƒu^š¦Mý J¢ÖÜJ¤MÊkðÇw¨ËÖR×@ר›8œ3sæÌŒ¶#ü¸y0 !-GqðÉ믟F^è’‚YDB(aLɬý¯€?G¿,‡WÔ¼[ O–9„ Ðw{$¦°Ìjß,SëÛ_ãåó(˜‘Ø÷1†ef½¼0ÏÞ-üöºçÆÄ뎫5Vnª#\Wa‡c{QLœ8Ûóˆ3ó»ot’LÒïQR)ôÊ¢“·ÍI÷G:1¬Ææs% 2‡j­™<³´Ò·Dó>ùq,ÉUÈœ+]M@±[Ó~KÚé$Ú¢j†>/XObject<<>>>>>>endobj 1311 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ C °‰©…ž¡™1ÐÒ ·ü¢ÜÒœÄb„kW !òendstream endobj 1312 0 obj<>/XObject<>>>/Annots 213 0 R>>endobj 1313 0 obj<>stream x­VÛnÛF}×WÌK0).IQäK­Û<MZ¡OŒ ¹”¶¦¸2/qõ÷9³KJ”l_$fw.gfÎðq&(À¯ eHQBùvø¾9¼4k(I3?¦EãsˆÿFQ9{$¯—ÖB²ðC‹È_P"_°©ùÇ8¥_ }a£” ^ÏLÙOþ6‘À±8[ÂßùÝIýmê'¥ « E ¯Nšh—1Îl) "œŠ¬4Ñ&‘Ÿ²å,…ŸÈJ-2Žw­dµIÀžGF ØpÒDÎo¸`ËVšhƒÌú EÆXé¨ ³Ìùµwdµ1ƒ&†|Ešn'Ym–ˆ—Îr’r ¬ÄÚ0Hñ½ˆ–Î2,ᬕ¬Öb'Ä€$ ‰³VrZŽR ÞI['±öÃj6¿…ZЪ$@’†”ı ­ Û<­ò«Ïù¦šŒ>ɺ—ÕûÕ?³˜AIÑ0«âêoÕ´ÚÔtÓ¯½0–¬Ÿßf([õâ0ôE‘—Ä~šÅ|ã¦ïÌVv:§O¦P­»a {½ÀÁÁñ»–äáÊWH·ÔªŽ¾î©P¥ì«Î§?ºN5ÏOnûç©w•ÎuWíù¦Ï>=ë*A'ÀÕÇ’ö¦§Vow8²ÖßiKëË””W²o‚©‹¹i¨4Ͷ¯d{}8ù¤«Š*cHvÔmÔô"Í5BÚè|ÃîòDäòÔu©U犚¾r†«Þ®1¹j[]¯ÉìTÔLÝRg‘ø4D]˜ú]G•~PÖë,öÉÅÁ B2:ó¾• Ipú¹¬áXÉÆÚ)+¹&W1TçŠm»¯Æ‚]°õž€çܪÜÔ…lö¶hÄF÷…Ú©º ôŠFÁFxMßíúŽJÌÏ"k7æ‰t è:©+k]•¥Ê»–åY¯xmÁcìÈâ (ãîÆaì ŒªßÙèïÞû„ŸŸÆÖáêŽ~ šÁBp8}š®k>µÚ  ñÇI•-Úù¼íRÄ8$éÓ ‡LÖ*tƒÈåá0ƒ µµ…2éÎåö ÒôÍËøJ˜0UežZÛÚóÛç':&EÞÏNtÉ —ÅçþÐN7Xºng0½ÙâÐÄ?Ì^¥·ºxã„W¨ZËêU{¡y¢ÞäFc áÐ(ÿÄ“nã¼nõÍ@^`ó­`^`ò¿ßŽÄÁÃi½y‰<ì8_ûIUñÎs¦êós>hL[àx¡*x-ðY0ds: –ñ±9­×Ã4þ2j8¹çZ`LíH`èŽybpx½¶ÑéšYï°RT¾QùÂÇ^ÁlbãÊŠÚ}ÝÉœW%Jþï4ÖCÛç›q"‡E²kÀ„¼G@=êËZw apnmjïwÓ0»ÛæÓÙ¸˜¡Â5,Q˪,ÚH&{Í­.; ÞdmÙU~>]^‡ÝT“, Í ëzÊÕ#¹[¦ìÏQS¹åtõ&›Âÿ ŽBç²S÷ ]~ýœÛ–ØÀëúîêtÐÕã=?ÎxãšúùGº|‘?Î=¼8ó—Æ?Ñsûe°Ãé!þqdìóØqd"ºp`Ž·ü¤Êk:ăH% áG©]ÁŸŸ=szã)o`¹¿øgÂ_ަ"c/¿®f_fß’M¾£endstream endobj 1314 0 obj<>/XObject<<>>>>/Annots 227 0 R>>endobj 1315 0 obj<>stream x­WioÛFý®_1P€,š—®-àq›9š¨E86äJbLîªKÊŽþ}ß QrÜÂElCÐîìμysøïQH~CЧü—–£À°Ó¼ÿu‡‰¿ i2õ*)‰cÖ® ú0Š?¡)v#– ?nW,§~@Óú œMüi»Y’àìdc7£zšKÃE„ýd:«¬w«t2“»QÂz"+–FAŒ[‰/)Â~·H£‰ Ž&À%²i´Žh2÷ç@G!06+–ŠÊ0h\±˜@o³›sÞî„qx\É͘_ßKqnE,=:\¾¹ ‡€A‚Oé4­GÓÁˆ¯Àà¼ùÎ:Ž«’B¼":Š~YŽ.¯-¤åšã<Ïh™I˜Z¦Þr›W´.Ô†Rµ¯tE•¾ÓNdë­v"©¨ÞªšÔz­ÓšÒ‚ÏÑÎÙTWUn6T[ú¬Iµv:£ÏªÂgu0µJë<}¾ü2 h2I–™‡k;íê†ìz5å&¯sØkôV~{!bâ«54÷RRðÄoÖR&ãëXò–ÑUçwøbÍ « Ñ-ïb…—×aëï³JoW|f•éB×¹5ÍÎGåÕhµ¯m ý)à Ú'ÀX·f, Ú7WôdëxØé÷Öp©uçxÙ!¶oèüø‡)ò[MÖe¹Qî@vÇO§Lï´É´I‘v#èbÕéV™ öpþ6ºj‰p*UÆØºÑE4Ù›ÌÍÊv…J™>©-K<ºZBìö5­óB_€WÂJÞ?´X ¨™7Uíöi½À†Hg¦†tº¼hÁü#Æ1W0 q¼ñä E^‚27Ï}Âϰ³Vû¢æ@wJd®¤…VîüÒéËÙB$ú—i £›ÄLq¥¤LŸuÈ>É®úÞÒN9Uj¤Q%¤îßúem‹ÂÞóí{uhò¤8%MÂã>ÃHãŸI!Y7æÆkà†C¼R}]Ýë|³•§öú¼ T¨9sÀÓ”W¶Z‰o›mÝCí¨´â1Bxèàÿž z¯Þ,W¯¯þ’ïßzÊÓŒ=ú˜qØ*¿¼^PˆêÚñL Þ•¡—_QòòR£"tÕÕzm3}âÕ]ˆÖ‡0z|›¥§œa£µ+hCF‚møS†´AV§Èê¾pP < ÿ.P£3NÇÓÌI©këèÅÕ‡ã(&>õìÎr‡¶À&…ê1Ê·U§#}Žvò­®Ó× é,møôA£Ð²ûâÌ"× îDÎpyhH—3들V?ˆV“>}|¤Ö_e_öU{YËŸÙ;cD|ÞuyüXx»\,\µB[¹EémŽFmZ¶=©Ë ó±0ýëÙŸÆá9.Ùôq’ï‹ê“døÔú•P8:„“ÔŸ;U|OD“ Gô4@enV½—¿'¢# àqÌMÇ¢Žá§Þ:ÐlP®ï­»û6Ôs2›pSÆœ„!ÅsL8¥„SBÒ^CÑnF$RÿúæD—Ó7ÐR+#WôLÊ,¬9]Ù½K¥=ªZoÏèãû?Ç Ú'ZN y=ÏÕß Ë ^âTBKÚZJÀ¸ŒìvE®³®Gt“†L”m•V¾µVÒ®yrƒÓÐróç$#®/mdö„ãD«ôëˆ'^4ß7úk€¡Òši©]Io]†Êj6 úy;âE7ÂyHÓé¢é+ïœÅL» ×ÊìUÁ‡ÇÝ™ñ,ÀdyQÀÛqø³ÿc„­ÿ®Ü/—£ßGÿÖ÷̸endstream endobj 1316 0 obj<>/XObject<>>>/Annots 239 0 R>>endobj 1317 0 obj<>stream xµX[oÛ6~÷¯8ØË V,Y–í½­Û²Û®5¶‡y(h‰¶ØH¢#Rq³_¿ï’¢¨.° †¶¶)’çòï\Ô‡IHsü iÑ"¡´œÌƒ9žôõ‘”¬7ALËyŒßþÕ’“ ñxå$$Ë ¢p¹–”„I²¨›×ñš¾Õô ¥džàs$âY‘ûõöûÉ"Œ!2Þ¬ ¯¤EI»*èÝd¸Æî:‚VÖínضîn®^Üc6 ß]­‚õà..)^ÇXR…Á¦]±àp¹Äî"Zâ v×ë~åv#†eFPWR÷ãvÅ»Ã5vËþ¬Û]°ÝÝÅ"éW¼;\³»+XçÏ:½Ë5dE $¯æØõ+'y°Æ]XµìÆ‹y¿.)^%ðèù.Ç+Z'‹5;íNlÄ÷–DÄaò+Þ|µÜÜ&†´=PÄëˆDp1Oh›9VÍi›NßÔúQÖúYT(®¶&q4’5˜´Í¦¿ÊÚ(]Ñ×ÍqÍç+Þ¿¹ÝP„ÝÍâ( ÂdA³$Ö›˜ole]Ò]ÉZUGrV»ËÞ"Ú¢Ôøê9 HÀ‡F .ý˜ò¡i/©U Fp°s©Žßÿ.6á†f‹ šrñYVŠê‰‹ <.9{訵gÜsº§x&™… üàfêÐ!±—ö,eE¦ISTǪò%+ -Ÿ•ÑvŽ‘Ö"ó1º¾wiÃî9kRÜõ…Ì­Y™J!¢·³‡MdcQÀ}.Géë B]êi{N5ÀDKs­ÉÝôQ v±e¨åúÄÔU²—Ìšî®8ìÓÉE««u_ÑOoî®é-XTÅ€¾àš#V¾a¸´¥1Oå^°M"SÃvS#=Ø^;!oÑ¡©RfÐûK¦9øG 4cËË7¸€Ÿ}á„JêzÀg =KuÌ9€Ô™ ?cp¡ŒÝMï÷ú½¿M#@¹Ö³ ® UH JW¾¶t-Ïßé#ÞƒY®»='ý”ýypЕT….c>· BTGW‚Ï™ó}ŒÉôñùý[HÌõYÙ?g>A\vÿá«’¢~D¹æÊ÷‰$ 0qùöÈ ó¦%è7Ž /¡b.óäȃE.ý^7ÓLÉŒYôòò”i‹¿¢ë0=³f¤'¹Ë°u-êÂ(Óõíe„d>O²Î9©Ø¶RDX؆§h?ày-1_uAU°ÏÒÍÕbm-vve£m¹|Ì@^=Æ/mÊ=r”g¤/FçTS-eüµAÖí1Ž2®SÉ€þÝ\üAŸyƺ&å§ÓÎ7 ½ž•{éË¿,À3~¯`ãI§H27¬EÔ¼GPŸ_6 $sÕÁd…·¨€0 qÜnn»3B=1d&+üGÂz3|{ù¹9œu§f«¹;²åB7xß‹7a°êÞ£u|·ü2ù „ endstream endobj 1318 0 obj<>/XObject<<>>>>/Annots 242 0 R>>endobj 1319 0 obj<>stream x¥WÛrÛ6}÷WìKgèŒEK²,Ùiú›O.vm¥Ó™ª JHH‚ÈÈÊ×÷,@к8i¦Û »»gÏ®¾ ¨ŸŒù7)úq+Ý?7¿ ÇÃxB§ãI<¤‚N†'øßÊéö`ó3ÞžžÅ£Í·ç'ñiwvt2Úz»ù¹ ÎŽ7ξ˜î‚1 :¾Ñ`@Ó ¨Çgš¦lŸ¦I$ïDQåòˆê¥¤TÙÚ¨yS«¯ª^“üÒˆZé’Q–º¦¹$m”,k™’Õ8!jRõý)iiƒ•(S;;¤ZšÂƇÓO}ê ǸÅ4Þ]_‘²TI³•u^ mkªôJš¬ÉIgn±^ Ts™ˆÆJvÔØFäùº…A…6²Cicz#_¥9âíØ§W¶õ>àøÃ»‘+£jI¦ÉÖ]Àãõ`I•„Ϲ¶ê«¤•XÛ#Ê´Áš nW/¿™Ñ 2RäT=Ïe1;&î?ÎèSç ¨–jÁáqëõö³Æ¼¸ãÛ 1ϲmÍOöþ2ªLå]X¤y¬3Žâ®C7–ëÄ 1&@Ü0“ÌµÇøå Ϲm¢?¿}yyy_7³èã‡Ë¿“IRT³ÒˆØþñÅOioxÎï'x–&î3*C›Þ×&¼ÅÇ!^8=j‹R7uÕ †Év©Twg„뛫—¯ooéòÃõÇé¶NFaT 5ƶղ·’àiÍÂîí†hÉ=¦‡5rOÿ×Yë--r–ið˜ÄýO%Ãh»6 è?·e/t­.m_®íeÿA‘ òƒ³Q|~>Àwê~|ÆZm4¾~žÓ{Qb¤äìõ†PÌzAoÒÇМFÃ!/úc4ˆSß!8×í<þÒ}Óà-¯§ü $1øgendstream endobj 1320 0 obj<>/XObject<<>>>>/Annots 244 0 R>>endobj 1321 0 obj<>stream xWÛn7}×WÌKÐu²Rtq- .‚¢µÝèCUÔ.¥e²Kªä*’þ¾gxYKë&H‚M$.É93sæÌèßÁ„Æø;¡ù”fWT4ƒñhŒ•îŸ?Læ—£)Mof£+jh:žwßjú8x¿è±z{wC“9-Ö¸ûêzB‹Ò_9¦E‘ý\~Ú¹¶‘ºuÔj+I iº·¥´Jo.Ÿþüe8?œaxQf ìüxlV¦¦+ YJ]Ȱû’&0ÂÖ†S˜ {Ã+8ç_eë.Zeô“aCçç2º¤Þ­•¥*D+ÿÿDaš§BÓJÒÎÉ’Ω&A.`Å5눖ìĹ@žÌQ€®å¡+!åp6úØÐÚØ>Òoº6Z^¬©0ºJS­BoÖ >r@~u$¥ +…‹i8ÁvêÅȃh¶µÌ“37)ü—#ä­ÌzÁ[fßævöî–Ïd9=äôøÏòbDÝŸWtKïèÏ#ïaóãÑ5_wî!n9­r*rz“Ó뜪œ6ñ®Wý;Zá)ð¼ÁóO…'Rë”,‰XV’ÀÓî 9¹YG¼B‚aIé%8åðïBn?$ê½8:Ú p­´ 4øð¦£èÏô*„çÚ‰­v›×.né$Râkdkͪ– _ßRiH›–Äv+…M; cokt‰ô%ô9‰ÊȲ½°š7€Rʹ,±ä°æ‹´7´Wu͇‘\ø )–œ´-Ÿæ Îóç.­_^ÉÒÞ8†}=û'×íüq6–r-vuKvWK7¢ÞgD¼NºÜ_‹Xr•ÙÕ%•,>c¡H¸+J4ÚµvW´ ³ &²ÑQû*‚~Zþ0Þg\ûñ³áh'×Pãç]Šƒ:<Ç;‘¥wCL™< úH´=HÎV5!à‰ç7sÂöVµ­ÔPâ¿…óªÖ}_@ôžõÔ’)*HQTd´ <€¬…”ó+Q®×²hùcTî¯@EmS,¸Äz‚pEÿ”uýD±c*µAe ²T{A¹àa#ÛÊ”´Q_$»÷žÉ©FÕ¨„ˆ*± ˆ!ÑP>f‘Ï5zÜ0Õà=BipÙMÙ#f€R¿À¸=òÈV'jü”ˆ›Î£Ñ 2'£«îóÔ³Âèúè-EÖ±÷ÏfYŸ˜ƒÕ蜰Gß "ý½Oô:±δÜU¹Kñi+Á¡ù­ó- ¼RmE¥Bv-¿Šžúˆ=·â¡ÞM0FöÛû{úK"]­c_ßÞ*«oæ„87¡ËDáÁÉÐ ÞÞuý9ôÍe®š¤¶}Ò­»­9}^™åŹQtÎ’— nÉtx—øâ:Ü{Ì€ÒËPJ߈¾§ÃqÊ–€<…ûZYº0v-—niöry…åéËå×Xþñåò'Þýb»Ôå“Y?1 ä<ü¾±ñ¸òaRkƒÔׂëÑUj›*…3óŽÀžZNÖ(vÎÇ•‹A­}#d.—ÊÂú^£4ˆƒ "¹;MØì0€Ä©ò@ .ËHóÐDWž”kk¸ÅI_>¡Gàöc V•ís/Æ rj%*CzÑáéÁ:kÔã<ŸmÊC!·^±|gÁJ®GžîXwš«.Ú€Ñ`“m˜ë›ÒAò𖊺†zôìó÷­ëh_)ˆ°/jgØ|À è¦Ô“£Dº­,”@ç†ÔE³ˆ1¹]Qõ̃ ¼rRy›e¶^f‡ü¸¼À¬xKø‚%|ËñßÃTÞ³‡cbÔ‚{-¦SÈ$†^ðÂÏÁ^F­ä~%}S$xVhÕ4iÉéøO÷>QQÆ”ËÙu’DÕ)YÅÅÁ<ޝ:n`K|EdŠ {‚Ÿ!Wóë0N¦¡áw¡w¢æÍôg8Ãdù]?S.o&£ùÕ5~vàÀtÆ÷ü²<þɺ/‹endstream endobj 1322 0 obj<>/XObject<<>>>>/Annots 247 0 R>>endobj 1323 0 obj<>stream xÍV]oÛ6}÷¯¸/lÀV-;qì}éÐlÁÖÚK¼§y(‰²™I¤BJqüï{.)ÙŠZlÀž†±øuy?Î9—σ˜¦øÓ|Áÿ“b0¦˜9ÿ¹ÿyßL£+Z,fÑ” šÍ¯£e3ÊéaÐcuG«ÎêÅÿ²{6Mó8†Åëé¾Ùª•” `E³Õ Ö Z.ð|IgXP<]E7ÅÛÁ»Û)­h›!”Å©`JÛd˜äRØÝPéiübl*ín¶O8uEqÌÇúd¶À¹á]FÕA9Êr±'ü:YIñ¤„—˜Ð†²Z'•2:£Ä…Ð)í†ÇƒJ”ÊLiéøÈy+¹Sñhr¾u2¥IׂÃäHΕ2QÙ °î“I¦”Öo‰èÖØÞ}òUe.}öB¶3Ÿía¶¾Ž÷ø³íFôž’°ÞVcÈyö>Œ©wrßßéÔTæ™$‘!sýCYÿÒ¾8—D´å¢‹<7Güh>ЭS› r5 ,\ÿÄâc:5a€)ŒÎQö]@¥àµ±JêŠýÒæ¨)C‘SY˜´Î}fù\§ˆ ‘RXqÙÑw!Ëà wž³¾¹_ÿôñáî>oþØöýqÒCšŒ‡:™ºbd*—Þ1×ó¾úzš$¡÷ àÎ;èj˜ÖðsÂL›ßDžkÂ9µ×»¡|þpº¶Ø³@å¡«,Àßáé=s‰~`Šy,‡Å:ð¾Ö™ÉÓ1Yö‘þl†~®„½MDWÂÊ¢-uý9Cõl¿CÞ@ŸÄèJ(°„iñ#ò Šy5&'Ný"=15zÏ×w1LyŒ4c|œx×nôÖý¡‡FÒ–êaÏO½3AB€F™«BiÁx̬)Ž˜Ç\+)yŠOwé ¯à„«„­\ãÒ±Æþ£±;z„jxYb1cd~ƒr P^õÚ”¾sS›DøÉÞv6D0¶áA£ÒEp©75JÖKrBs€ÛI¼•" ð;9ãØmA~û$³þ×h -Y‚¿^*[/@U{úVÈý°÷RèŽ)Ù€„H Uuck85è>bƒƒsª`íÜ&ÆœQ;h8½« Çöø¶.âóœ v—C–¼9«ö‡j:;È@D¿˜£„Ö3¬ ò5‘ÁM œÈ$z^jBvË_Ý‹L=áVƨBtMßEMg <|»åïnÿeÃÿ'޽íÐm 0tZ<·Ðã––åª,YìuÚËÓwMá9¡teÑ’F`=Øøÿ À©¹BT¨)W¼khÖ»$0Õëñ¨‹å˜ }`ëþ1:"Òàý1&¡å·/$çñì*~£@`‚øÂy49®(¾”oΖ3ªßæÖ£1D{éØÍÍþÅcƒ¶é8 Hc”qƇì;Ïl`÷Y¾VôZÞô‰¹°±² X\6Š?Ã+-^Æt_‡×Zûäú$t-Â[®Ý3¹™ò³s8»bóU]Ï®ñÅÔ–Ÿrk~vrâÖž?¾~Ü~|p †Uendstream endobj 1324 0 obj<>/XObject<>>>/Annots 258 0 R>>endobj 1325 0 obj<>stream xVk‹ÛFýî_q ´hÁÖêeÙ†¦ÒnhÊ&1m¡.flìI%3#í®C|Ï‘üØG¨eÍã¾Ï=3Ÿ1EøÆ4I(Íi] ¢0ÂÌña¶< |: 3GÞüŒ¤bð™bLOœ†|&ÓpLyœ‡1«º~›MéGMïY)åQŽç#'CîíÃσx–@z%ÐWQ’¦0àG%}œ±:™a×i5žÄÍÒÜÉÆ3^õ#–=³æšO«F”&Y˜ÃlœL®±èlŒa2IÃ)ûgÐëGÞ§èl5³ŠÓjO!•¤bd«nä|:ÃìdÿÏVÏÆ°E²Iƹ™Æð»¢t: g~Àz˜®orŠcš‡Ù4¡<ËÂ4Êi¾qåh¾n¾“fFïDÝŠòjþi%02EIç›àwi¬Ò5½i·#ŸðúõÍ Ž°ÖQ– RyJ£< §³Œ%Þiã£f½£[#÷^"¢ D4JEØge³äÃ^Ô›¥‘¥h`F”Ë,ìâ*d)lŽ#$›×%~e;áó AV´eCn··›uñØ£„ÞÔ씥¢[Â?üÂQŸ„Rë°¤ ÐÝ»ÄjU­Ø?Kª†´$am[íý ÖJË 5ºw=B`ÏÈ{£ˆ”%éõº5FÖkìÖì‡ôÊåæhÏ’,­¼ßId±3¦ê} W~I'dašNÃ#sÖe>¤9t»ìºòÙFî- ˆod#T ƒrÝ6ÐNæˆ#û=4ðêÞh]XºWÍŽ²—¤‹ëSkU¨µ+ùlƒEÚúº"s~¡/CÐ6É= ><Ÿæ Ê0*©-|EàU[ _ù ª})‡½ÉXè[¬~ó"8«ÒSH‘«Èƒ{Üó -‚7‹àax~Y\¹LaÆ¿÷šMt oñsïýïÿ{¿\N?³óaqÅß>=À%º@ËRÙÆ-]ßô)CÊπ˰à2®•Y##æœ'ß+€MU•Ü(ÑÈò$¨ÆWRP!Q’4F›Þ‹¾óccÈRUª†° e–dÕJ—v耢@µ(äÿÜ<¥Ø“Õ +:S oî2_¨¸ÃÆ„Žš—lÎoëÃöHaÀõÎýâZ(¦Æ¨;Å1tH@û©zë:£1¢¶èÕ;ÕFºÙv…g,¯JYu©=‘Q¬;¾€^lé´-=I…ªöåÿþå-h¦Ë(ŽÅ»¥TܾÏöèsGEC‘oîÎW&&z5—¦æ@}Ÿ8úU4‡¼ÒýNg•e³g™whr©0¤„JÜv!þ!W´[y™‹d:ÁáÒSóeq€ØKŽ…w½ÍKŽ~"w™‘ÿIÄ ¡R|‚K·–›©kY]‚yÁ¶LÙô)F]ܽƒcqúä¾@¦H:\}vêñ;ê¦ÕDmuÙ2õû>hv (rûÈžÝé{j÷8,H› º unjFœXÏ»¯]gœô/¨6²ÒwÎ[0պ݊¯uªvMvR<Öó8-h#U7 Q€¶ÒÜIjk‹ÊJ¬T Rp°?c•9Ÿ“=_ žç4Ÿ¨žËúsîtYp÷—'Ùô]*JûørpDð34û•ÅÁ¦¶õ"(t¹Åd¸¬ÄðKZâ/[Á±,îˆ \ŸnIÞËö¾Ž†*ÝJúkSzÎ{ûÛ|ùîÍŸ,üíå§­'¸ÄÓ˜rÜW'Swi»}r³õ»F“>=YÌfq8éïŸÉ˜Íü4¼üq[½Aendstream endobj 1326 0 obj<>/XObject<<>>>>/Annots 264 0 R>>endobj 1327 0 obj<>stream x­VMÛ6½ûWL¼€­êÃ+Ûmz)К"m|4° %ÊbJII­×ÿ¾oHÉ+o6È!Ý]–8œy|óæq?ÏŠñ›P–ó_ÑÌâ(Æ›ëÇ?¿ÏÒä>Š)Û¦øl(Ý$×'Mgé&Y¶²á‰W³Õ*Ú\WWñ*J§«9§ZoÒP‚2XôO¼õƒÿfŽŒŠ²t­è‰bb@FR5ËÓhKYû<À9>pšÉ#j¤+쑼øënöã»JÓ®âóç›5íJü˜vÅ|W+K'aD#4$N'­¤%×Q+ÂɒަëÛ’T{êÉϽÐÊqˆjé\«¢F r5öZUJB6AE×Z'Z· +.w»O€€x1-“ ,ìÊyµŸ‹ÅaG?üBø~Xˆý]ñÎ#ú£"$'-+·¬pø*µ°TÉ3Š:¼ ›ò¡Âœ†×,d/Í¡Óvh­<_á,o]N0©Ö™®ì œÛ“Ñ™/qDäéëNÒ§ºÖŸÞ3Xòá¨é¬£®•ThÑ[Ðã±M rÒ@í-OsÛypÏÍ›“VÖEcØ–ºDG—Ù:Ê™O+ÝÛŒ{P-Z$ôrìïü®ÈâAX¡¥0¯~ÞP)+ÑkĈ ÕF&¹Zêkù¶ ×•G>5j/ßì¶o|F¸lµ,þ%L õp¶±J«ÂÑ€Œ¹¸ˆàDazž’ð“sjÙ˜0iÄdôÏF<=œ¥:Ö¾Z¼ù(ÌK£z5®?õm»æ õmñ Y cô‹}㉇ë Tîq‘IøkÕõæù:Ã]„³¶òJ7[9µšJxÏà]yÊÝh×ìlZ0ª(\N˜æÁR¼÷{´u×kNLâèZ}a¡ò…`JXQ¦è¾1~œ¼y§›ì/ùäè#*AC?á ûý©åvGJq}&ü;³]‡kôƒéPeKïE‹»™™ZŽ1ËuŒq,çiίWÉ*Z¯òà_ïÙŒ†2Œ>/XObject<>>>/Annots 269 0 R>>endobj 1329 0 obj<>stream x­V]oÛ6}÷¯¸P@"E’Y~èCÖ-C€¥hW·+° #Ñ2ItE:ž÷ëw.%9vÖ1‚È’H^{ü2Š(Ä_D“˜Æ)åõ( B¼Ù^Ú’(ͦABa‚ûÿ­¤ùè Ex=qÒ‹ ¦èb\P¥Aġί“Œ~ÖôžƒR¦¸> ñô!w÷û¯£$ ƒŒ’éך’4Ý>UôaÇ ¾3Ž&@SSœdAÚ?¹ÑgŒfcàèæºQ¬âÈ.p< Â=ðØO³ÑùUJQD³9EA’Å”&I0SšŽŽf¹÷®Õ²ÒhV¢:ý=Jâ0H3P0+¼O²5J7t¹*ý8 '<~~5¥£sò“8¢tL~šÙ4á¤hóý¦jeM7=¤)ÏÉ3å˜$ŒQesëmî*žyFÝÔ¸›ê5{+½ÛÓ€èr.V•ýþÜ×À†gÔŠ¦”ô§Q¸ÞõÛÙÝÍågíýÕ} éùPü˜‰ñf eh)ZQK+[RõRiHÃIàÂ.$õ¯$=w÷ÔŽiÎi?¶‡¥ÆÒ­×½J2ä8@ð^j-Ec8*Ôî>Ëù_[•ÑLFcˆ†™Ì­zÖ!â….h®[0UI«š’òJ¬ÿ­§E¡,—Óê3MAbŽq»\V*nh/©¨§Ç«Å?wk©Ê…ÝÏÍß²% hyÅiWpÇ*b­­$Ý+K¶UùÃЊр¯j@µZ¶„*]*éuC¥ÖóðÇBv5è Ó¿Æ;>¸՜櫪:#å°ï6V´~/™(ƘKIâ^¯,=H¹Ü!°çË ÍUUZ-9$•­(Ð8Õqrä`¨Ö­òÊ´ÞãÇB€pñ=ÒÝüD®fP__h¬j4TÁÕ“xã¯îä7ÔÞ.„¥ZX´åB5Ö·§‹@QÈ\Žt—1 Ô­êòe©D³¨Z)ŠMŸ–=ƒr²Ö­±'}p‚ ëdìRþI­Öµkäºçä¶£¶T™Y¡P§5ª…Ú°ø©B¯´nþùUïK>7ÿxÛÝq&| 54Çt&?:–-¹¤ŒÕËÎ:ÏuÝÜñº5êtë2ä²ê‰ãþ€âï%Z 6QtI¢Z9oÛ±#ñ¼uÀÿ¾CHéƒ\Õë_Ä(l¼#î‰Í5› 70x=ußárè°'[V]&}»­ï›«eiŽ©0ì}/Ø·qŽøCa!q¿á­{H-Áâæ¹¼#ÅÀH›â¨¼['0ÔÃHés è »òǷןýJÁÈÌÆXY#E6²´^KoÞ}>/XObject<<>>>>/Annots 273 0 R>>endobj 1331 0 obj<>stream xåRÛjÜ@ }÷Wœ—Ââ錽k }hKR Ih³~4% ÞÙ]_¶3Þü}$Û›ËK~ ØIG:–Žô/ÒPôh¤¿U)©(òü¹þ%:—Y–H…I¡äbö¬ftYŠÑÉcô…h´ü–©±4FfXªÙÌê6ñX挷0cÚè0Í+·…Vs<ƒ_Ëèã¹BrC£d†Œõ8BY B½ínEkîvýÁ‡Sœ”©"™*D7¹3¸=‘À¬ÝÆšáýÜϱ>…·ÝÖáw¬!å˜.~\•w—_n˜Wü™ØКû#ã$£Å·ÕÕÝîØ[o[78P·ûæÃ.Ìÿ×sù8EpUß­Ã[b¡'*‡ª÷Þ…=e0ù½mN¾™0æÒœ@]¼VgmÿWqFM>aÒäÊ= X¹j¨ûîJÒô¢ï÷“†f^D¢S© ­%5\òÓ÷÷θ´ÝÁ6œ3â\ñAŠÄpxA§yJwJ¡•³¾Úá¢nëa\çYýŠžLWîeendstream endobj 1332 0 obj<>/XObject<>>>/Annots 277 0 R>>endobj 1333 0 obj<>stream xWMoÛF½ëWÌ‘,š¤(Jj…ÓÔ…i!¹ø²&W’«,—ôïûf?d†V¤6,˜ÜÝ™7oÞ̬¾ÌRJð›Ò*£EAe;KâoÎú‘¨Xo✖IŽÿ3üiI»ÙJñze-Ë8£t¹ˆ—T¤Eœ²©ë»|Mo½g£T$>'&žÙÿþùc¶XÅkìJñÙÂ` ³î©¡n1ߤ0„Åläžž—k¼ÄbÁ0sûÄ‹o¶³ëÛ‚Ò”¶;Jã|Q‘çñ")h[ÙxÚ–ÑßZ}•zC‰nÍ«í¿³¡ìë ,!¢ ±EnÕ Ûp̛ƂˆéÍ`ÎÐv¢n˜Å ^ïÏâ“gÇ1}ÚŸØ6çãW¿=+Bá¨R6Æ %'FElÂà3×·® Œ <0ë ÜZ¿¾ U?·|{O[`]„ÁÛ´Hș˒CúE+O(Tæ;…ùU ]%ºò#ÉýÐÚ3öà²ãÀ>áúͽ˜"tÏÎÅÆÍLÛ.á3;=|3=ŒÆ=Ýóf²ÇÈõmºö|Í1yfCs÷Y±òM5ోgµ0-Sûÿ¡/|›½—š8÷æ×,Oçúȵß"†’'Vó®Ö½ñüë²éåêåsS–JW<}ã8ϳ«)aÏ2îGI%5ÆcEÚ½(<]/"šfÑÊO4=×Fj%¦w(.}¬{ùc¿G54k-x6Ǻ´²5–ß4‚gdžsÈøRt5þQèZØnúØå[oŒ(Tˆ‡dÐZKÕ¶èÙ¸bñ=ê<]Æ} ÝÃ_-l‹¡ªÆäÛíÕÑv½ãž)Dlê]]Z,tÕ±Œ-‰#6´<â’‚4ß¿"U–ƒvwìB¸³=iÊØ;càòÂÅëŠGFnèè|Ϻ ÃüçJÄvÅi<é\ËâÑbä9 å(8ÌȦ†ë¶•R"1¯ f0¾ÿ\QÙ Vç.Ä—êÖ £óe†ÞÖ}© ýË$yS?IÈ}d+äû÷Qžþ¨9{Írñ„úŽ`tb¾â)Å}ÅræpT©#Q~'«ÎP’<*Çr ·ÌÐ3Œâ¸XæñrmïA Oßæa×|•àrú½¯üÕe¾[dé÷íìýì?¼ÇÞhendstream endobj 1334 0 obj<>/XObject<<>>>>/Annots 279 0 R>>endobj 1335 0 obj<>stream x]Koƒ0„ïüŠ9¦¯Üc¥&—¾ƒzwÀ·`SÛ í¿ï%UT+ïðíj<_A‚˜žYáßzâ(&寘ƒoPÕUœSMé3íômiÄPäy”c@É¢òÜôØWí€$aÑêêç],79ɨZòS”kTÍl#FU/ªNÀÞÝ¶Ø 7 ¡à¼8iœ„±R+ ia‰’‡ÎµÚLÜ4Ãpæž½Ö#ì(Tc1냦‹89X9Œ½l¤:ÜTAŒ0É¢”L,&éºyǨ­•û^%Zé [ ü“&Àh^Ç•»¬’5wd Vk%LtÞš–” m}ß;Q{ä–=±•'¡<¸Ü”ç,R²‘” (ÿÂϽM÷exäêÈ{φ$\ÇÌ#YìåŒc)…IÒ;7rvc½iÜEá±û*x ~ã[’ñendstream endobj 1336 0 obj<>/XObject<>>>/Annots 295 0 R>>endobj 1337 0 obj<>stream xÍXKoÛF¾ëWÌ¥ ˆ4_¢¤>¸Mä¦iÔ¢@U+r%±¡H…KÅI}¿Ùå’á$ÊãP¦5œÝ™ož;«·“€|ü4)J(=L|ÏÇ›îQd±ôbšù1>‡ø«%m'o)À빖̼‚YäÍ( /`Q×Ïã=­è ¥ÄOð‰èéO¿=›ÐÒlæãy  L:ª ×“! n¼€>³–¹a¢éÀ÷ì|ß[ÒLSÌÒàFKî¸ 1žxB®?ƒCñÎ9›,o¡!Åøo¨ž ͬ3ˆcü4¥- 44t†¾ ¸C\xjº½FëlÇCp´`¦¦z­qh¼[bèfªg†KcŒ¤©žÌŒ1F¬¦4Þ…€-7B$-ÅÜ!ÍÖĬµÛ;¤Á…ZdDÇMÍœ£Éþåèj‚ÅHð‚Qëy= Ì_ x= Þr1”"5"Š—ÚÊÈ‘šÐf„^[R¸%4“4Jt0—ìzý™9?®&×wˆm@«-Áß‹Øù ­2]1>­Rç׺z'ë%½åIW«&1¢ž,P%«ÌùCÖ*¯Jº=íÜÐ÷çÌ¿¾[Rî–Ü8 ½ ‰ÈMc˘w¼–…L›¼ÜQ³—ô,'Kú©'%Í^ŽïõÉ ÙØrÛéžòFÖ¢auÕVï>ˆ¼¤¢ªŽS²0•¯HiÖ>‡vZSúˆ&‡¶uuÐÍ&䥆à¨Jƒr¨ÈU3¥|¢€‡šê±}'%6ÅÈžv+˃iÈmš(3:ˆ7,¬ÜÊZ–)>j8ÎÌ ^ªÉÀæE_¦ÎkÕ¡ëhçßÒF¨<¥ñ¡gi‘C÷P®˜+ ,SÃEE¾Û7R5-†óYyô²AÜh/ ›¼È­þ¿¹£y¨è ›}•)ޱÁgsåbI‚t6P&!ÿ—2£Í¼=ŠZ@tº®;’1¶.A8×YYo¯G«=\c’ÈRЦ–"köî6¯Ù1ÕáX•²ì2CIQ§{^KÉæw}ŽÛD8æé›{má½¶Ê,´Åà ŒÚÈ¢zÖ¦?ÊËß÷@tÒœ5t$Û„³¯* ”Í{«#ŒÃ©™×Eyi+“;%*S(•ïʵ#vònGeÜ!é•NiH¿%×WñψÙVœŠæÓËo‚)B\î$ýå“gP8ÏYÝ¿¸ý“;óÕÍÛjjᘔ«’ºL»>§è¡ªß eïÐ:Ñö¸³ešo¹&.7{Ó)·Umûaˆ»zb Ö6(£¶­õ¶ÆÍ ÌÁ范KPnO†‡¼Ùãd~àæùü)­æ5ÓõÕ´Õ…áS·n€i5ŠÌ`±g~Û,˜–݃*ÿ4¦µc4¯¯ƒgÄ|+˜¾Æ/ÆbÏ"³¡ŸT´¨±3|+Ê®ôÇâσ8pØÇ@²¤±ïƒqÐÆ z”)uTò”UîúÊ,ëh$Œ7t}{ËïÁq®[¿ÙŒkö¢Á¤×¤(_T%‹Ñgøõ]ð¹ü·¥æâ~²Læýð¸²óDoºÎëÇ‚“apÍKLÞ¨| 1ã¡IɆ'.À’õ±–ž³•™ìa}΄vÁ`˜Õ6–r‡½ïl'0S„†¥çÙ²*ÝG—0f¨«xâ ùþXä)Fàs•Jçÿ@£2Sšš1 ¶)yeƒwwÊ3yz<*ý^fÜ#£Çíšbª@Ž…œR¾µ¡nØ'À a^1/mËr>Þn(œ²GÎ7 lûh­ÞP4=»Î ÿçEA úöƒA“¹ ôCZ ëbŽÎÿÕGÆÂlj3³r× Ç~…wpÓÀ0n/™ò݆Cs!û¯Ëñ. k'÷¤òÄÓµ[5åå|u©¯V¤±Ûæ~0Ÿ{ø ßËÄÞl±àƒÎŽ´ýÅÓ 1-ó*wîc¾üÜ]2Æws{QVøójòjò„¿ùXendstream endobj 1338 0 obj<>/XObject<<>>>>/Annots 301 0 R>>endobj 1339 0 obj<>stream x¥WmoÛ6þî_q@1@lE/~-¶lù¶ë t@ÝŒDÛZ$Q•d;î¯ßs¤$+rVMÓ8&y¼÷{îøµç’ƒ—ü ÿ’žc;Øi>>üÑs'S{DgbÏ(!Ï÷›UL÷ܱ‹ýñÜ·'|êN›ŸzžoûÇÓñØv«•>m­qw:jhõikïøö¼u·½Æ©7{ÂÐÈá3¡ù¼Yh…gT9°2G³zÁg¿.ºöçkº¸‘ëÒbȘ́´µƒZÖ½ ĶTnäD®¿P­7¥,JJU:LåZ”ÑNÒÒŠli¨Ì·rÙ§ æ‹…MWiH…"•ÚýÅ¿=‡†Þº-BëfE¢"#µ¢\~ÝF¹ ©–à»%*ÉT*Ó’o@)Ê!\1u%Y| â!Ê2Út­òJžëÛË“$à´ÊM}1Õ\²\2ŒÒ5e"ë\d›E+¨@+ÃþÊí‚':áèÄ’6‚Uø&YæFÖBWj›Ã5ЙYà5ðõ÷B»ªf —mÓ2Šá«Dv¤" ¼Ùîzò­*92ð»$”+±KÚ‰x+ÙO¬Óŵ[EÙÚDiYܱ6æ ¿Ån4[(ÖÍÛÅÝíÕ?B›Ð&R¤0‚åî72•;™³LÜò@!c Hi婵,qIiU ßóš j/i‰(ƒ i;Ì8¦{IF Òˆ"‰¿"=°„v<8‡Ÿúqˆ´orò#ì@V®‘ÐÐW§0{%Ëá3"' {D•i )Ý&÷2çÌDJQÀÄ®àLÐ6×ö’ fuBÍàæ7“Gq¡º¾Ú¨=䙼\©8V{ÎKùÈ<+uä/®šsÁr1L1_¹„d»ìËËé²ÿT´£]âwG6ѧ(ͶågÍÇm`P"°€ÃæáP-¶m²ì{4µÐ„.X蘅z3-õRµD.©¥åúKK ÜeàŽô··ì/ûF“–Üšç<¯˜§‹;¯Ée¦_°wÀç7 ›ÄkÞÅšM«¹ ψ e¢BèÍïJöp½fÉž–<ò+ÉK‹¥ÁntØÒì±F_øDkÖhjóï¼" ™Œ—–†”çUö+•½¶wŽÍŸptH¹Va©P"Û‘Ú¦ šò½2ë¦Â/5ütˆ>v‰ê|íÐ]wé´ƒ®ÌE—Œ ՟]*]Í'dºd9ŠH%¦–ÌYcìM—V§:PHj,Öæ¼Fιª3h»Bw«(/º°ˆHñMí{Sl· ®n¹?J™GÂ`Q=H4"@’CàJyµ-·¸|,€ƒcòû\a9¯êyN.ú®.hß32ÞUrz—1rµ¥uÕû3S¤…,—V…÷Ñ V„¿4}D•þum£a‰üô¢‘R'‹ÅªQ—Œ÷ìCFC}ÁMz«>|ô7–b`xMê>/ñVwXè§¢,°ÒES>£¢ »ÆW¦oÃxGœ¾žKPW%Êkó1èf¥•W™ÄÀ€Z¹?P"X¼0lDºÆÔbô;…Y2ÆŸøŽ†oÛE´N—­þ: ç˜<µó„…©@ÑŸæR]Þ/cÁ¥ÿ2¦ÞOyxz„$NF5Ì<’slÎä‡c8ÐUj@9æÄ¹ëí`Œ~†A+?uÿÙ@èÙÉŸšùºÎÿ, ît¿ÓÓy êžZ¬ôIqY0¦Væðh/wT(}rȶuëiϨÖgsý9 3'GDªÔ¨I­7àÍ``öÀlTq°šÉÌ‹£è$º©¢/“PMý¸aÒ‰‘©;-ë8_p°(ŒŠ°©Gg@!°m/ g<ë$m‡ö*8hhƒüJ`Û8Z=ÀþÈ0THýøŠ™¿±ªîš-t3ÿüÊ34óôÂbLgŒ5“z"ð<à ‡Çu¾ÛjÀÎaܲo¸ÎªÆáN§¶;sñ.­ÆÒªoÒ­H·"f⡇6Î4éƒþZ¾ÇÛ#l½1FZl4Óß½¿zÿÛB±3endstream endobj 1340 0 obj<>/XObject<<>>>>/Annots 306 0 R>>endobj 1341 0 obj<>stream x½WËŽÛ6Ýû+°4zŒ%{Ñ-Ð)²HÒ‡êÀ %JV#‰Ieà¿ïåC²­X–ƒdjž¡.õ=àÞí°á‡#˜@ ¡.$ô¨&È øÔÒ–ÎU„ØÂ\Mä áé^q¡\ C+VeHhû …œ†~–cÈÂv!h§ù4HøJìÂR¾žNŠŽ> 6øœN'.Œsé†ûÇÙt#Â}dºà..Ýð¿“Jvš~žƒIßJ$& =6.sVkHßÇ´i° ý¿%=Ø…|ÓIr¹!çÀ·–:O¿„Çœ˜3Žûqï;‰3à>ÞŒû_¡Í…`ê”´ (Í&E´w.“ .G÷þ\a» ð€çiâ¼y·Þ¾ýùoåé|0þ_*,-‰pÛHM•tÉÔo]6¨gÔ ^Õ 9ãz€÷AÛŒ¹¨ïMдõ½ Ú(9Åø^öeºWÔBa¦]UâsM£Âžò™²z©d—GÁè²`•ªR%Pû Ôfº,†Ñ8Z~`¨ñE‚ÇV}’Öx$î8áGÈÛ&ÅKKcÏL¼›i•yv©´¼¶ sªŒæYçäˆÑ¹¨A»ž¯/– ïÏK[B$^° ^Äæ:ô;gŸ)_Á[Ò´¤R©ÝÅ šã&¾ºž9ïuËï}GO«ÀKâ%Þ9ÑEÊé×õìÙdZäendstream endobj 1342 0 obj<>/XObject<<>>>>/Annots 309 0 R>>endobj 1343 0 obj<>stream xTMÚ0½çWÌ¥RÀÍ!Ъ‡Vj+í¶»9"­L2Ú[þ}ÇNLÙíʇÁöø½7oÆù¥Ð;…|á>õ!JXB+—áökT.XE±dK8@šl>Î$ÜE×sÚ-‹K¬Ûý‹ãÿéC†b¾rc2§1£¯Fh£EÆVPä ¡íã̳\͆ŒåW»Ÿªèí—9¤)T­Ëb±,¡j| Tu¼n'Õ…,Æ:Ød.Ía=§ ,½Á¸»G0ˆ ƒ× >À,ýà‡V'Ô+:&±¶¸˜Â–;LÕyÌ—=‚j‚³±xp@ æ,#íq-Uýø„‹'A5žBÀ~P[&×:eɼ£VM_‹-²AM+gÄŒœ˜å%[8<ƒv‹îØÛ{£Ì}+´±› z½[ÞKKJm‘P±½ äúµƒÏóvL™çY»œHp+ùÎ9ISŸe-9¹j†Œ~„\BP<Ô.&mÏ‘cÂXŸìàèP˜8aÓ ô$J7¨ ;d1šù´õÞœAÕuï"|øÿ‘o&°ÅV‘ݼ;“Wš¸› ·+CPÆ ºäÎ¥TOöÈOçr|.Vv–dÍÆ5IÕb·§¤Ÿø™ÁÇ6lÏBÚ{~B’FFÞêlä‰è¸>V§á gu¤æV¨Á‹«›`ù#•Ë5³o+ßMÙ’n'µÅwümáŽú›Ž¿ƒuעƮF¸í%Ž\Ž<utº$ÖrìÄÐÄßx×séhg!fV&Ô¹MœÏÝòœž4EVÐÓ‰–nÈ 7GÇè>WÑÏèìäX9endstream endobj 1344 0 obj<>/XObject<>>>/Annots 327 0 R>>endobj 1345 0 obj<>stream x¥XÛŽÛ6}÷W p[«›-}JÐn±išÔh_0h‰¶ÙÈ¢£Ë:þûž!EY+o’^²ˆWôÙ3g.ÚÏ“€|ü”„-);N|ÏÇ7ýGµç-Ó•ÓÂñâ%i7ùL¾NŒ†å )XDÞ‚–ÁÒ XÕÝCœÒOš>°RZúK|ŽT\/2O™„ÐP¼H¼”Žù)4ÚUA¿OèN(Žco iè‡,5+–Fa +4ZÅýÊH#£+ ð-4')ßcVFºZ±®N§ /Hƒeÿ¢)X¥Ú•±j°†U1[5!n a¥9ûÚ•9;XCsš`×U1f!ŒòùÚ8e¡Y™£€;é¥a¸„QWi¸ðùÚîl”,èU£‚82`1ÇÑ®¬Q×5Å&¤ƒ5Ü Ü{•F+)ˆ|ãn¼Œq¯]±æG.ë|fe®MÄ$IŒMá*‚^³`Y„X'm b™ËÀ”$æhÆ s,`Œ"˦8\x+»`ÙÛõäîž­¡õŽÀŠ4„ÊØ‹ü%­s“>­³éo•~’ÕŠÞ‰²Åëõ_“8ô½e Þ¯ó鲪•.éM»Ÿ‡¾Ÿ°üî~n²Öy†^°ŒhÎ8¬b>ñPîd%ËLÒǶµ=wfø4‰CÞ÷çA–$h¯žð;+D[KR5Õ²Y#ó‰¢ ½£æ I–b[ÈœT¯»bÝ$¨ât*d&Õxt¯+’";\÷ÎH—²ÓÄÖÀ fl8AAÙÔ|/_3´÷—¹µ¢ŠÜÖc[7´…©¥9bÝã(3Ó¶fCŸû<¥BÕ×] ˜Þièû“c£*÷­ªF»»t{1ËJ³Ó0çB§B\œ ½–IoïÍè¤kÕW¥Ü ó\¨FV6ÀvزU¥¨.(zµ.ÚÑžQÙf…lkVP‹F|˜xïár}‹Ð®ÒG•*Þ£ÅQçm{uéÑz„ì(™(­7¢„ ððÆ­1tovðwŽà£½,áaü€ÛçŽT3Ý•`§Jg²®™açƒ2DÉŠ6Ç©ZA¥ÊŒá¤á©y2`V·8%jÊåÕM{Г¡TÍ&Ÿ‡',x•lÀ?Î/XÝÔ3rªGšŽâËæ,ÕþÐŒÔx„ôewÀµÖ,˜ªJç›D’ $Tï` Y)ó9Óe­rdîM–}ÕªÈ],z cÃúdíו#”¦ŸµèJM£þ9Ã謚rÌл«Žx¨)GÙt^3½›Je¡C·›“IL˜qQ‘…Ú+d²!tŸ_–Ëß6¦ßl“Ä”(¤†,s[£ Ôà"?ŠÕãT~Éä‰é`+›-G]¡A³JuÒ®,ên¹•…>?¾žÑ¶mè,é û¥n(çÊ'¨R{]i¤³(Eq©Qí¬‚‘¢À6`yd"jB*$ÅA·En´Å'hC–ŠºnÎЭƥ™¶.• ¢­ÁHOî+O ‰ˆÛ\${xFw¿CØ!¥ X¦Àyò¾cÄCß Œó†EÜ—‚„ë0¢ñT‚6óÖ·}q³mÉðè½õÁ2Ò§•;š¢ßâh-›Ç©-Ž›kÐ_;ʾ݇R)ª—wþý€B±m”x£½Í5DL¥óòô[B³+ÄÞ6—fm$´½që²4íÈa¯s5i@ó.6¶áÛç†Mgôüè´ !Cq³•{åh{vÙ'Þ¼Q&óQ¥FÇ€ rö¨ÀQ—o¼ãÖÆº o¢9ƒ†™ÇÀf‚„&·ùçúÚîÿ¬¾ÕÞF qýNÀP‹òŽcéôŒÀ0|Bq¥n0Šˆ~‚*»®ÆÓS_帤9­ÏØ1Ú7bÌÖ̱ùo!7úW3³Ýr 7Ûå™™~ÕBL×Jð –úúJÀS ½ÂðsË…Wh”n(º Ûq9Æ ©Ð4sÂðÕšþʱ1­‡i;Fî{éÄÕØŽ@£ `øãÚì‚â|†O78gq¹ÎÅßtÄ b;\Žaž /«»»wù?Å…·èØ=®$Mg¼Dz+33³ÿ#ußõº‘Ù¡TŸÛ.Z Õ—#:21oγ?­2£ |ÏmŽÊ?òtˆ 4*ÀYqƒ°ï AÛ:…Íi³œÿw¶¸óتVûRó°Ä¯»æ¶\w… ¯ˆö- ï{Aàï xùKM“qóÎõõkâõ„wÍ-éÅ7ªxx‰{G‹ìÙÏëɇÉߘè-endstream endobj 1346 0 obj<>/XObject<<>>>>/Annots 348 0 R>>endobj 1347 0 obj<>stream x•WYoÛF~ׯ˜—4`1¼DI-Z š&@‹´ŽòTÆš\Il(Ráa×ÿ¾ßÌ.Q>šÄˆ³šûüF_g>yøëSóOrœy®‡Oún~…ë•R®\Ž…±»²¯œ>Í|/r—´Oªy š—PGoPW ×QÃeä´"£9bÍæÅ²«f>+ÛÁü΃†œÍ!«©<5YYЩmj‚¦Êþ„‚šƒ¦»¬PÕ#©"¥ÃãIWà)óVd²b׊DSÕæº¦­s×6T” d;¿B¦>ßÌAŽã¼W5L¨†í–ù½N)Ï]©¼¦¬€MeEDzÂïørR0?mÝЦ£ú7;ªœ¹á*›œs.¬Í$Wm­]ë Ú!bO>i-ºj-qÒG“_úÐs§óòAÄúÚÌ9iҤРeI:ùÂE¹ÍŠºQH—§‹š—8m5žæ=/¥°²ø³…ÚåjOêtÊ3¤º)%ˆo(NfR(ZŒLš4ĸÅÎ=p(«»lRQœ’ûÜÑDÏq^êcákq~"=jô©Tƒ¾„+üc’Ú¡SžªzÝÞÕM֘ݡ¸‰‡N=¨£‹^‘ͤm­Ê®ê:Û[Çöèm­sÓB×6™c‡g¨Ø›ìl;2ºÃàâK?ÚÞ¾-ô^5Ù½¾¦J{M]TžØ Îß県þXOs{(ç–’ró~dÂøÄx!oÉ‘˜ãeŽãeX}ö²äi’ë‡~·ÎSñÒü'h0gð- =ã_‡m×ÝJìAÈ^B×Þä¥"'g—”„ﳋNPÆÞ™Ól˜ »ž¨.³5Gy>:¯è>g¶ˆï+K>¤M ò7Höžoc™äÏ7t3ÜÈ7róõüQí trbø»¤FÓ™lù<½yJd³`‹ÈUŒ3g²-· \ÍãkÙ¢_çU-.Í·ªÌ?‡?ÊM ŽŠ» WöD®VÎÙD±±°Ôì‰^7úäÒÏö JíÏ©Ç÷× ÷>ÓÒ·?ºôk+ß,’=rGK•mÖ®£< ’¿ò)^ |ýQ•÷ºZÓïªhUÎæÇ|éñ-'Œùã³ïC"ôÖ|Ùy­~¿lfÎþ¥?ì}endstream endobj 1348 0 obj<>/XObject<<>>>>/Annots 369 0 R>>endobj 1349 0 obj<>stream x½WÛŽÛ8 }ÏWðe 0q-ùþºÀv»À^§éÛ#'ÞÚrÖVº›¿_’rÇIæ‚)¦ÒR¤ÄCòˆ”ÿ™ ðñ¯€DBC^Ï|ÏÇ•áçî癈P„8ž„¤È©‚Ï3J/€8Hq•´¡—õi¥‘,C/%m’zQ/±6Ëpý  e„œÄ'G!ZG¸—ONãAâ½A‚ë‘ðùä &TNâ½Bz!„AŒ¿5ˆ0ó’^bíHFTR ¶¤ÅM>„2àp…Ÿzq/‘2‰1Ú½&¦“øÜÄie‘W¶e-c üÌ,Ô:‰µ#ONBÄtÔ"ðÈŒ Õ'B?N¢½ŒX¦’SA $8‰”Ó˜€Œ\*d–`Än¹¸÷r@1ì$ÖŽd*.Y´%9u¼1ÅÂÛ9ˆŽ½!é~\NYÖ®áÃG2XÈÆ8Åÿ¬˜„>,óy§íý|Ût›ýV·­îšjgËÆÜßx7Ë¿g>,˜ËÕ<¯´j¯þùVºP»ÊÛÒþC‚|ãXÈÏ)ÀnÊŠJ­ÿE ·€J[~ÓÀ@Ž8à~¾ëvªªöã¯^AWÖ[”&v÷7t”Ún«mlƒ.4XPÄ7t¼Æó bS»N{À0´Cá Šê¼iWºÕ+JÇió/Œòº«J«[UuPò ²º¢Åá"£“F`¶ªÕÆvˆ»Þu5Ô꿲VÕ ²^M™ÕÔ:ßèü+…ñPšÎ*“Ÿ„0à±±› <. ÅÒ£*-€N£ ¬£A´ w÷ØÙÒ2o hÜbi Ì!z„ê0<ÌüyuÎóáÁ¯.™H‹JçDEòh;Þ>)>Su`ù‚¨†-ŒÉÆ1¹/¾‚ØË1«t{Ó˜}Í™TñÒs&‡ë2÷`‰Ùo R]fš+ Ìº4ë“ DÇ4Gò×ê«æÒäM‹Õß6fE»x;*øv\dþK€9 }K9O¶Ñë—w“+ƯHúÅn‚Ǫ‹Ýä¬GÀÕ¦pZ²S¿kw>ÙËÝKêžï×\“¾Ò¦ü.íú„\o“¤ŒºË+ÛÃîEƒojõVŽ~¹sĵMs¦´ ¼¬8?é®òpéGñùh›ÒÖ@¡r{;I ÕkÒAN&¯Ý( %vÖmj¼04a÷TꎛÇEŠQ‡8Iù<Žù9àrK‡q:".]÷'6£¥¤·ÎêÓìÔjO²4yƒÃ_[ ÿnp `|8½h‚a§]|jÚÃtïž›gQ<ùÞ9Œ–o-=zwÓ(ŸkNK.WwËÅ92…ˆ3)¼{ã0mŽ/«ÃÃçw]Râ€û…­*ñ9‚‰lÏ™Ó <º^_îÈÝxäÉú\âÏp5ñ—,ßšø¡Û¾Gâgï™ø´Ê$ñD*ðÛ²üþÙ6ßt›ÁoÊàsš (éËm‰O_óOô @÷0=wçÜí*|ÉÒú[zñ£8Ì„—Ä)~SàÎ ¡ZÎþšý@¤|·endstream endobj 1350 0 obj<>/XObject<<>>>>/Annots 390 0 R>>endobj 1351 0 obj<>stream x¥W[ÓF~ß_qŠT)+mL|‰ã<ðP¤Rí…B*5U4‰'É_‚ÇN›ß'›ÑZ8>·oÎ/w>MðÛ§0æ?›ünâMð¥ÿñá—;?‰¼€â©Ÿ9þÌKZ*£wa<õ應77œû^ÜRÂÐ9EϺ"Ë\ߟ{SšFNן†žßR¢…^D‘Â",Ç‘7k)ç÷L³_Öu²Ž 8a2ÈÓì8‚y2§d DgÞœ…³HãOf ÅŠIa4<~ì{aK13§pâ…%–‚O¡˜ëOb˜ ŽNNþ<×Q¢'øÞqÃ0ê)ѳG?™ â?GrZйÑd2àFá¬èFàñãó,î)áhX&x¼“.lÅ„ÀJÚÃn…`^ÈÏ"Î9G"r„3:G¢Z^€üÏϼ׋ëúªvôò Ób‹:Œü#•ò›Ðb3²º^ŽLaj£²UÑl2m–÷Þý⯻ }È"᫪nˆ~ýH©Þª&«I¤Xó囈|Ÿý¡àÇAÌ&{ci›©šÚ’¢JÛº2›Ú”áO½×$•ÐûÓAW+³FÄT‘Ò§ãÁSlu¥‹îs(á­j2m=z¬Éª“…1U“V›}ï"olMkMª SÀ«ÆjZŽò²Òt¨ôÆXœ„„§•iÃ3F|‚i»º®M±ƒŸî‘¹:ÑF,šbSæ‡L׺ÐÖR¹•§õÀÉžl­s‰xŸ¦1Ç-䊂qe­ÙËQS¹ü4v•™ÜÔäb¸ÔŽ G¶™æ09_•}5ö¨RÅNÓcŸ™ù¬9\WÏÍCˆlƒv(-âPü „îJdW¬)àø…ÄáÅÙ‡Ÿt—¨.¤ØI®ÿÊ*ÅLLWü ÇêC*¹Îléê >—‡1b¦×-ƒ¸ˆ`q,³#°e1n°BÚ’±Ýdê!µe³ÂDÕ2ñoàbŸü“²ÊM!qå!ÛU–FpÌ!}®ÉÏSY»˜Kø×dZ󪸭¼V›Ï«T£Ù¯™IS—9rµQYvâøzô*,p„¸”¶û÷ŒayBm¶Kµß›óæÚ„qÓÙííɴ”Àí¥$‡•&ëf¸p ÁÄåq¥u‰âæÁ€ ð ž èC‡Ö©÷•öõ_6Þ­,åê“«¬Üβ¾Ð裖VG^ÝÁòÎõ=v÷Ç·BµÙkÔ£[™ÂÖ '‹}vâ?#üs_öô€í2Ö¸´ÿG¸d¯ñ²(TVîJÜi¨ü®].í*Ͻ'ÛùÝNö<”øÜ»Ô­M¡ªÓê|é]é N»R¶×IHiÉ!†ãòɪ´Hç|8_ø)¶YÛÚÔîÜìÎÐsÕì•EÇb7^-Lä»PÆÎN‡µ]ú§\߆+Þ*«£ª¸.óÚöÍË7IÛý ŸøÏÚã¡[YoUËÞÆÌx6áó~&ü9 ñß» ÄÕOï/® ºyªü¼¸ûíî_{„Hmendstream endobj 1352 0 obj<>/XObject<<>>>>/Annots 399 0 R>>endobj 1353 0 obj<>stream xµWÛŽÛ6}߯˜—¢ZÀÒZ²×—‡<$m7X IÚÄ@ ÄAË´ÍV‡¤vã~}ϔ֖sAPtصÌáÌpΙ3ÔÇ«”†øMišÑhByy5L†ø¦ûóöåU6%SšŒgÉŒJʲÛ$ O½»:}Æêí(¹=YMçpEãt–Œyï,ÃÿÄ{gc,f£4ɰ˜Î3„ñOÞq Wíêht¾:ÎÆÉˆÒ©w<áØ?ñÞÓç’Æˆs{²:gãÛy2ᨓ)rp¼1±Ã°6aÓ­`0…ÏÉøtíÅ¢_8½£›»!Íi±E'3|ظºi‘Gy!…^F¡Åj«ërõ ´Y^'׋¿®nîp””÷‘8›`c´Ø+CÛBìȈ£!»–xsYošBXUWTŠ#ÕyÞhb‡‡J¬ iZ°µ2T(+µ(|˜Iѧgö–ôɇ4ÔTj{TÕŽ„^+«…>PzTö[™á ¢Ú–‡BäðÁéœd‹`ågÝôÓt `c65pÌ»ZÓ2BfvyMòcãÊ/ :èõ.QgÛ¡Ô* ]IŒœÒZòAT¶ïö'¦õi7—'¨Š™×å¡VVÒª·®VªÚJ-«\’9+Ë@ŸÀº˜é3š‚¦HZ£vU`Ê»*T©ì€) äù4/´ÞošwÌbA̵–ÎQ- ÎâTÚh$⚸JÇ/Eõ0•:†Õ§×ï_+Ù<Êjß(¿mÖªŽ‘}:„ð<<зùò€hÇ‚þäÎÉÍ]+~ÀzYoKÙ9Øvô<âØ"4Ë;.ñ¦¡áÛ~ÏÐ):~2ûŽnÂ+Q5^ ãÖ&žùý+jÙs6.Çó4™NfxKƒÅhÎÿ²¸úýê_`…8endstream endobj 1354 0 obj<>/XObject<<>>>>/Annots 402 0 R>>endobj 1355 0 obj<>stream xåWMoã6½ûW rR[‘äï½5E]H³Ù­¾02m³•DW¤“õ¿ï#)J¶”xt±X´HbÈÊœ7oÿîÅá'¦áÄü¦y/ #¼©?>ÿÚŽæaBãhŽ(§álΪoýѶ/·f1Mc£ü•œ6½IÎiœ`uNóI8vÏfæ[NñpN›Ý.{7‹9Å#Znàèd†‡µõ/¢e|,×¼äkº+ô™+™´= ½£;¡yÉpÏxj^_/ÿÄ~ÍÝvƒdŒí‚Ÿh/•Ðâ‰SV­p†‰3 îÎ$ b”fì 8›þܶTÄ3±r K¤¢vQlŒmDƒ8BRàQ!k„"eÝFx8îâ)}bźeÒõYQξˆùøÚ~aåX‡— ‚oمݯ­‚xuÝŠ´{ø»R'ËNVA‚S¾a1^rñ]ŸYŒ(Ž=jmQî¥æ¤wL“Ø>3Δ&YpjKQ Lü‰£[~ûôÌiÇ€}Fx­LóÈMÓ¶µ|І  µAqŸyjûà$]9;âõ~õŽû†Ie¡™(D±…û¼9Énú¸WMhQxÚýƒdZÁñ¾í,Õ²ÄF®;NS45v¥DHsZK®PN’elüÚ~+”ælÝ7‰¬_›œñ‚¡o×´ Gûfl[A/®Š8óóãƒÕuÿ|¶ßgû0ÕÊc~Hwxkr ,EhI,ËPÁçìHñ½®’¦Œ—&]²<žnž²Âd©Ó¥H5ÎÀYU•%CyD@s.Y†uªZ¦2ßg\ó‚+…j €xi%d>/XObject<>>>/Annots 420 0 R>>endobj 1357 0 obj<>stream xW[s›F~ׯ8oUf,ÌM€ò–&Më‡^ÒhúäÏik –õïû]@c'S{,kÙsýΕo \üzûD”®ãâÉðQïø@Q²qBZ»!¾ûø«%å‹oäáql$DkÇ'o8kмÈñXÔõM˜Ð§Š¾°PŠÜŸEæÛß¿.‚µ²ÐãÏ… ¹öTÐ×E¬¡p¸Mè»Ü¬!ØÄNVÏeCí‰Y=ŸÍn“5X/·Á:q" ’ŸP‹ÿà5'Ãë±Ç4GÉoýÄÞšÚ>\îÂ5г&Eä™_†ÓV§º ²§Ë¥tÎ$¬ÃœøÒƒ)Iw†Ü(fÖËmœ°àŽ×÷½g·~ào6uÄëLOÆß‡ã°Øœ.FYãªÇ6˜Ãp°%Š×Œ&çsüŠúÝs‘£Ð²ð“T»}cIúÚ]ZtŸó-™:ƒÿû ±ICD…Ä5*³®@<´8“¾+ŒøÓã­Åá½:s? ùáÁf:†-«÷­ªè³.%Ý#Û•÷…M÷´¢æ80Þy!vSô:w]œî^ݼc¦‘¾êUïöǾÙÙï“aâRkìâ;Ôz)ÑË{p^úÇì¹1]Õ‚N°^±g\sVqÑö͘Ó-%pR!àO÷2}€™eÐ!¿µ‚‹‡UVµ’eÃÁa±£”¼G£¸éÃIÔèhèÔ½°¼PÇ#w9îù‚p_r4Ñ4Å@vDŒ1Gú“­9)Í}¦¡C‹–¨¡^çgâ†QåÅìˆé¢>SŠoj”3·®]sÜ&~¬ùÿ£Æ``æmoŠ ²NÊVÕj„Äw–aBA´Ih౉.+©![ïÑ7ÑŒöâQº®CBèЉ`V®žP.;®ÚÝM{$:J÷óµ°ö±¢`¬Êaƒ­Ï,ؼ ­°>š¡ü¡Ø! šýÁŒ-Ì‘~­è*å¹OÀË¢™#Ò>k9%¦kEg K›~ m§þÊÉ ÞoéûÞMךOøñ¢¯ÝÖA³†J€l@rHæ‘Cu*›ò¦ ÐЕݗ8ÞSâÄý¾ƒ9éýsÄÈtÔ@ P*J¥X:¾Çƒ9?4?ƒŽÏ¯"[‹…Œ*$—© @‡П±4MP*Ò;l†m™‰2=¿-ÉŸ Yj‘Ë;c êuŸv㩳eiËLÌ‚¢^ŽÏ^Èez¦Óí-²ËŒ}‹j kV”xN ¥Í«ÚäÕoÕS­b·'éÛîÜÛ\¸ñœ¸W =ÖøËvñeñlÆÁaendstream endobj 1358 0 obj<>/XObject<<>>>>/Annots 430 0 R>>endobj 1359 0 obj<>stream xÕWMÓH½Ï¯¨ËJfä˜ØÉ8É,;+´ ÌB+1(êØí‰Áîîvf¯ßWݶq¢Y4{\@ª®W¯ª+ß.bšâoL³”ÿeõÅ4šâ›áãÃï‹«(¥t¹Œ¦TS<ŸFóîTÑÇN¸XD “«ºÓašâ„‹$ZRêN,Œ“˜•Ý•š’„MøKg û륳Õ|8¹»qÂQp`0<›ñU>8Ù#d+v>ÈÒi„TW>ØùU´òw-]D³^–,Ó^Ñ“Â{°8_âº;°èÕú±æŽž_OiEëȦKü'w€Ni„?žÄ~_éÙúËÅóëØ+[‘}ݘvkÚZzIg& ûÒî(ã/§4‰§r{[³ŸØÊe­ó'[šÿÄR«J»Ée%m©Õ“-^ET냤Œ¬&»“d´¡ª4Ö[˜S{”&IÊ }Æ6efeN¹T¥¨ ÝFJ**q7€å/M§Œ°œê©Íàö‰F’Ò–é™Ù>¯w΃Z`çÃÍûÛg!•–-2ËKlU¦U^rª¢ªŽ!í¤8'VO*þÑpÎBàBöž›× ½T–R+T†xwÂÒ½n+ä#Âåutu’Ì}]´·A%6.×ÍA0‚Ž£ÖË*)šGÔ¸½®…h+KNë´¦²Ù×;„㈠Hô=À¤™t´ê¹Ú´ØXݼ`à•V±…hTA_T®”3Z:æjˆ¼BB6%_„74‡m¤àz C¨ãf Ýï¤Â±ÞCþ_B?€Øø¾‘™DËeÈ5±G°@¹¹ÔÁÛàÓCx ¿‡mxïÃCáaREŸ;dŸ_ŸÌoæiËQï+9òœ r0ŠÚ͈‡Ë#½ ãåÃi‚ÐQÅ1ÚKðºQ—‡ôL›2”fëòáéÊ,t×¹•ôò°8³ÑGi­ƒt¨<–” ï¶ÒÙW «uaBÚ¶èrLAMy#Œ-3ntrÞ:~»ˆ&£ H™íÈìäBå„;U àfoÍÕcû1z¢Ð­Ê{fãEsc ƒá¨[Ú ÌmLˆ²(ÊŒ¹Œ›àMíÛªT]˜EÌ”ºµ<TI£³Ò&'”’ý3$ã€5ÕГ¥3A7ÅPr‰TÙŠD&¶9Ði×"ÝdîxÂ5[`À¸Båê¦àÆX¹ßTe]‚ÿ¾&I÷ાlî±Æ“»÷§º/âétR#Ô¤O“lvƃ7ïÖ›·/ÿæËÁgo¢çöYï£ÁD-AB<‰ÎOuÕÖ[|ƒ¡ÞlŸe˜fܳýHE ¾{c(o¹UÙÙˆ C[ yÀúXÒžèÔ%ß¼˜Ä®-àƒIiÕÓQ.¿Ëÿ ÊÁâáªÑ{-¿Õ€æXou:·Êb¨ nò±$=:ìHeÞ#:\¨£$·’©:RF7lB>/XObject<<>>>>/Annots 434 0 R>>endobj 1361 0 obj<>stream xW[oÛ6~÷¯8/”ÀV-Ûõå!ÝÚ ÁÐ]Z0-Ñ6‰tI¹Žûë÷R²e9i‡4h‘<·ïܾ~î$ÔÇOB“ Ç”~ÜÇÉñŸ?w†ã¸O¯_Oã)”ôǯœ>v’Ù8Nh4{p;˜&ñ¬ú ·C¼ÎFñˆo'¬#|ñíó¶5»¦W·#Jš¯ØŸñtBó̻ӧyÝ­Hh’Ÿw¢TF“r$²LfTºšÿÛyu‹P¼l”ÉÂd»\”ƺpU«º4ßHhé†Ò\ìœ$¥Ûò;'–¹lI’±íwδÕS¹%¥ðséå{}ê%CÀ3Ï"+÷V•%¬ïU¹ÁKyLj¶ ÑQ&sYʬËo´ˆËG\Z)pC‘Z‘*i/­¤µÔÒò9»Ü°¸<0bJ¯ðH§’ì.—1ÝiÚ [ªÙ®W¢òÓÖšT:Ç–•Nó]¦ôÎT`ô.í7 ÈíY@l·ù¡e‘ƒÒr268öiÆyí!±½á$3"N–‹(—÷™Üâ/ì,®bŸ `%vyIxR›è£~ ”æRØK±`¥Î3[x¨šräV¹X3‚PXáªî«¤.9ÛÇ\¸*}©)d3G‹è‹>¬,Lªšk¢.Ò‡͹O‚ 'Oa!œSkÝŠë>WE·ªºA0Òg:Xi¯pùÌÛ›$é’z-éï^BqìUGw¿Îïß¿ù‹E£‚‚Kç "êF(Më»àJ½Èi÷é”óÜžkŽbzCϤ€3 O|³–ÒçD4³RµÁ Q´ú¯h\Oªê˜"r‡bir#£ófcd=^W×_o¯Ñáúë⪱Ý$áÓFÔêWt· ßpæÂW$¼ÄÚX¿Q*—msï„–/ìZö<´SùÄ×Ý#ÈJWZ•úüâÌ£)}ŠoU@ Õ'³otŽ¹È“³qoÈ©L:då W‚$‡j%½+–¨X›UÞC¨Ou¡‡v§U‰Æ ÆÈ«š–Ó{>€Ú¯Îç–ŸR߇T>bdîTѼٰÐÂøÅÄö;ƒÇ0ÜÏ:Oä.ì¶_­0Tò-¶“|Å6—޾깗'Lrí}¶EÅwÅE•WóJx±ù•Y²“@+íJõâØÇÚj÷žQI+kŠV‚[ìU:a+qsäêAÂƃÓÛ ÈGÇmu¹­kWè† 7Ëüçwç¹ÂtZDŸáºBo–$Òr'r®:ƺÀöëøhŒkŸ-±%ïvÿûuöäÓZäfmvËk>Æ~c^5¤'I¥B ‰3¨¡çAn±F~GA´‰”{vÄŽò1ˆCà]`0Äë BÅ|¨UTOÓ3h;¶ü^ð!ü9ñÂFCxP›)k¥ŸöÆ>¸jÏ(¹Ë`: ò‘ó¯V®Eöñ­L•çKn$ü° ð/Rné'Ï2[D® ˜Ýúýc¶>/XObject<<>>>>/Annots 454 0 R>>endobj 1363 0 obj<>stream xÝXÛnÛF}×WÌKÚh’¢(éÁmA'MT´@U+r%mÁ‹B®$ûï{f—KÑŠÝ4EÑ[.F†³;sæ>›ƒüiœðŸ´~€/Ý÷ßƉÐ$™úF¡?k©œ> Â`î'Ï?fîxâ[Êp{4¸ÉÄŸô¸QÜ¿MȰ’ønŸ.hæ&+Š€)h–øÓ–`^,h>ã{æ óz$…1}Üxâ‡}nb†cw1×P,¸OEÓqÇAÿîxr9d\•ùÐv‚¬ Ú—¹lØ•’Ö¹ØXüa¢~Xsy—ÉþBÛf6RûÎþ€æ\—#æhÑWpàZìsýûg¯GájQn$ý< É÷ÍqïõíâîÍ×?±\ï—Ǩ\d ½hD[ØœE…>€µˆN…Ý~èêÙ´±žGD»È w\£ M‘@R¡¬p¼PÚ§ÅäNÔˆƒéA cë»»”Ht;´0[<ªTZ!]7CepA÷{[!tº¥­*uc éêæs@@õö_¸‹³Ð@¢ÊmÇ…¯þp@Ð'ô—ÇâÜýýÐÐß‹ƒ¨ÿ±ô2ÕhU¦zyA0J‰ZÌ2$G©6[ýWÖG]›2MÉ4¨×·æß_Öµ^¶[Œk<ùÉ"¦M-ÍnÃE÷W“O:˜E[*ꌇÊçZ×?T.˜1K¯ky·G7¼C¿^çŠóÌ´;žŽÖt ›4Ç6÷ÌQ¯ÓP1'­‹\O? Ó¥y,Ò‹‡ k^šˆ1 iµ×¶/Éû,ì”CÌS´ #¶A³‡7ÜÌ'øç¾ìÂQ•f·êÇn%¡¿ýêàz¦mZÜà6SÖæÂcÛpxµ£Å sÓŸ¿‡X¬æèópzÛˆXcŠ}¢ ÝüÏ–çÕ±]ÆhWa{X)Þ´y*cçˆ`H8t…j™ Y]ÖJ¦¼ú­U‰éÙh¹££à­ÌìO´b_€³ &å®nðVÂC¡Ýu¢¹}5¼“5âT0ú·Ý² ¬(PVv+ô îÇ.òˆŸ1Þ‡ªY±íóqi°Â󂇸!·Ý«¥B½Â<)Xúƒy tѵÚ=€Ä¢)¥µHuU?[>ûÙ’™µ‹b„·F8 )™ðû¸Eý(ñ@b#wf4 °f^óçh‚wþ ÿ ‚/Úû÷õ—2U?n%,3 Ïw´Î3;Ó«ÅàûÁo~Ù‡endstream endobj 1364 0 obj<>/XObject<<>>>>/Annots 462 0 R>>endobj 1365 0 obj<>stream x½VßoâF~篘—êœ Û•î¡W5U.wíQµR©¢Å^`³ævíþûûf×C®'õ¥Š¬gçÇ7óÍŒ?bŠðÓ4¡qFùn…žœ>~ûeÇI˜R6ˈv§Q8iO%}ôÏÎ’pÞ“¦1ke“y˜A7gá¬=±.ަÌïhž„I{`Y’±×ñ4všãt©?9¯ã4Œ)™¥>¦I »þ䤽óŽ’x|!=ƒs¿Ì†áR’ÅøœDl1Á¿‘´ †9%)G‚Çîì¤wîxŠ8ÏÂw‹Áí]ŠÇ´Xsb³Ù”…ËkD‹<¸_S½U–֥ؾ­¬‡´RZ˜#­E^WFi'û}©dAuEZÊãèIîkÊKÑXiCz¨j K¢¾ÒÒ7‹£ˆFÀžÀs ôZ©sI¦)ñ!ê­4¬©IU;xY«\ÔªÒ9;8ߪ²à(7RKh"¡ÒVÒ^Àh ûë¹3²JË"¤¥Ç*[+[’Ú2Û¬l³ãð;;ÃÞo:¨²DTÈR²ËÕÑIW"ºræ í]ì{SåÒÚåMH¿ëR=IªÒKüHx“oIX”ÙVeêëž/®“éÓO‡­Ô¤:ô·wY[H¬tæ@0$]ÕßPÙ¨géªÖÓ ½ˆæL£x43ÏPOa­ÚèeR<æ•¶µÐµ’WH¼BÐÚkõN }‡„®ESÖß¾û6‚$z#é¯QLaèn÷‹Ç÷?þÉ^‚¿/rp‰ ­ã6¸!v(qÔ1ÄiÛ(Ц¦z–fîKÍL?‚mŽŸŽÒJצ*Ô”: ì¹Oî®…4È"nk’ŸOfgÉn«8¢Éek×Õš©Ý¦.¤{Íd®Uޔ I±ÔÛ+®ÝloA Ç^Sí¥©™ èD)@-« I,F‰Ué¢ò=SÀ}ˆAÂ-Ú¼8_z¤ì±×M]”§ž8eÆw"¦‡\r[UZzïè·™àV|‡æª²Zúôp—]yó¨=6pòŽ ÀÐøÎb(áò¦5’ð0?ï*ƒ\ Ìé’ÉâÛ;l7ƒ—7ô=½Ð[:âûøÆK»y0aÚÜû‘pÊø¿™É¿b£€ÉS ¹ëŒä½œ^ »2ûÊZQ¡ZÜ¿Už7ü::“$K+]“2;è ¤æY” ä+pn„RíTí9£›Ý ý€+}f³ ÊÁ`Œ¾^™ÝôCZ¸;œÇžÃe— ÄÌüðÛòÜ’ùjGatTzÔÕvyCëFçn„ÚãnU•–VÂbì²íuò˜4Vúû-Ê3ÑÛ'ž‡ô÷Â3S‹ªjÚåq)àbÛ¬›¨¯Jµ7؈*‘lE‡ž)¥ó²)$áÓ8iÉØ/É^ÌOЏ£ìŤõ²3a]Š9ÿ½­Ñné+0ݬò+óÿ]˜Ë€èc»{ÝFèïÜèâðÒ„FÎK)Ì+­Kü¯gÿÅ{ ’ :óèéoê^¶ªÆ2ƺw­Ð½Û,¸–šK™Û]líKM»‡a‰îÐOÞöa‹ðôÞp6í§‹{©ð½ëŸù¹õRÒ'ÏìèCSîæ·‡>/XObject<<>>>>>>endobj 1367 0 obj<>stream x=Ë‚0E÷ýлĨƒt«ÑŠÉü@åZ@~ߢÑÌÍ,NÎÌ} ‚tCˆâ5Y',d ü/[b{N@.RPBØKÎ?–g^j‡—± ÝϺÝp#üŸê]o¯8Tîs¤\)ç^jl1Ø®îKÜÆê©úK=U˜*ƒ«Yplõ<šõòÄâ.Þmƒ.endstream endobj 1368 0 obj<>/XObject<>>>/Annots 473 0 R>>endobj 1369 0 obj<>stream x­X[oÚH~çWUZ‰JàØÆЪi7t#e›6Ð}Š ö¦õ…zìPúë÷;3 Í¥©6UQ†™9—ïܾɷŽG.þy4òiR”u\ÇÅ7ûrÉ Ç' ¡àwÿKIIçyøzd$„CÇ'o8p†z¡ã±¨³Ë`Lô‰…Rè†ø<qPd~»yßñÇ>$ =× )£ë³^³JiÖi¯±œì¶ÖØ Žï²þ`äá3£QèLšËm-3ò\Ø“¼é g¼¿é‡.ÄvƒÑþ4”Žï¶×¾ €w=w7ƒ 0Îzš•Ѳ­ƒá€dä»2»À‘p`°² »2»kl%X†]™ÝÉyîÈ`aAµ+Þ};ïœMqÙ£yBžŒ} aÔÀ i›Üpiu?–Ž,'ôÈk‘¾žé°{áù0»ÿÊR«"§ózÙ÷]wÄûgÓ ùØM¨ø¾ã…êÃîñ$à×uµ®+šªTj{:hlp©G|>tq/sÚ¬ð±SŸ•jª JT“ uYIT¥©°H¤ZÃÈtK+¡)-x3¡{‘ÖbM•'E™‰Š  \£j%IKQF+‡mÞÀZ0ÇN[p$rÒõr)uE™È·´[#]e0å^åË–0‚œ^hù­–yE_Š…&X¤rs()Ò´Øðù]dka´£2û~ˆ8€–z½*6šðA&RU) a(Í¢T.ã?)VI"KÖTÉ2ÃF,K¿¥È$¾Ó°yKKu/i!+|3”¥d¯û-·U^ÕЀsVºËšw6õL&[ú#gì! -T·~8¢ãPšý½3—É!ŒETk·±B0êzီØê(8£é¶«¥lN2ŽŒJŒùîÌíëÞÁù“"ÚŒ n•5 î!i8Ysáƒñ§»VÑ×;†'¿+Ùåcoº=†K^ËH!?àÀFªåʘ›ÔydRŠSdÁ)(cÏÿ°B9Sáy¥2 e‘Cªj£VõR6è£OXwtqRZ]JW tt†9½Pk.¯íÛ®r¤Ó£Dnޱ?{°ï®«ˆaÓ]ª2UjA~×iÌÈ•2®£€7!odÚ Ú†7A·á6‹ây+´ŠhV•uTÕ\( ]?ÙuFöÞ®×´êÞVZ¬îUŒ #K ô nì0š\äÍZÆoÄõvÛ]Ë¥mN¡C,Q‰úö5q’˜¶Y E«ø€ÚÖTvZ_¹ÐFâVK æÊ×2Múòû:¹¨ ›øDE–¡ àP«»í¬Å=“á´B¤šrJŸÄÐ$xìš¾Ôƒ&[-H¬ÏÕ]…ÔÔ6šdwiÂÁà.Ø&öæÉŸ}OxòÔ›7ÆFÓéÀ"@WΦ¾Õç{^ÔaÌ¡o溂¨d]YT0qdÙãßлc–ص Ï€Œp#·ñ£,øi#I"f+)bzâhƒ· kŸ8‰-ºüðñóü)qöþ‹ºˆV…i&È*•‡Ó¶ÜV+Î83¡”Þ%9ZT„u^˜d=…ðÓÌ4#‹O69È-’Ô«?^!‹ |½Þö}-t%M,LÃáüo‚Çââ"GÁòœl[û¥DDÑïrô!«ŒþsQlIì&‚Vôãg_Á7×ï.f3z}~5{<’/Š ÷ËYn‘"²Ø¢{&ueæ5FÒñAC"XÍdj±,è÷–\.4÷:p,É Â 7f4ÜÕÛléñây1ìè‘Ôº±ãgøöË—óËó+zwuþyvñS^{+!-'3xT¢`N ÎÄO&`ÈÊçÔ‹º*îöÔí9õHÇŠÑ×èbçLç9F•X¢õ7,ò‹˜ ƒm`¦‚ƒxlÍD«³µ}ÀH&Ú¼°´gѽŽbú#æˆ4ìŠ¿ïÆ gqòX6¬ ËfÍMR±|€¦€x¸Hï.‡ùØ|v”ýv566ì°Ü7°_c»ê›^ßÐìâüæÝß{AíB7B÷òx›œn˜ªq÷tøRcî/$J¡y@p•6cõ<Ðmccêj&^Ú2@¸,ËÛÎD•Ð`ù”Uú “èñj&Ñήç¦ß·á2¼èlº{’ùxyx”…øÇpl¸ÐŽÎ^îpÛžê\µŸãÁÄsF»·}`^óóΧÎ/Øtendstream endobj 1370 0 obj<>/XObject<<>>>>/Annots 475 0 R>>endobj 1371 0 obj<>stream x½X[oÚH~ϯ8Û—É „‹º])M–]VÛË6Hû‚T f·¶‡ÎØIø÷û Ò¤¬šT)öÌœËw¾s¾…ÔÄoHí.ÿ‹Ò³f£‰7›?Ÿþ8k·š>õúø“R§ÙmtÝCBwgoÇÕzA—Ã& h<‡à.޵h<³›4Žjožü¡»ß¯?ÝüIOnÂâÅø ÷[;–ZÅ-§¸ÂÈzÈvgµñ26dd”Ç*£|½Š#‘$k2Kõ`(_J¬}+dIRsZÄ÷2£(…‘&`=õ}i„‘Í(Î)k‰QgQRÌ$}üôáÃЮޯǣ»ñèæÎk6 gô¼ûh9M°øi÷K5Ooz)H×´Ò þÇ™þ =£¹Òé÷¬® ó´Q$”8UÇ÷Z¤è¹pì`}\ä 9󯄭‘*´XH4˜¢(Qê+‰œÊc“Ç‘ùå;Aý!x¶â'ÂËà)17RèhyX ÃÆB/‡ {.uë+›ºµ› ôW‡çÈN#ãvw( ËÝ­RÔ½žçRÛ¬Š³8EÂ`CDSMùªÈ’¶¸,cÊñÒµt]‘‚"!(AX)‚ƒÞlae„S¡Q3r¹²&•JÊŠt ‰j^QŽZ£8ƒÜ~Ó w Rwe@•–ðÚ£‹DâÝj•ÄrÆ&ï—!«2e!ÑÞÔŠpÖÄ)„ùxãA#Ù" “uÌÀÂA”>‘`A–õ Y×mt8’ïD¶öaCÕ„},–Ø»RG/AŠÔ(‡,ŸR㻂¯Pu5µAûáM×̃Š+ÑRhAž¡sqÌc Je“‹€Î§üÚ³û^æQƒÆÖƒŠüÞ]’ÍU’¨„¶ˆŠ%»]¢ä§á81ŠÌ_Æ3¨¦‡8_–ü.MnÐÉGøÈ`ÿäy„A;hS*…K²&úXÉiHBQ.ÅÈBèE‘^–ÄËÛçÿ¢AïåÂ&/¸±àe^–cc¦rDÌ62t7›“Gp=aË”evÜŽF<¸Ò€©bÃ(aL‘®˜0,ørèËGêuhDa°-§H„Õp9 û¥”z¯ÑçQ´œ´º=rç½»¸Éò,ž¯è˜k•ÒÍû!åð& PWP¦²º=ˆ‚µ5ó3J$LøßÜDÞ¼ÄEfhæ `]fOqPK£’{9©] ‚iÐéÑäâ€Ãå6Kôý$åD)[ÀÕÀfŠÝ´Gó=Þ)Ö.QÁ´µ•¬±" (h÷qÐh»ÛZ^0]_ƒ(A+-sk¢íÜ©¼ý£[0÷y¥#×1ßô«Ïd‡A}t”o~³J¶Ý ª ²•ɪݭEÓ8ãV³µ–ƒ°S6¸d£\—- ~³€›³Îö›P¼fõ™x/}‘ éÞ¶No§€xm+š™s0«Hr_]Íb‹¸#YþläG{òÛý=ù¨äfV2â‘"FÒ+G6_jö½ÚVÑú[ œÂª˜7U9‡iwÕr·‹£õ¨k硤kAd @¾¾ý? ú=~žýî ê?î1[»m€€Ê?¨±¡¦œUðUPÇ+\>ìï1G½ñSš¹˜Ô:½IM!Úo«o?-üâù`6ñ™TÍP×sŒy\ƒ™%ß@$x üc«Ï6Ö+¾øîŠ›îmÙ‰^DjµæbpÐ\^ôæ\ kz^+šŠèëgL^x~–6&Íç™L~‚¾L>|6ëtªŽ+Cd5«5Z¬|°ã*n—¹Ø0211$*kÙÐòÝ×X4Oá¼·rרM.N Éär`z¤c¹-[ð0Xçk?éùÉ —Ù½fågŸ[Ác;Ôô -mþ£sî|·‘þ`Q{­q}÷éxpÆáIwf;Erí— öÎB±ãCŒ*âÜÛ›OVêgͰßi !uñõæÍZÝK= \‡pSbŸӷ!æÑz¯‰ï¹fµNŸ_·¯:øFjà¦Ô·ÂÄÝ庈òW=Œ:ìÕ—†¸æZJÿ>>ûçì?ô”¹endstream endobj 1372 0 obj<>/XObject<<>>>>/Annots 478 0 R>>endobj 1373 0 obj<>stream xµWÛnÛF}×WLŠÒ€Äèf]Pô!1ìÔm§–‚>”…±"—Ò6©ì.-ëï{fÉ¥DÅFüRÐ…ÜÝ™9gÎêkg@}üh:¤Ñ„âm§öq¥y¹ßÎGáœÆ—ãpL[æá´þ–Ñ¢3˜Ïà û“°»ÃáexYã»ï–çê5½¹AÄ-S9™Mi™¸ˆ}ZÆz<\,ÿí¼¹×kêõ(/,•F&¤r2Vä‰Ð ítQ¤&¬–fõúÞ4œqUË$ˆ†“)µOë gá`N½áÕ`ÉBÆŸv …•;CQ E¼!aL¹•†í ýEåkŠ3º´ß(ÜW†¤²© /¤¥)3KEŠõ;­¶|œÁqThwE>ª¢4œHŸzƒQ8äȦ‰ÌK£‹ºŽhš$µÜkeeü=šEÁe÷>ºèާø„÷ËyLøÊ?ÑE»T\µ• ˆ‚Dn‹¤Ì„UE]ÐüZºï†F³.§].(?Kõrþ³«Sè5PÉ-ÃıýøÀÇ ÎT n«ôà–ï £8–ad*œ¸+Áa¹²Roù 0*r*V&.µ¤½8à`Žß;ÁŠð>ºG#$*Ù°înS`A®_V"þ²çf‰­ÖÛ³E/“©mð>ëß'­ãq}ÕCûO˜¾4S»(ˆŸSµ…¨hÓ"ãtP$ƒ+ŒRÞC+ 0ø¨z{UÁÆÀ s©A[HË 6' …ΈÉe,ZeÚJDh°hBas¡X«Lú¾I[¡º$ÃuØ¥ßßÝ=¯)ß¹/bãÁÛJ½F·&/‚“¥Fóyt$4:ô‘‘1«”EC˜º«bàh‹JP±L¸§ëžO÷ÜÚ<úbÊ\Ù‡DfQ°êB]Ïiˆé¬Ôê¹{!cP¡r6ªXúæÏåÚ)íŒÂÊW >thã-‚8­Ús^jU_ÁwéxzBqÿSe\ÍÑσ§~yª.5öý:ræ4ÀHaÌ•?†µ?{³ÿä̾}6b8­äˆÛRÏë™@[q@‘Õ"7i¡·•ºŒÜ ÏàUk-¶Æ·<”çÎwëë„}F⓹ÛUv¶dù.â/þðžµ¹,œÝ•vWZºQ™ôÈ̹,>dÎ*ß·2ñ¦xP9Ö‚]Âß”ÈTð1²Qy¿ÚgRè³=m 0G1,øô+^ËÒ€ÿ8‹XÃkw;L(ƒ,¡{Ø3î«ÆŒ¦>í%[$ß×e†åQÀÆ+ìÇá²ÌŒ«ëÄšãÈ<1Õ<ñUWó=À‡"}È”qELu ·u_”YÂv§òÊǼPÀÀÙÌd=½½tƒÛŸ>/Ûµ¬MæÅ ­pð¢“4S0RÛ'GIAÕíУàk©ðV bÞÚ†ßßm³å¸i't$c!­CóÈ…³5CÛÂX6¬{ ˜ajÎb|«K­1Á8c0PÌ Ø;¯€%êŸ ™Xcl0€šü¬Ð†í„G‡„‰6qTge"yލ”‡§›ÍbÀ¼n˜oØ–_*6x°ÙÚ¢3pý,†jŽ–À\sû›ÙËDdj«¬ éÛúEfŠÓ†4Ü\ðõ&Ç Žu:ÿëö8PÅ­ÃÆ%ÅÂQÀ¾[þÉq%³¬ÍMà$ñ½Fp2<ñô"²‡Z(¯êKÛÛ©Ûä–ŸŽ¼ZñŽfìzyâ‘‡í ²­~U6šøtwu½XÐíÇÛåíÛtõáíçÅõ¢-` ÏÕt²òD*7w÷´¸~{õëùµÐšç¹6^éZ=rã¾Öñ* ý¦v6Gøž±<øá9Õím°Lu±…bØÉ<¤µö¾­ÄÿœL§á?(&÷{ÁÏ™?D]rJ½!1¯èMû0¶`÷ìò[ 52ã•ãù œNfÕo“ñœ/]/;vþ:—&endstream endobj 1374 0 obj<>/XObject<<>>>>/Annots 484 0 R>>endobj 1375 0 obj<>stream x­VÛnÛF}×W ¥‰&)Y—‡h‹:ÈCâ6VÐUa¬¨•ÄšZ2»Ë$úûžÙ%)J–/Eí‹ì%gçræÌås/¦ß1 Çü“îzQáIûññm/ž\…3Çq8¦%£¸=åtێÈ®fÓp„—q”´§öå"‡—þÄ/“É8œRó6™EaRŸÜÛÎyGÃx;o»g¼½bŸš‡WCèJ"ïÔp:nO¬ùçùizC—×Íh¾ã)þY9 "š§‘v”:Sön#Õâ"¼˜ÿÓ‹hGp¾ Ò\ },AøúŽVr-ªÜ’àK—×#Šc¶¬ɘoßJk3µ!»Í ­s±¡TTFyN°'µ°rþ©-h)Éyƒ§8Ù­t¿EeËÊÒ:ËeHsV– ÙÆYFæ:b†¯C™–0µ§mµ‘Mh gì)çØªsÖ‡×aÕ0ÝËÒÇ gAÚ'¡8( w6øFÿ±z½ŽÃçãCN¿\¹¨ÚûádF€Ü²®g’[‹¼VvYÝK¬‡£fêcäb)s¹z&–ƒÔk„sJZ(+2ʼnuVHX«³eeÁê#þöI~‘оnññ?2Î\g&Õ¼w¼Ä3TѺʽöÊxšIÚ¢Ž ËeµÙ÷Q®Þ¼˜¨ÓÁ8wȶ6ÝrIºÛÔ‰OøûÎ},{S”Ù¡:}é²sÂRfúmÊZøub­ÎLíé× }àPò/ã²7yWꢔÚfÒ+ï…B!³ð ÁFÇ2ƒIÄkwpñãd< §ÃÛ8Ý”Ü+ ·bOð$}Ë„{`nüò{ `øö¯óÞï½c å©endstream endobj 1376 0 obj<>/XObject<<>>>>/Annots 486 0 R>>endobj 1377 0 obj<>stream xT]o›@|÷¯˜—HŽ„)àïJ}©ÔD•𦭑òP÷á ‹¹îèÝáÄÿ¾{€“¸j•Ú2†»½ÝÙ™Y~bDü±L0] «GQñÊÓÅìýfÉ,L0f|ŸðÏŠ?C¿]I¸Æ,š‡ Ôˆ£u8ž*lFïÓÑ›«k¤—\¬ø&ï*EH³±°VîÕvlp6ÀezÏÑIÍ‹Fª}¿6do/Cà9¢­ÜxWiŸÙµ'|WZQ`uMA·,ªêGŸ†8ö™ŽI²`Œã´”0¢&G†+òµ–Š,Jý€Z¨#xrŠ™,#ÿÂßv~¶H}SqÄ¿¹ÖÜgÚüm?ðW<ð>Ãl‡ËÅŠ_y|zû¥éèëè7ׯ¦endstream endobj 1378 0 obj<>/XObject<<>>>>>>endobj 1379 0 obj<>stream x=A ‚@…ïû+ÞÑÚÎJ¦× ;…EÛÒ0×l ú÷íÅ áã{Ì]¤Bš…­obÅB&ÒÃŒÌËDà3¥ å„¥,À§%Áu´íÓŒ¶ºŸt7㫈jüu£… XeE’§Ê?åST ®µýÜh‡ƒ~áŽ5Y¸Æ šÜ09”mgB{Íb/Þ N.‹endstream endobj 1380 0 obj<>/XObject<>>>/Annots 488 0 R>>endobj 1381 0 obj<>stream xµVmoÛ6þî_qLÙbE”eY°Òtý0tmõ‹ƒ‘(™…D:•ÄÀ~üîHÑoyYQl-bØÒñî¹»ç¹ã݈A„ÿÌb˜¤7£(ŒðÉè¤Ù½ÅÉ4LaÊ"ül`Âzt¿jø<úm1ººI1X”ÀÂ$‹!M’p¥°(,ìyðg«ïE;‡?¸êy}±ø:Jbt˜!ÔEü%ÚNjoújGÑŒÞ_ÝÌ!Æ·%Œ“8Y:qš„Ù<¡_„¬ÖFªÊ™&€Æq†y£ÅñǼ-”½Ê jø¦ƒ¼æ}':0¤2¢B—ÀUÒ€ìß°ieÃ[Yo¡Ô-˜ ›¾Ýh<ö EÆã;Q ô®*0k•¼ja½: ,ŽgaF­ÆƒË8Áqöå˜M\*…ìrÞäZªR´-óà—Áƒ4krÃ[Þ#ÚÁB \¹"G –áwÀò 0‹ç¹Ø¬"Öæi¥±¢Z!5±xÿR›‚ÆÒµdM°°™ßP<·xýÀ·¶oˆ[Ða5ždÁÜb¤]+mˆ:C'ß+°¹q§íkAü€{ä¿­’ÈäkäWÛýCâVÈoÖ…°@0­ÆȪN6²æ§ù! 1WZmÝwûÓp¶:îû$ŸB:ï«Qh„¦´e°fyk~O¶fMDâŠ×º¢PÛgëÈ€ÓǪ9øáúÃâó e *¸é[1PhlfÕJš˜ÄN×¢ä}mÀɵ;öEŸáPA P…ŠÁÖ‘t‰µv,§ºI¤X·mnu ¹î•¹ñ˜×½E®›†coPBaQ— DÅ­ÖÝ)j*žÒê« ƒu‹“þ/ÉöPßÔ g1jÕ® Ç}Ó 1³®n¾Kò/CÅ5ˆÝÈœ¨Üô5§p$³Fã0k®ÿ{4-íWWS4*m!y[õ –Ê%ùC¬%‚ä5a¢,öí¤ãþ?*´§ Eï^¬Á³û¶ ¸c7®6ßÜ›õ‰æÃ«w• ÛÝʱU·Ô·B–§úí–‡Õ'Ô²CN•`ÊGªMo ”µpcÅ5=Z"[´ ¯âƒ)JƸ/ì:ìv³ßï΀ÿìF9öàó•.Wäâ8É „ßÒÛɈGÞlœ?=§‘@BOÜ@x½fnÀ@—eÀqbý “^ÿw~Â1ªQîiu1!(T„(ÌhÔìC”åòqya#Má§]l|v÷|÷ì)—^ 6½€Dy”0.VxâuØÊ/Â#¯c] XÇìÞAÎaõìbzÑó#ü [ 6†ŸqY8z,,þö¿Ð‚Šr¼( ¶+Tð| gº=æòÁ·ò€0<ѨßvêïxC2ÅkÖöx\‘ j®ªžWŽP‡Óø-Eß+ŠDâ)x×ÛÁ?D”fŒ±ÀÍ[Àš[Ù ú|놭çSvñí–á†ÓuG»–]ÝøÜP o¬b‡jø ßljéîšì—nnw=#»÷Nðšî}TšN¨Îâ/Ž úv¹Ñ¥”VB+ZI—ÏçÇ™‡qpÕôQ–%á|Î Mgá,CBï®Î—uè$dxaÏ"kòÅß©)ÏdΙ¿ËO­àÞ.FGÿ@s¿Qendstream endobj 1382 0 obj<>/XObject<<>>>>/Annots 491 0 R>>endobj 1383 0 obj<>stream xÝWÛnã6}÷W ( 4–¢‹ãK>lѦÈCí®¨‹€–h›‰TI*^·è¿w†¯7,Ò¤‹$F$^fxæœ3ôŸƒ RüÉ ÓoÙ Ò$Å7û·?òQšŒ HÓd ä“Q’öO5¼>7PdÅ~.cœœO'É—fÅùþ‰˜GÓk8»A–Á|EùŒ§˜W.æeôZÿPòÖ %A°fñƒƒÙ5KUë›WÐ0[n¸&wpÇ´`ËšãCJÖ;`ûwÉÉüý N!Æ”sŒÍq-ÖohºµÂºÃJ%0Ö¸W\Z¾æ:ÆvÓp+J̬ÕÜJµm-xVE9»@ˆÝ™¢-§‹(I’ʼn ç=HÅrݘ®7ÜïµrÝ'2ôçí–Æ Û9 0I e×I¡sÓßÓ³Âv#Ê 0ív’àN‚gÔ¼ì´w¼Þ ÎGº`=F‡À`VüŽÕ³R5mgÝŽ”Ú(BÛ厀¸‚]dÓËx’L‘¸3äVo‘'ýñ n<>Ï‘·}yYIäÁÐ!5ÕrÍDDKsJY·gÄRH¦wßÁßG°áÛ!œ ¡?Ø?âFÿøçûL³,I‹…æ=Oí‡÷q»‡ÃÆC¨0ýÍ“¢ÅEžL&ÈÇ(ÐÇð €ÎIÈ|‡ ’KÄm‹lwQºràQ5¦Q¢h©*>£`u—’B9t†k`A/ë®Â]˜<&¢j…[5 Ê^°U¢:מÍ!¬Ksqâ¥ñ " 4±°ä°êj´\É%æfÄ_¼OÖÉð8'§xŽ%œåP 7z˜™ çÓ$›Áž›×ÎÁ{ÄÔË ¬¢H ®T]«­q!‰«! •«Ÿ…" â´ª+µ• ÌÉ*…A‰º’‘?„IK¾R¨jæfº¥ó'ó~üáÓõ\þŒè‚§:sûx£Í}™VBcAœµ:¶}ï[ÿ%îå ¤ò»÷û¨.{è*„’‚3ñÖeº&LòKœïBL¯»¹ã+ð‰Ã2ƒ [Ø ëä+Ž*tò»R•X9['…üÈW¬«-\;x)¤0£…HþbêŒasYËED­È2io|j¸¹_ÉÖG‹“àtÂ~fî÷Ù´“×ï4/º|3¿¹º|ãþ‡$q ñ/_ÿæ^þá· Îç éÝqE•1ì¨~ÓòR¬š 7är_p$lz—J¬JUÝq­EUa;q¾ã§#‘(è)xÍ ‡Ña*q'ªŽÕ®_H¡N=œ1¥XÐ}=0jnoB_¦ïnUÍ› ZËn±xQ)9âZz}³¾¯ {„ÊÇŶ÷²áöÁŽô%Ä’ê%Dš>ŸH9H¾v þ Mfµ@ͲÚ@¥ÐFÑ.}³Ø8‘V‹%ÝÙè‚Ý+˜Ú²ëP¨ßùF˜#øÛõ·vÎð2y6Øàü–žjãpm†ÞÔ‚Ñ| ÷”~Ö=+ö•0ï;YºK¼ÿcÐ÷ì–£ãýo5ø4‰ç-C«U{ìj^ OlWáDŽ×” ¿CŒ'çþ+à/šzÎ ®˜ÄBŒÃœx’b?®¢ó½åE2Ëý…þzy{K×eþi>øuð//ˆouendstream endobj 1384 0 obj<>/XObject<<>>>>/Annots 505 0 R>>endobj 1385 0 obj<>stream xÝXÛŽÛ6}÷W PÑkE_Z Mºí>$m-P Ú¢d¦ºE¢6qÑïR’eí"Ù¦IŠ)’Ù3‡g†ûfⓇ>- ´Ï&žëáKÿßËï'a0s—4÷×n@…ó•¶£”^M†cÌ®—ýZžõ}ÏÓÌ Üöú³µ»hG<» `2îŒ'—3LÚ‘Ùº^¸^?,‚~dŽ]øp£Û;›‡8ö´7ðg°é/Ùœò8ÞŽÌÞ`…sûÙõ¬§æ¼8lBì‹vdœŒárÀ »ÖÌƘ®?˜ C¯·•ÑÌçN{çk ÕÅ)œÃq3`³Á,ì† æN™2¿ª„sG›{¼’a«$Å“o7“ÇW8ѧM̹^¬–´‰Lª=ÚìÍAÕTŠJdRËŠêRîU¬dMú )’±hRMo¥Jšâ¢¢²*Ê¢VZ¹HIè"«/±VhRøQV2R{¡%ÕÇlW¤5ñÅæõÄ£©ïMäˆJé#ΧÍA©¨"•ãSz¤ƒ¸•ÝI¾Ë»_y´f¿§p|.#¨k•ä['—µ¾)%ÜÐÇK²ë»ÞÉ϶;Û —èË>œ÷®ýÚ»¤J䉤ߴ™èÐr@¶6ÆE&¦\K5K›¡¡q0 ÑØ¯ñaœKÅE@2gË–«þ£Heö9èåÿ§ô*ò)ØVk,¿21õém96ΆM@G9ŸŒdF$Zê×`l~×7öe@ŒîV\’ÒuÇ d2ƒ&)æ~D»ã‡8ð ž )Ç“H–úð9hrR!Ð Ðõ óû“«ÒÖ1Â.cYm/hŸ èðfQˆ¤,QŒnIVù–FØøÆB@T5Ö&k„DÌEE¤)ꀘTáƒ@]yDu³³‚h¤'¡M†}22Õ¡Ëx»Õš§û©ýð>}Qù¾’‚¥ø¶ÐWˆ9Ü:O·#[.½(Pʘ¸ãcÇJC™8ÒNBϡխ¼„Us*_¤3]3#ËtèVTÿcve¤!*±Ke}?¿ùaµ°tkYú/v·zÜŽÒÏ\çÔåM¶‹ït2['Rµ»4nM©|a#+÷ò˜ˆ˜c‡þ9Çà} =×è™OMX€MØ“èuSkn€QAOfÐ/¦O<‡z´Û`Æh÷Ò"¢Ë$ðØ‹tߤè#‹b%ÑGjY‚WªªõÍ®@AIÀ![¥ ¯$*L„‚aä†=Ô“¶·ÀI;©ß²ÜXWѮێ©íwoìÂó8#Y£ ™xwÿâ¡«œêJÖR3R#ï=Ñ6Ÿ}ÌHògПoÿ”]0ûyÖöömËiæ#ëQûVàª`u°­5mz>{n c4JˆÆÁ "ß4pëh„Ù<:Ì+€£·¯zZu”…èëý¥RÐAågôìê0÷Ä”# q*’»H*ɶѶڧrÆurw4{y~ä¯ÐºR»EŠ'˜)-“w¨­ÆàÍÛ;³]Ú]kD÷«aÕ3¹k’„o–½Èüë%Þ¶ZÿXò eä s²½Ý?´}¶ÈI¾Y™J.úMÍV~ªŠ[Y­ùh¼xÚû?¸Ãˆ²„Öçuq@{<>™ilâu,cnؤ«LIvè/J*YÒ£U8§/Ñ7w×M žüææxú+Ÿ þsòÝ9ü\ä`#6íÖL—¥‘ó¼ˆT|ä¸HçOßm&?OþwúûDendstream endobj 1386 0 obj<>/XObject<<>>>>/Annots 507 0 R>>endobj 1387 0 obj<>stream x]N¹Â0 Ýóo„4I!´l މ«DbîBQ)PRÄç“ `@¶,û龿Š#”¾ó3a”9ä7’‘‚Æ‘¤ gp&W…™¨EcÌûàêà¬e4„*ÞŽ *ï¬ôÓb§s[^êÆÖ6eÖZ}ïª æÑG'xHyÄ!„w6Í塛˴nÓÊ3{_BoÈbOH‡l@E,]¬ƒ¦:k)kƒ½.ÍÑú-i+}GZX_ýïØ™"[òéìCmendstream endobj 1388 0 obj<>/XObject<>>>>>endobj 1389 0 obj<>stream xV]oÛ6}÷¯¸k_œÂR$Y–d m `ÚÍ0ÌC@K´ÍV&‰Šãa?~çR’£8éq,мŸçœË»QH~CJ#š&”ïF`åôQmø’lîÇ4 b|ðWIZî(Ärê,$3?¢p6õg”„‰²©Ë›8£ }b£” >ÏL|¿]^'†´XSèÇYDIûÓ ¡EáÂh‘?Væ^VsúYèF”‹Ï£8 ü$ƒëE1þCVµ2š®šAÊï/¯çáíš¼8Šü0™’—Ä~6ùÄ•µ•Z5VÖíÞ¸‹ /ʶü&áQ”ôEé¢&³&ÑŸ¡\hZI^ùVd )½o,­MµkJQÓAÙ-Ù­¤Ö< ì¿}ênLf'ÖT>KòAìö¥œô§æ?Ç£øˆéÞÑ‘Þãï=ГŸ·TŠ•,—ãÜìvVÝ+{\^øl &ÂÀÏz9}óžä“ãüð–„®²ZŽ–xê ¾á< ©•(ß<·çíáÛÿ%ï®ýöÄî£Í7[ Ð(Kª~ÁŒ@F+k…/âÜDnÑÞåXéÛ}eÐ ï;”JYeó+ò^޹pÿàX[B$Ú=#ÛUݬn·JÛÛƒ]ŽgAÐåzy=ÃrümÀa‹† *„d{ÉX©/½™Vn$º‹æZYí|ºêÞ Î«tey¤ÏMmaŠwÞۭઑè[9mš][¡­O7@ç‹vµa{¥ÜÈývDe{K—¦„•¦Â4«RÒ]c@ ÆôN|q «M¢(iqøHŸÞЉ F#fÐX³‡ï{Y:úôìø–ßù GwÆ#ôŒ ô¢ç’OËñb«QÇ]ò•ä;`ÐNm¶ÎR©Ö¶MfÝØp…Y; ñ—]ûlUä¹ÜóÙËQo¨·æ ¹:œÏÚ”¥9 ±dJåªry=ëȆP™„¼)˜§Œ“_ÄN²¯YæOäժÂkÓ¹ŸAp~ÝhpC9›ü*œEþ,š¶ï>6ÕâõG$zQ’úÓ4ƒ2@Œ[Islåm $9›·§[òj<õÃ9‹=ÇeÜ>(vµ+?@4¤¶¼ì…iæ‡Ðáí–cçÆ¦ç¦ÿl•§AoûW™›ªà–ÖVÙ†©ŒÚꂌk&ÏJJMèü½,¾ëôk"xžÜ¢RN[¸¶p——¢©ïšðï«n‡¢pî¼ãöyžûÿ ÆòÎêâpìEÓÈOb€%Lñße‚sîEíLTfG{ R[fX¾UeAEÃJC;åPz Õ¹¤ª)eÝásN!¸9¯nŽüÄ£‚YÌ9<¢‹Âb¤´Ï9¡0¤@à3 îãWgb[èšµ0/›‚ƒå:t øŸ ¯Ü0zM”ÝÎA˜¸ t~‹%ê§-Ân±L¥|EYûúc•gSKC4«+ªØïK•c”ÂDýT^.×PЏØiµîÄÍh+ ÷¢R,xÍrzìü9ùV‚ugÕÄŽ!K2áÕ½89¦Åm™É/Ç¥‚r#[2°Y à„ч1àBÃ]#·¨‡ÑØZmæ¿›$GÓàþRãþb0—^à. |VAù” Öú,'Ħv<Ó˜jÝ\kÑÒJr®h§c¨Õð.ÄóKÕõ­»Zœ9Tå¶åì:¿=¹«Êäarœð`pÝùË­ý}øY§è†M˜…”¤©ŸÍ`®xá"êõ»¼4p[žÒ*ž‡~Ú_Tgîjúa1ú4ú9Ïqæendstream endobj 1390 0 obj<>/XObject<<>>>>/Annots 513 0 R>>endobj 1391 0 obj<>stream xuSKs›0¾ó+öèÌÄ0æÑ[2ÓôÔNÛpÌLFaÔÉ•„üûîJ§¡åÛýúÄá/†MFÿz¢0Â7óí÷· M6aÛ|&0@ºMÃrZõð\®q7+Âìb`›Ñ}€MŠ~An¢2, -2¼ãfQb‘_Ñî2{Ò{š ›G¥øœà¥9´A–à@é†Ö”96ñ ‚y¨‚»ÇâªyfEUãèEPÕ«{iN\³V‹Ýh¹ÉyRY¨•´LH82-Ø®ç&„G¥¿²áÐó[8u\‚í8ŽÀðÆÞ Ü€½b½¹ö¹fvü¦úD°ŽI̪YÛ)侄Vi„b¬ÑpiEûFm<.>1ëú´:ò&œà’,L î#Ä–J®ëž†õ %â¤i€ÏåÕ ‹¦3 4ð³SŽPn hˆc€$«Æh€ÒL¿Á‰;˜1b/=Ê™:ååŠÒÀlÝ9ÖÔ(„Š"%0²¢=7w%$Üû1Úù+è0¡ <Íx:^«Ý…ïX-GìÖøù`Ï­¹²~dýˆü|¿E-ì),Zçé i,gxz|ÙôÖ“û†ò:K²ó‡èJ2 ÍU÷ÛN-ǪðAýÁ_-fÅeä L™ð ‹‰|‚':.bHrØ)ýðÉ‘õTº>W¬ó¨¤Lo zÆyXD)‹åøÎ1rÚ|­‚_Á?°¸§endstream endobj 1392 0 obj<>/XObject<>>>/Annots 548 0 R>>endobj 1393 0 obj<>stream x¥W[ÚF~çWœ·ia}7ŽÔJiÚmûP)iQŸÐ, àÆjK¶¿¾ß9°¡!J¢lvü9÷3óÍ?#—üu)öÈh•œ©ƒ/ÝjË ŠfÉ4 Ð 𻇕¦Íèrñ9 Q8õÈ ýiH‘M]Võø[0£ŸJúÈJ)r"üì©8’ßþøeä&³iB¡C8'/ ºUFŽ\×Çw?váMN,;³+F=øçw¨ùp®‘4Jàc»×÷ÙãêN'S;­&Þë³ï~8Øõ\6++qÊ‹YØ¢žË99¡ž'†,ê‡Î4:C]?A€~6áâÿЮÄåÐe»õÈ÷ʪqÊC¢[4âNÓÉeŸ]e—gȘ/+qÙ÷Y¸E£¨[ {4j R§½jƒpí^ß‘Luš}GjÒ¢§ì´×¥& ¼ˆÃíö>÷V«9@uÛÕ) w† W²*+qÙ“òYÔÖ Cm ,ê{;Õ¡¾'kÑ$äúuhà¸4#’úuhÓNØôcàrd%N¡$(E=”Ñv¨'…lQëT‡Z§ìÞážï³^âÙ~äâ6+1+ÅmÑÆì mÌvh£ANhSÎõãq†ÎxðZ”;®]uòâDZÙu¸–ÍJœrbDСÒq'ôÇùèñ)BUi¾!ؘyf'¢ùZŽ#‡æ«ñ‡ª|ÑUB¿«â ²7ó¿GêÍpÍ×ã¿tU§eAïÛ‰ç81ãOðè†&‡q‰|šàL™%ïx·2ØP7‚5ïÐÓâ1ní}W“j$IeYy$³Ót¨uE¦¤ÕN[-Ÿj­ªÕŽjS)£·¯´>Ti±=ƒ¦ôTV¤?«|ŸéRŠVº2*-Ø ÇÑ#Æ‹Cþ ¸ÜÐ6}Ñ­2›5íÔ‹¦g/X®D}k#çêóò¨ÓíÎ\†6¦•*°×:½žZ“˜Ãó|´R¦J·[]é5¥™cIGõZ¿å=¸+&í¦çWªË:ËCxh3ŒÑÅ¥2ô¿Ò6Ç Šµ afc˜ /ùrB^Óe v™:î ¤Q? VË™G°MáHó|0šÒÚæíÂMQ‘šå€í«²ÜHŽŸÜÿw,!7–.Cë¸ Mp’ÙŒ®ôÞ ƒ7[-Æ‘ çh©Õ¡ªta²Wxm·u}‡·Ink™’±þœÊ»w)ZuÈÓ]XŸußâ çqÕ‡çZî,nä²ZC´z¥M¦¶èô¦g¸W•Ê5TÖ’‹óÚ¿çæWÏèo~k}ì±ÒèÑåZ©Êzc6~è ï1-f¹Õ2Oí<Þü„Ä^vÅ-I™Ÿ¾h³n== ÷¹ÒjmvËMZÕ}Ӿϙ®Í}Òª—;„ÛOÊõnk„›“ÐÎâ©§¢ вÖy¹^ÖFï—YššhP+Ÿþ«ï“/ôq‰!¬Æ÷p3íì0ô›ûl@ù wÇù¼Zû~ož—WU®Ñx»~;]Sù¢ª~}¯*”sf y3Sì-¥«;fª­Ãõë`à ]}jzu ò–_ò_mõÓ?ŸmXÀ]¢r]•¼ãxŸ¦:\¼~ÞEr%žvýëOƒ Â2ï˜ ØÈû†ˆØjY%Ó:{×Z–ÔõrM wmC¹®CÊÒZîÊêéžÎ1YŠD“¬¶¾2fN¸dÓb0´I3=¥_A©Ä§;¿Ò«r[à”*tv!Yµ+˲Zß7²8þVlÞ"f§Ì‹Ä ­t *y½÷Q0ÜÚ8@tú¦[Ö×3š ²óM6™|¥9!@-íü–x3ý¢³Æ¸eýò…c³ÃTû}–2ù*ÉÞù¡Ôëzñæë¬ó“„ye{Ñ3]”ÆÌèN܆•¡cjvöTìH"Ë,Æ–EvF;j%ùÐ …×öâû²ÜàªÒ îr(ûnŽæ°‹öqÓM͵~}|r(a¶Ì*‚f’¯9Ê0¿¨A©™Èï]‡ìLHìbܰFîOŽƒG­ìâïØ„çGó‡ç´®Óm±8{$=àUÞå¦åùH—‹'HÇÓx&ê> žŸð¯‘šÄ"ºxQ‰;Û·i˜pÊ~ž>Žþ}6Jendstream endobj 1394 0 obj<>/XObject<<>>>>/Annots 551 0 R>>endobj 1395 0 obj<>stream xuSËnÛ0¼ë+¦èEl™ÔËVHÚ:è¡ÏèhÀ`$Zf#S.%çѯïR”\7@mK&µ³³³³â/ƒÑ—#Jí¯Ø{,`ôätûqëñ, 8’8 Rì&ÙiWãî5ÞT6q–!Ó:¤ËHl½4 2Ä‹Eϳ\ÒŸÛXš³íœ-(ûoð|OÑ8ú'õ&÷æ+† ù–ZI—´(ûòÂ*©¥,/F½avѶªÒkÿ Š‡M¥¥ÞB5SÄëI0Éz 3΂%QC-e}aüƒ|VÝ 9é! Ôå¦ÙnjÕºÐ|•/œ¬YZÈuAUt‹Ü¨ª’F–¸ÁûZ[ÙÚ²óU ·”Ð:EI.ár,`>š¢8ê¢ëŒº?v²E£Q8Ò)¶!µb¨åÔåž¼š…q÷²p¼¹¤Û®·C±µ¯ôæ`šf{îÚ^ -”†@Ÿ6í£Î3¨žÄÎ4¢‹,‡C­dyš`ê|ȉ°×FNÚù€¬5Rw¤ÖÈ¢©´úM#³Ž:{Ç™PA?¥~|'ã^+ÀWRmZ<©ºF­$qßKˆ²<“³tr¾Èçw²Ÿû;Ü6¢¦)ë¤V´vÔË¡bH½ñ%G1—ýÍ4Òdø,ôQÔ<1³³§ÄO™}%IÇ žÿ¾¡ÍQw¤Ú¢?æÞwïÿs*¾endstream endobj 1396 0 obj<>/XObject<>>>/Annots 554 0 R>>endobj 1397 0 obj<>stream x­WM“ÚF½ó+º|ÂU •+ÀWg\¶³TrÙ‹F0kiÏH»&¿>¯g4 dW⪤\‹õÇëׯ›/“„büKh•Ò"£¢™ÄQŒoÎ/fÏ([o¢%ÝÆK¼OñgU“/”à땳ÝF)%·‹è–²$‹6uón¹¦7š>±QÊâ ¯#GîÝïo'é:ÆÓËÛU´¦†q þSM÷“ágœ&«ëÓåþÓMŠXpº^À’ÿÄÏþ¼ÜÜe”$´­(‰–딲å2ZÄmK—rLÛbúÑè'a6ô>W]^¿Ü>N–iek¤¹-§c¥VôS·Ÿ§q¼âó›» ¥8­h¾LÓ(É4Ï–Ñz³ä'Þê¼¶”«’Þ%ñÞ?²ì‰iž®/nnÒ’EËìA?[ µA…VEݱ燩}xIº¢œ¿|ÄíÅ(rE;A¶Í[Q’TtÔV¶ò eÒ¦™9;Zù{Vä¦8ðGÿÉÂû/¥9:­+DlIaöZM;éOA^÷Wf.+±éêVëaœ0€¸ú€8û^jQF½Ó4¡8ia©t­÷'L¨è8—~9§ ÞôÐh-Œþï8Z©8ç¼®OÎ×Í]²î±žƒTLx¸}H³];t‡g0¸lÿà̈ L`d\úâ„|Çø/xÖPQçÈî#RbŸ»êû§˜9ý¦ h%Ú˜R°1²xà¯0v {}«Œö¨UÉÎô@®LEo ìsÿ~Ž[¼7”¬\³€÷É=sqúFyE÷à°T{ºÔÜrü¡ïPÜkSVÞÈ;EZÐa6jOǼ~ÎOè±s›¸dÀfŒK`>¤]àÂÍÈÙ6ÃUw&méb¼j:Úp›3áçjiÛžo['ASvÚÕ¹}˜îY#^^§5P²g1š*q‰Ë¥ó¬ÍgËî@ÊŽÑÓjFÖW+TW—#»c49$ïí‹a ÛCÂó¥°…‘;À¶f7;Û‹ =ðÇ£P¥—’ïø¶z¤ŠÓž–·TÂíÅ ð›ÖF„rkØ3 J;#—„Sžö¤ÚZZŒÀ³Ý>7/ qìÐ^ • ¶\Á4•šže{p>2È¡¹eW +‰¿‹’ ·ŽG,ë½Âýyp<tZµ‡:+®Åkzù—“ëËh;‹Ã"(/fÃþÔÍÃÞ¡XÚ—hß³{¼¹;÷Ï¿u³¼¹â˜`³¨1ˆy€ ¬Z­(Ï14t% ü¶ùg<2Jù×)de,rQk‹=Àùè³Â#m¯Ã— ƒ˜PÌ¢…à³"Tà3¸£)ÑHñ:ÃÁ(¸äŠÎýF·8 Z¢‘ø­É•e ÊÞ+T?>0°TÒó”WNÌ…÷a¹à‘<Ò ¾†aRN‡Åj¼X`%úŸ+}ðUCùq0`Ó·,¥}ìYËò=`™ ²¯éƒog˜·^{ÀÃ4uåZÏ<Xó׉%õƒ8õcfCO¢ô„Ã{ø–·A8jƒ]q†Ëè^~ÃmRèŽ?Œ%,”`_¡Y¾Žâ¨0#æ¦';k3þK—«VV²pãŠá©Œô”™ïjîð-øÍ+‰ªÜ( q…­ôÆÌãr¼ü¡ú¶âÁÍ<3]-z†t‡ƒþ‡ØÃaûùÂÃ|F"ÇöÔ°0`󆪅eЕ¡´OcyêèÜ)x¾ÿŠ“µ­ÁŒaY2ºfêFáMuqp¢+!×bPç»Ð ç•8lÄÉj%؉3üVZ¬×ÜIÉËïŸy ¼ùÖ|oΛšãËà'Ír“D«ð3)K8Ž_·“O“¿MÀzÔendstream endobj 1398 0 obj<>/XObject<<>>>>/Annots 562 0 R>>endobj 1399 0 obj<>stream xuWÛŽÛ6}߯˜—ZÀÖZ¶×—}H“nš‡ic êbÁ•(›©D:¤´Žÿ¾gHQ–½Ù\69Μ9s†ùv“Ñ¿3š-øO^ßLÒ Vú¾çº_,Ó)Õ´Xô}¹™.WéºßœÝ¯Ò¬ûò»ë e«EºÂÑY–áløâÝá7v—óÞÖï®ïÓEvž-Òùàìð»¦ùlqy–ƒÌ–38¨i™ñIÿü¦KÊfsXÔ”Mîû/Þ̦K¾tÂ?kšÎfìÖñkpìŽîà=£M «%m Þ„6y²1$ž*¨Ù+GVºÆª¼QFÈhI¹Ð$ª£89:ZÕH˜aÑè¼jŒ(¯¤°Õ‰„#ANé]%igDE¥±u[ ¶m„ÒØ!¡OdÊÛÍ×› 3Ž{S$ì¯2;•³¥–¸úY—.è[+t£J• '¥ßÍQ>K;"UÆ(¾Â¾µ’”~6ŸÃ•: †ÜÔøçû T7¢£¼ºÜJØÕR#Ž—rÉ÷$K\ª¤ÎO#,„Èû³5¸|ÝÙH—v®¦\täñÁ…Xþöa0¸X ¸¼kréœ,z¿€î èÕ‰!j5Ò·øå•qHmDZî<#å*þÆ íioAÁ1Ñ:DGoÊFÚPÔîVøõiàÐN6¢a4ô‘\Fîëà <]Ý ⌛•eÛø^Àò×^êÎÿ€á:;Bà–ŽÊíá© ìgd¢ÔžŽŒçˆý—¥–È‘»{Èz‚÷̪Å÷Gø0¥ &±r{ÓV=I”Ù£@òlVq­ŸEÕÊ”¶É••ØÑå%‰hóXH­PÝkçÛ¤¥ÙùöÖwPaÈ6Ÿ}pÝrQU§t{ü¬!¡Qdzi`ÖÇÈéσd&´Žf+((œS;½MÎiº°§Á6ÑáŠîh²½M‰~¢mØ|Åö—lDàÚNÒ?ãŒÒÔ{N>|Ú<~|ó7ŸLþ ç#ÈÐéñtÁqmXWújQ#«Êõ4ö®1‡®«¸"‚;×­„ºà£ÿdÜì™!¦¤=´çI‚f¥iuáûòî!â8æ@"’ïBÅ~¦O¾§À®·¡] «é zâ2TÌ .2 Çc‹¡5á¦ëºÞ *ïºÒƒd…´èê‚Jkj/ŽPt X|ò쀉҇¶¡BAš ¦Ñ7G3`Mìï$²„ø°¬§ëÀ–cÂ|Á;~Ñ>«P0ÜT•92øžëq°8HnJˆv§B¯¤ eU(› U³y©tÁ}…:•ñýn¾Ê($ÍM %R€fxfgX`|B=¾b:ü •ãÖå•Á<‚VCÌØ™¾pd¥pÆshæ“Èÿ»ô}ö(~÷pn´é< ÌmD¢  ™b^“Ð~2þÐðëÜwÞ.”3’ûªy|UxD(¤l4ø¼=]™g)…ÑЇ^Ãbœƒzm“I{…á¡ 3Ýv*6@ÃÅŠ“cð…~ÂAò¥µ 5«g×2çfè`ÿ•dáç;vè Mî sh)5(SƒyÜD0ãtÝ ÊJãJLeI¶­€Ä6Q©LÁž¦Àcƒß ~d1)ƒ©Z¿äí‘ÅQ!cmVþ€§ÿm,a÷6éb<=Φ1±àý˜Äs9c¢3µ`r—_ÅŒo^\TIÿÈéÖcÚNQ(Þ‚þvo³3¨ >°^GxS]~²ø9JµÛ7¨výâîmÈ'¨ Á>lDVòÀ¸ŠË‚×D‹›äh¸é¯üŸc«\yåw‘ïý®ïá¨çvH°u-ÏH®¿øüªQ  xAKRò3Ç|ñù ~™öÐIžM˜Ë²§~‘9ÙmwoÑBG´/'xÉbÊËsüb–Ýc>`©ó=?Jyû·ÍÍ7ÿÍ$endstream endobj 1400 0 obj<>/XObject<<>>>>/Annots 576 0 R>>endobj 1401 0 obj<>stream xVÛŽÛ6}÷W ( lE[–úP -’¦ Ú® ´LÙ,$Ò¥½ü}Î’-{·ArÑ./3œ9sÎßf1EøÓ:¡4£²™Ea„™óçß?gYf”-ó0§†â$?jz˜ÅE®iµÊÂ%V“"ÓaÄ«ÉjF´\%øbu½†­¹Õɘm³°˜¬¦ŒÒœ¿86b~Ħéºãóêr¹:œãt"ŸuâBN“˜m݈W‘%iŠP‚›dðR¥ˆ\L¢ù¯® $™Dlâ#ʆ‘3 ój¶>ïΜ¢ÚbŠ‹6«hÉá+©b¸ ŠóØ‚ôóaÀn~ßÌÞ}Œ¨ M…ªe9~Ù»bE´)ƒ²–¢Ý­ì­üº—Z‰ÚnïCŸ_h/+Ñ×¹M÷›ÿàhIqÌžPøE’ÁUðWEÝQYªjq ü´²›ÓÓQjpÀa/àž¶ -¢SrœS¼í“i5ÛmïÙ¶îÉÍŸZcª9 ½çÃ-â)âPçßGxþê,ìu¨Yñb©38B´å‘*ÓRcœß='Ûï¬üÖKÝ SÔˆÚI2œ›„}#Ùç$€Òè²î­2:D^Ÿ’:գǩ]vŽ^‘`Õ×#£¥#SúÀÁùð³!¯É¡öhÚî69ŸD¸½çÆ(a]½QWÅ9'¤Çú8[>¿2½Þ»µ±fD]s*ª³˜µ¥Ô{¡ñ»t{eÅ®–®0Ó ü‹Žy¡'{m:§çš¾B:pƒÞL©¤ô^žp*f(…c™‡à\øVÚ®Ue7ò÷!wÄ»`©há¨Ë²FïûÎ\›•²HsÏ5&f &_é;†4âÚƒßAV7V×ýPB 3oPàö~~«ËpŽÂ±h¥dYYÓàs’%ëNiÕá';ª^JkÁ¶[ô¡å‹é(¬× Jª‰™:èyŒ2†b½¸!yIÂÚǻ◦E]N4rÊ;‰VtNEÓP.â°NçlË  yìQ:Õò¯wá%Ê|b¾xis”­„€äœTåÁI2áèÿ÷ N˜ùº“H‰¤èDUkšA¾>Šºw­!“VÍI^Ÿøƒ~„$yï$&Ý7;$¤Fd\-·—/¦cT¡«·úÞUïö1Œ]:`m;.¾æÓß­y”mqÈ©• ÿS-í¶ó¾¶†ñGÉnrñM}䬣W-v²&ÑA¿»I⃠ ãÛ'Àqž÷i¸F”ëïð >®þwmrŒ$äÖŠ1½*ÕÚŽnNfòðå®t# ¹ö79Z°·;çᎽÞùƒï|yó84r`F9±K_\áî ¬yuQÕ ‘ aÞì>ÜÌ~îR]Þioës{K“¡½iúð,ÜL×–/áw:Õ†1umž8héw:w¦ ÅN˜àB‘_}{Þ.ˆç<5žàÍNiÜð £"ƒ´[·йá ENÛäu ï ×–x­üLÿtòdéá@ãcÊÓ¢rµLmÅs¨4»è·é¤éo.Z†Ìµö/ò¹£YrŽ¿Ò'±øððèr…MðHÁ[ŒV¸ÓœÅ 4ú,t?tãqÏbñ{ìò€À^SÙñ¶{ÀÃþ8?5øœe‡ë,ÇSfYÊS6³fß.fm›endstream endobj 1402 0 obj<>/XObject<<>>>>>>endobj 1403 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ 3°‰‰‰ž™¥%ÐÒ Ç<׊ÄÜ‚œT”kW SU"Nendstream endobj 1404 0 obj<>/XObject<>>>/Annots 585 0 R>>endobj 1405 0 obj<>stream x}WÁrÛ6½ë+vÚCäŒD“EI‡N'Iã&‡N“VÓªŽ"A1I($(Kß·)Ѳ\'Ò˜v÷íÃîÃúû( ÿZ„4‹))G¾çãÍé«~àŠ—+/¢¹á÷ŸZR6úN^/¬‡xî…ÌgÞœâ övuû9ZÒ/š¾²SŠýß.Îìoü:Šü™7£0н˜JŠæKoÕ=ôçhø\™ðn/¯r˜p6RXZ¨ö—‚Õ  úÅp¾:=ñê<€e°ômÌ Xœž¬i"«Óêb|îÉ®ÂjyZ cÆ0X…¯-Ù}IÁ"\û`- pÖ­…ѰOkï×£Û»˜‚€Ö^´ )FF3?¦ujǧu2þR뽬Wô›¨ZQܬ¿¢I,q$ëtü—¬¥+z×>LCß_ðúíèÄjFÓyñŒ¦qä-W[|R•iܶ>¸OÓp œÝ*%…hÙmŠ:„cJDE[IXJÉhÊe±£‡V¥’:Œoj¤¨“ܼQÕ®5Ö6Ñ•ª"Q©jË­¬Ig”ªq %˜9(›ñS®’œ ±Qå®8<$ÂÈ Ÿ”¶Ç>ÊæÆã„8 #†ìô¡Ë‰Ê/#jCOÊää˜ÀyÚcgº.ÛB4›1ãj:Ï·wgD•’Äçš5Þßëìž;¿'3Þ!k‚”¥vªH¹3b[H ˉGwº&yÈ\ÒflrI…ØÊ‚„1µÚ¶Fb+¸Ñ;ƒ ÅæfÒ'³âÃg:"GÇõ¬6ø"üè ½E ¾›ú‰Žü??ºÀ›q|fú¹åu»åâÿ,ø6²F]¾fûÆ"–@z°8Ý× íêu»·ti5Àø¯>u0^3¼o1|Ýp3fzÏdh:{ÝôhÏÆ×Ø ¢—†ƒúµu®{Û[\)ï(•µÚ£ÿ\1»’ë•dL¥0IþR;\M“ÊH¡ýÚmÓ–(_®iî3>g(û®=:TjT·É¡:ºrû&Ö"S5zØîRÕ´’•ÕX•²9àÊ;ÉÂçŠ~7FÖú¡7ïºí«P¥D°Í8•;0ßl#îD-J Cè›1X€0œ²˜ô¿¥P¶Ç q oÕ^2g´Gk°ƒ¦Eê5™ã,@OhJqdiêD¶WÇÚÁúy)•%ËÚœw•6ïé0ñO,fV-¬zïjUŠZAQŸrY!©B&œ=àd«^ÿ-V*e‚#PMiݧš·™0ðÁœÉ´;ºÎ“®.îjÈ´­%Nñr]w–©ÌD[A-X±Yvšôšl•øgp)ª48qÝ¥Òg€¢«[g—º»ê!‡²E…SeB$.\{K±¼Š½PÐÝBZVm8Q=s*ŠF»kÑÒ™ÊDÙêžG)w(±J>u˜<úànרìñTÚ Á Ôš½àøªt¤\ÚWdsÉV)÷O’Ób“s'×vîE}yÏ_ÝW(T?ò|á%çÞ®P€2ùÅ^ËÏ&Á¢»žf¡còo[Ù©&Gé]Jº«uùósÌýã[7¦4”Õè-ô•› šîºG­é¬™ÐNÖ¹Ø5è­Š1Ã@[ØÁU e)›Ë}¯·„yJgŽ`/ ½ãD‰óØ„&¤*LEÁ-hÌ=Üp¶:±‚‚! ?À‚ê±3BvjƒBàQ%«€ÐAœÝ@¹ 0¹NÔe}–T›5òª²þã O-ŽI—À´ßý¯m8Nâ¹´5G› 6S•e*á&Džß hÓ+#Š1"ytUé÷ÌDÃí" è&Ø`²¹‹¤xD¥èëZ Öž®µÏ!’Õ6NO44ÑO@ŽS£/ræ1¡›Ì¾èòêÜëZ=(ÌBƒTº²Ãün'¼ãe° (Æß1³¥~¾¼˜°§ý®éÂÇ,5š£æû~øŽç ðãzôuôbÒBendstream endobj 1406 0 obj<>/XObject<<>>>>/Annots 606 0 R>>endobj 1407 0 obj<>stream x…WÛnÛF}÷W ¥ ‘!©‹%m‘uóR$mäE€±"—Ò&Wá’–õ÷=3KJ´b»¶!ˆÜÙ¹œ™93þv•PŒß„Æ3þËvWqãÍéãß¿®¦‹hA³ù,ŠiGI]-¦Ñ„¦iŠOŽÇQÚ=ña2Y Oi4œÊÕÉ|Š+ýUÿt¾z:•«ÃÓ ¼™LæÞ§ù-tø'¾›Æc˜íOÓéíééäñ$‰£ùÙ¬<‰Ùñ>žN½ÙÓišLØPw7/ Ã?ñÝñŒãëpbëÿÀg¿//­7ôönBIB˘Íoi™ ð1-³`¹Õ´¯í¦V;úX[[4µªÜˆ[“mÉ8Êkj³n“*mµ¡ƒi¶,û ëň2UÑZSëpÞXÒP5¬ÓŽŠÚîHõÒ7Ë/W1… go™¶mömC…)5© ×Ùtaë5Þ+Ö%\pd Úš _\kµÆˆ’©X„\»vú[««¦·F_ìÚElóíÝ‚ÄÍ„c®!XWÑŸj·/µ9c¦·"Ë-Ð^ˆ2[¹Þ‘¶µWO `aj×0XÊÇ;*ªläŒ*9[ëÀ*Kàt½Uu~É]‹³µÖ¢ñ#àø ¾sRdªÜÔ:kÊ#­}5È¢•3¢Õ›]¦ÂU8˜)§G¢îBÄ qä“ Øì@•$Ÿ-pžI9×îö±Õêæg¾\¡Ø|=CÁæ”ë’‰Ìmu¹gaç3æYÃ'¹{„é¬Ká0ÕRRwU“CÀº2ˆiÑUA:ñ*Än½ ° ¶ð¥ÈTò~¼C±òËs/…h©^K‰$Þ„cæ.¯â?òö®ó&DQöŠ.ÝlÇKwäÝ«î¤Ï¹óñÔÝ\g\Îh`´Óÿ¥ =gQÍÜ„§| ÎŽBºüö¸z`å¥4õËÐŽ_ˆ…ÙG‘´ƒ~º¤ EÀãSAIœ+ø5×Egïñ ’˜|™O]¨…¥C %z.5cÜïs<ñ…é”ÂiìËɑ޽¬[ðÛ©ÑW¥£ñh²º¡F}EÌj s”¼H³•: žÛÐ4àïŽ'ä:%«›ˆ>H[»Ë^gë¹) “µe#” 4u­]ÃÊöª– 8Øú«ïqÊA™ø ö2kAo Ò5;ÄÅþ ÚëŒéñ³6›mCïœ3›j wO뤣äÏÌ1ìçÆ<à[V*¤žœ.A† !Ž<Óy[káZ8†¡z1)•j²-#'êɰdûSS¯SÊt¹µNWR2ƒ¹õ¡F¬ª6åãOàÚùˆê®ð\8p\àû/-T#-ª:’çû³‰N&¢÷ö Q€#2ÙJc¨–/Šqg‘b?ÙĸÛÖÂè7Äf8kÁx†FðuQ¡9äëšýè<8û- „˜Y7m4˜A‘ã¡8ÄçF.àOe™Åü0Ž£Å@RM£2(Â0bd®óH°Æ ¾g÷‡ B øš_5x K+@nÄÈÉüâ‰_–öÀz»©üb7óÑ–Ê­Á UßÇÀ ™è‘~¤Ÿh<âóˆ†ú…ŽÄ?o¨T\#¨î¸¬é‚ohÄ*“8þÞ€®ò{[Ü3ov^7 Ù/ÞU¾¸‰˜d¥þ{ØÑgXÆ.#rF (ÕÆ3Éi’pŸtsÍéf¬k­òf{/û‰€î¾÷3+µª_’e<~ \ŠADŸ¶¦Ç è'ÝMÈžÁΡö„–±ó¼Ü&ü¤ÑÌ}´±ß‹|ÁJq!ýˆlÛ§°Û9`wÙŠµã|¶àVõ4€€ÍáÎÙûŽbÍõDƒ"÷+î~›åìØ~WB  /7ºÒµÂæ,W—%¤»ôú´wà QHíï!Õn¶6w l{ÜòàhÃ>xAÁÚ•ô]–klô¹ö9¿˜1EytE9ﮤˆ#™'4Ke}áÄöoUµªd a/ÞÆØ¢ò`6ã×ãY-f·~:‚vné=Rãèæª;ü ðKþ¹¼úçê?„%Aendstream endobj 1408 0 obj<>/XObject<<>>>>>>endobj 1409 0 obj<>stream x•W]oã6|ϯؗâœÂQì$p’ÞSïÚôŠÞáZÔh_ ´´²x¡DEÅõ¿ï,IùC—6X"—»3³³ôד)Mð;¥ë ºœQ^Ÿ¼›ŸL² îþ¸ßÝÒôšæ%ÖÎn¦4/Âû ÍóÑÝxú‰WNÊkۜοœœß]ÑËdýÙÅu6Îѯ ÕªÙRËÊå·ä+å©k™*„hǤh¥¹ )W²ÜçUÜTè²dÇ8ª`‡UåFao›Ñ-vJˆ¸këXÒÀáÓËìBWM÷ÛÆ´aÚè¶"í[ÒMi:nr&o©Ðµnð&£y¥ñNeÒ+Z2Î)è/v¶,ß´±ÔY*u“(žƒbD5ûÊÅ}ºíºÊ®$É–ýb÷ó}eqš~¾CÕ¥êŒx¾¯l’ÝȦÜÏo·Å3zÀíÙEd¡D9¨©4j%µ!  ¿a½ª<­¹QÆoå…*   <Б®HIÈ->¨Ô#жvü¨mךmŸaÂ>ìaÔ=Ž¥5Ænt³Âz›sÑ9`ÛŠ °à—À¿¢†7f;`zL­ ‘Ïïöˆ¿?.s„RÚ¶«A-NUƒL’N‚ðbV‘ÜXâ[2ÝÃz¡Ö ‡¦«—ìÈN]1GS¥€q¬ŠmÄ%•ÿv DÕ„H z[ÆZž/NpÒMŽÐ‹–[ZŒ[¾Iö{šN&QºÏâHGë 4›<ßÓ\ZG¬Ðl=‰ƒd#íR,(ö3Yp&Ý=‹Ún=šû€‰HìˆàŨk;eÌvq…ÓË*„=DQ)è¡eƒ8¨QG„všéí»¥°ûa§ÐA¨@³ès€564ÑÞ¥„U°‘˜ÂàÁãÿ÷Àcc ´0—ø¬oI93#ÞÔZ²MuïµgÒµ—ßߘ×@éü#ÜÉ \ï£ÿF>£ü 6z|Èý~v…n”Óf ïí©T_,[B¦öuÉdÇ!zd ni r&Ç^éì°˜µ.á „Æ7Ê£ Œ¤Wé %•’Á|égAO\­þ¹º?Îw”ÑŸìC}¢´ñÑ®B¹Ø>ò²ø›NƒI!/µ^-+ŸK¾È±VÒrÞgˆUvµùŠ¼Û ˆÖê±Ê-=4v#Îfm‰Is}Æ·C.Áµï£Ž\‹¾ë;6ë§×;}ðõct^qqAl­œÂ˜a×î²àž…|üÔJ£C™œà¯=Q ^ûê8S1âè¾çwÏÐÿ¨Ü0úNbTö6±÷ìd‹ŒvÃÐ$þÇTa›7é>Ð3†Qp™=1½}}x÷†© ŽiÞ.N¥¤$ÿî¹,_êèw*ÀÅ©¶E‡ÞÁÍIŒóåþ[ú6údn1åJgë¤NñÊM¥Ñvü>«1ÄE÷Ž7.úÅÚ@ÿ ]ð^﬿¡Ðmh‹0Ľ³ÝÒ0­: §€ ‹÷¶1*ï[P¼ /Ýeó¼s’Èþ¶¶Q[ZÁG0ÕÓå/Œ#HÕëµ;ˆ%Tr)•6Âgh¢A ½e'‘üIo°à˜”‹¦@3˜;¾ÖÕÖëLj¾Ì@Y¼3Áá%+ÛÊ+6°«÷…°úopOì” öSê•öºù)‘ à¤¬xóÂU[cìÊeÍš¶÷9qÍà€ŽÛµLpÀ…ƒúÁm¸€ãÆ(JÝÅ·®}IæÕ’M‹éöжÃ:RÞ;½ìd”`Gà­ï­Εô´‚>p ò5¾dz"é'·Ì¦8ËŒe„h{éÇáÝ ¾ÝÑr-Êí:ÍYSHUÞ¤qva6Å—¡ÙM²–ß}dwKŸTƒ”ègýš³ë .ûÅ“_–®n§Ùõì_•°`v-û~žŸüqò/å”Dendstream endobj 1410 0 obj<>/XObject<<>>>>/Annots 608 0 R>>endobj 1411 0 obj<>stream x}SÑŽ›0|ç+ö¥R"Ç‘>Vjz•Úªí!õ%ÒÉ5&qeìœm’æï»kà„’¶IˆÀŒwfwÆ/Q)~3¸+éÇ»(MR\yý³{z€û>)xŠÞÕÑz[@–AÝ"gY=@ݪj¾¨XÓ(eÎRï¡Ul¬i¬pN8ðøÒIß3/©á|ü–¥>ö¸ÑžIíÀ ïÀ´ ^zybJh©½K`‡S™eý+J!ÎîPeÝ,Z‹[®.`8ï­C¡E(0Q@ÇôŽÖ˜69ÙIÅ,KvK Òëm ›¡Õ8/’‚8PÜnÁ±IÁý3U}Vì§Pn·L&5iR’+Áì¿°€Ÿ7Ј–õ ['èÀ8M­Œó’ê|lQvæIÝ ¿¦›Y_JºÙüAþ6À³!'ZiÖ#ŽŠê‹0⩃qžHfy"šÍYœ„]ðÐ3´ÖtÀ”šj,do|†YG&š üÆ œ(㙇!n8^øA2ë@ß>/XObject<>>>/Annots 615 0 R>>endobj 1413 0 obj<>stream xVËrâFÝó·¼ÂUBÖ£¬&»¼HUfLeaâj¤h"©™–d›¿Ï¹ÝÂ` LlÍ}û:Ò·QH®fÅ ¥Õ(ðüòz3>P2_ø‚¦À÷£(}£?Ϭ‡dêGNcJI˜ø!»º¹súMÓGvJIà>pq d¿}º³ªÓxÕŠ"ÁAí¡¤‡Ñɱ¢©@ä£LDsœÅ,´†bÁRw²–‹bÜçpOÀt'–ưZ¼JâN,µ9ų¹ŸÀ~¹ËNŽ…a£ðô ©P¡éÉÒYÄAm )Y;˜"ÇÇKYŽnn¤eN¡/æ%BøqÐ2³Í h™Žÿ4úI™ý!ëN–×˯#â [fã¿”i ]Ó‡n3‰‚`Æò›ÛEæ4Qä‡IL“Døó…`‹Uɺ-RºëŠLÖ©r&¢ÐMˆXóy+’T©v«3Ò9uMQo(/ê¢UTÔ­2;£ZÙGC­¦ +j·Š%Mº¥\8Ø­óŸa@;i +¥ñX«ÊTK•¶lÅx€"ŒŠMñ¤jJKÙ5ÊïeQ‚ŠáR ‡éSâÈœ’ ‰!¶nH׊€¡Ò˜ø!`Yjdó\´[k¥MVÔÒìé}QïºÖ§¥­ý 0©¡Õت¬3Ê”AÀlu _²%‰xª,6ź&MkÆÊyªŒPÔÓÔPbV~’e'YŒ2qh}ºÏI*ä€PÑP.K”¦²,¹Sg@/vPÇ¥\«r5¶F«k'< ÏíÍ]€ÆÖtX½?06ºòQàåVqçP£šÔKªvgÌǰ8rÔu«M†À’Þ¿EoÙò$=ÃcŠ)‰‚Z&éé™»UuMËÔÓS ؘ#ƒŽ³.¬÷x¶¤Jø_{§-w;P7[H* ˜[:kZÌC3¨£­‚ˆ#GÀ„iñÍ£auÝWã•-l5U5Ž~NýQçXߦýγÎu‰Õµ«ù"Ñ8GT‚¹ <Šz`*< +VJžQœ¯Iê2îùÕG hÑ÷˾® Î ãRJL'^J ö6çÕ8ñèï/ø°ôj„¿¼«Sæ±ÕøŸÕøÑ{ä±=§Çºw¼Î¸r*¡y±'¼©wQ%‚ŠótQ%†B ?ð" 2ýq ©U—/HëL¬còOïHþ3 ½ãu&×'‚ øº [!ßãK*ª„H^\R™ö^Ð$;S'3‚‰ ö¼`Exé ç!% u¼•Ÿ¾„_ÿ&­É,°*gÉBà5yvxKLœñïËÑÇÑÂ÷m‡endstream endobj 1414 0 obj<>/XObject<<>>>>/Annots 631 0 R>>endobj 1415 0 obj<>stream x­W]Û6|÷¯X\^ÀR$ÙgÙ(à $i€&i?Ðm3G‰.)ëßYRòÙº»&M‹$r(~ìîììpõç(¥RšÎùoQ’8Á›Óãw£ëe<£y¶ˆª(M§§‘¦Ï£4[Æó‡ÙÅ«ÂZž]ä^Ï3lÁÖé2^t#¿uvOO³Y2‹ó³Ù,Mâìa6ŸŸF¼wš$g{§óùiijù5|ÊfI0;ÏñFÞìbz6›-8u6›.áÆb¶æË8 Þ™Áèu?—Áf7èçR‚á ‘ò\7๟WCTí–^½]RšÓjøç‹”V¥G=¡U1¾©éÍ_¢ÚkIfCŸe%êFô®U¥¨ ùrõuôêí ¹Û£,GD«rü‹´’}5kjv¢¡ÖI‡ÿIÚ[YÈRÕ[Ru#-†h”©ic,¹þümw~ $´ìÏŸœ¿·æ^Ú%Eâ%ã_WÑ"‹²XÕ~H¯/_›¶yìªwô£ià™XcÅÀ?øî̓ŒQ6fWˆ`à· q™ZI”¥â`„ƪ=N¬¥,eI¡­º—OÄG|b)7¢Õ Ý Ý ¤Øß„"<ó +* ÄœìÕÛ´},¶òË^ØA€ãÉp]cÛï[¸Ú=³RÔåðX ¯¿hU©ÇŒ½£ƒÔÚ'·Ù*&ÄíÇpxÑY| Ö‘ â¶îöe—ötÑÅå1xÙ'á6›ç=óü|„ªö9}"K¥°µi¨0u#TMŸïŒ–]NsAS±ßKa‘<Ï…RÖJè qÔakfm%â Œõ):s\Óa‡Ço?EÓÈjÏÇb¤ZÑH*´ðõÐùÂÇ6;ãä#§b`…`ŽÄEÃzÌ Ïºâä^Å·/˸Oµ/sXéøÛ{ŠÌ çÔ¶f2caYµnK0Ýö 0Öb-õíØS¨÷¦O(¹–‡Nª!éWu`ùpYeO¢¯g Ñ3Ò•·vå ±>¥àvü"Í&ô"ò#çÇŒßexÇ•sM•q J|'Ž’(ˆ@’}8–ƒ8ãt‡Þ„ÜÎB–Á1àw¤ƒiuIZÝIœÉ¼”¬†[;@L®åßšð«ÀÓ­¤ƒU ,½Tq(ç2ᦹŠ.peÿj@ðRØÓ$wRË¢ùÉ× –×x¡† úå¼UÕi-ˆô„ „ ª¹± ”âFeBZ {À”ÀebÌæ?s£“¥FÜn°ÙI”gébº!uÓp‰Åkˆ?õ€Óùþìš*U£>|áoârü;ßû:Bó“âÚCÃâ¥î¦¼WŠ‚æg–½¿¸XÛ}òŽ~ïï–À¯HYËÙ4¶j5$ Z)ðFh¾Ôºæ]Ÿß‡H’±Ç íŽ{Ön¾ä£×|b¡[‡‹pri<:ß+hkLIeèÜÈ=KÒÚØc¨ƒ æ%æ*SJÝó XdÑ8ìʃiò`ï¤*±¿Xš š˜Av¢Ó}<è<Ÿw©=Ü»”JÁê²;Œ Ôæ,N§iùž@}z§6FëPõD!gLžŽ©»™Ê¯ˆ>¦ˆ& ¾<Ó×ô³Ï·7ÿ[Ž¿?¯èƒYß+Óº7”›€§È 'çb¡ÕvǪz(¾ § v¦‚Þ f@·2“r‘sϱ3ÕåÛšïqIœ`"Ü_àì·¨Û Lùã½ç§=÷x¸¾Ð±~G|ãT‰ ³¦òþ£c{¦Ÿ{¶OãÀ‚S§ÞÏËïÓÝ_( ð¢žÂVn…-QR¾ÅD›zîAiœd E‰b“› 4¢¿X1[T&§Óx4u›ÿÐ"ƒ¨ØÆ ‘í>(zs¾D€usƒ¿ Ë  ar¼•àz5¬è®sDÊú×÷Y%q}ûÆò^X%Ö}ÒÏò'‡g"ˆ*Ò¦Þ©tÖ®T/Üæ,Z”<¤GùÖ‘Õ·RßÖ˜ø—¦âN³›½Œõ ¤fp9ÂÖ¾ÝÍÐØ¤hxçyǸ¾›ü êVh^õk¢<Á·Q9Î~=â›8›âC¯n¾ýíöf5ú}ô7¨ušÜendstream endobj 1416 0 obj<>/XObject<<>>>>/Annots 633 0 R>>endobj 1417 0 obj<>stream xµUÛnÓ@}ÏWÌ ’+Å[¯oqx‰V<´\j $Šª­½Iœµñ®ÓНgÆk7‰A*ª4Q½;×sÎŒ¿Ï8øá°!J¡ØÎàÉÃO»¦ˆÓ‹! bü?Äo+a55ýp>KC¶„8ÎX[Xî*¸š½Êg§g1pù S¦Ùò²Ï@^xJ[Ù6­´ÂªZÃF0ê‡<É¿¢[:¸yPºƒ1Ž7¡KPT¢3’ܦ»‰ìD«Äm%ÍäNTÝ>¡­¡¨µQ¥l§Q†¼)dT~”,Y–&a Þ$AÄ’$¿¿¥ºêØë´5%ð£4b1_€Ï#R¬R" [¥% ÿ ض“ rô^ÕUUß)½†F´bKÆPPã*Ñ®åACèVíóM5,¸ŽX:üý0FF1¥0F­õµGXÜTj«ì|° ­§\½ëð J¹]eÿlû‚a<‡Vh,î³Ï¹B¼7—ùÍÅËOÙûâ✢ý0¥Òò v¿ïT4M¥°Õ»Ô ïñ¡ €Ž„c@ 6o%a„¸”„‚‘•,lÿZíÐ׉…QÚ`ýG û $Ìì¢ ÁP ¯õ$ß”#VwÛ[di^·u‡šÜSOTNrÝÕ]U=£Þ(¼AW)ˆSô@ß+8QB哞ŒþÙýL¨ o˄ǦŸ©ƒ¾i~™3ÒÜ1-ÞˆW˜:á Gô1¨yâ©´DÇ¥³w¨#}Ên kˆ™h?Œƒ\ОRëœh-`ž¹+gÃnð9gAájAå\‡I0(sl¸~µß”?ºœä ªI]MüÕ¤®&êwôÿg‹ÿVª³—NØ ùô쯕ã§[¦¸¥ÃÌ)ùRÞ[¸Â‚oªçp! »öF-†¸ÏyÆ!Ä÷D¿×ßµõN¶K´Õ¨ÈØmüE€+¹ôÞ6ÎàŽo1öVh« 8ïTIïòˆ—œ-ÒÌ |Áéèu>{?û Þ§Cendstream endobj 1418 0 obj<>/XObject<<>>>>>>endobj 1419 0 obj<>stream x=A Â0D÷9Å,ë¢5¿¡¶Ý êJTüI+›hl=¿©¢Ì0‹Çƒy‚L!¨Õ\3ˆ5 YÈÿ/Xn{”¤ jµlÁöcI°ÉŽ1¼ºØb¯ý¤o ¾Šü§æ_7«Ë«Š ªªtÊ6;ÜGü}ˆ8wƒö£3ØMÎjoºÙÞ°8‰7FE)‰endstream endobj 1420 0 obj<>/XObject<>>>/Annots 648 0 R>>endobj 1421 0 obj<>stream xWMÛ6½ûW r©°µ’lËö¥@¾\ä°hÒÍ¡Û-S6SItHi÷×÷ IÉ^mRA+’óõfæÍì×QB1þ%´Li–Q^â(ÆIÿÃøƒ²Õ:šÓ"žã÷ÿ¤bô•/†l¥”,fÑ‚²$‹Vuÿa¾¢wš>±RÊâ ?*®†Üo¿ý2Z¬£5-1ÔUõ«ðQÒï£u†Óî.É–°í¿ø2›ãílG×IÿÁwI¼‚íî2YÍðÈ]%3¶ÕIºÉp™,SÖ{½MWÑŒàK&kÖà>X29’p—Îfp¶¿cFØLfÞ¦mD#+Y7vB ì[QIú[ADÐ.q%êÀy.OèCáeúgʺƒ½¬•( u¹®¿HçãÎ\8þgô€jO»Kˆ^ 7rž èQ£…«Ê(¨K3´UŸ\Ô´“$èI”­Ø•¬ˆáçHYGeB¥Öˆ€Ñ¡­Ä©D6q‡ð{x… DÈäM$­eMJ°âóåt ά.€YCìœ(­f[+÷ìÐQ–'ÚË]{ UŸZ<*î¬ËܨÚRø¼ýø7p’=¬´mè$L3éPôÙººïõ ň(:ûl^¯9qPµeð*”g@¸jdq¯¡­Ö !ƒèš¯]AÕή0‡ÖAÿjš¿¢ª…‹ˆý ž$î‘QY–Á[|©CͰ7Gm]Úœåï…Šb‚¢½ÐYþ¡RsF·'¶­Í…«nœ5ûÇ/ÎG‰kd¶Ýk á ®ªZ4|‹è3õ TÓú  ]–ú̪š³¦/zg‘:†e9¡³jŽºÏê,Ô‚wË7úmŠA!ºÐï71­™u˜/æ¾ÔQQ޼hZû8þ–FÊy;¦Ÿû“ð*ÒmÓƒ]Ñ*•ã˜iþßòîU'}¿¹å­Ì5È‚‹OŸ˜d¤«9TvßË¡!}Ê%ò`V ÅE¥ª¡Á0ˆ||­Ãˆ¶GÙùxë þUÜ6ž~ÂÉÔ+ü‘K?„5ÀÂÉFï7‹ªv!o¥©T­K}pdveìJ}ë"ëWÖ«è&Ñaáød$—˜vɺŸ _W>/XObject<<>>>>/Annots 650 0 R>>endobj 1423 0 obj<>stream x]ŽÛ‚0 †ï÷½Ä Ædl^šˆñÂ#{2'b8(ããÛcÚ4é߯ý{'‡H¸45a”¡ò-Ç!U ¤  jPSSAF~Ú8—Tޤ.ôÿµ®€ }F[!Ч·m¼­}öYÓ—m3‡Mnl ëæ6ô3}%A*ÇÅG”KaˆÛÞ¾k¶Sˆ7C^9Òÿ~”C’ØÉ‘À÷”D_”ôÅ®+‹²É«Ñi:°Ôä@^™C³endstream endobj 1424 0 obj<>/XObject<>>>/Annots 653 0 R>>endobj 1425 0 obj<>stream x•VÁŽÛ6½û+æèl­$˲¢‡$MŠ´iŒž|¡eÊV*‘ŽHÅÙý÷¾!EÙ«M›‹5$q8óæÍ›!?MŠñ—Ð*¥ENE3‰£_†ŸöÈ/”¯7QFË8ÃsŠÿVR9ùD >¯œ‡|¥”,Ñ’ò$vuÿ­éMïÙ)åqŽß‘‹k ÷ôë“t™Àe¶X!^Cé*Þjú0¹}Çê&CToË«‹$‹6´Xù½‹l­û7·zóÞÐbó·u«7ï eññ¯«·ïX…§Û½¯¶“û·9% mKJ¢lRžeÑ"Îi{pdÆ´-¦¿´ú³l7ôN¨NÔwÛ“,£| ·‡éo²5•Vô²;ÎÓ8^ñúýÛ ¥X-iž¥i”ä šçY´Þd¼ã(dFêÜYoœõbš§k03Øœ„¡½”ŠÒTG%d4Ù“°TYE!ÏÖP£¥€±b¯TVµ4mO•!Q×úb¨3ÀIVÓ¹•gh%éjÍ@>Yøð—SUœ¨ áyëöCŒÝnŒ-LJÝ£֥ÙÝ‘PÎÎç7¶*t§¬låÑœnw¦’3…è‹Å’ÿùlÁ«yNÑ*âúô4r̼g„UY"² ~tIe-Ž`¦H]48@σ"Ýdˬ G+É`õ†ãÜk{„œðdft‘TK qpQ­øÛ9¨Oe«ç¸ÐMÃêÊñn¬-\kdeïõ;VŸ!1ŠR¾îš¡ÒZéRÙÓmĹ‹èñ'ƒÃI~:/ž²;±°.U]䦡¡©S­,ôQU@»©ŒŽÑ,pŽª÷©ŽVʸâc9Ê>­ÀëÒ.Új×h".’_,êt”ÿ,·ºmºͱ›Vª¨»C…Ä_×U„°žæÄMõT1}ß å††½7®O὜÷GôAzq0¨ð5„sª xzÄ{J c'é”ç/Äú’^‹ÏRج9ojÙ@¢#yc–-o`q²Rš³n­€– aäŒå豞àîFé $hw@Èé8Y¾`FæÎwîá@`"ø¢B+ H† ÇœàÃÕQÂv­¨çªköhšýÏ’YEÍúZ cºFòùè¶4Ò™²¸ñm$‹ƒÏkF£ÓŒm»™kˆ08:TÆ¢¼–ôþ£,¬ùŽ““èí†àú,[a½S®‘!‡§ï¾˜viœP2¡è¿§3B&äªÆ2éÉÙê@á,äO}þ.Á.&G¥Dûx%-"È€úù†4/œ2N®8Åß'„¾6ÂV¦¬Ä¾–cx\8l÷# ëNÝØ¿’KÿYAPçõ»‚ýJ¥È×#à«âÁ׈KÏL(i?¨n+ze7ÿ1o¸ž³SRþC8õ0t.'Œ8¢p'Cäç  ög0|¾ågwdá&†|ƒYéG"ô.¬¨I¶­nûFÝг³ç'ˆÎ¡§ÿçŒ ƒ9œÎ[}áƒgò¨ƒû¡‘Ã@õÙ £ùFÆÏè™v†Eô-«£õhÚ€ù‘«Sõl$Mû“ú¦A¼0‡ qD¦î,BÃ0>d,1<\Çd}½º¡ qÎãnㆼ3v§âõ–ÓcHÖý‰:_Ek¾šc€ïÒ|5¢×-w¬+HWš©äÑ‘ˆ[˜#FnÓaZ^/hÿ T€œ¬qùÞ$îæ»Y¯zÐðõÂ;Oq3LÚ|oØÄKà!Üa³ nÿáF¼Zr¥Þl'ï'̉ĥendstream endobj 1426 0 obj<>/XObject<<>>>>/Annots 656 0 R>>endobj 1427 0 obj<>stream xU]oÛ8|÷¯Øë½8…£J²,ÛîåpMQàz_5p/ F¢l¶éŠtç×ß,E¥²s-êX¿vv¸3+™d”â/£yÉߪ¤IŠ•§ÿ¼äeš¬©\”IJ-åëE²Œ3M&ãyKó¼H²ÑîxŽÝ"OVãÝÑ»ËõYìWaÔí˜i–´H Œs<¤fRæ`8_1zKë¯&8š¶”ÍÓdOò毛ɫ›Œ²‚6 êP®0¨ÃõSÚTÓÆvíQ ·î¬Ðn{uµù„€‚²¬¸Î—˜þÕÙ;Ù­i/9‰¡Ð æ|§*¯¬qd ù½¤€BÊ“¨*yð޶S'% áo9 SÓoÒ¨p¦ïE%‹€Î(N´’‰¤tÍ“œ Œ“%Ô7r'¼t1)£úN§Ã"pZò–*-އTO¡é^œ‰¬Ü «—]K/ø/H¹‹üÆz:ˆÎ« åêô xþ¨¼ºƒ:¶‹„¨s3º•猋µEöÎ5D•”Ù¹„ÞyjÅglµ ;iœœÑÞÞsqgÉï÷Ò Â}ðg»‰ØA ÑUŒxªìÑà&òA´û¤KÒ«‹¢æ%†¢þ˸(>/XObject<>>>>>endobj 1429 0 obj<>stream x­WkoÛ6ýî_q`€XŠ$˲½aÚm¬éŠÝ€y™¶¹êU‘Jêþú’R"ÓJ±nKàĶø8÷ÜsÏ%?N" ñÑ"¦YJY1 ƒß<ýiöú¥ËUÐÆ«á´›|¤_/Ì é<ˆ)šÏ‚9¥QDz©«›dI?VôN/Ji˜â¯³Äëõäê:¥(¢õŽ¢ YÆ”&I0 SZo ŒÖ™÷KS=ðfEoXÙ²ürý×$‰Ã ]bëõÖ{Ï)ª’^µ{?Ã…~~u½¢Owä'qDéŒü4 –«DÏxÃ2žÐÛZaš´Ã“DH~¼D,O£X–ñZI²ÃÀ•ÁêI®N'zSwH–sÖœ båÖȤûÒIYU,I”¤ÿêVÑNä< _9ø`9U;ýHrbÈÆé9`âQ¨ƒ^ÁD3LOáÆãÁ>8Ãj!l¼‚}º“<«°ï”fáæÒAµ¹œÒ=`•TfSYóLìDÆòüH»ªAŽÀmÐí§ ¨¼ÙÙïIHÒCùÖ`4quqú¹(9U&'.A~æÀ ‡i5Sì^äBgË56¡°pžø¬@ +îZÿ%qE¯»ãT¦4¢mÅ%••BÙdÕ¾Ÿù”0£-D¹× “g%ò eU€ ¡õ£—áÞ~%Ü2k¸.ÍÿêRT'Á»¹]ß½yõ»y?²‡=<ÞÑ PplR‡†sªaü×ÎÿX5HU{M7xƒüãkôi=”£‘kù a|†Ýá©n²8ãeÝ%°b÷‰¤b ŽŒ¦—«¦ÍT‹’Òˆž«×q'…ZÍõȽïHèÓZ¤Ý“vLä1›•p¶}øÖÖñC‡ÒM±À4V}«JÔU‹PZcpà¥j÷´©Ræ‰: °o4Ì‹çãL. ¸€¥¶n?EwÓ»FæöÜÓbê…kq(²9ù·úî Š`°9vÔySÍñ4—óébºšFQçEûH¬óc3Ac?nåã¢Ô'? –Ú:“]ðÙt̨s#ùèví¨‘VÝ:Iß—¡1Z·Ï·Œ>/XObject<<>>>>/Annots 669 0 R>>endobj 1431 0 obj<>stream x­XmoÛ6þž_q(0DÝlÕ’Çù°)¶nÖ­ËŒbØ<ŒDËÜ$Q#©¤é°ÿ¾ç(Y–8/EÒÀ EÞñî¹ç^äŽ"á_Dã)ÿ&ÅÑ(áI÷qñýÑtNiEø,(Ÿ…q»Êé×£ñ$#:™FxZÐ$š„§íŠw½èäì´Π5+ÞŒNÇáŒÆã¿fPÔ¬x7Žùt·;›t+ÞÌ MØ–‚ ?n^o4ÆÙÍf4=íV^ïÉ&FñØ‹ÆÐ{Ò®üno]Ð6á–wûkìFÓpÜßí­±;ùÞ­loÍ@ͳÞîëù>ð&£WoFtFó4áÔÇeDó$Öª¬\…ø¸,t*s; —ó¿Ž^½‰‘ l–­†`ñ2$ú‚R¹uîî?ûu4 #ÊLÒÈÂПÞþ4_¾;ÿÕ²®D…(Óa®JIÃân€ j\ÆS¸Ì×’*aD!4­ èõÜi¬ßHdÅ%§É:]‘•Â$kUft½–%¹µlŽ#Vj½ïä‡n QS'®6’ÖÂÒ¥„äJ×eî 5¢aÌ\ƒ©}­Lt™>+ÊÉ>ªê£Ç‚~ ·Ù—ƒ G°˜C­{D]¬»‡ G”’"YSª ¡J²ê“ é®”yLôQ‚æT[™²`*cÌÌ^NgycèZ!5wÒ°G¤ÙÝ ¥„1SWH Ü ¯¤»äT!)W…rŠx!³gͦx4zzþ\~Vpn½ÜXå"ãÛ½áƒíyôa\£i ½‘<‰°ép\C“Ñu¶¦ãOÇfÚèB$úšzVî(­«6Ûzæl®8ï]ñû1¡P/ ½*];€D˜´‹ü6D°Ž™°ù÷‡#ŸÞ=RÝÖz(ðm8vAãÊÒ5nLk”Tî;·ÿ«2°4¨/6N¾`ÒŒ Å´¢dQyãl­'‰ýЫ²ª7íKãçß^ò'ôbÉÖP*)«W*çá…Æw›Šo‡ë^›ˆ[Ôº ìu;Õc‚ЪÛFô@ÒU“înìÙ¿Õ~sðxï³j7—ƒ^þ<)€bSjÚ>…8!}æý\ç8dÒ,A†ìñè^B÷u¢{ñDt‰mÝ’›1飯\Î`!HØŽºÍ  Q„S(vôïWƒáàËÿ<Ÿ1¦ÖE#nÏB^±^íÙúd ¯ :mGŒ% Ø•™âÖØBÀtôlíšâj08Ò~Önmr؇‚SqB¶þð¸¾gÌSå•D)ÏR6¤$R™.I~E•˃Q.D"'4lè°‡“(T%ßÐ7ž¤›§h¬üøÕ›ÍÈÒõ–7(›«ÚøìVe“µÀsãX#ÕA}ì* |‘ Ids•¢ßøN$èZ›¿í/)•‘V–Îì W¾2`€ºÔÜHðŠvçÏ~ ½:DÛ]M2öê~ÆÊýÔoÕß…GÑw9æÀ…e\”‰Ä¨È­y‹·~zü`7Éë”ÉÄ T©œ9¿(òÿ|a¯%ú^°˜Oò žŒøïæ¹oíè›òKf÷Óã®ÇÔ$’¿ÁG“{Æ,ä+9æW~ÆE½)ÿh&ŽÇޱÕ~îÙp{J_o’ ž–Úùñ˜SWƾþÝàŽ&Õài ™âðèÙ òáfLœµ¯l1æøhÑô”¿cÀHöÞð~FïDY7p 7g†§#þê 81Š“ñ4Œ&ü¥½V%ôsåK ï~7?úåè.t6tendstream endobj 1432 0 obj<>/XObject<<>>>>/Annots 674 0 R>>endobj 1433 0 obj<>stream x­VÛrÛ6}çWœ—Ì(3CRÔ­3}èÍŽ“º¹˜oqÆ“ÄTLã¿ï¬ÖÅ•FBXœ={vÀ?QŠ„¾)fÆS”M”Ä ýóôø|“y<Åd2‰34Ï“8ÝŽn¢ñb?n§yœü0»òozå ‘MÆñ“ÄÙfôÓËhšÅ dãà%Mçñd;r^~-¢7 (–Dw:§—ʳLP”ÃííÀjVòÛ×1^¡TMÃd5µäH_G FiBdŠjP Îtç*¾d­°ð“Às”Ä¡¼¹È‘¦Ü(›:´«%ìš#Ì’Â~6ì®`)Ø µ…1$‡–Õ‚W¨åRé†ÙZI°{ÕZgˆc¹Òl)Úª–+0øÈ¡–`B€S¯dÃ¥5 hw1Ž)yÄêž•ÎüVˆÁF×Ò’7«¼¥5LW ›ÖÆêtGÅšÖx¾%k 'Ê:ßaÁF¡¶0kÕŠ ÷dEhR<Ò¦!Š=J!"nzªl]/æ;]1½Vƒ_ªoL–„úaãÄé-¤„f3gV¬¹áPÁŒjÌS!QÁ¿o¸®FAÞk»&õ²h¸]«ÊÄ*Dɤ ‚Uš<Þ?B’ã¤&ØNoOsºs½úr¥®Îë"žawuŒuórZïNÑê@áóîŸndg“øþ©.Þfï13JðÆÜ fì“Z= ç­sŒØ¸}”GN÷›À«{ºû»Â_ü»ÅMØâ~¡zŽë°yÍ·'f–Žãtž"Ÿeá’ñQ«o\/h«w›¼3ílF³Ä]kžoù"gÓ9Ý}È`¶pëþ(¢OÑ‚´ endstream endobj 1434 0 obj<>/XObject<<>>>>>>endobj 1435 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ °‰¡‰ž¡¡%ÐÒ Ç”²Ä¼äÔÿ‚’Ìü¼b×®@.4~$Ãendstream endobj 1436 0 obj<>/XObject<>>>/Annots 716 0 R>>endobj 1437 0 obj<>stream xµWÛnÛ8}÷W ö)bE7ë² t‘¦í"ÒÖXô¡/´LÛj-É%¥4þû=CŠ²ìµ‹t‹MÅÔp.çÌp†þ6 ÈÇo@iHQBE5ñ=o†‡Zó‚’,÷bšù1>‡øS’V“oàuj,$3/¤`y3J‚Ä ØÔÍÛ8£Û†Þ³QJüÏGæÓ‡×“hæÃdìϰ¹¢(Ká×®¶ôq2^W‡—¤¡ÁsåF7 g°dW¬û¹ Ò8ŠŽ¥£5,§¹—t“Ë0̲¢<l7ð3øs ¥± $P <™ë†@0’f>tÒÀê‚Õì kV#]'Í’>™¨¬nY.¬_³é:©õ;H{¿Qhàö1›ÕH×IÓ#¤½®Á5à5«‘®“šØƒAÚëþ˜+³é:iÊE R«›sÚœ[³8h:™q:Ȭê˜ËÍB5‹ƒž“½Aöç|rs— š¯IÌBJâØ‹ü„æKs€|šWªy”*§w¢îÄöÅüË$/á™/¯þ–J—MM/»õ4ôý”å7w9â`«Ó8 ½ ‰hÊå—Ǭñ¶n¥Ú­U‰Öîù&Ÿ¦¦>±i¾‘T5K¹ÕôùJ·ª+ÚNIýù•5")dLM×VåVj*DM I­µfÓrÉ…*›NÓw±Ç£l7ÔÂîN5k%*âq$ì?A)ôþc¢BM-c[ê¶7RI£rsÇd¨è=ƒ¶nE½jy ïêwšoJ}ÒØ%]V»ížäü-Äq@L+ÕTæã$˜EãÚ©²ÆÆ²eŒf»¨d ˆPñÀ¬Ù À™%ûÚRÐÔ ¼%)Š 5;©L,”p »mKzÓtÛ%³*ŠBîZ±@mƒöÔ¬Œßû—·Nüöä2 ÑR+¾2È•î¹ Ð* yÓÔËrä“”,wŽ]#Ÿ¢-rmÐÂóƒcZn…âx º'ª×H£ìã ‹² P9¶ôn ÞE¡­©Oån{Ê=³ ª>T¡–Q<›®õTI±d.ÿ Ù®v5GruÙþ?ÉÞ5Êäþ„°¾˜¹´„óÁà²ð<ÿñRóTrY¯Á*·8ÄbKuW-Ð6½»7MÓ£7èô\ß‚nç·&'ÜôbJ¶v6ØÒã©`öZºÝc4m¤4¹dšF¹† 5÷pv‰D¿™¿»ÿÅ|¶òé|>ײæFÞt/æòé¦SÈ)GpŒé|§ìæ¤fÐcp9Mq‰2óóÕ“ÀT“¦OHþ0µ-|‡«f»m¾3v¢iTàhp„HÂhÀSÑÔ­(kÞËóË\ xúýæ†Ëo¸'0ˆ¥\ tåaèõ0|Ê9L ¶Væ1-hº2#âê)ôÊš‰»¢?†7f—‡HŽe;fÃß(h0ú ðï; 3ñ ÷­¢¡2xÀ£Ã¡ƒ û-ì9UXà^vžM&"ŒaGÁAcv»]ÅòC÷¬Åð§,šyÍΙtsæyAºÝ? ²oÐô<‹£v~)DtJãŸQÑ\ä±ï«—ŒÙæ÷\c‡VyÉZš íyÁõ ð’1ôŸ06t×`62×Г‰kO‘»õ…˜î} ¾0çèòÌ—©Û5M}³e|ÈØ^Œ/³©û:’üêÕ|ò~òàÁzendstream endobj 1438 0 obj<>/XObject<<>>>>/Annots 731 0 R>>endobj 1439 0 obj<>stream xíWÛnÛF}×W ‘&)Z’ qún¢öErŠZÉ xQÈeýøžÙåòf[‰ö­– z¹s93sv†ü¹.-wHÑl1§åVeÆ¡e8ZÞ :d¹ 61¤³< $_(J¥È¹Œ²´ 0HiÑ /Ä–6G*Ä‘1a¢tOqîË`/ è†q¹å{·GyŸ¥¤[zûêÖ/? ²T6–Ûѯ£‚ ³’ý‰oAr¨`•ù1Ä‚(… )£P¼Y~´‰Áç¢(c © "ÍRØì€§lGEô— ¿ç¿Òa òkF›HyÜ•i¨c^!¤Bÿ)‹Òõx¢¬Wr­G±( +Ë-ñ¹ bcs"˜°¥yŸ Áà ¤²Pº¸qèJWË™|Ôk”¡ðÉ ÉÚ›½[Z\6;JÕ’þ®‚®JX—ôeW<+%Ë·ay3öÐÊ¥*I’3×ÍeqÍê8bÐÒÈDÞ÷„tM%x‹kZqî­lgu-!mEp$•Õ0Kð'Ä^Y6;€\ª wÏ4`wQqØÂ!âãÌko6Wñ5ñ¨Íša \mKãò-Yj`CSê!Ò74õN( …¸ÖDéòH'ô%ˆKQü&m‚S[›/Œm–€¿$b‘ˆDâPàl¬²m›R˽[ëÌ›ãcXå´Œc>-& HSÛ`*dÑumg:5y¼tzy¬¶ëL–³q­ Å1t½?ë¦uÑv®É³¶¨Q`^£8‰ãVQ“¯ÅzüÀ0g—ó©pLâø÷ƒ2¬@Cö3ËdH¬ùSDI^Ц”ô5’÷}9aXsóêÝÇ7œ¿“s=Z~ø«C`M={>ŸÓü çñ“hy Û½B·w.1È Ó´{àâ6_M5A$š:FO.‚-Sâºu›D0R9î< t hm£ÝS$U#,y²™ªÆy8êÆùüÑ9¢‡Ó{¢s>ˆ £ã±`Òv¢j ?À'ÁÿBûà@Ö†Áð,uðHä§?¡?DÎ^¯ c0¨³;·Þ¹å9ÎlB‘¿˜Y‡ÐŠ£´üfíÓÒRwšå> {váìe¯½tý‚Þ }D‹O÷둾ÞD±X†f0aÒ ×ãõø™j -¤YìˬhEgEÃÜÜ’È'îzŒÖÌ7 Ö·-&îÐÝD°å€Ô›h÷ô¡*÷óêC›_‘;1_¶´"G­ñëU'Ñô¸óúî˜ÙeÓ\;,®X[W¬aqEŸ“ioŒVçKWú|óhs§³®À¤¦~ÍÍ¡^åiÉ·.nÌû‡ço@³Ë…~»Í3¼Š_Ñû Åë' [FÆš;x“ÜŽêÙÅ÷.mׯÞnÍKÿzégµ7ËÁoƒíhNkendstream endobj 1440 0 obj<>/XObject<<>>>>/Annots 733 0 R>>endobj 1441 0 obj<>stream x]ŽË Â0E÷ùŠ»Ô…1I%—‚Šü@­©TRƒ1ŠŸo*êBærîa®„ƒåáP…DÝFYN~k· RP©%eè`ÕŸÃcOfö¿O—pÛd³Ô öø2Øz°vÏ„½«S.S,o¡i}rqhÏd\êOMð‚rÍ!Dî61<\4XU—{å{rôFŠ™7bªÞ¡ ±«RÏL §JêüBVè¢æ–lÉ k:¿endstream endobj 1442 0 obj<>/XObject<<>>>>>>endobj 1443 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ °‰‘©ž¡ ÈÚ€ü¢’ĤœT·ü¢ÜļkW -$dendstream endobj 1444 0 obj<>/XObject<>>>/Annots 755 0 R>>endobj 1445 0 obj<>stream x­W]oÛ6}÷¯¸ouX‘dE¶Û¢@‹6[¶[;c{ VÐe«•DG¤âØß¹¤¾¢&k† ‰%’—‡çž{.}= ÈÇO@«–1%åÌ÷|¼éÿÔ{~ x½ñ"ºð#|ñ[KÊf×àõÊFˆ/¼‚‹¥wAq{‡:­é¢O”b?ÆßIˆa#ûéó/vj´ °[I« ‚º‡‚þ˜K –k/ ~ˆçp`½À÷ÄKõï­ûÑeä#ð0G<¸â—XFôr<•'ØópÕqËÇ)áÖB_Ü;u~Oˆðnªeä£2ÖÝÜ©ÙÜK•ÊÂz­k„”æYÖéùåÖzl_#¨t.EXZ"Zyôc\ß(÷ZM•üÎB®LnMÆŒYe߈:gŸ·PXj{Å=„ŕɩvMÂSìØ¸Z7mÚ#ä›ýÍH,\È(&ƒ m›e[ðîˆP·ÛsÀÞç7,òÜñÔùÓTæ?±ýa~0¾¥4d{ŸþåéUÙ«„½hà’àFnvZÚþÁÜmÆu,°ë skcw7™÷6Þ¹8:Pw ÑG™äÙ­[Ñ]ßælâ‰)Ú×] eÊ5ÍÜhØ‚¹qŽ}¹•â¸ÁôÍ¿·ÐR‬§¯Š=8éÝÆO¦]ñ½Œ@rÛÝ]áŒ7„¥óM®shÂbvõ=ã·ø¬š#Ó~ך®mwRÄèºAñjïêi—‹ÇºÐ‡ßÞ?Ö…ÜÔÿv¡¶…ýM7O:IN–õŽ4zÿ#mYnî.ƒ©_Ã>äu¯@ ´:²åÄ—¨@taÐ( „á&ÆôöŒ»¶Óݨ+¾"Á|àcLàHe“ÏÙlzaW»ù2²»óˆ“û8׸§ÉN1öotWžàòÇ+oµ¶íâǯ>‹nÖbåC3“o3Ñ&ðVÝ7£õx»}šý QH£endstream endobj 1446 0 obj<>/XObject<<>>>>/Annots 765 0 R>>endobj 1447 0 obj<>stream x…RÁnœ0¼ósÜHÁkã5QU)‘²=5jî•Åš-¶·Æí¦R?¾6$¤Ñ*Àø½y~3óàGÁ@ÓÅPÉ|w¶ „¦Ìº|ùP0U ©¡°à¢Jï%ñXðº!|E+.Þ Œò|¶Ú¥Õ‚UuFç(ŸR±¢5Ÿ;­è«ˆyŽY$W‰¯¦™‡§'ô…䤤ÍÂBQÏQf¹k‹íž¢AÛ'«R¥ÍavHÑv›aòý0F0ækçݵ‹ÎAŸðWí÷bswËÉàRÙišc¼¿È‹ l÷Œ-T%—‰j³œÇß×8tÚaŠapGD4ñ[â¼5ð=R€S09d¸óÖjw˜ 'ô~ýy" Áj¥LÙÁêΔ¥EÉPöÿŠ[ôþÁ"¿÷Áê˜D¤æ:òÿ™À¥ÓúÒ©Ê:ÌSÄ£éâàÝ >ïû´›'¶Ý«çÁpV¦µ¨Ou¿LhðQ»ŸzÌ­Ë—’rGó×Ú(™Ó¢®É.ÿ°)sÿ¤íi4sëû¶ø\ü®W½Äendstream endobj 1448 0 obj<>/XObject<>>>/Annots 774 0 R>>endobj 1449 0 obj<>stream xÍWmÚFþίå‘cc@­"¥J¯”‹òBÓVI-fçì]Îk_¿ï3³6øÐ¥UumÕœ‚ì}™—gfžß " ñÑ,¦IJY9ƒ+ÇŸjË/”ÎABÓ0ÁsŒÿ•¦Íà†",ÏDB: bЦ“`Ji”‹?OæôÌÒkJi˜â÷LÄI‘<½ùi…“`AÓÉ ‡KŠÒ ü[Aoñ4†i)vãÙŒwåw§ld‚ß9_MÂãoFÓ—ºÝ8™@ãÝdL -¹Q´€ÿÆ›?,ãË”¢ˆ–Š‚dSš$Á$Li¹°BZfÃW•½ÕÕ‚®”iTñxùyÄ0t€–ëá;]¹ÜzÚlGqÎx|¹ »%qDé„FiÌ ߀<»©+eœ?›´„4Šç€G~ÝiCÞ=ëw¤¨Þi[éò‚òšœ6kÇ+„m»¡ÚbÕ‘mê}SÓ&/4åw\­ÌZUkÚØª h‰ w–Ø(Ž&^qfM­rã.øèiÔ…ÿ¥= –D»ð¦Gó¶DF³`ÎÔë?ÄéLÜ_vžÉæ1•+mšr¥+I`÷I.GdòÍá¬"RÝ3Œ ÙÊõÄê¦2Œ—ãBÅžk¤ÈFÜ+òŒë_n=„yÝd-}8ŽàoW/âÒ™@æ!vju"xþî÷–®dGWRUÿ€;€ã„²¶M.i'õqÓhÃTÉTø[Š˜‹#Ô[—›¯Ž¬M¹£½ª@q ]”ö‹§ÏÞŒ±ÍÌ5¾R™N°]«­Hˆ\ê߯ð]ÐkÀë5‚Žë=Á€p[©’íìq²ikZ £ó §JMël[[ä è®Õ.¥)´¾.(šµD2‰=‘üâ8 '¥”®„˜qfh–(°¥·Mø¸Wÿ!·µíãùaè>¨j½G}ûöÑ„‹¾µºFŸå6šé¢Lx×De]°e Ú¦Å@u.qKV5Õ܆NÓY´´¶'l»ñÀqCYk—Uù M¥ÈJO­” ½îð¶°ŸáÔÏ΀ ÎEUc„^Ú6sîCÌC»aÈšn¼èlB8|ÖÀq €ÇHQµAùÎ)Óƒxé玳`KÍÞ k/éïÊGÒ¡`2D†³­»¶3wxõðªdã‹ÜI™Š.o…¶ÕY›A={6<‡õèÿq-Ê6MÊ9ž?kŸ˜ÀÆîr´µúÕ‰G2[–èßI¸O¬ÝMÃ9±BC¾Öì5^¬ <ªhKûÞ¡+é=ø æ>YS>Ò{ßnðÐ5E>/XObject<<>>>>/Annots 795 0 R>>endobj 1451 0 obj<>stream x¥WmoÚHþίõK¨Äo€¹']¥æt§kÕKˆt"UÆ^`sÆv½ë&üû>³kƒmHQ…Xxgvæ™÷áÛÀ%.ù3þÄ»3qprx”~¡™çOš:¾{ø/­û¬·æÓÉŒ¦S¼;rgÌißRº¸ópâ¨^èL•µL—Ÿ]-®àZ0 À¾#Ïu Â¾±PϛἡúÞªTÓSè.Còƒ Ô÷ Â¾¡Aˆ+ ÕŸ2ª#•…úþŒ-í!uÙInà ó ¨°oF¨Ëʪï†p¤²P×YàÙº˜šçãÝÐÇ%óbj4Ô4nBl˜‘i–ƒë€qi¹F€g᜖‰‰«CËxø9ׂô6Ò´ËK|Ë(Ïð¥Œ2µÎË]¤ežQŒã• ¨(R)’)ñ]”Q ŠjBË­ ¼0¼ï”.e‘F+‘ªw¤Eš**Ê<_™¤ó÷ËÇCc8É–a)vùwÈNS2—(Ò°ª´P€BqU¬¢¾…0|ë>:]eìGý•.*Mùš¾ÕUª‚ä=[嚀´„"e®ÈŒoèœ"·¢lß|ÌW#ðǬ¾¹%_<"ÖŠ$ÿ7Ò¶ R ȵŒé±ÊËDAIBJã•ɘkýbm»¾Y Ó8JcßµV~ÎiÙ‰iÇsìq<‡­)ƒI"9KTnªÈ4IEù]d£¶iJî øD<#$ ž½gBDë2ß™W˜ˆ/§®e*L®oZÔ(‘i&æªîxM q¨ª•ú«9œ 0æ~?C4—]kWÇl×­ÈªÝ qa„wZê,A?ØlyPG&é‘`VH÷ê°NMzLMô³–BÅ 9ŸDokÅy¦D\iø”óá,µÌ6ô$õo¢ ·IÕ&Á[²iÐ4êsàhõ5ÏÒý /'SOêó.í±õêX5…ljÀ@fÇöÄ4>x]Ö[²¡‘D¦…g!œ¤Åç¯\ïéïJi®1Ó¥.ÉW\|š©Th/†-n†ìÄÇ”êç‰Ð‘D ŒVu´ZŸÌÖ>Š•UÊí®¤"W¦†ëžÚ ÍÙ¼1}¥ÇØxþõžÏ‡®¨ÜWÕiSoI޶´KÄ·XO䣩¯‹;Æy7ÛQÖíè^I…ø™éiCébzÏzÚÊxË ±T›ÙÅ£n»/D96¡»¿—Bå)š æm:È-ô"LÑâL¡®d•{v9GÖ.6 ÓíÆóIÈ»šçƒ7›×µÝ,†x˜¼Œ#ÁôMªÔŽy%¾UœŽÈÖýWÔfåÞ8bü¿ Ê¤ŠTXëme7}GßuªýÄX±¬{¼pâ.Ž¡°ûFg¥·yù*ŸˆVQ‚¡ÑˆÃ`‹Ÿ÷#Óé7³ÓæŠHÞ’ò–÷Òd¬§›X¢0½ÇÙÚÀ;ÜÓVd€nÀÁˆ= Í‘çÙfeHƲ‡÷vuÊÄS+ñd‚±ƒ¶ŠÔ[íyéYÂ3îê«]}ÀCèØØÛjX¢¸ÝÕãC“ßòRn·©ÞÜhÊ` kÒÏFõ/OÆ­Äíºó¿Ó²Î÷Â>À:CGR ¦d¥ÿ>ýc×°¥ÙãØ%vV}Íg†;ÆEÏPpb%ðöî‡85MëØ¦p¯½ÃŸ(?oö™䥹c@0¶VÊt·vN7$o))¸åÒzšN>mº§‡ÍEÿœ…SûãäK½Š2üŽ`üã†gŒVendstream endobj 1452 0 obj<>/XObject<<>>>>/Annots 815 0 R>>endobj 1453 0 obj<>stream xVmÓFþž_1â Aº;¯HH­è¤£½B„Z mìu²‡íÍí®òïûÌ®“8¾«Ž"DÎëÏ<óöìÜ÷bŠð/¦ùˆÆ3JË^4Œðæôóñ÷Þ4Nh͆ •4£æPЧ^ëXR’ g-YëXR<š G-aû ét|òÁfÛgH“ÉÅ·gtþɬ/Msþ&øá¿‘”÷&“épLÓIó%Mf£á¼9±›öÒdqÒe©7:žÂuIcF0õÁŽqäS'cÄNüb÷Gé8Á÷YÊV'£ 5ŽˆÆã~ób‚ωŽàlv’Žã1 œ¥Bœ°ñ’FsþNþÛ„s”ŽQ—¤%õºø!\B²¨ ç’ëC#œØæ¯ËÞËë Å1-s4Ð,™Ó2ó}Ñ2í/7’¶F¦2SÕští¶µ#e)Sv[ˆƒÌhu ƒ® ­ŒÞ[i¨ÒŽ„¥¿?Ü\Ñ Êx¶º”䌨l®M)œÒéœl5™ŠÚÊË»^DŸ’eÖoĨ.%§IT¬OÖ i7Rº+r²(+lôžµOŽHUxýnùáfظB/On©ÉJ@ €€·6©¼¢´Pé7zöYÉ= Þеˆã“>£/}m|dnà õ ÷åü\¦d¿Q…¤Ì4P;‘nÖyÓ;‰ÆG¦ÔÛå[BêèÖè4 Ÿÿ‘ÇûœÝÑZ"ÙIc´y€ýV¬OЇ_^0€—×è „ÏeŒã‰÷Ÿÿa/:·Aå܃w†o½åZ *èPß<}µ;\~Ô'`î(ÁAW‰kœú’qí\V§È™4ʤH`ÆoÌg™R„º’”ndú ¢½rŸ*z¿;EvÓj§ i|š_^G´h"ñ|"0o<@ 4È=ò¾­WVº¯^0Dÿ³Õ>½yDè Ì.ƒƒÿÑŒ­ŸPYÚˆ$Aº*4%wØJËÓ`ܾêfKU˜·K“ý«®oµU\Q<¥\ÉýW{(WúIͼPÛ§¬©Ê:Q9%œŸÞ3“ô¯Â§ÇæhÂH«‹Ý}ônö 2‘ÓYÅ–˜‰KûýÇ­þ¸QÊ´§.UíÕ•ÊUê¹ê5šÃLQ(¡\ËJDœQ®Œõåi…Ç|'·î¤¯©½ò 0ÆÕb~84lîa<±Ý P04*“(E* N—*eÊ(ë€`ÑISÚ.ÇpOÙÌ’áÑb÷B »Ú:ä~@÷ÌÿgG5£öËÜ6ƒ 6'?M5]—`ÜîW}Ø8V —æºñ3j™ ™Vs¦en;¼öt£+ "·ŽÕ½6×pØ­:¯ÕEÚŒ'e<®kÔ€>/XObject<<>>>>>>endobj 1455 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ K°‰±¡ž…™ÐÒ®ü´b…’|̼’b¼kW h$Hendstream endobj 1456 0 obj<>/XObject<>>>/Annots 828 0 R>>endobj 1457 0 obj<>stream x•VÁrÛ6½ë+öVyƤIŠ¢Ä2ã´Q›C'ÑôR÷‘„ I(hÙß· )1tsèXÖh `÷íÛ· ~ŸÅá/¦UB‹ŒŠz…ž\¾Ì ÊÖy˜Ò2Jñ;Á¿‘´Ÿ}§WÞC¶ Š—‹pIYœ…1»º{Ÿ®éwMŸÙ)eQ†ï‰‹k ÿë˳$‰Â¥ù ñjZ$1tVE_gë˜ä)‚Õ/–‹ãeŒçÃjGaÖ[¼ºä ’t®ùh¼¸Xþh’óæa†½¼šåÉg|4Ê‘^gù£#«‰§Èïí_íq>>‹ «+¦oäyd×”Ä+@¿®2§1€®§œf |Æ«Ìs´Î°¡3ÎÈd4Lîuñívv·ÉÀ m÷‡é:¡,MÃE”Ѷôšˆh[ÌŒ~’&§¢iEu³ý6KQ³l lËù_ÒX¥ºoAE+^¿Ûp’ì5H“$Œ³ç)ŸØ|Ú½ÏnsÚCˆ(HÖÈ¢ÛCó2ÖŸL) m´©ÛJ<Þ@‹e[8Ž©, ª¥;ê’ôž„s²>9ÕÈi²ª>Ujÿ‚-'£w•¬i÷ÒæÊñ&Ñ0†>|`ù½UO¢’#+{UM)O_ü¨Ýõ¾lH÷äŒzR¢"ù,K2øôø$¹£¤B7ßdáZ´O—*JèÙžßÓÛ“ŸóQ>sÊ î×öµŸàÍkW¢)§ß6ÞOb†}”$ƒþAû–ã÷d]in­ôD«FÙBŸä@ùß¿‘·ísPkÿ ᘠéàMŸ¥Ù·h$«kP"àív’ݮҵ†¤°ªz¡]¥ÏÔžU.4“ûLûN`0„)oIí=iW°€_@ <°„ª|Aœ4À'€æ¬Ü@Ä$ü^žQm«´·¤ÍàtTmFÏSç5¢_!åÆÃÐF©H¼€ë: Ï2Þiãd ÍséX ÝP-^€Ù½6ÌK£D}_×Áˆ ['EùxÒû)+¶- )9=)Šã$þ5O®ÛA=IdÓ‰Q›I0+…)ŽH¿l+9•Ïûæ„BîUÅ$!à‰SBÓ:Þ“ÇùY1Ôç¨-~Œv÷yÝ¢9K:f|Þ´ ’ÓƸX5bÔ¬‰eBªª¸§€Æ¤ÐðÕå UðCuÉÀçÆƒ,^ñ ÈX$]“Ü7ô®ox¸6ú2L$u·ϳîßX@0Œ‰3Ò› yÒ}Sy>|¨8¦l×^„Ö1V¬®Z?÷ì *][î)ç«ÈµÙˆ³_,]ú“•Ù÷G7§àÅOÂErgW= ×çXê—>¾zê¯å®CWOÝD´ŸLÞhT>ÞtÔE”÷lã^õ#i¯÷¼ø(Øû©Æ=Âl…ÊžÓ›ëÖ½.„/ߘ~Jìê MùÑ€ÞÿQî½^£úÿˆ’Ÿ@ÚÊÉHÔ„o¥A"<ŒS{UðýÂ`%WÜa¦iÔ¢Ä|ƒ(X}—ÙÒ'ÈÁÜvÃÉHQ)ëT18ý¯JíØM ÷½”È:†ãùÛï¡§¾v‘.j_žòÙÑWÜqè¥_ÉKGxÙ.a¼ø/0ãuLK~ Y¯¹)ß׋`ج"áÕ»Bšãððæ‘ÇáÝvöyö/x«4fendstream endobj 1458 0 obj<>/XObject<<>>>>>>endobj 1459 0 obj<>stream x=Ë Â0D÷ùŠYÆEknê#Y*4;ñÁý’¤¢ô¡ÁŠŸo«(3Ìâp`î‚ ÆŠÕTߊ- •«þ'1wDàšŠœ a­,8|,öòúgL»ªªfÆW‘ýÔìëJ«'\,¹Ñv<å 7ÊWÕÞšˆ¾†Û;œbüãÒw“[²8Š7ÚÝ(endstream endobj 1460 0 obj<>/XObject<>>>/Annots 846 0 R>>endobj 1461 0 obj<>stream xÝWÛnÛF}×W ò¤&Í›x ŠiÄI…öÅ€±¦V^”åÊJÿ¾gfIKb’¢HŠ( ZÎì\Î\õqR€¿²ˆâ”Êføž<|˜ (Í ?¡Eà{„£i=ûH!gb!]ø…‹Ø_P¦~Ȧ._&9=ïè-¥4Hñ91qt$ßÞý:K’œ=-Øk(Éc?N5ý&†qC-üœÜE‹5Y~<°, lt†iȑȉ¥1#ƒVó fÜá([D ²Í)–ÃQ Í(–ÃQqˆ e `‰åp”…‘ŸB†!lÇrzFÃ= ݉…Œc„(Ò)ŽÃF3™EpëN|+Z'Ò8â"¥qrz7R§RöèBœTî—åìò*…Œ–k ý$(M?RZ®¤Z–ókÓÝkSÐkÕîUýxù~–p”9šf¹šÿ®M_u-=Ýo¼(2–_^Aº&/‰"?LcòÒÄÏ‹„o¼±[mèÕÓçï¦7Fµ½»” ¡äE9Ò…îr«i§6šVº/Mu§{ê5¢Q5ubf'šžìVYÚª{Me×öÖìK«Wt¨ì"M½jX²Òt§zM7söó˜TÏAp~\‡±sÇÝÚrtH½ÔÉ©vE/[«ÍnÝ™FY¸¥(5¢ýc«[:h:˜Êj‘¢!B²ê¢WôÁiÕ<¢nMÝÝ{]Z8À¥F«ÖÝ©,†S­8'ÝÐÚtKÁ¿2+ªÚÝÞNÃåØ8ÑÁ$)£ªcçÔvöè9鶬»@U-9÷ Wn>º™ûþÍãé=ö6Ñ×íê¶[ßÖU?õò0iû7qªëªÖ­«kkUÕVíæ ‚ p·åIU•ÙìÝZ²èÕqµý_áÇ…øÁþ˜özÖaD[+K„èÓù¬Vû^£i0ÀäyÜ>üGy_cÈ®h°"êa…ØÀ2 ^æç̲ñ›(͆ÎוÖ†óbu?x)·ºüpt‚9ûnà š&âìº4Ƥ܌~S"ï´¬1j¥a ñVÓ¦ù|–×Ëë[ÛÝÊþGdÊe–Â|ŠÊ¿ Ûa—âàÌå™^ g1ü#ð 3a:PVX'Ž N»Íû…é-Ë£›~­îÁ œf™*ᣭ² TЂܽìª6Œ„ÛS¸ ÂwF|.°Î°ðF¶éö$!ò  %»ùdîTï”Ø‘^|¹O´^ÉÖÍme´¦{e*uW3™árÃ)°s]Ú·8¾Ç´²7ƒÆn%ä颸„qˆs‰m®ÊR9gÛáöÀH u}[µ·ª–·Ë«ÑùÅ”ŒFÕ¾küºîZÕýWí~èô¿`|Ju/>©fWë'¦c¥b7R†:c·ÝxÀ$تdÜÀ°§u®VØi•­4ÚbgÐ)B_ǧRÜ‘õO ,Ñ2½5îæ¸Ñ‰OKî™÷ݰ¥L~‡éµ2å–ùõç……Ùî¢S^¿y…¨Z5ª÷©êšþ Âþ“«vÔΔÏ‚¥^°»¼ ¨àyâîFIzq\Ül}ÎðáŠ÷æõ+ß ¬¤¹3<ôý$]Áqz%àô£"•ÛôóTç®ÕÆa†óXÞèN·¹Sûˆã¦X@o|ÍûòHKY?^Ÿ®€³Våv8™¨éBà2¶U¹åPN 暃ÊèróËlöÛî€Ù”Vrý‚—4é€vßÜûNö‡»Åù&b£bË-ˆ‰÷ÿh]\^tá=!§ÙÂóœéõg¿Q¼QËË4ÔWv$Eègã™"æÜ^,gogÆq=endstream endobj 1462 0 obj<>/XObject<<>>>>/Annots 893 0 R>>endobj 1463 0 obj<>stream x•WÛŽÛ6}߯࣬ÝmAÝ4 $À6q_ŠW¦m%’¨PT6›¶ÿÞ3CJ¶œÝ"Å^`r†s9sfH¹ˆE„ŸX¤ý–ÍEFØ™þ½{u±ŒÂDE¢q…™_ÕâýEœØ¥IºœV$Mò4\MÒ4N'K$=záOfO~E‘'ÐÊ£ Ÿü%v.†;»ŠjG(øˆ­[±¥ ´ ¯KÒ|,b0ÁÕ{nÅG¹L“t½žIÙkæ¹Éš¼ ƒX/K–9|L²ëÍÅÓ—ð‹Í=X¬–b³å֋Ħ\¼ø&›®V¿<Ù|‚^$ÖN-H2Ùle-‡^YÕ[e)-†2ˆWaÕb£ëyG<›$‡¡µ¡;ãe¿Îez°ÎÕZĈ„B Röôš-Ê1ê ¡ŽG8¯ª¯ªR $¡wb§M3Ô²¿ÄÅ(¬2´­vKšÖ(Ù² Ù(+m¥[œ±‡ªÑ{C ƒíÛcSkR4“ç b°iE'{§KnCñañz'ZÝœ»¬§ÈÄ]ebg”_¥©äm­z!1mö” Å *#†+Óã\Yë~0^ÈoÃO¼ÿ¤p%Ù BY–ª³jËY;ƒ3"&ÁºuýÑšAÍ¡\\r9¨Ò^¯×ú)E2¸“uÿ£EúÌ;[}H;à‡–Ÿ ÓG«?rܹ>!aågêGµGU`ðãÞ@.ØØ%)Œ X€)·xÕâà”û¡²tUs=Ü>ºá‚¬Fâ[Yª,/ñÑKÇ…“TN–mg; µ–[ÿ~âñµ¢oDßüñg”ÆAv3*NÛŽ¢Ôžx8‚$@‹µvnRžéNÃoÚŸ8=N>ÔÏ =¼YîõXÚÞ"ÅôüL4Ú0 Á ÑU=6ô^¡TæÑþ?³ý›*ÂÉø}sâÅ™41¾•ÄÀ¡Èé‹A羕í kRÜb¤,#¼c·‹uFÛY†/nùÒþüä=K›‹ß/þ¾E)endstream endobj 1464 0 obj<>/XObject<<>>>>/Annots 899 0 R>>endobj 1465 0 obj<>stream xmT]oÜ6|¿_±È“RX²tVî£( 8hÝ>4‰c+(Ð:0xD*$eûúë;KJ¶{. ë$rwvvwv¿Ï ÊñWÐrNg ª»Yžå8yz\ý6[YNe±Â³£b^fóñ«¥ëYQæYù|»\ýçö'¼Ù#S™¯²½ËK¼Ïño%mg‹y¶¦³5ßw´\â'~pŸ`P”ð~¾|_ÍN/JSµE*‹Õ’ª&dSU'צ“d¶ä÷’ªËê’Z¡wƒØ!¦~°ÒáJxV¾­¾j1B%¤§ƒô䆾7ÖË&L±ö¡ÚtÔž6­©ïÜ ¹ƒó²›Žq`¥hÙ1§´8Cuª&ÑC·‘wšˆ–ÆŽå¼Òµ'³ù&k#¡›W§ô üž3lZIßã¥ËÆ ó‚ !ñíÀ)Ò=¢)£¹œÿrï¶¥VÝÉö0e‡ñHé~@ðm,ÖVµ\ C—ÖdÈ|µ,O3ø£Üöâ^é»(}oî$ òVh× olàxz±¦¹[é|Ù2­[onC‹ª½rÔ[³³¢#/î@A<1ˆ™X ³f¨Ùb"²ÈVœ@Â-*Ô›gtŽ$·[U­?Ä zŽt§Pa–ÈÈ“+…ã F9u-{Ï”:ƒÚBAÞªZ6T·Â9Úh £pëz+U /!ncZ—ÑŸ{©@YžS|cÉId4Ú?é32FG´Í!´è„7Íe8‚Õòa‚‰B‚ñNÝsO0 Nô=÷ êÕì€,Ð_Èa’V1–ö“m”6€v^hò”w õ*qê‡iòÂúPý#®­y–jáÐØôŸˆ!ôî„ÒL°Þ +j1G¨ ,Û~/0>- îöô&t‡­ºy›Qų®0UÈÿQ:áë}Èö&ù¢Õcêü¡…1ï†VX’HÅñ¿áïÓ‹b”sò7xåÇyúWž®o¿þ &½'oƘV¯«äw %AsB#šèzˆ;ȵõHZ?lŠAGüIP1JNëi¨Ê8T­h,•ï}Ol”üÄÏ/}½zžÎ3²Jèçhû9ñLá’ÎÃX}”ž®±)PŽé{äSÏï.z¬Æí9Ç®+àuV¯i}|@¯â:L'‹t™ƒwœW&Ôÿn€W}´6¼_¬7(ê´…0âù‹M†³°È2ºÀëXõ΢\Ùr±ŠEZ¿ã£_«ÙçÙ¿ýW5?endstream endobj 1466 0 obj<>/XObject<<>>>>>>endobj 1467 0 obj<>stream x]RKÓ0¾çWŒö”EMHvaiEÀ DAAHÐU5uœÄ¬Ážl7ûëÇÛP"K™Ïþ›ÕPñWÃí]ü…ÉÞ7YUV\¼,¾‡×ŸÖP×ÐtpSß–õº†wÕšvAUЈ|çÝ£ôø‚vB}ÝüÉŠ3´HØ|s—ÊoXb}ó–m›6ÿ¼ýðý@îÐìš4ƒ 0z×{4@ø  œ••'‚Ni hÛk' •·G-Ír^ÂZÕuJLšf8)€¢ôƒb¢ë€<Ú ‘”³Àe ª r¤hjœ—àe ¯„lAh !2»ÉŠ…–Z­HÂlŽN‡~ÒÒ /ÎCÜä Y!k[GìXþ8/ö+PÊÒËdVžÎ¼Õ22Ÿöê‘Õ¢CRƒã¨l@8cØ=°Ä‚pqbåWß*‹>Y0ÈBK«Ë(I{ôÿÍf Œõ´$¨ÝIz8þâ9‘ÐÎ’Aec b@‚¤‰{d¤~FrŒÀYöùd[FÎw]òsô*¬bÃs¢$ïKÂ>ÿaÕShÖ f§~ÒèA>q³!ðå]ýæVîã²-~UÅæpÿꪌìc“}Ëþ3õûendstream endobj 1468 0 obj<>/XObject<>>>/Annots 902 0 R>>endobj 1469 0 obj<>stream x½VÛnã6}÷W XÀ,F’e]úP ÛmŠzÙmŒ>0h‰’ÙH¤W¤âõßwHŠŽíuºi 4AKœ çpÎá|žDâoY óÊn’ß?úÆ<@š$E˜à÷ÿzõä3Dø:³Ò‰!ZÌÉÒ(%‘ uû!ÉὄO&(¤aŠŸ!žÙoü<ÉR ”øÑA¤p-ÜONqm‘cjkhמ;ˆãIŸÖ⟒³£[b!öÁ¸½[NnïRˆ"XÖ‘$!M2SXV†–åôc/Y_À¯T ´½Yþ5Iâ¤9–¾¬¦²^q)à‡¡ â0ÌÌúí]1®Ö$qL¢tAš¼HŒ‡÷ûN££rɸ‚8ÇúÑn¹eˆ4Å?½íƒ.*²é¿sž¾<Á N±>t½kisxj#½“²eT´Xå#Á~ËË-”TÀ†A¹¥¢ÁÅ=×[LÍÎÓLA1}¾g -ªK«óô—v¥ì:´U3`¤!3·ŒhOKæ®tL±š–­,Ôêæ"ùg¯]Ï…^7ü‘‰ç\£|Ìd$Àƒ¶ŠÓ \p©]æ¶98ÚwWQÅŒ¬aýB•*ÅqQ+Œ€} /缚vôËzÏx³Õ3˜‡/¬ßƒþlý {Ø6»çPPvù!8é‚ì+ÖÏàa#_@Qf ŒlŒ ä±ìGZxÏvLTL”œ]t„!pælïêm e‘FPRªBH;¦Q9sƒb q½¿n å ' | d‡$¥Š!ô–jàÊÆ—¢=˜þ9A¤â=+5°º6ÿ0ɶô‘¸“=°/´Ûµl¼†ƒÆÖ÷lDú!WS:è¯aœY‡=o[T£OXl[¹Çþ.Üv½ô‘­…AÓ€“8‰: o­Ì¾C’”Þ™ ߟ¾XsQ£<Š’­n¾é}j|g׳ЗT³5ky÷Š8¾áØçuÅj<޾yAœÕÍÉ. ÀkÌÏõK\–&‚ÏJû8J²$Ÿ§Iö‚\¦¤rïgx cÛ»Ó Ê2a‰‡ÞrÁ(M{mNÞÞoÎõyúöBÓÞŒWƒj$‘>ÞC¶Íçï ì¥ ÛÒ/½úß4(ߤ¶yÁ5lŸ××u+2hdƒï%¯y¦Jwß·kÝÆ»r• 6PÉtp7XNøD¾@ 5’~Oûj†gç‰rdÎÅVǡ٫ydïÑ«mnF§pH»¹7Fiû…+s˜ç§fˆ;ªÚ "ULá!ñí¡b;< I[¼BÉ1ó ÞaBS.ž@QeÏÝ3ªnÇ'fÔ4L/;øH?¶F"p¢luCKGÉ Á‹Ê|™l½nç‘[œîzÙÊf­ô¡eëGÚsºi½f¦_3e”žëÎhî IO‡V;]riýhã­áp‘fÉr+j~î{š#od!–ru4LŠˆd~Ø,ìxùÓròiò7ÝâVÕendstream endobj 1470 0 obj<>/XObject<<>>>>/Annots 919 0 R>>endobj 1471 0 obj<>stream xµVKoœ0¾ï¯˜K%"bó0pÈ!•ºUÛ¦ ‡JM…(x·4<6†úó;¶ ¯eÓDióØðñyf>όǹ_Q øMÁaò'-WÄ"ø¦ÿøò~å3Ë8¨ëZ~‡ ¸Y1²¡m…#Ö¦†&šºŽô£€´Tœ2Å…>r œ(.`– žGˆæ(ªòè9׳u¼ƒk 9ÇÇ·.ÑZ”O zÎa>à&ˆ5H‡  IÑQH’*9¡š¤Äò@#IÒFSß™°JÍdVJÌ ªÓ@ZªäØ6S9©äèõP_ê(Á÷P«½ꆊ£$ÄZi¤äŒ0ÊaÄrÆì#zV ’û‘•¤®L†F½Z¦³®*©ž%ó6š7”ØÁÅ:Dm±óX€™j8Qj¬E]Âu²ãpuhë2ió6uÆ›³è×êbM Ôv¦`Þ¢Ìhx{kh’jÒHÐr²Ü¸=³¿Þ@Æ·É¡h­ä ¦ÚúI žˆ[e‹«;KôT8¯¶\ð*å¯ 7xy~ཨSÞL“òÂ]Æç-ò2o_S»xvHû(¯§«f£×i‘UIg•Lš&ßUóŽ)Dc§ÝÍ6w:¾Ý5Vu$gÜSO®½4é9ˆ¤ÂÆþfR°,åÚøð1Š7W_¥©ñ]~bG>6Ýi©yÕrñS9ÿR­Gzµ¯[æUÜÔM¬ÊþÿÔbÉéÌŽ§ŽiãÉFÃ&⢄O"ã"¯v¡² ݨY.H-­&&ƼM{äVÖa i¶dpYìë¾(òYàïÝzÞ6 1¯¸hx¼ õèМœŒ'Ç'x99ü>Æ‘û—cµ´[¥ëEé9TÛºÈú uP½Û£8•¦'{`S 7x ¤?áZðý¤¦£6XH0ÿ½Oª,¼À «®’ba×CÊfWβñQa–¦Ù‚”½àYž&-9žºÉ^pAL½tÒ/Ö^úòþµ©cÑ€ó˜>/XObject<<>>>>/Annots 938 0 R>>endobj 1473 0 obj<>stream xÕW]oÓ0}ϯ¸/H™´¦¶óý°@tBbh°> 1E‰›òQ’”ϵÆi)Ýè:ÁZ)Íɹ¹>>¾½q¾~)ø l’Ò Á+Ãáý¥aûV^XJ 4P7£–žKð"’D)¤IÂÉ‹'‘ }¡ëÙ*-cVØ#AÒƼ^`Ñ+¹˜O x– ˆ;%ç>Êê94‡bÁQÙ‘@sÔFQN‚³Q°p ô1DÍÙ• '戰¨×bK0pÌs´'­a¶+9Šé\PHc,¬±1jÄŽp Œ“5;ÆÈºbFš•ÖQ9¿Þ¹ÔÃÂØLSÍáŠI (þˆå `àW; ÏÆ äå˜ò\0/æ»UØd0a¾Àjõ>/XObject<<>>>>/Annots 955 0 R>>endobj 1475 0 obj<>stream xµVËnÛ0¼û+öR@b™”,™>äÐuCŠ4ñ¡@S¬ÍÈjeÊ%å ùû.IE¶NÕE‚Ä«áì.gÖÏ‚?ÂØü®¶#â|Rÿ¹½…3ŸA̘O` sZ9ÜêÇG>cÖ0˜ã‘Àb4˜úÄÖª‰Q!‰3ÄœqÀèÌa&`d›Æs‹±ØŸ‚3ê€S›RåÓ5/dS$lbx_kpcüp:µNiÈü¨² xl#•‘j£…Ä$‚ ñ¿³ê AÄF¨ ³ %dÔ`Ö¨1Žh¥s–­®”VW ŒΪ™3£§I‡¡vÖ¨!Åe*à ß·äüÕ"0FÕ¼ƒ§EÙλ l3×}¹5ÒC•K,3.W¹àêÞk¸ÁKµ÷k¶ËV?’4{2Q¼ÌŠfø!Ê Žü»Py–nJ¡Ëä!SºUäÃ…[²4I®ØGնⵤê©Ñ7%øºÜüUäçµ±¹ÖÅÖ•¨Yœ“7>¦ Ûß•-ĺøÿtŘ¾v~2¹Û—‰.ô‰êàøüäü´ÜTòNs S·†ÆYCÞB[¸á8óWòA(!Wn÷¹hή™yvræ¿e’«§D ]ä{œ»îNªz²ÕÍÞ ÷4´iÒqÖ¬óÉëå¾6‘B­Qõ‘¢~`åŽ\r~aá®6·L2©KŽõë†î—¿‡9èÞý–g¥P>/XObject<<>>>>/Annots 970 0 R>>endobj 1477 0 obj<>stream xÕVM›0½ó+æR‰•6Ä6߇Z©©ö°ÕvË¡RS!—,-˜-+í¿ïØ&$QnM$ÈäùÍ{c{0¿ ¿|¶Ia‹à?ýåñ£Á¨åç+€( ,ÒE9|é@Â4ÈB9TE=躎CŠ7œ0âi"µ-\õ ãg ŽN Õ~Bßbà¨@b¨E°£AõD›¹è±EÔA1ßWX࡜0UN€º3uíAÈ9ê’ê@b¶PÛVU5ê¨'†RIÎ*Ã1*è!'ÐRR„ÞG—+T`½!B´Ç•ôü±S H JÌ$Oyµ5ŸË:~z}N«¸Jë2o›¬Û ðóvéž·yjìMôÓ °Bë ™uÚlMùßzCµ†y™G£³v)Ô¢`ŠÎÂ%m©¼H£RfZ˜¢.µÑžOåLýg©°\ÊA¢™â#ÞRr—ñ–ÈDÖdDÆgãÁ¬Çendstream endobj 1478 0 obj<>/XObject<<>>>>/Annots 986 0 R>>endobj 1479 0 obj<>stream xÍVKoÓ@¾ûWÌÉ•šíîú}àˆ Zð‰"k±7©ÁvÀvJá×3»›Øñƒ’¢"5‰"¿™o»;ß-¿ _ýÒÒ¢„â›îïÝ+ð ?t…˜ÇH°“ xoÊ%p ÐCQß#Î.gÄßuIˆ†£@yÑ‚²ëøÖ‹|1î"h¤ô"TGFÔ’µUsâ"x¸Ææ®Æ"†ÆÐu¹¯1Æ•q#uŠN! ôÈBÔ4RºLƒÚª£…ã‘s h¤t=£¨Àµ 0¦³‚)G:FêAŒQe.dX¦… UܘT¢~îܹ¡ PÇ ½ŒÇ…¯×p¶Œ€¹¯°Cü2ÝâÔ^Ö›®ÄZÂU½IeÓäÕΫ•¬k™Á«BlÙœÄ_¬³%…ÈØX8!†gv#Ûkۀ̀v!ï’MÉ:¹õPѾ>!j1…£H )êë‘.ü<ƒL®Ä¶hA¯Úib:µkL×ÕØ{&ËM–4­ü–y™·âö)™ï¸VCXûí½Þ»ö9£”žB-*ÌÜÇB´qûü2N.^|PÊö'õÑÅ9ÿ%Ÿ"ç™é×Dgz’¿]À£òö G•vÆ¥êª ‹:ïuØ-¨>Oc`¤ïÅû«3PRÆü¨-ÅÚPËTÒˆJ O*p\º´¥iÎfl«¼Å:²Í7Ó 6_™Î„áÜöŸq¬»l`iù¼÷©â¿RHEšà±¹­2Q¥?'îìÓ¡•iÒç¾RÜa{¶²ÅèØ}Ì]<¸G÷l?ÜÂíÍÓ cг¿µ¹é}õT™þùúæÿÞmÝI¤òd.µóKý|ÔM7³=±’‰Þžé¦Zy:  ïóÑí1Uüóö<[†8Õ©)…3‡°Pœ“pÔÀñæVÖ\ˆj+ Êb¿fPœl2§3õÞ¡!q‡%|wô|ô:¶ÞZ¿ˆ úuendstream endobj 1480 0 obj<>/XObject<<>>>>/Annots 1002 0 R>>endobj 1481 0 obj<>stream x­VK›0¾ó+æR‰•6Ä6ïC­ÔT=l»m9Tj*ä'¥K Ëcû÷;¶Y¤Ù¦‰ ß<¾yØæÑ @ðOÁg`{ì b|Ó]¾¼7µ<ð‚À"°×Á›2øjؾ€ç >b”H-IP†*;<ËO ó=‹ëÙÚ1‹¶’éŒn]ß PåÖeŽrë»HN ]HËN€˜zŒ £¶‹¡%u Í•"¦…³u>Aâ¶:Œd´Ðc¶&RtÍ”Ða‹*‰RÇÅ»–z«ÚŽ*¡ÃBÍ%ô‘‹z–ˆê…Ó2‘,Õ³DÞFÇm-·0_!Ú`û½Öªë¢Ä¬D½4o¢_Æ|AµŽ¹áI]”ú]kg.o,ù‚ÀŒJªÑÚL2ÁËe«Œ0àï¬Å†7Y m-,“¼ªÒm~-¿ã¤È«šçu5 z ZÆÄ%y3Â*hò¬îkr %Ï·¾Ï(X–òl~øÅwo¾IKó‡¼b~Ïl' ³âÉC\5«ªÙ‰ *‡ù£uëï¨^‡>Ú¢Î!Ž…nÏŒÉö˜‹²ØÁ=GºŸšzßÔ°H31¬Ž¤èÂNPÉÏ"Ns4ýW¢½‡¾÷gjóؤ:ånÖNόҽhd&2Û—i^cjiò,N2ÞTG•‘‡Óx²“Î.ÊW[nÓ'15•‹—„œ8=j­‘ê1µ:O–úAìÇCt.¢4¸.dÆW"ëÑèž‹ÚÚ\XS¼/‹½(ëtb°ÎQY_GY›á¢ñhkÈ£å}f·[w\¨gTû WÔÐË8ðô!PŠ}QMÙÿÜýgô¢í¾À£™Ê˜QÛ¢?[Ôáu_O¢ áŽç ÏdufÏ:3ŸüeÓvütq¿¸·SbKów‘ñÙø´‚…endstream endobj 1482 0 obj<>/XObject<<>>>>/Annots 1021 0 R>>endobj 1483 0 obj<>stream xÕWËnÛ0¼ë+öR@l™ÔËò!‡­ƒ¤­h ƒ‘Ç®¤¤éßww©H–ê¼ãC#Òp¸äp–¤×¿- ÿ$x!}âÔŽÀ–æß—Ë;„QäH!ôÀWË•Na °1…ÀÇ.´œp™ó=Ç…qãaz<¦DrR#"yÂÀ¥™R2§ADò$~4Æy‘ôÁ &ÒG9~iPKJ’ÂDâ¨>ƒ†óP­1 1Þ€–óHΈ²\𵤠Äõ¡ŒÒEËŒŸµ¤;f9R½.£†”Ìi¥>´\`|•¸$#"ÙXézµwE2"RÊ£Z¶}ƒÝÀÈâ¬áF,'% xl¿Ó¨¼üÈ,’×Á€¨³þ~*–0š ˜Àì÷]áË‚·›€Yl«²\-³S{oöËM¥éf—•ªJÓTGÚ0Ømº«lÙísºç¼ƒ…>WWIõˆ€ý$¯Ê*[jø‘å™”yªܬ’ä'/`ˆV¸(Û.uÕ—'y|ÙÓŠ:ê@IçãD«âÔ™en eöá©Ît’lYðæH(pûÌ[ËM'¸L:†.¥Ãžy ' Mø¦WË‹ªï,Y ¶',Î3ÌYVÍÿp|We?uY—¾7k½¾û²É bÏæG‡ÇüŽÃ)7ï¿sc?ƒ·òË˹Qq»åÞÜ ºò¯U±Rg‰~3 èÊÏòÝoñJ[§«êl…ï&GMø@5‘ª›9^Oùy7î¿ð%»=*Cù¨“½¥ö+ð *Vq5_lY¥]—[X;õªÀ~_H›U\Sަþ¢RÍŪ_FÂ1ýÔÁ’í¤È¯u1#•]). ‡·}†cÁU>ùîQ]ïaí}w¡÷if}¶þºÅ†£endstream endobj 1484 0 obj<>/XObject<<>>>>/Annots 1032 0 R>>endobj 1485 0 obj<>stream x¥TK›0¾ó+æR‰•6^Û€•zhÕnÚî¶ ‡JM9àdiy¨†¬ºÿ¾c› !M¢¨ f¾oÞþå1 x3˜rd•G Å?»Ç—™Ç â˜P¨ a$î…æ½.D{ÔÅ‚„ ¬`tSA8JñYcl'퀑àÈxˆJ' J#+ìt¡HMTN”Ì…êXC+¥'˜Æ.ž &8É(Ùž\§&öAL1ë OÓ–À 9ÔÊ~é©ŪEÔä`’Ô Ö¦›@Àú¤©y;Éð¼K½›[ ¤k숈ñ#· f~«º…•þ@æl|­¶­Zæª.dÙ:U÷WÄü 0a#Os?+•Ô‹1­¯W«µÜ–X£ˆ)s<âXn»æ¤ß1#¢²ÏÑG{s› ]únÒ÷ouSÁƒÜ(øXÔÝ8IL{v*Æ•V2ï—ëB·Ýòñ/ôéAþk¡rµÑ2W'Ü_X©ÉÐØ3ýYÉì'ö§jòÿó|Ès‘ó¬)K•¹’/K¹RÏæä韖¹ªdÝ̶E.ëL¶copdÛ›úp±Ô“,—eQvvwKé_ƒãáýÖ#Z3QûËtÖö £<¼-kœío„XrÿÓ}º¼{ûÕ€ýïŽ"ÄÃóe+ì.ß«ß̱ÈES¿†YÙ´­ÔÏÎ8î9 ‹‰0‹ô ›'¥¸“õV–Ætòb1™Òƒ]›5x €¬sx?.aq<šŽÑÈp|H½ÏÞjØ ¹endstream endobj 1486 0 obj<>/XObject<<>>>>>>endobj 1487 0 obj<>stream x=A Â0D÷9Å,ë¢ñKk»¬+¡â¿@Hbi1)ëùme†Y<ÌC1h £¨ÖÚ ¢HÓÿ“zlÛÌv\h®{j îcÄf]š^>58›8›ûFF•ÿÔüëfLÕÊ‹’tY.§â²6Mé=®>˜ø,NóàL´~U¢.ê ã(cendstream endobj 1488 0 obj<>/XObject<>>>/Annots 1035 0 R>>endobj 1489 0 obj<>stream x­VKoã6¾ûW̩УEI(P }8ØCnãn/¹02åU+‹)e×ÀþøÎˆT"9ÆnÐA I3üæõÍ ïW1DøCž@* Ú¯"á—dz£EÉ8dÇçÿ‚zu1~ÎG‘±â,eˆX°˜ .ßó~Õð@ADO Hñè9ö(HôÌ žâ¥7ô)åÉy¨¤È™85õÏëOSŒ'Ž#TÞbº·nV)PæhaYÌJ÷L’§·=”µHB^³ýófu¹›bÆ‹ç,l¶cþ#ØTÁF?(SÂï²dûnóÏŠ'è\9ßlƒÊØFwp5ìÂ$Šr’_®KHPZCÈ“„Å"…PpV”œN\·ÚZiŽNs²A˜è5*üÕm•Jw¶7CÕ#:ƒÛàFu[°Ãn§,}² kè•Ù[è54]Õ[ÅnßMöãœì#*/1‘ˆº!Ý ø¥•ƒUø°Öf?´ŸÞwˆs0ª—#°Cà>/äÕ>)«`«ê¦kœ òphd¿nŒíCmÈñ¡³Úôj ­Þ5ƒ¥@ÂÖÿæi®9*@­ ì5±=’퀮Éô!N]núÑÌM¥½eçr8&™¢]‚­&‰ƒ‘\aóTîaetîÞÈÒHಾFO–&¤iä]« ±?•êŠ ŸÛ0ŽY”¦ŽH·IÁÕ‹ƒ—޲ëg˜ »íkq;0q1ÿa"A"_¡º‘`û;ÝU¿Á:÷ú{Ç=QáëöÝDL…"b¥ÈÇqìõ¾©&/³¶¨ÂË"Còo›JöêU¡=³%—Äkì´¥—Ž1Oó'Ý.?}o.Oàzx"pKpGoéµµÎtÞIgkø ×o€òÛ „?½ Ì  Ó‚¼1Žño š¼tSö{Ùóí¾œ²a<0ÍÄ bÂÿ¦ƒl[ø¯ç„úÒØÞ¾jÊã´FÎd2L¸›T©_»SœŸ .L$¼Ï—wž¿W\À^vÇq›cs°'ºqÉY¨dw pÒõ¸N‹‹”è wjÚã”åÙz¤¶ôÃîÆëã¦CëfhÕéÊ\Žƒ>úµe—\LU'š¦s5œj»<¸É4 ¡Ó=Þôó9Âý€û¬©e\WxW ãóvŠüIZÄ[ZwÎRrõl,ë–䲇VIÛãu§Õ<4?¤¦ýç9¡D^°¬(èfñü²&8ÇH+Ì£’Tæ÷?^dLd‰c±»=þ¶Y}Xý*l'Ñendstream endobj 1490 0 obj<>/XObject<<>>>>/Annots 1037 0 R>>endobj 1491 0 obj<>stream x•Vßs›8~÷_±oqg EØÆð˜»Kz7Óvz }Ë‹ ÂVF ‰´¾¿þV? Ø&L3I í®¾Ýo÷ß"ü!°NÌoQ/¢0Â'ÃG{0 H’5~n£ ~Æø×2¨.M¿~Xxn !)šÔ@¶»píWã5îf›0íÚc¢4Œ'Ží&šÞXï²0òX'›0™Üˆ³ÉT Þm¦Ïˆ£dzƒl ¦{]È’é³Ó û?òÅûû ye8HÒ䥥 ‚¼X~iå k³%«h'4´ÀòËJ®4oWGüU˼Жӽ` —²†B6JÓF+à ô‘êÁŠrk…»­~—?-"ÈóÌËå®ð¸òk¡ Š=¾ƒcóþ{Å]vnÝ_Þ`ôVv‡ã•å—–¡{øP&Ä)VþÈ5k©8w±‰3¸=w^‚˜òXšt¦ Ш–5/LÍêNPÀÒá4ì@5— ÈêÚh䟂vнc1á`!Ò“!ÊÑiánŸº¦èñù,U·BŒH昸ð@q*©R]ÍJƒmD¨–°gÐ5;IQ!Nð½Ã¦àgå\¢ÿ4ÈÆsË´­ÓLÂÍ%+|Æsé2¬x«t Û9Û˜˜íW,ƒBr̼a ÓÆ[îŸXV&ÃJÃæ%€RÖ”{XC“®œIûÖ#$ŒÖkT@l½Çx3èüö0ô*ÏËÚž ˆÃzÛVsh«"Çk3ÄŒÇKðóQÕ©ÞKÁú¼GL÷…|-Ó~Äg’ý¤ýf²-~Š.’}SrØd%/¨fp–ÝÐá™ ’(Ì’ ‹Ïæö>ÎJc8õôÊÖðQí : ì…Š!¡pJl½šÕ{¤»Ïˆ‡ct…KÂ!2Z©®F°×ÇÚ+‡ä_¿ÝYu’pûñáÎgÁ;¡Â6 6Þ,جùéq!–±õŠŠvxÉY»o ×g6}k'ëJSQ)´W•óX‘¢°þ¤…F‘ ëå×#íœiú©¸Æò{+øl…wôàÿ‰S÷]í§ 6ÒË<ž6ÒЫëÍFÎûé³Ä–µ÷ª× `4Œ¬~Ö§^ñBÚK¼W‡ ¦sÜôÂPÖ/!Õ¶&¯ãÁ«\0ªP±`Âè (~hæ(ù[¶Í@‡]<0ûpö*2 Ï8ë2‹­–Ú¯/¦ ÖÝH9eÐôQL5‡ý/VqìϾÎYŸmk|rž¯#·örwTyÝ.$)$"nÖü›|¢Mç^a‚õÖØ»(3cK¢Ô‰³4L¢ÔÝ;9jZy6ð˽{KÁoçׯ2žwùâßÅÿÊcEendstream endobj 1492 0 obj<>/XObject<<>>>>>>endobj 1493 0 obj<>stream xVËrã6¼û+æHWIZQ/K{[»ÖU©M¼I…¹é‘…] жòõé!(’¢heËeùy¡»g0/71ñÓÝ„¦ J÷7ãÑÿ©?ì3ÿA‹Å Ÿóñ Ÿ|[I[6¥ùòn´ì;˜Í§ýÓé´?T¼œ÷{Äñ9âñd´èK¾¸ëO1]^Úß'7ŸWßQ²‹eLIV"0¦$~7Ï*¥Ä í¶Æî…WF»ÛäœÖ†“'Yô$ŸK zbÛœñƒÖÑÓÓãú68Í*' =œ,F3öúBºÈ)GJŸGHŸ‚ê”σE¤¶äw’ŒÎ”—%§Fk™zõ* ðuŠ2 œü(4ŽŒpÔOG®$S®>¢—Bh¯¶* WZG…F4ëp/cI¾+ç% D¾¾Ð!ò¼ÎDæ m¬¬@¹’ÙEJ‹2Q¶7$¼Ùí 7:GbXb¶ ˜=œ.ñ*;`?\;ÙäLn•VŒ…ª§?]XÚáÖJH<°ê`–¯_”v²u¯o™¸puÐXÂFÞ:š ´6 ¸vÅ@ u[̧ 3æsMƒl‡-‰ dËûQÔ’¾6l¹—V /[ð¦Žø ô±”/CSš‹ÂAØ\`ëÆd¶ÕÑU•üýÓär¯þ-UÔÔ×€gfœ—{é`M*ãLVr‘*ýÜV=$[ &£Wa•Øäh6M¤CoÊï@ÁÛ%wΣ»0NÑ3¡+š‘Q(‰¯ Ï‹À- ÙVmü¿ajË0#ú ]«ÛëÔZ_Ò†ñT‚ãR47CãÌ^R3c7( qwrÇýÆäÏS%ì ”;¹Rc­t£3»ûÔ#JÀŠÜs¼ µñrÞ*0œª-dwâ'Ò H¾êUäfÜåµêYi ºj h#ÓRˆÍ}íÅ‘v]¾‘RƒwoMV¤2ƒuá;7ã¨U¥Ð—ÒLl P{Þ}‰äñÕ‘È­RÏkÎß~d.N?=žzïÇ…æ=?y9D4zÆ%1¦?êD43«5¶;åßrà!d_~Eøõ9gl@{ózÆ{Ó`¶ÐŒ74•ZìÙvc ÝMÖêÅ-š»XØ#¿R<\ÚùyÊá%@ÁεôAkuä»èy)Ò]Å0×UÍ-~yÕï^ªøëWtwP~åPx\<ƒXQ˜±HШ´V¥|OåÁ³J»P¾í‚´ü;s´FVÎ]h€¦©ÎuÓÕc-^ÓérÆvõEMÇÿÔkÆCn\aË!шµ-ê$Löà¬!=ÞŠ–ž]±¶H½ÌhÓKÑ„â‰Åt¨ô‡øµƒhM ï@åþP«…ßö­LªËŸ–Îr¯™Ud"±1~·™´¬"þKiƒ®_Í=ùY­<¾éÂï†÷3ó½ñ\Gß–ÎeµtN°çÅXpóÊ÷OkЋ+úCèBä%a'›áÝxÅ+ᇠð ûúb>Áú «x¼bï¯ÉÍ_7ÿwÃãŠendstream endobj 1494 0 obj<>/XObject<<>>>>/Annots 1039 0 R>>endobj 1495 0 obj<>stream x­VÁr"7½ó}ÄUÀ2 ·8'©xcÇ&7.bceg$2ö²_Ÿ×#i0ÎÖn¥Œ]Èjµº_¿~­z ñ“Ð$ãO^õÆ£1þÓþ© ^P6ËF)]§øžâ·–´eSʦ³ÑüÒÆu–²‹×Éhzq#¹¾ìjúÞé|vÑU7Ç_zi:…ã4] …ŠÒl2š„UIO½î»‹ŒSlly—sLÞMeÝ3Pn–½·% -·@6›Ïh¹iÓ2ïßÉÏ*7E-vÏ*§ážé¾ÞÈZé‚Vý»‡ûÕÕÕòïÞ˜†é¹-7ýG™ïk«^äëÇ ÖÅgU‰’µ(ÙׇÛi¦™wû#•Þ„”õV1è>UÞÉéá>)M‚òRì­ЫBèµ´;™;r†¬©$áΊLÈg@jKÚïÑäžepnEžÉeAžE-Îh #vd[O–på†Öz¨Í‹¬ªý~s? 5‚B„…Ôœø€Œ.´µS¼²&À¯óyXÚÄèHË\Z+j…CÏ`ûp¬‹áÛ‘‡cA *º¥!ƒ9]€ãˆý7½•µÔ¹$¡7ô¤ª]©¶*NMûRžAÌå G20–QÛ`t±Z¹Å;ìÁ:Y]¨[|½)Ü–”ƒ=åb'Ö¥|¥Ij³/žÉ)ÔŽ#¯deêÃêŠÌ–v€šY)ôý ;¥BMV}Î5-….ö¢|Ž×ç±®®z‘c z‘á7J‹ú@ÒšrÏÆße-sãè¼²Þ6úíÓÚ;3/:듟¤%÷jŠÑN(ÍÉî5êÖ@º$Ü’ÙíŒE·ð]¬*Ѐ PmöàOÛìÒ*ëØe€x…;ZÏèšW¨ðGV•×y›08|¼Ý¯áÔ5 ¦–ÖU;ÐMn|ç0&¨³Æ½(ùоˆ®ÕOJDU!hK;£¥öäfVu@-\­r.Ðô¦DgõìÖè±b½z·?ÀeË´¨ÔÎ2=ñ(÷.JæAÆI2O&VôÝ*½Ó)Âv++Èw4:ÿ¢ùK£¿PÓÊ~+&Ãl4|_õY%ÚHaràõZ¹ò¹º4ZEn.mÀ:»ìkȵ—Å`κüDµoEî ¿[NyÐ¥Ì×Õz{ÙITi– eW¤Y»Á&Œ*L_B |‚ÐZª°4·/©8òݳp$ÊÒË«—Ë‹²K':˼ö Ëìâ*xÉòxóº™rs†vÚZb0cnm sx”Mš2˺@i•†_¤Ú Ý¡g‹0,Ú—¢ñ#/œ^:~Æ` ”öFγ™êÿUÀ_8lP_Æ(³)@Kæ eÙÌ?qâËë£Ð{ÿ®F›ál¼`5N’1;™dóÑ"õ½äa£< y¥´)MÑ<)~^öþìý _*Åàendstream endobj 1496 0 obj<>/XObject<<>>>>>>endobj 1497 0 obj<>stream x­WÁnã6½ç+>yÛµ¼‰ã»ØÍ¡EšõÞra$Úæ®LzEÊFúõ}CJ2E;F¶-‚Ž5œyóæÍpôã*£)~2ºÑÇ9åÛ«édŠoº?Õšÿ¡y6ÌèfzÏ3üV’VlJ××w“ʳÅÝäúìƒYvþÁ<ƒ¿$ħåÕ/÷×”e´\1Àùâ––…Ç7¥e>\nä‡å7ØÌ›!m^w²ª¤5eí”ÑáqëbHJ¯d%u.©ªKIÏCQZC¹(KYÐÎXåÔ^¦Nž?ߥ%AÚèqkƾÇSgAβ楨-ûlܹStºÎKYÛü ]UÛºtBKSÛò$#‰=¢J‘oȬH9KZ®…‡X*'+€§ƒr›9;>Ad/B²ÂÉ’½¢Ñ®2E+½FêmÚòœÐï}ªÁ¢¦I{% S€®Ž•?jÏ=’é¼½(-ª&[_2²Nîµ.8®Oï4xãy6‡˜@ýŸ--IùIY¦U•¢"gÒºÒKíB” vkmÁú^VV“P£VXc¨o<[„h_ŸÆOo(Ì›5 Î¨'ßÖæó°ÖʱdÀ¹M¡D¹‘ ùTS” •Ž•zQ†>*ëMá2Z¶òë«. üÿhŒ9qF’z@ämíÛ®½H.„Ð{~¬{n´u•PÚ‘Ûþƒáàk@ÛÚ:–t¤?†”Âl"QL±“gB°fӃ؎vÍ€·9ìizp_™íÀÏ¡ÁƒvfÁÑ£¨Ä ÄÌIgi¬ô_û©iwá`<„™{e1×0ÜÁð9©ñ/CAùF•Å„ÐGÍ‚½C¥¸9P¦$SL¾¦pA+ƒ–÷¥Ü•"—[øåiЋ¯Œ2Ok€Pð‘fÇš†KÎ|ÈÈ{ãEåj:lä)`üV¾ýøsçØ •])ô©‘ü7Âr £Ãg]üDÊ|ÚwY$Üå‘À"¸?ŸšÇ$TxóÀG“SR=4YƒÑã~¿ã˜"±Ç,4¥ëKå_넊à\ÊgADç—ËI¸ùÒvBWð~Áã*•» à-÷DMÈmyØ(l¶~±N¹pgâ°6ŽG¶áË—ÁµRè)Õz²;MáÂfIqs'óµ7º û؃ŒÄS 3ë#NuÑË‘/åÈõp» Ú §{9JŠÏCCaŽð&`@­ðâCñófccD¼¶Ž/qñYâˆ>‰ü;Å_¥œ¤ÏŽëì°¿|–Úuc!*,£zÐÇ›€Ÿb¼›åÒúÑY[îyAV:fÓT Ó2h‹ëW»HÏâMÃT–×[Óäõ Ó®T«×otF+¬³êoÉV˜vBãØmÖæµ1ER€„äÆÔˆº\tö…Ík§g›oýöB¿7ÕATEßþyˆYüïãØÍ{Øèì‘*Mž%ëvîµÔت™º îxYÄ0}í;ç'÷£oh?Në„`Ç4øŽ1¼¥zÒQV¹Wá À:SÉ”Ñ7€õöS^?ËRrc7"ý4µh^šfxÉÍç7“9oÓ•Á|G•Ç­ÍøvzÇ&Ý{wÝ—Jáˆô„W+/¹ë<ÞÌðЉ#Y–±«ß–W]ýC }¤endstream endobj 1498 0 obj<>/XObject<<>>>>/Annots 1047 0 R>>endobj 1499 0 obj<>stream x…WMoÛ8½çW zr[kÉߨS›l‹vîÆ½åÂHtÌV]RJê¿oF”M9NMPä̼™yó‘7)Mñ/¥Ù’òêfšLñåôË=ñ›ÿžÎñ;çiÇOi>[&Ëk³åú‹Å,™_•HWÉúÊE çßÏ7éšd‹ ÔW”n–IN%ÝßÄ犲4KfÑmÙÍIv–¦'M,Ÿ+še«$‹dÙÛìš·«y² tµ†WmÖ0ÐXetÖlçËùlì½ä|™Â£ó-L!1ËD*ZÎØ†:/|^p$àåBžÊ‰o³Õ XN·Áw¾Îðr–%«ð–e?no~û)mẅåzEÛB1¥m>úZ›† ]êÆØúýö^Ô¼‘ñ¤jUÚ'Ûzj,ÞU¶hKÅoÚî5f·ÓN×¹æÇÍ^5ԲƼT­×~LN5{íøF´Oi’Îm1Ò?ZQ„G ôÃó‚vÖ‘7Õ¡4;“wf¤²%B©ÞΦ¦ƒ³¹öžìjLý4ÀÀÀ€?k*M£*=휭¨Ö/呞to ŒÌI…>f“ÈøG•ïtÿ"bð÷5 ÅÖbXo¢:8ýlïò<ïãåëÞF‰ÔN2¦,btß>ú¶:p–Æôɺå $² Æ/‡èÅ0ç¢&„úVrH·ÃxŒÈ‹z퇒£?º#³C¾5=+gÔc©%/·”«šA“Ú7ªnŒ„ÜÔЖïIÑ‹:vô1Í…ß:·”(6Üåˆ}—П;º=¡¡»1[­a?X*ŒÏá¹.ư›3 ÌM_´ú8IÖ]˜-ͳ*uÝpŠnzmÁ`-$õ@ÂÉ…}á\Ñ: Ú;Ä3§È"ô 2„êÌ­‡÷ÃhÆìê3Õ Iú.Cü0B|k}4Ë£‡÷Wê #(JA˜žÚ™ç8G¯"М?)8ÛÓ‘ü¿*ù…Ò(5r[–ìu‹!ÎÜ+b”ê"]U½½‹4”[[ïJ“ õâxuùª;‚Ï}tm©;.tÖ™²¹­§ ¨fFHÛöGîxú§BËÓc¹ïRŽI!=8ê—_FjüØèܤ¹°‡B£ Þþ¼ò6ă »:繋¦ñÅ¡Cº mµ«LmÑô¥‡÷Áðö3˜TS׆ƒ‡²é.ûV:¢' E\Z{J¨`’r¦¹QôíÛ»AM˜ }hH+´ié}½±«ÅHšŽâc¸4Ï€Y˜ó8d±Bo=&‡oÆÄC¤pü½õÜÝÂgë3l¤T­T!Qˆt#Š5ÄP¤A[|uý ‚*±Ùù‘ïó/ùÁ÷í¿ÿòµƒÊ×C—ã|ݵŽg'óZ¹|/ uÇQðz¨e$Aè»ÇŠ›_—æ¨lÕ³2¥ÄŒY_©ïlî”f™'Q˜^L³0q”Ø.З°ú$] ÍæML/Ê4âµåátJ¾ò]rX÷è~Ÿ’@~ßç¨7/9¯mCW}=8S)wŒ|Æhj1höú¦Ö¥AY‹0ˆÂVd£E€Ð©ã½L$=¦ßQ„4ð¡_¡¶¯ëREŒáP]‰¢)x¬åªä±( eñ;NXû ö¸w‘žwLÌìcmëc%›Ý;DéÝ%š¾ï`-³¤ò\O™H¨a\©°sJ¨nU…2 eÁ£õ Ýóqz‹Òc¢Ì¡ מ﹂퉜/{Ãû*õPªw¡èú¸,ìؾt•ï$²ß’µhé‰F›·Çz—ÑØIE³n&v7ñíá`f;°6úé8&AwáHX4úºÂÄ,MÝ-YN+ok¦3v,(’’½Ék)I6fê(×'Z2 )zyPôNöÌg'{!Äüé/ƒ­ß [ÁPïJX1qj¥¡Œ±.uÍ·éÖaò¥ø£']§´ÄŸcëx@ý­êV•üx’¿™¬¦\Å(M3þ>Ÿ¦É&ßÁoµ?¶7ÿÜüë|›úendstream endobj 1500 0 obj<>/XObject<<>>>>/Annots 1056 0 R>>endobj 1501 0 obj<>stream x­WÛnÛ8}ÏWÌÛ:€íZ’¯)°@Ò4m±Y¤Ûõ£_‰²Ù•H—¢röã÷ )Ù²’X (ª˜âp.gÎÌP?Î"šà_D‹˜’9¥åÙd<Á›ÃÃnyAóÅ|Ól2Åïÿ­¤¼/úíÓY4›Žg4–))ZMÇ«fUÐßgÝuIq¼O;»ÉÄjÎ&³ M|–÷fËh¼ì;C0¡Y42(]&,âW|¬».)òVö fç}¥,8§él†'ŽM“qÔ¬øXwÝE¥A–wW1 ˜"¸˜!HbøV¼MÝx2?Ùå §ÃÒC:šÅx™,¦>Èh¹/š•WÚY(XuvYi’,_Mųû"¯Íã—°ø$Ì^¸ZŸ½»™RÑ:gÍ— ZgžEZ§ƒ´u%+2–rc˺ Ph_ˆTf¤4¹¤º÷…¤BUn|¾þ•óFå:GñÁ¯³Á'#Š!ñ³¢[ÈÑŽõQ<’—§Z´Å¡Sñ©ÊON‹ºRF“ÉIÖßeêj+‡T9á‚›{S)§@~„1¦"Ýy¥•Wc…®x²Î° ¢ÀÃë‚ûgV]9[§Né-)WQ­¡ÒV¢ ´0•7©åV883dç4Þ@•«Ô¿ôè@wç—œ¥€'b) þº@Zz߆ôÕè_Q)žI•ˆA¢~á‚‚ ð’‚àÌ3œ†«z+Ÿ•vCâç1>UMüNpN|‹už P!uæ£m­2ypÚ™Ga3Ú[còjÜcÚ8Ú ëoŲ̀8€M%U{™{ÏÐ8àäq}ö¦YØ™qNÑ?>+:ž:•°¸ÞÉ è…Œ.°}ûù5VKݺCRmw>Åy­=ÐÞ@% Њml‘ô&³0Pz•ð_48r|ðUt gíËV¦Ð§ ÁóFK€þT vs0‘äê ‡O¿S¥¤G¦“!W¶r'N³ŽÌÆÔxÉŠ;YhÝ&LK`Z «€¢ÒûÚµTÒ½L¹K°±gOÕ{ðÄJ_zYm²½•H+kÀjÈxöÌÉ'Qî ”,ÊÌÊG àp yõ~hðÚ×RìS|º(ÑGjJ[*m ³}¢e„šEsAs[ôÙX ”˜s”Š¢ÏWm÷8´²¦µi3ÉÁqÊ :2“_ì÷Ðà zÔú[ {ж顃êî Ÿ3+Ô ÅyÚ†zÈŒ7çßWé~swCßdÆýÑxwÑçÍÍà†¹8º³™´tÊæ ï:Î#ßâ•ÒíLæÝvN–{Ï ]¡#*GQs`¾eÜ?÷b÷š™I¨Aså0DÁõÎÉEÃTh_{îaüª¾ot¡\:ípÃN¦´x¥žîý¤gœpAó£upIWáM;Ës/”e7Z»/OŽ~yXè¬/xEl&çÁÊ[s+ŸFׇЯei2 xjó˜†n_ æ:Žðe?ÓáSÉsÍwñTh¦/Ú„± °£´Pö «Jañ›yn˜&œ¼Íàöë]/³h \ÝmΑ&$5t_ª¦,kŒ}$Î=®ß+Í:Í^Ú0…é:t¥ƒ»~^÷ÃOCc3\z ~û©z0£4Ep¿XT•Ü=,w•Nˆ}êœDüVÖ1·ãÀÖÀhH—Îày«pžoW^5øB8Ü8«pú­œomÃp«|¦"\•ŒïA†ò‚&ïu£e{«‹¢ñ$IðùûÑ&žM*¶¬k¶W¨ƒÑ&H¯—<v[— @uá¯=ÇîÃP•âI•uyB¿…÷¿Ì›"€vÔúVàg(zñfpèÄ•Ú⦕ýFž©µÛœÿ2Âl¸8Ьúq³Ëqö9­þ¯µQŒ·ùâxƒE£m+dØoûÍà ø_áWîmo³9 ®M!‡ñ[Ìü&Ñ=PJ εÌýµ%Ìw7-sbܪ£e„¯Ò)`Ï׿†û§Ð˜‡¾(Z™Ñb²êŠ0ß›¡ÍrÓ%¾ñfq a%üîãú쯳ÿž.fˆendstream endobj 1502 0 obj<>/XObject<<>>>>/Annots 1059 0 R>>endobj 1503 0 obj<>stream x­TQo›0~çWÜ£#jBȤ>tZ·§MYË#/.˜”ɱU ]ȯßÇ VU¥)‰ƒÏwŸï¾ûŽÅƒEl¾ùΣEËyyøá-Â0XCœÄ…,– ÿíN£7Üãi’ËÁ騪·bFƒ–4Âçµ€Ò\ Ñ*¾>ˆÍõÑrÄx=c,HN;sý×Ô»ù¡ÒÒT'+H‹¾ iNîféôˆOï’¼­´â QVª2ëä`”º~²^B§n>¯»3d¤áX$d´Oˆl¦È«öyšÒ÷v‘Í j€C.u# “În/9èÚgä ·ƒ‚ÏÈWZŒì›JmaSëWQ¯¡éTËÙlœòã‡q™.%À¬]¿±€MFón~tq¡+Ê1qŽ2mØkôÎ&ŠyOë=¹X‚Eñ -Pº…\cî•êKmºÝ“–±Œo°É$¶Îû—½ë÷·wú=Ìýîªëâð_SîUn4÷¶`®¸ù”`¸l}¤ÃÐ@/ë£õ~{ÿ½·endstream endobj 1504 0 obj<>/XObject<>>>/Annots 1062 0 R>>endobj 1505 0 obj<>stream xµVQsâ6~çWìä‰Ì aÙF†¼%¤É]'¤9pÓ‡£–A±ˆl'M~}Ws &¹éL; Y«Õ~ßî~Òc‡‡‘‡dÝñ¨‡oö³´àà aà…øßǯ‘uáëÈyàêtœqʬ«þ×p—¾Y§À=ŽÏ?6rÿ¦×?â¸S8Šð¹†ÀîG9Ì:oÇ8Ë9 v¶vö"îô¯80qŒ†CxÒÀã§”qÒ½3úIšLDQ‹ü4þ«úåC§Ý{iJ¥ 8¯—Ä÷¼ÈÎ÷¯Fàãl$ô}Êx„‡t8 튩̤‘E"Ë­mÃ÷­É­® Õ…„YÑ­U¸‹ÓZYÈhõýB$«µP†\‹âUKiˆ‘åŸvf‡°`ëí†Bc ¢Há …ý 'SYê¼®,ˆx%µ‘k°Ñß …ñJl*iÀU¼· _ÐÙBëЯôZT2µFc³÷TŠRèë=Š.Ì»2¥pNaªª@ŽïµÑŃ~šŸöDQŒFæj­ a^3aév¤· ¿ß*Y?ËbU«’Lë…Òd#Œh‘1¥ðƲÙÔ-@.îpÉZ§u.,äB”2ý„•èsV¸Øsÿ+Ö÷{0Uëõß¹Re¢7²…þÒetk†pgõ‚lŒ^ä˜óL)&Úæ£X ¬dò Mªg ‰F‰)–à8’%dÚ@µ-š°èÖæêdW¾M‘wáWÌúxrP=‚y7œŸžñ „¢°ÑÉó%z]égU½,L[6U-¤·~X"Ôø‡­­W#Ÿ²PŽ8{Y/t®ëõ¦®ÜíˆÏøˆ0Æ]¤Ñ‘H'ɸ.$ù­Â8ƒ á¶-ŠÜ P¬öZñF}úWt)Ä2Y¡¹Öp~{ÓŸŒg$ž B=\™ÁžTI鲺Å"ÍA¢f‰²b—êIÙÖêÁ¹YêÅçÖá9܈…ÆÄkó²ŸìÁ×Ô˺¬l›㟈D†ÿ½³o!w®k•ʃD|ÌAØâàzÃüLïInÚ’luO‰WQè§F‚ÝÃZ½AµC)Å"-um07e…ôËå v¦{¹“ë]çíµŸ•òQè6Ÿwñ±™Ç°ÂNˆe?ed¥Šª•v;ˆ~/­j8;¨4ÂH  ÒjÈ,“I¥žd!ËÒö¦À³ 9Nîî±(—¨Îg0¶+˪N•<ª/P.»ØÁ9@À¾êã#ÛÓ£cê³C\>È ÅñsÐ3Û´Êfµ,­Pm{Q#pƒò*ò\â¹m±Y.¡vDáyh69*Q{Th?:Z0‡Ñ¼ë’:ˆav‡;^íúþÕ°¹EeCâïÈ^3îZ÷âãñn­Hä9“½L¹+M8P>ð·÷#,»Ã/qç[çMî&endstream endobj 1506 0 obj<>/XObject<<>>>>>>endobj 1507 0 obj<>stream x+ä2T0BCc3JÎår á2Ð3 ‰¢t}7 CC…4#Cc=C CsK…°*…d€¢ü²Ô"KßļÒÄÍ,.]˜R]ˆZ CC3¸‰‰¹ž¹©9ÐÖ Ô´Ô¢Ô¼äÔb”kW yª"áendstream endobj 1508 0 obj<>endobj 1509 0 obj<>endobj 1510 0 obj<>endobj 1511 0 obj<>endobj 1512 0 obj<>endobj 1513 0 obj<>endobj 1514 0 obj<>endobj 1515 0 obj<>endobj 1516 0 obj<>endobj 1517 0 obj<>endobj 1518 0 obj<>endobj 1519 0 obj<>endobj 1520 0 obj<>endobj 1521 0 obj<>endobj 1522 0 obj<>endobj 1523 0 obj<>endobj 1524 0 obj<>endobj 1525 0 obj<>endobj 1526 0 obj<>endobj 1527 0 obj<>endobj 1528 0 obj<>endobj 1529 0 obj<>endobj 1530 0 obj<>endobj 1531 0 obj<>endobj 1532 0 obj<>endobj 1533 0 obj<>endobj 1534 0 obj<>endobj 1535 0 obj<>endobj 1536 0 obj<>endobj 1537 0 obj<>endobj 1538 0 obj<>endobj 1539 0 obj<>endobj 1540 0 obj<>endobj 1541 0 obj<>0<>2<>4<>6<>10<>14<>18<>20<>24<>26<>28<>30<>34<>40<>46<>52<>56<>58<>60<>64<>68<>72<>74<>76<>80<>84<>86<>90<>92<>96<>106<>114<>]>>>>endobj xref 0 1542 0000000000 65535 f 0000000015 00000 n 0000000181 00000 n 0000001528 00000 n 0000046153 00000 n 0000046333 00000 n 0000047372 00000 n 0000096727 00000 n 0000096912 00000 n 0000097951 00000 n 0000141218 00000 n 0000141409 00000 n 0000142449 00000 n 0000192842 00000 n 0000193038 00000 n 0000194078 00000 n 0000238956 00000 n 0000239144 00000 n 0000240184 00000 n 0000283767 00000 n 0000283954 00000 n 0000284997 00000 n 0000329304 00000 n 0000329495 00000 n 0000330535 00000 n 0000365429 00000 n 0000365615 00000 n 0000366657 00000 n 0000401480 00000 n 0000401671 00000 n 0000402712 00000 n 0000440603 00000 n 0000440803 00000 n 0000441847 00000 n 0000472236 00000 n 0000472419 00000 n 0000473463 00000 n 0000473597 00000 n 0000473736 00000 n 0000473880 00000 n 0000474028 00000 n 0000474168 00000 n 0000474307 00000 n 0000474448 00000 n 0000474586 00000 n 0000474729 00000 n 0000474879 00000 n 0000474999 00000 n 0000476017 00000 n 0000479040 00000 n 0000479143 00000 n 0000479246 00000 n 0000479349 00000 n 0000479452 00000 n 0000479555 00000 n 0000479658 00000 n 0000479761 00000 n 0000479864 00000 n 0000479967 00000 n 0000480070 00000 n 0000480173 00000 n 0000480276 00000 n 0000480379 00000 n 0000480482 00000 n 0000480585 00000 n 0000480688 00000 n 0000480791 00000 n 0000480894 00000 n 0000480997 00000 n 0000481100 00000 n 0000481203 00000 n 0000481306 00000 n 0000481409 00000 n 0000481512 00000 n 0000481615 00000 n 0000481718 00000 n 0000481821 00000 n 0000481924 00000 n 0000482027 00000 n 0000482130 00000 n 0000482233 00000 n 0000482466 00000 n 0000482535 00000 n 0000482619 00000 n 0000482686 00000 n 0000482771 00000 n 0000482874 00000 n 0000482977 00000 n 0000483080 00000 n 0000483158 00000 n 0000483243 00000 n 0000483346 00000 n 0000483449 00000 n 0000483516 00000 n 0000483601 00000 n 0000483654 00000 n 0000483739 00000 n 0000483815 00000 n 0000483900 00000 n 0000483982 00000 n 0000484067 00000 n 0000484134 00000 n 0000484221 00000 n 0000484293 00000 n 0000484380 00000 n 0000484497 00000 n 0000484545 00000 n 0000484631 00000 n 0000484680 00000 n 0000484767 00000 n 0000484870 00000 n 0000484911 00000 n 0000484981 00000 n 0000485068 00000 n 0000485138 00000 n 0000485225 00000 n 0000485329 00000 n 0000485370 00000 n 0000485418 00000 n 0000485505 00000 n 0000485554 00000 n 0000485641 00000 n 0000485690 00000 n 0000485777 00000 n 0000485825 00000 n 0000485910 00000 n 0000485960 00000 n 0000486045 00000 n 0000486102 00000 n 0000486144 00000 n 0000486230 00000 n 0000486271 00000 n 0000486358 00000 n 0000486408 00000 n 0000486495 00000 n 0000486543 00000 n 0000486630 00000 n 0000486680 00000 n 0000486767 00000 n 0000486871 00000 n 0000486975 00000 n 0000487079 00000 n 0000487183 00000 n 0000487286 00000 n 0000487388 00000 n 0000487493 00000 n 0000487596 00000 n 0000487700 00000 n 0000487733 00000 n 0000487837 00000 n 0000487941 00000 n 0000488045 00000 n 0000488149 00000 n 0000488253 00000 n 0000488287 00000 n 0000488372 00000 n 0000488406 00000 n 0000488491 00000 n 0000488564 00000 n 0000488668 00000 n 0000488772 00000 n 0000488876 00000 n 0000488980 00000 n 0000489084 00000 n 0000489188 00000 n 0000489234 00000 n 0000489321 00000 n 0000489364 00000 n 0000489451 00000 n 0000489532 00000 n 0000489636 00000 n 0000489740 00000 n 0000489844 00000 n 0000489885 00000 n 0000489988 00000 n 0000490092 00000 n 0000490196 00000 n 0000490300 00000 n 0000490404 00000 n 0000490508 00000 n 0000490612 00000 n 0000490716 00000 n 0000490820 00000 n 0000490924 00000 n 0000490966 00000 n 0000491053 00000 n 0000491099 00000 n 0000491184 00000 n 0000491297 00000 n 0000491343 00000 n 0000491429 00000 n 0000491472 00000 n 0000491559 00000 n 0000491602 00000 n 0000491687 00000 n 0000491729 00000 n 0000491816 00000 n 0000491865 00000 n 0000491969 00000 n 0000491994 00000 n 0000492098 00000 n 0000492202 00000 n 0000492306 00000 n 0000492410 00000 n 0000492514 00000 n 0000492618 00000 n 0000492722 00000 n 0000492826 00000 n 0000492930 00000 n 0000493034 00000 n 0000493138 00000 n 0000493242 00000 n 0000493346 00000 n 0000493450 00000 n 0000493579 00000 n 0000493683 00000 n 0000493787 00000 n 0000493889 00000 n 0000493993 00000 n 0000494097 00000 n 0000494201 00000 n 0000494305 00000 n 0000494409 00000 n 0000494513 00000 n 0000494616 00000 n 0000494720 00000 n 0000494824 00000 n 0000494925 00000 n 0000495046 00000 n 0000495150 00000 n 0000495254 00000 n 0000495358 00000 n 0000495462 00000 n 0000495566 00000 n 0000495670 00000 n 0000495774 00000 n 0000495878 00000 n 0000495982 00000 n 0000496085 00000 n 0000496188 00000 n 0000496293 00000 n 0000496397 00000 n 0000496501 00000 n 0000496534 00000 n 0000496638 00000 n 0000496663 00000 n 0000496767 00000 n 0000496870 00000 n 0000496903 00000 n 0000497006 00000 n 0000497110 00000 n 0000497214 00000 n 0000497269 00000 n 0000497356 00000 n 0000497412 00000 n 0000497499 00000 n 0000497569 00000 n 0000497656 00000 n 0000497760 00000 n 0000497833 00000 n 0000497937 00000 n 0000498041 00000 n 0000498145 00000 n 0000498248 00000 n 0000498351 00000 n 0000498408 00000 n 0000498512 00000 n 0000498558 00000 n 0000498645 00000 n 0000498747 00000 n 0000498788 00000 n 0000498892 00000 n 0000498996 00000 n 0000499099 00000 n 0000499140 00000 n 0000499244 00000 n 0000499348 00000 n 0000499452 00000 n 0000499493 00000 n 0000499596 00000 n 0000499621 00000 n 0000499725 00000 n 0000499829 00000 n 0000499932 00000 n 0000500036 00000 n 0000500140 00000 n 0000500244 00000 n 0000500348 00000 n 0000500452 00000 n 0000500556 00000 n 0000500659 00000 n 0000500763 00000 n 0000500867 00000 n 0000500969 00000 n 0000501071 00000 n 0000501173 00000 n 0000501310 00000 n 0000501413 00000 n 0000501516 00000 n 0000501620 00000 n 0000501723 00000 n 0000501824 00000 n 0000501881 00000 n 0000501984 00000 n 0000502087 00000 n 0000502190 00000 n 0000502293 00000 n 0000502342 00000 n 0000502446 00000 n 0000502549 00000 n 0000502582 00000 n 0000502686 00000 n 0000502790 00000 n 0000502894 00000 n 0000502997 00000 n 0000503101 00000 n 0000503205 00000 n 0000503309 00000 n 0000503413 00000 n 0000503517 00000 n 0000503621 00000 n 0000503725 00000 n 0000503829 00000 n 0000503933 00000 n 0000504037 00000 n 0000504140 00000 n 0000504242 00000 n 0000504344 00000 n 0000504497 00000 n 0000504601 00000 n 0000504705 00000 n 0000504809 00000 n 0000504913 00000 n 0000505017 00000 n 0000505061 00000 n 0000505148 00000 n 0000505252 00000 n 0000505356 00000 n 0000505459 00000 n 0000505563 00000 n 0000505667 00000 n 0000505770 00000 n 0000505874 00000 n 0000505978 00000 n 0000506082 00000 n 0000506186 00000 n 0000506289 00000 n 0000506393 00000 n 0000506495 00000 n 0000506664 00000 n 0000506698 00000 n 0000506785 00000 n 0000506889 00000 n 0000506993 00000 n 0000507097 00000 n 0000507200 00000 n 0000507303 00000 n 0000507406 00000 n 0000507510 00000 n 0000507614 00000 n 0000507718 00000 n 0000507752 00000 n 0000507839 00000 n 0000507943 00000 n 0000508047 00000 n 0000508151 00000 n 0000508185 00000 n 0000508272 00000 n 0000508306 00000 n 0000508393 00000 n 0000508538 00000 n 0000508572 00000 n 0000508659 00000 n 0000508693 00000 n 0000508780 00000 n 0000508814 00000 n 0000508901 00000 n 0000509005 00000 n 0000509108 00000 n 0000509142 00000 n 0000509229 00000 n 0000509333 00000 n 0000509437 00000 n 0000509541 00000 n 0000509645 00000 n 0000509749 00000 n 0000509853 00000 n 0000509957 00000 n 0000510061 00000 n 0000510164 00000 n 0000510268 00000 n 0000510413 00000 n 0000510517 00000 n 0000510621 00000 n 0000510725 00000 n 0000510829 00000 n 0000510933 00000 n 0000511036 00000 n 0000511139 00000 n 0000511242 00000 n 0000511323 00000 n 0000511426 00000 n 0000511528 00000 n 0000511561 00000 n 0000511665 00000 n 0000511769 00000 n 0000511873 00000 n 0000511977 00000 n 0000512081 00000 n 0000512185 00000 n 0000512288 00000 n 0000512391 00000 n 0000512495 00000 n 0000512599 00000 n 0000512703 00000 n 0000512807 00000 n 0000512911 00000 n 0000513015 00000 n 0000513119 00000 n 0000513220 00000 n 0000513322 00000 n 0000513475 00000 n 0000513579 00000 n 0000513683 00000 n 0000513787 00000 n 0000513891 00000 n 0000513995 00000 n 0000514099 00000 n 0000514200 00000 n 0000514302 00000 n 0000514403 00000 n 0000514492 00000 n 0000514596 00000 n 0000514700 00000 n 0000514804 00000 n 0000514845 00000 n 0000514948 00000 n 0000514982 00000 n 0000515069 00000 n 0000515173 00000 n 0000515276 00000 n 0000515310 00000 n 0000515397 00000 n 0000515501 00000 n 0000515535 00000 n 0000515622 00000 n 0000515726 00000 n 0000515760 00000 n 0000515847 00000 n 0000515951 00000 n 0000515985 00000 n 0000516072 00000 n 0000516176 00000 n 0000516280 00000 n 0000516384 00000 n 0000516513 00000 n 0000516547 00000 n 0000516634 00000 n 0000516738 00000 n 0000516842 00000 n 0000516946 00000 n 0000517050 00000 n 0000517154 00000 n 0000517219 00000 n 0000517323 00000 n 0000517427 00000 n 0000517531 00000 n 0000517635 00000 n 0000517739 00000 n 0000517788 00000 n 0000517875 00000 n 0000517979 00000 n 0000518083 00000 n 0000518187 00000 n 0000518276 00000 n 0000518380 00000 n 0000518405 00000 n 0000518509 00000 n 0000518613 00000 n 0000518646 00000 n 0000518750 00000 n 0000518853 00000 n 0000518956 00000 n 0000519060 00000 n 0000519164 00000 n 0000519221 00000 n 0000519325 00000 n 0000519350 00000 n 0000519454 00000 n 0000519479 00000 n 0000519583 00000 n 0000519686 00000 n 0000519719 00000 n 0000519823 00000 n 0000519927 00000 n 0000520031 00000 n 0000520135 00000 n 0000520239 00000 n 0000520343 00000 n 0000520447 00000 n 0000520551 00000 n 0000520655 00000 n 0000520702 00000 n 0000520787 00000 n 0000520835 00000 n 0000520920 00000 n 0000521025 00000 n 0000521128 00000 n 0000521153 00000 n 0000521257 00000 n 0000521359 00000 n 0000521405 00000 n 0000521492 00000 n 0000521595 00000 n 0000521644 00000 n 0000521748 00000 n 0000521851 00000 n 0000521955 00000 n 0000522059 00000 n 0000522163 00000 n 0000522267 00000 n 0000522371 00000 n 0000522475 00000 n 0000522579 00000 n 0000522683 00000 n 0000522787 00000 n 0000522891 00000 n 0000522994 00000 n 0000523098 00000 n 0000523202 00000 n 0000523306 00000 n 0000523410 00000 n 0000523514 00000 n 0000523618 00000 n 0000523722 00000 n 0000523826 00000 n 0000523930 00000 n 0000524034 00000 n 0000524138 00000 n 0000524242 00000 n 0000524346 00000 n 0000524450 00000 n 0000524554 00000 n 0000524658 00000 n 0000524762 00000 n 0000524866 00000 n 0000524969 00000 n 0000525073 00000 n 0000525177 00000 n 0000525466 00000 n 0000525570 00000 n 0000525673 00000 n 0000525706 00000 n 0000525810 00000 n 0000525914 00000 n 0000525947 00000 n 0000526050 00000 n 0000526154 00000 n 0000526258 00000 n 0000526361 00000 n 0000526463 00000 n 0000526566 00000 n 0000526670 00000 n 0000526743 00000 n 0000526847 00000 n 0000526951 00000 n 0000527055 00000 n 0000527159 00000 n 0000527263 00000 n 0000527366 00000 n 0000527469 00000 n 0000527573 00000 n 0000527614 00000 n 0000527701 00000 n 0000527743 00000 n 0000527830 00000 n 0000527934 00000 n 0000528039 00000 n 0000528143 00000 n 0000528246 00000 n 0000528349 00000 n 0000528453 00000 n 0000528557 00000 n 0000528661 00000 n 0000528765 00000 n 0000528869 00000 n 0000528950 00000 n 0000529053 00000 n 0000529093 00000 n 0000529180 00000 n 0000529221 00000 n 0000529308 00000 n 0000529348 00000 n 0000529435 00000 n 0000529476 00000 n 0000529563 00000 n 0000529604 00000 n 0000529691 00000 n 0000529734 00000 n 0000529821 00000 n 0000529861 00000 n 0000529948 00000 n 0000529991 00000 n 0000530078 00000 n 0000530125 00000 n 0000530212 00000 n 0000530316 00000 n 0000530421 00000 n 0000530524 00000 n 0000530549 00000 n 0000530652 00000 n 0000530756 00000 n 0000530860 00000 n 0000530964 00000 n 0000531068 00000 n 0000531172 00000 n 0000531237 00000 n 0000531280 00000 n 0000531366 00000 n 0000531410 00000 n 0000531497 00000 n 0000531601 00000 n 0000531705 00000 n 0000531809 00000 n 0000531913 00000 n 0000531963 00000 n 0000532050 00000 n 0000532101 00000 n 0000532188 00000 n 0000532292 00000 n 0000532396 00000 n 0000532500 00000 n 0000532605 00000 n 0000532709 00000 n 0000532734 00000 n 0000532802 00000 n 0000532889 00000 n 0000532993 00000 n 0000533031 00000 n 0000533118 00000 n 0000533165 00000 n 0000533252 00000 n 0000533290 00000 n 0000533377 00000 n 0000533422 00000 n 0000533509 00000 n 0000533613 00000 n 0000533692 00000 n 0000533779 00000 n 0000533860 00000 n 0000533963 00000 n 0000533988 00000 n 0000534092 00000 n 0000534196 00000 n 0000534229 00000 n 0000534333 00000 n 0000534436 00000 n 0000534469 00000 n 0000534573 00000 n 0000534677 00000 n 0000534781 00000 n 0000534885 00000 n 0000534937 00000 n 0000535024 00000 n 0000535066 00000 n 0000535152 00000 n 0000535195 00000 n 0000535282 00000 n 0000535365 00000 n 0000535452 00000 n 0000535533 00000 n 0000535637 00000 n 0000535716 00000 n 0000535803 00000 n 0000535907 00000 n 0000535948 00000 n 0000536052 00000 n 0000536096 00000 n 0000536183 00000 n 0000536227 00000 n 0000536314 00000 n 0000536352 00000 n 0000536439 00000 n 0000536484 00000 n 0000536571 00000 n 0000536616 00000 n 0000536703 00000 n 0000536747 00000 n 0000536834 00000 n 0000536879 00000 n 0000536966 00000 n 0000537011 00000 n 0000537098 00000 n 0000537143 00000 n 0000537230 00000 n 0000537274 00000 n 0000537361 00000 n 0000537406 00000 n 0000537493 00000 n 0000537536 00000 n 0000537623 00000 n 0000537668 00000 n 0000537755 00000 n 0000537794 00000 n 0000537881 00000 n 0000537926 00000 n 0000538013 00000 n 0000538055 00000 n 0000538142 00000 n 0000538187 00000 n 0000538274 00000 n 0000538313 00000 n 0000538400 00000 n 0000538445 00000 n 0000538532 00000 n 0000538571 00000 n 0000538658 00000 n 0000538843 00000 n 0000538896 00000 n 0000538983 00000 n 0000539040 00000 n 0000539127 00000 n 0000539170 00000 n 0000539257 00000 n 0000539301 00000 n 0000539388 00000 n 0000539428 00000 n 0000539513 00000 n 0000539557 00000 n 0000539643 00000 n 0000539688 00000 n 0000539775 00000 n 0000539848 00000 n 0000539952 00000 n 0000539977 00000 n 0000540080 00000 n 0000540119 00000 n 0000540206 00000 n 0000540250 00000 n 0000540337 00000 n 0000540381 00000 n 0000540468 00000 n 0000540513 00000 n 0000540600 00000 n 0000540644 00000 n 0000540731 00000 n 0000540776 00000 n 0000540863 00000 n 0000540902 00000 n 0000540989 00000 n 0000541033 00000 n 0000541120 00000 n 0000541164 00000 n 0000541251 00000 n 0000541296 00000 n 0000541383 00000 n 0000541488 00000 n 0000541532 00000 n 0000541619 00000 n 0000541664 00000 n 0000541751 00000 n 0000541790 00000 n 0000541877 00000 n 0000541922 00000 n 0000542009 00000 n 0000542112 00000 n 0000542169 00000 n 0000542273 00000 n 0000542377 00000 n 0000542425 00000 n 0000542512 00000 n 0000542561 00000 n 0000542648 00000 n 0000542697 00000 n 0000542784 00000 n 0000542841 00000 n 0000542890 00000 n 0000542977 00000 n 0000543029 00000 n 0000543116 00000 n 0000543165 00000 n 0000543252 00000 n 0000543304 00000 n 0000543391 00000 n 0000543440 00000 n 0000543527 00000 n 0000543579 00000 n 0000543666 00000 n 0000543715 00000 n 0000543802 00000 n 0000543854 00000 n 0000543941 00000 n 0000543990 00000 n 0000544075 00000 n 0000544131 00000 n 0000544216 00000 n 0000544313 00000 n 0000544356 00000 n 0000544443 00000 n 0000544523 00000 n 0000544610 00000 n 0000544690 00000 n 0000544776 00000 n 0000544825 00000 n 0000544912 00000 n 0000544964 00000 n 0000545051 00000 n 0000545100 00000 n 0000545187 00000 n 0000545239 00000 n 0000545326 00000 n 0000545375 00000 n 0000545462 00000 n 0000545514 00000 n 0000545601 00000 n 0000545705 00000 n 0000545802 00000 n 0000545906 00000 n 0000545949 00000 n 0000546036 00000 n 0000546080 00000 n 0000546167 00000 n 0000546210 00000 n 0000546297 00000 n 0000546342 00000 n 0000546429 00000 n 0000546507 00000 n 0000546594 00000 n 0000546698 00000 n 0000546771 00000 n 0000546875 00000 n 0000546978 00000 n 0000547082 00000 n 0000547128 00000 n 0000547215 00000 n 0000547319 00000 n 0000547423 00000 n 0000547527 00000 n 0000547631 00000 n 0000547735 00000 n 0000547839 00000 n 0000547891 00000 n 0000547978 00000 n 0000548023 00000 n 0000548110 00000 n 0000548155 00000 n 0000548242 00000 n 0000548363 00000 n 0000548409 00000 n 0000548496 00000 n 0000548544 00000 n 0000548631 00000 n 0000548675 00000 n 0000548762 00000 n 0000548813 00000 n 0000548900 00000 n 0000548944 00000 n 0000549031 00000 n 0000549078 00000 n 0000549165 00000 n 0000549210 00000 n 0000549296 00000 n 0000549343 00000 n 0000549430 00000 n 0000549478 00000 n 0000549565 00000 n 0000549614 00000 n 0000549700 00000 n 0000549745 00000 n 0000549832 00000 n 0000549878 00000 n 0000549965 00000 n 0000550015 00000 n 0000550101 00000 n 0000550140 00000 n 0000550227 00000 n 0000550267 00000 n 0000550354 00000 n 0000550416 00000 n 0000550502 00000 n 0000550583 00000 n 0000550670 00000 n 0000550713 00000 n 0000550800 00000 n 0000550844 00000 n 0000550931 00000 n 0000550975 00000 n 0000551061 00000 n 0000551106 00000 n 0000551193 00000 n 0000551236 00000 n 0000551321 00000 n 0000551367 00000 n 0000551452 00000 n 0000551653 00000 n 0000551694 00000 n 0000551781 00000 n 0000551821 00000 n 0000551908 00000 n 0000552012 00000 n 0000552053 00000 n 0000552157 00000 n 0000552258 00000 n 0000552291 00000 n 0000552395 00000 n 0000552497 00000 n 0000552600 00000 n 0000552703 00000 n 0000552806 00000 n 0000552908 00000 n 0000553011 00000 n 0000553114 00000 n 0000553217 00000 n 0000553321 00000 n 0000553424 00000 n 0000553527 00000 n 0000553630 00000 n 0000553734 00000 n 0000553837 00000 n 0000553939 00000 n 0000554084 00000 n 0000554187 00000 n 0000554290 00000 n 0000554393 00000 n 0000554497 00000 n 0000554601 00000 n 0000554705 00000 n 0000554809 00000 n 0000554913 00000 n 0000555017 00000 n 0000555121 00000 n 0000555225 00000 n 0000555329 00000 n 0000555433 00000 n 0000555537 00000 n 0000555641 00000 n 0000555745 00000 n 0000555849 00000 n 0000555951 00000 n 0000556112 00000 n 0000556214 00000 n 0000556317 00000 n 0000556420 00000 n 0000556523 00000 n 0000556626 00000 n 0000556729 00000 n 0000556832 00000 n 0000556935 00000 n 0000557039 00000 n 0000557142 00000 n 0000557245 00000 n 0000557348 00000 n 0000557451 00000 n 0000557554 00000 n 0000557657 00000 n 0000557757 00000 n 0000557902 00000 n 0000558005 00000 n 0000558108 00000 n 0000558211 00000 n 0000558314 00000 n 0000558417 00000 n 0000558520 00000 n 0000558624 00000 n 0000558727 00000 n 0000558830 00000 n 0000558933 00000 n 0000559036 00000 n 0000559140 00000 n 0000559243 00000 n 0000559344 00000 n 0000559473 00000 n 0000559577 00000 n 0000559680 00000 n 0000559783 00000 n 0000559886 00000 n 0000559989 00000 n 0000560092 00000 n 0000560195 00000 n 0000560298 00000 n 0000560401 00000 n 0000560504 00000 n 0000560607 00000 n 0000560710 00000 n 0000560813 00000 n 0000560916 00000 n 0000561017 00000 n 0000561154 00000 n 0000561256 00000 n 0000561360 00000 n 0000561463 00000 n 0000561567 00000 n 0000561670 00000 n 0000561773 00000 n 0000561876 00000 n 0000561979 00000 n 0000562082 00000 n 0000562185 00000 n 0000562288 00000 n 0000562391 00000 n 0000562494 00000 n 0000562598 00000 n 0000562701 00000 n 0000562841 00000 n 0000562944 00000 n 0000563047 00000 n 0000563150 00000 n 0000563255 00000 n 0000563359 00000 n 0000563463 00000 n 0000563567 00000 n 0000563671 00000 n 0000563775 00000 n 0000563879 00000 n 0000563983 00000 n 0000564087 00000 n 0000564191 00000 n 0000564295 00000 n 0000564399 00000 n 0000564504 00000 n 0000564608 00000 n 0000564710 00000 n 0000564890 00000 n 0000564993 00000 n 0000565097 00000 n 0000565202 00000 n 0000565306 00000 n 0000565410 00000 n 0000565514 00000 n 0000565618 00000 n 0000565723 00000 n 0000565828 00000 n 0000565933 00000 n 0000566041 00000 n 0000566146 00000 n 0000566251 00000 n 0000566287 00000 n 0000566392 00000 n 0000566419 00000 n 0000566524 00000 n 0000566551 00000 n 0000566656 00000 n 0000566761 00000 n 0000566866 00000 n 0000566971 00000 n 0000567074 00000 n 0000567179 00000 n 0000567283 00000 n 0000567364 00000 n 0000567399 00000 n 0000567488 00000 n 0000567593 00000 n 0000567698 00000 n 0000567803 00000 n 0000567908 00000 n 0000568013 00000 n 0000568118 00000 n 0000568199 00000 n 0000568304 00000 n 0000568408 00000 n 0000568444 00000 n 0000568548 00000 n 0000568637 00000 n 0000568664 00000 n 0000568700 00000 n 0000568736 00000 n 0000573457 00000 n 0000573502 00000 n 0000573547 00000 n 0000573592 00000 n 0000573637 00000 n 0000573682 00000 n 0000573727 00000 n 0000573772 00000 n 0000573817 00000 n 0000573862 00000 n 0000573907 00000 n 0000573952 00000 n 0000573997 00000 n 0000574042 00000 n 0000574087 00000 n 0000574132 00000 n 0000574177 00000 n 0000574222 00000 n 0000574267 00000 n 0000574312 00000 n 0000574357 00000 n 0000574402 00000 n 0000574447 00000 n 0000574492 00000 n 0000574537 00000 n 0000574582 00000 n 0000574627 00000 n 0000574672 00000 n 0000574717 00000 n 0000574762 00000 n 0000574807 00000 n 0000574852 00000 n 0000574897 00000 n 0000574942 00000 n 0000574987 00000 n 0000575032 00000 n 0000575077 00000 n 0000575122 00000 n 0000575167 00000 n 0000575212 00000 n 0000575257 00000 n 0000575302 00000 n 0000575347 00000 n 0000575392 00000 n 0000575437 00000 n 0000575482 00000 n 0000575527 00000 n 0000575572 00000 n 0000575617 00000 n 0000575662 00000 n 0000575707 00000 n 0000575752 00000 n 0000575797 00000 n 0000575842 00000 n 0000575887 00000 n 0000575932 00000 n 0000575976 00000 n 0000576021 00000 n 0000576066 00000 n 0000576111 00000 n 0000576156 00000 n 0000576200 00000 n 0000576245 00000 n 0000576290 00000 n 0000576335 00000 n 0000576380 00000 n 0000576425 00000 n 0000576470 00000 n 0000576515 00000 n 0000576560 00000 n 0000576604 00000 n 0000576649 00000 n 0000576694 00000 n 0000576738 00000 n 0000576783 00000 n 0000576828 00000 n 0000576873 00000 n 0000576918 00000 n 0000576963 00000 n 0000577008 00000 n 0000577053 00000 n 0000577098 00000 n 0000577143 00000 n 0000577188 00000 n 0000577233 00000 n 0000577277 00000 n 0000577322 00000 n 0000577367 00000 n 0000577412 00000 n 0000577457 00000 n 0000577502 00000 n 0000577547 00000 n 0000577592 00000 n 0000577637 00000 n 0000577682 00000 n 0000577727 00000 n 0000577772 00000 n 0000577817 00000 n 0000577862 00000 n 0000577907 00000 n 0000577952 00000 n 0000577997 00000 n 0000578042 00000 n 0000578087 00000 n 0000578132 00000 n 0000578177 00000 n 0000578222 00000 n 0000578267 00000 n 0000578312 00000 n 0000578357 00000 n 0000578402 00000 n 0000578447 00000 n 0000578492 00000 n 0000578537 00000 n 0000578582 00000 n 0000578627 00000 n 0000578672 00000 n 0000578717 00000 n 0000578762 00000 n 0000578807 00000 n 0000578852 00000 n 0000578897 00000 n 0000578942 00000 n 0000578987 00000 n 0000579032 00000 n 0000579077 00000 n 0000579122 00000 n 0000579167 00000 n 0000579212 00000 n 0000579257 00000 n 0000579302 00000 n 0000579347 00000 n 0000579392 00000 n 0000579437 00000 n 0000579482 00000 n 0000579527 00000 n 0000579572 00000 n 0000579617 00000 n 0000579662 00000 n 0000579707 00000 n 0000579752 00000 n 0000579797 00000 n 0000579842 00000 n 0000579887 00000 n 0000579932 00000 n 0000579977 00000 n 0000580022 00000 n 0000580067 00000 n 0000580112 00000 n 0000580156 00000 n 0000580201 00000 n 0000580246 00000 n 0000580291 00000 n 0000580336 00000 n 0000580381 00000 n 0000580426 00000 n 0000580471 00000 n 0000580516 00000 n 0000580561 00000 n 0000580606 00000 n 0000580651 00000 n 0000580696 00000 n 0000580741 00000 n 0000580786 00000 n 0000580831 00000 n 0000580876 00000 n 0000580921 00000 n 0000580966 00000 n 0000581011 00000 n 0000581056 00000 n 0000581101 00000 n 0000581146 00000 n 0000581190 00000 n 0000581235 00000 n 0000581280 00000 n 0000581324 00000 n 0000581369 00000 n 0000581414 00000 n 0000581459 00000 n 0000581504 00000 n 0000581549 00000 n 0000581594 00000 n 0000581639 00000 n 0000581684 00000 n 0000581729 00000 n 0000581774 00000 n 0000581819 00000 n 0000581864 00000 n 0000581909 00000 n 0000581954 00000 n 0000581998 00000 n 0000582043 00000 n 0000582088 00000 n 0000582133 00000 n 0000582178 00000 n 0000582223 00000 n 0000582268 00000 n 0000582313 00000 n 0000582358 00000 n 0000582402 00000 n 0000582447 00000 n 0000582492 00000 n 0000582537 00000 n 0000582582 00000 n 0000582627 00000 n 0000582672 00000 n 0000582717 00000 n 0000582762 00000 n 0000582807 00000 n 0000582852 00000 n 0000583945 00000 n 0000584141 00000 n 0000585295 00000 n 0000585446 00000 n 0000585620 00000 n 0000585879 00000 n 0000587513 00000 n 0000587699 00000 n 0000588513 00000 n 0000588751 00000 n 0000589651 00000 n 0000589802 00000 n 0000590005 00000 n 0000590243 00000 n 0000591547 00000 n 0000591773 00000 n 0000593372 00000 n 0000593558 00000 n 0000594081 00000 n 0000594232 00000 n 0000594445 00000 n 0000594694 00000 n 0000596340 00000 n 0000596536 00000 n 0000598117 00000 n 0000598324 00000 n 0000599356 00000 n 0000599507 00000 n 0000599725 00000 n 0000599994 00000 n 0000602046 00000 n 0000602273 00000 n 0000604039 00000 n 0000604245 00000 n 0000605416 00000 n 0000605567 00000 n 0000605764 00000 n 0000606012 00000 n 0000607313 00000 n 0000607529 00000 n 0000608946 00000 n 0000609205 00000 n 0000611129 00000 n 0000611346 00000 n 0000613051 00000 n 0000613257 00000 n 0000614801 00000 n 0000615007 00000 n 0000616336 00000 n 0000616594 00000 n 0000618089 00000 n 0000618306 00000 n 0000619412 00000 n 0000619670 00000 n 0000620866 00000 n 0000621072 00000 n 0000621548 00000 n 0000621807 00000 n 0000623258 00000 n 0000623434 00000 n 0000623844 00000 n 0000624113 00000 n 0000625726 00000 n 0000625952 00000 n 0000627583 00000 n 0000627789 00000 n 0000628838 00000 n 0000629044 00000 n 0000629730 00000 n 0000629978 00000 n 0000631755 00000 n 0000631982 00000 n 0000633662 00000 n 0000633858 00000 n 0000635074 00000 n 0000635300 00000 n 0000636822 00000 n 0000637059 00000 n 0000638647 00000 n 0000638873 00000 n 0000640035 00000 n 0000640294 00000 n 0000642071 00000 n 0000642297 00000 n 0000643903 00000 n 0000644129 00000 n 0000645566 00000 n 0000645792 00000 n 0000647341 00000 n 0000647557 00000 n 0000648915 00000 n 0000649066 00000 n 0000649289 00000 n 0000649568 00000 n 0000651408 00000 n 0000651635 00000 n 0000653316 00000 n 0000653533 00000 n 0000655043 00000 n 0000655259 00000 n 0000656536 00000 n 0000656732 00000 n 0000657525 00000 n 0000657676 00000 n 0000657901 00000 n 0000658170 00000 n 0000659552 00000 n 0000659789 00000 n 0000661122 00000 n 0000661348 00000 n 0000662862 00000 n 0000663038 00000 n 0000663307 00000 n 0000663540 00000 n 0000664950 00000 n 0000665146 00000 n 0000665908 00000 n 0000666167 00000 n 0000667896 00000 n 0000668112 00000 n 0000668779 00000 n 0000669028 00000 n 0000670659 00000 n 0000670885 00000 n 0000672487 00000 n 0000672703 00000 n 0000674042 00000 n 0000674193 00000 n 0000674392 00000 n 0000674640 00000 n 0000676205 00000 n 0000676411 00000 n 0000678043 00000 n 0000678234 00000 n 0000679715 00000 n 0000679901 00000 n 0000680559 00000 n 0000680807 00000 n 0000682163 00000 n 0000682390 00000 n 0000684023 00000 n 0000684240 00000 n 0000685069 00000 n 0000685220 00000 n 0000685434 00000 n 0000685682 00000 n 0000687366 00000 n 0000687542 00000 n 0000687806 00000 n 0000688065 00000 n 0000689528 00000 n 0000689724 00000 n 0000690624 00000 n 0000690857 00000 n 0000692447 00000 n 0000692663 00000 n 0000694282 00000 n 0000694498 00000 n 0000695420 00000 n 0000695571 00000 n 0000695776 00000 n 0000696025 00000 n 0000697585 00000 n 0000697782 00000 n 0000699240 00000 n 0000699416 00000 n 0000699671 00000 n 0000699822 00000 n 0000700025 00000 n 0000700274 00000 n 0000701950 00000 n 0000702136 00000 n 0000702613 00000 n 0000702872 00000 n 0000704397 00000 n 0000704614 00000 n 0000706053 00000 n 0000706249 00000 n 0000707793 00000 n 0000707944 00000 n 0000708146 00000 n 0000708384 00000 n 0000709710 00000 n 0000709861 00000 n 0000710075 00000 n 0000710324 00000 n 0000711797 00000 n 0000711993 00000 n 0000713636 00000 n 0000713852 00000 n 0000714872 00000 n 0000715023 00000 n 0000715556 00000 n 0000715815 00000 n 0000717027 00000 n 0000717233 00000 n 0000718095 00000 n 0000718301 00000 n 0000719127 00000 n 0000719333 00000 n 0000720197 00000 n 0000720393 00000 n 0000721121 00000 n 0000721327 00000 n 0000722139 00000 n 0000722346 00000 n 0000723114 00000 n 0000723321 00000 n 0000724184 00000 n 0000724401 00000 n 0000725061 00000 n 0000725212 00000 n 0000725424 00000 n 0000725674 00000 n 0000726803 00000 n 0000727021 00000 n 0000728122 00000 n 0000728303 00000 n 0000729524 00000 n 0000729732 00000 n 0000731032 00000 n 0000731203 00000 n 0000732508 00000 n 0000732715 00000 n 0000734297 00000 n 0000734505 00000 n 0000736159 00000 n 0000736366 00000 n 0000737003 00000 n 0000737242 00000 n 0000738415 00000 n 0000738566 00000 n 0000738766 00000 n 0000738825 00000 n 0000738925 00000 n 0000739039 00000 n 0000739167 00000 n 0000739298 00000 n 0000739425 00000 n 0000739561 00000 n 0000739692 00000 n 0000739821 00000 n 0000739953 00000 n 0000740082 00000 n 0000740216 00000 n 0000740358 00000 n 0000740489 00000 n 0000740632 00000 n 0000740760 00000 n 0000740885 00000 n 0000741011 00000 n 0000741134 00000 n 0000741267 00000 n 0000741388 00000 n 0000741521 00000 n 0000741642 00000 n 0000741769 00000 n 0000741898 00000 n 0000742026 00000 n 0000742151 00000 n 0000742277 00000 n 0000742404 00000 n 0000742539 00000 n 0000742662 00000 n 0000742786 00000 n 0000742898 00000 n trailer <<7efee897a900e75659ce469ed1d90284>]>> startxref 743695 %%EOF prover9-manual-2009-02A/PUZ031-1.tptp0000644000175000017500000001103510576535246016143 0ustar mccunemccune%-------------------------------------------------------------------------- % File : PUZ031-1 : TPTP v3.1.0. Released v1.0.0. % Domain : Puzzles % Problem : Schubert's Steamroller % Version : Especial. % English : Wolves, foxes, birds, caterpillars, and snails are animals, and % there are some of each of them. Also there are some grains, and % grains are plants. Every animal either likes to eat all plants % or all animals much smaller than itself that like to eat some % plants. Caterpillars and snails are much smaller than birds, % which are much smaller than foxes, which in turn are much % smaller than wolves. Wolves do not like to eat foxes or grains, % while birds like to eat caterpillars but not snails. % Caterpillars and snails like to eat some plants. Therefore % there is an animal that likes to eat a grain eating animal. % Refs : [Sti86] Stickel (1986), Schubert's Steamroller Problem: Formul % : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au % : [WB87] Wang & Bledsoe (1987), Hierarchical Deduction % : [MB88] Manthey & Bry (1988), SATCHMO: A Theorem Prover Implem % Source : [Pel86] % Names : Pelletier 47 [Pel86] % : steamroller.ver1.in [ANL] % : steam.in [OTTER] % : SST [WB87] % Status : Unsatisfiable % Rating : 0.00 v2.2.1, 0.25 v2.1.0, 0.00 v2.0.0 % Syntax : Number of clauses : 26 ( 1 non-Horn; 6 unit; 26 RR) % Number of atoms : 63 ( 0 equality) % Maximal clause size : 8 ( 2 average) % Number of predicates : 10 ( 0 propositional; 1-2 arity) % Number of functors : 8 ( 6 constant; 0-1 arity) % Number of variables : 33 ( 0 singleton) % Maximal term depth : 2 ( 1 average) % Comments : This problem is named after Len Schubert. %-------------------------------------------------------------------------- cnf(wolf_is_an_animal,axiom, ( animal(X) | ~ wolf(X) )). cnf(fox_is_an_animal,axiom, ( animal(X) | ~ fox(X) )). cnf(bird_is_an_animal,axiom, ( animal(X) | ~ bird(X) )). cnf(caterpillar_is_an_animal,axiom, ( animal(X) | ~ caterpillar(X) )). cnf(snail_is_an_animal,axiom, ( animal(X) | ~ snail(X) )). cnf(there_is_a_wolf,axiom, ( wolf(a_wolf) )). cnf(there_is_a_fox,axiom, ( fox(a_fox) )). cnf(there_is_a_bird,axiom, ( bird(a_bird) )). cnf(there_is_a_caterpillar,axiom, ( caterpillar(a_caterpillar) )). cnf(there_is_a_snail,axiom, ( snail(a_snail) )). cnf(there_is_a_grain,axiom, ( grain(a_grain) )). cnf(grain_is_a_plant,axiom, ( plant(X) | ~ grain(X) )). cnf(eating_habits,axiom, ( eats(Animal,Plant) | eats(Animal,Small_animal) | ~ animal(Animal) | ~ plant(Plant) | ~ animal(Small_animal) | ~ plant(Other_plant) | ~ much_smaller(Small_animal,Animal) | ~ eats(Small_animal,Other_plant) )). cnf(caterpillar_smaller_than_bird,axiom, ( much_smaller(Catapillar,Bird) | ~ caterpillar(Catapillar) | ~ bird(Bird) )). cnf(snail_smaller_than_bird,axiom, ( much_smaller(Snail,Bird) | ~ snail(Snail) | ~ bird(Bird) )). cnf(bird_smaller_than_fox,axiom, ( much_smaller(Bird,Fox) | ~ bird(Bird) | ~ fox(Fox) )). cnf(fox_smaller_than_wolf,axiom, ( much_smaller(Fox,Wolf) | ~ fox(Fox) | ~ wolf(Wolf) )). cnf(wolf_dont_eat_fox,axiom, ( ~ wolf(Wolf) | ~ fox(Fox) | ~ eats(Wolf,Fox) )). cnf(wolf_dont_eat_grain,axiom, ( ~ wolf(Wolf) | ~ grain(Grain) | ~ eats(Wolf,Grain) )). cnf(bird_eats_caterpillar,axiom, ( eats(Bird,Catapillar) | ~ bird(Bird) | ~ caterpillar(Catapillar) )). cnf(bird_dont_eat_snail,axiom, ( ~ bird(Bird) | ~ snail(Snail) | ~ eats(Bird,Snail) )). cnf(caterpillar_food_is_a_plant,axiom, ( plant(caterpillar_food_of(Catapillar)) | ~ caterpillar(Catapillar) )). cnf(caterpillar_eats_caterpillar_food,axiom, ( eats(Catapillar,caterpillar_food_of(Catapillar)) | ~ caterpillar(Catapillar) )). cnf(snail_food_is_a_plant,axiom, ( plant(snail_food_of(Snail)) | ~ snail(Snail) )). cnf(snail_eats_snail_food,axiom, ( eats(Snail,snail_food_of(Snail)) | ~ snail(Snail) )). cnf(prove_the_animal_exists,negated_conjecture, ( ~ animal(Animal) | ~ animal(Grain_eater) | ~ grain(Grain) | ~ eats(Animal,Grain_eater) | ~ eats(Grain_eater,Grain) )). %-------------------------------------------------------------------------- prover9-manual-2009-02A/select2.html0000644000175000017500000001577511151021064016412 0ustar mccunemccune Prover9 Manual: Given Selection (Advanced)
    Prover9 Manual Version 2009-02A

    Given Selection (Advanced)

    This page describes a mechanism that allows the user to have more control over selection of given clauses than the ordinary parameters age_part, true_part, false_part, weight_part, hints_part, and random_part. (See the page Selecting the Given Clause for the basic mechanism.)

    The user can input a list "given_selection" rules that specify how given clauses are to be selected. Each rule has the form

    part( name, priority, order , property ) = n.
    
    • name is an identifier string chosen by the user; it is used when given clauses are printed to identify the rule that was used to select the given clause.
    • priority must be "high" or "low"; All high-priority rules are used before any low-priority rules are used.
    • order must be "age" (increasing clause ID), "weight" (increasing clause weight), or "random"; it is used to order the clauses that satisfy the property.
    • property is an expression in the Clause Properties language.
    • n is a positive integer; it specifies the number of given clauses that are selected according to the rule before moving to the next rule.
    For example the default settings (see Selecting the Given Clause)
    assign(hints_part, INT_MAX).
    assign(age_part, 1).
    assign(true_part, 4).
    assign(false_part, 4).
    
    are operationally similar to the following list of rules.
    list(given_selection).
      part(H, high, weight,  hint) = 1.
      part(A,  low,    age,   all) = 1.
      part(T,  low, weight,  true) = 4.
      part(F,  low, weight, false) = 4.
    end_of_list.
    

    Selection by Ratio

    Ignore high-priority rules for a moment and consider a list of low-priority rules. The positive integers (the parts) at the ends of the rules determine a ratio cycle. If there are three rules with parts 3,1,4, the cycle has size 8, with 3 clauses selected by the first rule, 1 clause by the second rule, 4 by the third rule, and so on. The ratio cycle is [3,1,4]. If no clauses of the required type are available, that part of the cycle is simply skipped. This much is essentially the same as the basic method described in Selecting the Given Clause.

    Priority: High and Low

    The given_selection rules are partitioned into "high" and "low" priority, and each partition determines a ratio cycle.

    When Prover9 needs a new given clause, it first tries to find one by using the high-priority rules, picking up in the high-priority cycle where it left off. Consider the following rules.

    list(given_selection).
      part(Hint_age,  high,    age,        hint) = 2.
      part(Hint_wt,   high, weight,        hint) = 3.
    
      part(Age,        low,    age,         all) = 1.
      part(Pos,        low, weight,    positive) = 2.
      part(Nonpos,     low, weight,   -positive) = 4.
    end_of_list.
    
    As long as clauses matching hints are available, they are selected in a cycle of size 5: 2 by age, then 3 by weight, and so on. When no more clauses matching hints are available, Prover9 reverts to the low-priority rules, selecting given clauses in a cycle of size 7. If any high-priority clauses become available, Prover9 immediately goes back to the high-priority cycle.

    Covering All Clauses

    We recommend that the list of rules cover all clauses that Prover9 keeps. (A rule with property "all" is sufficient, but not necessary.) If a kept clause does not match any of the rules, a warning message is printed. In this case, there can be sos clauses that will never be selectedas. (It is possible that such clauses can still be used by subsumption, back demodulation, or back unit deletion.)

    The Ordinary Selection Parameters (age_part, etc.)

    The ordinary parameters age_part, true_part, false_part, weight_part, hints_part, and random_part can be thought of as shorthand for given_selection rules. In fact, if the user does not input a list of given_selection rules, Prover9 constructs and uses an internal given_selection list by using those parameters.

    However, if the user does input given_selection rules, those five parameters are ignored. In particular, if the user inputs given_selection rules, and if hints are being used, there probably should be (at least) a high_priority rule with property "hint" so that the hints will be used.

    Input_sos_first

    The flag input_sos_first (default set) says that all initial clauses (sos clauses that exist when the first given clause is selected) are to be selected as give clauses before any non-initial clauses. This flag is implemented with a high-priority rule.

    Contrary to the hints case, if the user inputs given_selection rules, and if the flag input_sos_first, Prover9 will automatically insert the following rule as the first high-priority rule.

      part(I, high, age, initial) = INT_MAX.
    
    If the user wishes to override this behavior, for example by having initial clauses selected immediately by weight instead of age, the flag input_sos_first can be cleared, and the following can be used as the first high-priority rule.
      part(I_wt, high, weight, initial) = INT_MAX.
    
    prover9-manual-2009-02A/queens1.out0000644000175000017500000000477611151315545016306 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15893 was started by mccune on cleo, Wed Feb 25 12:26:29 2009 The command was "/home/mccune/bin/mace4 -n8 -f queens1.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file queens1.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. formulas(assumptions). x != z -> Q(x) != Q(z). x != z -> z + -x != Q(z) + -Q(x). x != z -> z + -x != Q(x) + -Q(z). end_of_list. % assign(domain_size, 8) -> assign(start_size, 8). % assign(domain_size, 8) -> assign(end_size, 8). % From the command line: assign(domain_size, 8). ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 x != z -> Q(x) != Q(z) # label(non_clause). [assumption]. 2 x != z -> z + -x != Q(z) + -Q(x) # label(non_clause). [assumption]. 3 x != z -> z + -x != Q(x) + -Q(z) # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). x = y | Q(x) != Q(y). x = y | Q(x) + -Q(y) != x + -y. x = y | Q(y) + -Q(x) != x + -y. end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 8 ========================= ============================== MODEL ================================= interpretation( 8, [number=1, seconds=0], [ function(Q(_), [ 0, 4, 7, 5, 2, 6, 1, 3 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 8. Current CPU time: 0.00 seconds (total CPU time: 0.02 seconds). Ground clauses: seen=192, kept=168. Selections=101, assignments=784, propagations=12, current_models=1. Rewrite_terms=17812, rewrite_bools=10246, indexes=0. Rules_from_neg_clauses=12, cross_offs=342. ============================== end of statistics ===================== User_CPU=0.02, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 15893 exit (max_models) Wed Feb 25 12:26:29 2009 The process finished Wed Feb 25 12:26:29 2009 prover9-manual-2009-02A/queens2.out0000644000175000017500000000635711151315545016304 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15894 was started by mccune on cleo, Wed Feb 25 12:26:29 2009 The command was "/home/mccune/bin/mace4 -n8 -f queens2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file queens2.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. formulas(assumptions). (all x exists y Q(x,y)). Q(x,y1) & Q(x,y2) -> y1 = y2. Q(x1,y) & Q(x2,y) -> x1 = x2. Q(x1,y1) & Q(x2,y2) & x2 + -x1 = y2 + -y1 -> x1 = x2 & y1 = y2. Q(x1,y1) & Q(x2,y2) & x1 + -x2 = y2 + -y1 -> x1 = x2 & y1 = y2. end_of_list. % assign(domain_size, 8) -> assign(start_size, 8). % assign(domain_size, 8) -> assign(end_size, 8). % From the command line: assign(domain_size, 8). ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (all x exists y Q(x,y)) # label(non_clause). [assumption]. 2 Q(x,y1) & Q(x,y2) -> y1 = y2 # label(non_clause). [assumption]. 3 Q(x1,y) & Q(x2,y) -> x1 = x2 # label(non_clause). [assumption]. 4 Q(x1,y1) & Q(x2,y2) & x2 + -x1 = y2 + -y1 -> x1 = x2 & y1 = y2 # label(non_clause). [assumption]. 5 Q(x1,y1) & Q(x2,y2) & x1 + -x2 = y2 + -y1 -> x1 = x2 & y1 = y2 # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). Q(x,f1(x)). -Q(x,y) | -Q(x,z) | z = y. -Q(x,y) | -Q(z,y) | z = x. -Q(x,y) | -Q(z,u) | z + -x != u + -y | z = x. -Q(x,y) | -Q(z,u) | z + -x != u + -y | u = y. -Q(x,y) | -Q(z,u) | x + -z != u + -y | z = x. -Q(x,y) | -Q(z,u) | x + -z != u + -y | u = y. end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 8 ========================= ============================== MODEL ================================= interpretation( 8, [number=1, seconds=0], [ function(f1(_), [ 0, 4, 7, 5, 2, 6, 1, 3 ]), relation(Q(_,_), [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 8. Current CPU time: 0.00 seconds (total CPU time: 0.07 seconds). Ground clauses: seen=17416, kept=2024. Selections=18, assignments=132, propagations=531, current_models=1. Rewrite_terms=193, rewrite_bools=9165, indexes=79. Rules_from_neg_clauses=61, cross_offs=258. ============================== end of statistics ===================== User_CPU=0.07, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 15894 exit (max_models) Wed Feb 25 12:26:29 2009 The process finished Wed Feb 25 12:26:29 2009 prover9-manual-2009-02A/advanced.html0000644000175000017500000000155611151021064016606 0ustar mccunemccune Prover9 Manual: Advanced Features
    Prover9 Manual Version 2009-02A

    Advanced Features

    prover9-manual-2009-02A/kenken6.out0000644000175000017500000000637211151315546016261 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15895 was started by mccune on cleo, Wed Feb 25 12:26:29 2009 The command was "/home/mccune/bin/mace4 -f kenken6.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file kenken6.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. assign(domain_size,6). % assign(domain_size, 6) -> assign(start_size, 6). % assign(domain_size, 6) -> assign(end_size, 6). assign(max_models,-1). formulas(assumptions). f(x,y1) = f(x,y2) -> y1 = y2. f(x1,y) = f(x2,y) -> x1 = x2. f(0,1) * f(0,2) = 0. f(0,0) + f(1,0) = 5. f(0,3) * f(1,3) = 20. f(0,4) * f(0,5) * f(1,5) * f(2,5) = 6. f(1,4) + f(2,4) = 2. abs(f(1,1) + -f(1,2)) = 3. f(2,0) * f(2,1) * f(3,0) * f(3,1) = 240. f(2,2) * f(2,3) = 6. f(3,2) * f(4,2) = 0. f(3,3) + f(4,3) + f(4,4) = 7. f(3,4) * f(3,5) = 0. f(4,0) * f(4,1) = 6. abs(f(4,5) + -f(5,5)) = 1. f(5,0) + f(5,1) + f(5,2) = 8. f(5,3) + f(5,4) = 3. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 f(x,y1) = f(x,y2) -> y1 = y2 # label(non_clause). [assumption]. 2 f(x1,y) = f(x2,y) -> x1 = x2 # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). f(x,y) != f(x,z) | y = z. f(x,y) != f(z,y) | x = z. f(0,1) * f(0,2) = 0. f(0,0) + f(1,0) = 5. f(0,3) * f(1,3) = 20. f(0,4) * f(0,5) * f(1,5) * f(2,5) = 6. f(1,4) + f(2,4) = 2. abs(f(1,1) + -f(1,2)) = 3. f(2,0) * f(2,1) * f(3,0) * f(3,1) = 240. f(2,2) * f(2,3) = 6. f(3,2) * f(4,2) = 0. f(3,3) + f(4,3) + f(4,4) = 7. f(3,4) * f(3,5) = 0. f(4,0) * f(4,1) = 6. abs(f(4,5) + -f(5,5)) = 1. f(5,0) + f(5,1) + f(5,2) = 8. f(5,3) + f(5,4) = 3. end_of_list. ============================== end of clauses for search ============= % The largest natural number in the input is 240. ============================== DOMAIN SIZE 6 ========================= ============================== MODEL ================================= interpretation( 6, [number=1, seconds=0], [ function(f(_,_), [ 5, 0, 3, 4, 1, 2, 0, 1, 4, 5, 2, 3, 4, 5, 2, 3, 0, 1, 3, 4, 1, 2, 5, 0, 2, 3, 0, 1, 4, 5, 1, 2, 5, 0, 3, 4 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 6. Current CPU time: 0.00 seconds (total CPU time: 0.18 seconds). Ground clauses: seen=447, kept=375. Selections=10625, assignments=63750, propagations=1871, current_models=1. Rewrite_terms=482331, rewrite_bools=176087, indexes=0. Rules_from_neg_clauses=1871, cross_offs=95611. ============================== end of statistics ===================== User_CPU=0.18, System_CPU=0.00, Wall_clock=1. Exiting with 1 model. Process 15895 exit (all_models) Wed Feb 25 12:26:30 2009 The process finished Wed Feb 25 12:26:30 2009 prover9-manual-2009-02A/list.out0000644000175000017500000002522011151315551015660 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15900 was started by mccune on cleo, Wed Feb 25 12:26:33 2009 The command was "/home/mccune/bin/prover9 -f list.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file list.in set(production). % set(production) -> set(raw). % set(raw) -> clear(auto). % clear(auto) -> clear(auto_inference). % clear(auto) -> clear(auto_setup). % clear(auto_setup) -> clear(predicate_elim). % clear(auto_setup) -> assign(eq_defs, pass). % clear(auto) -> clear(auto_limits). % clear(auto_limits) -> assign(max_weight, "1000000000000.000"). % clear(auto_limits) -> assign(sos_limit, -1). % clear(auto) -> clear(auto_denials). % clear(auto) -> clear(auto_process). % set(raw) -> clear(ordered_res). % set(raw) -> clear(ordered_para). % set(raw) -> set(para_into_vars). % set(raw) -> set(para_from_small). % set(raw) -> clear(ordered_para). % set(raw) -> clear(back_demod). % set(raw) -> clear(cac_redundancy). % set(raw) -> assign(backsub_check, 2147483647). % set(raw) -> set(lightest_first). % set(lightest_first) -> assign(weight_part, 1). % set(lightest_first) -> assign(age_part, 0). % set(lightest_first) -> assign(false_part, 0). % set(lightest_first) -> assign(true_part, 0). % set(lightest_first) -> assign(random_part, 0). % set(raw) -> assign(literal_selection, none). % set(production) -> set(eval_rewrite). % set(production) -> set(hyper_resolution). % set(hyper_resolution) -> set(pos_hyper_resolution). % set(production) -> clear(back_subsume). formulas(demodulators). -member(x,[]). member(x,[y:z]) <-> if(x == y,$T,member(x,z)). subset([],x). subset([x:y],z) <-> member(x,z) & subset(y,z). is_set([]). is_set([x:y]) <-> -member(x,y) & is_set(y). set([]) = []. set([x:y]) = if(member(x,y),set(y),[x:set(y)]). append([],x) = x. append([x:y],z) = [x:append(y,z)]. intersect([],x) = []. intersect([x:y],z) = if(member(x,z),[x:intersect(y,z)],intersect(y,z)). union([],x) = x. union([x:y],z) = if(member(x,z),union(y,z),[x:union(y,z)]). diff([],x) = []. diff([x:y],z) = if(member(x,z),diff(y,z),[x:diff(y,z)]). reverse(x) = rev_app(x,[]). rev_app([],x) = x. rev_app([x:y],z) = rev_app(y,[x:z]). quick_sort([]) = []. quick_sort([x:y]) = append(quick_sort(le_list(x,y)),[x:quick_sort(gt_list(x,y))]). le_list(z,[]) = []. le_list(z,[x:y]) = if(x @<= z,[x:le_list(z,y)],le_list(z,y)). gt_list(z,[]) = []. gt_list(z,[x:y]) = if(x @> z,[x:gt_list(z,y)],gt_list(z,y)). end_of_list. formulas(assumptions). Test1(2 + 3). Test2(reverse(union([a,b,c],[d,b,f]))). Test3(quick_sort([r,e,g,d,f,w,x,c,e,d,r,y,i,b,j,h,v,x,e,d,d,e,t])). Test4(diff([a,b,c,d,e],[c,d,e,f,g])). Test5(set([a,b,a,b,b,c])). member(b,[a,b,c]) -> Member_test_true. -member(b,[a,b,c]) -> Member_test_false. is_set([a,b,c,a,d]) -> Set_test_true. -is_set([a,b,c,a,d]) -> Set_test_false. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 member(b,[a,b,c]) -> Member_test_true # label(non_clause). [assumption]. 2 -member(b,[a,b,c]) -> Member_test_false # label(non_clause). [assumption]. 3 is_set([a,b,c,a,d]) -> Set_test_true # label(non_clause). [assumption]. 4 -is_set([a,b,c,a,d]) -> Set_test_false # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). Test1(2 + 3). [assumption]. Test2(reverse(union([a,b,c],[d,b,f]))). [assumption]. Test3(quick_sort([r,e,g,d,f,x,y,c,e,d,r,z,i,b,j,h,u,y,e,d,d,e,t])). [assumption]. Test4(diff([a,b,c,d,e],[c,d,e,f,g])). [assumption]. Test5(set([a,b,a,b,b,c])). [assumption]. -member(b,[a,b,c]) | Member_test_true. [clausify(1)]. member(b,[a,b,c]) | Member_test_false. [clausify(2)]. -is_set([a,b,c,a,d]) | Set_test_true. [clausify(3)]. is_set([a,b,c,a,d]) | Set_test_false. [clausify(4)]. end_of_list. formulas(demodulators). -member(x,[]). [assumption]. member(x,[y:z]) <-> if(x == y,$T,member(x,z)). [assumption]. subset([],x). [assumption]. subset([x:y],z) <-> member(x,z) & subset(y,z). [assumption]. is_set([]). [assumption]. is_set([x:y]) <-> -member(x,y) & is_set(y). [assumption]. set([]) = []. [assumption]. set([x:y]) = if(member(x,y),set(y),[x:set(y)]). [assumption]. append([],x) = x. [assumption]. append([x:y],z) = [x:append(y,z)]. [assumption]. intersect([],x) = []. [assumption]. intersect([x:y],z) = if(member(x,z),[x:intersect(y,z)],intersect(y,z)). [assumption]. union([],x) = x. [assumption]. union([x:y],z) = if(member(x,z),union(y,z),[x:union(y,z)]). [assumption]. diff([],x) = []. [assumption]. diff([x:y],z) = if(member(x,z),diff(y,z),[x:diff(y,z)]). [assumption]. reverse(x) = rev_app(x,[]). [assumption]. rev_app([],x) = x. [assumption]. rev_app([x:y],z) = rev_app(y,[x:z]). [assumption]. quick_sort([]) = []. [assumption]. quick_sort([x:y]) = append(quick_sort(le_list(x,y)),[x:quick_sort(gt_list(x,y))]). [assumption]. le_list(x,[]) = []. [assumption]. le_list(x,[y:z]) = if(y @<= x,[y:le_list(x,z)],le_list(x,z)). [assumption]. gt_list(x,[]) = []. [assumption]. gt_list(x,[y:z]) = if(y @> x,[y:gt_list(x,z)],gt_list(x,z)). [assumption]. end_of_list. Term ordering decisions: Predicate symbol precedence: predicate_order([ =, Member_test_false, Member_test_true, Set_test_false, Set_test_true, is_set, Test1, Test2, Test3, Test4, Test5, member, @<=, @>, subset, == ]). Function symbol precedence: function_order([ $nil, b, a, c, d, e, f, g, r, 2, 3, h, i, j, t, $cons, diff, gt_list, le_list, union, append, intersect, rev_app, +, quick_sort, set, reverse ]). After inverse_order: (no changes). 30 Test1(2 + 3). [assumption]. kept: 31 Test1(5). [copy(30),eval(1)]. 32 Test2(reverse(union([a,b,c],[d,b,f]))). [assumption]. kept: 33 Test2([f,b,d,c,a]). [copy(32),rewrite([18,6,5,17,21,23,22]),eval(8)]. 34 Test3(quick_sort([r,e,g,d,f,x,y,c,e,d,r,z,i,b,j,h,u,y,e,d,d,e,t])). [assumption]. kept: 35 Test3([x,y,y,z,u,b,c,d,d,d,d,e,e,e,e,f,g,h,i,j,r,r,t]). [copy(34),rewrite([25,27,26,24,29,28,13,14]),eval(194)]. 36 Test4(diff([a,b,c,d,e],[c,d,e,f,g])). [assumption]. kept: 37 Test4([a,b]). [copy(36),rewrite([20,6,5,19]),eval(16)]. 38 Test5(set([a,b,a,b,b,c])). [assumption]. kept: 39 Test5([a,b,c]). [copy(38),rewrite([12,6,5,11]),eval(9)]. 40 -member(b,[a,b,c]) | Member_test_true. [clausify(1)]. kept: 41 Member_test_true. [copy(40),rewrite([6]),eval(2)]. 42 member(b,[a,b,c]) | Member_test_false. [clausify(2)]. 43 -is_set([a,b,c,a,d]) | Set_test_true. [clausify(3)]. 44 is_set([a,b,c,a,d]) | Set_test_false. [clausify(4)]. kept: 45 Set_test_false. [copy(44),rewrite([10,6]),eval(4)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 31 Test1(5). [copy(30),eval(1)]. 33 Test2([f,b,d,c,a]). [copy(32),rewrite([18,6,5,17,21,23,22]),eval(8)]. 35 Test3([x,y,y,z,u,b,c,d,d,d,d,e,e,e,e,f,g,h,i,j,r,r,t]). [copy(34),rewrite([25,27,26,24,29,28,13,14]),eval(194)]. 37 Test4([a,b]). [copy(36),rewrite([20,6,5,19]),eval(16)]. 39 Test5([a,b,c]). [copy(38),rewrite([12,6,5,11]),eval(9)]. 41 Member_test_true. [copy(40),rewrite([6]),eval(2)]. 45 Set_test_false. [copy(44),rewrite([10,6]),eval(4)]. end_of_list. formulas(demodulators). 5 -member(x,[]). [assumption]. 6 member(x,[y:z]) <-> if(x == y,$T,member(x,z)). [assumption]. 7 subset([],x). [assumption]. 8 subset([x:y],z) <-> member(x,z) & subset(y,z). [assumption]. 9 is_set([]). [assumption]. 10 is_set([x:y]) <-> -member(x,y) & is_set(y). [assumption]. 11 set([]) = []. [assumption]. 12 set([x:y]) = if(member(x,y),set(y),[x:set(y)]). [assumption]. 13 append([],x) = x. [assumption]. 14 append([x:y],z) = [x:append(y,z)]. [assumption]. 15 intersect([],x) = []. [assumption]. 16 intersect([x:y],z) = if(member(x,z),[x:intersect(y,z)],intersect(y,z)). [assumption]. 17 union([],x) = x. [assumption]. 18 union([x:y],z) = if(member(x,z),union(y,z),[x:union(y,z)]). [assumption]. 19 diff([],x) = []. [assumption]. 20 diff([x:y],z) = if(member(x,z),diff(y,z),[x:diff(y,z)]). [assumption]. 21 reverse(x) = rev_app(x,[]). [assumption]. 22 rev_app([],x) = x. [assumption]. 23 rev_app([x:y],z) = rev_app(y,[x:z]). [assumption]. 24 quick_sort([]) = []. [assumption]. 25 quick_sort([x:y]) = append(quick_sort(le_list(x,y)),[x:quick_sort(gt_list(x,y))]). [assumption]. 26 le_list(x,[]) = []. [assumption]. 27 le_list(x,[y:z]) = if(y @<= x,[y:le_list(x,z)],le_list(x,z)). [assumption]. 28 gt_list(x,[]) = []. [assumption]. 29 gt_list(x,[y:z]) = if(y @> x,[y:gt_list(x,z)],gt_list(x,z)). [assumption]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=2): 31 Test1(5). [copy(30),eval(1)]. given #2 (I,wt=12): 33 Test2([f,b,d,c,a]). [copy(32),rewrite([18,6,5,17,21,23,22]),eval(8)]. given #3 (I,wt=48): 35 Test3([x,y,y,z,u,b,c,d,d,d,d,e,e,e,e,f,g,h,i,j,r,r,t]). [copy(34),rewrite([25,27,26,24,29,28,13,14]),eval(194)]. given #4 (I,wt=6): 37 Test4([a,b]). [copy(36),rewrite([20,6,5,19]),eval(16)]. given #5 (I,wt=8): 39 Test5([a,b,c]). [copy(38),rewrite([12,6,5,11]),eval(9)]. given #6 (I,wt=1): 41 Member_test_true. [copy(40),rewrite([6]),eval(2)]. given #7 (I,wt=1): 45 Set_test_false. [copy(44),rewrite([10,6]),eval(4)]. ============================== STATISTICS ============================ Given=7. Generated=9. Kept=7. proofs=0. Usable=7. Sos=0. Demods=25. Limbo=0, Disabled=9. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.04. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= SEARCH FAILED Exiting with failure. Process 15900 exit (sos_empty) Wed Feb 25 12:26:33 2009 prover9-manual-2009-02A/ubset_trans.proof20000644000175000017500000000267710730262175017656 0ustar mccunemccune============================== prooftrans ============================ Prover9 (32) version Dec-2007, Dec 2007. Process 15494 was started by mccune on cleo, Thu Dec 13 10:57:17 2007 The command was "/home/mccune/bin/prover9 -f subset_trans.in". ============================== end of head =========================== ============================== end of input ========================== ============================== PROOF ================================= % -------- Comments from original proof -------- % Proof 1 at 0.00 (+ 0.00) seconds. % Length of proof is 14. % Level of proof is 4. % Maximum clause weight is 6. % Given clauses 6. 1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption]. 2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal]. 3 subset(x,y) | member(f1(x,y),x). [clausify(1)]. 4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)]. 5 subset(x,y) | -member(f1(x,y),y). [clausify(1)]. 6 subset(c1,c2). [deny(2)]. 7 subset(c2,c3). [deny(2)]. 8 -subset(c1,c3). [deny(2)]. 9 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)]. 10 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)]. 11 member(f1(c1,c3),c1). [resolve(8,a,3,a)]. 12 -member(f1(c1,c3),c3). [resolve(8,a,5,a)]. 13 member(f1(c1,c3),c2). [resolve(11,a,9,a)]. 14 $F. [ur(10,b,12,a),unit_del(a,13)]. ============================== end of proof ========================== prover9-manual-2009-02A/clause-properties.html0000644000175000017500000000662611151021064020512 0ustar mccunemccune Prover9 Manual: Clause Properties
    Prover9 Manual Version 2009-02A

    Clause Properties (Advanced)

    Several Prover9 features (keep/delete rules and given-selection rules) allow the user to specify subsets of clauses by using a simple language. Examples are clauses to keep, clauses to discard, and clauses to be selected as given clauses. For example, to specify Horn clauses with more than three literals, one can write the rule
    horn & literals>3.
    

    Basic Properties:

    positive all literals are positive
    negative all literals are negative
    mixed contains positive literals and negative literals
    unit exactly one literal
    horn the clause has at most one positive literal
    definite the clause has exactly one positive literal
    has_equality contains a positive or negative equality literal
    true true in interpretations(s)
    false false in interpretations(s)
    hint the clause matches a hint
    initial the clause was present before the selection of the first given clause
    resolvent the clause is a (binary) resolvent
    hyper_resolvent the clause is a hyperresolvent
    ur_resolvent the clause is a unit-resulting (UR) resolvent
    factor the clause is a (binary) factor
    paramodulant the clause is a paramodulant
    back_demodulant the clause is a back demodulant
    subsumer the clause back subsumed another clause
    all all clauses have this property

    Integral Properties

    The following properties are used with relations <, <=, =, >=, >.

    weight weight of the clause
    literals number of literals in the clause
    variables number of (distinct) variables in the clause
    depth depth of the deepest term in the clause
    level level of the clause (derivation distance from input)

    Boolean Combinations

    Non-atomic expressions are constructed in the same way as ordinary formulas, with the following operations.

    & conjunction
    | disjunction
    - negation
    prover9-manual-2009-02A/zebra2.out0000644000175000017500000001205511151315550016073 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15898 was started by mccune on cleo, Wed Feb 25 12:26:32 2009 The command was "/home/mccune/bin/mace4 -f zebra2.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file zebra2.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. assign(domain_size,5). % assign(domain_size, 5) -> assign(start_size, 5). % assign(domain_size, 5) -> assign(end_size, 5). list(distinct). [England,Spain,Ukraine,Japan,Norway]. [Dog,Snail,Horse,Zebra,Fox]. [Water,Milk,Juice,Tea,Coffee]. [Red,Blue,Yellow,Ivory,Green]. [Lucky,Winston,Kool,Chesterfield,Parlaiment]. end_of_list. formulas(assumptions). successor(x,y) <-> x + 1 = y. neighbors(x,y) <-> successor(x,y) | successor(y,x). England = Red. Lucky = Juice. Spain = Dog. Ukraine = Tea. Norway = 0. Japan = Parlaiment. Kool = Yellow. neighbors(Kool,Horse). neighbors(Chesterfield,Fox). Coffee = Green. neighbors(Norway,Blue). successor(Green,Ivory). Winston = Snail. Milk = 2. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 successor(x,y) <-> x + 1 = y # label(non_clause). [assumption]. 2 neighbors(x,y) <-> successor(x,y) | successor(y,x) # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). -successor(x,y) | x + 1 = y. successor(x,y) | x + 1 != y. -neighbors(x,y) | successor(x,y) | successor(y,x). neighbors(x,y) | -successor(x,y). neighbors(x,y) | -successor(y,x). England = Red. Lucky = Juice. Spain = Dog. Ukraine = Tea. Norway = 0. Japan = Parlaiment. Kool = Yellow. neighbors(Kool,Horse). neighbors(Chesterfield,Fox). Coffee = Green. neighbors(Norway,Blue). successor(Green,Ivory). Winston = Snail. Milk = 2. England != Spain. England != Ukraine. England != Japan. England != Norway. Spain != Ukraine. Spain != Japan. Spain != Norway. Ukraine != Japan. Ukraine != Norway. Japan != Norway. Dog != Snail. Dog != Horse. Dog != Zebra. Dog != Fox. Snail != Horse. Snail != Zebra. Snail != Fox. Horse != Zebra. Horse != Fox. Zebra != Fox. Water != Milk. Water != Juice. Water != Tea. Water != Coffee. Milk != Juice. Milk != Tea. Milk != Coffee. Juice != Tea. Juice != Coffee. Tea != Coffee. Red != Blue. Red != Yellow. Red != Ivory. Red != Green. Blue != Yellow. Blue != Ivory. Blue != Green. Yellow != Ivory. Yellow != Green. Ivory != Green. Lucky != Winston. Lucky != Kool. Lucky != Chesterfield. Lucky != Parlaiment. Winston != Kool. Winston != Chesterfield. Winston != Parlaiment. Kool != Chesterfield. Kool != Parlaiment. Chesterfield != Parlaiment. end_of_list. ============================== end of clauses for search ============= % The largest natural number in the input is 2. ============================== DOMAIN SIZE 5 ========================= ============================== MODEL ================================= interpretation( 5, [number=1, seconds=0], [ function(Blue, [ 1 ]), function(Chesterfield, [ 1 ]), function(Coffee, [ 3 ]), function(Dog, [ 4 ]), function(England, [ 2 ]), function(Fox, [ 0 ]), function(Green, [ 3 ]), function(Horse, [ 1 ]), function(Ivory, [ 4 ]), function(Japan, [ 3 ]), function(Juice, [ 4 ]), function(Kool, [ 0 ]), function(Lucky, [ 4 ]), function(Milk, [ 2 ]), function(Norway, [ 0 ]), function(Parlaiment, [ 3 ]), function(Red, [ 2 ]), function(Snail, [ 2 ]), function(Spain, [ 4 ]), function(Tea, [ 1 ]), function(Ukraine, [ 1 ]), function(Winston, [ 2 ]), function(Yellow, [ 0 ]), relation(neighbors(_,_), [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0 ]), relation(successor(_,_), [ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]), function(Water, [ 0 ]), function(Zebra, [ 3 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 5. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=189, kept=114. Selections=8, assignments=33, propagations=89, current_models=1. Rewrite_terms=254, rewrite_bools=200, indexes=0. Rules_from_neg_clauses=17, cross_offs=92. ============================== end of statistics ===================== User_CPU=0.01, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 15898 exit (max_models) Wed Feb 25 12:26:32 2009 The process finished Wed Feb 25 12:26:32 2009 prover9-manual-2009-02A/portable.in0000644000175000017500000000041310654676240016325 0ustar mccunemccune formulas(assumptions). p0. p1(f0). p2(f1(f0),f2(f0,f0)). p3(f0,f0,f3(f0,f0,f0)). f2(x,f1(x)) = f0. f2(x,f0) = x. f2(f2(x,y),z) = f2(x,f2(y,z)). f3(x,y,z) = f2(z,x). p2(x,x). p2(x,y) & p2(y,z) -> p2(x,z). p2(0,1). p2(1,2). p2(x,y) -> p3(x,y,x). end_of_list. prover9-manual-2009-02A/send-money.out0000644000175000017500000000557611151315550016776 0ustar mccunemccune============================== Mace4 ================================= Mace4 (32) version 2009-02A, February 2009. Process 15896 was started by mccune on cleo, Wed Feb 25 12:26:30 2009 The command was "/home/mccune/bin/mace4 -f send-money.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file send-money.in set(arithmetic). % set(arithmetic) -> clear(lnh). % set(arithmetic) -> assign(selection_order, 0). % Declaring Mace4 arithmetic parse types. assign(domain_size,10). % assign(domain_size, 10) -> assign(start_size, 10). % assign(domain_size, 10) -> assign(end_size, 10). list(distinct). [S,E,N,D,M,O,R,Y]. end_of_list. formulas(assumptions). D + E = Y + C1 * 10. N + R + C1 = E + C2 * 10. E + O + C2 = N + C3 * 10. S + M + C3 = O + M * 10. S != 0. M != 0. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). D + E = Y + C1 * 10. N + R + C1 = E + C2 * 10. E + O + C2 = N + C3 * 10. S + M + C3 = O + M * 10. S != 0. M != 0. S != E. S != N. S != D. S != M. S != O. S != R. S != Y. E != N. E != D. E != M. E != O. E != R. E != Y. N != D. N != M. N != O. N != R. N != Y. D != M. D != O. D != R. D != Y. M != O. M != R. M != Y. O != R. O != Y. R != Y. end_of_list. ============================== end of clauses for search ============= % The largest natural number in the input is 10. ============================== DOMAIN SIZE 10 ======================== ============================== MODEL ================================= interpretation( 10, [number=1, seconds=2], [ function(C1, [ 1 ]), function(C2, [ 1 ]), function(C3, [ 0 ]), function(D, [ 7 ]), function(E, [ 5 ]), function(M, [ 1 ]), function(N, [ 6 ]), function(O, [ 0 ]), function(R, [ 8 ]), function(S, [ 9 ]), function(Y, [ 2 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 10. Current CPU time: 0.00 seconds (total CPU time: 2.56 seconds). Ground clauses: seen=34, kept=34. Selections=242526, assignments=2425201, propagations=0, current_models=1. Rewrite_terms=7196584, rewrite_bools=5030322, indexes=0. Rules_from_neg_clauses=0, cross_offs=89005. ============================== end of statistics ===================== User_CPU=2.56, System_CPU=0.04, Wall_clock=2. Exiting with 1 model. Process 15896 exit (max_models) Wed Feb 25 12:26:32 2009 The process finished Wed Feb 25 12:26:32 2009 prover9-manual-2009-02A/m4-arithmetic.html0000644000175000017500000001235311151021064017505 0ustar mccunemccune Prover9 Manual: Arithmetic for Mace4


    Prover9 Manual Version 2009-02A

    Arithmetic for Mace4

    The command set(arithmetic) builds some integer arithmetic into Mace4. It tells Mace4 to interpret several function and predicate symbols as operations and relations over the integers.

    The following tables list the supported symbols for integer arithmetic.
    Operations Relations
    Symbol Meaning
    + Sum
    * Product
    - Negation
    / Integer Division
    mod modulus operator*
    min Minimum
    max Maximum
    abs Absolute Value
    Symbol Meaning
    = Equal
    < Less than
    <= Less than or equal
    > Greater than
    >= Greater than or equal
    *The modulus operation is different from C's remainder operation "%" when either of the operands is negative. In fact, C's "%" operation is not defined for negative operands. In Mace4, (-14 mod 5) = 1, (14 mod -5) = -1, and (-14 mod -5) = -4.

    Note that - cannot be used as a binary subtraction operation (because LADR does not allow arity-overloading of symbols). Instead of x-y, one must write x+ -y.

    Recall that when Mace4 is searching for a model of size n, it is using the set {0,1,...,n-1} as the underlying domain of the model. When set(arithmetic) is in effect, the integer operations and relations are applied to the elements of the domain. However, when evaluating integer expressions, Mace4 is free to go outside of the domain, including negative integers. For example, the constraint A+ -B = C+ -D has A=C=1, B=D=3 as a solution (among many others), and the constraint A + B = 10 is valid for domain sizes less than 10.

    However, when assigning possible values to uninterpreted functions and constants (e.g., unknowns A and B), Mace4 will use members of the domain only. For example, given the constraint A + B = 10 with a domain size of 8, Mace4 will not give the solution A=9, B=1.

    Division by Zero

    Mace4 cannot simply fail (i.e., backtrack and try other values) when it comes to an expression involving division (or mod) by zero, because such expressions can be valid and lead to solutions.

    Case 1: some other subexpression validates a formula; for example, 3/0 = 2 | 1+4=5 is valid.

    Case 2: instances of x = x; for example, 3/0 = 3/0 is valid. Given an arithmetic equality alpha = beta involving division by zero, Mace4 will simplify it by using ring theory identities, and if simplify(alpha) is identical to simplify(beta), the equation evaluates to TRUE. The simplification procedure is not guaranteed to produce a unique canonical form such that the simplified expressions are identical if alpha = beta. Thus, Mace4 can be incompelte for constraints involving division by zero; that is, it might say that there are no solutions when there are valid solutions. However, we believe that Mace4 is sound; that is, all solutions that it gives are valid.

    Arithmetic Changes Parse/Print Properties

    When set(arithmetic) is in effect, Mace4 automatically changes the parse/print properties of the arithmetic operations so that arithmetic expressions can be written in a more conventional way. The properties are changed as follows.
      op(490, infix_right, "+").
      op(470, infix_right, "*").
      op(460, infix, "/").
      op(460, infix, "mod").
      op(390, prefix, "-").
    
    These declarations allow, for example, the expression (a * (b * c)) + (d + e) to be written as a * b * c + d + e. When in doubt, include parentheses and observe how Mace4 echoes the formulas in the output file.

    Examples

    mace4 -n8 -f queens1.in > queens1.out
    
    mace4 -n8 -f queens2.in > queens2.out
    
    mace4 -f send-money.in > send-money.out
    
    mace4 -f zebra2.in > zebra2.out
    
    mace4 -f kenken6.in > kenken6.out
    

    Next Section: Interpformat prover9-manual-2009-02A/kenken6.in0000644000175000017500000000214111135652424016047 0ustar mccunemccuneset(arithmetic). % KenKen is a puzzle similar in some ways to Sudoku. % Solutions are Latin squares (each row and each column % is a permuatation of the domain). The grid is partitioned % into blocks of various sizes and shapes, and an arithmetic % relation is specified for each block; for example, the % sum of the members is 8, or the difference (for a block of % size 2) is 3. % % See the Wikipedia Web page on KenKen. % % Ordinarily, KenKen uses {1,...,n}, but we use {0,...,n-1}. assign(domain_size, 6). % domain is {0,1,2,3,4,5} assign(max_models, -1). % find all models formulas(assumptions). % Latin Square f(x,y1) = f(x,y2) -> y1=y2. f(x1,y) = f(x2,y) -> x1=x2. % Clues for the blocks. f(0,1) * f(0,2) = 0. f(0,0) + f(1,0) = 5. f(0,3) * f(1,3) = 20. f(0,4) * f(0,5) * f(1,5) * f(2,5) = 6. f(1,4) + f(2,4) = 2. abs(f(1,1) + -f(1,2)) = 3. f(2,0) * f(2,1) * f(3,0) * f(3,1) = 240. f(2,2) * f(2,3) = 6. f(3,2) * f(4,2) = 0. f(3,3) + f(4,3) + f(4,4) = 7. f(3,4) * f(3,5) = 0. f(4,0) * f(4,1) = 6. abs(f(4,5) + -f(5,5)) = 1. f(5,0) + f(5,1) + f(5,2) = 8. f(5,3) + f(5,4) = 3. end_of_list. prover9-manual-2009-02A/LT-port.out20000644000175000017500000000171710655636542016313 0ustar mccunemccune type=relation, name=<=, arity=2, values= [[1, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]] type=function, name=^, arity=2, values= [[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 2, 0], [0, 3, 0, 3]] type=function, name=v, arity=2, values= [[0, 1, 2, 3], [1, 1, 1, 1], [2, 1, 2, 1], [3, 1, 1, 3]] type=function, name=c1, arity=0, values= 2 type=function, name=c2, arity=0, values= 0 type=function, name=c3, arity=0, values= 3 type=relation, name=A, arity=3, values= [[[1, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]], [[1, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0], [1, 0, 0, 1]], [[1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 1, 0], [0, 0, 0, 0]], [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [1, 1, 0, 1]]] type=relation, name=B, arity=3, values= [[[1, 1, 1, 1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 1]], [[1, 0, 0, 0], [1, 1, 1, 1], [1, 0, 1, 0], [1, 0, 0, 1]], [[1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]], [[1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [1, 1, 1, 1]]] prover9-manual-2009-02A/queens1.in0000644000175000017500000000113411135652547016076 0ustar mccunemccuneset(arithmetic). formulas(assumptions). % n-Queens Puzzle % % In this representation, Q(i)=n means that Row i Column n has a queen. % The constraint that no queens can be in the same row is always satisfied % in this representation, because Q is a function; that is, % Q(x) != Q(z) -> x != z is always satisfied. % Note that there is no binary "minus" operation, so we have to write x + -y. x != z -> Q(x) != Q(z). % No 2 queens in the same column. x != z -> z + -x != Q(z) + -Q(x). % No 2 queens in \ diagonal. x != z -> z + -x != Q(x) + -Q(z). % No 2 queens in / diagonal. end_of_list. prover9-manual-2009-02A/port.py0000755000175000017500000000104110655636145015525 0ustar mccunemccune#!/usr/bin/python # This Python script gets a list of portable-format LADR # interpretations and just prints them in a different form. import sys interpretations = eval(sys.stdin.read()) # get interps from stdin # interpretations = eval(file("LT-port.out").read()) # get interps from file for interp in interpretations: [size, comments, operations] = interp for op in operations: [type, name, arity, values] = op print "\ntype=%s, name=%s, arity=%d, values=" % (type, name, arity) print values prover9-manual-2009-02A/queens2.in0000644000175000017500000000112111135652767016077 0ustar mccunemccuneset(arithmetic). formulas(assumptions). % n-Queens Puzzle % % Relation Q(x,y) means there is a queen at row x, column y. all x exists y Q(x,y). % Each row has at *least* one queen. Q(x,y1) & Q(x,y2) -> y1 = y2. % Each row has at most one queen. Q(x1,y) & Q(x2,y) -> x1 = x2. % Each column has at most one queen. Q(x1,y1) & Q(x2,y2) & (x2 + -x1 = y2 + -y1) -> x1 = x2 & y1 = y2. % Each \ diagonal has at most one queen. Q(x1,y1) & Q(x2,y2) & (x1 + -x2 = y2 + -y1) -> x1 = x2 & y1 = y2. % Each / diagonal has at most one queen. end_of_list. prover9-manual-2009-02A/send-money.in0000644000175000017500000000061611110445120016553 0ustar mccunemccuneset(arithmetic). assign(domain_size, 10). % domain is {0,1,2,3,4,5,6,7,8,9}. % S E N D % + M O R E % --------- % M O N E Y list(distinct). [S,E,N,D,M,O,R,Y]. end_of_list. formulas(assumptions). D + E = Y + C1 * 10. N + R + C1 = E + C2 * 10. E + O + C2 = N + C3 * 10. S + M + C3 = O + M * 10. % Leading zeros are not allowed. S != 0. M != 0. end_of_list. prover9-manual-2009-02A/LT-port.in0000644000175000017500000000264410654720733016023 0ustar mccunemccune %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Reference % % On Some Ternary Relations in Lattices % R. Padmanabhan % Colloquium Mathematicum 15:195-198, 1966. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% formulas(assumptions). % Lattice Theory x ^ y = y ^ x # label("commutativity_meet"). x v y = y v x # label("commutativity_join"). (x ^ y) ^ z = x ^ (y ^ z) # label("associativity_meet"). (x v y) v z = x v (y v z) # label("associativity_join"). (x v y) ^ x = x # label("absorption_1"). (x ^ y) v x = x # label("absorption_2"). % Assume, for this experiment, 0 and 1. x ^ 1 = x. x v 0 = x. end_of_list. formulas(assumptions). % Definition of less-than-or-equal all x all y ((x <= y) <-> x ^ y = x). % Definitions of ternary relations all x all y all z (A(x,y,z) <-> ((x <= y & y <= z) | (z <= y & y <= x))). all x all y all z (B(x,y,z) <-> (((x ^ y) v (y ^ z) = y) & ((x v y) ^ (y v z) = y))). % all x all y all z (C(x,y,z) % <-> ((((x ^ y) v (y ^ z)) = y) & ((x ^ z) v y = y))). % % all x all y all z (CS(x,y,z) % <-> ((((x v y) ^ (y v z)) = y) & ((x v z) ^ y = y))). % % all x all y all z (D(x,y,z) % <-> ( ((x ^ z) <= y) & (y <= (x v z)))). end_of_list. formulas(goals). % The following is not a theorem. all a all x all b ( B(a,x,b) -> A(a,x,b)). end_of_list. prover9-manual-2009-02A/zebra2.in0000644000175000017500000000307411123754010015670 0ustar mccunemccune% The Zebra Puzzle. There are five houses in a row; each % house has associated with it a distinct nationality, pet, % drink, color, and cigarette. You are given some clues, % and the goal is to match up everything. There is a unique % solution. % In this representation, the properties are constants. For example, % to express the relationship that the Englishman lives in the Red house, % one would write England=Red. set(arithmetic). % We use this for successor relation. assign(domain_size, 5). % The five houses are {0,1,2,3,4}. list(distinct). % Objects in each list are distinct. [England,Spain,Ukraine,Japan,Norway]. % nationalities are distinct [Dog,Snail,Horse,Zebra,Fox]. % pets are distinct [Water,Milk,Juice,Tea,Coffee]. % drinks are distinct [Red,Blue,Yellow,Ivory,Green]. % colors are distinct [Lucky,Winston,Kool,Chesterfield,Parlaiment]. % smokes are distinct end_of_list. formulas(assumptions). % Definitions of successor and neighbors. successor(x,y) <-> x+1 = y. neighbors(x,y) <-> successor(x,y) | successor(y,x). % The clues. England = Red. Lucky = Juice. Spain = Dog. Ukraine = Tea. Norway = 0. Japan = Parlaiment. Kool = Yellow. neighbors(Kool,Horse). neighbors(Chesterfield,Fox). Coffee = Green. neighbors(Norway,Blue). successor(Green,Ivory). Winston = Snail. Milk = 2. end_of_list. prover9-manual-2009-02A/jugs.in0000644000175000017500000000240711151015004015444 0ustar mccunemccune% We have a 3-gallon jug and a 4-gallon jug, both empty, and a well. % Our goal is to have exactly 2 gallons in the 4-gallon jug. We % can fill a jug from the well, empty a jug onto the ground, and % carefully pour water from one jug into the other. % % J(m, n) is the state in which the 3-gallon jug contains m gallons, % and the 4-gallon jug contains n gallons. % % Note that there is no binary "minus" operation; we write "x+ -y" % instead of "x-y". set(production). formulas(usable). J(x, y) -> J(3, y). % fill the 3-gallon jug J(x, y) -> J(0, y). % empty the 3-gallon jug J(x, y) -> J(x, 4). % fill the 4-gallon jug J(x, y) -> J(x, 0). % empty the 4-gallon jug J(x, y) & (x+y <= 4) -> J(0, y+x). % empty the small jug into the big jug J(x, y) & (x+y > 4) -> J(x + -(4+ -y), 4). % small -> big, until full J(x, y) & (x+y <= 3) -> J(x+y, 0). % empty the big jug into the small jug J(x, y) & (x+y > 3) -> J(3, y + - (3+ -x)). % big -> small, until full end_of_list. formulas(assumptions). J(0, 0). % initial state: both jugs empty end_of_list. formulas(goals). exists x J(x, 2). % goal state: 4-gallon jug containing 2 gallons end_of_list. prover9-manual-2009-02A/queens3.out0000644000175000017500000052377611151315551016313 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15899 was started by mccune on cleo, Wed Feb 25 12:26:32 2009 The command was "/home/mccune/bin/prover9 -f queens3.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file queens3.in set(production). % set(production) -> set(raw). % set(raw) -> clear(auto). % clear(auto) -> clear(auto_inference). % clear(auto) -> clear(auto_setup). % clear(auto_setup) -> clear(predicate_elim). % clear(auto_setup) -> assign(eq_defs, pass). % clear(auto) -> clear(auto_limits). % clear(auto_limits) -> assign(max_weight, "1000000000000.000"). % clear(auto_limits) -> assign(sos_limit, -1). % clear(auto) -> clear(auto_denials). % clear(auto) -> clear(auto_process). % set(raw) -> clear(ordered_res). % set(raw) -> clear(ordered_para). % set(raw) -> set(para_into_vars). % set(raw) -> set(para_from_small). % set(raw) -> clear(ordered_para). % set(raw) -> clear(back_demod). % set(raw) -> clear(cac_redundancy). % set(raw) -> assign(backsub_check, 2147483647). % set(raw) -> set(lightest_first). % set(lightest_first) -> assign(weight_part, 1). % set(lightest_first) -> assign(age_part, 0). % set(lightest_first) -> assign(false_part, 0). % set(lightest_first) -> assign(true_part, 0). % set(lightest_first) -> assign(random_part, 0). % set(raw) -> assign(literal_selection, none). % set(production) -> set(eval_rewrite). % set(production) -> set(hyper_resolution). % set(hyper_resolution) -> set(pos_hyper_resolution). % set(production) -> clear(back_subsume). set(prolog_style_variables). formulas(usable). board(B) & pick(New_col) & ok(B,1,New_col) -> board([New_col:B]). pick(1). pick(2). pick(3). pick(4). pick(5). pick(6). pick(7). pick(8). end_of_list. formulas(assumptions). board([]). end_of_list. formulas(usable). -board([X1,X2,X3,X4,X5,X6,X7,X8]) # answer([X1,X2,X3,X4,X5,X6,X7,X8]). end_of_list. formulas(demodulators). ok([],X,Y) <-> $T. ok([H:T],Rows_back,New_col) <-> -(H == New_col) & -(H + -Rows_back == New_col) & -(H + Rows_back == New_col) & ok(T,Rows_back + 1,New_col). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 board(B) & pick(New_col) & ok(B,1,New_col) -> board([New_col:B]) # label(non_clause). [assumption]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). -board(A) | -pick(B) | -ok(A,1,B) | board([B:A]). [clausify(1)]. pick(1). [assumption]. pick(2). [assumption]. pick(3). [assumption]. pick(4). [assumption]. pick(5). [assumption]. pick(6). [assumption]. pick(7). [assumption]. pick(8). [assumption]. -board([A,B,C,D,E,F,V6,V7]) # answer([A,B,C,D,E,F,V6,V7]). [assumption]. end_of_list. formulas(sos). board([]). [assumption]. end_of_list. formulas(demodulators). ok([],X,Y) <-> $T. [assumption]. ok([H:T],Rows_back,New_col) <-> -(H == New_col) & -(H + -Rows_back == New_col) & -(H + Rows_back == New_col) & ok(T,Rows_back + 1,New_col). [assumption]. end_of_list. Term ordering decisions: Predicate symbol precedence: predicate_order([ pick, board, ==, ok ]). Function symbol precedence: function_order([ 1, $nil, 2, 3, 4, 5, 6, 7, 8, $cons, +, - ]). After inverse_order: (no changes). kept: 14 board([]). [assumption]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 2 -board(A) | -pick(B) | -ok(A,1,B) | board([B:A]). [clausify(1)]. 3 pick(1). [assumption]. 4 pick(2). [assumption]. 5 pick(3). [assumption]. 6 pick(4). [assumption]. 7 pick(5). [assumption]. 8 pick(6). [assumption]. 9 pick(7). [assumption]. 10 pick(8). [assumption]. 11 -board([A,B,C,D,E,F,V6,V7]) # answer([A,B,C,D,E,F,V6,V7]). [assumption]. end_of_list. formulas(sos). 14 board([]). [assumption]. end_of_list. formulas(demodulators). 12 ok([],A,B) <-> $T. [assumption]. 13 ok([A:B],C,D) <-> -(A == D) & -(A + -C == D) & -(A + C == D) & ok(B,C + 1,D). [assumption]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=2): 14 board([]). [assumption]. given #2 (W,wt=4): 15 board([8]). [hyper(2,a,14,a,b,10,a),rewrite([12])]. given #3 (W,wt=4): 16 board([7]). [hyper(2,a,14,a,b,9,a),rewrite([12])]. given #4 (W,wt=4): 17 board([6]). [hyper(2,a,14,a,b,8,a),rewrite([12])]. given #5 (W,wt=4): 18 board([5]). [hyper(2,a,14,a,b,7,a),rewrite([12])]. given #6 (W,wt=4): 19 board([4]). [hyper(2,a,14,a,b,6,a),rewrite([12])]. given #7 (W,wt=4): 20 board([3]). [hyper(2,a,14,a,b,5,a),rewrite([12])]. given #8 (W,wt=4): 21 board([2]). [hyper(2,a,14,a,b,4,a),rewrite([12])]. given #9 (W,wt=4): 22 board([1]). [hyper(2,a,14,a,b,3,a),rewrite([12])]. given #10 (W,wt=6): 23 board([6,8]). [hyper(2,a,15,a,b,8,a),rewrite([13,12]),eval(10)]. given #11 (W,wt=6): 24 board([5,8]). [hyper(2,a,15,a,b,7,a),rewrite([13,12]),eval(10)]. given #12 (W,wt=6): 25 board([4,8]). [hyper(2,a,15,a,b,6,a),rewrite([13,12]),eval(10)]. given #13 (W,wt=6): 26 board([3,8]). [hyper(2,a,15,a,b,5,a),rewrite([13,12]),eval(10)]. given #14 (W,wt=6): 27 board([2,8]). [hyper(2,a,15,a,b,4,a),rewrite([13,12]),eval(10)]. given #15 (W,wt=6): 28 board([1,8]). [hyper(2,a,15,a,b,3,a),rewrite([13,12]),eval(10)]. given #16 (W,wt=6): 29 board([5,7]). [hyper(2,a,16,a,b,7,a),rewrite([13,12]),eval(10)]. given #17 (W,wt=6): 30 board([4,7]). [hyper(2,a,16,a,b,6,a),rewrite([13,12]),eval(10)]. given #18 (W,wt=6): 31 board([3,7]). [hyper(2,a,16,a,b,5,a),rewrite([13,12]),eval(10)]. given #19 (W,wt=6): 32 board([2,7]). [hyper(2,a,16,a,b,4,a),rewrite([13,12]),eval(10)]. given #20 (W,wt=6): 33 board([1,7]). [hyper(2,a,16,a,b,3,a),rewrite([13,12]),eval(10)]. given #21 (W,wt=6): 34 board([8,6]). [hyper(2,a,17,a,b,10,a),rewrite([13,12]),eval(10)]. given #22 (W,wt=6): 35 board([4,6]). [hyper(2,a,17,a,b,6,a),rewrite([13,12]),eval(10)]. given #23 (W,wt=6): 36 board([3,6]). [hyper(2,a,17,a,b,5,a),rewrite([13,12]),eval(10)]. given #24 (W,wt=6): 37 board([2,6]). [hyper(2,a,17,a,b,4,a),rewrite([13,12]),eval(10)]. given #25 (W,wt=6): 38 board([1,6]). [hyper(2,a,17,a,b,3,a),rewrite([13,12]),eval(10)]. given #26 (W,wt=6): 39 board([8,5]). [hyper(2,a,18,a,b,10,a),rewrite([13,12]),eval(10)]. given #27 (W,wt=6): 40 board([7,5]). [hyper(2,a,18,a,b,9,a),rewrite([13,12]),eval(10)]. given #28 (W,wt=6): 41 board([3,5]). [hyper(2,a,18,a,b,5,a),rewrite([13,12]),eval(10)]. given #29 (W,wt=6): 42 board([2,5]). [hyper(2,a,18,a,b,4,a),rewrite([13,12]),eval(10)]. given #30 (W,wt=6): 43 board([1,5]). [hyper(2,a,18,a,b,3,a),rewrite([13,12]),eval(10)]. given #31 (W,wt=6): 44 board([8,4]). [hyper(2,a,19,a,b,10,a),rewrite([13,12]),eval(10)]. given #32 (W,wt=6): 45 board([7,4]). [hyper(2,a,19,a,b,9,a),rewrite([13,12]),eval(10)]. given #33 (W,wt=6): 46 board([6,4]). [hyper(2,a,19,a,b,8,a),rewrite([13,12]),eval(10)]. given #34 (W,wt=6): 47 board([2,4]). [hyper(2,a,19,a,b,4,a),rewrite([13,12]),eval(10)]. given #35 (W,wt=6): 48 board([1,4]). [hyper(2,a,19,a,b,3,a),rewrite([13,12]),eval(10)]. given #36 (W,wt=6): 49 board([8,3]). [hyper(2,a,20,a,b,10,a),rewrite([13,12]),eval(10)]. given #37 (W,wt=6): 50 board([7,3]). [hyper(2,a,20,a,b,9,a),rewrite([13,12]),eval(10)]. given #38 (W,wt=6): 51 board([6,3]). [hyper(2,a,20,a,b,8,a),rewrite([13,12]),eval(10)]. given #39 (W,wt=6): 52 board([5,3]). [hyper(2,a,20,a,b,7,a),rewrite([13,12]),eval(10)]. given #40 (W,wt=6): 53 board([1,3]). [hyper(2,a,20,a,b,3,a),rewrite([13,12]),eval(10)]. given #41 (W,wt=6): 54 board([8,2]). [hyper(2,a,21,a,b,10,a),rewrite([13,12]),eval(10)]. given #42 (W,wt=6): 55 board([7,2]). [hyper(2,a,21,a,b,9,a),rewrite([13,12]),eval(10)]. given #43 (W,wt=6): 56 board([6,2]). [hyper(2,a,21,a,b,8,a),rewrite([13,12]),eval(10)]. given #44 (W,wt=6): 57 board([5,2]). [hyper(2,a,21,a,b,7,a),rewrite([13,12]),eval(10)]. given #45 (W,wt=6): 58 board([4,2]). [hyper(2,a,21,a,b,6,a),rewrite([13,12]),eval(10)]. given #46 (W,wt=6): 59 board([8,1]). [hyper(2,a,22,a,b,10,a),rewrite([13,12]),eval(10)]. given #47 (W,wt=6): 60 board([7,1]). [hyper(2,a,22,a,b,9,a),rewrite([13,12]),eval(10)]. given #48 (W,wt=6): 61 board([6,1]). [hyper(2,a,22,a,b,8,a),rewrite([13,12]),eval(10)]. given #49 (W,wt=6): 62 board([5,1]). [hyper(2,a,22,a,b,7,a),rewrite([13,12]),eval(10)]. given #50 (W,wt=6): 63 board([4,1]). [hyper(2,a,22,a,b,6,a),rewrite([13,12]),eval(10)]. given #51 (W,wt=6): 64 board([3,1]). [hyper(2,a,22,a,b,5,a),rewrite([13,12]),eval(10)]. given #52 (W,wt=8): 65 board([4,6,8]). [hyper(2,a,23,a,b,6,a),rewrite([13,12]),eval(20)]. given #53 (W,wt=8): 66 board([3,6,8]). [hyper(2,a,23,a,b,5,a),rewrite([13,12]),eval(20)]. given #54 (W,wt=8): 67 board([2,6,8]). [hyper(2,a,23,a,b,4,a),rewrite([13,12]),eval(20)]. given #55 (W,wt=8): 68 board([1,6,8]). [hyper(2,a,23,a,b,3,a),rewrite([13,12]),eval(20)]. given #56 (W,wt=8): 69 board([7,5,8]). [hyper(2,a,24,a,b,9,a),rewrite([13,12]),eval(20)]. given #57 (W,wt=8): 70 board([3,5,8]). [hyper(2,a,24,a,b,5,a),rewrite([13,12]),eval(20)]. given #58 (W,wt=8): 71 board([2,5,8]). [hyper(2,a,24,a,b,4,a),rewrite([13,12]),eval(20)]. given #59 (W,wt=8): 72 board([1,5,8]). [hyper(2,a,24,a,b,3,a),rewrite([13,12]),eval(20)]. given #60 (W,wt=8): 73 board([7,4,8]). [hyper(2,a,25,a,b,9,a),rewrite([13,12]),eval(20)]. given #61 (W,wt=8): 74 board([2,4,8]). [hyper(2,a,25,a,b,4,a),rewrite([13,12]),eval(20)]. given #62 (W,wt=8): 75 board([1,4,8]). [hyper(2,a,25,a,b,3,a),rewrite([13,12]),eval(20)]. given #63 (W,wt=8): 76 board([7,3,8]). [hyper(2,a,26,a,b,9,a),rewrite([13,12]),eval(20)]. given #64 (W,wt=8): 77 board([5,3,8]). [hyper(2,a,26,a,b,7,a),rewrite([13,12]),eval(20)]. given #65 (W,wt=8): 78 board([1,3,8]). [hyper(2,a,26,a,b,3,a),rewrite([13,12]),eval(20)]. given #66 (W,wt=8): 79 board([7,2,8]). [hyper(2,a,27,a,b,9,a),rewrite([13,12]),eval(20)]. given #67 (W,wt=8): 80 board([5,2,8]). [hyper(2,a,27,a,b,7,a),rewrite([13,12]),eval(20)]. given #68 (W,wt=8): 81 board([4,2,8]). [hyper(2,a,27,a,b,6,a),rewrite([13,12]),eval(20)]. given #69 (W,wt=8): 82 board([7,1,8]). [hyper(2,a,28,a,b,9,a),rewrite([13,12]),eval(20)]. given #70 (W,wt=8): 83 board([5,1,8]). [hyper(2,a,28,a,b,7,a),rewrite([13,12]),eval(20)]. given #71 (W,wt=8): 84 board([4,1,8]). [hyper(2,a,28,a,b,6,a),rewrite([13,12]),eval(20)]. given #72 (W,wt=8): 85 board([3,1,8]). [hyper(2,a,28,a,b,5,a),rewrite([13,12]),eval(20)]. given #73 (W,wt=8): 86 board([8,5,7]). [hyper(2,a,29,a,b,10,a),rewrite([13,12]),eval(20)]. given #74 (W,wt=8): 87 board([3,5,7]). [hyper(2,a,29,a,b,5,a),rewrite([13,12]),eval(20)]. given #75 (W,wt=8): 88 board([2,5,7]). [hyper(2,a,29,a,b,4,a),rewrite([13,12]),eval(20)]. given #76 (W,wt=8): 89 board([1,5,7]). [hyper(2,a,29,a,b,3,a),rewrite([13,12]),eval(20)]. given #77 (W,wt=8): 90 board([8,4,7]). [hyper(2,a,30,a,b,10,a),rewrite([13,12]),eval(20)]. given #78 (W,wt=8): 91 board([6,4,7]). [hyper(2,a,30,a,b,8,a),rewrite([13,12]),eval(20)]. given #79 (W,wt=8): 92 board([2,4,7]). [hyper(2,a,30,a,b,4,a),rewrite([13,12]),eval(20)]. given #80 (W,wt=8): 93 board([1,4,7]). [hyper(2,a,30,a,b,3,a),rewrite([13,12]),eval(20)]. given #81 (W,wt=8): 94 board([8,3,7]). [hyper(2,a,31,a,b,10,a),rewrite([13,12]),eval(20)]. given #82 (W,wt=8): 95 board([6,3,7]). [hyper(2,a,31,a,b,8,a),rewrite([13,12]),eval(20)]. given #83 (W,wt=8): 96 board([1,3,7]). [hyper(2,a,31,a,b,3,a),rewrite([13,12]),eval(20)]. given #84 (W,wt=8): 97 board([8,2,7]). [hyper(2,a,32,a,b,10,a),rewrite([13,12]),eval(20)]. given #85 (W,wt=8): 98 board([6,2,7]). [hyper(2,a,32,a,b,8,a),rewrite([13,12]),eval(20)]. given #86 (W,wt=8): 99 board([4,2,7]). [hyper(2,a,32,a,b,6,a),rewrite([13,12]),eval(20)]. given #87 (W,wt=8): 100 board([8,1,7]). [hyper(2,a,33,a,b,10,a),rewrite([13,12]),eval(20)]. given #88 (W,wt=8): 101 board([6,1,7]). [hyper(2,a,33,a,b,8,a),rewrite([13,12]),eval(20)]. given #89 (W,wt=8): 102 board([4,1,7]). [hyper(2,a,33,a,b,6,a),rewrite([13,12]),eval(20)]. given #90 (W,wt=8): 103 board([3,1,7]). [hyper(2,a,33,a,b,5,a),rewrite([13,12]),eval(20)]. given #91 (W,wt=8): 104 board([5,8,6]). [hyper(2,a,34,a,b,7,a),rewrite([13,12]),eval(20)]. given #92 (W,wt=8): 105 board([3,8,6]). [hyper(2,a,34,a,b,5,a),rewrite([13,12]),eval(20)]. given #93 (W,wt=8): 106 board([2,8,6]). [hyper(2,a,34,a,b,4,a),rewrite([13,12]),eval(20)]. given #94 (W,wt=8): 107 board([1,8,6]). [hyper(2,a,34,a,b,3,a),rewrite([13,12]),eval(20)]. given #95 (W,wt=8): 108 board([7,4,6]). [hyper(2,a,35,a,b,9,a),rewrite([13,12]),eval(20)]. given #96 (W,wt=8): 109 board([2,4,6]). [hyper(2,a,35,a,b,4,a),rewrite([13,12]),eval(20)]. given #97 (W,wt=8): 110 board([1,4,6]). [hyper(2,a,35,a,b,3,a),rewrite([13,12]),eval(20)]. given #98 (W,wt=8): 111 board([7,3,6]). [hyper(2,a,36,a,b,9,a),rewrite([13,12]),eval(20)]. given #99 (W,wt=8): 112 board([5,3,6]). [hyper(2,a,36,a,b,7,a),rewrite([13,12]),eval(20)]. given #100 (W,wt=8): 113 board([1,3,6]). [hyper(2,a,36,a,b,3,a),rewrite([13,12]),eval(20)]. given #101 (W,wt=8): 114 board([7,2,6]). [hyper(2,a,37,a,b,9,a),rewrite([13,12]),eval(20)]. given #102 (W,wt=8): 115 board([5,2,6]). [hyper(2,a,37,a,b,7,a),rewrite([13,12]),eval(20)]. given #103 (W,wt=8): 116 board([7,1,6]). [hyper(2,a,38,a,b,9,a),rewrite([13,12]),eval(20)]. given #104 (W,wt=8): 117 board([5,1,6]). [hyper(2,a,38,a,b,7,a),rewrite([13,12]),eval(20)]. given #105 (W,wt=8): 118 board([3,1,6]). [hyper(2,a,38,a,b,5,a),rewrite([13,12]),eval(20)]. given #106 (W,wt=8): 119 board([6,8,5]). [hyper(2,a,39,a,b,8,a),rewrite([13,12]),eval(20)]. given #107 (W,wt=8): 120 board([4,8,5]). [hyper(2,a,39,a,b,6,a),rewrite([13,12]),eval(20)]. given #108 (W,wt=8): 121 board([2,8,5]). [hyper(2,a,39,a,b,4,a),rewrite([13,12]),eval(20)]. given #109 (W,wt=8): 122 board([1,8,5]). [hyper(2,a,39,a,b,3,a),rewrite([13,12]),eval(20)]. given #110 (W,wt=8): 123 board([4,7,5]). [hyper(2,a,40,a,b,6,a),rewrite([13,12]),eval(20)]. given #111 (W,wt=8): 124 board([2,7,5]). [hyper(2,a,40,a,b,4,a),rewrite([13,12]),eval(20)]. given #112 (W,wt=8): 125 board([1,7,5]). [hyper(2,a,40,a,b,3,a),rewrite([13,12]),eval(20)]. given #113 (W,wt=8): 126 board([8,3,5]). [hyper(2,a,41,a,b,10,a),rewrite([13,12]),eval(20)]. given #114 (W,wt=8): 127 board([6,3,5]). [hyper(2,a,41,a,b,8,a),rewrite([13,12]),eval(20)]. given #115 (W,wt=8): 128 board([1,3,5]). [hyper(2,a,41,a,b,3,a),rewrite([13,12]),eval(20)]. given #116 (W,wt=8): 129 board([8,2,5]). [hyper(2,a,42,a,b,10,a),rewrite([13,12]),eval(20)]. given #117 (W,wt=8): 130 board([6,2,5]). [hyper(2,a,42,a,b,8,a),rewrite([13,12]),eval(20)]. given #118 (W,wt=8): 131 board([4,2,5]). [hyper(2,a,42,a,b,6,a),rewrite([13,12]),eval(20)]. given #119 (W,wt=8): 132 board([8,1,5]). [hyper(2,a,43,a,b,10,a),rewrite([13,12]),eval(20)]. given #120 (W,wt=8): 133 board([6,1,5]). [hyper(2,a,43,a,b,8,a),rewrite([13,12]),eval(20)]. given #121 (W,wt=8): 134 board([4,1,5]). [hyper(2,a,43,a,b,6,a),rewrite([13,12]),eval(20)]. given #122 (W,wt=8): 135 board([5,8,4]). [hyper(2,a,44,a,b,7,a),rewrite([13,12]),eval(20)]. given #123 (W,wt=8): 136 board([3,8,4]). [hyper(2,a,44,a,b,5,a),rewrite([13,12]),eval(20)]. given #124 (W,wt=8): 137 board([1,8,4]). [hyper(2,a,44,a,b,3,a),rewrite([13,12]),eval(20)]. given #125 (W,wt=8): 138 board([5,7,4]). [hyper(2,a,45,a,b,7,a),rewrite([13,12]),eval(20)]. given #126 (W,wt=8): 139 board([3,7,4]). [hyper(2,a,45,a,b,5,a),rewrite([13,12]),eval(20)]. given #127 (W,wt=8): 140 board([1,7,4]). [hyper(2,a,45,a,b,3,a),rewrite([13,12]),eval(20)]. given #128 (W,wt=8): 141 board([8,6,4]). [hyper(2,a,46,a,b,10,a),rewrite([13,12]),eval(20)]. given #129 (W,wt=8): 142 board([3,6,4]). [hyper(2,a,46,a,b,5,a),rewrite([13,12]),eval(20)]. given #130 (W,wt=8): 143 board([1,6,4]). [hyper(2,a,46,a,b,3,a),rewrite([13,12]),eval(20)]. given #131 (W,wt=8): 144 board([8,2,4]). [hyper(2,a,47,a,b,10,a),rewrite([13,12]),eval(20)]. given #132 (W,wt=8): 145 board([7,2,4]). [hyper(2,a,47,a,b,9,a),rewrite([13,12]),eval(20)]. given #133 (W,wt=8): 146 board([5,2,4]). [hyper(2,a,47,a,b,7,a),rewrite([13,12]),eval(20)]. given #134 (W,wt=8): 147 board([8,1,4]). [hyper(2,a,48,a,b,10,a),rewrite([13,12]),eval(20)]. given #135 (W,wt=8): 148 board([7,1,4]). [hyper(2,a,48,a,b,9,a),rewrite([13,12]),eval(20)]. given #136 (W,wt=8): 149 board([5,1,4]). [hyper(2,a,48,a,b,7,a),rewrite([13,12]),eval(20)]. given #137 (W,wt=8): 150 board([3,1,4]). [hyper(2,a,48,a,b,5,a),rewrite([13,12]),eval(20)]. given #138 (W,wt=8): 151 board([6,8,3]). [hyper(2,a,49,a,b,8,a),rewrite([13,12]),eval(20)]. given #139 (W,wt=8): 152 board([4,8,3]). [hyper(2,a,49,a,b,6,a),rewrite([13,12]),eval(20)]. given #140 (W,wt=8): 153 board([2,8,3]). [hyper(2,a,49,a,b,4,a),rewrite([13,12]),eval(20)]. given #141 (W,wt=8): 154 board([4,7,3]). [hyper(2,a,50,a,b,6,a),rewrite([13,12]),eval(20)]. given #142 (W,wt=8): 155 board([2,7,3]). [hyper(2,a,50,a,b,4,a),rewrite([13,12]),eval(20)]. given #143 (W,wt=8): 156 board([8,6,3]). [hyper(2,a,51,a,b,10,a),rewrite([13,12]),eval(20)]. given #144 (W,wt=8): 157 board([4,6,3]). [hyper(2,a,51,a,b,6,a),rewrite([13,12]),eval(20)]. given #145 (W,wt=8): 158 board([2,6,3]). [hyper(2,a,51,a,b,4,a),rewrite([13,12]),eval(20)]. given #146 (W,wt=8): 159 board([8,5,3]). [hyper(2,a,52,a,b,10,a),rewrite([13,12]),eval(20)]. given #147 (W,wt=8): 160 board([7,5,3]). [hyper(2,a,52,a,b,9,a),rewrite([13,12]),eval(20)]. given #148 (W,wt=8): 161 board([2,5,3]). [hyper(2,a,52,a,b,4,a),rewrite([13,12]),eval(20)]. given #149 (W,wt=8): 162 board([8,1,3]). [hyper(2,a,53,a,b,10,a),rewrite([13,12]),eval(20)]. given #150 (W,wt=8): 163 board([7,1,3]). [hyper(2,a,53,a,b,9,a),rewrite([13,12]),eval(20)]. given #151 (W,wt=8): 164 board([6,1,3]). [hyper(2,a,53,a,b,8,a),rewrite([13,12]),eval(20)]. given #152 (W,wt=8): 165 board([4,1,3]). [hyper(2,a,53,a,b,6,a),rewrite([13,12]),eval(20)]. given #153 (W,wt=8): 166 board([6,8,2]). [hyper(2,a,54,a,b,8,a),rewrite([13,12]),eval(20)]. given #154 (W,wt=8): 167 board([5,8,2]). [hyper(2,a,54,a,b,7,a),rewrite([13,12]),eval(20)]. given #155 (W,wt=8): 168 board([3,8,2]). [hyper(2,a,54,a,b,5,a),rewrite([13,12]),eval(20)]. given #156 (W,wt=8): 169 board([1,8,2]). [hyper(2,a,54,a,b,3,a),rewrite([13,12]),eval(20)]. given #157 (W,wt=8): 170 board([5,7,2]). [hyper(2,a,55,a,b,7,a),rewrite([13,12]),eval(20)]. given #158 (W,wt=8): 171 board([3,7,2]). [hyper(2,a,55,a,b,5,a),rewrite([13,12]),eval(20)]. given #159 (W,wt=8): 172 board([1,7,2]). [hyper(2,a,55,a,b,3,a),rewrite([13,12]),eval(20)]. given #160 (W,wt=8): 173 board([8,6,2]). [hyper(2,a,56,a,b,10,a),rewrite([13,12]),eval(20)]. given #161 (W,wt=8): 174 board([3,6,2]). [hyper(2,a,56,a,b,5,a),rewrite([13,12]),eval(20)]. given #162 (W,wt=8): 175 board([1,6,2]). [hyper(2,a,56,a,b,3,a),rewrite([13,12]),eval(20)]. given #163 (W,wt=8): 176 board([8,5,2]). [hyper(2,a,57,a,b,10,a),rewrite([13,12]),eval(20)]. given #164 (W,wt=8): 177 board([7,5,2]). [hyper(2,a,57,a,b,9,a),rewrite([13,12]),eval(20)]. given #165 (W,wt=8): 178 board([3,5,2]). [hyper(2,a,57,a,b,5,a),rewrite([13,12]),eval(20)]. given #166 (W,wt=8): 179 board([1,5,2]). [hyper(2,a,57,a,b,3,a),rewrite([13,12]),eval(20)]. given #167 (W,wt=8): 180 board([8,4,2]). [hyper(2,a,58,a,b,10,a),rewrite([13,12]),eval(20)]. given #168 (W,wt=8): 181 board([7,4,2]). [hyper(2,a,58,a,b,9,a),rewrite([13,12]),eval(20)]. given #169 (W,wt=8): 182 board([6,4,2]). [hyper(2,a,58,a,b,8,a),rewrite([13,12]),eval(20)]. given #170 (W,wt=8): 183 board([1,4,2]). [hyper(2,a,58,a,b,3,a),rewrite([13,12]),eval(20)]. given #171 (W,wt=8): 184 board([6,8,1]). [hyper(2,a,59,a,b,8,a),rewrite([13,12]),eval(20)]. given #172 (W,wt=8): 185 board([5,8,1]). [hyper(2,a,59,a,b,7,a),rewrite([13,12]),eval(20)]. given #173 (W,wt=8): 186 board([4,8,1]). [hyper(2,a,59,a,b,6,a),rewrite([13,12]),eval(20)]. given #174 (W,wt=8): 187 board([2,8,1]). [hyper(2,a,59,a,b,4,a),rewrite([13,12]),eval(20)]. given #175 (W,wt=8): 188 board([5,7,1]). [hyper(2,a,60,a,b,7,a),rewrite([13,12]),eval(20)]. given #176 (W,wt=8): 189 board([4,7,1]). [hyper(2,a,60,a,b,6,a),rewrite([13,12]),eval(20)]. given #177 (W,wt=8): 190 board([2,7,1]). [hyper(2,a,60,a,b,4,a),rewrite([13,12]),eval(20)]. given #178 (W,wt=8): 191 board([8,6,1]). [hyper(2,a,61,a,b,10,a),rewrite([13,12]),eval(20)]. given #179 (W,wt=8): 192 board([4,6,1]). [hyper(2,a,61,a,b,6,a),rewrite([13,12]),eval(20)]. given #180 (W,wt=8): 193 board([2,6,1]). [hyper(2,a,61,a,b,4,a),rewrite([13,12]),eval(20)]. given #181 (W,wt=8): 194 board([8,5,1]). [hyper(2,a,62,a,b,10,a),rewrite([13,12]),eval(20)]. given #182 (W,wt=8): 195 board([7,5,1]). [hyper(2,a,62,a,b,9,a),rewrite([13,12]),eval(20)]. given #183 (W,wt=8): 196 board([2,5,1]). [hyper(2,a,62,a,b,4,a),rewrite([13,12]),eval(20)]. given #184 (W,wt=8): 197 board([8,4,1]). [hyper(2,a,63,a,b,10,a),rewrite([13,12]),eval(20)]. given #185 (W,wt=8): 198 board([7,4,1]). [hyper(2,a,63,a,b,9,a),rewrite([13,12]),eval(20)]. given #186 (W,wt=8): 199 board([6,4,1]). [hyper(2,a,63,a,b,8,a),rewrite([13,12]),eval(20)]. given #187 (W,wt=8): 200 board([2,4,1]). [hyper(2,a,63,a,b,4,a),rewrite([13,12]),eval(20)]. given #188 (W,wt=8): 201 board([8,3,1]). [hyper(2,a,64,a,b,10,a),rewrite([13,12]),eval(20)]. given #189 (W,wt=8): 202 board([7,3,1]). [hyper(2,a,64,a,b,9,a),rewrite([13,12]),eval(20)]. given #190 (W,wt=8): 203 board([6,3,1]). [hyper(2,a,64,a,b,8,a),rewrite([13,12]),eval(20)]. given #191 (W,wt=8): 204 board([5,3,1]). [hyper(2,a,64,a,b,7,a),rewrite([13,12]),eval(20)]. given #192 (W,wt=10): 205 board([7,4,6,8]). [hyper(2,a,65,a,b,9,a),rewrite([13,12]),eval(30)]. given #193 (W,wt=10): 206 board([2,4,6,8]). [hyper(2,a,65,a,b,4,a),rewrite([13,12]),eval(30)]. given #194 (W,wt=10): 207 board([1,4,6,8]). [hyper(2,a,65,a,b,3,a),rewrite([13,12]),eval(30)]. given #195 (W,wt=10): 208 board([7,3,6,8]). [hyper(2,a,66,a,b,9,a),rewrite([13,12]),eval(30)]. given #196 (W,wt=10): 209 board([1,3,6,8]). [hyper(2,a,66,a,b,3,a),rewrite([13,12]),eval(30)]. given #197 (W,wt=10): 210 board([7,2,6,8]). [hyper(2,a,67,a,b,9,a),rewrite([13,12]),eval(30)]. given #198 (W,wt=10): 211 board([7,1,6,8]). [hyper(2,a,68,a,b,9,a),rewrite([13,12]),eval(30)]. given #199 (W,wt=10): 212 board([3,1,6,8]). [hyper(2,a,68,a,b,5,a),rewrite([13,12]),eval(30)]. given #200 (W,wt=10): 213 board([4,7,5,8]). [hyper(2,a,69,a,b,6,a),rewrite([13,12]),eval(30)]. given #201 (W,wt=10): 214 board([2,7,5,8]). [hyper(2,a,69,a,b,4,a),rewrite([13,12]),eval(30)]. given #202 (W,wt=10): 215 board([1,7,5,8]). [hyper(2,a,69,a,b,3,a),rewrite([13,12]),eval(30)]. given #203 (W,wt=10): 216 board([6,3,5,8]). [hyper(2,a,70,a,b,8,a),rewrite([13,12]),eval(30)]. given #204 (W,wt=10): 217 board([1,3,5,8]). [hyper(2,a,70,a,b,3,a),rewrite([13,12]),eval(30)]. given #205 (W,wt=10): 218 board([6,2,5,8]). [hyper(2,a,71,a,b,8,a),rewrite([13,12]),eval(30)]. given #206 (W,wt=10): 219 board([4,2,5,8]). [hyper(2,a,71,a,b,6,a),rewrite([13,12]),eval(30)]. given #207 (W,wt=10): 220 board([6,1,5,8]). [hyper(2,a,72,a,b,8,a),rewrite([13,12]),eval(30)]. given #208 (W,wt=10): 221 board([4,1,5,8]). [hyper(2,a,72,a,b,6,a),rewrite([13,12]),eval(30)]. given #209 (W,wt=10): 222 board([3,7,4,8]). [hyper(2,a,73,a,b,5,a),rewrite([13,12]),eval(30)]. given #210 (W,wt=10): 223 board([1,7,4,8]). [hyper(2,a,73,a,b,3,a),rewrite([13,12]),eval(30)]. given #211 (W,wt=10): 224 board([7,2,4,8]). [hyper(2,a,74,a,b,9,a),rewrite([13,12]),eval(30)]. given #212 (W,wt=10): 225 board([7,1,4,8]). [hyper(2,a,75,a,b,9,a),rewrite([13,12]),eval(30)]. given #213 (W,wt=10): 226 board([3,1,4,8]). [hyper(2,a,75,a,b,5,a),rewrite([13,12]),eval(30)]. given #214 (W,wt=10): 227 board([4,7,3,8]). [hyper(2,a,76,a,b,6,a),rewrite([13,12]),eval(30)]. given #215 (W,wt=10): 228 board([2,7,3,8]). [hyper(2,a,76,a,b,4,a),rewrite([13,12]),eval(30)]. given #216 (W,wt=10): 229 board([7,5,3,8]). [hyper(2,a,77,a,b,9,a),rewrite([13,12]),eval(30)]. given #217 (W,wt=10): 230 board([2,5,3,8]). [hyper(2,a,77,a,b,4,a),rewrite([13,12]),eval(30)]. given #218 (W,wt=10): 231 board([7,1,3,8]). [hyper(2,a,78,a,b,9,a),rewrite([13,12]),eval(30)]. given #219 (W,wt=10): 232 board([6,1,3,8]). [hyper(2,a,78,a,b,8,a),rewrite([13,12]),eval(30)]. given #220 (W,wt=10): 233 board([4,1,3,8]). [hyper(2,a,78,a,b,6,a),rewrite([13,12]),eval(30)]. given #221 (W,wt=10): 234 board([3,7,2,8]). [hyper(2,a,79,a,b,5,a),rewrite([13,12]),eval(30)]. given #222 (W,wt=10): 235 board([1,7,2,8]). [hyper(2,a,79,a,b,3,a),rewrite([13,12]),eval(30)]. given #223 (W,wt=10): 236 board([7,5,2,8]). [hyper(2,a,80,a,b,9,a),rewrite([13,12]),eval(30)]. given #224 (W,wt=10): 237 board([3,5,2,8]). [hyper(2,a,80,a,b,5,a),rewrite([13,12]),eval(30)]. given #225 (W,wt=10): 238 board([1,5,2,8]). [hyper(2,a,80,a,b,3,a),rewrite([13,12]),eval(30)]. given #226 (W,wt=10): 239 board([7,4,2,8]). [hyper(2,a,81,a,b,9,a),rewrite([13,12]),eval(30)]. given #227 (W,wt=10): 240 board([6,4,2,8]). [hyper(2,a,81,a,b,8,a),rewrite([13,12]),eval(30)]. given #228 (W,wt=10): 241 board([1,4,2,8]). [hyper(2,a,81,a,b,3,a),rewrite([13,12]),eval(30)]. given #229 (W,wt=10): 242 board([4,7,1,8]). [hyper(2,a,82,a,b,6,a),rewrite([13,12]),eval(30)]. given #230 (W,wt=10): 243 board([2,7,1,8]). [hyper(2,a,82,a,b,4,a),rewrite([13,12]),eval(30)]. given #231 (W,wt=10): 244 board([7,5,1,8]). [hyper(2,a,83,a,b,9,a),rewrite([13,12]),eval(30)]. given #232 (W,wt=10): 245 board([2,5,1,8]). [hyper(2,a,83,a,b,4,a),rewrite([13,12]),eval(30)]. given #233 (W,wt=10): 246 board([7,4,1,8]). [hyper(2,a,84,a,b,9,a),rewrite([13,12]),eval(30)]. given #234 (W,wt=10): 247 board([6,4,1,8]). [hyper(2,a,84,a,b,8,a),rewrite([13,12]),eval(30)]. given #235 (W,wt=10): 248 board([2,4,1,8]). [hyper(2,a,84,a,b,4,a),rewrite([13,12]),eval(30)]. given #236 (W,wt=10): 249 board([7,3,1,8]). [hyper(2,a,85,a,b,9,a),rewrite([13,12]),eval(30)]. given #237 (W,wt=10): 250 board([6,3,1,8]). [hyper(2,a,85,a,b,8,a),rewrite([13,12]),eval(30)]. given #238 (W,wt=10): 251 board([6,8,5,7]). [hyper(2,a,86,a,b,8,a),rewrite([13,12]),eval(30)]. given #239 (W,wt=10): 252 board([2,8,5,7]). [hyper(2,a,86,a,b,4,a),rewrite([13,12]),eval(30)]. given #240 (W,wt=10): 253 board([1,8,5,7]). [hyper(2,a,86,a,b,3,a),rewrite([13,12]),eval(30)]. given #241 (W,wt=10): 254 board([8,3,5,7]). [hyper(2,a,87,a,b,10,a),rewrite([13,12]),eval(30)]. given #242 (W,wt=10): 255 board([6,3,5,7]). [hyper(2,a,87,a,b,8,a),rewrite([13,12]),eval(30)]. given #243 (W,wt=10): 256 board([1,3,5,7]). [hyper(2,a,87,a,b,3,a),rewrite([13,12]),eval(30)]. given #244 (W,wt=10): 257 board([8,2,5,7]). [hyper(2,a,88,a,b,10,a),rewrite([13,12]),eval(30)]. given #245 (W,wt=10): 258 board([6,2,5,7]). [hyper(2,a,88,a,b,8,a),rewrite([13,12]),eval(30)]. given #246 (W,wt=10): 259 board([8,1,5,7]). [hyper(2,a,89,a,b,10,a),rewrite([13,12]),eval(30)]. given #247 (W,wt=10): 260 board([6,1,5,7]). [hyper(2,a,89,a,b,8,a),rewrite([13,12]),eval(30)]. given #248 (W,wt=10): 261 board([5,8,4,7]). [hyper(2,a,90,a,b,7,a),rewrite([13,12]),eval(30)]. given #249 (W,wt=10): 262 board([3,8,4,7]). [hyper(2,a,90,a,b,5,a),rewrite([13,12]),eval(30)]. given #250 (W,wt=10): 263 board([1,8,4,7]). [hyper(2,a,90,a,b,3,a),rewrite([13,12]),eval(30)]. given #251 (W,wt=10): 264 board([8,6,4,7]). [hyper(2,a,91,a,b,10,a),rewrite([13,12]),eval(30)]. given #252 (W,wt=10): 265 board([3,6,4,7]). [hyper(2,a,91,a,b,5,a),rewrite([13,12]),eval(30)]. given #253 (W,wt=10): 266 board([1,6,4,7]). [hyper(2,a,91,a,b,3,a),rewrite([13,12]),eval(30)]. given #254 (W,wt=10): 267 board([8,2,4,7]). [hyper(2,a,92,a,b,10,a),rewrite([13,12]),eval(30)]. given #255 (W,wt=10): 268 board([5,2,4,7]). [hyper(2,a,92,a,b,7,a),rewrite([13,12]),eval(30)]. given #256 (W,wt=10): 269 board([8,1,4,7]). [hyper(2,a,93,a,b,10,a),rewrite([13,12]),eval(30)]. given #257 (W,wt=10): 270 board([5,1,4,7]). [hyper(2,a,93,a,b,7,a),rewrite([13,12]),eval(30)]. given #258 (W,wt=10): 271 board([3,1,4,7]). [hyper(2,a,93,a,b,5,a),rewrite([13,12]),eval(30)]. given #259 (W,wt=10): 272 board([6,8,3,7]). [hyper(2,a,94,a,b,8,a),rewrite([13,12]),eval(30)]. given #260 (W,wt=10): 273 board([2,8,3,7]). [hyper(2,a,94,a,b,4,a),rewrite([13,12]),eval(30)]. given #261 (W,wt=10): 274 board([8,6,3,7]). [hyper(2,a,95,a,b,10,a),rewrite([13,12]),eval(30)]. given #262 (W,wt=10): 275 board([2,6,3,7]). [hyper(2,a,95,a,b,4,a),rewrite([13,12]),eval(30)]. given #263 (W,wt=10): 276 board([8,1,3,7]). [hyper(2,a,96,a,b,10,a),rewrite([13,12]),eval(30)]. given #264 (W,wt=10): 277 board([6,1,3,7]). [hyper(2,a,96,a,b,8,a),rewrite([13,12]),eval(30)]. given #265 (W,wt=10): 278 board([6,8,2,7]). [hyper(2,a,97,a,b,8,a),rewrite([13,12]),eval(30)]. given #266 (W,wt=10): 279 board([5,8,2,7]). [hyper(2,a,97,a,b,7,a),rewrite([13,12]),eval(30)]. given #267 (W,wt=10): 280 board([3,8,2,7]). [hyper(2,a,97,a,b,5,a),rewrite([13,12]),eval(30)]. given #268 (W,wt=10): 281 board([1,8,2,7]). [hyper(2,a,97,a,b,3,a),rewrite([13,12]),eval(30)]. given #269 (W,wt=10): 282 board([8,6,2,7]). [hyper(2,a,98,a,b,10,a),rewrite([13,12]),eval(30)]. given #270 (W,wt=10): 283 board([3,6,2,7]). [hyper(2,a,98,a,b,5,a),rewrite([13,12]),eval(30)]. given #271 (W,wt=10): 284 board([1,6,2,7]). [hyper(2,a,98,a,b,3,a),rewrite([13,12]),eval(30)]. given #272 (W,wt=10): 285 board([8,4,2,7]). [hyper(2,a,99,a,b,10,a),rewrite([13,12]),eval(30)]. given #273 (W,wt=10): 286 board([6,4,2,7]). [hyper(2,a,99,a,b,8,a),rewrite([13,12]),eval(30)]. given #274 (W,wt=10): 287 board([1,4,2,7]). [hyper(2,a,99,a,b,3,a),rewrite([13,12]),eval(30)]. given #275 (W,wt=10): 288 board([6,8,1,7]). [hyper(2,a,100,a,b,8,a),rewrite([13,12]),eval(30)]. given #276 (W,wt=10): 289 board([5,8,1,7]). [hyper(2,a,100,a,b,7,a),rewrite([13,12]),eval(30)]. given #277 (W,wt=10): 290 board([2,8,1,7]). [hyper(2,a,100,a,b,4,a),rewrite([13,12]),eval(30)]. given #278 (W,wt=10): 291 board([8,6,1,7]). [hyper(2,a,101,a,b,10,a),rewrite([13,12]),eval(30)]. given #279 (W,wt=10): 292 board([2,6,1,7]). [hyper(2,a,101,a,b,4,a),rewrite([13,12]),eval(30)]. given #280 (W,wt=10): 293 board([8,4,1,7]). [hyper(2,a,102,a,b,10,a),rewrite([13,12]),eval(30)]. given #281 (W,wt=10): 294 board([6,4,1,7]). [hyper(2,a,102,a,b,8,a),rewrite([13,12]),eval(30)]. given #282 (W,wt=10): 295 board([2,4,1,7]). [hyper(2,a,102,a,b,4,a),rewrite([13,12]),eval(30)]. given #283 (W,wt=10): 296 board([8,3,1,7]). [hyper(2,a,103,a,b,10,a),rewrite([13,12]),eval(30)]. given #284 (W,wt=10): 297 board([6,3,1,7]). [hyper(2,a,103,a,b,8,a),rewrite([13,12]),eval(30)]. given #285 (W,wt=10): 298 board([5,3,1,7]). [hyper(2,a,103,a,b,7,a),rewrite([13,12]),eval(30)]. given #286 (W,wt=10): 299 board([7,5,8,6]). [hyper(2,a,104,a,b,9,a),rewrite([13,12]),eval(30)]. given #287 (W,wt=10): 300 board([2,5,8,6]). [hyper(2,a,104,a,b,4,a),rewrite([13,12]),eval(30)]. given #288 (W,wt=10): 301 board([1,5,8,6]). [hyper(2,a,104,a,b,3,a),rewrite([13,12]),eval(30)]. given #289 (W,wt=10): 302 board([7,3,8,6]). [hyper(2,a,105,a,b,9,a),rewrite([13,12]),eval(30)]. given #290 (W,wt=10): 303 board([5,3,8,6]). [hyper(2,a,105,a,b,7,a),rewrite([13,12]),eval(30)]. given #291 (W,wt=10): 304 board([1,3,8,6]). [hyper(2,a,105,a,b,3,a),rewrite([13,12]),eval(30)]. given #292 (W,wt=10): 305 board([7,2,8,6]). [hyper(2,a,106,a,b,9,a),rewrite([13,12]),eval(30)]. given #293 (W,wt=10): 306 board([5,2,8,6]). [hyper(2,a,106,a,b,7,a),rewrite([13,12]),eval(30)]. given #294 (W,wt=10): 307 board([4,2,8,6]). [hyper(2,a,106,a,b,6,a),rewrite([13,12]),eval(30)]. given #295 (W,wt=10): 308 board([7,1,8,6]). [hyper(2,a,107,a,b,9,a),rewrite([13,12]),eval(30)]. given #296 (W,wt=10): 309 board([5,1,8,6]). [hyper(2,a,107,a,b,7,a),rewrite([13,12]),eval(30)]. given #297 (W,wt=10): 310 board([4,1,8,6]). [hyper(2,a,107,a,b,6,a),rewrite([13,12]),eval(30)]. given #298 (W,wt=10): 311 board([5,7,4,6]). [hyper(2,a,108,a,b,7,a),rewrite([13,12]),eval(30)]. given #299 (W,wt=10): 312 board([1,7,4,6]). [hyper(2,a,108,a,b,3,a),rewrite([13,12]),eval(30)]. given #300 (W,wt=10): 313 board([8,2,4,6]). [hyper(2,a,109,a,b,10,a),rewrite([13,12]),eval(30)]. given #301 (W,wt=10): 314 board([7,2,4,6]). [hyper(2,a,109,a,b,9,a),rewrite([13,12]),eval(30)]. given #302 (W,wt=10): 315 board([5,2,4,6]). [hyper(2,a,109,a,b,7,a),rewrite([13,12]),eval(30)]. given #303 (W,wt=10): 316 board([8,1,4,6]). [hyper(2,a,110,a,b,10,a),rewrite([13,12]),eval(30)]. given #304 (W,wt=10): 317 board([7,1,4,6]). [hyper(2,a,110,a,b,9,a),rewrite([13,12]),eval(30)]. given #305 (W,wt=10): 318 board([5,1,4,6]). [hyper(2,a,110,a,b,7,a),rewrite([13,12]),eval(30)]. given #306 (W,wt=10): 319 board([4,7,3,6]). [hyper(2,a,111,a,b,6,a),rewrite([13,12]),eval(30)]. given #307 (W,wt=10): 320 board([2,7,3,6]). [hyper(2,a,111,a,b,4,a),rewrite([13,12]),eval(30)]. given #308 (W,wt=10): 321 board([8,5,3,6]). [hyper(2,a,112,a,b,10,a),rewrite([13,12]),eval(30)]. given #309 (W,wt=10): 322 board([7,5,3,6]). [hyper(2,a,112,a,b,9,a),rewrite([13,12]),eval(30)]. given #310 (W,wt=10): 323 board([2,5,3,6]). [hyper(2,a,112,a,b,4,a),rewrite([13,12]),eval(30)]. given #311 (W,wt=10): 324 board([8,1,3,6]). [hyper(2,a,113,a,b,10,a),rewrite([13,12]),eval(30)]. given #312 (W,wt=10): 325 board([7,1,3,6]). [hyper(2,a,113,a,b,9,a),rewrite([13,12]),eval(30)]. given #313 (W,wt=10): 326 board([4,1,3,6]). [hyper(2,a,113,a,b,6,a),rewrite([13,12]),eval(30)]. given #314 (W,wt=10): 327 board([5,7,2,6]). [hyper(2,a,114,a,b,7,a),rewrite([13,12]),eval(30)]. given #315 (W,wt=10): 328 board([1,7,2,6]). [hyper(2,a,114,a,b,3,a),rewrite([13,12]),eval(30)]. given #316 (W,wt=10): 329 board([8,5,2,6]). [hyper(2,a,115,a,b,10,a),rewrite([13,12]),eval(30)]. given #317 (W,wt=10): 330 board([7,5,2,6]). [hyper(2,a,115,a,b,9,a),rewrite([13,12]),eval(30)]. given #318 (W,wt=10): 331 board([1,5,2,6]). [hyper(2,a,115,a,b,3,a),rewrite([13,12]),eval(30)]. given #319 (W,wt=10): 332 board([5,7,1,6]). [hyper(2,a,116,a,b,7,a),rewrite([13,12]),eval(30)]. given #320 (W,wt=10): 333 board([4,7,1,6]). [hyper(2,a,116,a,b,6,a),rewrite([13,12]),eval(30)]. given #321 (W,wt=10): 334 board([2,7,1,6]). [hyper(2,a,116,a,b,4,a),rewrite([13,12]),eval(30)]. given #322 (W,wt=10): 335 board([8,5,1,6]). [hyper(2,a,117,a,b,10,a),rewrite([13,12]),eval(30)]. given #323 (W,wt=10): 336 board([7,5,1,6]). [hyper(2,a,117,a,b,9,a),rewrite([13,12]),eval(30)]. given #324 (W,wt=10): 337 board([2,5,1,6]). [hyper(2,a,117,a,b,4,a),rewrite([13,12]),eval(30)]. given #325 (W,wt=10): 338 board([8,3,1,6]). [hyper(2,a,118,a,b,10,a),rewrite([13,12]),eval(30)]. given #326 (W,wt=10): 339 board([7,3,1,6]). [hyper(2,a,118,a,b,9,a),rewrite([13,12]),eval(30)]. given #327 (W,wt=10): 340 board([5,3,1,6]). [hyper(2,a,118,a,b,7,a),rewrite([13,12]),eval(30)]. given #328 (W,wt=10): 341 board([4,6,8,5]). [hyper(2,a,119,a,b,6,a),rewrite([13,12]),eval(30)]. given #329 (W,wt=10): 342 board([3,6,8,5]). [hyper(2,a,119,a,b,5,a),rewrite([13,12]),eval(30)]. given #330 (W,wt=10): 343 board([1,6,8,5]). [hyper(2,a,119,a,b,3,a),rewrite([13,12]),eval(30)]. given #331 (W,wt=10): 344 board([7,4,8,5]). [hyper(2,a,120,a,b,9,a),rewrite([13,12]),eval(30)]. given #332 (W,wt=10): 345 board([1,4,8,5]). [hyper(2,a,120,a,b,3,a),rewrite([13,12]),eval(30)]. given #333 (W,wt=10): 346 board([7,2,8,5]). [hyper(2,a,121,a,b,9,a),rewrite([13,12]),eval(30)]. given #334 (W,wt=10): 347 board([4,2,8,5]). [hyper(2,a,121,a,b,6,a),rewrite([13,12]),eval(30)]. given #335 (W,wt=10): 348 board([7,1,8,5]). [hyper(2,a,122,a,b,9,a),rewrite([13,12]),eval(30)]. given #336 (W,wt=10): 349 board([4,1,8,5]). [hyper(2,a,122,a,b,6,a),rewrite([13,12]),eval(30)]. given #337 (W,wt=10): 350 board([3,1,8,5]). [hyper(2,a,122,a,b,5,a),rewrite([13,12]),eval(30)]. given #338 (W,wt=10): 351 board([6,4,7,5]). [hyper(2,a,123,a,b,8,a),rewrite([13,12]),eval(30)]. given #339 (W,wt=10): 352 board([1,4,7,5]). [hyper(2,a,123,a,b,3,a),rewrite([13,12]),eval(30)]. given #340 (W,wt=10): 353 board([6,2,7,5]). [hyper(2,a,124,a,b,8,a),rewrite([13,12]),eval(30)]. given #341 (W,wt=10): 354 board([4,2,7,5]). [hyper(2,a,124,a,b,6,a),rewrite([13,12]),eval(30)]. given #342 (W,wt=10): 355 board([6,1,7,5]). [hyper(2,a,125,a,b,8,a),rewrite([13,12]),eval(30)]. given #343 (W,wt=10): 356 board([4,1,7,5]). [hyper(2,a,125,a,b,6,a),rewrite([13,12]),eval(30)]. given #344 (W,wt=10): 357 board([3,1,7,5]). [hyper(2,a,125,a,b,5,a),rewrite([13,12]),eval(30)]. given #345 (W,wt=10): 358 board([6,8,3,5]). [hyper(2,a,126,a,b,8,a),rewrite([13,12]),eval(30)]. given #346 (W,wt=10): 359 board([4,8,3,5]). [hyper(2,a,126,a,b,6,a),rewrite([13,12]),eval(30)]. given #347 (W,wt=10): 360 board([4,6,3,5]). [hyper(2,a,127,a,b,6,a),rewrite([13,12]),eval(30)]. given #348 (W,wt=10): 361 board([7,1,3,5]). [hyper(2,a,128,a,b,9,a),rewrite([13,12]),eval(30)]. given #349 (W,wt=10): 362 board([6,1,3,5]). [hyper(2,a,128,a,b,8,a),rewrite([13,12]),eval(30)]. given #350 (W,wt=10): 363 board([4,1,3,5]). [hyper(2,a,128,a,b,6,a),rewrite([13,12]),eval(30)]. given #351 (W,wt=10): 364 board([6,8,2,5]). [hyper(2,a,129,a,b,8,a),rewrite([13,12]),eval(30)]. given #352 (W,wt=10): 365 board([3,8,2,5]). [hyper(2,a,129,a,b,5,a),rewrite([13,12]),eval(30)]. given #353 (W,wt=10): 366 board([1,8,2,5]). [hyper(2,a,129,a,b,3,a),rewrite([13,12]),eval(30)]. given #354 (W,wt=10): 367 board([3,6,2,5]). [hyper(2,a,130,a,b,5,a),rewrite([13,12]),eval(30)]. given #355 (W,wt=10): 368 board([1,6,2,5]). [hyper(2,a,130,a,b,3,a),rewrite([13,12]),eval(30)]. given #356 (W,wt=10): 369 board([7,4,2,5]). [hyper(2,a,131,a,b,9,a),rewrite([13,12]),eval(30)]. given #357 (W,wt=10): 370 board([6,4,2,5]). [hyper(2,a,131,a,b,8,a),rewrite([13,12]),eval(30)]. given #358 (W,wt=10): 371 board([1,4,2,5]). [hyper(2,a,131,a,b,3,a),rewrite([13,12]),eval(30)]. given #359 (W,wt=10): 372 board([6,8,1,5]). [hyper(2,a,132,a,b,8,a),rewrite([13,12]),eval(30)]. given #360 (W,wt=10): 373 board([4,8,1,5]). [hyper(2,a,132,a,b,6,a),rewrite([13,12]),eval(30)]. given #361 (W,wt=10): 374 board([4,6,1,5]). [hyper(2,a,133,a,b,6,a),rewrite([13,12]),eval(30)]. given #362 (W,wt=10): 375 board([7,4,1,5]). [hyper(2,a,134,a,b,9,a),rewrite([13,12]),eval(30)]. given #363 (W,wt=10): 376 board([6,4,1,5]). [hyper(2,a,134,a,b,8,a),rewrite([13,12]),eval(30)]. given #364 (W,wt=10): 377 board([3,5,8,4]). [hyper(2,a,135,a,b,5,a),rewrite([13,12]),eval(30)]. given #365 (W,wt=10): 378 board([2,5,8,4]). [hyper(2,a,135,a,b,4,a),rewrite([13,12]),eval(30)]. given #366 (W,wt=10): 379 board([5,3,8,4]). [hyper(2,a,136,a,b,7,a),rewrite([13,12]),eval(30)]. given #367 (W,wt=10): 380 board([5,1,8,4]). [hyper(2,a,137,a,b,7,a),rewrite([13,12]),eval(30)]. given #368 (W,wt=10): 381 board([3,1,8,4]). [hyper(2,a,137,a,b,5,a),rewrite([13,12]),eval(30)]. given #369 (W,wt=10): 382 board([8,5,7,4]). [hyper(2,a,138,a,b,10,a),rewrite([13,12]),eval(30)]. given #370 (W,wt=10): 383 board([3,5,7,4]). [hyper(2,a,138,a,b,5,a),rewrite([13,12]),eval(30)]. given #371 (W,wt=10): 384 board([2,5,7,4]). [hyper(2,a,138,a,b,4,a),rewrite([13,12]),eval(30)]. given #372 (W,wt=10): 385 board([8,3,7,4]). [hyper(2,a,139,a,b,10,a),rewrite([13,12]),eval(30)]. given #373 (W,wt=10): 386 board([6,3,7,4]). [hyper(2,a,139,a,b,8,a),rewrite([13,12]),eval(30)]. given #374 (W,wt=10): 387 board([8,1,7,4]). [hyper(2,a,140,a,b,10,a),rewrite([13,12]),eval(30)]. given #375 (W,wt=10): 388 board([6,1,7,4]). [hyper(2,a,140,a,b,8,a),rewrite([13,12]),eval(30)]. given #376 (W,wt=10): 389 board([3,1,7,4]). [hyper(2,a,140,a,b,5,a),rewrite([13,12]),eval(30)]. given #377 (W,wt=10): 390 board([5,8,6,4]). [hyper(2,a,141,a,b,7,a),rewrite([13,12]),eval(30)]. given #378 (W,wt=10): 391 board([3,8,6,4]). [hyper(2,a,141,a,b,5,a),rewrite([13,12]),eval(30)]. given #379 (W,wt=10): 392 board([2,8,6,4]). [hyper(2,a,141,a,b,4,a),rewrite([13,12]),eval(30)]. given #380 (W,wt=10): 393 board([5,3,6,4]). [hyper(2,a,142,a,b,7,a),rewrite([13,12]),eval(30)]. given #381 (W,wt=10): 394 board([5,1,6,4]). [hyper(2,a,143,a,b,7,a),rewrite([13,12]),eval(30)]. given #382 (W,wt=10): 395 board([3,1,6,4]). [hyper(2,a,143,a,b,5,a),rewrite([13,12]),eval(30)]. given #383 (W,wt=10): 396 board([6,8,2,4]). [hyper(2,a,144,a,b,8,a),rewrite([13,12]),eval(30)]. given #384 (W,wt=10): 397 board([5,8,2,4]). [hyper(2,a,144,a,b,7,a),rewrite([13,12]),eval(30)]. given #385 (W,wt=10): 398 board([3,8,2,4]). [hyper(2,a,144,a,b,5,a),rewrite([13,12]),eval(30)]. given #386 (W,wt=10): 399 board([5,7,2,4]). [hyper(2,a,145,a,b,7,a),rewrite([13,12]),eval(30)]. given #387 (W,wt=10): 400 board([3,7,2,4]). [hyper(2,a,145,a,b,5,a),rewrite([13,12]),eval(30)]. given #388 (W,wt=10): 401 board([8,5,2,4]). [hyper(2,a,146,a,b,10,a),rewrite([13,12]),eval(30)]. given #389 (W,wt=10): 402 board([3,5,2,4]). [hyper(2,a,146,a,b,5,a),rewrite([13,12]),eval(30)]. given #390 (W,wt=10): 403 board([6,8,1,4]). [hyper(2,a,147,a,b,8,a),rewrite([13,12]),eval(30)]. given #391 (W,wt=10): 404 board([5,8,1,4]). [hyper(2,a,147,a,b,7,a),rewrite([13,12]),eval(30)]. given #392 (W,wt=10): 405 board([2,8,1,4]). [hyper(2,a,147,a,b,4,a),rewrite([13,12]),eval(30)]. given #393 (W,wt=10): 406 board([5,7,1,4]). [hyper(2,a,148,a,b,7,a),rewrite([13,12]),eval(30)]. given #394 (W,wt=10): 407 board([2,7,1,4]). [hyper(2,a,148,a,b,4,a),rewrite([13,12]),eval(30)]. given #395 (W,wt=10): 408 board([8,5,1,4]). [hyper(2,a,149,a,b,10,a),rewrite([13,12]),eval(30)]. given #396 (W,wt=10): 409 board([2,5,1,4]). [hyper(2,a,149,a,b,4,a),rewrite([13,12]),eval(30)]. given #397 (W,wt=10): 410 board([8,3,1,4]). [hyper(2,a,150,a,b,10,a),rewrite([13,12]),eval(30)]. given #398 (W,wt=10): 411 board([6,3,1,4]). [hyper(2,a,150,a,b,8,a),rewrite([13,12]),eval(30)]. given #399 (W,wt=10): 412 board([5,3,1,4]). [hyper(2,a,150,a,b,7,a),rewrite([13,12]),eval(30)]. given #400 (W,wt=10): 413 board([4,6,8,3]). [hyper(2,a,151,a,b,6,a),rewrite([13,12]),eval(30)]. given #401 (W,wt=10): 414 board([2,6,8,3]). [hyper(2,a,151,a,b,4,a),rewrite([13,12]),eval(30)]. given #402 (W,wt=10): 415 board([1,6,8,3]). [hyper(2,a,151,a,b,3,a),rewrite([13,12]),eval(30)]. given #403 (W,wt=10): 416 board([7,4,8,3]). [hyper(2,a,152,a,b,9,a),rewrite([13,12]),eval(30)]. given #404 (W,wt=10): 417 board([2,4,8,3]). [hyper(2,a,152,a,b,4,a),rewrite([13,12]),eval(30)]. given #405 (W,wt=10): 418 board([1,4,8,3]). [hyper(2,a,152,a,b,3,a),rewrite([13,12]),eval(30)]. given #406 (W,wt=10): 419 board([7,2,8,3]). [hyper(2,a,153,a,b,9,a),rewrite([13,12]),eval(30)]. given #407 (W,wt=10): 420 board([5,2,8,3]). [hyper(2,a,153,a,b,7,a),rewrite([13,12]),eval(30)]. given #408 (W,wt=10): 421 board([4,2,8,3]). [hyper(2,a,153,a,b,6,a),rewrite([13,12]),eval(30)]. given #409 (W,wt=10): 422 board([8,4,7,3]). [hyper(2,a,154,a,b,10,a),rewrite([13,12]),eval(30)]. given #410 (W,wt=10): 423 board([2,4,7,3]). [hyper(2,a,154,a,b,4,a),rewrite([13,12]),eval(30)]. given #411 (W,wt=10): 424 board([1,4,7,3]). [hyper(2,a,154,a,b,3,a),rewrite([13,12]),eval(30)]. given #412 (W,wt=10): 425 board([8,2,7,3]). [hyper(2,a,155,a,b,10,a),rewrite([13,12]),eval(30)]. given #413 (W,wt=10): 426 board([4,2,7,3]). [hyper(2,a,155,a,b,6,a),rewrite([13,12]),eval(30)]. given #414 (W,wt=10): 427 board([5,8,6,3]). [hyper(2,a,156,a,b,7,a),rewrite([13,12]),eval(30)]. given #415 (W,wt=10): 428 board([2,8,6,3]). [hyper(2,a,156,a,b,4,a),rewrite([13,12]),eval(30)]. given #416 (W,wt=10): 429 board([1,8,6,3]). [hyper(2,a,156,a,b,3,a),rewrite([13,12]),eval(30)]. given #417 (W,wt=10): 430 board([7,4,6,3]). [hyper(2,a,157,a,b,9,a),rewrite([13,12]),eval(30)]. given #418 (W,wt=10): 431 board([2,4,6,3]). [hyper(2,a,157,a,b,4,a),rewrite([13,12]),eval(30)]. given #419 (W,wt=10): 432 board([1,4,6,3]). [hyper(2,a,157,a,b,3,a),rewrite([13,12]),eval(30)]. given #420 (W,wt=10): 433 board([7,2,6,3]). [hyper(2,a,158,a,b,9,a),rewrite([13,12]),eval(30)]. given #421 (W,wt=10): 434 board([5,2,6,3]). [hyper(2,a,158,a,b,7,a),rewrite([13,12]),eval(30)]. given #422 (W,wt=10): 435 board([4,8,5,3]). [hyper(2,a,159,a,b,6,a),rewrite([13,12]),eval(30)]. given #423 (W,wt=10): 436 board([2,8,5,3]). [hyper(2,a,159,a,b,4,a),rewrite([13,12]),eval(30)]. given #424 (W,wt=10): 437 board([1,8,5,3]). [hyper(2,a,159,a,b,3,a),rewrite([13,12]),eval(30)]. given #425 (W,wt=10): 438 board([4,7,5,3]). [hyper(2,a,160,a,b,6,a),rewrite([13,12]),eval(30)]. given #426 (W,wt=10): 439 board([2,7,5,3]). [hyper(2,a,160,a,b,4,a),rewrite([13,12]),eval(30)]. given #427 (W,wt=10): 440 board([1,7,5,3]). [hyper(2,a,160,a,b,3,a),rewrite([13,12]),eval(30)]. given #428 (W,wt=10): 441 board([8,2,5,3]). [hyper(2,a,161,a,b,10,a),rewrite([13,12]),eval(30)]. given #429 (W,wt=10): 442 board([4,2,5,3]). [hyper(2,a,161,a,b,6,a),rewrite([13,12]),eval(30)]. given #430 (W,wt=10): 443 board([5,8,1,3]). [hyper(2,a,162,a,b,7,a),rewrite([13,12]),eval(30)]. given #431 (W,wt=10): 444 board([4,8,1,3]). [hyper(2,a,162,a,b,6,a),rewrite([13,12]),eval(30)]. given #432 (W,wt=10): 445 board([2,8,1,3]). [hyper(2,a,162,a,b,4,a),rewrite([13,12]),eval(30)]. given #433 (W,wt=10): 446 board([5,7,1,3]). [hyper(2,a,163,a,b,7,a),rewrite([13,12]),eval(30)]. given #434 (W,wt=10): 447 board([4,7,1,3]). [hyper(2,a,163,a,b,6,a),rewrite([13,12]),eval(30)]. given #435 (W,wt=10): 448 board([2,7,1,3]). [hyper(2,a,163,a,b,4,a),rewrite([13,12]),eval(30)]. given #436 (W,wt=10): 449 board([8,6,1,3]). [hyper(2,a,164,a,b,10,a),rewrite([13,12]),eval(30)]. given #437 (W,wt=10): 450 board([4,6,1,3]). [hyper(2,a,164,a,b,6,a),rewrite([13,12]),eval(30)]. given #438 (W,wt=10): 451 board([2,6,1,3]). [hyper(2,a,164,a,b,4,a),rewrite([13,12]),eval(30)]. given #439 (W,wt=10): 452 board([8,4,1,3]). [hyper(2,a,165,a,b,10,a),rewrite([13,12]),eval(30)]. given #440 (W,wt=10): 453 board([7,4,1,3]). [hyper(2,a,165,a,b,9,a),rewrite([13,12]),eval(30)]. given #441 (W,wt=10): 454 board([2,4,1,3]). [hyper(2,a,165,a,b,4,a),rewrite([13,12]),eval(30)]. given #442 (W,wt=10): 455 board([4,6,8,2]). [hyper(2,a,166,a,b,6,a),rewrite([13,12]),eval(30)]. given #443 (W,wt=10): 456 board([3,6,8,2]). [hyper(2,a,166,a,b,5,a),rewrite([13,12]),eval(30)]. given #444 (W,wt=10): 457 board([1,6,8,2]). [hyper(2,a,166,a,b,3,a),rewrite([13,12]),eval(30)]. given #445 (W,wt=10): 458 board([7,5,8,2]). [hyper(2,a,167,a,b,9,a),rewrite([13,12]),eval(30)]. given #446 (W,wt=10): 459 board([3,5,8,2]). [hyper(2,a,167,a,b,5,a),rewrite([13,12]),eval(30)]. given #447 (W,wt=10): 460 board([1,5,8,2]). [hyper(2,a,167,a,b,3,a),rewrite([13,12]),eval(30)]. given #448 (W,wt=10): 461 board([7,3,8,2]). [hyper(2,a,168,a,b,9,a),rewrite([13,12]),eval(30)]. given #449 (W,wt=10): 462 board([1,3,8,2]). [hyper(2,a,168,a,b,3,a),rewrite([13,12]),eval(30)]. given #450 (W,wt=10): 463 board([7,1,8,2]). [hyper(2,a,169,a,b,9,a),rewrite([13,12]),eval(30)]. given #451 (W,wt=10): 464 board([4,1,8,2]). [hyper(2,a,169,a,b,6,a),rewrite([13,12]),eval(30)]. given #452 (W,wt=10): 465 board([3,1,8,2]). [hyper(2,a,169,a,b,5,a),rewrite([13,12]),eval(30)]. given #453 (W,wt=10): 466 board([8,5,7,2]). [hyper(2,a,170,a,b,10,a),rewrite([13,12]),eval(30)]. given #454 (W,wt=10): 467 board([3,5,7,2]). [hyper(2,a,170,a,b,5,a),rewrite([13,12]),eval(30)]. given #455 (W,wt=10): 468 board([1,5,7,2]). [hyper(2,a,170,a,b,3,a),rewrite([13,12]),eval(30)]. given #456 (W,wt=10): 469 board([8,3,7,2]). [hyper(2,a,171,a,b,10,a),rewrite([13,12]),eval(30)]. given #457 (W,wt=10): 470 board([6,3,7,2]). [hyper(2,a,171,a,b,8,a),rewrite([13,12]),eval(30)]. given #458 (W,wt=10): 471 board([1,3,7,2]). [hyper(2,a,171,a,b,3,a),rewrite([13,12]),eval(30)]. given #459 (W,wt=10): 472 board([8,1,7,2]). [hyper(2,a,172,a,b,10,a),rewrite([13,12]),eval(30)]. given #460 (W,wt=10): 473 board([6,1,7,2]). [hyper(2,a,172,a,b,8,a),rewrite([13,12]),eval(30)]. given #461 (W,wt=10): 474 board([4,1,7,2]). [hyper(2,a,172,a,b,6,a),rewrite([13,12]),eval(30)]. given #462 (W,wt=10): 475 board([3,1,7,2]). [hyper(2,a,172,a,b,5,a),rewrite([13,12]),eval(30)]. given #463 (W,wt=10): 476 board([3,8,6,2]). [hyper(2,a,173,a,b,5,a),rewrite([13,12]),eval(30)]. given #464 (W,wt=10): 477 board([1,8,6,2]). [hyper(2,a,173,a,b,3,a),rewrite([13,12]),eval(30)]. given #465 (W,wt=10): 478 board([7,3,6,2]). [hyper(2,a,174,a,b,9,a),rewrite([13,12]),eval(30)]. given #466 (W,wt=10): 479 board([1,3,6,2]). [hyper(2,a,174,a,b,3,a),rewrite([13,12]),eval(30)]. given #467 (W,wt=10): 480 board([7,1,6,2]). [hyper(2,a,175,a,b,9,a),rewrite([13,12]),eval(30)]. given #468 (W,wt=10): 481 board([3,1,6,2]). [hyper(2,a,175,a,b,5,a),rewrite([13,12]),eval(30)]. given #469 (W,wt=10): 482 board([6,8,5,2]). [hyper(2,a,176,a,b,8,a),rewrite([13,12]),eval(30)]. given #470 (W,wt=10): 483 board([4,8,5,2]). [hyper(2,a,176,a,b,6,a),rewrite([13,12]),eval(30)]. given #471 (W,wt=10): 484 board([1,8,5,2]). [hyper(2,a,176,a,b,3,a),rewrite([13,12]),eval(30)]. given #472 (W,wt=10): 485 board([4,7,5,2]). [hyper(2,a,177,a,b,6,a),rewrite([13,12]),eval(30)]. given #473 (W,wt=10): 486 board([1,7,5,2]). [hyper(2,a,177,a,b,3,a),rewrite([13,12]),eval(30)]. given #474 (W,wt=10): 487 board([8,3,5,2]). [hyper(2,a,178,a,b,10,a),rewrite([13,12]),eval(30)]. given #475 (W,wt=10): 488 board([6,3,5,2]). [hyper(2,a,178,a,b,8,a),rewrite([13,12]),eval(30)]. given #476 (W,wt=10): 489 board([1,3,5,2]). [hyper(2,a,178,a,b,3,a),rewrite([13,12]),eval(30)]. given #477 (W,wt=10): 490 board([8,1,5,2]). [hyper(2,a,179,a,b,10,a),rewrite([13,12]),eval(30)]. given #478 (W,wt=10): 491 board([6,1,5,2]). [hyper(2,a,179,a,b,8,a),rewrite([13,12]),eval(30)]. given #479 (W,wt=10): 492 board([4,1,5,2]). [hyper(2,a,179,a,b,6,a),rewrite([13,12]),eval(30)]. given #480 (W,wt=10): 493 board([3,8,4,2]). [hyper(2,a,180,a,b,5,a),rewrite([13,12]),eval(30)]. given #481 (W,wt=10): 494 board([1,8,4,2]). [hyper(2,a,180,a,b,3,a),rewrite([13,12]),eval(30)]. given #482 (W,wt=10): 495 board([3,7,4,2]). [hyper(2,a,181,a,b,5,a),rewrite([13,12]),eval(30)]. given #483 (W,wt=10): 496 board([1,7,4,2]). [hyper(2,a,181,a,b,3,a),rewrite([13,12]),eval(30)]. given #484 (W,wt=10): 497 board([8,6,4,2]). [hyper(2,a,182,a,b,10,a),rewrite([13,12]),eval(30)]. given #485 (W,wt=10): 498 board([3,6,4,2]). [hyper(2,a,182,a,b,5,a),rewrite([13,12]),eval(30)]. given #486 (W,wt=10): 499 board([1,6,4,2]). [hyper(2,a,182,a,b,3,a),rewrite([13,12]),eval(30)]. given #487 (W,wt=10): 500 board([8,1,4,2]). [hyper(2,a,183,a,b,10,a),rewrite([13,12]),eval(30)]. given #488 (W,wt=10): 501 board([7,1,4,2]). [hyper(2,a,183,a,b,9,a),rewrite([13,12]),eval(30)]. given #489 (W,wt=10): 502 board([3,1,4,2]). [hyper(2,a,183,a,b,5,a),rewrite([13,12]),eval(30)]. given #490 (W,wt=10): 503 board([3,6,8,1]). [hyper(2,a,184,a,b,5,a),rewrite([13,12]),eval(30)]. given #491 (W,wt=10): 504 board([2,6,8,1]). [hyper(2,a,184,a,b,4,a),rewrite([13,12]),eval(30)]. given #492 (W,wt=10): 505 board([7,5,8,1]). [hyper(2,a,185,a,b,9,a),rewrite([13,12]),eval(30)]. given #493 (W,wt=10): 506 board([3,5,8,1]). [hyper(2,a,185,a,b,5,a),rewrite([13,12]),eval(30)]. given #494 (W,wt=10): 507 board([2,5,8,1]). [hyper(2,a,185,a,b,4,a),rewrite([13,12]),eval(30)]. given #495 (W,wt=10): 508 board([7,4,8,1]). [hyper(2,a,186,a,b,9,a),rewrite([13,12]),eval(30)]. given #496 (W,wt=10): 509 board([2,4,8,1]). [hyper(2,a,186,a,b,4,a),rewrite([13,12]),eval(30)]. given #497 (W,wt=10): 510 board([7,2,8,1]). [hyper(2,a,187,a,b,9,a),rewrite([13,12]),eval(30)]. given #498 (W,wt=10): 511 board([5,2,8,1]). [hyper(2,a,187,a,b,7,a),rewrite([13,12]),eval(30)]. given #499 (W,wt=10): 512 board([8,5,7,1]). [hyper(2,a,188,a,b,10,a),rewrite([13,12]),eval(30)]. given #500 (W,wt=10): 513 board([3,5,7,1]). [hyper(2,a,188,a,b,5,a),rewrite([13,12]),eval(30)]. given #501 (W,wt=10): 514 board([2,5,7,1]). [hyper(2,a,188,a,b,4,a),rewrite([13,12]),eval(30)]. given #502 (W,wt=10): 515 board([8,4,7,1]). [hyper(2,a,189,a,b,10,a),rewrite([13,12]),eval(30)]. given #503 (W,wt=10): 516 board([6,4,7,1]). [hyper(2,a,189,a,b,8,a),rewrite([13,12]),eval(30)]. given #504 (W,wt=10): 517 board([2,4,7,1]). [hyper(2,a,189,a,b,4,a),rewrite([13,12]),eval(30)]. given #505 (W,wt=10): 518 board([8,2,7,1]). [hyper(2,a,190,a,b,10,a),rewrite([13,12]),eval(30)]. given #506 (W,wt=10): 519 board([6,2,7,1]). [hyper(2,a,190,a,b,8,a),rewrite([13,12]),eval(30)]. given #507 (W,wt=10): 520 board([5,8,6,1]). [hyper(2,a,191,a,b,7,a),rewrite([13,12]),eval(30)]. given #508 (W,wt=10): 521 board([3,8,6,1]). [hyper(2,a,191,a,b,5,a),rewrite([13,12]),eval(30)]. given #509 (W,wt=10): 522 board([2,8,6,1]). [hyper(2,a,191,a,b,4,a),rewrite([13,12]),eval(30)]. given #510 (W,wt=10): 523 board([7,4,6,1]). [hyper(2,a,192,a,b,9,a),rewrite([13,12]),eval(30)]. given #511 (W,wt=10): 524 board([2,4,6,1]). [hyper(2,a,192,a,b,4,a),rewrite([13,12]),eval(30)]. given #512 (W,wt=10): 525 board([7,2,6,1]). [hyper(2,a,193,a,b,9,a),rewrite([13,12]),eval(30)]. given #513 (W,wt=10): 526 board([5,2,6,1]). [hyper(2,a,193,a,b,7,a),rewrite([13,12]),eval(30)]. given #514 (W,wt=10): 527 board([6,8,5,1]). [hyper(2,a,194,a,b,8,a),rewrite([13,12]),eval(30)]. given #515 (W,wt=10): 528 board([2,8,5,1]). [hyper(2,a,194,a,b,4,a),rewrite([13,12]),eval(30)]. given #516 (W,wt=10): 529 board([2,7,5,1]). [hyper(2,a,195,a,b,4,a),rewrite([13,12]),eval(30)]. given #517 (W,wt=10): 530 board([8,2,5,1]). [hyper(2,a,196,a,b,10,a),rewrite([13,12]),eval(30)]. given #518 (W,wt=10): 531 board([6,2,5,1]). [hyper(2,a,196,a,b,8,a),rewrite([13,12]),eval(30)]. given #519 (W,wt=10): 532 board([5,8,4,1]). [hyper(2,a,197,a,b,7,a),rewrite([13,12]),eval(30)]. given #520 (W,wt=10): 533 board([3,8,4,1]). [hyper(2,a,197,a,b,5,a),rewrite([13,12]),eval(30)]. given #521 (W,wt=10): 534 board([5,7,4,1]). [hyper(2,a,198,a,b,7,a),rewrite([13,12]),eval(30)]. given #522 (W,wt=10): 535 board([3,7,4,1]). [hyper(2,a,198,a,b,5,a),rewrite([13,12]),eval(30)]. given #523 (W,wt=10): 536 board([8,6,4,1]). [hyper(2,a,199,a,b,10,a),rewrite([13,12]),eval(30)]. given #524 (W,wt=10): 537 board([3,6,4,1]). [hyper(2,a,199,a,b,5,a),rewrite([13,12]),eval(30)]. given #525 (W,wt=10): 538 board([8,2,4,1]). [hyper(2,a,200,a,b,10,a),rewrite([13,12]),eval(30)]. given #526 (W,wt=10): 539 board([7,2,4,1]). [hyper(2,a,200,a,b,9,a),rewrite([13,12]),eval(30)]. given #527 (W,wt=10): 540 board([5,2,4,1]). [hyper(2,a,200,a,b,7,a),rewrite([13,12]),eval(30)]. given #528 (W,wt=10): 541 board([6,8,3,1]). [hyper(2,a,201,a,b,8,a),rewrite([13,12]),eval(30)]. given #529 (W,wt=10): 542 board([2,8,3,1]). [hyper(2,a,201,a,b,4,a),rewrite([13,12]),eval(30)]. given #530 (W,wt=10): 543 board([2,7,3,1]). [hyper(2,a,202,a,b,4,a),rewrite([13,12]),eval(30)]. given #531 (W,wt=10): 544 board([8,6,3,1]). [hyper(2,a,203,a,b,10,a),rewrite([13,12]),eval(30)]. given #532 (W,wt=10): 545 board([2,6,3,1]). [hyper(2,a,203,a,b,4,a),rewrite([13,12]),eval(30)]. given #533 (W,wt=10): 546 board([8,5,3,1]). [hyper(2,a,204,a,b,10,a),rewrite([13,12]),eval(30)]. given #534 (W,wt=10): 547 board([7,5,3,1]). [hyper(2,a,204,a,b,9,a),rewrite([13,12]),eval(30)]. given #535 (W,wt=10): 548 board([2,5,3,1]). [hyper(2,a,204,a,b,4,a),rewrite([13,12]),eval(30)]. given #536 (W,wt=12): 549 board([5,7,4,6,8]). [hyper(2,a,205,a,b,7,a),rewrite([13,12]),eval(40)]. given #537 (W,wt=12): 550 board([1,7,4,6,8]). [hyper(2,a,205,a,b,3,a),rewrite([13,12]),eval(40)]. given #538 (W,wt=12): 551 board([7,2,4,6,8]). [hyper(2,a,206,a,b,9,a),rewrite([13,12]),eval(40)]. given #539 (W,wt=12): 552 board([5,2,4,6,8]). [hyper(2,a,206,a,b,7,a),rewrite([13,12]),eval(40)]. given #540 (W,wt=12): 553 board([7,1,4,6,8]). [hyper(2,a,207,a,b,9,a),rewrite([13,12]),eval(40)]. given #541 (W,wt=12): 554 board([5,1,4,6,8]). [hyper(2,a,207,a,b,7,a),rewrite([13,12]),eval(40)]. given #542 (W,wt=12): 555 board([2,7,3,6,8]). [hyper(2,a,208,a,b,4,a),rewrite([13,12]),eval(40)]. given #543 (W,wt=12): 556 board([7,1,3,6,8]). [hyper(2,a,209,a,b,9,a),rewrite([13,12]),eval(40)]. given #544 (W,wt=12): 557 board([5,7,2,6,8]). [hyper(2,a,210,a,b,7,a),rewrite([13,12]),eval(40)]. given #545 (W,wt=12): 558 board([1,7,2,6,8]). [hyper(2,a,210,a,b,3,a),rewrite([13,12]),eval(40)]. given #546 (W,wt=12): 559 board([5,7,1,6,8]). [hyper(2,a,211,a,b,7,a),rewrite([13,12]),eval(40)]. given #547 (W,wt=12): 560 board([2,7,1,6,8]). [hyper(2,a,211,a,b,4,a),rewrite([13,12]),eval(40)]. given #548 (W,wt=12): 561 board([7,3,1,6,8]). [hyper(2,a,212,a,b,9,a),rewrite([13,12]),eval(40)]. given #549 (W,wt=12): 562 board([5,3,1,6,8]). [hyper(2,a,212,a,b,7,a),rewrite([13,12]),eval(40)]. given #550 (W,wt=12): 563 board([6,4,7,5,8]). [hyper(2,a,213,a,b,8,a),rewrite([13,12]),eval(40)]. given #551 (W,wt=12): 564 board([1,4,7,5,8]). [hyper(2,a,213,a,b,3,a),rewrite([13,12]),eval(40)]. given #552 (W,wt=12): 565 board([6,2,7,5,8]). [hyper(2,a,214,a,b,8,a),rewrite([13,12]),eval(40)]. given #553 (W,wt=12): 566 board([6,1,7,5,8]). [hyper(2,a,215,a,b,8,a),rewrite([13,12]),eval(40)]. given #554 (W,wt=12): 567 board([3,1,7,5,8]). [hyper(2,a,215,a,b,5,a),rewrite([13,12]),eval(40)]. given #555 (W,wt=12): 568 board([7,1,3,5,8]). [hyper(2,a,217,a,b,9,a),rewrite([13,12]),eval(40)]. given #556 (W,wt=12): 569 board([6,1,3,5,8]). [hyper(2,a,217,a,b,8,a),rewrite([13,12]),eval(40)]. given #557 (W,wt=12): 570 board([3,6,2,5,8]). [hyper(2,a,218,a,b,5,a),rewrite([13,12]),eval(40)]. given #558 (W,wt=12): 571 board([1,6,2,5,8]). [hyper(2,a,218,a,b,3,a),rewrite([13,12]),eval(40)]. given #559 (W,wt=12): 572 board([7,4,2,5,8]). [hyper(2,a,219,a,b,9,a),rewrite([13,12]),eval(40)]. given #560 (W,wt=12): 573 board([6,4,2,5,8]). [hyper(2,a,219,a,b,8,a),rewrite([13,12]),eval(40)]. given #561 (W,wt=12): 574 board([1,4,2,5,8]). [hyper(2,a,219,a,b,3,a),rewrite([13,12]),eval(40)]. given #562 (W,wt=12): 575 board([7,4,1,5,8]). [hyper(2,a,221,a,b,9,a),rewrite([13,12]),eval(40)]. given #563 (W,wt=12): 576 board([6,4,1,5,8]). [hyper(2,a,221,a,b,8,a),rewrite([13,12]),eval(40)]. given #564 (W,wt=12): 577 board([6,3,7,4,8]). [hyper(2,a,222,a,b,8,a),rewrite([13,12]),eval(40)]. given #565 (W,wt=12): 578 board([6,1,7,4,8]). [hyper(2,a,223,a,b,8,a),rewrite([13,12]),eval(40)]. given #566 (W,wt=12): 579 board([3,1,7,4,8]). [hyper(2,a,223,a,b,5,a),rewrite([13,12]),eval(40)]. given #567 (W,wt=12): 580 board([5,7,2,4,8]). [hyper(2,a,224,a,b,7,a),rewrite([13,12]),eval(40)]. given #568 (W,wt=12): 581 board([3,7,2,4,8]). [hyper(2,a,224,a,b,5,a),rewrite([13,12]),eval(40)]. given #569 (W,wt=12): 582 board([5,7,1,4,8]). [hyper(2,a,225,a,b,7,a),rewrite([13,12]),eval(40)]. given #570 (W,wt=12): 583 board([2,7,1,4,8]). [hyper(2,a,225,a,b,4,a),rewrite([13,12]),eval(40)]. given #571 (W,wt=12): 584 board([6,3,1,4,8]). [hyper(2,a,226,a,b,8,a),rewrite([13,12]),eval(40)]. given #572 (W,wt=12): 585 board([5,3,1,4,8]). [hyper(2,a,226,a,b,7,a),rewrite([13,12]),eval(40)]. given #573 (W,wt=12): 586 board([2,4,7,3,8]). [hyper(2,a,227,a,b,4,a),rewrite([13,12]),eval(40)]. given #574 (W,wt=12): 587 board([1,4,7,3,8]). [hyper(2,a,227,a,b,3,a),rewrite([13,12]),eval(40)]. given #575 (W,wt=12): 588 board([2,7,5,3,8]). [hyper(2,a,229,a,b,4,a),rewrite([13,12]),eval(40)]. given #576 (W,wt=12): 589 board([1,7,5,3,8]). [hyper(2,a,229,a,b,3,a),rewrite([13,12]),eval(40)]. given #577 (W,wt=12): 590 board([5,7,1,3,8]). [hyper(2,a,231,a,b,7,a),rewrite([13,12]),eval(40)]. given #578 (W,wt=12): 591 board([2,7,1,3,8]). [hyper(2,a,231,a,b,4,a),rewrite([13,12]),eval(40)]. given #579 (W,wt=12): 592 board([2,6,1,3,8]). [hyper(2,a,232,a,b,4,a),rewrite([13,12]),eval(40)]. given #580 (W,wt=12): 593 board([7,4,1,3,8]). [hyper(2,a,233,a,b,9,a),rewrite([13,12]),eval(40)]. given #581 (W,wt=12): 594 board([2,4,1,3,8]). [hyper(2,a,233,a,b,4,a),rewrite([13,12]),eval(40)]. given #582 (W,wt=12): 595 board([6,3,7,2,8]). [hyper(2,a,234,a,b,8,a),rewrite([13,12]),eval(40)]. given #583 (W,wt=12): 596 board([1,3,7,2,8]). [hyper(2,a,234,a,b,3,a),rewrite([13,12]),eval(40)]. given #584 (W,wt=12): 597 board([6,1,7,2,8]). [hyper(2,a,235,a,b,8,a),rewrite([13,12]),eval(40)]. given #585 (W,wt=12): 598 board([3,1,7,2,8]). [hyper(2,a,235,a,b,5,a),rewrite([13,12]),eval(40)]. given #586 (W,wt=12): 599 board([1,7,5,2,8]). [hyper(2,a,236,a,b,3,a),rewrite([13,12]),eval(40)]. given #587 (W,wt=12): 600 board([6,3,5,2,8]). [hyper(2,a,237,a,b,8,a),rewrite([13,12]),eval(40)]. given #588 (W,wt=12): 601 board([1,3,5,2,8]). [hyper(2,a,237,a,b,3,a),rewrite([13,12]),eval(40)]. given #589 (W,wt=12): 602 board([6,1,5,2,8]). [hyper(2,a,238,a,b,8,a),rewrite([13,12]),eval(40)]. given #590 (W,wt=12): 603 board([3,7,4,2,8]). [hyper(2,a,239,a,b,5,a),rewrite([13,12]),eval(40)]. given #591 (W,wt=12): 604 board([1,7,4,2,8]). [hyper(2,a,239,a,b,3,a),rewrite([13,12]),eval(40)]. given #592 (W,wt=12): 605 board([3,6,4,2,8]). [hyper(2,a,240,a,b,5,a),rewrite([13,12]),eval(40)]. given #593 (W,wt=12): 606 board([1,6,4,2,8]). [hyper(2,a,240,a,b,3,a),rewrite([13,12]),eval(40)]. given #594 (W,wt=12): 607 board([7,1,4,2,8]). [hyper(2,a,241,a,b,9,a),rewrite([13,12]),eval(40)]. given #595 (W,wt=12): 608 board([3,1,4,2,8]). [hyper(2,a,241,a,b,5,a),rewrite([13,12]),eval(40)]. given #596 (W,wt=12): 609 board([6,4,7,1,8]). [hyper(2,a,242,a,b,8,a),rewrite([13,12]),eval(40)]. given #597 (W,wt=12): 610 board([2,4,7,1,8]). [hyper(2,a,242,a,b,4,a),rewrite([13,12]),eval(40)]. given #598 (W,wt=12): 611 board([6,2,7,1,8]). [hyper(2,a,243,a,b,8,a),rewrite([13,12]),eval(40)]. given #599 (W,wt=12): 612 board([2,7,5,1,8]). [hyper(2,a,244,a,b,4,a),rewrite([13,12]),eval(40)]. given #600 (W,wt=12): 613 board([6,2,5,1,8]). [hyper(2,a,245,a,b,8,a),rewrite([13,12]),eval(40)]. given #601 (W,wt=12): 614 board([5,7,4,1,8]). [hyper(2,a,246,a,b,7,a),rewrite([13,12]),eval(40)]. given #602 (W,wt=12): 615 board([3,7,4,1,8]). [hyper(2,a,246,a,b,5,a),rewrite([13,12]),eval(40)]. given #603 (W,wt=12): 616 board([3,6,4,1,8]). [hyper(2,a,247,a,b,5,a),rewrite([13,12]),eval(40)]. given #604 (W,wt=12): 617 board([7,2,4,1,8]). [hyper(2,a,248,a,b,9,a),rewrite([13,12]),eval(40)]. given #605 (W,wt=12): 618 board([5,2,4,1,8]). [hyper(2,a,248,a,b,7,a),rewrite([13,12]),eval(40)]. given #606 (W,wt=12): 619 board([2,7,3,1,8]). [hyper(2,a,249,a,b,4,a),rewrite([13,12]),eval(40)]. given #607 (W,wt=12): 620 board([2,6,3,1,8]). [hyper(2,a,250,a,b,4,a),rewrite([13,12]),eval(40)]. given #608 (W,wt=12): 621 board([4,6,8,5,7]). [hyper(2,a,251,a,b,6,a),rewrite([13,12]),eval(40)]. given #609 (W,wt=12): 622 board([1,6,8,5,7]). [hyper(2,a,251,a,b,3,a),rewrite([13,12]),eval(40)]. given #610 (W,wt=12): 623 board([4,2,8,5,7]). [hyper(2,a,252,a,b,6,a),rewrite([13,12]),eval(40)]. given #611 (W,wt=12): 624 board([4,1,8,5,7]). [hyper(2,a,253,a,b,6,a),rewrite([13,12]),eval(40)]. given #612 (W,wt=12): 625 board([6,8,3,5,7]). [hyper(2,a,254,a,b,8,a),rewrite([13,12]),eval(40)]. given #613 (W,wt=12): 626 board([4,8,3,5,7]). [hyper(2,a,254,a,b,6,a),rewrite([13,12]),eval(40)]. given #614 (W,wt=12): 627 board([4,6,3,5,7]). [hyper(2,a,255,a,b,6,a),rewrite([13,12]),eval(40)]. given #615 (W,wt=12): 628 board([6,1,3,5,7]). [hyper(2,a,256,a,b,8,a),rewrite([13,12]),eval(40)]. given #616 (W,wt=12): 629 board([4,1,3,5,7]). [hyper(2,a,256,a,b,6,a),rewrite([13,12]),eval(40)]. given #617 (W,wt=12): 630 board([6,8,2,5,7]). [hyper(2,a,257,a,b,8,a),rewrite([13,12]),eval(40)]. given #618 (W,wt=12): 631 board([1,8,2,5,7]). [hyper(2,a,257,a,b,3,a),rewrite([13,12]),eval(40)]. given #619 (W,wt=12): 632 board([1,6,2,5,7]). [hyper(2,a,258,a,b,3,a),rewrite([13,12]),eval(40)]. given #620 (W,wt=12): 633 board([6,8,1,5,7]). [hyper(2,a,259,a,b,8,a),rewrite([13,12]),eval(40)]. given #621 (W,wt=12): 634 board([4,8,1,5,7]). [hyper(2,a,259,a,b,6,a),rewrite([13,12]),eval(40)]. given #622 (W,wt=12): 635 board([4,6,1,5,7]). [hyper(2,a,260,a,b,6,a),rewrite([13,12]),eval(40)]. given #623 (W,wt=12): 636 board([2,5,8,4,7]). [hyper(2,a,261,a,b,4,a),rewrite([13,12]),eval(40)]. given #624 (W,wt=12): 637 board([5,3,8,4,7]). [hyper(2,a,262,a,b,7,a),rewrite([13,12]),eval(40)]. given #625 (W,wt=12): 638 board([5,1,8,4,7]). [hyper(2,a,263,a,b,7,a),rewrite([13,12]),eval(40)]. given #626 (W,wt=12): 639 board([5,8,6,4,7]). [hyper(2,a,264,a,b,7,a),rewrite([13,12]),eval(40)]. given #627 (W,wt=12): 640 board([2,8,6,4,7]). [hyper(2,a,264,a,b,4,a),rewrite([13,12]),eval(40)]. given #628 (W,wt=12): 641 board([5,3,6,4,7]). [hyper(2,a,265,a,b,7,a),rewrite([13,12]),eval(40)]. given #629 (W,wt=12): 642 board([5,1,6,4,7]). [hyper(2,a,266,a,b,7,a),rewrite([13,12]),eval(40)]. given #630 (W,wt=12): 643 board([6,8,2,4,7]). [hyper(2,a,267,a,b,8,a),rewrite([13,12]),eval(40)]. given #631 (W,wt=12): 644 board([5,8,2,4,7]). [hyper(2,a,267,a,b,7,a),rewrite([13,12]),eval(40)]. given #632 (W,wt=12): 645 board([8,5,2,4,7]). [hyper(2,a,268,a,b,10,a),rewrite([13,12]),eval(40)]. given #633 (W,wt=12): 646 board([6,8,1,4,7]). [hyper(2,a,269,a,b,8,a),rewrite([13,12]),eval(40)]. given #634 (W,wt=12): 647 board([5,8,1,4,7]). [hyper(2,a,269,a,b,7,a),rewrite([13,12]),eval(40)]. given #635 (W,wt=12): 648 board([2,8,1,4,7]). [hyper(2,a,269,a,b,4,a),rewrite([13,12]),eval(40)]. given #636 (W,wt=12): 649 board([8,5,1,4,7]). [hyper(2,a,270,a,b,10,a),rewrite([13,12]),eval(40)]. given #637 (W,wt=12): 650 board([2,5,1,4,7]). [hyper(2,a,270,a,b,4,a),rewrite([13,12]),eval(40)]. given #638 (W,wt=12): 651 board([8,3,1,4,7]). [hyper(2,a,271,a,b,10,a),rewrite([13,12]),eval(40)]. given #639 (W,wt=12): 652 board([6,3,1,4,7]). [hyper(2,a,271,a,b,8,a),rewrite([13,12]),eval(40)]. given #640 (W,wt=12): 653 board([5,3,1,4,7]). [hyper(2,a,271,a,b,7,a),rewrite([13,12]),eval(40)]. given #641 (W,wt=12): 654 board([4,6,8,3,7]). [hyper(2,a,272,a,b,6,a),rewrite([13,12]),eval(40)]. given #642 (W,wt=12): 655 board([2,6,8,3,7]). [hyper(2,a,272,a,b,4,a),rewrite([13,12]),eval(40)]. given #643 (W,wt=12): 656 board([1,6,8,3,7]). [hyper(2,a,272,a,b,3,a),rewrite([13,12]),eval(40)]. given #644 (W,wt=12): 657 board([5,2,8,3,7]). [hyper(2,a,273,a,b,7,a),rewrite([13,12]),eval(40)]. given #645 (W,wt=12): 658 board([4,2,8,3,7]). [hyper(2,a,273,a,b,6,a),rewrite([13,12]),eval(40)]. given #646 (W,wt=12): 659 board([5,8,6,3,7]). [hyper(2,a,274,a,b,7,a),rewrite([13,12]),eval(40)]. given #647 (W,wt=12): 660 board([2,8,6,3,7]). [hyper(2,a,274,a,b,4,a),rewrite([13,12]),eval(40)]. given #648 (W,wt=12): 661 board([1,8,6,3,7]). [hyper(2,a,274,a,b,3,a),rewrite([13,12]),eval(40)]. given #649 (W,wt=12): 662 board([5,2,6,3,7]). [hyper(2,a,275,a,b,7,a),rewrite([13,12]),eval(40)]. given #650 (W,wt=12): 663 board([5,8,1,3,7]). [hyper(2,a,276,a,b,7,a),rewrite([13,12]),eval(40)]. given #651 (W,wt=12): 664 board([4,8,1,3,7]). [hyper(2,a,276,a,b,6,a),rewrite([13,12]),eval(40)]. given #652 (W,wt=12): 665 board([2,8,1,3,7]). [hyper(2,a,276,a,b,4,a),rewrite([13,12]),eval(40)]. given #653 (W,wt=12): 666 board([8,6,1,3,7]). [hyper(2,a,277,a,b,10,a),rewrite([13,12]),eval(40)]. given #654 (W,wt=12): 667 board([4,6,1,3,7]). [hyper(2,a,277,a,b,6,a),rewrite([13,12]),eval(40)]. given #655 (W,wt=12): 668 board([2,6,1,3,7]). [hyper(2,a,277,a,b,4,a),rewrite([13,12]),eval(40)]. given #656 (W,wt=12): 669 board([4,6,8,2,7]). [hyper(2,a,278,a,b,6,a),rewrite([13,12]),eval(40)]. given #657 (W,wt=12): 670 board([1,6,8,2,7]). [hyper(2,a,278,a,b,3,a),rewrite([13,12]),eval(40)]. given #658 (W,wt=12): 671 board([1,5,8,2,7]). [hyper(2,a,279,a,b,3,a),rewrite([13,12]),eval(40)]. given #659 (W,wt=12): 672 board([1,3,8,2,7]). [hyper(2,a,280,a,b,3,a),rewrite([13,12]),eval(40)]. given #660 (W,wt=12): 673 board([4,1,8,2,7]). [hyper(2,a,281,a,b,6,a),rewrite([13,12]),eval(40)]. given #661 (W,wt=12): 674 board([1,8,6,2,7]). [hyper(2,a,282,a,b,3,a),rewrite([13,12]),eval(40)]. given #662 (W,wt=12): 675 board([1,3,6,2,7]). [hyper(2,a,283,a,b,3,a),rewrite([13,12]),eval(40)]. given #663 (W,wt=12): 676 board([1,8,4,2,7]). [hyper(2,a,285,a,b,3,a),rewrite([13,12]),eval(40)]. given #664 (W,wt=12): 677 board([8,6,4,2,7]). [hyper(2,a,286,a,b,10,a),rewrite([13,12]),eval(40)]. given #665 (W,wt=12): 678 board([1,6,4,2,7]). [hyper(2,a,286,a,b,3,a),rewrite([13,12]),eval(40)]. given #666 (W,wt=12): 679 board([8,1,4,2,7]). [hyper(2,a,287,a,b,10,a),rewrite([13,12]),eval(40)]. given #667 (W,wt=12): 680 board([2,6,8,1,7]). [hyper(2,a,288,a,b,4,a),rewrite([13,12]),eval(40)]. given #668 (W,wt=12): 681 board([2,5,8,1,7]). [hyper(2,a,289,a,b,4,a),rewrite([13,12]),eval(40)]. given #669 (W,wt=12): 682 board([5,2,8,1,7]). [hyper(2,a,290,a,b,7,a),rewrite([13,12]),eval(40)]. given #670 (W,wt=12): 683 board([5,8,6,1,7]). [hyper(2,a,291,a,b,7,a),rewrite([13,12]),eval(40)]. given #671 (W,wt=12): 684 board([2,8,6,1,7]). [hyper(2,a,291,a,b,4,a),rewrite([13,12]),eval(40)]. given #672 (W,wt=12): 685 board([5,2,6,1,7]). [hyper(2,a,292,a,b,7,a),rewrite([13,12]),eval(40)]. given #673 (W,wt=12): 686 board([5,8,4,1,7]). [hyper(2,a,293,a,b,7,a),rewrite([13,12]),eval(40)]. given #674 (W,wt=12): 687 board([8,6,4,1,7]). [hyper(2,a,294,a,b,10,a),rewrite([13,12]),eval(40)]. given #675 (W,wt=12): 688 board([8,2,4,1,7]). [hyper(2,a,295,a,b,10,a),rewrite([13,12]),eval(40)]. given #676 (W,wt=12): 689 board([5,2,4,1,7]). [hyper(2,a,295,a,b,7,a),rewrite([13,12]),eval(40)]. given #677 (W,wt=12): 690 board([6,8,3,1,7]). [hyper(2,a,296,a,b,8,a),rewrite([13,12]),eval(40)]. given #678 (W,wt=12): 691 board([2,8,3,1,7]). [hyper(2,a,296,a,b,4,a),rewrite([13,12]),eval(40)]. given #679 (W,wt=12): 692 board([8,6,3,1,7]). [hyper(2,a,297,a,b,10,a),rewrite([13,12]),eval(40)]. given #680 (W,wt=12): 693 board([2,6,3,1,7]). [hyper(2,a,297,a,b,4,a),rewrite([13,12]),eval(40)]. given #681 (W,wt=12): 694 board([8,5,3,1,7]). [hyper(2,a,298,a,b,10,a),rewrite([13,12]),eval(40)]. given #682 (W,wt=12): 695 board([2,5,3,1,7]). [hyper(2,a,298,a,b,4,a),rewrite([13,12]),eval(40)]. given #683 (W,wt=12): 696 board([4,7,5,8,6]). [hyper(2,a,299,a,b,6,a),rewrite([13,12]),eval(40)]. given #684 (W,wt=12): 697 board([1,7,5,8,6]). [hyper(2,a,299,a,b,3,a),rewrite([13,12]),eval(40)]. given #685 (W,wt=12): 698 board([4,2,5,8,6]). [hyper(2,a,300,a,b,6,a),rewrite([13,12]),eval(40)]. given #686 (W,wt=12): 699 board([4,1,5,8,6]). [hyper(2,a,301,a,b,6,a),rewrite([13,12]),eval(40)]. given #687 (W,wt=12): 700 board([4,7,3,8,6]). [hyper(2,a,302,a,b,6,a),rewrite([13,12]),eval(40)]. given #688 (W,wt=12): 701 board([7,5,3,8,6]). [hyper(2,a,303,a,b,9,a),rewrite([13,12]),eval(40)]. given #689 (W,wt=12): 702 board([7,1,3,8,6]). [hyper(2,a,304,a,b,9,a),rewrite([13,12]),eval(40)]. given #690 (W,wt=12): 703 board([4,1,3,8,6]). [hyper(2,a,304,a,b,6,a),rewrite([13,12]),eval(40)]. given #691 (W,wt=12): 704 board([3,7,2,8,6]). [hyper(2,a,305,a,b,5,a),rewrite([13,12]),eval(40)]. given #692 (W,wt=12): 705 board([1,7,2,8,6]). [hyper(2,a,305,a,b,3,a),rewrite([13,12]),eval(40)]. given #693 (W,wt=12): 706 board([7,5,2,8,6]). [hyper(2,a,306,a,b,9,a),rewrite([13,12]),eval(40)]. given #694 (W,wt=12): 707 board([3,5,2,8,6]). [hyper(2,a,306,a,b,5,a),rewrite([13,12]),eval(40)]. given #695 (W,wt=12): 708 board([1,5,2,8,6]). [hyper(2,a,306,a,b,3,a),rewrite([13,12]),eval(40)]. given #696 (W,wt=12): 709 board([7,4,2,8,6]). [hyper(2,a,307,a,b,9,a),rewrite([13,12]),eval(40)]. given #697 (W,wt=12): 710 board([1,4,2,8,6]). [hyper(2,a,307,a,b,3,a),rewrite([13,12]),eval(40)]. given #698 (W,wt=12): 711 board([4,7,1,8,6]). [hyper(2,a,308,a,b,6,a),rewrite([13,12]),eval(40)]. given #699 (W,wt=12): 712 board([7,5,1,8,6]). [hyper(2,a,309,a,b,9,a),rewrite([13,12]),eval(40)]. given #700 (W,wt=12): 713 board([7,4,1,8,6]). [hyper(2,a,310,a,b,9,a),rewrite([13,12]),eval(40)]. given #701 (W,wt=12): 714 board([8,5,7,4,6]). [hyper(2,a,311,a,b,10,a),rewrite([13,12]),eval(40)]. given #702 (W,wt=12): 715 board([3,5,7,4,6]). [hyper(2,a,311,a,b,5,a),rewrite([13,12]),eval(40)]. given #703 (W,wt=12): 716 board([8,1,7,4,6]). [hyper(2,a,312,a,b,10,a),rewrite([13,12]),eval(40)]. given #704 (W,wt=12): 717 board([3,1,7,4,6]). [hyper(2,a,312,a,b,5,a),rewrite([13,12]),eval(40)]. given #705 (W,wt=12): 718 board([5,8,2,4,6]). [hyper(2,a,313,a,b,7,a),rewrite([13,12]),eval(40)]. given #706 (W,wt=12): 719 board([3,8,2,4,6]). [hyper(2,a,313,a,b,5,a),rewrite([13,12]),eval(40)]. given #707 (W,wt=12): 720 board([5,7,2,4,6]). [hyper(2,a,314,a,b,7,a),rewrite([13,12]),eval(40)]. given #708 (W,wt=12): 721 board([3,7,2,4,6]). [hyper(2,a,314,a,b,5,a),rewrite([13,12]),eval(40)]. given #709 (W,wt=12): 722 board([8,5,2,4,6]). [hyper(2,a,315,a,b,10,a),rewrite([13,12]),eval(40)]. given #710 (W,wt=12): 723 board([3,5,2,4,6]). [hyper(2,a,315,a,b,5,a),rewrite([13,12]),eval(40)]. given #711 (W,wt=12): 724 board([5,8,1,4,6]). [hyper(2,a,316,a,b,7,a),rewrite([13,12]),eval(40)]. given #712 (W,wt=12): 725 board([5,7,1,4,6]). [hyper(2,a,317,a,b,7,a),rewrite([13,12]),eval(40)]. given #713 (W,wt=12): 726 board([8,5,1,4,6]). [hyper(2,a,318,a,b,10,a),rewrite([13,12]),eval(40)]. given #714 (W,wt=12): 727 board([8,4,7,3,6]). [hyper(2,a,319,a,b,10,a),rewrite([13,12]),eval(40)]. given #715 (W,wt=12): 728 board([1,4,7,3,6]). [hyper(2,a,319,a,b,3,a),rewrite([13,12]),eval(40)]. given #716 (W,wt=12): 729 board([8,2,7,3,6]). [hyper(2,a,320,a,b,10,a),rewrite([13,12]),eval(40)]. given #717 (W,wt=12): 730 board([4,2,7,3,6]). [hyper(2,a,320,a,b,6,a),rewrite([13,12]),eval(40)]. given #718 (W,wt=12): 731 board([4,8,5,3,6]). [hyper(2,a,321,a,b,6,a),rewrite([13,12]),eval(40)]. given #719 (W,wt=12): 732 board([1,8,5,3,6]). [hyper(2,a,321,a,b,3,a),rewrite([13,12]),eval(40)]. given #720 (W,wt=12): 733 board([4,7,5,3,6]). [hyper(2,a,322,a,b,6,a),rewrite([13,12]),eval(40)]. given #721 (W,wt=12): 734 board([1,7,5,3,6]). [hyper(2,a,322,a,b,3,a),rewrite([13,12]),eval(40)]. given #722 (W,wt=12): 735 board([8,2,5,3,6]). [hyper(2,a,323,a,b,10,a),rewrite([13,12]),eval(40)]. given #723 (W,wt=12): 736 board([4,2,5,3,6]). [hyper(2,a,323,a,b,6,a),rewrite([13,12]),eval(40)]. given #724 (W,wt=12): 737 board([5,8,1,3,6]). [hyper(2,a,324,a,b,7,a),rewrite([13,12]),eval(40)]. given #725 (W,wt=12): 738 board([4,8,1,3,6]). [hyper(2,a,324,a,b,6,a),rewrite([13,12]),eval(40)]. given #726 (W,wt=12): 739 board([5,7,1,3,6]). [hyper(2,a,325,a,b,7,a),rewrite([13,12]),eval(40)]. given #727 (W,wt=12): 740 board([4,7,1,3,6]). [hyper(2,a,325,a,b,6,a),rewrite([13,12]),eval(40)]. given #728 (W,wt=12): 741 board([8,4,1,3,6]). [hyper(2,a,326,a,b,10,a),rewrite([13,12]),eval(40)]. given #729 (W,wt=12): 742 board([7,4,1,3,6]). [hyper(2,a,326,a,b,9,a),rewrite([13,12]),eval(40)]. given #730 (W,wt=12): 743 board([8,5,7,2,6]). [hyper(2,a,327,a,b,10,a),rewrite([13,12]),eval(40)]. given #731 (W,wt=12): 744 board([3,5,7,2,6]). [hyper(2,a,327,a,b,5,a),rewrite([13,12]),eval(40)]. given #732 (W,wt=12): 745 board([1,5,7,2,6]). [hyper(2,a,327,a,b,3,a),rewrite([13,12]),eval(40)]. given #733 (W,wt=12): 746 board([8,1,7,2,6]). [hyper(2,a,328,a,b,10,a),rewrite([13,12]),eval(40)]. given #734 (W,wt=12): 747 board([4,1,7,2,6]). [hyper(2,a,328,a,b,6,a),rewrite([13,12]),eval(40)]. given #735 (W,wt=12): 748 board([3,1,7,2,6]). [hyper(2,a,328,a,b,5,a),rewrite([13,12]),eval(40)]. given #736 (W,wt=12): 749 board([4,8,5,2,6]). [hyper(2,a,329,a,b,6,a),rewrite([13,12]),eval(40)]. given #737 (W,wt=12): 750 board([1,8,5,2,6]). [hyper(2,a,329,a,b,3,a),rewrite([13,12]),eval(40)]. given #738 (W,wt=12): 751 board([4,7,5,2,6]). [hyper(2,a,330,a,b,6,a),rewrite([13,12]),eval(40)]. given #739 (W,wt=12): 752 board([1,7,5,2,6]). [hyper(2,a,330,a,b,3,a),rewrite([13,12]),eval(40)]. given #740 (W,wt=12): 753 board([8,1,5,2,6]). [hyper(2,a,331,a,b,10,a),rewrite([13,12]),eval(40)]. given #741 (W,wt=12): 754 board([4,1,5,2,6]). [hyper(2,a,331,a,b,6,a),rewrite([13,12]),eval(40)]. given #742 (W,wt=12): 755 board([8,5,7,1,6]). [hyper(2,a,332,a,b,10,a),rewrite([13,12]),eval(40)]. given #743 (W,wt=12): 756 board([3,5,7,1,6]). [hyper(2,a,332,a,b,5,a),rewrite([13,12]),eval(40)]. given #744 (W,wt=12): 757 board([8,4,7,1,6]). [hyper(2,a,333,a,b,10,a),rewrite([13,12]),eval(40)]. given #745 (W,wt=12): 758 board([8,2,7,1,6]). [hyper(2,a,334,a,b,10,a),rewrite([13,12]),eval(40)]. given #746 (W,wt=12): 759 board([8,2,5,1,6]). [hyper(2,a,337,a,b,10,a),rewrite([13,12]),eval(40)]. given #747 (W,wt=12): 760 board([8,5,3,1,6]). [hyper(2,a,340,a,b,10,a),rewrite([13,12]),eval(40)]. given #748 (W,wt=12): 761 board([7,5,3,1,6]). [hyper(2,a,340,a,b,9,a),rewrite([13,12]),eval(40)]. given #749 (W,wt=12): 762 board([7,4,6,8,5]). [hyper(2,a,341,a,b,9,a),rewrite([13,12]),eval(40)]. given #750 (W,wt=12): 763 board([2,4,6,8,5]). [hyper(2,a,341,a,b,4,a),rewrite([13,12]),eval(40)]. given #751 (W,wt=12): 764 board([7,3,6,8,5]). [hyper(2,a,342,a,b,9,a),rewrite([13,12]),eval(40)]. given #752 (W,wt=12): 765 board([7,1,6,8,5]). [hyper(2,a,343,a,b,9,a),rewrite([13,12]),eval(40)]. given #753 (W,wt=12): 766 board([3,1,6,8,5]). [hyper(2,a,343,a,b,5,a),rewrite([13,12]),eval(40)]. given #754 (W,wt=12): 767 board([3,7,4,8,5]). [hyper(2,a,344,a,b,5,a),rewrite([13,12]),eval(40)]. given #755 (W,wt=12): 768 board([7,1,4,8,5]). [hyper(2,a,345,a,b,9,a),rewrite([13,12]),eval(40)]. given #756 (W,wt=12): 769 board([3,1,4,8,5]). [hyper(2,a,345,a,b,5,a),rewrite([13,12]),eval(40)]. given #757 (W,wt=12): 770 board([3,7,2,8,5]). [hyper(2,a,346,a,b,5,a),rewrite([13,12]),eval(40)]. given #758 (W,wt=12): 771 board([7,4,2,8,5]). [hyper(2,a,347,a,b,9,a),rewrite([13,12]),eval(40)]. given #759 (W,wt=12): 772 board([6,4,2,8,5]). [hyper(2,a,347,a,b,8,a),rewrite([13,12]),eval(40)]. given #760 (W,wt=12): 773 board([4,7,1,8,5]). [hyper(2,a,348,a,b,6,a),rewrite([13,12]),eval(40)]. given #761 (W,wt=12): 774 board([2,7,1,8,5]). [hyper(2,a,348,a,b,4,a),rewrite([13,12]),eval(40)]. given #762 (W,wt=12): 775 board([7,4,1,8,5]). [hyper(2,a,349,a,b,9,a),rewrite([13,12]),eval(40)]. given #763 (W,wt=12): 776 board([6,4,1,8,5]). [hyper(2,a,349,a,b,8,a),rewrite([13,12]),eval(40)]. given #764 (W,wt=12): 777 board([2,4,1,8,5]). [hyper(2,a,349,a,b,4,a),rewrite([13,12]),eval(40)]. given #765 (W,wt=12): 778 board([7,3,1,8,5]). [hyper(2,a,350,a,b,9,a),rewrite([13,12]),eval(40)]. given #766 (W,wt=12): 779 board([6,3,1,8,5]). [hyper(2,a,350,a,b,8,a),rewrite([13,12]),eval(40)]. given #767 (W,wt=12): 780 board([8,6,4,7,5]). [hyper(2,a,351,a,b,10,a),rewrite([13,12]),eval(40)]. given #768 (W,wt=12): 781 board([3,6,4,7,5]). [hyper(2,a,351,a,b,5,a),rewrite([13,12]),eval(40)]. given #769 (W,wt=12): 782 board([8,1,4,7,5]). [hyper(2,a,352,a,b,10,a),rewrite([13,12]),eval(40)]. given #770 (W,wt=12): 783 board([3,1,4,7,5]). [hyper(2,a,352,a,b,5,a),rewrite([13,12]),eval(40)]. given #771 (W,wt=12): 784 board([8,6,2,7,5]). [hyper(2,a,353,a,b,10,a),rewrite([13,12]),eval(40)]. given #772 (W,wt=12): 785 board([3,6,2,7,5]). [hyper(2,a,353,a,b,5,a),rewrite([13,12]),eval(40)]. given #773 (W,wt=12): 786 board([8,4,2,7,5]). [hyper(2,a,354,a,b,10,a),rewrite([13,12]),eval(40)]. given #774 (W,wt=12): 787 board([6,4,2,7,5]). [hyper(2,a,354,a,b,8,a),rewrite([13,12]),eval(40)]. given #775 (W,wt=12): 788 board([8,6,1,7,5]). [hyper(2,a,355,a,b,10,a),rewrite([13,12]),eval(40)]. given #776 (W,wt=12): 789 board([2,6,1,7,5]). [hyper(2,a,355,a,b,4,a),rewrite([13,12]),eval(40)]. given #777 (W,wt=12): 790 board([8,4,1,7,5]). [hyper(2,a,356,a,b,10,a),rewrite([13,12]),eval(40)]. given #778 (W,wt=12): 791 board([6,4,1,7,5]). [hyper(2,a,356,a,b,8,a),rewrite([13,12]),eval(40)]. given #779 (W,wt=12): 792 board([2,4,1,7,5]). [hyper(2,a,356,a,b,4,a),rewrite([13,12]),eval(40)]. given #780 (W,wt=12): 793 board([8,3,1,7,5]). [hyper(2,a,357,a,b,10,a),rewrite([13,12]),eval(40)]. given #781 (W,wt=12): 794 board([6,3,1,7,5]). [hyper(2,a,357,a,b,8,a),rewrite([13,12]),eval(40)]. given #782 (W,wt=12): 795 board([4,6,8,3,5]). [hyper(2,a,358,a,b,6,a),rewrite([13,12]),eval(40)]. given #783 (W,wt=12): 796 board([2,6,8,3,5]). [hyper(2,a,358,a,b,4,a),rewrite([13,12]),eval(40)]. given #784 (W,wt=12): 797 board([7,4,8,3,5]). [hyper(2,a,359,a,b,9,a),rewrite([13,12]),eval(40)]. given #785 (W,wt=12): 798 board([2,4,8,3,5]). [hyper(2,a,359,a,b,4,a),rewrite([13,12]),eval(40)]. given #786 (W,wt=12): 799 board([7,4,6,3,5]). [hyper(2,a,360,a,b,9,a),rewrite([13,12]),eval(40)]. given #787 (W,wt=12): 800 board([2,4,6,3,5]). [hyper(2,a,360,a,b,4,a),rewrite([13,12]),eval(40)]. given #788 (W,wt=12): 801 board([4,7,1,3,5]). [hyper(2,a,361,a,b,6,a),rewrite([13,12]),eval(40)]. given #789 (W,wt=12): 802 board([2,7,1,3,5]). [hyper(2,a,361,a,b,4,a),rewrite([13,12]),eval(40)]. given #790 (W,wt=12): 803 board([8,6,1,3,5]). [hyper(2,a,362,a,b,10,a),rewrite([13,12]),eval(40)]. given #791 (W,wt=12): 804 board([4,6,1,3,5]). [hyper(2,a,362,a,b,6,a),rewrite([13,12]),eval(40)]. given #792 (W,wt=12): 805 board([2,6,1,3,5]). [hyper(2,a,362,a,b,4,a),rewrite([13,12]),eval(40)]. given #793 (W,wt=12): 806 board([8,4,1,3,5]). [hyper(2,a,363,a,b,10,a),rewrite([13,12]),eval(40)]. given #794 (W,wt=12): 807 board([7,4,1,3,5]). [hyper(2,a,363,a,b,9,a),rewrite([13,12]),eval(40)]. given #795 (W,wt=12): 808 board([2,4,1,3,5]). [hyper(2,a,363,a,b,4,a),rewrite([13,12]),eval(40)]. given #796 (W,wt=12): 809 board([4,6,8,2,5]). [hyper(2,a,364,a,b,6,a),rewrite([13,12]),eval(40)]. given #797 (W,wt=12): 810 board([3,6,8,2,5]). [hyper(2,a,364,a,b,5,a),rewrite([13,12]),eval(40)]. given #798 (W,wt=12): 811 board([7,3,8,2,5]). [hyper(2,a,365,a,b,9,a),rewrite([13,12]),eval(40)]. given #799 (W,wt=12): 812 board([7,1,8,2,5]). [hyper(2,a,366,a,b,9,a),rewrite([13,12]),eval(40)]. given #800 (W,wt=12): 813 board([4,1,8,2,5]). [hyper(2,a,366,a,b,6,a),rewrite([13,12]),eval(40)]. given #801 (W,wt=12): 814 board([3,1,8,2,5]). [hyper(2,a,366,a,b,5,a),rewrite([13,12]),eval(40)]. given #802 (W,wt=12): 815 board([7,3,6,2,5]). [hyper(2,a,367,a,b,9,a),rewrite([13,12]),eval(40)]. given #803 (W,wt=12): 816 board([7,1,6,2,5]). [hyper(2,a,368,a,b,9,a),rewrite([13,12]),eval(40)]. given #804 (W,wt=12): 817 board([3,1,6,2,5]). [hyper(2,a,368,a,b,5,a),rewrite([13,12]),eval(40)]. given #805 (W,wt=12): 818 board([3,7,4,2,5]). [hyper(2,a,369,a,b,5,a),rewrite([13,12]),eval(40)]. given #806 (W,wt=12): 819 board([8,6,4,2,5]). [hyper(2,a,370,a,b,10,a),rewrite([13,12]),eval(40)]. given #807 (W,wt=12): 820 board([3,6,4,2,5]). [hyper(2,a,370,a,b,5,a),rewrite([13,12]),eval(40)]. given #808 (W,wt=12): 821 board([8,1,4,2,5]). [hyper(2,a,371,a,b,10,a),rewrite([13,12]),eval(40)]. given #809 (W,wt=12): 822 board([7,1,4,2,5]). [hyper(2,a,371,a,b,9,a),rewrite([13,12]),eval(40)]. given #810 (W,wt=12): 823 board([3,1,4,2,5]). [hyper(2,a,371,a,b,5,a),rewrite([13,12]),eval(40)]. given #811 (W,wt=12): 824 board([3,6,8,1,5]). [hyper(2,a,372,a,b,5,a),rewrite([13,12]),eval(40)]. given #812 (W,wt=12): 825 board([2,6,8,1,5]). [hyper(2,a,372,a,b,4,a),rewrite([13,12]),eval(40)]. given #813 (W,wt=12): 826 board([7,4,8,1,5]). [hyper(2,a,373,a,b,9,a),rewrite([13,12]),eval(40)]. given #814 (W,wt=12): 827 board([2,4,8,1,5]). [hyper(2,a,373,a,b,4,a),rewrite([13,12]),eval(40)]. given #815 (W,wt=12): 828 board([7,4,6,1,5]). [hyper(2,a,374,a,b,9,a),rewrite([13,12]),eval(40)]. given #816 (W,wt=12): 829 board([2,4,6,1,5]). [hyper(2,a,374,a,b,4,a),rewrite([13,12]),eval(40)]. given #817 (W,wt=12): 830 board([3,7,4,1,5]). [hyper(2,a,375,a,b,5,a),rewrite([13,12]),eval(40)]. given #818 (W,wt=12): 831 board([8,6,4,1,5]). [hyper(2,a,376,a,b,10,a),rewrite([13,12]),eval(40)]. given #819 (W,wt=12): 832 board([3,6,4,1,5]). [hyper(2,a,376,a,b,5,a),rewrite([13,12]),eval(40)]. given #820 (W,wt=12): 833 board([6,3,5,8,4]). [hyper(2,a,377,a,b,8,a),rewrite([13,12]),eval(40)]. given #821 (W,wt=12): 834 board([1,3,5,8,4]). [hyper(2,a,377,a,b,3,a),rewrite([13,12]),eval(40)]. given #822 (W,wt=12): 835 board([6,2,5,8,4]). [hyper(2,a,378,a,b,8,a),rewrite([13,12]),eval(40)]. given #823 (W,wt=12): 836 board([7,5,3,8,4]). [hyper(2,a,379,a,b,9,a),rewrite([13,12]),eval(40)]. given #824 (W,wt=12): 837 board([2,5,3,8,4]). [hyper(2,a,379,a,b,4,a),rewrite([13,12]),eval(40)]. given #825 (W,wt=12): 838 board([7,5,1,8,4]). [hyper(2,a,380,a,b,9,a),rewrite([13,12]),eval(40)]. given #826 (W,wt=12): 839 board([2,5,1,8,4]). [hyper(2,a,380,a,b,4,a),rewrite([13,12]),eval(40)]. given #827 (W,wt=12): 840 board([7,3,1,8,4]). [hyper(2,a,381,a,b,9,a),rewrite([13,12]),eval(40)]. given #828 (W,wt=12): 841 board([6,3,1,8,4]). [hyper(2,a,381,a,b,8,a),rewrite([13,12]),eval(40)]. given #829 (W,wt=12): 842 board([6,8,5,7,4]). [hyper(2,a,382,a,b,8,a),rewrite([13,12]),eval(40)]. given #830 (W,wt=12): 843 board([2,8,5,7,4]). [hyper(2,a,382,a,b,4,a),rewrite([13,12]),eval(40)]. given #831 (W,wt=12): 844 board([1,8,5,7,4]). [hyper(2,a,382,a,b,3,a),rewrite([13,12]),eval(40)]. given #832 (W,wt=12): 845 board([6,3,5,7,4]). [hyper(2,a,383,a,b,8,a),rewrite([13,12]),eval(40)]. given #833 (W,wt=12): 846 board([1,3,5,7,4]). [hyper(2,a,383,a,b,3,a),rewrite([13,12]),eval(40)]. given #834 (W,wt=12): 847 board([6,2,5,7,4]). [hyper(2,a,384,a,b,8,a),rewrite([13,12]),eval(40)]. given #835 (W,wt=12): 848 board([6,8,3,7,4]). [hyper(2,a,385,a,b,8,a),rewrite([13,12]),eval(40)]. given #836 (W,wt=12): 849 board([2,8,3,7,4]). [hyper(2,a,385,a,b,4,a),rewrite([13,12]),eval(40)]. given #837 (W,wt=12): 850 board([2,6,3,7,4]). [hyper(2,a,386,a,b,4,a),rewrite([13,12]),eval(40)]. given #838 (W,wt=12): 851 board([6,8,1,7,4]). [hyper(2,a,387,a,b,8,a),rewrite([13,12]),eval(40)]. given #839 (W,wt=12): 852 board([5,8,1,7,4]). [hyper(2,a,387,a,b,7,a),rewrite([13,12]),eval(40)]. given #840 (W,wt=12): 853 board([2,8,1,7,4]). [hyper(2,a,387,a,b,4,a),rewrite([13,12]),eval(40)]. given #841 (W,wt=12): 854 board([2,6,1,7,4]). [hyper(2,a,388,a,b,4,a),rewrite([13,12]),eval(40)]. given #842 (W,wt=12): 855 board([6,3,1,7,4]). [hyper(2,a,389,a,b,8,a),rewrite([13,12]),eval(40)]. given #843 (W,wt=12): 856 board([5,3,1,7,4]). [hyper(2,a,389,a,b,7,a),rewrite([13,12]),eval(40)]. given #844 (W,wt=12): 857 board([7,5,8,6,4]). [hyper(2,a,390,a,b,9,a),rewrite([13,12]),eval(40)]. given #845 (W,wt=12): 858 board([2,5,8,6,4]). [hyper(2,a,390,a,b,4,a),rewrite([13,12]),eval(40)]. given #846 (W,wt=12): 859 board([1,5,8,6,4]). [hyper(2,a,390,a,b,3,a),rewrite([13,12]),eval(40)]. given #847 (W,wt=12): 860 board([7,3,8,6,4]). [hyper(2,a,391,a,b,9,a),rewrite([13,12]),eval(40)]. given #848 (W,wt=12): 861 board([5,3,8,6,4]). [hyper(2,a,391,a,b,7,a),rewrite([13,12]),eval(40)]. given #849 (W,wt=12): 862 board([1,3,8,6,4]). [hyper(2,a,391,a,b,3,a),rewrite([13,12]),eval(40)]. given #850 (W,wt=12): 863 board([7,2,8,6,4]). [hyper(2,a,392,a,b,9,a),rewrite([13,12]),eval(40)]. given #851 (W,wt=12): 864 board([5,2,8,6,4]). [hyper(2,a,392,a,b,7,a),rewrite([13,12]),eval(40)]. given #852 (W,wt=12): 865 board([7,5,3,6,4]). [hyper(2,a,393,a,b,9,a),rewrite([13,12]),eval(40)]. given #853 (W,wt=12): 866 board([2,5,3,6,4]). [hyper(2,a,393,a,b,4,a),rewrite([13,12]),eval(40)]. given #854 (W,wt=12): 867 board([7,5,1,6,4]). [hyper(2,a,394,a,b,9,a),rewrite([13,12]),eval(40)]. given #855 (W,wt=12): 868 board([2,5,1,6,4]). [hyper(2,a,394,a,b,4,a),rewrite([13,12]),eval(40)]. given #856 (W,wt=12): 869 board([7,3,1,6,4]). [hyper(2,a,395,a,b,9,a),rewrite([13,12]),eval(40)]. given #857 (W,wt=12): 870 board([5,3,1,6,4]). [hyper(2,a,395,a,b,7,a),rewrite([13,12]),eval(40)]. given #858 (W,wt=12): 871 board([3,6,8,2,4]). [hyper(2,a,396,a,b,5,a),rewrite([13,12]),eval(40)]. given #859 (W,wt=12): 872 board([1,6,8,2,4]). [hyper(2,a,396,a,b,3,a),rewrite([13,12]),eval(40)]. given #860 (W,wt=12): 873 board([7,5,8,2,4]). [hyper(2,a,397,a,b,9,a),rewrite([13,12]),eval(40)]. given #861 (W,wt=12): 874 board([3,5,8,2,4]). [hyper(2,a,397,a,b,5,a),rewrite([13,12]),eval(40)]. given #862 (W,wt=12): 875 board([1,5,8,2,4]). [hyper(2,a,397,a,b,3,a),rewrite([13,12]),eval(40)]. given #863 (W,wt=12): 876 board([7,3,8,2,4]). [hyper(2,a,398,a,b,9,a),rewrite([13,12]),eval(40)]. given #864 (W,wt=12): 877 board([1,3,8,2,4]). [hyper(2,a,398,a,b,3,a),rewrite([13,12]),eval(40)]. given #865 (W,wt=12): 878 board([3,5,7,2,4]). [hyper(2,a,399,a,b,5,a),rewrite([13,12]),eval(40)]. given #866 (W,wt=12): 879 board([1,5,7,2,4]). [hyper(2,a,399,a,b,3,a),rewrite([13,12]),eval(40)]. given #867 (W,wt=12): 880 board([6,3,7,2,4]). [hyper(2,a,400,a,b,8,a),rewrite([13,12]),eval(40)]. given #868 (W,wt=12): 881 board([1,3,7,2,4]). [hyper(2,a,400,a,b,3,a),rewrite([13,12]),eval(40)]. given #869 (W,wt=12): 882 board([6,8,5,2,4]). [hyper(2,a,401,a,b,8,a),rewrite([13,12]),eval(40)]. given #870 (W,wt=12): 883 board([1,8,5,2,4]). [hyper(2,a,401,a,b,3,a),rewrite([13,12]),eval(40)]. given #871 (W,wt=12): 884 board([6,3,5,2,4]). [hyper(2,a,402,a,b,8,a),rewrite([13,12]),eval(40)]. given #872 (W,wt=12): 885 board([1,3,5,2,4]). [hyper(2,a,402,a,b,3,a),rewrite([13,12]),eval(40)]. given #873 (W,wt=12): 886 board([3,6,8,1,4]). [hyper(2,a,403,a,b,5,a),rewrite([13,12]),eval(40)]. given #874 (W,wt=12): 887 board([2,6,8,1,4]). [hyper(2,a,403,a,b,4,a),rewrite([13,12]),eval(40)]. given #875 (W,wt=12): 888 board([7,5,8,1,4]). [hyper(2,a,404,a,b,9,a),rewrite([13,12]),eval(40)]. given #876 (W,wt=12): 889 board([3,5,8,1,4]). [hyper(2,a,404,a,b,5,a),rewrite([13,12]),eval(40)]. given #877 (W,wt=12): 890 board([2,5,8,1,4]). [hyper(2,a,404,a,b,4,a),rewrite([13,12]),eval(40)]. given #878 (W,wt=12): 891 board([7,2,8,1,4]). [hyper(2,a,405,a,b,9,a),rewrite([13,12]),eval(40)]. given #879 (W,wt=12): 892 board([5,2,8,1,4]). [hyper(2,a,405,a,b,7,a),rewrite([13,12]),eval(40)]. given #880 (W,wt=12): 893 board([3,5,7,1,4]). [hyper(2,a,406,a,b,5,a),rewrite([13,12]),eval(40)]. given #881 (W,wt=12): 894 board([2,5,7,1,4]). [hyper(2,a,406,a,b,4,a),rewrite([13,12]),eval(40)]. given #882 (W,wt=12): 895 board([6,2,7,1,4]). [hyper(2,a,407,a,b,8,a),rewrite([13,12]),eval(40)]. given #883 (W,wt=12): 896 board([6,8,5,1,4]). [hyper(2,a,408,a,b,8,a),rewrite([13,12]),eval(40)]. given #884 (W,wt=12): 897 board([2,8,5,1,4]). [hyper(2,a,408,a,b,4,a),rewrite([13,12]),eval(40)]. given #885 (W,wt=12): 898 board([6,2,5,1,4]). [hyper(2,a,409,a,b,8,a),rewrite([13,12]),eval(40)]. given #886 (W,wt=12): 899 board([6,8,3,1,4]). [hyper(2,a,410,a,b,8,a),rewrite([13,12]),eval(40)]. given #887 (W,wt=12): 900 board([2,8,3,1,4]). [hyper(2,a,410,a,b,4,a),rewrite([13,12]),eval(40)]. given #888 (W,wt=12): 901 board([2,6,3,1,4]). [hyper(2,a,411,a,b,4,a),rewrite([13,12]),eval(40)]. given #889 (W,wt=12): 902 board([7,5,3,1,4]). [hyper(2,a,412,a,b,9,a),rewrite([13,12]),eval(40)]. given #890 (W,wt=12): 903 board([2,5,3,1,4]). [hyper(2,a,412,a,b,4,a),rewrite([13,12]),eval(40)]. given #891 (W,wt=12): 904 board([2,4,6,8,3]). [hyper(2,a,413,a,b,4,a),rewrite([13,12]),eval(40)]. given #892 (W,wt=12): 905 board([1,4,6,8,3]). [hyper(2,a,413,a,b,3,a),rewrite([13,12]),eval(40)]. given #893 (W,wt=12): 906 board([1,7,4,8,3]). [hyper(2,a,416,a,b,3,a),rewrite([13,12]),eval(40)]. given #894 (W,wt=12): 907 board([1,7,2,8,3]). [hyper(2,a,419,a,b,3,a),rewrite([13,12]),eval(40)]. given #895 (W,wt=12): 908 board([1,5,2,8,3]). [hyper(2,a,420,a,b,3,a),rewrite([13,12]),eval(40)]. given #896 (W,wt=12): 909 board([6,4,2,8,3]). [hyper(2,a,421,a,b,8,a),rewrite([13,12]),eval(40)]. given #897 (W,wt=12): 910 board([1,4,2,8,3]). [hyper(2,a,421,a,b,3,a),rewrite([13,12]),eval(40)]. given #898 (W,wt=12): 911 board([5,8,4,7,3]). [hyper(2,a,422,a,b,7,a),rewrite([13,12]),eval(40)]. given #899 (W,wt=12): 912 board([1,8,4,7,3]). [hyper(2,a,422,a,b,3,a),rewrite([13,12]),eval(40)]. given #900 (W,wt=12): 913 board([8,2,4,7,3]). [hyper(2,a,423,a,b,10,a),rewrite([13,12]),eval(40)]. given #901 (W,wt=12): 914 board([5,2,4,7,3]). [hyper(2,a,423,a,b,7,a),rewrite([13,12]),eval(40)]. given #902 (W,wt=12): 915 board([8,1,4,7,3]). [hyper(2,a,424,a,b,10,a),rewrite([13,12]),eval(40)]. given #903 (W,wt=12): 916 board([5,1,4,7,3]). [hyper(2,a,424,a,b,7,a),rewrite([13,12]),eval(40)]. given #904 (W,wt=12): 917 board([6,8,2,7,3]). [hyper(2,a,425,a,b,8,a),rewrite([13,12]),eval(40)]. given #905 (W,wt=12): 918 board([5,8,2,7,3]). [hyper(2,a,425,a,b,7,a),rewrite([13,12]),eval(40)]. given #906 (W,wt=12): 919 board([1,8,2,7,3]). [hyper(2,a,425,a,b,3,a),rewrite([13,12]),eval(40)]. given #907 (W,wt=12): 920 board([8,4,2,7,3]). [hyper(2,a,426,a,b,10,a),rewrite([13,12]),eval(40)]. given #908 (W,wt=12): 921 board([6,4,2,7,3]). [hyper(2,a,426,a,b,8,a),rewrite([13,12]),eval(40)]. given #909 (W,wt=12): 922 board([1,4,2,7,3]). [hyper(2,a,426,a,b,3,a),rewrite([13,12]),eval(40)]. given #910 (W,wt=12): 923 board([2,5,8,6,3]). [hyper(2,a,427,a,b,4,a),rewrite([13,12]),eval(40)]. given #911 (W,wt=12): 924 board([1,5,8,6,3]). [hyper(2,a,427,a,b,3,a),rewrite([13,12]),eval(40)]. given #912 (W,wt=12): 925 board([5,2,8,6,3]). [hyper(2,a,428,a,b,7,a),rewrite([13,12]),eval(40)]. given #913 (W,wt=12): 926 board([4,2,8,6,3]). [hyper(2,a,428,a,b,6,a),rewrite([13,12]),eval(40)]. given #914 (W,wt=12): 927 board([5,1,8,6,3]). [hyper(2,a,429,a,b,7,a),rewrite([13,12]),eval(40)]. given #915 (W,wt=12): 928 board([4,1,8,6,3]). [hyper(2,a,429,a,b,6,a),rewrite([13,12]),eval(40)]. given #916 (W,wt=12): 929 board([5,7,4,6,3]). [hyper(2,a,430,a,b,7,a),rewrite([13,12]),eval(40)]. given #917 (W,wt=12): 930 board([1,7,4,6,3]). [hyper(2,a,430,a,b,3,a),rewrite([13,12]),eval(40)]. given #918 (W,wt=12): 931 board([8,2,4,6,3]). [hyper(2,a,431,a,b,10,a),rewrite([13,12]),eval(40)]. given #919 (W,wt=12): 932 board([5,2,4,6,3]). [hyper(2,a,431,a,b,7,a),rewrite([13,12]),eval(40)]. given #920 (W,wt=12): 933 board([8,1,4,6,3]). [hyper(2,a,432,a,b,10,a),rewrite([13,12]),eval(40)]. given #921 (W,wt=12): 934 board([5,1,4,6,3]). [hyper(2,a,432,a,b,7,a),rewrite([13,12]),eval(40)]. given #922 (W,wt=12): 935 board([5,7,2,6,3]). [hyper(2,a,433,a,b,7,a),rewrite([13,12]),eval(40)]. given #923 (W,wt=12): 936 board([1,7,2,6,3]). [hyper(2,a,433,a,b,3,a),rewrite([13,12]),eval(40)]. given #924 (W,wt=12): 937 board([8,5,2,6,3]). [hyper(2,a,434,a,b,10,a),rewrite([13,12]),eval(40)]. given #925 (W,wt=12): 938 board([1,5,2,6,3]). [hyper(2,a,434,a,b,3,a),rewrite([13,12]),eval(40)]. given #926 (W,wt=12): 939 board([1,4,8,5,3]). [hyper(2,a,435,a,b,3,a),rewrite([13,12]),eval(40)]. given #927 (W,wt=12): 940 board([4,2,8,5,3]). [hyper(2,a,436,a,b,6,a),rewrite([13,12]),eval(40)]. given #928 (W,wt=12): 941 board([4,1,8,5,3]). [hyper(2,a,437,a,b,6,a),rewrite([13,12]),eval(40)]. given #929 (W,wt=12): 942 board([6,4,7,5,3]). [hyper(2,a,438,a,b,8,a),rewrite([13,12]),eval(40)]. given #930 (W,wt=12): 943 board([1,4,7,5,3]). [hyper(2,a,438,a,b,3,a),rewrite([13,12]),eval(40)]. given #931 (W,wt=12): 944 board([6,2,7,5,3]). [hyper(2,a,439,a,b,8,a),rewrite([13,12]),eval(40)]. given #932 (W,wt=12): 945 board([4,2,7,5,3]). [hyper(2,a,439,a,b,6,a),rewrite([13,12]),eval(40)]. given #933 (W,wt=12): 946 board([6,1,7,5,3]). [hyper(2,a,440,a,b,8,a),rewrite([13,12]),eval(40)]. given #934 (W,wt=12): 947 board([4,1,7,5,3]). [hyper(2,a,440,a,b,6,a),rewrite([13,12]),eval(40)]. given #935 (W,wt=12): 948 board([6,8,2,5,3]). [hyper(2,a,441,a,b,8,a),rewrite([13,12]),eval(40)]. given #936 (W,wt=12): 949 board([1,8,2,5,3]). [hyper(2,a,441,a,b,3,a),rewrite([13,12]),eval(40)]. given #937 (W,wt=12): 950 board([6,4,2,5,3]). [hyper(2,a,442,a,b,8,a),rewrite([13,12]),eval(40)]. given #938 (W,wt=12): 951 board([1,4,2,5,3]). [hyper(2,a,442,a,b,3,a),rewrite([13,12]),eval(40)]. given #939 (W,wt=12): 952 board([2,5,8,1,3]). [hyper(2,a,443,a,b,4,a),rewrite([13,12]),eval(40)]. given #940 (W,wt=12): 953 board([2,4,8,1,3]). [hyper(2,a,444,a,b,4,a),rewrite([13,12]),eval(40)]. given #941 (W,wt=12): 954 board([5,2,8,1,3]). [hyper(2,a,445,a,b,7,a),rewrite([13,12]),eval(40)]. given #942 (W,wt=12): 955 board([8,5,7,1,3]). [hyper(2,a,446,a,b,10,a),rewrite([13,12]),eval(40)]. given #943 (W,wt=12): 956 board([2,5,7,1,3]). [hyper(2,a,446,a,b,4,a),rewrite([13,12]),eval(40)]. given #944 (W,wt=12): 957 board([8,4,7,1,3]). [hyper(2,a,447,a,b,10,a),rewrite([13,12]),eval(40)]. given #945 (W,wt=12): 958 board([6,4,7,1,3]). [hyper(2,a,447,a,b,8,a),rewrite([13,12]),eval(40)]. given #946 (W,wt=12): 959 board([2,4,7,1,3]). [hyper(2,a,447,a,b,4,a),rewrite([13,12]),eval(40)]. given #947 (W,wt=12): 960 board([8,2,7,1,3]). [hyper(2,a,448,a,b,10,a),rewrite([13,12]),eval(40)]. given #948 (W,wt=12): 961 board([6,2,7,1,3]). [hyper(2,a,448,a,b,8,a),rewrite([13,12]),eval(40)]. given #949 (W,wt=12): 962 board([5,8,6,1,3]). [hyper(2,a,449,a,b,7,a),rewrite([13,12]),eval(40)]. given #950 (W,wt=12): 963 board([2,8,6,1,3]). [hyper(2,a,449,a,b,4,a),rewrite([13,12]),eval(40)]. given #951 (W,wt=12): 964 board([2,4,6,1,3]). [hyper(2,a,450,a,b,4,a),rewrite([13,12]),eval(40)]. given #952 (W,wt=12): 965 board([5,2,6,1,3]). [hyper(2,a,451,a,b,7,a),rewrite([13,12]),eval(40)]. given #953 (W,wt=12): 966 board([5,8,4,1,3]). [hyper(2,a,452,a,b,7,a),rewrite([13,12]),eval(40)]. given #954 (W,wt=12): 967 board([5,7,4,1,3]). [hyper(2,a,453,a,b,7,a),rewrite([13,12]),eval(40)]. given #955 (W,wt=12): 968 board([8,2,4,1,3]). [hyper(2,a,454,a,b,10,a),rewrite([13,12]),eval(40)]. given #956 (W,wt=12): 969 board([5,2,4,1,3]). [hyper(2,a,454,a,b,7,a),rewrite([13,12]),eval(40)]. given #957 (W,wt=12): 970 board([7,4,6,8,2]). [hyper(2,a,455,a,b,9,a),rewrite([13,12]),eval(40)]. given #958 (W,wt=12): 971 board([1,4,6,8,2]). [hyper(2,a,455,a,b,3,a),rewrite([13,12]),eval(40)]. given #959 (W,wt=12): 972 board([7,3,6,8,2]). [hyper(2,a,456,a,b,9,a),rewrite([13,12]),eval(40)]. given #960 (W,wt=12): 973 board([1,3,6,8,2]). [hyper(2,a,456,a,b,3,a),rewrite([13,12]),eval(40)]. given #961 (W,wt=12): 974 board([7,1,6,8,2]). [hyper(2,a,457,a,b,9,a),rewrite([13,12]),eval(40)]. given #962 (W,wt=12): 975 board([3,1,6,8,2]). [hyper(2,a,457,a,b,5,a),rewrite([13,12]),eval(40)]. given #963 (W,wt=12): 976 board([4,7,5,8,2]). [hyper(2,a,458,a,b,6,a),rewrite([13,12]),eval(40)]. given #964 (W,wt=12): 977 board([1,7,5,8,2]). [hyper(2,a,458,a,b,3,a),rewrite([13,12]),eval(40)]. given #965 (W,wt=12): 978 board([1,3,5,8,2]). [hyper(2,a,459,a,b,3,a),rewrite([13,12]),eval(40)]. given #966 (W,wt=12): 979 board([4,1,5,8,2]). [hyper(2,a,460,a,b,6,a),rewrite([13,12]),eval(40)]. given #967 (W,wt=12): 980 board([4,7,3,8,2]). [hyper(2,a,461,a,b,6,a),rewrite([13,12]),eval(40)]. given #968 (W,wt=12): 981 board([7,1,3,8,2]). [hyper(2,a,462,a,b,9,a),rewrite([13,12]),eval(40)]. given #969 (W,wt=12): 982 board([4,1,3,8,2]). [hyper(2,a,462,a,b,6,a),rewrite([13,12]),eval(40)]. given #970 (W,wt=12): 983 board([4,7,1,8,2]). [hyper(2,a,463,a,b,6,a),rewrite([13,12]),eval(40)]. given #971 (W,wt=12): 984 board([7,4,1,8,2]). [hyper(2,a,464,a,b,9,a),rewrite([13,12]),eval(40)]. given #972 (W,wt=12): 985 board([7,3,1,8,2]). [hyper(2,a,465,a,b,9,a),rewrite([13,12]),eval(40)]. given #973 (W,wt=12): 986 board([1,8,5,7,2]). [hyper(2,a,466,a,b,3,a),rewrite([13,12]),eval(40)]. given #974 (W,wt=12): 987 board([8,3,5,7,2]). [hyper(2,a,467,a,b,10,a),rewrite([13,12]),eval(40)]. given #975 (W,wt=12): 988 board([1,3,5,7,2]). [hyper(2,a,467,a,b,3,a),rewrite([13,12]),eval(40)]. given #976 (W,wt=12): 989 board([8,1,5,7,2]). [hyper(2,a,468,a,b,10,a),rewrite([13,12]),eval(40)]. given #977 (W,wt=12): 990 board([8,6,3,7,2]). [hyper(2,a,470,a,b,10,a),rewrite([13,12]),eval(40)]. given #978 (W,wt=12): 991 board([8,1,3,7,2]). [hyper(2,a,471,a,b,10,a),rewrite([13,12]),eval(40)]. given #979 (W,wt=12): 992 board([5,8,1,7,2]). [hyper(2,a,472,a,b,7,a),rewrite([13,12]),eval(40)]. given #980 (W,wt=12): 993 board([8,6,1,7,2]). [hyper(2,a,473,a,b,10,a),rewrite([13,12]),eval(40)]. given #981 (W,wt=12): 994 board([8,4,1,7,2]). [hyper(2,a,474,a,b,10,a),rewrite([13,12]),eval(40)]. given #982 (W,wt=12): 995 board([8,3,1,7,2]). [hyper(2,a,475,a,b,10,a),rewrite([13,12]),eval(40)]. given #983 (W,wt=12): 996 board([5,3,1,7,2]). [hyper(2,a,475,a,b,7,a),rewrite([13,12]),eval(40)]. given #984 (W,wt=12): 997 board([7,3,8,6,2]). [hyper(2,a,476,a,b,9,a),rewrite([13,12]),eval(40)]. given #985 (W,wt=12): 998 board([5,3,8,6,2]). [hyper(2,a,476,a,b,7,a),rewrite([13,12]),eval(40)]. given #986 (W,wt=12): 999 board([1,3,8,6,2]). [hyper(2,a,476,a,b,3,a),rewrite([13,12]),eval(40)]. given #987 (W,wt=12): 1000 board([7,1,8,6,2]). [hyper(2,a,477,a,b,9,a),rewrite([13,12]),eval(40)]. given #988 (W,wt=12): 1001 board([5,1,8,6,2]). [hyper(2,a,477,a,b,7,a),rewrite([13,12]),eval(40)]. given #989 (W,wt=12): 1002 board([4,1,8,6,2]). [hyper(2,a,477,a,b,6,a),rewrite([13,12]),eval(40)]. given #990 (W,wt=12): 1003 board([4,7,3,6,2]). [hyper(2,a,478,a,b,6,a),rewrite([13,12]),eval(40)]. given #991 (W,wt=12): 1004 board([8,1,3,6,2]). [hyper(2,a,479,a,b,10,a),rewrite([13,12]),eval(40)]. given #992 (W,wt=12): 1005 board([7,1,3,6,2]). [hyper(2,a,479,a,b,9,a),rewrite([13,12]),eval(40)]. given #993 (W,wt=12): 1006 board([4,1,3,6,2]). [hyper(2,a,479,a,b,6,a),rewrite([13,12]),eval(40)]. given #994 (W,wt=12): 1007 board([5,7,1,6,2]). [hyper(2,a,480,a,b,7,a),rewrite([13,12]),eval(40)]. given #995 (W,wt=12): 1008 board([4,7,1,6,2]). [hyper(2,a,480,a,b,6,a),rewrite([13,12]),eval(40)]. given #996 (W,wt=12): 1009 board([8,3,1,6,2]). [hyper(2,a,481,a,b,10,a),rewrite([13,12]),eval(40)]. given #997 (W,wt=12): 1010 board([7,3,1,6,2]). [hyper(2,a,481,a,b,9,a),rewrite([13,12]),eval(40)]. given #998 (W,wt=12): 1011 board([5,3,1,6,2]). [hyper(2,a,481,a,b,7,a),rewrite([13,12]),eval(40)]. given #999 (W,wt=12): 1012 board([4,6,8,5,2]). [hyper(2,a,482,a,b,6,a),rewrite([13,12]),eval(40)]. given #1000 (W,wt=12): 1013 board([3,6,8,5,2]). [hyper(2,a,482,a,b,5,a),rewrite([13,12]),eval(40)]. given #1001 (W,wt=12): 1014 board([1,6,8,5,2]). [hyper(2,a,482,a,b,3,a),rewrite([13,12]),eval(40)]. given #1002 (W,wt=12): 1015 board([7,4,8,5,2]). [hyper(2,a,483,a,b,9,a),rewrite([13,12]),eval(40)]. given #1003 (W,wt=12): 1016 board([1,4,8,5,2]). [hyper(2,a,483,a,b,3,a),rewrite([13,12]),eval(40)]. given #1004 (W,wt=12): 1017 board([7,1,8,5,2]). [hyper(2,a,484,a,b,9,a),rewrite([13,12]),eval(40)]. given #1005 (W,wt=12): 1018 board([4,1,8,5,2]). [hyper(2,a,484,a,b,6,a),rewrite([13,12]),eval(40)]. given #1006 (W,wt=12): 1019 board([3,1,8,5,2]). [hyper(2,a,484,a,b,5,a),rewrite([13,12]),eval(40)]. given #1007 (W,wt=12): 1020 board([1,4,7,5,2]). [hyper(2,a,485,a,b,3,a),rewrite([13,12]),eval(40)]. given #1008 (W,wt=12): 1021 board([4,1,7,5,2]). [hyper(2,a,486,a,b,6,a),rewrite([13,12]),eval(40)]. given #1009 (W,wt=12): 1022 board([3,1,7,5,2]). [hyper(2,a,486,a,b,5,a),rewrite([13,12]),eval(40)]. given #1010 (W,wt=12): 1023 board([4,8,3,5,2]). [hyper(2,a,487,a,b,6,a),rewrite([13,12]),eval(40)]. given #1011 (W,wt=12): 1024 board([4,6,3,5,2]). [hyper(2,a,488,a,b,6,a),rewrite([13,12]),eval(40)]. given #1012 (W,wt=12): 1025 board([7,1,3,5,2]). [hyper(2,a,489,a,b,9,a),rewrite([13,12]),eval(40)]. given #1013 (W,wt=12): 1026 board([4,1,3,5,2]). [hyper(2,a,489,a,b,6,a),rewrite([13,12]),eval(40)]. given #1014 (W,wt=12): 1027 board([4,8,1,5,2]). [hyper(2,a,490,a,b,6,a),rewrite([13,12]),eval(40)]. given #1015 (W,wt=12): 1028 board([4,6,1,5,2]). [hyper(2,a,491,a,b,6,a),rewrite([13,12]),eval(40)]. given #1016 (W,wt=12): 1029 board([7,4,1,5,2]). [hyper(2,a,492,a,b,9,a),rewrite([13,12]),eval(40)]. given #1017 (W,wt=12): 1030 board([5,3,8,4,2]). [hyper(2,a,493,a,b,7,a),rewrite([13,12]),eval(40)]. given #1018 (W,wt=12): 1031 board([5,1,8,4,2]). [hyper(2,a,494,a,b,7,a),rewrite([13,12]),eval(40)]. given #1019 (W,wt=12): 1032 board([3,1,8,4,2]). [hyper(2,a,494,a,b,5,a),rewrite([13,12]),eval(40)]. given #1020 (W,wt=12): 1033 board([8,3,7,4,2]). [hyper(2,a,495,a,b,10,a),rewrite([13,12]),eval(40)]. given #1021 (W,wt=12): 1034 board([8,1,7,4,2]). [hyper(2,a,496,a,b,10,a),rewrite([13,12]),eval(40)]. given #1022 (W,wt=12): 1035 board([3,1,7,4,2]). [hyper(2,a,496,a,b,5,a),rewrite([13,12]),eval(40)]. given #1023 (W,wt=12): 1036 board([5,8,6,4,2]). [hyper(2,a,497,a,b,7,a),rewrite([13,12]),eval(40)]. given #1024 (W,wt=12): 1037 board([3,8,6,4,2]). [hyper(2,a,497,a,b,5,a),rewrite([13,12]),eval(40)]. given #1025 (W,wt=12): 1038 board([5,3,6,4,2]). [hyper(2,a,498,a,b,7,a),rewrite([13,12]),eval(40)]. given #1026 (W,wt=12): 1039 board([5,1,6,4,2]). [hyper(2,a,499,a,b,7,a),rewrite([13,12]),eval(40)]. given #1027 (W,wt=12): 1040 board([3,1,6,4,2]). [hyper(2,a,499,a,b,5,a),rewrite([13,12]),eval(40)]. given #1028 (W,wt=12): 1041 board([5,8,1,4,2]). [hyper(2,a,500,a,b,7,a),rewrite([13,12]),eval(40)]. given #1029 (W,wt=12): 1042 board([5,7,1,4,2]). [hyper(2,a,501,a,b,7,a),rewrite([13,12]),eval(40)]. given #1030 (W,wt=12): 1043 board([8,3,1,4,2]). [hyper(2,a,502,a,b,10,a),rewrite([13,12]),eval(40)]. given #1031 (W,wt=12): 1044 board([5,3,1,4,2]). [hyper(2,a,502,a,b,7,a),rewrite([13,12]),eval(40)]. given #1032 (W,wt=12): 1045 board([7,3,6,8,1]). [hyper(2,a,503,a,b,9,a),rewrite([13,12]),eval(40)]. given #1033 (W,wt=12): 1046 board([7,2,6,8,1]). [hyper(2,a,504,a,b,9,a),rewrite([13,12]),eval(40)]. given #1034 (W,wt=12): 1047 board([4,7,5,8,1]). [hyper(2,a,505,a,b,6,a),rewrite([13,12]),eval(40)]. given #1035 (W,wt=12): 1048 board([2,7,5,8,1]). [hyper(2,a,505,a,b,4,a),rewrite([13,12]),eval(40)]. given #1036 (W,wt=12): 1049 board([6,3,5,8,1]). [hyper(2,a,506,a,b,8,a),rewrite([13,12]),eval(40)]. given #1037 (W,wt=12): 1050 board([6,2,5,8,1]). [hyper(2,a,507,a,b,8,a),rewrite([13,12]),eval(40)]. given #1038 (W,wt=12): 1051 board([4,2,5,8,1]). [hyper(2,a,507,a,b,6,a),rewrite([13,12]),eval(40)]. given #1039 (W,wt=12): 1052 board([3,7,4,8,1]). [hyper(2,a,508,a,b,5,a),rewrite([13,12]),eval(40)]. given #1040 (W,wt=12): 1053 board([7,2,4,8,1]). [hyper(2,a,509,a,b,9,a),rewrite([13,12]),eval(40)]. given #1041 (W,wt=12): 1054 board([3,7,2,8,1]). [hyper(2,a,510,a,b,5,a),rewrite([13,12]),eval(40)]. given #1042 (W,wt=12): 1055 board([7,5,2,8,1]). [hyper(2,a,511,a,b,9,a),rewrite([13,12]),eval(40)]. given #1043 (W,wt=12): 1056 board([3,5,2,8,1]). [hyper(2,a,511,a,b,5,a),rewrite([13,12]),eval(40)]. given #1044 (W,wt=12): 1057 board([6,8,5,7,1]). [hyper(2,a,512,a,b,8,a),rewrite([13,12]),eval(40)]. given #1045 (W,wt=12): 1058 board([2,8,5,7,1]). [hyper(2,a,512,a,b,4,a),rewrite([13,12]),eval(40)]. given #1046 (W,wt=12): 1059 board([8,3,5,7,1]). [hyper(2,a,513,a,b,10,a),rewrite([13,12]),eval(40)]. given #1047 (W,wt=12): 1060 board([6,3,5,7,1]). [hyper(2,a,513,a,b,8,a),rewrite([13,12]),eval(40)]. given #1048 (W,wt=12): 1061 board([8,2,5,7,1]). [hyper(2,a,514,a,b,10,a),rewrite([13,12]),eval(40)]. given #1049 (W,wt=12): 1062 board([6,2,5,7,1]). [hyper(2,a,514,a,b,8,a),rewrite([13,12]),eval(40)]. given #1050 (W,wt=12): 1063 board([3,8,4,7,1]). [hyper(2,a,515,a,b,5,a),rewrite([13,12]),eval(40)]. given #1051 (W,wt=12): 1064 board([8,6,4,7,1]). [hyper(2,a,516,a,b,10,a),rewrite([13,12]),eval(40)]. given #1052 (W,wt=12): 1065 board([3,6,4,7,1]). [hyper(2,a,516,a,b,5,a),rewrite([13,12]),eval(40)]. given #1053 (W,wt=12): 1066 board([8,2,4,7,1]). [hyper(2,a,517,a,b,10,a),rewrite([13,12]),eval(40)]. given #1054 (W,wt=12): 1067 board([6,8,2,7,1]). [hyper(2,a,518,a,b,8,a),rewrite([13,12]),eval(40)]. given #1055 (W,wt=12): 1068 board([3,8,2,7,1]). [hyper(2,a,518,a,b,5,a),rewrite([13,12]),eval(40)]. given #1056 (W,wt=12): 1069 board([8,6,2,7,1]). [hyper(2,a,519,a,b,10,a),rewrite([13,12]),eval(40)]. given #1057 (W,wt=12): 1070 board([3,6,2,7,1]). [hyper(2,a,519,a,b,5,a),rewrite([13,12]),eval(40)]. given #1058 (W,wt=12): 1071 board([7,5,8,6,1]). [hyper(2,a,520,a,b,9,a),rewrite([13,12]),eval(40)]. given #1059 (W,wt=12): 1072 board([2,5,8,6,1]). [hyper(2,a,520,a,b,4,a),rewrite([13,12]),eval(40)]. given #1060 (W,wt=12): 1073 board([7,3,8,6,1]). [hyper(2,a,521,a,b,9,a),rewrite([13,12]),eval(40)]. given #1061 (W,wt=12): 1074 board([7,2,8,6,1]). [hyper(2,a,522,a,b,9,a),rewrite([13,12]),eval(40)]. given #1062 (W,wt=12): 1075 board([4,2,8,6,1]). [hyper(2,a,522,a,b,6,a),rewrite([13,12]),eval(40)]. given #1063 (W,wt=12): 1076 board([8,2,4,6,1]). [hyper(2,a,524,a,b,10,a),rewrite([13,12]),eval(40)]. given #1064 (W,wt=12): 1077 board([7,2,4,6,1]). [hyper(2,a,524,a,b,9,a),rewrite([13,12]),eval(40)]. given #1065 (W,wt=12): 1078 board([8,5,2,6,1]). [hyper(2,a,526,a,b,10,a),rewrite([13,12]),eval(40)]. given #1066 (W,wt=12): 1079 board([7,5,2,6,1]). [hyper(2,a,526,a,b,9,a),rewrite([13,12]),eval(40)]. given #1067 (W,wt=12): 1080 board([4,6,8,5,1]). [hyper(2,a,527,a,b,6,a),rewrite([13,12]),eval(40)]. given #1068 (W,wt=12): 1081 board([3,6,8,5,1]). [hyper(2,a,527,a,b,5,a),rewrite([13,12]),eval(40)]. given #1069 (W,wt=12): 1082 board([7,2,8,5,1]). [hyper(2,a,528,a,b,9,a),rewrite([13,12]),eval(40)]. given #1070 (W,wt=12): 1083 board([4,2,8,5,1]). [hyper(2,a,528,a,b,6,a),rewrite([13,12]),eval(40)]. given #1071 (W,wt=12): 1084 board([6,2,7,5,1]). [hyper(2,a,529,a,b,8,a),rewrite([13,12]),eval(40)]. given #1072 (W,wt=12): 1085 board([4,2,7,5,1]). [hyper(2,a,529,a,b,6,a),rewrite([13,12]),eval(40)]. given #1073 (W,wt=12): 1086 board([6,8,2,5,1]). [hyper(2,a,530,a,b,8,a),rewrite([13,12]),eval(40)]. given #1074 (W,wt=12): 1087 board([3,8,2,5,1]). [hyper(2,a,530,a,b,5,a),rewrite([13,12]),eval(40)]. given #1075 (W,wt=12): 1088 board([3,6,2,5,1]). [hyper(2,a,531,a,b,5,a),rewrite([13,12]),eval(40)]. given #1076 (W,wt=12): 1089 board([3,5,8,4,1]). [hyper(2,a,532,a,b,5,a),rewrite([13,12]),eval(40)]. given #1077 (W,wt=12): 1090 board([2,5,8,4,1]). [hyper(2,a,532,a,b,4,a),rewrite([13,12]),eval(40)]. given #1078 (W,wt=12): 1091 board([8,5,7,4,1]). [hyper(2,a,534,a,b,10,a),rewrite([13,12]),eval(40)]. given #1079 (W,wt=12): 1092 board([3,5,7,4,1]). [hyper(2,a,534,a,b,5,a),rewrite([13,12]),eval(40)]. given #1080 (W,wt=12): 1093 board([2,5,7,4,1]). [hyper(2,a,534,a,b,4,a),rewrite([13,12]),eval(40)]. given #1081 (W,wt=12): 1094 board([8,3,7,4,1]). [hyper(2,a,535,a,b,10,a),rewrite([13,12]),eval(40)]. given #1082 (W,wt=12): 1095 board([6,3,7,4,1]). [hyper(2,a,535,a,b,8,a),rewrite([13,12]),eval(40)]. given #1083 (W,wt=12): 1096 board([3,8,6,4,1]). [hyper(2,a,536,a,b,5,a),rewrite([13,12]),eval(40)]. given #1084 (W,wt=12): 1097 board([2,8,6,4,1]). [hyper(2,a,536,a,b,4,a),rewrite([13,12]),eval(40)]. given #1085 (W,wt=12): 1098 board([6,8,2,4,1]). [hyper(2,a,538,a,b,8,a),rewrite([13,12]),eval(40)]. given #1086 (W,wt=12): 1099 board([3,8,2,4,1]). [hyper(2,a,538,a,b,5,a),rewrite([13,12]),eval(40)]. given #1087 (W,wt=12): 1100 board([3,7,2,4,1]). [hyper(2,a,539,a,b,5,a),rewrite([13,12]),eval(40)]. given #1088 (W,wt=12): 1101 board([8,5,2,4,1]). [hyper(2,a,540,a,b,10,a),rewrite([13,12]),eval(40)]. given #1089 (W,wt=12): 1102 board([3,5,2,4,1]). [hyper(2,a,540,a,b,5,a),rewrite([13,12]),eval(40)]. given #1090 (W,wt=12): 1103 board([4,6,8,3,1]). [hyper(2,a,541,a,b,6,a),rewrite([13,12]),eval(40)]. given #1091 (W,wt=12): 1104 board([2,6,8,3,1]). [hyper(2,a,541,a,b,4,a),rewrite([13,12]),eval(40)]. given #1092 (W,wt=12): 1105 board([7,2,8,3,1]). [hyper(2,a,542,a,b,9,a),rewrite([13,12]),eval(40)]. given #1093 (W,wt=12): 1106 board([4,2,8,3,1]). [hyper(2,a,542,a,b,6,a),rewrite([13,12]),eval(40)]. given #1094 (W,wt=12): 1107 board([8,2,7,3,1]). [hyper(2,a,543,a,b,10,a),rewrite([13,12]),eval(40)]. given #1095 (W,wt=12): 1108 board([4,2,7,3,1]). [hyper(2,a,543,a,b,6,a),rewrite([13,12]),eval(40)]. given #1096 (W,wt=12): 1109 board([2,8,6,3,1]). [hyper(2,a,544,a,b,4,a),rewrite([13,12]),eval(40)]. given #1097 (W,wt=12): 1110 board([7,2,6,3,1]). [hyper(2,a,545,a,b,9,a),rewrite([13,12]),eval(40)]. given #1098 (W,wt=12): 1111 board([4,8,5,3,1]). [hyper(2,a,546,a,b,6,a),rewrite([13,12]),eval(40)]. given #1099 (W,wt=12): 1112 board([2,8,5,3,1]). [hyper(2,a,546,a,b,4,a),rewrite([13,12]),eval(40)]. given #1100 (W,wt=12): 1113 board([4,7,5,3,1]). [hyper(2,a,547,a,b,6,a),rewrite([13,12]),eval(40)]. given #1101 (W,wt=12): 1114 board([2,7,5,3,1]). [hyper(2,a,547,a,b,4,a),rewrite([13,12]),eval(40)]. given #1102 (W,wt=12): 1115 board([8,2,5,3,1]). [hyper(2,a,548,a,b,10,a),rewrite([13,12]),eval(40)]. given #1103 (W,wt=12): 1116 board([4,2,5,3,1]). [hyper(2,a,548,a,b,6,a),rewrite([13,12]),eval(40)]. given #1104 (W,wt=14): 1117 board([5,7,2,4,6,8]). [hyper(2,a,551,a,b,7,a),rewrite([13,12]),eval(50)]. given #1105 (W,wt=14): 1118 board([5,7,1,4,6,8]). [hyper(2,a,553,a,b,7,a),rewrite([13,12]),eval(50)]. given #1106 (W,wt=14): 1119 board([4,2,7,3,6,8]). [hyper(2,a,555,a,b,6,a),rewrite([13,12]),eval(50)]. given #1107 (W,wt=14): 1120 board([5,7,1,3,6,8]). [hyper(2,a,556,a,b,7,a),rewrite([13,12]),eval(50)]. given #1108 (W,wt=14): 1121 board([4,7,1,3,6,8]). [hyper(2,a,556,a,b,6,a),rewrite([13,12]),eval(50)]. given #1109 (W,wt=14): 1122 board([1,5,7,2,6,8]). [hyper(2,a,557,a,b,3,a),rewrite([13,12]),eval(50)]. given #1110 (W,wt=14): 1123 board([4,1,7,2,6,8]). [hyper(2,a,558,a,b,6,a),rewrite([13,12]),eval(50)]. given #1111 (W,wt=14): 1124 board([7,5,3,1,6,8]). [hyper(2,a,562,a,b,9,a),rewrite([13,12]),eval(50)]. given #1112 (W,wt=14): 1125 board([2,6,1,7,5,8]). [hyper(2,a,566,a,b,4,a),rewrite([13,12]),eval(50)]. given #1113 (W,wt=14): 1126 board([6,3,1,7,5,8]). [hyper(2,a,567,a,b,8,a),rewrite([13,12]),eval(50)]. given #1114 (W,wt=14): 1127 board([4,7,1,3,5,8]). [hyper(2,a,568,a,b,6,a),rewrite([13,12]),eval(50)]. given #1115 (W,wt=14): 1128 board([2,7,1,3,5,8]). [hyper(2,a,568,a,b,4,a),rewrite([13,12]),eval(50)]. given #1116 (W,wt=14): 1129 board([4,6,1,3,5,8]). [hyper(2,a,569,a,b,6,a),rewrite([13,12]),eval(50)]. given #1117 (W,wt=14): 1130 board([2,6,1,3,5,8]). [hyper(2,a,569,a,b,4,a),rewrite([13,12]),eval(50)]. given #1118 (W,wt=14): 1131 board([7,3,6,2,5,8]). [hyper(2,a,570,a,b,9,a),rewrite([13,12]),eval(50)]. given #1119 (W,wt=14): 1132 board([7,1,6,2,5,8]). [hyper(2,a,571,a,b,9,a),rewrite([13,12]),eval(50)]. given #1120 (W,wt=14): 1133 board([7,1,4,2,5,8]). [hyper(2,a,574,a,b,9,a),rewrite([13,12]),eval(50)]. given #1121 (W,wt=14): 1134 board([2,6,3,7,4,8]). [hyper(2,a,577,a,b,4,a),rewrite([13,12]),eval(50)]. given #1122 (W,wt=14): 1135 board([2,6,1,7,4,8]). [hyper(2,a,578,a,b,4,a),rewrite([13,12]),eval(50)]. given #1123 (W,wt=14): 1136 board([6,3,1,7,4,8]). [hyper(2,a,579,a,b,8,a),rewrite([13,12]),eval(50)]. given #1124 (W,wt=14): 1137 board([5,3,1,7,4,8]). [hyper(2,a,579,a,b,7,a),rewrite([13,12]),eval(50)]. given #1125 (W,wt=14): 1138 board([1,5,7,2,4,8]). [hyper(2,a,580,a,b,3,a),rewrite([13,12]),eval(50)]. given #1126 (W,wt=14): 1139 board([6,3,7,2,4,8]). [hyper(2,a,581,a,b,8,a),rewrite([13,12]),eval(50)]. given #1127 (W,wt=14): 1140 board([1,3,7,2,4,8]). [hyper(2,a,581,a,b,3,a),rewrite([13,12]),eval(50)]. given #1128 (W,wt=14): 1141 board([2,5,7,1,4,8]). [hyper(2,a,582,a,b,4,a),rewrite([13,12]),eval(50)]. given #1129 (W,wt=14): 1142 board([6,2,7,1,4,8]). [hyper(2,a,583,a,b,8,a),rewrite([13,12]),eval(50)]. given #1130 (W,wt=14): 1143 board([2,6,3,1,4,8]). [hyper(2,a,584,a,b,4,a),rewrite([13,12]),eval(50)]. given #1131 (W,wt=14): 1144 board([7,5,3,1,4,8]). [hyper(2,a,585,a,b,9,a),rewrite([13,12]),eval(50)]. given #1132 (W,wt=14): 1145 board([2,5,3,1,4,8]). [hyper(2,a,585,a,b,4,a),rewrite([13,12]),eval(50)]. given #1133 (W,wt=14): 1146 board([5,2,4,7,3,8]). [hyper(2,a,586,a,b,7,a),rewrite([13,12]),eval(50)]. given #1134 (W,wt=14): 1147 board([5,1,4,7,3,8]). [hyper(2,a,587,a,b,7,a),rewrite([13,12]),eval(50)]. given #1135 (W,wt=14): 1148 board([6,2,7,5,3,8]). [hyper(2,a,588,a,b,8,a),rewrite([13,12]),eval(50)]. given #1136 (W,wt=14): 1149 board([4,2,7,5,3,8]). [hyper(2,a,588,a,b,6,a),rewrite([13,12]),eval(50)]. given #1137 (W,wt=14): 1150 board([6,1,7,5,3,8]). [hyper(2,a,589,a,b,8,a),rewrite([13,12]),eval(50)]. given #1138 (W,wt=14): 1151 board([4,1,7,5,3,8]). [hyper(2,a,589,a,b,6,a),rewrite([13,12]),eval(50)]. given #1139 (W,wt=14): 1152 board([2,5,7,1,3,8]). [hyper(2,a,590,a,b,4,a),rewrite([13,12]),eval(50)]. given #1140 (W,wt=14): 1153 board([6,2,7,1,3,8]). [hyper(2,a,591,a,b,8,a),rewrite([13,12]),eval(50)]. given #1141 (W,wt=14): 1154 board([5,2,6,1,3,8]). [hyper(2,a,592,a,b,7,a),rewrite([13,12]),eval(50)]. given #1142 (W,wt=14): 1155 board([5,7,4,1,3,8]). [hyper(2,a,593,a,b,7,a),rewrite([13,12]),eval(50)]. given #1143 (W,wt=14): 1156 board([5,2,4,1,3,8]). [hyper(2,a,594,a,b,7,a),rewrite([13,12]),eval(50)]. given #1144 (W,wt=14): 1157 board([5,3,1,7,2,8]). [hyper(2,a,598,a,b,7,a),rewrite([13,12]),eval(50)]. given #1145 (W,wt=14): 1158 board([4,1,7,5,2,8]). [hyper(2,a,599,a,b,6,a),rewrite([13,12]),eval(50)]. given #1146 (W,wt=14): 1159 board([4,6,3,5,2,8]). [hyper(2,a,600,a,b,6,a),rewrite([13,12]),eval(50)]. given #1147 (W,wt=14): 1160 board([7,1,3,5,2,8]). [hyper(2,a,601,a,b,9,a),rewrite([13,12]),eval(50)]. given #1148 (W,wt=14): 1161 board([4,1,3,5,2,8]). [hyper(2,a,601,a,b,6,a),rewrite([13,12]),eval(50)]. given #1149 (W,wt=14): 1162 board([4,6,1,5,2,8]). [hyper(2,a,602,a,b,6,a),rewrite([13,12]),eval(50)]. given #1150 (W,wt=14): 1163 board([5,3,6,4,2,8]). [hyper(2,a,605,a,b,7,a),rewrite([13,12]),eval(50)]. given #1151 (W,wt=14): 1164 board([5,1,6,4,2,8]). [hyper(2,a,606,a,b,7,a),rewrite([13,12]),eval(50)]. given #1152 (W,wt=14): 1165 board([5,7,1,4,2,8]). [hyper(2,a,607,a,b,7,a),rewrite([13,12]),eval(50)]. given #1153 (W,wt=14): 1166 board([5,3,1,4,2,8]). [hyper(2,a,608,a,b,7,a),rewrite([13,12]),eval(50)]. given #1154 (W,wt=14): 1167 board([6,2,7,5,1,8]). [hyper(2,a,612,a,b,8,a),rewrite([13,12]),eval(50)]. given #1155 (W,wt=14): 1168 board([4,2,7,5,1,8]). [hyper(2,a,612,a,b,6,a),rewrite([13,12]),eval(50)]. given #1156 (W,wt=14): 1169 board([2,5,7,4,1,8]). [hyper(2,a,614,a,b,4,a),rewrite([13,12]),eval(50)]. given #1157 (W,wt=14): 1170 board([6,3,7,4,1,8]). [hyper(2,a,615,a,b,8,a),rewrite([13,12]),eval(50)]. given #1158 (W,wt=14): 1171 board([4,2,7,3,1,8]). [hyper(2,a,619,a,b,6,a),rewrite([13,12]),eval(50)]. given #1159 (W,wt=14): 1172 board([7,2,6,3,1,8]). [hyper(2,a,620,a,b,9,a),rewrite([13,12]),eval(50)]. given #1160 (W,wt=14): 1173 board([3,1,6,8,5,7]). [hyper(2,a,622,a,b,5,a),rewrite([13,12]),eval(50)]. given #1161 (W,wt=14): 1174 board([6,4,2,8,5,7]). [hyper(2,a,623,a,b,8,a),rewrite([13,12]),eval(50)]. given #1162 (W,wt=14): 1175 board([6,4,1,8,5,7]). [hyper(2,a,624,a,b,8,a),rewrite([13,12]),eval(50)]. given #1163 (W,wt=14): 1176 board([4,6,8,3,5,7]). [hyper(2,a,625,a,b,6,a),rewrite([13,12]),eval(50)]. given #1164 (W,wt=14): 1177 board([8,6,1,3,5,7]). [hyper(2,a,628,a,b,10,a),rewrite([13,12]),eval(50)]. given #1165 (W,wt=14): 1178 board([4,6,1,3,5,7]). [hyper(2,a,628,a,b,6,a),rewrite([13,12]),eval(50)]. given #1166 (W,wt=14): 1179 board([8,4,1,3,5,7]). [hyper(2,a,629,a,b,10,a),rewrite([13,12]),eval(50)]. given #1167 (W,wt=14): 1180 board([4,6,8,2,5,7]). [hyper(2,a,630,a,b,6,a),rewrite([13,12]),eval(50)]. given #1168 (W,wt=14): 1181 board([3,6,8,2,5,7]). [hyper(2,a,630,a,b,5,a),rewrite([13,12]),eval(50)]. given #1169 (W,wt=14): 1182 board([4,1,8,2,5,7]). [hyper(2,a,631,a,b,6,a),rewrite([13,12]),eval(50)]. given #1170 (W,wt=14): 1183 board([3,1,8,2,5,7]). [hyper(2,a,631,a,b,5,a),rewrite([13,12]),eval(50)]. given #1171 (W,wt=14): 1184 board([3,1,6,2,5,7]). [hyper(2,a,632,a,b,5,a),rewrite([13,12]),eval(50)]. given #1172 (W,wt=14): 1185 board([3,6,8,1,5,7]). [hyper(2,a,633,a,b,5,a),rewrite([13,12]),eval(50)]. given #1173 (W,wt=14): 1186 board([6,2,5,8,4,7]). [hyper(2,a,636,a,b,8,a),rewrite([13,12]),eval(50)]. given #1174 (W,wt=14): 1187 board([1,5,8,6,4,7]). [hyper(2,a,639,a,b,3,a),rewrite([13,12]),eval(50)]. given #1175 (W,wt=14): 1188 board([5,2,8,6,4,7]). [hyper(2,a,640,a,b,7,a),rewrite([13,12]),eval(50)]. given #1176 (W,wt=14): 1189 board([3,6,8,2,4,7]). [hyper(2,a,643,a,b,5,a),rewrite([13,12]),eval(50)]. given #1177 (W,wt=14): 1190 board([1,6,8,2,4,7]). [hyper(2,a,643,a,b,3,a),rewrite([13,12]),eval(50)]. given #1178 (W,wt=14): 1191 board([3,5,8,2,4,7]). [hyper(2,a,644,a,b,5,a),rewrite([13,12]),eval(50)]. given #1179 (W,wt=14): 1192 board([1,5,8,2,4,7]). [hyper(2,a,644,a,b,3,a),rewrite([13,12]),eval(50)]. given #1180 (W,wt=14): 1193 board([6,8,5,2,4,7]). [hyper(2,a,645,a,b,8,a),rewrite([13,12]),eval(50)]. given #1181 (W,wt=14): 1194 board([1,8,5,2,4,7]). [hyper(2,a,645,a,b,3,a),rewrite([13,12]),eval(50)]. given #1182 (W,wt=14): 1195 board([3,6,8,1,4,7]). [hyper(2,a,646,a,b,5,a),rewrite([13,12]),eval(50)]. given #1183 (W,wt=14): 1196 board([3,5,8,1,4,7]). [hyper(2,a,647,a,b,5,a),rewrite([13,12]),eval(50)]. given #1184 (W,wt=14): 1197 board([5,2,8,1,4,7]). [hyper(2,a,648,a,b,7,a),rewrite([13,12]),eval(50)]. given #1185 (W,wt=14): 1198 board([6,8,5,1,4,7]). [hyper(2,a,649,a,b,8,a),rewrite([13,12]),eval(50)]. given #1186 (W,wt=14): 1199 board([6,2,5,1,4,7]). [hyper(2,a,650,a,b,8,a),rewrite([13,12]),eval(50)]. given #1187 (W,wt=14): 1200 board([6,8,3,1,4,7]). [hyper(2,a,651,a,b,8,a),rewrite([13,12]),eval(50)]. given #1188 (W,wt=14): 1201 board([1,4,6,8,3,7]). [hyper(2,a,654,a,b,3,a),rewrite([13,12]),eval(50)]. given #1189 (W,wt=14): 1202 board([1,5,2,8,3,7]). [hyper(2,a,657,a,b,3,a),rewrite([13,12]),eval(50)]. given #1190 (W,wt=14): 1203 board([6,4,2,8,3,7]). [hyper(2,a,658,a,b,8,a),rewrite([13,12]),eval(50)]. given #1191 (W,wt=14): 1204 board([1,4,2,8,3,7]). [hyper(2,a,658,a,b,3,a),rewrite([13,12]),eval(50)]. given #1192 (W,wt=14): 1205 board([1,5,8,6,3,7]). [hyper(2,a,659,a,b,3,a),rewrite([13,12]),eval(50)]. given #1193 (W,wt=14): 1206 board([5,2,8,6,3,7]). [hyper(2,a,660,a,b,7,a),rewrite([13,12]),eval(50)]. given #1194 (W,wt=14): 1207 board([4,2,8,6,3,7]). [hyper(2,a,660,a,b,6,a),rewrite([13,12]),eval(50)]. given #1195 (W,wt=14): 1208 board([5,1,8,6,3,7]). [hyper(2,a,661,a,b,7,a),rewrite([13,12]),eval(50)]. given #1196 (W,wt=14): 1209 board([4,1,8,6,3,7]). [hyper(2,a,661,a,b,6,a),rewrite([13,12]),eval(50)]. given #1197 (W,wt=14): 1210 board([8,5,2,6,3,7]). [hyper(2,a,662,a,b,10,a),rewrite([13,12]),eval(50)]. given #1198 (W,wt=14): 1211 board([1,5,2,6,3,7]). [hyper(2,a,662,a,b,3,a),rewrite([13,12]),eval(50)]. given #1199 (W,wt=14): 1212 board([5,2,8,1,3,7]). [hyper(2,a,665,a,b,7,a),rewrite([13,12]),eval(50)]. given #1200 (W,wt=14): 1213 board([5,8,6,1,3,7]). [hyper(2,a,666,a,b,7,a),rewrite([13,12]),eval(50)]. given #1201 (W,wt=14): 1214 board([5,2,6,1,3,7]). [hyper(2,a,668,a,b,7,a),rewrite([13,12]),eval(50)]. given #1202 (W,wt=14): 1215 board([1,4,6,8,2,7]). [hyper(2,a,669,a,b,3,a),rewrite([13,12]),eval(50)]. given #1203 (W,wt=14): 1216 board([3,1,6,8,2,7]). [hyper(2,a,670,a,b,5,a),rewrite([13,12]),eval(50)]. given #1204 (W,wt=14): 1217 board([4,1,5,8,2,7]). [hyper(2,a,671,a,b,6,a),rewrite([13,12]),eval(50)]. given #1205 (W,wt=14): 1218 board([4,1,3,8,2,7]). [hyper(2,a,672,a,b,6,a),rewrite([13,12]),eval(50)]. given #1206 (W,wt=14): 1219 board([5,1,8,6,2,7]). [hyper(2,a,674,a,b,7,a),rewrite([13,12]),eval(50)]. given #1207 (W,wt=14): 1220 board([4,1,8,6,2,7]). [hyper(2,a,674,a,b,6,a),rewrite([13,12]),eval(50)]. given #1208 (W,wt=14): 1221 board([8,1,3,6,2,7]). [hyper(2,a,675,a,b,10,a),rewrite([13,12]),eval(50)]. given #1209 (W,wt=14): 1222 board([4,1,3,6,2,7]). [hyper(2,a,675,a,b,6,a),rewrite([13,12]),eval(50)]. given #1210 (W,wt=14): 1223 board([5,1,8,4,2,7]). [hyper(2,a,676,a,b,7,a),rewrite([13,12]),eval(50)]. given #1211 (W,wt=14): 1224 board([3,1,8,4,2,7]). [hyper(2,a,676,a,b,5,a),rewrite([13,12]),eval(50)]. given #1212 (W,wt=14): 1225 board([5,8,6,4,2,7]). [hyper(2,a,677,a,b,7,a),rewrite([13,12]),eval(50)]. given #1213 (W,wt=14): 1226 board([3,8,6,4,2,7]). [hyper(2,a,677,a,b,5,a),rewrite([13,12]),eval(50)]. given #1214 (W,wt=14): 1227 board([5,1,6,4,2,7]). [hyper(2,a,678,a,b,7,a),rewrite([13,12]),eval(50)]. given #1215 (W,wt=14): 1228 board([3,1,6,4,2,7]). [hyper(2,a,678,a,b,5,a),rewrite([13,12]),eval(50)]. given #1216 (W,wt=14): 1229 board([5,8,1,4,2,7]). [hyper(2,a,679,a,b,7,a),rewrite([13,12]),eval(50)]. given #1217 (W,wt=14): 1230 board([6,2,5,8,1,7]). [hyper(2,a,681,a,b,8,a),rewrite([13,12]),eval(50)]. given #1218 (W,wt=14): 1231 board([4,2,5,8,1,7]). [hyper(2,a,681,a,b,6,a),rewrite([13,12]),eval(50)]. given #1219 (W,wt=14): 1232 board([3,5,2,8,1,7]). [hyper(2,a,682,a,b,5,a),rewrite([13,12]),eval(50)]. given #1220 (W,wt=14): 1233 board([4,2,8,6,1,7]). [hyper(2,a,684,a,b,6,a),rewrite([13,12]),eval(50)]. given #1221 (W,wt=14): 1234 board([8,5,2,6,1,7]). [hyper(2,a,685,a,b,10,a),rewrite([13,12]),eval(50)]. given #1222 (W,wt=14): 1235 board([3,5,8,4,1,7]). [hyper(2,a,686,a,b,5,a),rewrite([13,12]),eval(50)]. given #1223 (W,wt=14): 1236 board([3,8,6,4,1,7]). [hyper(2,a,687,a,b,5,a),rewrite([13,12]),eval(50)]. given #1224 (W,wt=14): 1237 board([6,8,2,4,1,7]). [hyper(2,a,688,a,b,8,a),rewrite([13,12]),eval(50)]. given #1225 (W,wt=14): 1238 board([3,8,2,4,1,7]). [hyper(2,a,688,a,b,5,a),rewrite([13,12]),eval(50)]. given #1226 (W,wt=14): 1239 board([8,5,2,4,1,7]). [hyper(2,a,689,a,b,10,a),rewrite([13,12]),eval(50)]. given #1227 (W,wt=14): 1240 board([3,5,2,4,1,7]). [hyper(2,a,689,a,b,5,a),rewrite([13,12]),eval(50)]. given #1228 (W,wt=14): 1241 board([4,6,8,3,1,7]). [hyper(2,a,690,a,b,6,a),rewrite([13,12]),eval(50)]. given #1229 (W,wt=14): 1242 board([4,2,8,3,1,7]). [hyper(2,a,691,a,b,6,a),rewrite([13,12]),eval(50)]. given #1230 (W,wt=14): 1243 board([4,8,5,3,1,7]). [hyper(2,a,694,a,b,6,a),rewrite([13,12]),eval(50)]. given #1231 (W,wt=14): 1244 board([8,2,5,3,1,7]). [hyper(2,a,695,a,b,10,a),rewrite([13,12]),eval(50)]. given #1232 (W,wt=14): 1245 board([4,2,5,3,1,7]). [hyper(2,a,695,a,b,6,a),rewrite([13,12]),eval(50)]. given #1233 (W,wt=14): 1246 board([3,1,7,5,8,6]). [hyper(2,a,697,a,b,5,a),rewrite([13,12]),eval(50)]. given #1234 (W,wt=14): 1247 board([7,4,2,5,8,6]). [hyper(2,a,698,a,b,9,a),rewrite([13,12]),eval(50)]. given #1235 (W,wt=14): 1248 board([7,4,1,5,8,6]). [hyper(2,a,699,a,b,9,a),rewrite([13,12]),eval(50)]. given #1236 (W,wt=14): 1249 board([2,4,7,3,8,6]). [hyper(2,a,700,a,b,4,a),rewrite([13,12]),eval(50)]. given #1237 (W,wt=14): 1250 board([2,7,5,3,8,6]). [hyper(2,a,701,a,b,4,a),rewrite([13,12]),eval(50)]. given #1238 (W,wt=14): 1251 board([5,7,1,3,8,6]). [hyper(2,a,702,a,b,7,a),rewrite([13,12]),eval(50)]. given #1239 (W,wt=14): 1252 board([2,7,1,3,8,6]). [hyper(2,a,702,a,b,4,a),rewrite([13,12]),eval(50)]. given #1240 (W,wt=14): 1253 board([7,4,1,3,8,6]). [hyper(2,a,703,a,b,9,a),rewrite([13,12]),eval(50)]. given #1241 (W,wt=14): 1254 board([2,4,1,3,8,6]). [hyper(2,a,703,a,b,4,a),rewrite([13,12]),eval(50)]. given #1242 (W,wt=14): 1255 board([3,1,7,2,8,6]). [hyper(2,a,705,a,b,5,a),rewrite([13,12]),eval(50)]. given #1243 (W,wt=14): 1256 board([3,7,4,2,8,6]). [hyper(2,a,709,a,b,5,a),rewrite([13,12]),eval(50)]. given #1244 (W,wt=14): 1257 board([7,1,4,2,8,6]). [hyper(2,a,710,a,b,9,a),rewrite([13,12]),eval(50)]. given #1245 (W,wt=14): 1258 board([3,1,4,2,8,6]). [hyper(2,a,710,a,b,5,a),rewrite([13,12]),eval(50)]. given #1246 (W,wt=14): 1259 board([2,4,7,1,8,6]). [hyper(2,a,711,a,b,4,a),rewrite([13,12]),eval(50)]. given #1247 (W,wt=14): 1260 board([2,7,5,1,8,6]). [hyper(2,a,712,a,b,4,a),rewrite([13,12]),eval(50)]. given #1248 (W,wt=14): 1261 board([5,7,4,1,8,6]). [hyper(2,a,713,a,b,7,a),rewrite([13,12]),eval(50)]. given #1249 (W,wt=14): 1262 board([3,7,4,1,8,6]). [hyper(2,a,713,a,b,5,a),rewrite([13,12]),eval(50)]. given #1250 (W,wt=14): 1263 board([2,8,5,7,4,6]). [hyper(2,a,714,a,b,4,a),rewrite([13,12]),eval(50)]. given #1251 (W,wt=14): 1264 board([5,8,1,7,4,6]). [hyper(2,a,716,a,b,7,a),rewrite([13,12]),eval(50)]. given #1252 (W,wt=14): 1265 board([2,8,1,7,4,6]). [hyper(2,a,716,a,b,4,a),rewrite([13,12]),eval(50)]. given #1253 (W,wt=14): 1266 board([5,3,1,7,4,6]). [hyper(2,a,717,a,b,7,a),rewrite([13,12]),eval(50)]. given #1254 (W,wt=14): 1267 board([7,5,8,2,4,6]). [hyper(2,a,718,a,b,9,a),rewrite([13,12]),eval(50)]. given #1255 (W,wt=14): 1268 board([3,5,8,2,4,6]). [hyper(2,a,718,a,b,5,a),rewrite([13,12]),eval(50)]. given #1256 (W,wt=14): 1269 board([7,3,8,2,4,6]). [hyper(2,a,719,a,b,9,a),rewrite([13,12]),eval(50)]. given #1257 (W,wt=14): 1270 board([3,5,7,2,4,6]). [hyper(2,a,720,a,b,5,a),rewrite([13,12]),eval(50)]. given #1258 (W,wt=14): 1271 board([7,5,8,1,4,6]). [hyper(2,a,724,a,b,9,a),rewrite([13,12]),eval(50)]. given #1259 (W,wt=14): 1272 board([3,5,8,1,4,6]). [hyper(2,a,724,a,b,5,a),rewrite([13,12]),eval(50)]. given #1260 (W,wt=14): 1273 board([2,5,8,1,4,6]). [hyper(2,a,724,a,b,4,a),rewrite([13,12]),eval(50)]. given #1261 (W,wt=14): 1274 board([3,5,7,1,4,6]). [hyper(2,a,725,a,b,5,a),rewrite([13,12]),eval(50)]. given #1262 (W,wt=14): 1275 board([2,5,7,1,4,6]). [hyper(2,a,725,a,b,4,a),rewrite([13,12]),eval(50)]. given #1263 (W,wt=14): 1276 board([2,8,5,1,4,6]). [hyper(2,a,726,a,b,4,a),rewrite([13,12]),eval(50)]. given #1264 (W,wt=14): 1277 board([5,8,4,7,3,6]). [hyper(2,a,727,a,b,7,a),rewrite([13,12]),eval(50)]. given #1265 (W,wt=14): 1278 board([8,1,4,7,3,6]). [hyper(2,a,728,a,b,10,a),rewrite([13,12]),eval(50)]. given #1266 (W,wt=14): 1279 board([5,1,4,7,3,6]). [hyper(2,a,728,a,b,7,a),rewrite([13,12]),eval(50)]. given #1267 (W,wt=14): 1280 board([5,8,2,7,3,6]). [hyper(2,a,729,a,b,7,a),rewrite([13,12]),eval(50)]. given #1268 (W,wt=14): 1281 board([8,4,2,7,3,6]). [hyper(2,a,730,a,b,10,a),rewrite([13,12]),eval(50)]. given #1269 (W,wt=14): 1282 board([4,1,8,5,3,6]). [hyper(2,a,732,a,b,6,a),rewrite([13,12]),eval(50)]. given #1270 (W,wt=14): 1283 board([4,1,7,5,3,6]). [hyper(2,a,734,a,b,6,a),rewrite([13,12]),eval(50)]. given #1271 (W,wt=14): 1284 board([2,5,8,1,3,6]). [hyper(2,a,737,a,b,4,a),rewrite([13,12]),eval(50)]. given #1272 (W,wt=14): 1285 board([2,4,8,1,3,6]). [hyper(2,a,738,a,b,4,a),rewrite([13,12]),eval(50)]. given #1273 (W,wt=14): 1286 board([8,5,7,1,3,6]). [hyper(2,a,739,a,b,10,a),rewrite([13,12]),eval(50)]. given #1274 (W,wt=14): 1287 board([2,5,7,1,3,6]). [hyper(2,a,739,a,b,4,a),rewrite([13,12]),eval(50)]. given #1275 (W,wt=14): 1288 board([8,4,7,1,3,6]). [hyper(2,a,740,a,b,10,a),rewrite([13,12]),eval(50)]. given #1276 (W,wt=14): 1289 board([2,4,7,1,3,6]). [hyper(2,a,740,a,b,4,a),rewrite([13,12]),eval(50)]. given #1277 (W,wt=14): 1290 board([5,8,4,1,3,6]). [hyper(2,a,741,a,b,7,a),rewrite([13,12]),eval(50)]. given #1278 (W,wt=14): 1291 board([5,7,4,1,3,6]). [hyper(2,a,742,a,b,7,a),rewrite([13,12]),eval(50)]. given #1279 (W,wt=14): 1292 board([8,3,5,7,2,6]). [hyper(2,a,744,a,b,10,a),rewrite([13,12]),eval(50)]. given #1280 (W,wt=14): 1293 board([8,1,5,7,2,6]). [hyper(2,a,745,a,b,10,a),rewrite([13,12]),eval(50)]. given #1281 (W,wt=14): 1294 board([5,8,1,7,2,6]). [hyper(2,a,746,a,b,7,a),rewrite([13,12]),eval(50)]. given #1282 (W,wt=14): 1295 board([8,4,1,7,2,6]). [hyper(2,a,747,a,b,10,a),rewrite([13,12]),eval(50)]. given #1283 (W,wt=14): 1296 board([8,3,1,7,2,6]). [hyper(2,a,748,a,b,10,a),rewrite([13,12]),eval(50)]. given #1284 (W,wt=14): 1297 board([5,3,1,7,2,6]). [hyper(2,a,748,a,b,7,a),rewrite([13,12]),eval(50)]. given #1285 (W,wt=14): 1298 board([7,4,8,5,2,6]). [hyper(2,a,749,a,b,9,a),rewrite([13,12]),eval(50)]. given #1286 (W,wt=14): 1299 board([7,1,8,5,2,6]). [hyper(2,a,750,a,b,9,a),rewrite([13,12]),eval(50)]. given #1287 (W,wt=14): 1300 board([4,1,8,5,2,6]). [hyper(2,a,750,a,b,6,a),rewrite([13,12]),eval(50)]. given #1288 (W,wt=14): 1301 board([3,1,8,5,2,6]). [hyper(2,a,750,a,b,5,a),rewrite([13,12]),eval(50)]. given #1289 (W,wt=14): 1302 board([4,1,7,5,2,6]). [hyper(2,a,752,a,b,6,a),rewrite([13,12]),eval(50)]. given #1290 (W,wt=14): 1303 board([3,1,7,5,2,6]). [hyper(2,a,752,a,b,5,a),rewrite([13,12]),eval(50)]. given #1291 (W,wt=14): 1304 board([4,8,1,5,2,6]). [hyper(2,a,753,a,b,6,a),rewrite([13,12]),eval(50)]. given #1292 (W,wt=14): 1305 board([7,4,1,5,2,6]). [hyper(2,a,754,a,b,9,a),rewrite([13,12]),eval(50)]. given #1293 (W,wt=14): 1306 board([2,8,5,7,1,6]). [hyper(2,a,755,a,b,4,a),rewrite([13,12]),eval(50)]. given #1294 (W,wt=14): 1307 board([8,3,5,7,1,6]). [hyper(2,a,756,a,b,10,a),rewrite([13,12]),eval(50)]. given #1295 (W,wt=14): 1308 board([3,8,4,7,1,6]). [hyper(2,a,757,a,b,5,a),rewrite([13,12]),eval(50)]. given #1296 (W,wt=14): 1309 board([3,8,2,7,1,6]). [hyper(2,a,758,a,b,5,a),rewrite([13,12]),eval(50)]. given #1297 (W,wt=14): 1310 board([3,8,2,5,1,6]). [hyper(2,a,759,a,b,5,a),rewrite([13,12]),eval(50)]. given #1298 (W,wt=14): 1311 board([4,8,5,3,1,6]). [hyper(2,a,760,a,b,6,a),rewrite([13,12]),eval(50)]. given #1299 (W,wt=14): 1312 board([2,8,5,3,1,6]). [hyper(2,a,760,a,b,4,a),rewrite([13,12]),eval(50)]. given #1300 (W,wt=14): 1313 board([4,7,5,3,1,6]). [hyper(2,a,761,a,b,6,a),rewrite([13,12]),eval(50)]. given #1301 (W,wt=14): 1314 board([2,7,5,3,1,6]). [hyper(2,a,761,a,b,4,a),rewrite([13,12]),eval(50)]. given #1302 (W,wt=14): 1315 board([1,7,4,6,8,5]). [hyper(2,a,762,a,b,3,a),rewrite([13,12]),eval(50)]. given #1303 (W,wt=14): 1316 board([7,2,4,6,8,5]). [hyper(2,a,763,a,b,9,a),rewrite([13,12]),eval(50)]. given #1304 (W,wt=14): 1317 board([2,7,3,6,8,5]). [hyper(2,a,764,a,b,4,a),rewrite([13,12]),eval(50)]. given #1305 (W,wt=14): 1318 board([2,7,1,6,8,5]). [hyper(2,a,765,a,b,4,a),rewrite([13,12]),eval(50)]. given #1306 (W,wt=14): 1319 board([7,3,1,6,8,5]). [hyper(2,a,766,a,b,9,a),rewrite([13,12]),eval(50)]. given #1307 (W,wt=14): 1320 board([6,3,7,4,8,5]). [hyper(2,a,767,a,b,8,a),rewrite([13,12]),eval(50)]. given #1308 (W,wt=14): 1321 board([2,7,1,4,8,5]). [hyper(2,a,768,a,b,4,a),rewrite([13,12]),eval(50)]. given #1309 (W,wt=14): 1322 board([6,3,1,4,8,5]). [hyper(2,a,769,a,b,8,a),rewrite([13,12]),eval(50)]. given #1310 (W,wt=14): 1323 board([6,3,7,2,8,5]). [hyper(2,a,770,a,b,8,a),rewrite([13,12]),eval(50)]. given #1311 (W,wt=14): 1324 board([1,3,7,2,8,5]). [hyper(2,a,770,a,b,3,a),rewrite([13,12]),eval(50)]. given #1312 (W,wt=14): 1325 board([3,7,4,2,8,5]). [hyper(2,a,771,a,b,5,a),rewrite([13,12]),eval(50)]. given #1313 (W,wt=14): 1326 board([1,7,4,2,8,5]). [hyper(2,a,771,a,b,3,a),rewrite([13,12]),eval(50)]. given #1314 (W,wt=14): 1327 board([3,6,4,2,8,5]). [hyper(2,a,772,a,b,5,a),rewrite([13,12]),eval(50)]. given #1315 (W,wt=14): 1328 board([1,6,4,2,8,5]). [hyper(2,a,772,a,b,3,a),rewrite([13,12]),eval(50)]. given #1316 (W,wt=14): 1329 board([6,4,7,1,8,5]). [hyper(2,a,773,a,b,8,a),rewrite([13,12]),eval(50)]. given #1317 (W,wt=14): 1330 board([2,4,7,1,8,5]). [hyper(2,a,773,a,b,4,a),rewrite([13,12]),eval(50)]. given #1318 (W,wt=14): 1331 board([6,2,7,1,8,5]). [hyper(2,a,774,a,b,8,a),rewrite([13,12]),eval(50)]. given #1319 (W,wt=14): 1332 board([3,7,4,1,8,5]). [hyper(2,a,775,a,b,5,a),rewrite([13,12]),eval(50)]. given #1320 (W,wt=14): 1333 board([3,6,4,1,8,5]). [hyper(2,a,776,a,b,5,a),rewrite([13,12]),eval(50)]. given #1321 (W,wt=14): 1334 board([7,2,4,1,8,5]). [hyper(2,a,777,a,b,9,a),rewrite([13,12]),eval(50)]. given #1322 (W,wt=14): 1335 board([2,7,3,1,8,5]). [hyper(2,a,778,a,b,4,a),rewrite([13,12]),eval(50)]. given #1323 (W,wt=14): 1336 board([2,6,3,1,8,5]). [hyper(2,a,779,a,b,4,a),rewrite([13,12]),eval(50)]. given #1324 (W,wt=14): 1337 board([2,8,6,4,7,5]). [hyper(2,a,780,a,b,4,a),rewrite([13,12]),eval(50)]. given #1325 (W,wt=14): 1338 board([6,8,1,4,7,5]). [hyper(2,a,782,a,b,8,a),rewrite([13,12]),eval(50)]. given #1326 (W,wt=14): 1339 board([2,8,1,4,7,5]). [hyper(2,a,782,a,b,4,a),rewrite([13,12]),eval(50)]. given #1327 (W,wt=14): 1340 board([8,3,1,4,7,5]). [hyper(2,a,783,a,b,10,a),rewrite([13,12]),eval(50)]. given #1328 (W,wt=14): 1341 board([6,3,1,4,7,5]). [hyper(2,a,783,a,b,8,a),rewrite([13,12]),eval(50)]. given #1329 (W,wt=14): 1342 board([1,8,6,2,7,5]). [hyper(2,a,784,a,b,3,a),rewrite([13,12]),eval(50)]. given #1330 (W,wt=14): 1343 board([1,3,6,2,7,5]). [hyper(2,a,785,a,b,3,a),rewrite([13,12]),eval(50)]. given #1331 (W,wt=14): 1344 board([1,8,4,2,7,5]). [hyper(2,a,786,a,b,3,a),rewrite([13,12]),eval(50)]. given #1332 (W,wt=14): 1345 board([8,6,4,2,7,5]). [hyper(2,a,787,a,b,10,a),rewrite([13,12]),eval(50)]. given #1333 (W,wt=14): 1346 board([1,6,4,2,7,5]). [hyper(2,a,787,a,b,3,a),rewrite([13,12]),eval(50)]. given #1334 (W,wt=14): 1347 board([2,8,6,1,7,5]). [hyper(2,a,788,a,b,4,a),rewrite([13,12]),eval(50)]. given #1335 (W,wt=14): 1348 board([8,6,4,1,7,5]). [hyper(2,a,791,a,b,10,a),rewrite([13,12]),eval(50)]. given #1336 (W,wt=14): 1349 board([8,2,4,1,7,5]). [hyper(2,a,792,a,b,10,a),rewrite([13,12]),eval(50)]. given #1337 (W,wt=14): 1350 board([6,8,3,1,7,5]). [hyper(2,a,793,a,b,8,a),rewrite([13,12]),eval(50)]. given #1338 (W,wt=14): 1351 board([2,8,3,1,7,5]). [hyper(2,a,793,a,b,4,a),rewrite([13,12]),eval(50)]. given #1339 (W,wt=14): 1352 board([8,6,3,1,7,5]). [hyper(2,a,794,a,b,10,a),rewrite([13,12]),eval(50)]. given #1340 (W,wt=14): 1353 board([2,6,3,1,7,5]). [hyper(2,a,794,a,b,4,a),rewrite([13,12]),eval(50)]. given #1341 (W,wt=14): 1354 board([2,4,6,8,3,5]). [hyper(2,a,795,a,b,4,a),rewrite([13,12]),eval(50)]. given #1342 (W,wt=14): 1355 board([1,4,6,8,3,5]). [hyper(2,a,795,a,b,3,a),rewrite([13,12]),eval(50)]. given #1343 (W,wt=14): 1356 board([1,7,4,8,3,5]). [hyper(2,a,797,a,b,3,a),rewrite([13,12]),eval(50)]. given #1344 (W,wt=14): 1357 board([1,7,4,6,3,5]). [hyper(2,a,799,a,b,3,a),rewrite([13,12]),eval(50)]. given #1345 (W,wt=14): 1358 board([8,2,4,6,3,5]). [hyper(2,a,800,a,b,10,a),rewrite([13,12]),eval(50)]. given #1346 (W,wt=14): 1359 board([8,4,7,1,3,5]). [hyper(2,a,801,a,b,10,a),rewrite([13,12]),eval(50)]. given #1347 (W,wt=14): 1360 board([6,4,7,1,3,5]). [hyper(2,a,801,a,b,8,a),rewrite([13,12]),eval(50)]. given #1348 (W,wt=14): 1361 board([2,4,7,1,3,5]). [hyper(2,a,801,a,b,4,a),rewrite([13,12]),eval(50)]. given #1349 (W,wt=14): 1362 board([8,2,7,1,3,5]). [hyper(2,a,802,a,b,10,a),rewrite([13,12]),eval(50)]. given #1350 (W,wt=14): 1363 board([6,2,7,1,3,5]). [hyper(2,a,802,a,b,8,a),rewrite([13,12]),eval(50)]. given #1351 (W,wt=14): 1364 board([2,8,6,1,3,5]). [hyper(2,a,803,a,b,4,a),rewrite([13,12]),eval(50)]. given #1352 (W,wt=14): 1365 board([2,4,6,1,3,5]). [hyper(2,a,804,a,b,4,a),rewrite([13,12]),eval(50)]. given #1353 (W,wt=14): 1366 board([8,2,4,1,3,5]). [hyper(2,a,808,a,b,10,a),rewrite([13,12]),eval(50)]. given #1354 (W,wt=14): 1367 board([7,4,6,8,2,5]). [hyper(2,a,809,a,b,9,a),rewrite([13,12]),eval(50)]. given #1355 (W,wt=14): 1368 board([1,4,6,8,2,5]). [hyper(2,a,809,a,b,3,a),rewrite([13,12]),eval(50)]. given #1356 (W,wt=14): 1369 board([7,3,6,8,2,5]). [hyper(2,a,810,a,b,9,a),rewrite([13,12]),eval(50)]. given #1357 (W,wt=14): 1370 board([1,3,6,8,2,5]). [hyper(2,a,810,a,b,3,a),rewrite([13,12]),eval(50)]. given #1358 (W,wt=14): 1371 board([4,7,3,8,2,5]). [hyper(2,a,811,a,b,6,a),rewrite([13,12]),eval(50)]. given #1359 (W,wt=14): 1372 board([4,7,1,8,2,5]). [hyper(2,a,812,a,b,6,a),rewrite([13,12]),eval(50)]. given #1360 (W,wt=14): 1373 board([7,4,1,8,2,5]). [hyper(2,a,813,a,b,9,a),rewrite([13,12]),eval(50)]. given #1361 (W,wt=14): 1374 board([7,3,1,8,2,5]). [hyper(2,a,814,a,b,9,a),rewrite([13,12]),eval(50)]. given #1362 (W,wt=14): 1375 board([4,7,3,6,2,5]). [hyper(2,a,815,a,b,6,a),rewrite([13,12]),eval(50)]. given #1363 (W,wt=14): 1376 board([4,7,1,6,2,5]). [hyper(2,a,816,a,b,6,a),rewrite([13,12]),eval(50)]. given #1364 (W,wt=14): 1377 board([8,3,1,6,2,5]). [hyper(2,a,817,a,b,10,a),rewrite([13,12]),eval(50)]. given #1365 (W,wt=14): 1378 board([7,3,1,6,2,5]). [hyper(2,a,817,a,b,9,a),rewrite([13,12]),eval(50)]. given #1366 (W,wt=14): 1379 board([8,3,7,4,2,5]). [hyper(2,a,818,a,b,10,a),rewrite([13,12]),eval(50)]. given #1367 (W,wt=14): 1380 board([3,8,6,4,2,5]). [hyper(2,a,819,a,b,5,a),rewrite([13,12]),eval(50)]. given #1368 (W,wt=14): 1381 board([8,3,1,4,2,5]). [hyper(2,a,823,a,b,10,a),rewrite([13,12]),eval(50)]. given #1369 (W,wt=14): 1382 board([7,3,6,8,1,5]). [hyper(2,a,824,a,b,9,a),rewrite([13,12]),eval(50)]. given #1370 (W,wt=14): 1383 board([7,2,6,8,1,5]). [hyper(2,a,825,a,b,9,a),rewrite([13,12]),eval(50)]. given #1371 (W,wt=14): 1384 board([3,7,4,8,1,5]). [hyper(2,a,826,a,b,5,a),rewrite([13,12]),eval(50)]. given #1372 (W,wt=14): 1385 board([7,2,4,8,1,5]). [hyper(2,a,827,a,b,9,a),rewrite([13,12]),eval(50)]. given #1373 (W,wt=14): 1386 board([8,2,4,6,1,5]). [hyper(2,a,829,a,b,10,a),rewrite([13,12]),eval(50)]. given #1374 (W,wt=14): 1387 board([7,2,4,6,1,5]). [hyper(2,a,829,a,b,9,a),rewrite([13,12]),eval(50)]. given #1375 (W,wt=14): 1388 board([8,3,7,4,1,5]). [hyper(2,a,830,a,b,10,a),rewrite([13,12]),eval(50)]. given #1376 (W,wt=14): 1389 board([6,3,7,4,1,5]). [hyper(2,a,830,a,b,8,a),rewrite([13,12]),eval(50)]. given #1377 (W,wt=14): 1390 board([3,8,6,4,1,5]). [hyper(2,a,831,a,b,5,a),rewrite([13,12]),eval(50)]. given #1378 (W,wt=14): 1391 board([2,8,6,4,1,5]). [hyper(2,a,831,a,b,4,a),rewrite([13,12]),eval(50)]. given #1379 (W,wt=14): 1392 board([7,1,3,5,8,4]). [hyper(2,a,834,a,b,9,a),rewrite([13,12]),eval(50)]. given #1380 (W,wt=14): 1393 board([6,1,3,5,8,4]). [hyper(2,a,834,a,b,8,a),rewrite([13,12]),eval(50)]. given #1381 (W,wt=14): 1394 board([3,6,2,5,8,4]). [hyper(2,a,835,a,b,5,a),rewrite([13,12]),eval(50)]. given #1382 (W,wt=14): 1395 board([1,6,2,5,8,4]). [hyper(2,a,835,a,b,3,a),rewrite([13,12]),eval(50)]. given #1383 (W,wt=14): 1396 board([2,7,5,3,8,4]). [hyper(2,a,836,a,b,4,a),rewrite([13,12]),eval(50)]. given #1384 (W,wt=14): 1397 board([1,7,5,3,8,4]). [hyper(2,a,836,a,b,3,a),rewrite([13,12]),eval(50)]. given #1385 (W,wt=14): 1398 board([2,7,5,1,8,4]). [hyper(2,a,838,a,b,4,a),rewrite([13,12]),eval(50)]. given #1386 (W,wt=14): 1399 board([6,2,5,1,8,4]). [hyper(2,a,839,a,b,8,a),rewrite([13,12]),eval(50)]. given #1387 (W,wt=14): 1400 board([2,7,3,1,8,4]). [hyper(2,a,840,a,b,4,a),rewrite([13,12]),eval(50)]. given #1388 (W,wt=14): 1401 board([2,6,3,1,8,4]). [hyper(2,a,841,a,b,4,a),rewrite([13,12]),eval(50)]. given #1389 (W,wt=14): 1402 board([1,6,8,5,7,4]). [hyper(2,a,842,a,b,3,a),rewrite([13,12]),eval(50)]. given #1390 (W,wt=14): 1403 board([6,1,3,5,7,4]). [hyper(2,a,846,a,b,8,a),rewrite([13,12]),eval(50)]. given #1391 (W,wt=14): 1404 board([1,6,2,5,7,4]). [hyper(2,a,847,a,b,3,a),rewrite([13,12]),eval(50)]. given #1392 (W,wt=14): 1405 board([2,6,8,3,7,4]). [hyper(2,a,848,a,b,4,a),rewrite([13,12]),eval(50)]. given #1393 (W,wt=14): 1406 board([1,6,8,3,7,4]). [hyper(2,a,848,a,b,3,a),rewrite([13,12]),eval(50)]. given #1394 (W,wt=14): 1407 board([5,2,8,3,7,4]). [hyper(2,a,849,a,b,7,a),rewrite([13,12]),eval(50)]. given #1395 (W,wt=14): 1408 board([5,2,6,3,7,4]). [hyper(2,a,850,a,b,7,a),rewrite([13,12]),eval(50)]. given #1396 (W,wt=14): 1409 board([2,6,8,1,7,4]). [hyper(2,a,851,a,b,4,a),rewrite([13,12]),eval(50)]. given #1397 (W,wt=14): 1410 board([2,5,8,1,7,4]). [hyper(2,a,852,a,b,4,a),rewrite([13,12]),eval(50)]. given #1398 (W,wt=14): 1411 board([5,2,8,1,7,4]). [hyper(2,a,853,a,b,7,a),rewrite([13,12]),eval(50)]. given #1399 (W,wt=14): 1412 board([5,2,6,1,7,4]). [hyper(2,a,854,a,b,7,a),rewrite([13,12]),eval(50)]. given #1400 (W,wt=14): 1413 board([8,6,3,1,7,4]). [hyper(2,a,855,a,b,10,a),rewrite([13,12]),eval(50)]. given #1401 (W,wt=14): 1414 board([2,6,3,1,7,4]). [hyper(2,a,855,a,b,4,a),rewrite([13,12]),eval(50)]. given #1402 (W,wt=14): 1415 board([8,5,3,1,7,4]). [hyper(2,a,856,a,b,10,a),rewrite([13,12]),eval(50)]. given #1403 (W,wt=14): 1416 board([2,5,3,1,7,4]). [hyper(2,a,856,a,b,4,a),rewrite([13,12]),eval(50)]. given #1404 (W,wt=14): 1417 board([1,7,5,8,6,4]). [hyper(2,a,857,a,b,3,a),rewrite([13,12]),eval(50)]. given #1405 (W,wt=14): 1418 board([7,5,3,8,6,4]). [hyper(2,a,861,a,b,9,a),rewrite([13,12]),eval(50)]. given #1406 (W,wt=14): 1419 board([7,1,3,8,6,4]). [hyper(2,a,862,a,b,9,a),rewrite([13,12]),eval(50)]. given #1407 (W,wt=14): 1420 board([3,7,2,8,6,4]). [hyper(2,a,863,a,b,5,a),rewrite([13,12]),eval(50)]. given #1408 (W,wt=14): 1421 board([1,7,2,8,6,4]). [hyper(2,a,863,a,b,3,a),rewrite([13,12]),eval(50)]. given #1409 (W,wt=14): 1422 board([7,5,2,8,6,4]). [hyper(2,a,864,a,b,9,a),rewrite([13,12]),eval(50)]. given #1410 (W,wt=14): 1423 board([3,5,2,8,6,4]). [hyper(2,a,864,a,b,5,a),rewrite([13,12]),eval(50)]. given #1411 (W,wt=14): 1424 board([1,5,2,8,6,4]). [hyper(2,a,864,a,b,3,a),rewrite([13,12]),eval(50)]. given #1412 (W,wt=14): 1425 board([1,7,5,3,6,4]). [hyper(2,a,865,a,b,3,a),rewrite([13,12]),eval(50)]. given #1413 (W,wt=14): 1426 board([8,2,5,3,6,4]). [hyper(2,a,866,a,b,10,a),rewrite([13,12]),eval(50)]. given #1414 (W,wt=14): 1427 board([8,2,5,1,6,4]). [hyper(2,a,868,a,b,10,a),rewrite([13,12]),eval(50)]. given #1415 (W,wt=14): 1428 board([8,5,3,1,6,4]). [hyper(2,a,870,a,b,10,a),rewrite([13,12]),eval(50)]. given #1416 (W,wt=14): 1429 board([7,5,3,1,6,4]). [hyper(2,a,870,a,b,9,a),rewrite([13,12]),eval(50)]. given #1417 (W,wt=14): 1430 board([7,3,6,8,2,4]). [hyper(2,a,871,a,b,9,a),rewrite([13,12]),eval(50)]. given #1418 (W,wt=14): 1431 board([1,3,6,8,2,4]). [hyper(2,a,871,a,b,3,a),rewrite([13,12]),eval(50)]. given #1419 (W,wt=14): 1432 board([7,1,6,8,2,4]). [hyper(2,a,872,a,b,9,a),rewrite([13,12]),eval(50)]. given #1420 (W,wt=14): 1433 board([3,1,6,8,2,4]). [hyper(2,a,872,a,b,5,a),rewrite([13,12]),eval(50)]. given #1421 (W,wt=14): 1434 board([1,7,5,8,2,4]). [hyper(2,a,873,a,b,3,a),rewrite([13,12]),eval(50)]. given #1422 (W,wt=14): 1435 board([1,3,5,8,2,4]). [hyper(2,a,874,a,b,3,a),rewrite([13,12]),eval(50)]. given #1423 (W,wt=14): 1436 board([7,1,3,8,2,4]). [hyper(2,a,877,a,b,9,a),rewrite([13,12]),eval(50)]. given #1424 (W,wt=14): 1437 board([8,3,5,7,2,4]). [hyper(2,a,878,a,b,10,a),rewrite([13,12]),eval(50)]. given #1425 (W,wt=14): 1438 board([1,3,5,7,2,4]). [hyper(2,a,878,a,b,3,a),rewrite([13,12]),eval(50)]. given #1426 (W,wt=14): 1439 board([8,1,5,7,2,4]). [hyper(2,a,879,a,b,10,a),rewrite([13,12]),eval(50)]. given #1427 (W,wt=14): 1440 board([8,6,3,7,2,4]). [hyper(2,a,880,a,b,10,a),rewrite([13,12]),eval(50)]. given #1428 (W,wt=14): 1441 board([8,1,3,7,2,4]). [hyper(2,a,881,a,b,10,a),rewrite([13,12]),eval(50)]. given #1429 (W,wt=14): 1442 board([3,6,8,5,2,4]). [hyper(2,a,882,a,b,5,a),rewrite([13,12]),eval(50)]. given #1430 (W,wt=14): 1443 board([1,6,8,5,2,4]). [hyper(2,a,882,a,b,3,a),rewrite([13,12]),eval(50)]. given #1431 (W,wt=14): 1444 board([7,1,8,5,2,4]). [hyper(2,a,883,a,b,9,a),rewrite([13,12]),eval(50)]. given #1432 (W,wt=14): 1445 board([3,1,8,5,2,4]). [hyper(2,a,883,a,b,5,a),rewrite([13,12]),eval(50)]. given #1433 (W,wt=14): 1446 board([7,1,3,5,2,4]). [hyper(2,a,885,a,b,9,a),rewrite([13,12]),eval(50)]. given #1434 (W,wt=14): 1447 board([7,3,6,8,1,4]). [hyper(2,a,886,a,b,9,a),rewrite([13,12]),eval(50)]. given #1435 (W,wt=14): 1448 board([7,2,6,8,1,4]). [hyper(2,a,887,a,b,9,a),rewrite([13,12]),eval(50)]. given #1436 (W,wt=14): 1449 board([2,7,5,8,1,4]). [hyper(2,a,888,a,b,4,a),rewrite([13,12]),eval(50)]. given #1437 (W,wt=14): 1450 board([6,3,5,8,1,4]). [hyper(2,a,889,a,b,8,a),rewrite([13,12]),eval(50)]. given #1438 (W,wt=14): 1451 board([6,2,5,8,1,4]). [hyper(2,a,890,a,b,8,a),rewrite([13,12]),eval(50)]. given #1439 (W,wt=14): 1452 board([3,7,2,8,1,4]). [hyper(2,a,891,a,b,5,a),rewrite([13,12]),eval(50)]. given #1440 (W,wt=14): 1453 board([7,5,2,8,1,4]). [hyper(2,a,892,a,b,9,a),rewrite([13,12]),eval(50)]. given #1441 (W,wt=14): 1454 board([3,5,2,8,1,4]). [hyper(2,a,892,a,b,5,a),rewrite([13,12]),eval(50)]. given #1442 (W,wt=14): 1455 board([8,3,5,7,1,4]). [hyper(2,a,893,a,b,10,a),rewrite([13,12]),eval(50)]. given #1443 (W,wt=14): 1456 board([6,3,5,7,1,4]). [hyper(2,a,893,a,b,8,a),rewrite([13,12]),eval(50)]. given #1444 (W,wt=14): 1457 board([8,2,5,7,1,4]). [hyper(2,a,894,a,b,10,a),rewrite([13,12]),eval(50)]. given #1445 (W,wt=14): 1458 board([6,2,5,7,1,4]). [hyper(2,a,894,a,b,8,a),rewrite([13,12]),eval(50)]. given #1446 (W,wt=14): 1459 board([8,6,2,7,1,4]). [hyper(2,a,895,a,b,10,a),rewrite([13,12]),eval(50)]. given #1447 (W,wt=14): 1460 board([3,6,2,7,1,4]). [hyper(2,a,895,a,b,5,a),rewrite([13,12]),eval(50)]. given #1448 (W,wt=14): 1461 board([3,6,8,5,1,4]). [hyper(2,a,896,a,b,5,a),rewrite([13,12]),eval(50)]. given #1449 (W,wt=14): 1462 board([7,2,8,5,1,4]). [hyper(2,a,897,a,b,9,a),rewrite([13,12]),eval(50)]. given #1450 (W,wt=14): 1463 board([3,6,2,5,1,4]). [hyper(2,a,898,a,b,5,a),rewrite([13,12]),eval(50)]. given #1451 (W,wt=14): 1464 board([2,6,8,3,1,4]). [hyper(2,a,899,a,b,4,a),rewrite([13,12]),eval(50)]. given #1452 (W,wt=14): 1465 board([7,2,8,3,1,4]). [hyper(2,a,900,a,b,9,a),rewrite([13,12]),eval(50)]. given #1453 (W,wt=14): 1466 board([7,2,6,3,1,4]). [hyper(2,a,901,a,b,9,a),rewrite([13,12]),eval(50)]. given #1454 (W,wt=14): 1467 board([2,7,5,3,1,4]). [hyper(2,a,902,a,b,4,a),rewrite([13,12]),eval(50)]. given #1455 (W,wt=14): 1468 board([8,2,5,3,1,4]). [hyper(2,a,903,a,b,10,a),rewrite([13,12]),eval(50)]. given #1456 (W,wt=14): 1469 board([7,2,4,6,8,3]). [hyper(2,a,904,a,b,9,a),rewrite([13,12]),eval(50)]. given #1457 (W,wt=14): 1470 board([5,2,4,6,8,3]). [hyper(2,a,904,a,b,7,a),rewrite([13,12]),eval(50)]. given #1458 (W,wt=14): 1471 board([7,1,4,6,8,3]). [hyper(2,a,905,a,b,9,a),rewrite([13,12]),eval(50)]. given #1459 (W,wt=14): 1472 board([5,1,4,6,8,3]). [hyper(2,a,905,a,b,7,a),rewrite([13,12]),eval(50)]. given #1460 (W,wt=14): 1473 board([6,1,7,4,8,3]). [hyper(2,a,906,a,b,8,a),rewrite([13,12]),eval(50)]. given #1461 (W,wt=14): 1474 board([6,1,7,2,8,3]). [hyper(2,a,907,a,b,8,a),rewrite([13,12]),eval(50)]. given #1462 (W,wt=14): 1475 board([6,1,5,2,8,3]). [hyper(2,a,908,a,b,8,a),rewrite([13,12]),eval(50)]. given #1463 (W,wt=14): 1476 board([1,6,4,2,8,3]). [hyper(2,a,909,a,b,3,a),rewrite([13,12]),eval(50)]. given #1464 (W,wt=14): 1477 board([7,1,4,2,8,3]). [hyper(2,a,910,a,b,9,a),rewrite([13,12]),eval(50)]. given #1465 (W,wt=14): 1478 board([2,5,8,4,7,3]). [hyper(2,a,911,a,b,4,a),rewrite([13,12]),eval(50)]. given #1466 (W,wt=14): 1479 board([5,1,8,4,7,3]). [hyper(2,a,912,a,b,7,a),rewrite([13,12]),eval(50)]. given #1467 (W,wt=14): 1480 board([6,8,2,4,7,3]). [hyper(2,a,913,a,b,8,a),rewrite([13,12]),eval(50)]. given #1468 (W,wt=14): 1481 board([5,8,2,4,7,3]). [hyper(2,a,913,a,b,7,a),rewrite([13,12]),eval(50)]. given #1469 (W,wt=14): 1482 board([6,8,1,4,7,3]). [hyper(2,a,915,a,b,8,a),rewrite([13,12]),eval(50)]. given #1470 (W,wt=14): 1483 board([5,8,1,4,7,3]). [hyper(2,a,915,a,b,7,a),rewrite([13,12]),eval(50)]. given #1471 (W,wt=14): 1484 board([2,8,1,4,7,3]). [hyper(2,a,915,a,b,4,a),rewrite([13,12]),eval(50)]. given #1472 (W,wt=14): 1485 board([2,5,1,4,7,3]). [hyper(2,a,916,a,b,4,a),rewrite([13,12]),eval(50)]. given #1473 (W,wt=14): 1486 board([4,6,8,2,7,3]). [hyper(2,a,917,a,b,6,a),rewrite([13,12]),eval(50)]. given #1474 (W,wt=14): 1487 board([1,6,8,2,7,3]). [hyper(2,a,917,a,b,3,a),rewrite([13,12]),eval(50)]. given #1475 (W,wt=14): 1488 board([1,5,8,2,7,3]). [hyper(2,a,918,a,b,3,a),rewrite([13,12]),eval(50)]. given #1476 (W,wt=14): 1489 board([4,1,8,2,7,3]). [hyper(2,a,919,a,b,6,a),rewrite([13,12]),eval(50)]. given #1477 (W,wt=14): 1490 board([1,8,4,2,7,3]). [hyper(2,a,920,a,b,3,a),rewrite([13,12]),eval(50)]. given #1478 (W,wt=14): 1491 board([1,6,4,2,7,3]). [hyper(2,a,921,a,b,3,a),rewrite([13,12]),eval(50)]. given #1479 (W,wt=14): 1492 board([4,2,5,8,6,3]). [hyper(2,a,923,a,b,6,a),rewrite([13,12]),eval(50)]. given #1480 (W,wt=14): 1493 board([4,1,5,8,6,3]). [hyper(2,a,924,a,b,6,a),rewrite([13,12]),eval(50)]. given #1481 (W,wt=14): 1494 board([7,5,2,8,6,3]). [hyper(2,a,925,a,b,9,a),rewrite([13,12]),eval(50)]. given #1482 (W,wt=14): 1495 board([1,5,2,8,6,3]). [hyper(2,a,925,a,b,3,a),rewrite([13,12]),eval(50)]. given #1483 (W,wt=14): 1496 board([7,4,2,8,6,3]). [hyper(2,a,926,a,b,9,a),rewrite([13,12]),eval(50)]. given #1484 (W,wt=14): 1497 board([1,4,2,8,6,3]). [hyper(2,a,926,a,b,3,a),rewrite([13,12]),eval(50)]. given #1485 (W,wt=14): 1498 board([7,5,1,8,6,3]). [hyper(2,a,927,a,b,9,a),rewrite([13,12]),eval(50)]. given #1486 (W,wt=14): 1499 board([7,4,1,8,6,3]). [hyper(2,a,928,a,b,9,a),rewrite([13,12]),eval(50)]. given #1487 (W,wt=14): 1500 board([5,8,2,4,6,3]). [hyper(2,a,931,a,b,7,a),rewrite([13,12]),eval(50)]. given #1488 (W,wt=14): 1501 board([5,8,1,4,6,3]). [hyper(2,a,933,a,b,7,a),rewrite([13,12]),eval(50)]. given #1489 (W,wt=14): 1502 board([1,5,7,2,6,3]). [hyper(2,a,935,a,b,3,a),rewrite([13,12]),eval(50)]. given #1490 (W,wt=14): 1503 board([4,1,7,2,6,3]). [hyper(2,a,936,a,b,6,a),rewrite([13,12]),eval(50)]. given #1491 (W,wt=14): 1504 board([4,8,5,2,6,3]). [hyper(2,a,937,a,b,6,a),rewrite([13,12]),eval(50)]. given #1492 (W,wt=14): 1505 board([1,8,5,2,6,3]). [hyper(2,a,937,a,b,3,a),rewrite([13,12]),eval(50)]. given #1493 (W,wt=14): 1506 board([4,1,5,2,6,3]). [hyper(2,a,938,a,b,6,a),rewrite([13,12]),eval(50)]. given #1494 (W,wt=14): 1507 board([7,1,4,8,5,3]). [hyper(2,a,939,a,b,9,a),rewrite([13,12]),eval(50)]. given #1495 (W,wt=14): 1508 board([7,4,2,8,5,3]). [hyper(2,a,940,a,b,9,a),rewrite([13,12]),eval(50)]. given #1496 (W,wt=14): 1509 board([6,4,2,8,5,3]). [hyper(2,a,940,a,b,8,a),rewrite([13,12]),eval(50)]. given #1497 (W,wt=14): 1510 board([7,4,1,8,5,3]). [hyper(2,a,941,a,b,9,a),rewrite([13,12]),eval(50)]. given #1498 (W,wt=14): 1511 board([6,4,1,8,5,3]). [hyper(2,a,941,a,b,8,a),rewrite([13,12]),eval(50)]. given #1499 (W,wt=14): 1512 board([2,4,1,8,5,3]). [hyper(2,a,941,a,b,4,a),rewrite([13,12]),eval(50)]. given #1500 (W,wt=14): 1513 board([6,4,2,7,5,3]). [hyper(2,a,945,a,b,8,a),rewrite([13,12]),eval(50)]. given #1501 (W,wt=14): 1514 board([2,6,1,7,5,3]). [hyper(2,a,946,a,b,4,a),rewrite([13,12]),eval(50)]. given #1502 (W,wt=14): 1515 board([6,4,1,7,5,3]). [hyper(2,a,947,a,b,8,a),rewrite([13,12]),eval(50)]. given #1503 (W,wt=14): 1516 board([2,4,1,7,5,3]). [hyper(2,a,947,a,b,4,a),rewrite([13,12]),eval(50)]. given #1504 (W,wt=14): 1517 board([4,6,8,2,5,3]). [hyper(2,a,948,a,b,6,a),rewrite([13,12]),eval(50)]. given #1505 (W,wt=14): 1518 board([7,1,8,2,5,3]). [hyper(2,a,949,a,b,9,a),rewrite([13,12]),eval(50)]. given #1506 (W,wt=14): 1519 board([4,1,8,2,5,3]). [hyper(2,a,949,a,b,6,a),rewrite([13,12]),eval(50)]. given #1507 (W,wt=14): 1520 board([7,1,4,2,5,3]). [hyper(2,a,951,a,b,9,a),rewrite([13,12]),eval(50)]. given #1508 (W,wt=14): 1521 board([6,2,5,8,1,3]). [hyper(2,a,952,a,b,8,a),rewrite([13,12]),eval(50)]. given #1509 (W,wt=14): 1522 board([4,2,5,8,1,3]). [hyper(2,a,952,a,b,6,a),rewrite([13,12]),eval(50)]. given #1510 (W,wt=14): 1523 board([7,2,4,8,1,3]). [hyper(2,a,953,a,b,9,a),rewrite([13,12]),eval(50)]. given #1511 (W,wt=14): 1524 board([7,5,2,8,1,3]). [hyper(2,a,954,a,b,9,a),rewrite([13,12]),eval(50)]. given #1512 (W,wt=14): 1525 board([6,8,5,7,1,3]). [hyper(2,a,955,a,b,8,a),rewrite([13,12]),eval(50)]. given #1513 (W,wt=14): 1526 board([2,8,5,7,1,3]). [hyper(2,a,955,a,b,4,a),rewrite([13,12]),eval(50)]. given #1514 (W,wt=14): 1527 board([6,2,5,7,1,3]). [hyper(2,a,956,a,b,8,a),rewrite([13,12]),eval(50)]. given #1515 (W,wt=14): 1528 board([6,8,2,7,1,3]). [hyper(2,a,960,a,b,8,a),rewrite([13,12]),eval(50)]. given #1516 (W,wt=14): 1529 board([7,5,8,6,1,3]). [hyper(2,a,962,a,b,9,a),rewrite([13,12]),eval(50)]. given #1517 (W,wt=14): 1530 board([2,5,8,6,1,3]). [hyper(2,a,962,a,b,4,a),rewrite([13,12]),eval(50)]. given #1518 (W,wt=14): 1531 board([7,2,8,6,1,3]). [hyper(2,a,963,a,b,9,a),rewrite([13,12]),eval(50)]. given #1519 (W,wt=14): 1532 board([4,2,8,6,1,3]). [hyper(2,a,963,a,b,6,a),rewrite([13,12]),eval(50)]. given #1520 (W,wt=14): 1533 board([7,2,4,6,1,3]). [hyper(2,a,964,a,b,9,a),rewrite([13,12]),eval(50)]. given #1521 (W,wt=14): 1534 board([7,5,2,6,1,3]). [hyper(2,a,965,a,b,9,a),rewrite([13,12]),eval(50)]. given #1522 (W,wt=14): 1535 board([2,5,8,4,1,3]). [hyper(2,a,966,a,b,4,a),rewrite([13,12]),eval(50)]. given #1523 (W,wt=14): 1536 board([2,5,7,4,1,3]). [hyper(2,a,967,a,b,4,a),rewrite([13,12]),eval(50)]. given #1524 (W,wt=14): 1537 board([6,8,2,4,1,3]). [hyper(2,a,968,a,b,8,a),rewrite([13,12]),eval(50)]. given #1525 (W,wt=14): 1538 board([5,7,4,6,8,2]). [hyper(2,a,970,a,b,7,a),rewrite([13,12]),eval(50)]. given #1526 (W,wt=14): 1539 board([1,7,4,6,8,2]). [hyper(2,a,970,a,b,3,a),rewrite([13,12]),eval(50)]. given #1527 (W,wt=14): 1540 board([5,1,4,6,8,2]). [hyper(2,a,971,a,b,7,a),rewrite([13,12]),eval(50)]. given #1528 (W,wt=14): 1541 board([5,7,1,6,8,2]). [hyper(2,a,974,a,b,7,a),rewrite([13,12]),eval(50)]. given #1529 (W,wt=14): 1542 board([5,3,1,6,8,2]). [hyper(2,a,975,a,b,7,a),rewrite([13,12]),eval(50)]. given #1530 (W,wt=14): 1543 board([6,4,7,5,8,2]). [hyper(2,a,976,a,b,8,a),rewrite([13,12]),eval(50)]. given #1531 (W,wt=14): 1544 board([1,4,7,5,8,2]). [hyper(2,a,976,a,b,3,a),rewrite([13,12]),eval(50)]. given #1532 (W,wt=14): 1545 board([6,1,7,5,8,2]). [hyper(2,a,977,a,b,8,a),rewrite([13,12]),eval(50)]. given #1533 (W,wt=14): 1546 board([3,1,7,5,8,2]). [hyper(2,a,977,a,b,5,a),rewrite([13,12]),eval(50)]. given #1534 (W,wt=14): 1547 board([6,1,3,5,8,2]). [hyper(2,a,978,a,b,8,a),rewrite([13,12]),eval(50)]. given #1535 (W,wt=14): 1548 board([6,4,1,5,8,2]). [hyper(2,a,979,a,b,8,a),rewrite([13,12]),eval(50)]. given #1536 (W,wt=14): 1549 board([1,4,7,3,8,2]). [hyper(2,a,980,a,b,3,a),rewrite([13,12]),eval(50)]. given #1537 (W,wt=14): 1550 board([5,7,1,3,8,2]). [hyper(2,a,981,a,b,7,a),rewrite([13,12]),eval(50)]. given #1538 (W,wt=14): 1551 board([6,4,7,1,8,2]). [hyper(2,a,983,a,b,8,a),rewrite([13,12]),eval(50)]. given #1539 (W,wt=14): 1552 board([5,7,4,1,8,2]). [hyper(2,a,984,a,b,7,a),rewrite([13,12]),eval(50)]. given #1540 (W,wt=14): 1553 board([3,7,4,1,8,2]). [hyper(2,a,984,a,b,5,a),rewrite([13,12]),eval(50)]. given #1541 (W,wt=14): 1554 board([4,1,8,5,7,2]). [hyper(2,a,986,a,b,6,a),rewrite([13,12]),eval(50)]. given #1542 (W,wt=14): 1555 board([6,8,3,5,7,2]). [hyper(2,a,987,a,b,8,a),rewrite([13,12]),eval(50)]. given #1543 (W,wt=14): 1556 board([4,8,3,5,7,2]). [hyper(2,a,987,a,b,6,a),rewrite([13,12]),eval(50)]. given #1544 (W,wt=14): 1557 board([6,1,3,5,7,2]). [hyper(2,a,988,a,b,8,a),rewrite([13,12]),eval(50)]. given #1545 (W,wt=14): 1558 board([4,1,3,5,7,2]). [hyper(2,a,988,a,b,6,a),rewrite([13,12]),eval(50)]. given #1546 (W,wt=14): 1559 board([6,8,1,5,7,2]). [hyper(2,a,989,a,b,8,a),rewrite([13,12]),eval(50)]. given #1547 (W,wt=14): 1560 board([4,8,1,5,7,2]). [hyper(2,a,989,a,b,6,a),rewrite([13,12]),eval(50)]. given #1548 (W,wt=14): 1561 board([5,8,6,3,7,2]). [hyper(2,a,990,a,b,7,a),rewrite([13,12]),eval(50)]. given #1549 (W,wt=14): 1562 board([1,8,6,3,7,2]). [hyper(2,a,990,a,b,3,a),rewrite([13,12]),eval(50)]. given #1550 (W,wt=14): 1563 board([5,8,1,3,7,2]). [hyper(2,a,991,a,b,7,a),rewrite([13,12]),eval(50)]. given #1551 (W,wt=14): 1564 board([4,8,1,3,7,2]). [hyper(2,a,991,a,b,6,a),rewrite([13,12]),eval(50)]. given #1552 (W,wt=14): 1565 board([5,8,6,1,7,2]). [hyper(2,a,993,a,b,7,a),rewrite([13,12]),eval(50)]. given #1553 (W,wt=14): 1566 board([5,8,4,1,7,2]). [hyper(2,a,994,a,b,7,a),rewrite([13,12]),eval(50)]. given #1554 (W,wt=14): 1567 board([6,8,3,1,7,2]). [hyper(2,a,995,a,b,8,a),rewrite([13,12]),eval(50)]. given #1555 (W,wt=14): 1568 board([8,5,3,1,7,2]). [hyper(2,a,996,a,b,10,a),rewrite([13,12]),eval(50)]. given #1556 (W,wt=14): 1569 board([4,7,3,8,6,2]). [hyper(2,a,997,a,b,6,a),rewrite([13,12]),eval(50)]. given #1557 (W,wt=14): 1570 board([4,1,3,8,6,2]). [hyper(2,a,999,a,b,6,a),rewrite([13,12]),eval(50)]. given #1558 (W,wt=14): 1571 board([4,7,1,8,6,2]). [hyper(2,a,1000,a,b,6,a),rewrite([13,12]),eval(50)]. given #1559 (W,wt=14): 1572 board([8,4,7,3,6,2]). [hyper(2,a,1003,a,b,10,a),rewrite([13,12]),eval(50)]. given #1560 (W,wt=14): 1573 board([1,4,7,3,6,2]). [hyper(2,a,1003,a,b,3,a),rewrite([13,12]),eval(50)]. given #1561 (W,wt=14): 1574 board([5,8,1,3,6,2]). [hyper(2,a,1004,a,b,7,a),rewrite([13,12]),eval(50)]. given #1562 (W,wt=14): 1575 board([4,8,1,3,6,2]). [hyper(2,a,1004,a,b,6,a),rewrite([13,12]),eval(50)]. given #1563 (W,wt=14): 1576 board([5,7,1,3,6,2]). [hyper(2,a,1005,a,b,7,a),rewrite([13,12]),eval(50)]. given #1564 (W,wt=14): 1577 board([4,7,1,3,6,2]). [hyper(2,a,1005,a,b,6,a),rewrite([13,12]),eval(50)]. given #1565 (W,wt=14): 1578 board([8,4,1,3,6,2]). [hyper(2,a,1006,a,b,10,a),rewrite([13,12]),eval(50)]. given #1566 (W,wt=14): 1579 board([8,5,7,1,6,2]). [hyper(2,a,1007,a,b,10,a),rewrite([13,12]),eval(50)]. given #1567 (W,wt=14): 1580 board([3,5,7,1,6,2]). [hyper(2,a,1007,a,b,5,a),rewrite([13,12]),eval(50)]. given #1568 (W,wt=14): 1581 board([8,4,7,1,6,2]). [hyper(2,a,1008,a,b,10,a),rewrite([13,12]),eval(50)]. given #1569 (W,wt=14): 1582 board([8,5,3,1,6,2]). [hyper(2,a,1011,a,b,10,a),rewrite([13,12]),eval(50)]. given #1570 (W,wt=14): 1583 board([3,1,6,8,5,2]). [hyper(2,a,1014,a,b,5,a),rewrite([13,12]),eval(50)]. given #1571 (W,wt=14): 1584 board([3,7,4,8,5,2]). [hyper(2,a,1015,a,b,5,a),rewrite([13,12]),eval(50)]. given #1572 (W,wt=14): 1585 board([3,1,4,8,5,2]). [hyper(2,a,1016,a,b,5,a),rewrite([13,12]),eval(50)]. given #1573 (W,wt=14): 1586 board([4,7,1,8,5,2]). [hyper(2,a,1017,a,b,6,a),rewrite([13,12]),eval(50)]. given #1574 (W,wt=14): 1587 board([6,4,1,8,5,2]). [hyper(2,a,1018,a,b,8,a),rewrite([13,12]),eval(50)]. given #1575 (W,wt=14): 1588 board([6,3,1,8,5,2]). [hyper(2,a,1019,a,b,8,a),rewrite([13,12]),eval(50)]. given #1576 (W,wt=14): 1589 board([8,1,4,7,5,2]). [hyper(2,a,1020,a,b,10,a),rewrite([13,12]),eval(50)]. given #1577 (W,wt=14): 1590 board([3,1,4,7,5,2]). [hyper(2,a,1020,a,b,5,a),rewrite([13,12]),eval(50)]. given #1578 (W,wt=14): 1591 board([8,4,1,7,5,2]). [hyper(2,a,1021,a,b,10,a),rewrite([13,12]),eval(50)]. given #1579 (W,wt=14): 1592 board([6,4,1,7,5,2]). [hyper(2,a,1021,a,b,8,a),rewrite([13,12]),eval(50)]. given #1580 (W,wt=14): 1593 board([8,3,1,7,5,2]). [hyper(2,a,1022,a,b,10,a),rewrite([13,12]),eval(50)]. given #1581 (W,wt=14): 1594 board([6,3,1,7,5,2]). [hyper(2,a,1022,a,b,8,a),rewrite([13,12]),eval(50)]. given #1582 (W,wt=14): 1595 board([4,7,1,3,5,2]). [hyper(2,a,1025,a,b,6,a),rewrite([13,12]),eval(50)]. given #1583 (W,wt=14): 1596 board([8,4,1,3,5,2]). [hyper(2,a,1026,a,b,10,a),rewrite([13,12]),eval(50)]. given #1584 (W,wt=14): 1597 board([3,7,4,1,5,2]). [hyper(2,a,1029,a,b,5,a),rewrite([13,12]),eval(50)]. given #1585 (W,wt=14): 1598 board([6,3,1,8,4,2]). [hyper(2,a,1032,a,b,8,a),rewrite([13,12]),eval(50)]. given #1586 (W,wt=14): 1599 board([6,8,3,7,4,2]). [hyper(2,a,1033,a,b,8,a),rewrite([13,12]),eval(50)]. given #1587 (W,wt=14): 1600 board([6,8,1,7,4,2]). [hyper(2,a,1034,a,b,8,a),rewrite([13,12]),eval(50)]. given #1588 (W,wt=14): 1601 board([5,8,1,7,4,2]). [hyper(2,a,1034,a,b,7,a),rewrite([13,12]),eval(50)]. given #1589 (W,wt=14): 1602 board([6,3,1,7,4,2]). [hyper(2,a,1035,a,b,8,a),rewrite([13,12]),eval(50)]. given #1590 (W,wt=14): 1603 board([5,3,1,7,4,2]). [hyper(2,a,1035,a,b,7,a),rewrite([13,12]),eval(50)]. given #1591 (W,wt=14): 1604 board([1,5,8,6,4,2]). [hyper(2,a,1036,a,b,3,a),rewrite([13,12]),eval(50)]. given #1592 (W,wt=14): 1605 board([5,3,8,6,4,2]). [hyper(2,a,1037,a,b,7,a),rewrite([13,12]),eval(50)]. given #1593 (W,wt=14): 1606 board([1,3,8,6,4,2]). [hyper(2,a,1037,a,b,3,a),rewrite([13,12]),eval(50)]. given #1594 (W,wt=14): 1607 board([5,3,1,6,4,2]). [hyper(2,a,1040,a,b,7,a),rewrite([13,12]),eval(50)]. given #1595 (W,wt=14): 1608 board([3,5,8,1,4,2]). [hyper(2,a,1041,a,b,5,a),rewrite([13,12]),eval(50)]. given #1596 (W,wt=14): 1609 board([3,5,7,1,4,2]). [hyper(2,a,1042,a,b,5,a),rewrite([13,12]),eval(50)]. given #1597 (W,wt=14): 1610 board([6,8,3,1,4,2]). [hyper(2,a,1043,a,b,8,a),rewrite([13,12]),eval(50)]. given #1598 (W,wt=14): 1611 board([2,7,3,6,8,1]). [hyper(2,a,1045,a,b,4,a),rewrite([13,12]),eval(50)]. given #1599 (W,wt=14): 1612 board([5,7,2,6,8,1]). [hyper(2,a,1046,a,b,7,a),rewrite([13,12]),eval(50)]. given #1600 (W,wt=14): 1613 board([3,6,2,5,8,1]). [hyper(2,a,1050,a,b,5,a),rewrite([13,12]),eval(50)]. given #1601 (W,wt=14): 1614 board([7,4,2,5,8,1]). [hyper(2,a,1051,a,b,9,a),rewrite([13,12]),eval(50)]. given #1602 (W,wt=14): 1615 board([5,7,2,4,8,1]). [hyper(2,a,1053,a,b,7,a),rewrite([13,12]),eval(50)]. given #1603 (W,wt=14): 1616 board([3,7,2,4,8,1]). [hyper(2,a,1053,a,b,5,a),rewrite([13,12]),eval(50)]. given #1604 (W,wt=14): 1617 board([4,6,8,5,7,1]). [hyper(2,a,1057,a,b,6,a),rewrite([13,12]),eval(50)]. given #1605 (W,wt=14): 1618 board([4,2,8,5,7,1]). [hyper(2,a,1058,a,b,6,a),rewrite([13,12]),eval(50)]. given #1606 (W,wt=14): 1619 board([4,8,3,5,7,1]). [hyper(2,a,1059,a,b,6,a),rewrite([13,12]),eval(50)]. given #1607 (W,wt=14): 1620 board([4,6,3,5,7,1]). [hyper(2,a,1060,a,b,6,a),rewrite([13,12]),eval(50)]. given #1608 (W,wt=14): 1621 board([5,3,8,4,7,1]). [hyper(2,a,1063,a,b,7,a),rewrite([13,12]),eval(50)]. given #1609 (W,wt=14): 1622 board([5,8,6,4,7,1]). [hyper(2,a,1064,a,b,7,a),rewrite([13,12]),eval(50)]. given #1610 (W,wt=14): 1623 board([2,8,6,4,7,1]). [hyper(2,a,1064,a,b,4,a),rewrite([13,12]),eval(50)]. given #1611 (W,wt=14): 1624 board([5,3,6,4,7,1]). [hyper(2,a,1065,a,b,7,a),rewrite([13,12]),eval(50)]. given #1612 (W,wt=14): 1625 board([5,8,2,4,7,1]). [hyper(2,a,1066,a,b,7,a),rewrite([13,12]),eval(50)]. given #1613 (W,wt=14): 1626 board([4,6,8,2,7,1]). [hyper(2,a,1067,a,b,6,a),rewrite([13,12]),eval(50)]. given #1614 (W,wt=14): 1627 board([4,7,5,8,6,1]). [hyper(2,a,1071,a,b,6,a),rewrite([13,12]),eval(50)]. given #1615 (W,wt=14): 1628 board([4,2,5,8,6,1]). [hyper(2,a,1072,a,b,6,a),rewrite([13,12]),eval(50)]. given #1616 (W,wt=14): 1629 board([4,7,3,8,6,1]). [hyper(2,a,1073,a,b,6,a),rewrite([13,12]),eval(50)]. given #1617 (W,wt=14): 1630 board([3,7,2,8,6,1]). [hyper(2,a,1074,a,b,5,a),rewrite([13,12]),eval(50)]. given #1618 (W,wt=14): 1631 board([7,4,2,8,6,1]). [hyper(2,a,1075,a,b,9,a),rewrite([13,12]),eval(50)]. given #1619 (W,wt=14): 1632 board([5,8,2,4,6,1]). [hyper(2,a,1076,a,b,7,a),rewrite([13,12]),eval(50)]. given #1620 (W,wt=14): 1633 board([3,8,2,4,6,1]). [hyper(2,a,1076,a,b,5,a),rewrite([13,12]),eval(50)]. given #1621 (W,wt=14): 1634 board([5,7,2,4,6,1]). [hyper(2,a,1077,a,b,7,a),rewrite([13,12]),eval(50)]. given #1622 (W,wt=14): 1635 board([3,7,2,4,6,1]). [hyper(2,a,1077,a,b,5,a),rewrite([13,12]),eval(50)]. given #1623 (W,wt=14): 1636 board([4,8,5,2,6,1]). [hyper(2,a,1078,a,b,6,a),rewrite([13,12]),eval(50)]. given #1624 (W,wt=14): 1637 board([4,7,5,2,6,1]). [hyper(2,a,1079,a,b,6,a),rewrite([13,12]),eval(50)]. given #1625 (W,wt=14): 1638 board([7,4,6,8,5,1]). [hyper(2,a,1080,a,b,9,a),rewrite([13,12]),eval(50)]. given #1626 (W,wt=14): 1639 board([2,4,6,8,5,1]). [hyper(2,a,1080,a,b,4,a),rewrite([13,12]),eval(50)]. given #1627 (W,wt=14): 1640 board([7,3,6,8,5,1]). [hyper(2,a,1081,a,b,9,a),rewrite([13,12]),eval(50)]. given #1628 (W,wt=14): 1641 board([3,7,2,8,5,1]). [hyper(2,a,1082,a,b,5,a),rewrite([13,12]),eval(50)]. given #1629 (W,wt=14): 1642 board([7,4,2,8,5,1]). [hyper(2,a,1083,a,b,9,a),rewrite([13,12]),eval(50)]. given #1630 (W,wt=14): 1643 board([8,6,2,7,5,1]). [hyper(2,a,1084,a,b,10,a),rewrite([13,12]),eval(50)]. given #1631 (W,wt=14): 1644 board([3,6,2,7,5,1]). [hyper(2,a,1084,a,b,5,a),rewrite([13,12]),eval(50)]. given #1632 (W,wt=14): 1645 board([8,4,2,7,5,1]). [hyper(2,a,1085,a,b,10,a),rewrite([13,12]),eval(50)]. given #1633 (W,wt=14): 1646 board([4,6,8,2,5,1]). [hyper(2,a,1086,a,b,6,a),rewrite([13,12]),eval(50)]. given #1634 (W,wt=14): 1647 board([3,6,8,2,5,1]). [hyper(2,a,1086,a,b,5,a),rewrite([13,12]),eval(50)]. given #1635 (W,wt=14): 1648 board([7,3,8,2,5,1]). [hyper(2,a,1087,a,b,9,a),rewrite([13,12]),eval(50)]. given #1636 (W,wt=14): 1649 board([7,3,6,2,5,1]). [hyper(2,a,1088,a,b,9,a),rewrite([13,12]),eval(50)]. given #1637 (W,wt=14): 1650 board([2,8,5,7,4,1]). [hyper(2,a,1091,a,b,4,a),rewrite([13,12]),eval(50)]. given #1638 (W,wt=14): 1651 board([2,8,3,7,4,1]). [hyper(2,a,1094,a,b,4,a),rewrite([13,12]),eval(50)]. given #1639 (W,wt=14): 1652 board([2,6,3,7,4,1]). [hyper(2,a,1095,a,b,4,a),rewrite([13,12]),eval(50)]. given #1640 (W,wt=14): 1653 board([7,3,8,6,4,1]). [hyper(2,a,1096,a,b,9,a),rewrite([13,12]),eval(50)]. given #1641 (W,wt=14): 1654 board([5,3,8,6,4,1]). [hyper(2,a,1096,a,b,7,a),rewrite([13,12]),eval(50)]. given #1642 (W,wt=14): 1655 board([7,2,8,6,4,1]). [hyper(2,a,1097,a,b,9,a),rewrite([13,12]),eval(50)]. given #1643 (W,wt=14): 1656 board([5,2,8,6,4,1]). [hyper(2,a,1097,a,b,7,a),rewrite([13,12]),eval(50)]. given #1644 (W,wt=14): 1657 board([3,6,8,2,4,1]). [hyper(2,a,1098,a,b,5,a),rewrite([13,12]),eval(50)]. given #1645 (W,wt=14): 1658 board([7,3,8,2,4,1]). [hyper(2,a,1099,a,b,9,a),rewrite([13,12]),eval(50)]. given #1646 (W,wt=14): 1659 board([2,4,6,8,3,1]). [hyper(2,a,1103,a,b,4,a),rewrite([13,12]),eval(50)]. given #1647 (W,wt=14): 1660 board([5,8,2,7,3,1]). [hyper(2,a,1107,a,b,7,a),rewrite([13,12]),eval(50)]. given #1648 (W,wt=14): 1661 board([8,4,2,7,3,1]). [hyper(2,a,1108,a,b,10,a),rewrite([13,12]),eval(50)]. given #1649 (W,wt=14): 1662 board([5,2,8,6,3,1]). [hyper(2,a,1109,a,b,7,a),rewrite([13,12]),eval(50)]. given #1650 (W,wt=14): 1663 board([4,2,8,6,3,1]). [hyper(2,a,1109,a,b,6,a),rewrite([13,12]),eval(50)]. given #1651 (W,wt=14): 1664 board([5,7,2,6,3,1]). [hyper(2,a,1110,a,b,7,a),rewrite([13,12]),eval(50)]. given #1652 (W,wt=14): 1665 board([4,2,8,5,3,1]). [hyper(2,a,1112,a,b,6,a),rewrite([13,12]),eval(50)]. given #1653 (W,wt=14): 1666 board([4,2,7,5,3,1]). [hyper(2,a,1114,a,b,6,a),rewrite([13,12]),eval(50)]. given #1654 (W,wt=16): 1667 board([3,5,7,2,4,6,8]). [hyper(2,a,1117,a,b,5,a),rewrite([13,12]),eval(60)]. given #1655 (W,wt=16): 1668 board([3,5,7,1,4,6,8]). [hyper(2,a,1118,a,b,5,a),rewrite([13,12]),eval(60)]. given #1656 (W,wt=16): 1669 board([4,7,5,3,1,6,8]). [hyper(2,a,1124,a,b,6,a),rewrite([13,12]),eval(60)]. given #1657 (W,wt=16): 1670 board([6,4,7,1,3,5,8]). [hyper(2,a,1127,a,b,8,a),rewrite([13,12]),eval(60)]. given #1658 (W,wt=16): 1671 board([6,2,7,1,3,5,8]). [hyper(2,a,1128,a,b,8,a),rewrite([13,12]),eval(60)]. given #1659 (W,wt=16): 1672 board([4,7,3,6,2,5,8]). [hyper(2,a,1131,a,b,6,a),rewrite([13,12]),eval(60)]. given #1660 (W,wt=16): 1673 board([4,7,1,6,2,5,8]). [hyper(2,a,1132,a,b,6,a),rewrite([13,12]),eval(60)]. given #1661 (W,wt=16): 1674 board([5,2,6,3,7,4,8]). [hyper(2,a,1134,a,b,7,a),rewrite([13,12]),eval(60)]. given #1662 (W,wt=16): 1675 board([5,2,6,1,7,4,8]). [hyper(2,a,1135,a,b,7,a),rewrite([13,12]),eval(60)]. given #1663 (W,wt=16): 1676 board([6,2,5,7,1,4,8]). [hyper(2,a,1141,a,b,8,a),rewrite([13,12]),eval(60)]. given #1664 (W,wt=16): 1677 board([3,6,2,7,1,4,8]). [hyper(2,a,1142,a,b,5,a),rewrite([13,12]),eval(60)]. given #1665 (W,wt=16): 1678 board([7,2,6,3,1,4,8]). [hyper(2,a,1143,a,b,9,a),rewrite([13,12]),eval(60)]. ============================== PROOF ================================= % Proof 1 at 0.35 (+ 0.01) seconds: [5,7,2,6,3,1,4,8]. % Length of proof is 23. % Level of proof is 10. % Maximum clause weight is 18. % Given clauses 1665. 1 board(B) & pick(New_col) & ok(B,1,New_col) -> board([New_col:B]) # label(non_clause). [assumption]. 2 -board(A) | -pick(B) | -ok(A,1,B) | board([B:A]). [clausify(1)]. 3 pick(1). [assumption]. 4 pick(2). [assumption]. 5 pick(3). [assumption]. 6 pick(4). [assumption]. 7 pick(5). [assumption]. 8 pick(6). [assumption]. 9 pick(7). [assumption]. 10 pick(8). [assumption]. 11 -board([A,B,C,D,E,F,V6,V7]) # answer([A,B,C,D,E,F,V6,V7]). [assumption]. 12 ok([],A,B) <-> $T. [assumption]. 13 ok([A:B],C,D) <-> -(A == D) & -(A + -C == D) & -(A + C == D) & ok(B,C + 1,D). [assumption]. 14 board([]). [assumption]. 15 board([8]). [hyper(2,a,14,a,b,10,a),rewrite([12])]. 25 board([4,8]). [hyper(2,a,15,a,b,6,a),rewrite([13,12]),eval(10)]. 75 board([1,4,8]). [hyper(2,a,25,a,b,3,a),rewrite([13,12]),eval(20)]. 226 board([3,1,4,8]). [hyper(2,a,75,a,b,5,a),rewrite([13,12]),eval(30)]. 584 board([6,3,1,4,8]). [hyper(2,a,226,a,b,8,a),rewrite([13,12]),eval(40)]. 1143 board([2,6,3,1,4,8]). [hyper(2,a,584,a,b,4,a),rewrite([13,12]),eval(50)]. 1678 board([7,2,6,3,1,4,8]). [hyper(2,a,1143,a,b,9,a),rewrite([13,12]),eval(60)]. 1979 board([5,7,2,6,3,1,4,8]). [hyper(2,a,1678,a,b,7,a),rewrite([13,12]),eval(70)]. 1980 $F # answer([5,7,2,6,3,1,4,8]). [resolve(1979,a,11,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=1665. Generated=13317. Kept=1966. proofs=1. Usable=1675. Sos=300. Demods=2. Limbo=0, Disabled=1. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=11351. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=1.25. User_CPU=0.35, System_CPU=0.01, Wall_clock=1. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15899 exit (max_proofs) Wed Feb 25 12:26:33 2009 prover9-manual-2009-02A/prover9-5a-256t.gif0000644000175000017500000000475610655704441017275 0ustar mccunemccuneGIF89aX„'''777GGGXXXhhhwww‡‡‡———¨¨¨···ÉÉÉØØØèèèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!þCreated with The GIMP!ù ,Xþà#Ždižhª®lë¾p,Ïtmßx®ï|ïÿÀ pH,ȤrÉl:ŸÐ¨tJ­Z¯'…  ذ8Ê8 ¸0QÞoAÂ1®Û…ƒ3 {|ptw‰Š4 ƒ„}j0 ‹™š*•1 žŸ ˆ›¨‹ ¥„§-­€©·u£³„ /»–½¸ÃV À-Æ|³ ÄÓQ» ”…’(ž"Ö³ÒÔçJ¿­Ñ#ž+ $ ¬­ÉèùD³¶"•V,°T¿R—ô)üAî“¡‚•þéDR|„-ÜxCB#⹂eB$!’"þ!”ȱå ]Ÿje±„’DƒJ éa|3Ï¥ÏßJ ¨ùÀ#Ÿ+T2w‚Á¶J~JMA@(Ñù¼[A*jŠO!u›:uY%WT%ÔS…:>áT8xË–¬Ý;ñ© ¥7…Y8[Wd%Ô×®ËÁ| ŸP*–ÅÍŠ,ØiاIBZ\~ƒ´)–(ðVR\Y]ÀiG(€—Åd8˜”U \Z¡èÆ-ÂÉÜ1¯-ÖŠ][Ÿïß/„ÃaºÂ(œÖŽÏWHJ@j¤r¦ØÜÆñëÓ3qÀ|Åã£à%úk%âá‰éŽcuݯßÀgqyüiʽAZ óÀ› ¾þØEpÙÔÞX0Ëg0äG ñÃz€‰£Ž <! \Ô‡WŒñÑ– •Œe^%é‰_g îãˆD4 €œp %h§Â|=`"âxÄ’<©‘âr0èQ(2œ€‚,8t¹b¤“Fd@až¸¨Â„É`ŸV(p€š%d¨˜J|ìGf^ àâit’ €õF“¡¹ñH=œÀƒƒY7‘'cîÉ!2™pÛå…”{`f’CVBJ @Àªa i¢„jéµ;«0@«œ¹‚å üìtL$ð<¢šP©a" ¦©½9l¯yþÒ@Ñ Â– 5ºúÂ\odiÙs@z›ö¯»`ûÆ%(zå´è‰‚—\Þ‹ÌtZ.;B~þŽp4W®˜¥¯ÙÒ©[ÃÉÕŸ·Iá’Zº?®0߀( lêh6؇­ƒ² Çd샒}²ððªdó‚„:8€ì%ð²|qÂÀÛNt†Ù0ç’{ܼW…×ÀPÀÔøâ7Pƺ¨10ùšù« Á·×x!²ûPúÖwz;TÝlÊ_/N€œ³ —« ”> HÍ.JK ð“ðÆžÅ4Ü !?±áÕèF ›Ð d[s,ð‡’ OÝèÝ' 0&V "ØÖ|§ƒQìáw; g˜÷i¡ït0ÒZp³Ô‘ËPÔ–† 87pQt £ t3:°à1ùA ÎŒ,Âc*ÜàA%<ÈÍ€1'ÔaÚÖ«…aÏ2«Òç.ˆd( ¡Ë½QJؤ X¥Ø&‚È4'æà{}Hïf("f HÏ[^A‚V9Š_¢Ç4#À´W±^!†Ð á °cÔꡲ•/U¢Iy s\X/øF"Yy^þ ê7‹e d'\"yá¡j†S¤ ¦÷†W’€A›MI‚õÐS.íãԋ‰ßå3àT”#ep>ÎÄbâT $r;æhI"oê$  ÍÈ´b”.œYÂ^qá”8؉9Ɉ;:ä:&aÑsEÖ”à 7Ýa+ü¡$ egV] B.Äõ«˜nZ²ö_ÌÑŸœl¬" *ˆ®Ø…”â 7Ð…¼\ºÝp«9¨`ÓÇÁ)«F­)AÜ©RqÀÁ˜®… |~a:”¶5Ѓ𒊃Ǩ2¤9`­†RÀ¿•¨nr; ú“ßF$¤âVþb†JÔ¶9ã|g„ª¨òpB`—`° ܲ…/¥…%XBàb(\–}¨´Z±"x,RÍAÛ®K{Œ÷K5AåZjûüzn‹/$x[bðˆ7ðªö*S­àŸî³PBU^ÌmÃ7HY@+\PXxáBßW¿uCiÎ tYƒ¬,f×M« 8ÚH¹f1Uñ…ŽàÛtr[k’-cÞ™Fw|CüRÄßPð…hƒÊU¬(%°B•Êìl‹dLˆü¦à-¯èè4Ìš ’…ð—õ^<3!'8 ¡sƒùþx‚…‘ÛjhB Ã…oœÁìw€þÊå>@X}­l8– ÅYck+AÂ˨ňNt úsàø•iG2e€°#ÈbE(ÊB~òËÌmˆjbDöÄBÂÌ6øh霃 Èkϳ !)³ÕÀ ¨ Ššá`ºR‹v)&Ë×Ákn¨r<›êÜ®Ô)pG“2›.Ñ‹-M†Q¶°Ç%p(è–îZÛ&ì%E¹sê³}‹AXòp0ŸãÒ3pÜ¿µ A–œËc\ Xëj>×› ·°mP :ƒÞ»Èöµ ‰ã;š1à²)éúTƒkC“_Ÿ¼¡Oe ¢.p¨å[kÏ|£®BUÞˆ@Ž£A) õ\\ÚÙè”4C¸Ü\'Ï…ÛQ'Æ œ^cq+¡É%t¸MЀGot¯6cÍx ÷$ØlVxÏ»Þ÷Î÷¾ûý௉;prover9-manual-2009-02A/list.in0000644000175000017500000000416611146626334015475 0ustar mccunemccune% This Prover9 input doesn't do anything meaningful. It simply contains % some list-processing functions and relations, and it shows how they % can be tested. set(production). formulas(demodulators). % Relations and Properties -member(x,[]). member(x,[y:z]) <-> if(x == y, $T, member(x,z)). subset([], x). subset([x:y], z) <-> member(x,z) & subset(y,z). is_set([]). is_set([x:y]) <-> -member(x,y) & is_set(y). % Functions set([]) = []. set([x:y]) = if(member(x,y), set(y), [x:set(y)]). append([], x) = x. append([x:y], z) = [x:append(y,z)]. intersect([], x) = []. intersect([x:y],z) = if(member(x,z),[x:intersect(y,z)],intersect(y,z)). union([], x) = x. union([x:y], z) = if(member(x,z),union(y,z),[x:union(y,z)]). diff([], x) = []. diff([x:y], z) = if(member(x,z),diff(y,z),[x:diff(y,z)]). reverse(x) = rev_app(x,[]). rev_app([], x) = x. rev_app([x:y],z) = rev_app(y,[x:z]). quick_sort([]) = []. % naive quicksort quick_sort([x:y]) = append(quick_sort(le_list(x,y)), [x:quick_sort(gt_list(x,y))]). le_list(z,[]) = []. le_list(z,[x:y]) = if(x @<= z,[x:le_list(z,y)], le_list(z,y)). gt_list(z,[]) = []. gt_list(z,[x:y]) = if(x @> z, [x:gt_list(z,y)], gt_list(z,y)). end_of_list. formulas(assumptions). % We're simply going to test some of the function and relations written % above. The assumptions here will be rewritten by the rules above, % and the results will appear in the output just after the line % "Clauses after input processing:". % Test functions, we can simply use a dummy predicate. Test1(2+3). Test2(reverse(union([a,b,c],[d,b,f]))). Test3(quick_sort([r,e,g,d,f,w,x,c,e,d,r,y,i,b,j,h,v,x,e,d,d,e,t])). Test4(diff([a,b,c,d,e],[c,d,e,f,g])). Test5(set([a,b,a,b,b,c])). % Testing relations and properties is awkward, because if a literal % rewrites to $T (true), the clause becomes a tautology and disappears; % if a literal rewrites to $F (false), the literal disappears. We can % use implications as follows. member(b,[a,b,c]) -> Member_test_true. -member(b,[a,b,c]) -> Member_test_false. is_set([a,b,c,a,d]) -> Set_test_true. -is_set([a,b,c,a,d]) -> Set_test_false. end_of_list. prover9-manual-2009-02A/cabbages.in0000644000175000017500000000336711151015043016234 0ustar mccunemccuneset(production). set(prolog_style_variables). formulas(usable). % A farmer has a wolf, a goat, a cabbage, and a boat on the west side % of a river, and he wants to get everything across the river. However, % he can take only one thing at a time in the boat, and if the wolf % and goat are ever together without the farmer, or if the goat and the % cabbage are ever together without the farmer, something will be eaten. % % state(S, W, G, C]) means that (1) the farmer and the boat are on the % S (east or west) side of the river, and (2) W, G, C (Boolean) % tell whether the wolf, goat, and cabbage are with the boat and farmer. % % For each transition, the answer attribute tells which object he takes % across the river. state(Side, W,G,C) & ok(W,G,C) -> state(otherside(Side), flip(W),flip(G),flip(C)) # answer(none). state(Side, 1,G,C) & ok(0,G,C) -> state(otherside(Side), 1,flip(G),flip(C)) # answer(wolf). state(Side, W,1,C) & ok(W,0,C) -> state(otherside(Side), flip(W),1,flip(C)) # answer(goat). state(Side, W,G,1) & ok(W,G,0) -> state(otherside(Side), flip(W),flip(G),1) # answer(cabbage). end_of_list. formulas(assumptions). state(west, 1,1,1). % initial state: everything on the west side. end_of_list. formulas(goals). state(east, 1,1,1). % goal state: everything on the east side.. end_of_list. formulas(demodulators). flip(0) = 1. flip(1) = 0. otherside(east) = west. otherside(west) = east. % Here are two different ways of writing the "ok" relation. % The first uses two conditional rules, and the second % uses one rule with a conditional "if" term. % (W==1 & G==1) | (G==1 & C==1) -> (ok(W,G,C) <-> $F). % -(W==1 & G==1) & -(G==1 & C==1) -> (ok(W,G,C) <-> $T). ok(W,G,C) <-> if((W==1 & G==1) | (G==1 & C==1), $F, $T). end_of_list. prover9-manual-2009-02A/cabbages.out0000644000175000017500000002450211151315551016436 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15901 was started by mccune on cleo, Wed Feb 25 12:26:33 2009 The command was "/home/mccune/bin/prover9 -f cabbages.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file cabbages.in set(production). % set(production) -> set(raw). % set(raw) -> clear(auto). % clear(auto) -> clear(auto_inference). % clear(auto) -> clear(auto_setup). % clear(auto_setup) -> clear(predicate_elim). % clear(auto_setup) -> assign(eq_defs, pass). % clear(auto) -> clear(auto_limits). % clear(auto_limits) -> assign(max_weight, "1000000000000.000"). % clear(auto_limits) -> assign(sos_limit, -1). % clear(auto) -> clear(auto_denials). % clear(auto) -> clear(auto_process). % set(raw) -> clear(ordered_res). % set(raw) -> clear(ordered_para). % set(raw) -> set(para_into_vars). % set(raw) -> set(para_from_small). % set(raw) -> clear(ordered_para). % set(raw) -> clear(back_demod). % set(raw) -> clear(cac_redundancy). % set(raw) -> assign(backsub_check, 2147483647). % set(raw) -> set(lightest_first). % set(lightest_first) -> assign(weight_part, 1). % set(lightest_first) -> assign(age_part, 0). % set(lightest_first) -> assign(false_part, 0). % set(lightest_first) -> assign(true_part, 0). % set(lightest_first) -> assign(random_part, 0). % set(raw) -> assign(literal_selection, none). % set(production) -> set(eval_rewrite). % set(production) -> set(hyper_resolution). % set(hyper_resolution) -> set(pos_hyper_resolution). % set(production) -> clear(back_subsume). set(prolog_style_variables). formulas(usable). state(Side,W,G,C) & ok(W,G,C) -> state(otherside(Side),flip(W),flip(G),flip(C)) # answer(none). state(Side,1,G,C) & ok(0,G,C) -> state(otherside(Side),1,flip(G),flip(C)) # answer(wolf). state(Side,W,1,C) & ok(W,0,C) -> state(otherside(Side),flip(W),1,flip(C)) # answer(goat). state(Side,W,G,1) & ok(W,G,0) -> state(otherside(Side),flip(W),flip(G),1) # answer(cabbage). end_of_list. formulas(assumptions). state(west,1,1,1). end_of_list. formulas(goals). state(east,1,1,1). end_of_list. formulas(demodulators). flip(0) = 1. flip(1) = 0. otherside(east) = west. otherside(west) = east. ok(W,G,C) <-> if(W == 1 & G == 1 | G == 1 & C == 1,$F,$T). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 state(Side,W,G,C) & ok(W,G,C) -> state(otherside(Side),flip(W),flip(G),flip(C)) # answer(none) # label(non_clause). [assumption]. 2 state(Side,1,G,C) & ok(0,G,C) -> state(otherside(Side),1,flip(G),flip(C)) # answer(wolf) # label(non_clause). [assumption]. 3 state(Side,W,1,C) & ok(W,0,C) -> state(otherside(Side),flip(W),1,flip(C)) # answer(goat) # label(non_clause). [assumption]. 4 state(Side,W,G,1) & ok(W,G,0) -> state(otherside(Side),flip(W),flip(G),1) # answer(cabbage) # label(non_clause). [assumption]. 5 state(east,1,1,1) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). -state(A,B,C,D) | -ok(B,C,D) | state(otherside(A),flip(B),flip(C),flip(D)) # answer(none). [clausify(1)]. -state(A,1,B,C) | -ok(0,B,C) | state(otherside(A),1,flip(B),flip(C)) # answer(wolf). [clausify(2)]. -state(A,B,1,C) | -ok(B,0,C) | state(otherside(A),flip(B),1,flip(C)) # answer(goat). [clausify(3)]. -state(A,B,C,1) | -ok(B,C,0) | state(otherside(A),flip(B),flip(C),1) # answer(cabbage). [clausify(4)]. end_of_list. formulas(sos). state(west,1,1,1). [assumption]. -state(east,1,1,1). [deny(5)]. end_of_list. formulas(demodulators). flip(0) = 1. [assumption]. flip(1) = 0. [assumption]. otherside(east) = west. [assumption]. otherside(west) = east. [assumption]. ok(W,G,C) <-> if(W == 1 & G == 1 | G == 1 & C == 1,$F,$T). [assumption]. end_of_list. Term ordering decisions: Predicate symbol precedence: predicate_order([ =, ==, ok, state ]). Function symbol precedence: function_order([ 1, 0, west, east, flip, otherside ]). After inverse_order: (no changes). kept: 15 state(west,1,1,1). [assumption]. kept: 16 -state(east,1,1,1). [deny(5)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 6 -state(A,B,C,D) | -ok(B,C,D) | state(otherside(A),flip(B),flip(C),flip(D)) # answer(none). [clausify(1)]. 7 -state(A,1,B,C) | -ok(0,B,C) | state(otherside(A),1,flip(B),flip(C)) # answer(wolf). [clausify(2)]. 8 -state(A,B,1,C) | -ok(B,0,C) | state(otherside(A),flip(B),1,flip(C)) # answer(goat). [clausify(3)]. 9 -state(A,B,C,1) | -ok(B,C,0) | state(otherside(A),flip(B),flip(C),1) # answer(cabbage). [clausify(4)]. end_of_list. formulas(sos). 15 state(west,1,1,1). [assumption]. 16 -state(east,1,1,1). [deny(5)]. end_of_list. formulas(demodulators). 10 flip(0) = 1. [assumption]. 11 flip(1) = 0. [assumption]. 12 otherside(east) = west. [assumption]. 13 otherside(west) = east. [assumption]. 14 ok(A,B,C) <-> if(A == 1 & B == 1 | B == 1 & C == 1,$F,$T). [assumption]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=5): 15 state(west,1,1,1). [assumption]. given #2 (I,wt=5): 16 -state(east,1,1,1). [deny(5)]. given #3 (W,wt=5): 17 state(east,0,1,0) # answer(goat). [hyper(8,a,15,a),rewrite([14,13,11]),eval(3)]. given #4 (W,wt=5): 18 state(west,1,0,1) # answer(none) # answer(goat). [hyper(6,a,17,a),rewrite([14,12,10,11]),eval(3)]. given #5 (W,wt=5): 19 state(east,0,1,1) # answer(cabbage) # answer(none) # answer(goat). [hyper(9,a,18,a),rewrite([14,13,11,10]),eval(3)]. given #6 (W,wt=5): 20 state(east,1,1,0) # answer(wolf) # answer(none) # answer(goat). [hyper(7,a,18,a),rewrite([14,13,10,11]),eval(2)]. given #7 (W,wt=5): 21 state(west,1,1,0) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(8,a,19,a),rewrite([14,12,10,11]),eval(2)]. given #8 (W,wt=5): 22 state(west,0,1,1) # answer(goat) # answer(wolf) # answer(none) # answer(goat). [hyper(8,a,20,a),rewrite([14,12,11,10]),eval(3)]. given #9 (W,wt=5): 23 state(east,1,0,1) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(7,a,21,a),rewrite([14,13,11,10]),eval(3)]. given #10 (W,wt=5): 24 state(west,0,1,0) # answer(none) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(6,a,23,a),rewrite([14,12,11,10]),eval(3)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: goat # none # wolf # goat # cabbage # none # goat. % Length of proof is 24. % Level of proof is 9. % Maximum clause weight is 5. % Given clauses 10. 1 state(Side,W,G,C) & ok(W,G,C) -> state(otherside(Side),flip(W),flip(G),flip(C)) # answer(none) # label(non_clause). [assumption]. 2 state(Side,1,G,C) & ok(0,G,C) -> state(otherside(Side),1,flip(G),flip(C)) # answer(wolf) # label(non_clause). [assumption]. 3 state(Side,W,1,C) & ok(W,0,C) -> state(otherside(Side),flip(W),1,flip(C)) # answer(goat) # label(non_clause). [assumption]. 4 state(Side,W,G,1) & ok(W,G,0) -> state(otherside(Side),flip(W),flip(G),1) # answer(cabbage) # label(non_clause). [assumption]. 5 state(east,1,1,1) # label(non_clause) # label(goal). [goal]. 6 -state(A,B,C,D) | -ok(B,C,D) | state(otherside(A),flip(B),flip(C),flip(D)) # answer(none). [clausify(1)]. 7 -state(A,1,B,C) | -ok(0,B,C) | state(otherside(A),1,flip(B),flip(C)) # answer(wolf). [clausify(2)]. 8 -state(A,B,1,C) | -ok(B,0,C) | state(otherside(A),flip(B),1,flip(C)) # answer(goat). [clausify(3)]. 9 -state(A,B,C,1) | -ok(B,C,0) | state(otherside(A),flip(B),flip(C),1) # answer(cabbage). [clausify(4)]. 10 flip(0) = 1. [assumption]. 11 flip(1) = 0. [assumption]. 12 otherside(east) = west. [assumption]. 13 otherside(west) = east. [assumption]. 14 ok(A,B,C) <-> if(A == 1 & B == 1 | B == 1 & C == 1,$F,$T). [assumption]. 15 state(west,1,1,1). [assumption]. 16 -state(east,1,1,1). [deny(5)]. 17 state(east,0,1,0) # answer(goat). [hyper(8,a,15,a),rewrite([14,13,11]),eval(3)]. 18 state(west,1,0,1) # answer(none) # answer(goat). [hyper(6,a,17,a),rewrite([14,12,10,11]),eval(3)]. 19 state(east,0,1,1) # answer(cabbage) # answer(none) # answer(goat). [hyper(9,a,18,a),rewrite([14,13,11,10]),eval(3)]. 21 state(west,1,1,0) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(8,a,19,a),rewrite([14,12,10,11]),eval(2)]. 23 state(east,1,0,1) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(7,a,21,a),rewrite([14,13,11,10]),eval(3)]. 24 state(west,0,1,0) # answer(none) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(6,a,23,a),rewrite([14,12,11,10]),eval(3)]. 25 state(east,1,1,1) # answer(goat) # answer(none) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [hyper(8,a,24,a),rewrite([14,13,10]),eval(2)]. 26 $F # answer(goat) # answer(none) # answer(wolf) # answer(goat) # answer(cabbage) # answer(none) # answer(goat). [resolve(25,a,16,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=10. Generated=27. Kept=11. proofs=1. Usable=14. Sos=0. Demods=5. Limbo=0, Disabled=2. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=16. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.04. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15901 exit (max_proofs) Wed Feb 25 12:26:33 2009 prover9-manual-2009-02A/sed30000644000175000017500000000050210656101614014733 0ustar mccunemccune/Prover9 Manual Version/i\
    \ \ \ \ \ \ \ \
    Prover9 Manual\ \ Version June-2007\
    \
    /Prover9 Manual Version/d prover9-manual-2009-02A/queens3.in0000644000175000017500000000301111151015310016047 0ustar mccunemccune% The 8-queens problem. Place 8 queens on a chessboard such that % none can capture any other. % % (This problem is more naturally done as a constraint-satisfaction % problem with Mace4. This Prover9 version is just for illustration.) % % board([8,5,1]) means that queens are on the first 3 rows: % (row 1, col 1), (row 2, col 5), (row 3, col 8). The queens are % filled in row-by-row; for each row, a position is picked, and then % checked to see if it is consistent with the preceding rows. % % 1 2 3 4 5 6 7 8 % 1 |x| | | | | | | | % 2 | | | | |x| | | | % 3 | | | | | | | |x| % 4 | | | | | | | | | % 5 | | | | | | | | | % 6 | | | | | | | | | % 7 | | | | | | | | | % 8 | | | | | | | | | % % For other board sizes/number of queens, change 'pick' property and % the denial. % set(production). set(prolog_style_variables). formulas(usable). board(B) & pick(New_col) & % check that new queen is consistent with each preceding row. ok(B, 1, New_col) -> board([New_col:B]). pick(1). pick(2). pick(3). pick(4). pick(5). pick(6). pick(7). pick(8). end_of_list. formulas(assumptions). % initial state: no queens on the board. board([]). end_of_list. formulas(usable). % goal state: 8 queens on the board. -board([X1,X2,X3,X4,X5,X6,X7,X8]) # answer([X1,X2,X3,X4,X5,X6,X7,X8]). end_of_list. formulas(demodulators). ok([], X, Y) <-> $T. ok([H:T], Rows_back, New_col) <-> -(H == New_col) & -(H + -Rows_back == New_col) & -(H + Rows_back == New_col) & ok(T, Rows_back+1, New_col). end_of_list. prover9-manual-2009-02A/jugs.out0000644000175000017500000001627211151315551015664 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15902 was started by mccune on cleo, Wed Feb 25 12:26:33 2009 The command was "/home/mccune/bin/prover9 -f jugs.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file jugs.in set(production). % set(production) -> set(raw). % set(raw) -> clear(auto). % clear(auto) -> clear(auto_inference). % clear(auto) -> clear(auto_setup). % clear(auto_setup) -> clear(predicate_elim). % clear(auto_setup) -> assign(eq_defs, pass). % clear(auto) -> clear(auto_limits). % clear(auto_limits) -> assign(max_weight, "1000000000000.000"). % clear(auto_limits) -> assign(sos_limit, -1). % clear(auto) -> clear(auto_denials). % clear(auto) -> clear(auto_process). % set(raw) -> clear(ordered_res). % set(raw) -> clear(ordered_para). % set(raw) -> set(para_into_vars). % set(raw) -> set(para_from_small). % set(raw) -> clear(ordered_para). % set(raw) -> clear(back_demod). % set(raw) -> clear(cac_redundancy). % set(raw) -> assign(backsub_check, 2147483647). % set(raw) -> set(lightest_first). % set(lightest_first) -> assign(weight_part, 1). % set(lightest_first) -> assign(age_part, 0). % set(lightest_first) -> assign(false_part, 0). % set(lightest_first) -> assign(true_part, 0). % set(lightest_first) -> assign(random_part, 0). % set(raw) -> assign(literal_selection, none). % set(production) -> set(eval_rewrite). % set(production) -> set(hyper_resolution). % set(hyper_resolution) -> set(pos_hyper_resolution). % set(production) -> clear(back_subsume). formulas(usable). J(x,y) -> J(3,y). J(x,y) -> J(0,y). J(x,y) -> J(x,4). J(x,y) -> J(x,0). J(x,y) & x + y <= 4 -> J(0,y + x). J(x,y) & x + y > 4 -> J(x + -(4 + -y),4). J(x,y) & x + y <= 3 -> J(x + y,0). J(x,y) & x + y > 3 -> J(3,y + -(3 + -x)). end_of_list. formulas(assumptions). J(0,0). end_of_list. formulas(goals). (exists x J(x,2)). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 J(x,y) -> J(3,y) # label(non_clause). [assumption]. 2 J(x,y) -> J(0,y) # label(non_clause). [assumption]. 3 J(x,y) -> J(x,4) # label(non_clause). [assumption]. 4 J(x,y) -> J(x,0) # label(non_clause). [assumption]. 5 J(x,y) & x + y <= 4 -> J(0,y + x) # label(non_clause). [assumption]. 6 J(x,y) & x + y > 4 -> J(x + -(4 + -y),4) # label(non_clause). [assumption]. 7 J(x,y) & x + y <= 3 -> J(x + y,0) # label(non_clause). [assumption]. 8 J(x,y) & x + y > 3 -> J(3,y + -(3 + -x)) # label(non_clause). [assumption]. 9 (exists x J(x,2)) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). -J(x,y) | J(3,y). [clausify(1)]. -J(x,y) | J(0,y). [clausify(2)]. -J(x,y) | J(x,4). [clausify(3)]. -J(x,y) | J(x,0). [clausify(4)]. -J(x,y) | -(x + y <= 4) | J(0,y + x). [clausify(5)]. -J(x,y) | -(x + y > 4) | J(x + -(4 + -y),4). [clausify(6)]. -J(x,y) | -(x + y <= 3) | J(x + y,0). [clausify(7)]. -J(x,y) | -(x + y > 3) | J(3,y + -(3 + -x)). [clausify(8)]. end_of_list. formulas(sos). J(0,0). [assumption]. -J(x,2). [deny(9)]. end_of_list. formulas(demodulators). end_of_list. Term ordering decisions: Predicate symbol precedence: predicate_order([ J, <=, > ]). Function symbol precedence: function_order([ 0, 3, 4, 2, +, - ]). After inverse_order: (no changes). kept: 18 J(0,0). [assumption]. kept: 19 -J(x,2). [deny(9)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 10 -J(x,y) | J(3,y). [clausify(1)]. 11 -J(x,y) | J(0,y). [clausify(2)]. 12 -J(x,y) | J(x,4). [clausify(3)]. 13 -J(x,y) | J(x,0). [clausify(4)]. 14 -J(x,y) | -(x + y <= 4) | J(0,y + x). [clausify(5)]. 15 -J(x,y) | -(x + y > 4) | J(x + -(4 + -y),4). [clausify(6)]. 16 -J(x,y) | -(x + y <= 3) | J(x + y,0). [clausify(7)]. 17 -J(x,y) | -(x + y > 3) | J(3,y + -(3 + -x)). [clausify(8)]. end_of_list. formulas(sos). 18 J(0,0). [assumption]. 19 -J(x,2). [deny(9)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=3): 18 J(0,0). [assumption]. given #2 (I,wt=3): 19 -J(x,2). [deny(9)]. given #3 (W,wt=3): 20 J(0,4). [hyper(12,a,18,a)]. given #4 (W,wt=3): 21 J(3,0). [hyper(10,a,18,a)]. given #5 (W,wt=3): 22 J(3,1). [hyper(17,a,20,a),eval(6)]. given #6 (W,wt=3): 23 J(3,4). [hyper(10,a,20,a)]. given #7 (W,wt=3): 24 J(0,3). [hyper(14,a,21,a),eval(3)]. given #8 (W,wt=3): 25 J(0,1). [hyper(11,a,22,a)]. given #9 (W,wt=3): 26 J(3,3). [hyper(10,a,24,a)]. given #10 (W,wt=3): 27 J(1,0). [hyper(16,a,25,a),eval(3)]. given #11 (W,wt=3): 28 J(2,4). [hyper(15,a,26,a),eval(6)]. given #12 (W,wt=3): 29 J(1,4). [hyper(12,a,27,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds. % Length of proof is 18. % Level of proof is 8. % Maximum clause weight is 3. % Given clauses 12. 2 J(x,y) -> J(0,y) # label(non_clause). [assumption]. 3 J(x,y) -> J(x,4) # label(non_clause). [assumption]. 7 J(x,y) & x + y <= 3 -> J(x + y,0) # label(non_clause). [assumption]. 8 J(x,y) & x + y > 3 -> J(3,y + -(3 + -x)) # label(non_clause). [assumption]. 9 (exists x J(x,2)) # label(non_clause) # label(goal). [goal]. 11 -J(x,y) | J(0,y). [clausify(2)]. 12 -J(x,y) | J(x,4). [clausify(3)]. 16 -J(x,y) | -(x + y <= 3) | J(x + y,0). [clausify(7)]. 17 -J(x,y) | -(x + y > 3) | J(3,y + -(3 + -x)). [clausify(8)]. 18 J(0,0). [assumption]. 19 -J(x,2). [deny(9)]. 20 J(0,4). [hyper(12,a,18,a)]. 22 J(3,1). [hyper(17,a,20,a),eval(6)]. 25 J(0,1). [hyper(11,a,22,a)]. 27 J(1,0). [hyper(16,a,25,a),eval(3)]. 29 J(1,4). [hyper(12,a,27,a)]. 31 J(3,2). [hyper(17,a,29,a),eval(6)]. 32 $F. [resolve(31,a,19,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=12. Generated=83. Kept=14. proofs=1. Usable=20. Sos=1. Demods=0. Limbo=0, Disabled=2. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=69. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=0.04. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15902 exit (max_proofs) Wed Feb 25 12:26:33 2009 prover9-manual-2009-02A/2inverter.out0000644000175000017500000450027511151315737016647 0ustar mccunemccune============================== Prover9 =============================== Prover9 (32) version 2009-02A, February 2009. Process 15903 was started by mccune on cleo, Wed Feb 25 12:26:33 2009 The command was "/home/mccune/bin/prover9 -f 2inverter.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file 2inverter.in set(production). % set(production) -> set(raw). % set(raw) -> clear(auto). % clear(auto) -> clear(auto_inference). % clear(auto) -> clear(auto_setup). % clear(auto_setup) -> clear(predicate_elim). % clear(auto_setup) -> assign(eq_defs, pass). % clear(auto) -> clear(auto_limits). % clear(auto_limits) -> assign(max_weight, "1000000000000.000"). % clear(auto_limits) -> assign(sos_limit, -1). % clear(auto) -> clear(auto_denials). % clear(auto) -> clear(auto_process). % set(raw) -> clear(ordered_res). % set(raw) -> clear(ordered_para). % set(raw) -> set(para_into_vars). % set(raw) -> set(para_from_small). % set(raw) -> clear(ordered_para). % set(raw) -> clear(back_demod). % set(raw) -> clear(cac_redundancy). % set(raw) -> assign(backsub_check, 2147483647). % set(raw) -> set(lightest_first). % set(lightest_first) -> assign(weight_part, 1). % set(lightest_first) -> assign(age_part, 0). % set(lightest_first) -> assign(false_part, 0). % set(lightest_first) -> assign(true_part, 0). % set(lightest_first) -> assign(random_part, 0). % set(raw) -> assign(literal_selection, none). % set(production) -> set(eval_rewrite). % set(production) -> set(hyper_resolution). % set(hyper_resolution) -> set(pos_hyper_resolution). % set(production) -> clear(back_subsume). assign(max_weight,55). formulas(usable). -P(x,v) | -P(y,v) | P(bit_and(x,y),v). -P(x,v) | -P(y,v) | P(bit_or(x,y),v). -P(x,v) | P(bit_not(x),append_inversion(v,x)). end_of_list. formulas(assumptions). P([0,0,0,0,1,1,1,1],v). P([0,0,1,1,0,0,1,1],v). P([0,1,0,1,0,1,0,1],v). end_of_list. formulas(goals). (exists v (P([1,1,1,1,0,0,0,0],v) & P([1,1,0,0,1,1,0,0],v) & P([1,0,1,0,1,0,1,0],v))). end_of_list. formulas(demodulators). bit_and([],[]) = []. bit_and([1:y1],[x:y2]) = [x:bit_and(y1,y2)]. bit_and([x:y1],[1:y2]) = [x:bit_and(y1,y2)]. bit_and([0:y1],[x:y2]) = [0:bit_and(y1,y2)]. bit_and([x:y1],[0:y2]) = [0:bit_and(y1,y2)]. bit_or([],[]) = []. bit_or([1:y1],[x:y2]) = [1:bit_or(y1,y2)]. bit_or([x:y1],[1:y2]) = [1:bit_or(y1,y2)]. bit_or([0:y1],[x:y2]) = [x:bit_or(y1,y2)]. bit_or([x:y1],[0:y2]) = [x:bit_or(y1,y2)]. bit_not([]) = []. bit_not([0:y]) = [1:bit_not(y)]. bit_not([1:y]) = [0:bit_not(y)]. append_inversion([x1:x2],y) = [x1:append_inversion(x2,y)]. variable(x) -> append_inversion(x,y) = [y:x]. end_of_list. list(weights). weight(P([1,1,1,1,0,0,0,0],v)) = 0. weight(P([1,1,0,0,1,1,0,0],v)) = 0. weight(P([1,0,1,0,1,0,1,0],v)) = 0. end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 (exists v (P([1,1,1,1,0,0,0,0],v) & P([1,1,0,0,1,1,0,0],v) & P([1,0,1,0,1,0,1,0],v))) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). -P(x,y) | -P(z,y) | P(bit_and(x,z),y). [assumption]. -P(x,y) | -P(z,y) | P(bit_or(x,z),y). [assumption]. -P(x,y) | P(bit_not(x),append_inversion(y,x)). [assumption]. end_of_list. formulas(sos). P([0,0,0,0,1,1,1,1],x). [assumption]. P([0,0,1,1,0,0,1,1],x). [assumption]. P([0,1,0,1,0,1,0,1],x). [assumption]. -P([1,1,1,1,0,0,0,0],x) | -P([1,1,0,0,1,1,0,0],x) | -P([1,0,1,0,1,0,1,0],x). [deny(1)]. end_of_list. formulas(demodulators). bit_and([],[]) = []. [assumption]. bit_and([1:x],[y:z]) = [y:bit_and(x,z)]. [assumption]. bit_and([x:y],[1:z]) = [x:bit_and(y,z)]. [assumption]. bit_and([0:x],[y:z]) = [0:bit_and(x,z)]. [assumption]. bit_and([x:y],[0:z]) = [0:bit_and(y,z)]. [assumption]. bit_or([],[]) = []. [assumption]. bit_or([1:x],[y:z]) = [1:bit_or(x,z)]. [assumption]. bit_or([x:y],[1:z]) = [1:bit_or(y,z)]. [assumption]. bit_or([0:x],[y:z]) = [y:bit_or(x,z)]. [assumption]. bit_or([x:y],[0:z]) = [x:bit_or(y,z)]. [assumption]. bit_not([]) = []. [assumption]. bit_not([0:x]) = [1:bit_not(x)]. [assumption]. bit_not([1:x]) = [0:bit_not(x)]. [assumption]. append_inversion([x:y],z) = [x:append_inversion(y,z)]. [assumption]. variable(x) -> append_inversion(x,y) = [y:x]. [assumption]. end_of_list. Term ordering decisions: Predicate symbol precedence: predicate_order([ =, variable, P ]). Function symbol precedence: function_order([ 0, 1, $nil, $cons, bit_and, bit_or, append_inversion, bit_not ]). After inverse_order: (no changes). kept: 20 P([0,0,0,0,1,1,1,1],x). [assumption]. kept: 21 P([0,0,1,1,0,0,1,1],x). [assumption]. kept: 22 P([0,1,0,1,0,1,0,1],x). [assumption]. kept: 23 -P([1,1,1,1,0,0,0,0],x) | -P([1,1,0,0,1,1,0,0],x) | -P([1,0,1,0,1,0,1,0],x). [deny(1)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). 2 -P(x,y) | -P(z,y) | P(bit_and(x,z),y). [assumption]. 3 -P(x,y) | -P(z,y) | P(bit_or(x,z),y). [assumption]. 4 -P(x,y) | P(bit_not(x),append_inversion(y,x)). [assumption]. end_of_list. formulas(sos). 20 P([0,0,0,0,1,1,1,1],x). [assumption]. 21 P([0,0,1,1,0,0,1,1],x). [assumption]. 22 P([0,1,0,1,0,1,0,1],x). [assumption]. 23 -P([1,1,1,1,0,0,0,0],x) | -P([1,1,0,0,1,1,0,0],x) | -P([1,0,1,0,1,0,1,0],x). [deny(1)]. end_of_list. formulas(demodulators). 5 bit_and([],[]) = []. [assumption]. 6 bit_and([1:x],[y:z]) = [y:bit_and(x,z)]. [assumption]. 7 bit_and([x:y],[1:z]) = [x:bit_and(y,z)]. [assumption]. 8 bit_and([0:x],[y:z]) = [0:bit_and(x,z)]. [assumption]. 9 bit_and([x:y],[0:z]) = [0:bit_and(y,z)]. [assumption]. 10 bit_or([],[]) = []. [assumption]. 11 bit_or([1:x],[y:z]) = [1:bit_or(x,z)]. [assumption]. 12 bit_or([x:y],[1:z]) = [1:bit_or(y,z)]. [assumption]. 13 bit_or([0:x],[y:z]) = [y:bit_or(x,z)]. [assumption]. 14 bit_or([x:y],[0:z]) = [x:bit_or(y,z)]. [assumption]. 15 bit_not([]) = []. [assumption]. 16 bit_not([0:x]) = [1:bit_not(x)]. [assumption]. 17 bit_not([1:x]) = [0:bit_not(x)]. [assumption]. 18 append_inversion([x:y],z) = [x:append_inversion(y,z)]. [assumption]. 19 variable(x) -> append_inversion(x,y) = [y:x]. [assumption]. end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=19): 20 P([0,0,0,0,1,1,1,1],x). [assumption]. given #2 (I,wt=19): 21 P([0,0,1,1,0,0,1,1],x). [assumption]. given #3 (I,wt=19): 22 P([0,1,0,1,0,1,0,1],x). [assumption]. given #4 (I,wt=0): 23 -P([1,1,1,1,0,0,0,0],x) | -P([1,1,0,0,1,1,0,0],x) | -P([1,0,1,0,1,0,1,0],x). [deny(1)]. given #5 (W,wt=0): 24 P([1,1,1,1,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(4,a,20,a),rewrite([16,17,15,19]),eval(1)]. given #6 (W,wt=0): 25 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(4,a,21,a),rewrite([16,17,15,19]),eval(1)]. given #7 (W,wt=0): 28 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(4,a,22,a),rewrite([16,17,15,19]),eval(1)]. given #8 (W,wt=19): 26 P([0,0,1,1,1,1,1,1],x). [hyper(3,a,20,a,b,21,a),rewrite([13,12,11,10])]. given #9 (W,wt=19): 27 P([0,0,0,0,0,0,1,1],x). [hyper(2,a,20,a,b,21,a),rewrite([8,7,6,5])]. given #10 (W,wt=19): 29 P([0,1,1,1,0,1,1,1],x). [hyper(3,a,21,a,b,22,a),rewrite([13,12,11,10])]. given #11 (W,wt=19): 30 P([0,1,0,1,1,1,1,1],x). [hyper(3,a,20,a,b,22,a),rewrite([13,12,11,10])]. given #12 (W,wt=19): 31 P([0,0,0,1,0,0,0,1],x). [hyper(2,a,21,a,b,22,a),rewrite([8,7,6,5])]. given #13 (W,wt=19): 32 P([0,0,0,0,0,1,0,1],x). [hyper(2,a,20,a,b,22,a),rewrite([8,7,6,5])]. given #14 (W,wt=19): 53 P([0,1,1,1,1,1,1,1],x). [hyper(3,a,22,a,b,26,a),rewrite([13,11,12,10])]. given #15 (W,wt=19): 55 P([0,0,0,1,0,1,0,1],x). [hyper(2,a,22,a,b,26,a),rewrite([8,6,7,5])]. given #16 (W,wt=19): 58 P([0,1,0,1,0,1,1,1],x). [hyper(3,a,22,a,b,27,a),rewrite([13,11,12,10])]. given #17 (W,wt=19): 60 P([0,0,0,0,0,0,0,1],x). [hyper(2,a,22,a,b,27,a),rewrite([8,6,7,5])]. given #18 (W,wt=19): 63 P([0,0,1,1,0,1,1,1],x). [hyper(2,a,26,a,b,29,a),rewrite([8,7,6,5])]. given #19 (W,wt=19): 65 P([0,0,0,0,0,1,1,1],x). [hyper(2,a,20,a,b,29,a),rewrite([8,7,6,5])]. given #20 (W,wt=19): 68 P([0,0,0,1,1,1,1,1],x). [hyper(2,a,26,a,b,30,a),rewrite([8,7,6,5])]. given #21 (W,wt=19): 70 P([0,0,0,1,0,0,1,1],x). [hyper(2,a,21,a,b,30,a),rewrite([8,7,6,5])]. given #22 (W,wt=19): 79 P([0,0,0,1,0,1,1,1],x). [hyper(3,a,27,a,b,55,a),rewrite([13,12,11,10])]. given #23 (W,wt=37): 33 P([1,1,1,1,0,1,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,22,a,b,24,a),rewrite([12,11,13,10])]. given #24 (W,wt=37): 34 P([1,1,1,1,0,0,1,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,21,a,b,24,a),rewrite([12,11,13,10])]. given #25 (W,wt=37): 35 P([1,1,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,20,a,b,24,a),rewrite([12,11,10])]. given #26 (W,wt=37): 36 P([0,1,0,1,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,22,a,b,24,a),rewrite([7,6,8,5])]. given #27 (W,wt=37): 37 P([0,0,1,1,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,21,a,b,24,a),rewrite([7,6,8,5])]. given #28 (W,wt=37): 38 P([0,0,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,20,a,b,24,a),rewrite([7,6,5])]. given #29 (W,wt=37): 39 P([1,1,0,1,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,22,a,b,25,a),rewrite([12,11,13,10])]. given #30 (W,wt=37): 40 P([1,1,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,21,a,b,25,a),rewrite([12,11,10])]. given #31 (W,wt=37): 41 P([1,1,0,0,1,1,1,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,20,a,b,25,a),rewrite([12,13,11,10])]. given #32 (W,wt=37): 42 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,22,a,b,25,a),rewrite([7,6,8,5])]. given #33 (W,wt=37): 43 P([0,0,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,21,a,b,25,a),rewrite([7,6,5])]. given #34 (W,wt=37): 44 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,20,a,b,25,a),rewrite([7,8,6,5])]. given #35 (W,wt=37): 45 P([1,1,1,1,1,1,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,22,a,b,28,a),rewrite([12,11,10])]. given #36 (W,wt=37): 46 P([1,0,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,21,a,b,28,a),rewrite([12,13,11,10])]. given #37 (W,wt=37): 47 P([1,0,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,20,a,b,28,a),rewrite([12,13,11,10])]. given #38 (W,wt=37): 48 P([0,0,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,22,a,b,28,a),rewrite([7,6,5])]. given #39 (W,wt=37): 49 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,21,a,b,28,a),rewrite([7,8,6,5])]. given #40 (W,wt=37): 50 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,20,a,b,28,a),rewrite([7,8,6,5])]. given #41 (W,wt=37): 51 P([1,1,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1]:x]). [hyper(4,a,26,a),rewrite([16,17,15,19]),eval(1)]. given #42 (W,wt=37): 52 P([1,0,1,1,1,1,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,28,a,b,26,a),rewrite([11,13,12,10])]. given #43 (W,wt=37): 54 P([0,0,1,0,1,0,1,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,28,a,b,26,a),rewrite([6,8,7,5])]. given #44 (W,wt=37): 56 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(4,a,27,a),rewrite([16,17,15,19]),eval(1)]. given #45 (W,wt=37): 57 P([1,0,1,0,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,28,a,b,27,a),rewrite([11,13,12,10])]. given #46 (W,wt=37): 59 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,28,a,b,27,a),rewrite([6,8,7,5])]. given #47 (W,wt=37): 61 P([1,0,0,0,1,0,0,0],[[0,1,1,1,0,1,1,1]:x]). [hyper(4,a,29,a),rewrite([16,17,15,19]),eval(1)]. given #48 (W,wt=37): 62 P([1,1,1,1,0,1,1,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,24,a,b,29,a),rewrite([11,13,12,10])]. given #49 (W,wt=37): 64 P([0,1,1,1,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,24,a,b,29,a),rewrite([6,8,7,5])]. given #50 (W,wt=37): 66 P([1,0,1,0,0,0,0,0],[[0,1,0,1,1,1,1,1]:x]). [hyper(4,a,30,a),rewrite([16,17,15,19]),eval(1)]. given #51 (W,wt=37): 67 P([1,1,0,1,1,1,1,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,25,a,b,30,a),rewrite([11,13,12,10])]. given #52 (W,wt=37): 69 P([0,1,0,0,1,1,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,25,a,b,30,a),rewrite([6,8,7,5])]. given #53 (W,wt=37): 71 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(4,a,31,a),rewrite([16,17,15,19]),eval(1)]. given #54 (W,wt=37): 72 P([1,1,1,1,0,0,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,24,a,b,31,a),rewrite([11,13,12,10])]. given #55 (W,wt=37): 73 P([0,0,0,1,0,0,0,0],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,24,a,b,31,a),rewrite([6,8,7,5])]. given #56 (W,wt=37): 74 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(4,a,32,a),rewrite([16,17,15,19]),eval(1)]. given #57 (W,wt=37): 75 P([1,1,0,0,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,25,a,b,32,a),rewrite([11,13,12,10])]. given #58 (W,wt=37): 76 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,25,a,b,32,a),rewrite([6,8,7,5])]. given #59 (W,wt=37): 77 P([1,0,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1]:x]). [hyper(4,a,53,a),rewrite([16,17,15,19]),eval(1)]. given #60 (W,wt=37): 78 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(4,a,55,a),rewrite([16,17,15,19]),eval(1)]. given #61 (W,wt=37): 80 P([1,0,1,0,1,0,0,0],[[0,1,0,1,0,1,1,1]:x]). [hyper(4,a,58,a),rewrite([16,17,15,19]),eval(1)]. given #62 (W,wt=37): 81 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(4,a,60,a),rewrite([16,17,15,19]),eval(1)]. given #63 (W,wt=37): 82 P([1,1,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1]:x]). [hyper(4,a,63,a),rewrite([16,17,15,19]),eval(1)]. given #64 (W,wt=37): 83 P([1,1,1,1,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(4,a,65,a),rewrite([16,17,15,19]),eval(1)]. given #65 (W,wt=37): 84 P([1,1,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1]:x]). [hyper(4,a,68,a),rewrite([16,17,15,19]),eval(1)]. given #66 (W,wt=37): 85 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(4,a,70,a),rewrite([16,17,15,19]),eval(1)]. given #67 (W,wt=37): 86 P([1,1,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(4,a,79,a),rewrite([16,17,15,19]),eval(1)]. given #68 (W,wt=37): 88 P([0,0,1,1,0,1,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,63,a,b,33,a),rewrite([7,6,8,5])]. given #69 (W,wt=37): 89 P([0,1,1,1,0,1,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,53,a,b,33,a),rewrite([7,6,5])]. given #70 (W,wt=37): 90 P([0,0,1,1,0,0,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,21,a,b,33,a),rewrite([7,6,8,5])]. given #71 (W,wt=37): 92 P([0,1,0,1,0,0,1,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,58,a,b,34,a),rewrite([7,6,8,5])]. given #72 (W,wt=37): 93 P([0,1,1,1,0,0,1,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,53,a,b,34,a),rewrite([7,6,5])]. given #73 (W,wt=37): 94 P([0,1,0,1,0,0,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(2,a,22,a,b,34,a),rewrite([7,6,8,5])]. given #74 (W,wt=37): 98 P([0,0,0,1,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,39,a),rewrite([7,8,6,5])]. given #75 (W,wt=37): 99 P([0,1,0,1,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,39,a),rewrite([7,6,5])]. given #76 (W,wt=37): 100 P([0,0,0,0,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,20,a,b,39,a),rewrite([7,8,6,5])]. given #77 (W,wt=37): 102 P([0,1,0,0,0,1,1,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,58,a,b,41,a),rewrite([7,6,8,5])]. given #78 (W,wt=37): 103 P([0,1,0,0,1,1,1,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,41,a),rewrite([7,6,5])]. given #79 (W,wt=37): 104 P([0,1,0,0,0,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(2,a,22,a,b,41,a),rewrite([7,6,8,5])]. given #80 (W,wt=37): 108 P([0,0,0,1,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,46,a),rewrite([7,8,6,5])]. given #81 (W,wt=37): 109 P([0,0,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,46,a),rewrite([7,6,5])]. given #82 (W,wt=37): 110 P([0,0,0,0,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,20,a,b,46,a),rewrite([7,8,6,5])]. given #83 (W,wt=37): 112 P([0,0,1,0,0,1,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,63,a,b,47,a),rewrite([7,8,6,5])]. given #84 (W,wt=37): 113 P([0,0,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,47,a),rewrite([7,6,5])]. given #85 (W,wt=37): 114 P([0,0,1,0,0,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(2,a,21,a,b,47,a),rewrite([7,8,6,5])]. given #86 (W,wt=37): 117 P([1,1,0,1,0,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,79,a,b,51,a),rewrite([12,13,11,10])]. given #87 (W,wt=37): 118 P([1,1,0,1,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,51,a),rewrite([12,13,11,10])]. given #88 (W,wt=37): 119 P([1,1,0,1,1,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,68,a,b,51,a),rewrite([12,13,11,10])]. given #89 (W,wt=37): 120 P([1,1,0,0,0,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,51,a),rewrite([12,13,11,10])]. given #90 (W,wt=37): 121 P([1,1,1,1,0,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,63,a,b,51,a),rewrite([12,11,13,10])]. given #91 (W,wt=37): 122 P([1,1,0,0,0,0,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,51,a),rewrite([12,13,11,10])]. given #92 (W,wt=37): 123 P([1,1,0,1,0,1,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,51,a),rewrite([12,13,11,10])]. given #93 (W,wt=37): 124 P([1,1,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,53,a,b,51,a),rewrite([12,11,10])]. given #94 (W,wt=37): 125 P([1,1,0,0,0,1,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,51,a),rewrite([12,13,11,10])]. given #95 (W,wt=37): 126 P([1,1,0,1,0,0,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,51,a),rewrite([12,13,11,10])]. given #96 (W,wt=37): 127 P([1,1,0,0,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,51,a),rewrite([12,13,11,10])]. given #97 (W,wt=37): 128 P([1,1,1,1,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,51,a),rewrite([12,11,13,10])]. given #98 (W,wt=37): 129 P([1,1,0,0,1,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,51,a),rewrite([12,13,11,10])]. given #99 (W,wt=37): 130 P([0,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,79,a,b,51,a),rewrite([7,8,6,5])]. given #100 (W,wt=37): 131 P([0,1,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,51,a),rewrite([7,6,8,5])]. given #101 (W,wt=37): 134 P([0,0,1,0,1,0,1,1],[[0,1,0,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,54,a),rewrite([13,12,11,10])]. given #102 (W,wt=37): 135 P([1,1,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(3,a,79,a,b,56,a),rewrite([12,11,10])]. given #103 (W,wt=37): 136 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,56,a),rewrite([12,13,11,10])]. given #104 (W,wt=37): 137 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,56,a),rewrite([7,6,5])]. given #105 (W,wt=37): 138 P([0,0,0,1,0,0,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,70,a,b,56,a),rewrite([7,6,5])]. given #106 (W,wt=37): 139 P([0,0,0,1,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,56,a),rewrite([7,6,5])]. given #107 (W,wt=37): 140 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,65,a,b,56,a),rewrite([7,6,5])]. given #108 (W,wt=37): 141 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,63,a,b,56,a),rewrite([7,6,5])]. given #109 (W,wt=37): 142 P([0,0,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,60,a,b,56,a),rewrite([7,8,6,5])]. given #110 (W,wt=37): 143 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,58,a,b,56,a),rewrite([7,6,5])]. given #111 (W,wt=37): 144 P([0,1,1,1,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,56,a),rewrite([7,6,5])]. given #112 (W,wt=37): 145 P([0,1,0,1,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,30,a,b,56,a),rewrite([7,6,5])]. given #113 (W,wt=37): 146 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,29,a,b,56,a),rewrite([7,6,5])]. given #114 (W,wt=37): 147 P([0,0,1,1,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,26,a,b,56,a),rewrite([7,6,5])]. given #115 (W,wt=37): 148 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,21,a,b,56,a),rewrite([7,6,5])]. given #116 (W,wt=37): 149 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,20,a,b,56,a),rewrite([7,6,5])]. given #117 (W,wt=37): 152 P([1,0,0,1,1,1,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,79,a,b,61,a),rewrite([12,13,11,10])]. given #118 (W,wt=37): 153 P([1,0,0,1,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,61,a),rewrite([12,13,11,10])]. given #119 (W,wt=37): 154 P([1,0,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,61,a),rewrite([12,13,11,10])]. given #120 (W,wt=37): 155 P([1,0,1,1,1,1,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,63,a,b,61,a),rewrite([12,13,11,10])]. given #121 (W,wt=37): 156 P([1,0,0,0,1,0,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,61,a),rewrite([12,13,11,10])]. given #122 (W,wt=37): 157 P([1,1,0,1,1,1,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,58,a,b,61,a),rewrite([12,11,13,10])]. given #123 (W,wt=37): 158 P([1,0,0,1,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,61,a),rewrite([12,13,11,10])]. given #124 (W,wt=37): 159 P([1,1,1,1,1,1,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,53,a,b,61,a),rewrite([12,11,10])]. given #125 (W,wt=37): 160 P([1,0,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,61,a),rewrite([12,13,11,10])]. given #126 (W,wt=37): 161 P([1,0,0,1,1,0,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,61,a),rewrite([12,13,11,10])]. given #127 (W,wt=37): 162 P([1,0,0,0,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,61,a),rewrite([12,13,11,10])]. given #128 (W,wt=37): 163 P([1,1,0,1,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,61,a),rewrite([12,11,13,10])]. given #129 (W,wt=37): 164 P([1,0,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,61,a),rewrite([12,13,11,10])]. given #130 (W,wt=37): 165 P([0,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,79,a,b,61,a),rewrite([7,8,6,5])]. given #131 (W,wt=37): 166 P([0,0,0,0,1,0,0,0],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,61,a),rewrite([7,8,6,5])]. given #132 (W,wt=37): 169 P([0,1,1,1,0,0,0,1],[[0,0,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,64,a),rewrite([13,12,11,10])]. given #133 (W,wt=37): 170 P([1,0,1,1,0,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,79,a,b,66,a),rewrite([12,13,11,10])]. given #134 (W,wt=37): 171 P([1,0,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,66,a),rewrite([12,13,11,10])]. given #135 (W,wt=37): 172 P([1,0,1,1,1,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,68,a,b,66,a),rewrite([12,13,11,10])]. given #136 (W,wt=37): 173 P([1,0,1,0,0,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,66,a),rewrite([12,13,11,10])]. given #137 (W,wt=37): 174 P([1,0,1,0,0,0,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,66,a),rewrite([12,13,11,10])]. given #138 (W,wt=37): 175 P([1,1,1,1,0,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,58,a,b,66,a),rewrite([12,11,13,10])]. given #139 (W,wt=37): 176 P([1,0,1,1,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,66,a),rewrite([12,13,11,10])]. given #140 (W,wt=37): 177 P([1,1,1,1,1,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,53,a,b,66,a),rewrite([12,11,10])]. given #141 (W,wt=37): 178 P([1,0,1,0,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,66,a),rewrite([12,13,11,10])]. given #142 (W,wt=37): 179 P([1,0,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,66,a),rewrite([12,13,11,10])]. given #143 (W,wt=37): 180 P([1,0,1,0,0,0,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,66,a),rewrite([12,13,11,10])]. given #144 (W,wt=37): 181 P([1,1,1,1,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,66,a),rewrite([12,11,13,10])]. given #145 (W,wt=37): 182 P([1,0,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,66,a),rewrite([12,13,11,10])]. given #146 (W,wt=37): 183 P([0,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,79,a,b,66,a),rewrite([7,8,6,5])]. given #147 (W,wt=37): 184 P([0,0,1,0,0,0,0,0],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,66,a),rewrite([7,8,6,5])]. given #148 (W,wt=37): 187 P([0,1,0,0,1,1,0,1],[[0,0,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,69,a),rewrite([13,12,11,10])]. given #149 (W,wt=37): 188 P([1,1,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(3,a,79,a,b,71,a),rewrite([12,11,10])]. given #150 (W,wt=37): 189 P([1,1,1,0,1,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,71,a),rewrite([12,13,11,10])]. given #151 (W,wt=37): 190 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,71,a),rewrite([7,6,5])]. given #152 (W,wt=37): 191 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,70,a,b,71,a),rewrite([7,6,5])]. given #153 (W,wt=37): 192 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,71,a),rewrite([7,6,5])]. given #154 (W,wt=37): 193 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,71,a),rewrite([7,6,5])]. given #155 (W,wt=37): 194 P([0,0,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,60,a,b,71,a),rewrite([7,8,6,5])]. given #156 (W,wt=37): 195 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,71,a),rewrite([7,6,5])]. given #157 (W,wt=37): 196 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,55,a,b,71,a),rewrite([7,6,5])]. given #158 (W,wt=37): 197 P([0,1,1,0,1,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,71,a),rewrite([7,6,5])]. given #159 (W,wt=37): 198 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,30,a,b,71,a),rewrite([7,6,5])]. given #160 (W,wt=37): 199 P([0,1,1,0,0,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,29,a,b,71,a),rewrite([7,6,5])]. given #161 (W,wt=37): 200 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,26,a,b,71,a),rewrite([7,6,5])]. given #162 (W,wt=37): 201 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,22,a,b,71,a),rewrite([7,6,5])]. given #163 (W,wt=37): 202 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,21,a,b,71,a),rewrite([7,6,5])]. given #164 (W,wt=37): 205 P([1,1,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(3,a,79,a,b,74,a),rewrite([12,11,10])]. given #165 (W,wt=37): 206 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,74,a),rewrite([12,11,13,10])]. given #166 (W,wt=37): 207 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,74,a),rewrite([7,6,5])]. given #167 (W,wt=37): 208 P([0,0,0,1,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,74,a),rewrite([7,6,5])]. given #168 (W,wt=37): 209 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,65,a,b,74,a),rewrite([7,6,5])]. given #169 (W,wt=37): 210 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,63,a,b,74,a),rewrite([7,6,5])]. given #170 (W,wt=37): 211 P([0,0,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,60,a,b,74,a),rewrite([7,8,6,5])]. given #171 (W,wt=37): 212 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,58,a,b,74,a),rewrite([7,6,5])]. given #172 (W,wt=37): 213 P([0,0,0,1,0,0,0,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,55,a,b,74,a),rewrite([7,6,5])]. given #173 (W,wt=37): 214 P([0,1,1,1,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,74,a),rewrite([7,6,5])]. given #174 (W,wt=37): 215 P([0,1,0,1,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,30,a,b,74,a),rewrite([7,6,5])]. given #175 (W,wt=37): 216 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,29,a,b,74,a),rewrite([7,6,5])]. given #176 (W,wt=37): 217 P([0,0,1,1,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,26,a,b,74,a),rewrite([7,6,5])]. given #177 (W,wt=37): 218 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,22,a,b,74,a),rewrite([7,6,5])]. given #178 (W,wt=37): 219 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,20,a,b,74,a),rewrite([7,6,5])]. given #179 (W,wt=37): 222 P([1,0,0,1,0,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,79,a,b,77,a),rewrite([12,13,11,10])]. given #180 (W,wt=37): 223 P([1,0,0,1,0,0,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,77,a),rewrite([12,13,11,10])]. given #181 (W,wt=37): 224 P([1,0,0,1,1,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,68,a,b,77,a),rewrite([12,13,11,10])]. given #182 (W,wt=37): 225 P([1,0,0,0,0,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,77,a),rewrite([12,13,11,10])]. given #183 (W,wt=37): 226 P([1,0,1,1,0,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,63,a,b,77,a),rewrite([12,13,11,10])]. given #184 (W,wt=37): 227 P([1,0,0,0,0,0,0,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,77,a),rewrite([12,13,11,10])]. given #185 (W,wt=37): 228 P([1,1,0,1,0,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,58,a,b,77,a),rewrite([12,11,13,10])]. given #186 (W,wt=37): 229 P([1,0,0,1,0,1,0,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,77,a),rewrite([12,13,11,10])]. given #187 (W,wt=37): 230 P([1,1,1,1,1,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,53,a,b,77,a),rewrite([12,11,10])]. given #188 (W,wt=37): 231 P([1,0,0,0,0,1,0,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,77,a),rewrite([12,13,11,10])]. given #189 (W,wt=37): 232 P([1,0,0,1,0,0,0,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,77,a),rewrite([12,13,11,10])]. given #190 (W,wt=37): 233 P([1,1,0,1,1,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,30,a,b,77,a),rewrite([12,11,13,10])]. given #191 (W,wt=37): 234 P([1,1,1,1,0,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,29,a,b,77,a),rewrite([12,11,13,10])]. given #192 (W,wt=37): 235 P([1,0,0,0,0,0,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,77,a),rewrite([12,13,11,10])]. given #193 (W,wt=37): 236 P([1,0,1,1,1,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,26,a,b,77,a),rewrite([12,13,11,10])]. given #194 (W,wt=37): 237 P([1,1,0,1,0,1,0,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,77,a),rewrite([12,11,13,10])]. given #195 (W,wt=37): 238 P([1,0,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,77,a),rewrite([12,13,11,10])]. given #196 (W,wt=37): 239 P([1,0,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,77,a),rewrite([12,13,11,10])]. given #197 (W,wt=37): 240 P([0,0,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1]:x]). [hyper(2,a,79,a,b,77,a),rewrite([7,8,6,5])]. given #198 (W,wt=37): 241 P([1,1,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,78,a),rewrite([12,11,10])]. given #199 (W,wt=37): 242 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,78,a),rewrite([12,11,13,10])]. given #200 (W,wt=37): 243 P([1,1,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,78,a),rewrite([12,13,11,10])]. given #201 (W,wt=37): 244 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,78,a),rewrite([12,13,11,10])]. given #202 (W,wt=37): 245 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,79,a,b,78,a),rewrite([7,6,5])]. given #203 (W,wt=37): 246 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,78,a),rewrite([7,6,5])]. given #204 (W,wt=37): 247 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,63,a,b,78,a),rewrite([7,6,5])]. given #205 (W,wt=37): 248 P([0,0,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,60,a,b,78,a),rewrite([7,8,6,5])]. given #206 (W,wt=37): 249 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,78,a),rewrite([7,6,5])]. given #207 (W,wt=37): 250 P([0,1,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,78,a),rewrite([7,6,5])]. given #208 (W,wt=37): 251 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,30,a,b,78,a),rewrite([7,6,5])]. given #209 (W,wt=37): 252 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,29,a,b,78,a),rewrite([7,6,5])]. given #210 (W,wt=37): 253 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,26,a,b,78,a),rewrite([7,6,5])]. given #211 (W,wt=37): 254 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,22,a,b,78,a),rewrite([7,6,5])]. given #212 (W,wt=37): 255 P([1,0,1,1,1,1,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,79,a,b,80,a),rewrite([12,13,11,10])]. given #213 (W,wt=37): 256 P([1,0,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,80,a),rewrite([12,13,11,10])]. given #214 (W,wt=37): 257 P([1,0,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,80,a),rewrite([12,13,11,10])]. given #215 (W,wt=37): 258 P([1,0,1,0,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,80,a),rewrite([12,13,11,10])]. given #216 (W,wt=37): 259 P([1,1,1,1,1,1,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,58,a,b,80,a),rewrite([12,11,10])]. given #217 (W,wt=37): 260 P([1,0,1,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,80,a),rewrite([12,13,11,10])]. given #218 (W,wt=37): 261 P([1,0,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,80,a),rewrite([12,13,11,10])]. given #219 (W,wt=37): 262 P([1,0,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,80,a),rewrite([12,13,11,10])]. given #220 (W,wt=37): 263 P([1,0,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,80,a),rewrite([12,13,11,10])]. given #221 (W,wt=37): 264 P([1,1,1,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,80,a),rewrite([12,11,13,10])]. given #222 (W,wt=37): 265 P([0,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,79,a,b,80,a),rewrite([7,8,6,5])]. given #223 (W,wt=37): 266 P([0,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,80,a),rewrite([7,8,6,5])]. given #224 (W,wt=37): 267 P([0,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,80,a),rewrite([7,8,6,5])]. given #225 (W,wt=37): 268 P([0,0,1,0,1,0,0,0],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,80,a),rewrite([7,6,5])]. given #226 (W,wt=37): 269 P([1,1,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1]:x]). [hyper(3,a,79,a,b,81,a),rewrite([12,11,10])]. given #227 (W,wt=37): 270 P([0,0,0,1,0,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,81,a),rewrite([7,6,5])]. given #228 (W,wt=37): 271 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,81,a),rewrite([7,6,5])]. given #229 (W,wt=37): 272 P([0,0,0,1,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,81,a),rewrite([7,6,5])]. given #230 (W,wt=37): 273 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,65,a,b,81,a),rewrite([7,6,5])]. given #231 (W,wt=37): 274 P([0,0,1,1,0,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,81,a),rewrite([7,6,5])]. given #232 (W,wt=37): 275 P([0,0,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,60,a,b,81,a),rewrite([7,6,5])]. given #233 (W,wt=37): 276 P([0,1,0,1,0,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,81,a),rewrite([7,6,5])]. given #234 (W,wt=37): 277 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,81,a),rewrite([7,6,5])]. given #235 (W,wt=37): 278 P([0,1,1,1,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,81,a),rewrite([7,6,5])]. given #236 (W,wt=37): 279 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,32,a,b,81,a),rewrite([7,6,5])]. given #237 (W,wt=37): 280 P([0,0,0,1,0,0,0,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,31,a,b,81,a),rewrite([7,6,5])]. given #238 (W,wt=37): 281 P([0,1,0,1,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,30,a,b,81,a),rewrite([7,6,5])]. given #239 (W,wt=37): 282 P([0,1,1,1,0,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,29,a,b,81,a),rewrite([7,6,5])]. given #240 (W,wt=37): 283 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,27,a,b,81,a),rewrite([7,6,5])]. given #241 (W,wt=37): 284 P([0,0,1,1,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,26,a,b,81,a),rewrite([7,6,5])]. given #242 (W,wt=37): 285 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,22,a,b,81,a),rewrite([7,6,5])]. given #243 (W,wt=37): 286 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,21,a,b,81,a),rewrite([7,6,5])]. given #244 (W,wt=37): 287 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,0,0,1]:x]). [hyper(2,a,20,a,b,81,a),rewrite([7,6,5])]. given #245 (W,wt=37): 288 P([1,1,0,1,1,1,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,79,a,b,82,a),rewrite([12,13,11,10])]. given #246 (W,wt=37): 289 P([1,1,0,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,82,a),rewrite([12,13,11,10])]. given #247 (W,wt=37): 290 P([1,1,0,0,1,1,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,82,a),rewrite([12,13,11,10])]. given #248 (W,wt=37): 291 P([1,1,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,63,a,b,82,a),rewrite([12,11,10])]. given #249 (W,wt=37): 292 P([1,1,0,0,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,82,a),rewrite([12,13,11,10])]. given #250 (W,wt=37): 293 P([1,1,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,82,a),rewrite([12,13,11,10])]. given #251 (W,wt=37): 294 P([1,1,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,82,a),rewrite([12,13,11,10])]. given #252 (W,wt=37): 295 P([1,1,0,1,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,82,a),rewrite([12,13,11,10])]. given #253 (W,wt=37): 296 P([1,1,0,0,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,82,a),rewrite([12,13,11,10])]. given #254 (W,wt=37): 297 P([1,1,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,82,a),rewrite([12,11,13,10])]. given #255 (W,wt=37): 298 P([0,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,79,a,b,82,a),rewrite([7,8,6,5])]. given #256 (W,wt=37): 299 P([0,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,82,a),rewrite([7,8,6,5])]. given #257 (W,wt=37): 300 P([0,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,82,a),rewrite([7,6,8,5])]. given #258 (W,wt=37): 301 P([0,1,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,82,a),rewrite([7,6,5])]. given #259 (W,wt=37): 302 P([1,1,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,83,a),rewrite([12,11,10])]. given #260 (W,wt=37): 303 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,83,a),rewrite([12,11,13,10])]. given #261 (W,wt=37): 304 P([1,1,1,1,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,83,a),rewrite([12,13,11,10])]. given #262 (W,wt=37): 305 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,83,a),rewrite([12,11,13,10])]. given #263 (W,wt=37): 306 P([0,0,0,1,0,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,83,a),rewrite([7,6,5])]. given #264 (W,wt=37): 307 P([0,0,0,1,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,83,a),rewrite([7,6,5])]. given #265 (W,wt=37): 308 P([0,0,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,65,a,b,83,a),rewrite([7,6,5])]. given #266 (W,wt=37): 309 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,63,a,b,83,a),rewrite([7,6,5])]. given #267 (W,wt=37): 310 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,58,a,b,83,a),rewrite([7,6,5])]. given #268 (W,wt=37): 311 P([0,1,1,1,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,83,a),rewrite([7,6,5])]. given #269 (W,wt=37): 312 P([0,1,0,1,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,30,a,b,83,a),rewrite([7,6,5])]. given #270 (W,wt=37): 313 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,29,a,b,83,a),rewrite([7,6,5])]. given #271 (W,wt=37): 314 P([0,0,1,1,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,26,a,b,83,a),rewrite([7,6,5])]. given #272 (W,wt=37): 315 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,20,a,b,83,a),rewrite([7,6,5])]. given #273 (W,wt=37): 316 P([1,1,1,1,0,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,79,a,b,84,a),rewrite([12,11,13,10])]. given #274 (W,wt=37): 317 P([1,1,1,1,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,84,a),rewrite([12,11,13,10])]. given #275 (W,wt=37): 318 P([1,1,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,68,a,b,84,a),rewrite([12,11,10])]. given #276 (W,wt=37): 319 P([1,1,1,0,0,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,84,a),rewrite([12,13,11,10])]. given #277 (W,wt=37): 320 P([1,1,1,0,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,84,a),rewrite([12,13,11,10])]. given #278 (W,wt=37): 321 P([1,1,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,84,a),rewrite([12,11,13,10])]. given #279 (W,wt=37): 322 P([1,1,1,0,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,84,a),rewrite([12,13,11,10])]. given #280 (W,wt=37): 323 P([1,1,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,84,a),rewrite([12,11,13,10])]. given #281 (W,wt=37): 324 P([1,1,1,0,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,84,a),rewrite([12,13,11,10])]. given #282 (W,wt=37): 325 P([1,1,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,84,a),rewrite([12,13,11,10])]. given #283 (W,wt=37): 326 P([0,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,79,a,b,84,a),rewrite([7,6,8,5])]. given #284 (W,wt=37): 327 P([0,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,84,a),rewrite([7,6,8,5])]. given #285 (W,wt=37): 328 P([0,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,84,a),rewrite([7,6,8,5])]. given #286 (W,wt=37): 329 P([0,1,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,84,a),rewrite([7,6,5])]. given #287 (W,wt=37): 330 P([1,1,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,85,a),rewrite([12,11,10])]. given #288 (W,wt=37): 331 P([1,1,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,85,a),rewrite([12,13,11,10])]. given #289 (W,wt=37): 332 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,85,a),rewrite([12,13,11,10])]. given #290 (W,wt=37): 333 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,85,a),rewrite([12,11,13,10])]. given #291 (W,wt=37): 334 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,79,a,b,85,a),rewrite([7,6,5])]. given #292 (W,wt=37): 335 P([0,0,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,70,a,b,85,a),rewrite([7,6,5])]. given #293 (W,wt=37): 336 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,85,a),rewrite([7,6,5])]. given #294 (W,wt=37): 337 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,85,a),rewrite([7,6,5])]. given #295 (W,wt=37): 338 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,58,a,b,85,a),rewrite([7,6,5])]. given #296 (W,wt=37): 339 P([0,1,1,0,1,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,85,a),rewrite([7,6,5])]. given #297 (W,wt=37): 340 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,30,a,b,85,a),rewrite([7,6,5])]. given #298 (W,wt=37): 341 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,29,a,b,85,a),rewrite([7,6,5])]. given #299 (W,wt=37): 342 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,26,a,b,85,a),rewrite([7,6,5])]. given #300 (W,wt=37): 343 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,21,a,b,85,a),rewrite([7,6,5])]. given #301 (W,wt=37): 344 P([1,1,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,79,a,b,86,a),rewrite([12,11,10])]. given #302 (W,wt=37): 345 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,86,a),rewrite([12,11,13,10])]. given #303 (W,wt=37): 346 P([1,1,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,86,a),rewrite([12,13,11,10])]. given #304 (W,wt=37): 347 P([1,1,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,86,a),rewrite([12,13,11,10])]. given #305 (W,wt=37): 348 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,86,a),rewrite([12,11,13,10])]. given #306 (W,wt=37): 349 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,86,a),rewrite([12,13,11,10])]. given #307 (W,wt=37): 350 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,86,a),rewrite([12,11,13,10])]. given #308 (W,wt=37): 351 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,86,a),rewrite([12,13,11,10])]. given #309 (W,wt=37): 352 P([0,0,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,79,a,b,86,a),rewrite([7,6,5])]. given #310 (W,wt=37): 353 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,86,a),rewrite([7,6,5])]. given #311 (W,wt=37): 354 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,86,a),rewrite([7,6,5])]. given #312 (W,wt=37): 355 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,86,a),rewrite([7,6,5])]. given #313 (W,wt=37): 356 P([0,1,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,86,a),rewrite([7,6,5])]. given #314 (W,wt=37): 357 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,86,a),rewrite([7,6,5])]. given #315 (W,wt=37): 358 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,86,a),rewrite([7,6,5])]. given #316 (W,wt=37): 359 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,86,a),rewrite([7,6,5])]. given #317 (W,wt=37): 380 P([0,1,0,1,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,118,a),rewrite([7,6,8,5])]. given #318 (W,wt=37): 381 P([0,1,0,1,0,0,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,22,a,b,118,a),rewrite([7,6,8,5])]. given #319 (W,wt=37): 384 P([0,1,0,0,0,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,120,a),rewrite([7,6,8,5])]. given #320 (W,wt=37): 385 P([0,1,0,0,0,1,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,22,a,b,120,a),rewrite([7,6,8,5])]. given #321 (W,wt=37): 388 P([0,1,0,0,0,0,0,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,122,a),rewrite([7,6,8,5])]. given #322 (W,wt=37): 393 P([0,1,0,0,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,127,a),rewrite([7,6,8,5])]. given #323 (W,wt=37): 395 P([0,1,1,1,0,0,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,128,a),rewrite([7,6,5])]. given #324 (W,wt=37): 397 P([0,1,0,0,1,1,1,1],[[0,0,1,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,129,a),rewrite([7,6,5])]. given #325 (W,wt=37): 401 P([0,0,0,1,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,136,a),rewrite([7,6,5])]. given #326 (W,wt=37): 402 P([0,0,1,1,0,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,63,a,b,136,a),rewrite([7,6,5])]. given #327 (W,wt=37): 403 P([0,1,1,1,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,136,a),rewrite([7,6,5])]. given #328 (W,wt=37): 404 P([0,1,0,1,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,30,a,b,136,a),rewrite([7,6,5])]. given #329 (W,wt=37): 405 P([0,1,1,1,0,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,29,a,b,136,a),rewrite([7,6,5])]. given #330 (W,wt=37): 406 P([0,0,1,1,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,26,a,b,136,a),rewrite([7,6,5])]. given #331 (W,wt=37): 407 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,21,a,b,136,a),rewrite([7,6,5])]. given #332 (W,wt=37): 408 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,0,1,1]:x]). [hyper(2,a,20,a,b,136,a),rewrite([7,6,5])]. given #333 (W,wt=37): 423 P([0,0,0,1,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,153,a),rewrite([7,8,6,5])]. given #334 (W,wt=37): 424 P([0,0,0,0,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,153,a),rewrite([7,8,6,5])]. given #335 (W,wt=37): 428 P([0,0,0,0,1,0,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,156,a),rewrite([7,8,6,5])]. given #336 (W,wt=37): 431 P([0,0,0,1,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,158,a),rewrite([7,8,6,5])]. given #337 (W,wt=37): 432 P([0,0,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,158,a),rewrite([7,8,6,5])]. given #338 (W,wt=37): 435 P([0,0,0,1,1,0,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,161,a),rewrite([7,8,6,5])]. given #339 (W,wt=37): 438 P([0,1,0,1,1,1,0,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,163,a),rewrite([7,6,5])]. given #340 (W,wt=37): 440 P([0,0,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,164,a),rewrite([7,6,5])]. given #341 (W,wt=37): 447 P([0,0,1,0,0,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,173,a),rewrite([7,8,6,5])]. given #342 (W,wt=37): 448 P([0,0,1,0,0,0,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,21,a,b,173,a),rewrite([7,8,6,5])]. given #343 (W,wt=37): 450 P([0,0,1,0,0,0,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,174,a),rewrite([7,8,6,5])]. given #344 (W,wt=37): 453 P([0,0,1,1,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,176,a),rewrite([7,8,6,5])]. given #345 (W,wt=37): 454 P([0,0,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,21,a,b,176,a),rewrite([7,8,6,5])]. given #346 (W,wt=37): 456 P([0,0,1,0,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,178,a),rewrite([7,8,6,5])]. given #347 (W,wt=37): 460 P([0,1,1,1,0,1,0,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,181,a),rewrite([7,6,5])]. given #348 (W,wt=37): 462 P([0,0,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,182,a),rewrite([7,6,5])]. given #349 (W,wt=37): 466 P([0,0,1,0,0,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,189,a),rewrite([7,6,5])]. given #350 (W,wt=37): 467 P([0,1,0,0,0,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,189,a),rewrite([7,6,5])]. given #351 (W,wt=37): 468 P([0,1,1,0,1,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,189,a),rewrite([7,6,5])]. given #352 (W,wt=37): 469 P([0,1,0,0,1,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,30,a,b,189,a),rewrite([7,6,5])]. given #353 (W,wt=37): 470 P([0,1,1,0,0,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,29,a,b,189,a),rewrite([7,6,5])]. given #354 (W,wt=37): 471 P([0,0,1,0,1,1,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,26,a,b,189,a),rewrite([7,6,5])]. given #355 (W,wt=37): 472 P([0,1,0,0,0,1,0,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,22,a,b,189,a),rewrite([7,6,5])]. given #356 (W,wt=37): 473 P([0,0,1,0,0,0,1,1],[[0,0,0,1,0,0,0,1]:x]). [hyper(2,a,21,a,b,189,a),rewrite([7,6,5])]. given #357 (W,wt=37): 487 P([0,0,0,1,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,206,a),rewrite([7,6,5])]. given #358 (W,wt=37): 488 P([0,1,0,1,0,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,58,a,b,206,a),rewrite([7,6,5])]. given #359 (W,wt=37): 489 P([0,1,1,1,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,206,a),rewrite([7,6,5])]. given #360 (W,wt=37): 490 P([0,1,0,1,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,30,a,b,206,a),rewrite([7,6,5])]. given #361 (W,wt=37): 491 P([0,1,1,1,0,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,29,a,b,206,a),rewrite([7,6,5])]. given #362 (W,wt=37): 492 P([0,0,1,1,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,26,a,b,206,a),rewrite([7,6,5])]. given #363 (W,wt=37): 493 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,22,a,b,206,a),rewrite([7,6,5])]. given #364 (W,wt=37): 494 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,1,0,1]:x]). [hyper(2,a,20,a,b,206,a),rewrite([7,6,5])]. given #365 (W,wt=37): 525 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,242,a),rewrite([7,6,5])]. given #366 (W,wt=37): 526 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,242,a),rewrite([7,6,5])]. given #367 (W,wt=37): 527 P([0,1,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,242,a),rewrite([7,6,5])]. given #368 (W,wt=37): 528 P([0,1,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,30,a,b,242,a),rewrite([7,6,5])]. given #369 (W,wt=37): 529 P([0,1,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,29,a,b,242,a),rewrite([7,6,5])]. given #370 (W,wt=37): 530 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,26,a,b,242,a),rewrite([7,6,5])]. given #371 (W,wt=37): 531 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,22,a,b,242,a),rewrite([7,6,5])]. given #372 (W,wt=37): 532 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,20,a,b,242,a),rewrite([7,6,5])]. given #373 (W,wt=37): 534 P([0,0,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,63,a,b,243,a),rewrite([7,6,5])]. given #374 (W,wt=37): 535 P([0,1,0,0,0,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,243,a),rewrite([7,6,5])]. given #375 (W,wt=37): 536 P([0,1,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,243,a),rewrite([7,6,5])]. given #376 (W,wt=37): 537 P([0,1,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,30,a,b,243,a),rewrite([7,6,5])]. given #377 (W,wt=37): 538 P([0,1,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,29,a,b,243,a),rewrite([7,6,5])]. given #378 (W,wt=37): 539 P([0,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,26,a,b,243,a),rewrite([7,6,5])]. given #379 (W,wt=37): 540 P([0,1,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,22,a,b,243,a),rewrite([7,6,5])]. given #380 (W,wt=37): 541 P([0,0,1,0,0,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,21,a,b,243,a),rewrite([7,6,5])]. given #381 (W,wt=37): 543 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,244,a),rewrite([7,6,5])]. given #382 (W,wt=37): 544 P([0,1,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,244,a),rewrite([7,6,5])]. given #383 (W,wt=37): 545 P([0,1,0,0,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,30,a,b,244,a),rewrite([7,6,5])]. given #384 (W,wt=37): 546 P([0,1,1,0,0,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,29,a,b,244,a),rewrite([7,6,5])]. given #385 (W,wt=37): 547 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,26,a,b,244,a),rewrite([7,6,5])]. given #386 (W,wt=37): 548 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,1,0,1]:x]). [hyper(2,a,22,a,b,244,a),rewrite([7,6,5])]. given #387 (W,wt=37): 560 P([0,0,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,256,a),rewrite([7,8,6,5])]. given #388 (W,wt=37): 561 P([0,0,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,256,a),rewrite([7,6,5])]. given #389 (W,wt=37): 562 P([0,0,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,256,a),rewrite([7,8,6,5])]. given #390 (W,wt=37): 564 P([0,0,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,257,a),rewrite([7,8,6,5])]. given #391 (W,wt=37): 565 P([0,0,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,257,a),rewrite([7,6,5])]. given #392 (W,wt=37): 566 P([0,0,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,21,a,b,257,a),rewrite([7,8,6,5])]. given #393 (W,wt=37): 568 P([0,0,0,0,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,258,a),rewrite([7,8,6,5])]. given #394 (W,wt=37): 569 P([0,0,1,0,0,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,258,a),rewrite([7,8,6,5])]. given #395 (W,wt=37): 570 P([0,0,1,0,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,258,a),rewrite([7,6,5])]. given #396 (W,wt=37): 572 P([0,0,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,260,a),rewrite([7,8,6,5])]. given #397 (W,wt=37): 573 P([0,0,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,260,a),rewrite([7,8,6,5])]. given #398 (W,wt=37): 574 P([0,0,1,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,260,a),rewrite([7,6,5])]. given #399 (W,wt=37): 575 P([0,0,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,21,a,b,260,a),rewrite([7,8,6,5])]. given #400 (W,wt=37): 576 P([0,0,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,260,a),rewrite([7,8,6,5])]. given #401 (W,wt=37): 578 P([0,0,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,261,a),rewrite([7,8,6,5])]. given #402 (W,wt=37): 579 P([0,0,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,261,a),rewrite([7,6,5])]. given #403 (W,wt=37): 581 P([0,0,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,262,a),rewrite([7,8,6,5])]. given #404 (W,wt=37): 582 P([0,0,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,262,a),rewrite([7,6,5])]. given #405 (W,wt=37): 584 P([0,0,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,263,a),rewrite([7,6,5])]. given #406 (W,wt=37): 586 P([0,1,1,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,264,a),rewrite([7,6,5])]. given #407 (W,wt=37): 587 P([0,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,264,a),rewrite([7,6,5])]. given #408 (W,wt=37): 588 P([0,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,264,a),rewrite([7,6,5])]. given #409 (W,wt=37): 611 P([0,0,0,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,289,a),rewrite([7,8,6,5])]. given #410 (W,wt=37): 612 P([0,1,0,1,0,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,289,a),rewrite([7,6,8,5])]. given #411 (W,wt=37): 613 P([0,1,0,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,289,a),rewrite([7,6,5])]. given #412 (W,wt=37): 614 P([0,1,0,1,0,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,22,a,b,289,a),rewrite([7,6,8,5])]. given #413 (W,wt=37): 615 P([0,0,0,0,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,289,a),rewrite([7,8,6,5])]. given #414 (W,wt=37): 617 P([0,1,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,290,a),rewrite([7,6,8,5])]. given #415 (W,wt=37): 618 P([0,1,0,0,1,1,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,290,a),rewrite([7,6,5])]. given #416 (W,wt=37): 619 P([0,1,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,22,a,b,290,a),rewrite([7,6,8,5])]. given #417 (W,wt=37): 621 P([0,0,0,0,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,292,a),rewrite([7,8,6,5])]. given #418 (W,wt=37): 622 P([0,1,0,0,0,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,292,a),rewrite([7,6,8,5])]. given #419 (W,wt=37): 623 P([0,1,0,0,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,292,a),rewrite([7,6,5])]. given #420 (W,wt=37): 625 P([0,0,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,293,a),rewrite([7,8,6,5])]. given #421 (W,wt=37): 626 P([0,1,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,293,a),rewrite([7,6,5])]. given #422 (W,wt=37): 627 P([0,0,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,293,a),rewrite([7,8,6,5])]. given #423 (W,wt=37): 629 P([0,1,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,294,a),rewrite([7,6,5])]. given #424 (W,wt=37): 631 P([0,0,0,1,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,295,a),rewrite([7,8,6,5])]. given #425 (W,wt=37): 632 P([0,1,0,1,1,0,0,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,295,a),rewrite([7,6,5])]. given #426 (W,wt=37): 634 P([0,1,0,0,0,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,296,a),rewrite([7,6,8,5])]. given #427 (W,wt=37): 635 P([0,1,0,0,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,296,a),rewrite([7,6,5])]. given #428 (W,wt=37): 637 P([0,1,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,297,a),rewrite([7,6,5])]. given #429 (W,wt=37): 638 P([0,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,297,a),rewrite([7,6,5])]. given #430 (W,wt=37): 639 P([0,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,297,a),rewrite([7,6,5])]. given #431 (W,wt=37): 644 P([0,0,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,303,a),rewrite([7,6,5])]. given #432 (W,wt=37): 645 P([0,1,0,1,0,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,58,a,b,303,a),rewrite([7,6,5])]. given #433 (W,wt=37): 646 P([0,1,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,303,a),rewrite([7,6,5])]. given #434 (W,wt=37): 647 P([0,1,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,30,a,b,303,a),rewrite([7,6,5])]. given #435 (W,wt=37): 648 P([0,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,29,a,b,303,a),rewrite([7,6,5])]. given #436 (W,wt=37): 649 P([0,0,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,26,a,b,303,a),rewrite([7,6,5])]. given #437 (W,wt=37): 650 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,22,a,b,303,a),rewrite([7,6,5])]. given #438 (W,wt=37): 651 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,20,a,b,303,a),rewrite([7,6,5])]. given #439 (W,wt=37): 653 P([0,0,0,1,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,304,a),rewrite([7,6,5])]. given #440 (W,wt=37): 654 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,63,a,b,304,a),rewrite([7,6,5])]. given #441 (W,wt=37): 655 P([0,1,1,1,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,304,a),rewrite([7,6,5])]. given #442 (W,wt=37): 656 P([0,1,0,1,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,30,a,b,304,a),rewrite([7,6,5])]. given #443 (W,wt=37): 657 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,29,a,b,304,a),rewrite([7,6,5])]. given #444 (W,wt=37): 658 P([0,0,1,1,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,26,a,b,304,a),rewrite([7,6,5])]. given #445 (W,wt=37): 659 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,20,a,b,304,a),rewrite([7,6,5])]. given #446 (W,wt=37): 661 P([0,0,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,305,a),rewrite([7,6,5])]. given #447 (W,wt=37): 662 P([0,0,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,63,a,b,305,a),rewrite([7,6,5])]. given #448 (W,wt=37): 663 P([0,1,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,305,a),rewrite([7,6,5])]. given #449 (W,wt=37): 664 P([0,1,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,30,a,b,305,a),rewrite([7,6,5])]. given #450 (W,wt=37): 665 P([0,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,29,a,b,305,a),rewrite([7,6,5])]. given #451 (W,wt=37): 666 P([0,0,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,26,a,b,305,a),rewrite([7,6,5])]. given #452 (W,wt=37): 667 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1]:x]). [hyper(2,a,20,a,b,305,a),rewrite([7,6,5])]. given #453 (W,wt=37): 679 P([0,1,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,317,a),rewrite([7,6,8,5])]. given #454 (W,wt=37): 680 P([0,1,1,1,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,317,a),rewrite([7,6,5])]. given #455 (W,wt=37): 681 P([0,1,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,22,a,b,317,a),rewrite([7,6,8,5])]. given #456 (W,wt=37): 683 P([0,0,1,0,0,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,319,a),rewrite([7,6,8,5])]. given #457 (W,wt=37): 684 P([0,1,0,0,0,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,319,a),rewrite([7,6,8,5])]. given #458 (W,wt=37): 685 P([0,1,1,0,0,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,319,a),rewrite([7,6,5])]. given #459 (W,wt=37): 686 P([0,1,0,0,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,22,a,b,319,a),rewrite([7,6,8,5])]. given #460 (W,wt=37): 687 P([0,0,1,0,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,21,a,b,319,a),rewrite([7,6,8,5])]. given #461 (W,wt=37): 689 P([0,0,1,0,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,320,a),rewrite([7,6,8,5])]. given #462 (W,wt=37): 690 P([0,1,0,0,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,320,a),rewrite([7,6,8,5])]. given #463 (W,wt=37): 691 P([0,1,1,0,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,320,a),rewrite([7,6,5])]. given #464 (W,wt=37): 693 P([0,0,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,321,a),rewrite([7,6,8,5])]. given #465 (W,wt=37): 694 P([0,1,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,321,a),rewrite([7,6,5])]. given #466 (W,wt=37): 695 P([0,0,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,21,a,b,321,a),rewrite([7,6,8,5])]. given #467 (W,wt=37): 697 P([0,0,1,0,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,63,a,b,322,a),rewrite([7,6,8,5])]. given #468 (W,wt=37): 698 P([0,1,1,0,0,1,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,322,a),rewrite([7,6,5])]. given #469 (W,wt=37): 700 P([0,1,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,323,a),rewrite([7,6,5])]. given #470 (W,wt=37): 702 P([0,1,0,0,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,58,a,b,324,a),rewrite([7,6,8,5])]. given #471 (W,wt=37): 703 P([0,1,1,0,0,0,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,324,a),rewrite([7,6,5])]. given #472 (W,wt=37): 705 P([0,1,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,53,a,b,325,a),rewrite([7,6,5])]. given #473 (W,wt=37): 706 P([0,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,30,a,b,325,a),rewrite([7,6,5])]. given #474 (W,wt=37): 707 P([0,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1]:x]). [hyper(2,a,26,a,b,325,a),rewrite([7,6,5])]. given #475 (W,wt=37): 712 P([0,0,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,331,a),rewrite([7,6,5])]. given #476 (W,wt=37): 713 P([0,1,0,0,0,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,58,a,b,331,a),rewrite([7,6,5])]. given #477 (W,wt=37): 714 P([0,1,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,331,a),rewrite([7,6,5])]. given #478 (W,wt=37): 715 P([0,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,30,a,b,331,a),rewrite([7,6,5])]. given #479 (W,wt=37): 716 P([0,1,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,29,a,b,331,a),rewrite([7,6,5])]. given #480 (W,wt=37): 717 P([0,0,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,26,a,b,331,a),rewrite([7,6,5])]. given #481 (W,wt=37): 718 P([0,1,0,0,0,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,22,a,b,331,a),rewrite([7,6,5])]. given #482 (W,wt=37): 719 P([0,0,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,21,a,b,331,a),rewrite([7,6,5])]. given #483 (W,wt=37): 721 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,332,a),rewrite([7,6,5])]. given #484 (W,wt=37): 722 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,332,a),rewrite([7,6,5])]. given #485 (W,wt=37): 723 P([0,1,1,0,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,332,a),rewrite([7,6,5])]. given #486 (W,wt=37): 724 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,30,a,b,332,a),rewrite([7,6,5])]. given #487 (W,wt=37): 725 P([0,1,1,0,0,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,29,a,b,332,a),rewrite([7,6,5])]. given #488 (W,wt=37): 726 P([0,0,1,0,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,26,a,b,332,a),rewrite([7,6,5])]. given #489 (W,wt=37): 727 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,21,a,b,332,a),rewrite([7,6,5])]. given #490 (W,wt=37): 729 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,333,a),rewrite([7,6,5])]. given #491 (W,wt=37): 730 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,333,a),rewrite([7,6,5])]. given #492 (W,wt=37): 731 P([0,1,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,333,a),rewrite([7,6,5])]. given #493 (W,wt=37): 732 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,30,a,b,333,a),rewrite([7,6,5])]. given #494 (W,wt=37): 733 P([0,1,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,29,a,b,333,a),rewrite([7,6,5])]. given #495 (W,wt=37): 734 P([0,0,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,26,a,b,333,a),rewrite([7,6,5])]. given #496 (W,wt=37): 735 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1]:x]). [hyper(2,a,21,a,b,333,a),rewrite([7,6,5])]. given #497 (W,wt=37): 746 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,345,a),rewrite([7,6,5])]. given #498 (W,wt=37): 747 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,345,a),rewrite([7,6,5])]. given #499 (W,wt=37): 748 P([0,1,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,345,a),rewrite([7,6,5])]. given #500 (W,wt=37): 749 P([0,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,345,a),rewrite([7,6,5])]. given #501 (W,wt=37): 750 P([0,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,345,a),rewrite([7,6,5])]. given #502 (W,wt=37): 751 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,345,a),rewrite([7,6,5])]. given #503 (W,wt=37): 752 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,22,a,b,345,a),rewrite([7,6,5])]. given #504 (W,wt=37): 753 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,345,a),rewrite([7,6,5])]. given #505 (W,wt=37): 755 P([0,0,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,346,a),rewrite([7,6,5])]. given #506 (W,wt=37): 756 P([0,1,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,346,a),rewrite([7,6,5])]. given #507 (W,wt=37): 757 P([0,1,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,346,a),rewrite([7,6,5])]. given #508 (W,wt=37): 758 P([0,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,346,a),rewrite([7,6,5])]. given #509 (W,wt=37): 759 P([0,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,346,a),rewrite([7,6,5])]. given #510 (W,wt=37): 760 P([0,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,346,a),rewrite([7,6,5])]. given #511 (W,wt=37): 761 P([0,1,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,22,a,b,346,a),rewrite([7,6,5])]. given #512 (W,wt=37): 762 P([0,0,1,0,0,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,21,a,b,346,a),rewrite([7,6,5])]. given #513 (W,wt=37): 764 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,347,a),rewrite([7,6,5])]. given #514 (W,wt=37): 765 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,347,a),rewrite([7,6,5])]. given #515 (W,wt=37): 766 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,347,a),rewrite([7,6,5])]. given #516 (W,wt=37): 767 P([0,1,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,347,a),rewrite([7,6,5])]. given #517 (W,wt=37): 768 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,347,a),rewrite([7,6,5])]. given #518 (W,wt=37): 769 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,347,a),rewrite([7,6,5])]. given #519 (W,wt=37): 770 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,347,a),rewrite([7,6,5])]. given #520 (W,wt=37): 772 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,348,a),rewrite([7,6,5])]. given #521 (W,wt=37): 773 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,348,a),rewrite([7,6,5])]. given #522 (W,wt=37): 774 P([0,1,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,348,a),rewrite([7,6,5])]. given #523 (W,wt=37): 775 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,348,a),rewrite([7,6,5])]. given #524 (W,wt=37): 776 P([0,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,348,a),rewrite([7,6,5])]. given #525 (W,wt=37): 777 P([0,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,348,a),rewrite([7,6,5])]. given #526 (W,wt=37): 778 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,21,a,b,348,a),rewrite([7,6,5])]. given #527 (W,wt=37): 779 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,20,a,b,348,a),rewrite([7,6,5])]. given #528 (W,wt=37): 781 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,63,a,b,349,a),rewrite([7,6,5])]. given #529 (W,wt=37): 782 P([0,1,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,349,a),rewrite([7,6,5])]. given #530 (W,wt=37): 783 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,349,a),rewrite([7,6,5])]. given #531 (W,wt=37): 784 P([0,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,349,a),rewrite([7,6,5])]. given #532 (W,wt=37): 785 P([0,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,349,a),rewrite([7,6,5])]. given #533 (W,wt=37): 787 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,68,a,b,350,a),rewrite([7,6,5])]. given #534 (W,wt=37): 788 P([0,1,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,350,a),rewrite([7,6,5])]. given #535 (W,wt=37): 789 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,350,a),rewrite([7,6,5])]. given #536 (W,wt=37): 790 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,350,a),rewrite([7,6,5])]. given #537 (W,wt=37): 791 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,350,a),rewrite([7,6,5])]. given #538 (W,wt=37): 793 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,58,a,b,351,a),rewrite([7,6,5])]. given #539 (W,wt=37): 794 P([0,1,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,351,a),rewrite([7,6,5])]. given #540 (W,wt=37): 795 P([0,1,0,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,351,a),rewrite([7,6,5])]. given #541 (W,wt=37): 796 P([0,1,1,0,0,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,351,a),rewrite([7,6,5])]. given #542 (W,wt=37): 797 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,351,a),rewrite([7,6,5])]. given #543 (W,wt=55): 87 P([0,0,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(4,a,33,a),rewrite([17,16,15,18,19]),eval(1)]. given #544 (W,wt=55): 91 P([0,0,0,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(4,a,34,a),rewrite([17,16,15,18,19]),eval(1)]. given #545 (W,wt=55): 95 P([1,0,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(4,a,36,a),rewrite([16,17,15,18,19]),eval(1)]. given #546 (W,wt=55): 96 P([1,1,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(4,a,37,a),rewrite([16,17,15,18,19]),eval(1)]. given #547 (W,wt=55): 97 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(4,a,39,a),rewrite([17,16,15,18,19]),eval(1)]. given #548 (W,wt=55): 101 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(4,a,41,a),rewrite([17,16,15,18,19]),eval(1)]. given #549 (W,wt=55): 105 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(4,a,42,a),rewrite([16,17,15,18,19]),eval(1)]. given #550 (W,wt=55): 106 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(4,a,44,a),rewrite([16,17,15,18,19]),eval(1)]. given #551 (W,wt=55): 107 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(4,a,46,a),rewrite([17,16,15,18,19]),eval(1)]. given #552 (W,wt=55): 111 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(4,a,47,a),rewrite([17,16,15,18,19]),eval(1)]. given #553 (W,wt=55): 115 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(4,a,49,a),rewrite([16,17,15,18,19]),eval(1)]. given #554 (W,wt=55): 116 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(4,a,50,a),rewrite([16,17,15,18,19]),eval(1)]. given #555 (W,wt=55): 132 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(4,a,52,a),rewrite([17,16,15,18,19]),eval(1)]. given #556 (W,wt=55): 133 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(4,a,54,a),rewrite([16,17,15,18,19]),eval(1)]. given #557 (W,wt=55): 150 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(4,a,57,a),rewrite([17,16,15,18,19]),eval(1)]. given #558 (W,wt=55): 151 P([1,1,1,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(4,a,59,a),rewrite([16,17,15,18,19]),eval(1)]. given #559 (W,wt=55): 167 P([0,0,0,0,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(4,a,62,a),rewrite([17,16,15,18,19]),eval(1)]. given #560 (W,wt=55): 168 P([1,0,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(4,a,64,a),rewrite([16,17,15,18,19]),eval(1)]. given #561 (W,wt=55): 185 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(4,a,67,a),rewrite([17,16,15,18,19]),eval(1)]. given #562 (W,wt=55): 186 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(4,a,69,a),rewrite([16,17,15,18,19]),eval(1)]. given #563 (W,wt=55): 203 P([0,0,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(4,a,72,a),rewrite([17,16,15,18,19]),eval(1)]. given #564 (W,wt=55): 204 P([1,1,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(4,a,73,a),rewrite([16,17,15,18,19]),eval(1)]. given #565 (W,wt=55): 220 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(4,a,75,a),rewrite([17,16,15,18,19]),eval(1)]. given #566 (W,wt=55): 221 P([1,1,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(4,a,76,a),rewrite([16,17,15,18,19]),eval(1)]. given #567 (W,wt=55): 360 P([1,1,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,88,a),rewrite([16,17,15,18,19]),eval(1)]. given #568 (W,wt=55): 361 P([1,0,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,89,a),rewrite([16,17,15,18,19]),eval(1)]. given #569 (W,wt=55): 362 P([1,1,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,90,a),rewrite([16,17,15,18,19]),eval(1)]. given #570 (W,wt=55): 363 P([1,0,1,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,92,a),rewrite([16,17,15,18,19]),eval(1)]. given #571 (W,wt=55): 364 P([1,0,0,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,93,a),rewrite([16,17,15,18,19]),eval(1)]. given #572 (W,wt=55): 365 P([1,0,1,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,94,a),rewrite([16,17,15,18,19]),eval(1)]. given #573 (W,wt=55): 366 P([1,1,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,98,a),rewrite([16,17,15,18,19]),eval(1)]. given #574 (W,wt=55): 367 P([1,0,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,99,a),rewrite([16,17,15,18,19]),eval(1)]. given #575 (W,wt=55): 368 P([1,1,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,100,a),rewrite([16,17,15,18,19]),eval(1)]. given #576 (W,wt=55): 369 P([1,0,1,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,102,a),rewrite([16,17,15,18,19]),eval(1)]. given #577 (W,wt=55): 370 P([1,0,1,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,103,a),rewrite([16,17,15,18,19]),eval(1)]. given #578 (W,wt=55): 371 P([1,0,1,1,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,104,a),rewrite([16,17,15,18,19]),eval(1)]. given #579 (W,wt=55): 372 P([1,1,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,108,a),rewrite([16,17,15,18,19]),eval(1)]. given #580 (W,wt=55): 373 P([1,1,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,109,a),rewrite([16,17,15,18,19]),eval(1)]. given #581 (W,wt=55): 374 P([1,1,1,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,110,a),rewrite([16,17,15,18,19]),eval(1)]. given #582 (W,wt=55): 375 P([1,1,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,112,a),rewrite([16,17,15,18,19]),eval(1)]. given #583 (W,wt=55): 376 P([1,1,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,113,a),rewrite([16,17,15,18,19]),eval(1)]. given #584 (W,wt=55): 377 P([1,1,0,1,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,114,a),rewrite([16,17,15,18,19]),eval(1)]. given #585 (W,wt=55): 378 P([0,0,1,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(4,a,117,a),rewrite([17,16,15,18,19]),eval(1)]. given #586 (W,wt=55): 379 P([0,0,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(4,a,118,a),rewrite([17,16,15,18,19]),eval(1)]. given #587 (W,wt=55): 382 P([0,0,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(4,a,119,a),rewrite([17,16,15,18,19]),eval(1)]. given #588 (W,wt=55): 383 P([0,0,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(4,a,120,a),rewrite([17,16,15,18,19]),eval(1)]. given #589 (W,wt=55): 386 P([0,0,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(4,a,121,a),rewrite([17,16,15,18,19]),eval(1)]. given #590 (W,wt=55): 387 P([0,0,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(4,a,122,a),rewrite([17,16,15,18,19]),eval(1)]. given #591 (W,wt=55): 389 P([0,0,1,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(4,a,123,a),rewrite([17,16,15,18,19]),eval(1)]. given #592 (W,wt=55): 390 P([0,0,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(4,a,125,a),rewrite([17,16,15,18,19]),eval(1)]. given #593 (W,wt=55): 391 P([0,0,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(4,a,126,a),rewrite([17,16,15,18,19]),eval(1)]. given #594 (W,wt=55): 392 P([0,0,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(4,a,127,a),rewrite([17,16,15,18,19]),eval(1)]. given #595 (W,wt=55): 394 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(4,a,128,a),rewrite([17,16,15,18,19]),eval(1)]. given #596 (W,wt=0): 1818 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,51,a,b,394,a),rewrite([11,13,12,10])]. given #597 (W,wt=55): 396 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(4,a,129,a),rewrite([17,16,15,18,19]),eval(1)]. given #598 (W,wt=0): 1829 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,51,a,b,396,a),rewrite([11,12,13,10])]. given #599 (W,wt=55): 398 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(4,a,131,a),rewrite([16,17,15,18,19]),eval(1)]. given #600 (W,wt=55): 399 P([1,1,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(4,a,134,a),rewrite([16,17,15,18,19]),eval(1)]. given #601 (W,wt=55): 400 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(4,a,136,a),rewrite([17,16,15,18,19]),eval(1)]. given #602 (W,wt=55): 409 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(4,a,137,a),rewrite([16,17,15,18,19]),eval(1)]. given #603 (W,wt=55): 410 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(4,a,138,a),rewrite([16,17,15,18,19]),eval(1)]. given #604 (W,wt=55): 411 P([1,1,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(4,a,139,a),rewrite([16,17,15,18,19]),eval(1)]. given #605 (W,wt=55): 412 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(4,a,140,a),rewrite([16,17,15,18,19]),eval(1)]. given #606 (W,wt=55): 413 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(4,a,141,a),rewrite([16,17,15,18,19]),eval(1)]. given #607 (W,wt=55): 414 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(4,a,143,a),rewrite([16,17,15,18,19]),eval(1)]. given #608 (W,wt=55): 415 P([1,0,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(4,a,144,a),rewrite([16,17,15,18,19]),eval(1)]. given #609 (W,wt=55): 416 P([1,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(4,a,145,a),rewrite([16,17,15,18,19]),eval(1)]. given #610 (W,wt=55): 417 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(4,a,146,a),rewrite([16,17,15,18,19]),eval(1)]. given #611 (W,wt=55): 418 P([1,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(4,a,147,a),rewrite([16,17,15,18,19]),eval(1)]. given #612 (W,wt=55): 419 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(4,a,148,a),rewrite([16,17,15,18,19]),eval(1)]. given #613 (W,wt=0): 2044 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,56,a,b,419,a),rewrite([6,7,5])]. given #614 (W,wt=55): 420 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(4,a,149,a),rewrite([16,17,15,18,19]),eval(1)]. given #615 (W,wt=0): 2055 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,56,a,b,420,a),rewrite([6,7,5])]. given #616 (W,wt=55): 421 P([0,1,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(4,a,152,a),rewrite([17,16,15,18,19]),eval(1)]. given #617 (W,wt=55): 422 P([0,1,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(4,a,153,a),rewrite([17,16,15,18,19]),eval(1)]. given #618 (W,wt=55): 425 P([0,1,1,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(4,a,154,a),rewrite([17,16,15,18,19]),eval(1)]. given #619 (W,wt=55): 426 P([0,1,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(4,a,155,a),rewrite([17,16,15,18,19]),eval(1)]. given #620 (W,wt=55): 427 P([0,1,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(4,a,156,a),rewrite([17,16,15,18,19]),eval(1)]. given #621 (W,wt=55): 429 P([0,0,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(4,a,157,a),rewrite([17,16,15,18,19]),eval(1)]. given #622 (W,wt=55): 430 P([0,1,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(4,a,158,a),rewrite([17,16,15,18,19]),eval(1)]. given #623 (W,wt=55): 433 P([0,1,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(4,a,160,a),rewrite([17,16,15,18,19]),eval(1)]. given #624 (W,wt=55): 434 P([0,1,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(4,a,161,a),rewrite([17,16,15,18,19]),eval(1)]. given #625 (W,wt=55): 436 P([0,1,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(4,a,162,a),rewrite([17,16,15,18,19]),eval(1)]. given #626 (W,wt=55): 437 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(4,a,163,a),rewrite([17,16,15,18,19]),eval(1)]. given #627 (W,wt=0): 2227 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,61,a,b,437,a),rewrite([11,13,12,10])]. given #628 (W,wt=55): 439 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(4,a,164,a),rewrite([17,16,15,18,19]),eval(1)]. given #629 (W,wt=0): 2238 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,61,a,b,439,a),rewrite([11,12,13,10])]. given #630 (W,wt=55): 441 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(4,a,166,a),rewrite([16,17,15,18,19]),eval(1)]. given #631 (W,wt=55): 442 P([1,0,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(4,a,169,a),rewrite([16,17,15,18,19]),eval(1)]. given #632 (W,wt=55): 443 P([0,1,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(4,a,170,a),rewrite([17,16,15,18,19]),eval(1)]. given #633 (W,wt=55): 444 P([0,1,0,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(4,a,171,a),rewrite([17,16,15,18,19]),eval(1)]. given #634 (W,wt=55): 445 P([0,1,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(4,a,172,a),rewrite([17,16,15,18,19]),eval(1)]. given #635 (W,wt=55): 446 P([0,1,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(4,a,173,a),rewrite([17,16,15,18,19]),eval(1)]. given #636 (W,wt=55): 449 P([0,1,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(4,a,174,a),rewrite([17,16,15,18,19]),eval(1)]. given #637 (W,wt=55): 451 P([0,0,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(4,a,175,a),rewrite([17,16,15,18,19]),eval(1)]. given #638 (W,wt=55): 452 P([0,1,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(4,a,176,a),rewrite([17,16,15,18,19]),eval(1)]. given #639 (W,wt=55): 455 P([0,1,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(4,a,178,a),rewrite([17,16,15,18,19]),eval(1)]. given #640 (W,wt=55): 457 P([0,1,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(4,a,179,a),rewrite([17,16,15,18,19]),eval(1)]. given #641 (W,wt=55): 458 P([0,1,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(4,a,180,a),rewrite([17,16,15,18,19]),eval(1)]. given #642 (W,wt=55): 459 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(4,a,181,a),rewrite([17,16,15,18,19]),eval(1)]. given #643 (W,wt=0): 2440 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,66,a,b,459,a),rewrite([11,13,12,10])]. given #644 (W,wt=55): 461 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(4,a,182,a),rewrite([17,16,15,18,19]),eval(1)]. given #645 (W,wt=0): 2451 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,66,a,b,461,a),rewrite([11,12,13,10])]. given #646 (W,wt=55): 463 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(4,a,184,a),rewrite([16,17,15,18,19]),eval(1)]. given #647 (W,wt=55): 464 P([1,0,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(4,a,187,a),rewrite([16,17,15,18,19]),eval(1)]. given #648 (W,wt=55): 465 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(4,a,189,a),rewrite([17,16,15,18,19]),eval(1)]. given #649 (W,wt=55): 474 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(4,a,190,a),rewrite([16,17,15,18,19]),eval(1)]. given #650 (W,wt=55): 475 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(4,a,191,a),rewrite([16,17,15,18,19]),eval(1)]. given #651 (W,wt=55): 476 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(4,a,192,a),rewrite([16,17,15,18,19]),eval(1)]. given #652 (W,wt=55): 477 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(4,a,193,a),rewrite([16,17,15,18,19]),eval(1)]. given #653 (W,wt=55): 478 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(4,a,195,a),rewrite([16,17,15,18,19]),eval(1)]. given #654 (W,wt=55): 479 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(4,a,196,a),rewrite([16,17,15,18,19]),eval(1)]. given #655 (W,wt=55): 480 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(4,a,197,a),rewrite([16,17,15,18,19]),eval(1)]. given #656 (W,wt=55): 481 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(4,a,198,a),rewrite([16,17,15,18,19]),eval(1)]. given #657 (W,wt=55): 482 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(4,a,199,a),rewrite([16,17,15,18,19]),eval(1)]. given #658 (W,wt=55): 483 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(4,a,200,a),rewrite([16,17,15,18,19]),eval(1)]. given #659 (W,wt=55): 484 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(4,a,201,a),rewrite([16,17,15,18,19]),eval(1)]. given #660 (W,wt=0): 2666 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,71,a,b,484,a),rewrite([6,7,5])]. given #661 (W,wt=55): 485 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(4,a,202,a),rewrite([16,17,15,18,19]),eval(1)]. given #662 (W,wt=0): 2677 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,71,a,b,485,a),rewrite([6,7,5])]. given #663 (W,wt=55): 486 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(4,a,206,a),rewrite([17,16,15,18,19]),eval(1)]. given #664 (W,wt=55): 495 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(4,a,207,a),rewrite([16,17,15,18,19]),eval(1)]. given #665 (W,wt=55): 496 P([1,1,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(4,a,208,a),rewrite([16,17,15,18,19]),eval(1)]. given #666 (W,wt=55): 497 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(4,a,209,a),rewrite([16,17,15,18,19]),eval(1)]. given #667 (W,wt=55): 498 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(4,a,210,a),rewrite([16,17,15,18,19]),eval(1)]. given #668 (W,wt=55): 499 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(4,a,212,a),rewrite([16,17,15,18,19]),eval(1)]. given #669 (W,wt=55): 500 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(4,a,213,a),rewrite([16,17,15,18,19]),eval(1)]. given #670 (W,wt=55): 501 P([1,0,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(4,a,214,a),rewrite([16,17,15,18,19]),eval(1)]. given #671 (W,wt=55): 502 P([1,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(4,a,215,a),rewrite([16,17,15,18,19]),eval(1)]. given #672 (W,wt=55): 503 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(4,a,216,a),rewrite([16,17,15,18,19]),eval(1)]. given #673 (W,wt=55): 504 P([1,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(4,a,217,a),rewrite([16,17,15,18,19]),eval(1)]. given #674 (W,wt=55): 505 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(4,a,218,a),rewrite([16,17,15,18,19]),eval(1)]. given #675 (W,wt=0): 2863 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,74,a,b,505,a),rewrite([6,7,5])]. given #676 (W,wt=55): 506 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(4,a,219,a),rewrite([16,17,15,18,19]),eval(1)]. given #677 (W,wt=0): 2874 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,74,a,b,506,a),rewrite([6,7,5])]. given #678 (W,wt=55): 507 P([0,1,1,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(4,a,222,a),rewrite([17,16,15,18,19]),eval(1)]. given #679 (W,wt=55): 508 P([0,1,1,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(4,a,223,a),rewrite([17,16,15,18,19]),eval(1)]. given #680 (W,wt=55): 509 P([0,1,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(4,a,224,a),rewrite([17,16,15,18,19]),eval(1)]. given #681 (W,wt=55): 510 P([0,1,1,1,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(4,a,225,a),rewrite([17,16,15,18,19]),eval(1)]. given #682 (W,wt=55): 511 P([0,1,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(4,a,226,a),rewrite([17,16,15,18,19]),eval(1)]. given #683 (W,wt=55): 512 P([0,1,1,1,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(4,a,227,a),rewrite([17,16,15,18,19]),eval(1)]. given #684 (W,wt=55): 513 P([0,0,1,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(4,a,228,a),rewrite([17,16,15,18,19]),eval(1)]. given #685 (W,wt=55): 514 P([0,1,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(4,a,229,a),rewrite([17,16,15,18,19]),eval(1)]. given #686 (W,wt=55): 515 P([0,1,1,1,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(4,a,231,a),rewrite([17,16,15,18,19]),eval(1)]. given #687 (W,wt=55): 516 P([0,1,1,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(4,a,232,a),rewrite([17,16,15,18,19]),eval(1)]. given #688 (W,wt=55): 517 P([0,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(4,a,233,a),rewrite([17,16,15,18,19]),eval(1)]. given #689 (W,wt=55): 518 P([0,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(4,a,234,a),rewrite([17,16,15,18,19]),eval(1)]. given #690 (W,wt=55): 519 P([0,1,1,1,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(4,a,235,a),rewrite([17,16,15,18,19]),eval(1)]. given #691 (W,wt=55): 520 P([0,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(4,a,236,a),rewrite([17,16,15,18,19]),eval(1)]. given #692 (W,wt=55): 521 P([0,0,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(4,a,237,a),rewrite([17,16,15,18,19]),eval(1)]. given #693 (W,wt=0): 3115 P([1,0,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,77,a,b,521,a),rewrite([11,13,12,10])]. given #694 (W,wt=55): 522 P([0,1,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(4,a,238,a),rewrite([17,16,15,18,19]),eval(1)]. given #695 (W,wt=0): 3128 P([1,1,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,77,a,b,522,a),rewrite([11,12,13,10])]. given #696 (W,wt=55): 523 P([0,1,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(4,a,239,a),rewrite([17,16,15,18,19]),eval(1)]. given #697 (W,wt=0): 3141 P([1,1,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,77,a,b,523,a),rewrite([11,12,13,10])]. given #698 (W,wt=55): 524 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(4,a,242,a),rewrite([17,16,15,18,19]),eval(1)]. given #699 (W,wt=55): 533 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(4,a,243,a),rewrite([17,16,15,18,19]),eval(1)]. given #700 (W,wt=55): 542 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(4,a,244,a),rewrite([17,16,15,18,19]),eval(1)]. given #701 (W,wt=55): 549 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(4,a,245,a),rewrite([16,17,15,18,19]),eval(1)]. given #702 (W,wt=55): 550 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(4,a,246,a),rewrite([16,17,15,18,19]),eval(1)]. given #703 (W,wt=55): 551 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(4,a,247,a),rewrite([16,17,15,18,19]),eval(1)]. given #704 (W,wt=55): 552 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(4,a,249,a),rewrite([16,17,15,18,19]),eval(1)]. given #705 (W,wt=55): 553 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(4,a,250,a),rewrite([16,17,15,18,19]),eval(1)]. given #706 (W,wt=55): 554 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(4,a,251,a),rewrite([16,17,15,18,19]),eval(1)]. given #707 (W,wt=55): 555 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(4,a,252,a),rewrite([16,17,15,18,19]),eval(1)]. given #708 (W,wt=55): 556 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(4,a,253,a),rewrite([16,17,15,18,19]),eval(1)]. given #709 (W,wt=55): 557 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,0]:x]). [hyper(4,a,254,a),rewrite([16,17,15,18,19]),eval(1)]. given #710 (W,wt=0): 3316 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,78,a,b,557,a),rewrite([6,7,5])]. given #711 (W,wt=55): 558 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(4,a,255,a),rewrite([17,16,15,18,19]),eval(1)]. given #712 (W,wt=55): 559 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(4,a,256,a),rewrite([17,16,15,18,19]),eval(1)]. given #713 (W,wt=55): 563 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(4,a,257,a),rewrite([17,16,15,18,19]),eval(1)]. given #714 (W,wt=55): 567 P([0,1,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(4,a,258,a),rewrite([17,16,15,18,19]),eval(1)]. given #715 (W,wt=55): 571 P([0,1,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(4,a,260,a),rewrite([17,16,15,18,19]),eval(1)]. given #716 (W,wt=55): 577 P([0,1,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(4,a,261,a),rewrite([17,16,15,18,19]),eval(1)]. given #717 (W,wt=55): 580 P([0,1,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(4,a,262,a),rewrite([17,16,15,18,19]),eval(1)]. given #718 (W,wt=55): 583 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(4,a,263,a),rewrite([17,16,15,18,19]),eval(1)]. given #719 (W,wt=55): 585 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(4,a,264,a),rewrite([17,16,15,18,19]),eval(1)]. given #720 (W,wt=0): 3450 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,80,a,b,585,a),rewrite([11,13,12,10])]. given #721 (W,wt=55): 589 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(4,a,266,a),rewrite([16,17,15,18,19]),eval(1)]. given #722 (W,wt=55): 590 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(4,a,267,a),rewrite([16,17,15,18,19]),eval(1)]. given #723 (W,wt=55): 591 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(4,a,268,a),rewrite([16,17,15,18,19]),eval(1)]. given #724 (W,wt=55): 592 P([1,1,1,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(4,a,270,a),rewrite([16,17,15,18,19]),eval(1)]. given #725 (W,wt=55): 593 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(4,a,271,a),rewrite([16,17,15,18,19]),eval(1)]. given #726 (W,wt=55): 594 P([1,1,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(4,a,272,a),rewrite([16,17,15,18,19]),eval(1)]. given #727 (W,wt=55): 595 P([1,1,1,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(4,a,273,a),rewrite([16,17,15,18,19]),eval(1)]. given #728 (W,wt=55): 596 P([1,1,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(4,a,274,a),rewrite([16,17,15,18,19]),eval(1)]. given #729 (W,wt=55): 597 P([1,0,1,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(4,a,276,a),rewrite([16,17,15,18,19]),eval(1)]. given #730 (W,wt=55): 598 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(4,a,277,a),rewrite([16,17,15,18,19]),eval(1)]. given #731 (W,wt=55): 599 P([1,0,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(4,a,278,a),rewrite([16,17,15,18,19]),eval(1)]. given #732 (W,wt=55): 600 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(4,a,279,a),rewrite([16,17,15,18,19]),eval(1)]. given #733 (W,wt=55): 601 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(4,a,280,a),rewrite([16,17,15,18,19]),eval(1)]. given #734 (W,wt=55): 602 P([1,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(4,a,281,a),rewrite([16,17,15,18,19]),eval(1)]. given #735 (W,wt=55): 603 P([1,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(4,a,282,a),rewrite([16,17,15,18,19]),eval(1)]. given #736 (W,wt=55): 604 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(4,a,283,a),rewrite([16,17,15,18,19]),eval(1)]. given #737 (W,wt=55): 605 P([1,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(4,a,284,a),rewrite([16,17,15,18,19]),eval(1)]. given #738 (W,wt=55): 606 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(4,a,285,a),rewrite([16,17,15,18,19]),eval(1)]. given #739 (W,wt=0): 3722 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,81,a,b,606,a),rewrite([6,7,5])]. given #740 (W,wt=55): 607 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(4,a,286,a),rewrite([16,17,15,18,19]),eval(1)]. given #741 (W,wt=0): 3735 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,81,a,b,607,a),rewrite([6,7,5])]. given #742 (W,wt=55): 608 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(4,a,287,a),rewrite([16,17,15,18,19]),eval(1)]. given #743 (W,wt=0): 3748 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,81,a,b,608,a),rewrite([6,7,5])]. given #744 (W,wt=55): 609 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(4,a,288,a),rewrite([17,16,15,18,19]),eval(1)]. given #745 (W,wt=55): 610 P([0,0,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(4,a,289,a),rewrite([17,16,15,18,19]),eval(1)]. given #746 (W,wt=55): 616 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(4,a,290,a),rewrite([17,16,15,18,19]),eval(1)]. given #747 (W,wt=55): 620 P([0,0,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(4,a,292,a),rewrite([17,16,15,18,19]),eval(1)]. given #748 (W,wt=55): 624 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(4,a,293,a),rewrite([17,16,15,18,19]),eval(1)]. given #749 (W,wt=55): 628 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(4,a,294,a),rewrite([17,16,15,18,19]),eval(1)]. given #750 (W,wt=55): 630 P([0,0,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(4,a,295,a),rewrite([17,16,15,18,19]),eval(1)]. given #751 (W,wt=55): 633 P([0,0,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(4,a,296,a),rewrite([17,16,15,18,19]),eval(1)]. given #752 (W,wt=55): 636 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(4,a,297,a),rewrite([17,16,15,18,19]),eval(1)]. given #753 (W,wt=0): 3888 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,82,a,b,636,a),rewrite([11,13,12,10])]. given #754 (W,wt=55): 640 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(4,a,299,a),rewrite([16,17,15,18,19]),eval(1)]. given #755 (W,wt=55): 641 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(4,a,300,a),rewrite([16,17,15,18,19]),eval(1)]. given #756 (W,wt=55): 642 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(4,a,301,a),rewrite([16,17,15,18,19]),eval(1)]. given #757 (W,wt=55): 643 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(4,a,303,a),rewrite([17,16,15,18,19]),eval(1)]. given #758 (W,wt=55): 652 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(4,a,304,a),rewrite([17,16,15,18,19]),eval(1)]. given #759 (W,wt=55): 660 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(4,a,305,a),rewrite([17,16,15,18,19]),eval(1)]. given #760 (W,wt=55): 668 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(4,a,306,a),rewrite([16,17,15,18,19]),eval(1)]. given #761 (W,wt=55): 669 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(4,a,307,a),rewrite([16,17,15,18,19]),eval(1)]. given #762 (W,wt=55): 670 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(4,a,309,a),rewrite([16,17,15,18,19]),eval(1)]. given #763 (W,wt=55): 671 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(4,a,310,a),rewrite([16,17,15,18,19]),eval(1)]. given #764 (W,wt=55): 672 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(4,a,311,a),rewrite([16,17,15,18,19]),eval(1)]. given #765 (W,wt=55): 673 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(4,a,312,a),rewrite([16,17,15,18,19]),eval(1)]. given #766 (W,wt=55): 674 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(4,a,313,a),rewrite([16,17,15,18,19]),eval(1)]. given #767 (W,wt=55): 675 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(4,a,314,a),rewrite([16,17,15,18,19]),eval(1)]. given #768 (W,wt=55): 676 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(4,a,315,a),rewrite([16,17,15,18,19]),eval(1)]. given #769 (W,wt=0): 4086 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,83,a,b,676,a),rewrite([6,7,5])]. given #770 (W,wt=55): 677 P([0,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(4,a,316,a),rewrite([17,16,15,18,19]),eval(1)]. given #771 (W,wt=55): 678 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(4,a,317,a),rewrite([17,16,15,18,19]),eval(1)]. given #772 (W,wt=55): 682 P([0,0,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(4,a,319,a),rewrite([17,16,15,18,19]),eval(1)]. given #773 (W,wt=55): 688 P([0,0,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(4,a,320,a),rewrite([17,16,15,18,19]),eval(1)]. given #774 (W,wt=55): 692 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(4,a,321,a),rewrite([17,16,15,18,19]),eval(1)]. given #775 (W,wt=55): 696 P([0,0,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(4,a,322,a),rewrite([17,16,15,18,19]),eval(1)]. given #776 (W,wt=55): 699 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(4,a,323,a),rewrite([17,16,15,18,19]),eval(1)]. given #777 (W,wt=55): 701 P([0,0,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(4,a,324,a),rewrite([17,16,15,18,19]),eval(1)]. given #778 (W,wt=55): 704 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(4,a,325,a),rewrite([17,16,15,18,19]),eval(1)]. given #779 (W,wt=0): 4220 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,84,a,b,704,a),rewrite([11,12,13,10])]. given #780 (W,wt=55): 708 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(4,a,327,a),rewrite([16,17,15,18,19]),eval(1)]. given #781 (W,wt=55): 709 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(4,a,328,a),rewrite([16,17,15,18,19]),eval(1)]. given #782 (W,wt=55): 710 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(4,a,329,a),rewrite([16,17,15,18,19]),eval(1)]. given #783 (W,wt=55): 711 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(4,a,331,a),rewrite([17,16,15,18,19]),eval(1)]. given #784 (W,wt=55): 720 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(4,a,332,a),rewrite([17,16,15,18,19]),eval(1)]. given #785 (W,wt=55): 728 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(4,a,333,a),rewrite([17,16,15,18,19]),eval(1)]. given #786 (W,wt=55): 736 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(4,a,334,a),rewrite([16,17,15,18,19]),eval(1)]. given #787 (W,wt=55): 737 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(4,a,336,a),rewrite([16,17,15,18,19]),eval(1)]. given #788 (W,wt=55): 738 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(4,a,337,a),rewrite([16,17,15,18,19]),eval(1)]. given #789 (W,wt=55): 739 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(4,a,338,a),rewrite([16,17,15,18,19]),eval(1)]. given #790 (W,wt=55): 740 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(4,a,339,a),rewrite([16,17,15,18,19]),eval(1)]. given #791 (W,wt=55): 741 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(4,a,340,a),rewrite([16,17,15,18,19]),eval(1)]. given #792 (W,wt=55): 742 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(4,a,341,a),rewrite([16,17,15,18,19]),eval(1)]. given #793 (W,wt=55): 743 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(4,a,342,a),rewrite([16,17,15,18,19]),eval(1)]. given #794 (W,wt=55): 744 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(4,a,343,a),rewrite([16,17,15,18,19]),eval(1)]. given #795 (W,wt=0): 4418 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,85,a,b,744,a),rewrite([6,7,5])]. given #796 (W,wt=55): 745 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(4,a,345,a),rewrite([17,16,15,18,19]),eval(1)]. given #797 (W,wt=55): 754 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(4,a,346,a),rewrite([17,16,15,18,19]),eval(1)]. given #798 (W,wt=55): 763 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(4,a,347,a),rewrite([17,16,15,18,19]),eval(1)]. given #799 (W,wt=55): 771 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(4,a,348,a),rewrite([17,16,15,18,19]),eval(1)]. given #800 (W,wt=55): 780 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(4,a,349,a),rewrite([17,16,15,18,19]),eval(1)]. given #801 (W,wt=55): 786 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(4,a,350,a),rewrite([17,16,15,18,19]),eval(1)]. given #802 (W,wt=55): 792 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(4,a,351,a),rewrite([17,16,15,18,19]),eval(1)]. given #803 (W,wt=55): 798 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(4,a,353,a),rewrite([16,17,15,18,19]),eval(1)]. given #804 (W,wt=55): 799 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(4,a,354,a),rewrite([16,17,15,18,19]),eval(1)]. given #805 (W,wt=55): 800 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(4,a,355,a),rewrite([16,17,15,18,19]),eval(1)]. given #806 (W,wt=55): 801 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(4,a,356,a),rewrite([16,17,15,18,19]),eval(1)]. given #807 (W,wt=55): 802 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(4,a,357,a),rewrite([16,17,15,18,19]),eval(1)]. given #808 (W,wt=55): 803 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(4,a,358,a),rewrite([16,17,15,18,19]),eval(1)]. given #809 (W,wt=55): 804 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(4,a,359,a),rewrite([16,17,15,18,19]),eval(1)]. given #810 (W,wt=55): 805 P([1,0,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,380,a),rewrite([16,17,15,18,19]),eval(1)]. given #811 (W,wt=55): 806 P([1,0,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,381,a),rewrite([16,17,15,18,19]),eval(1)]. given #812 (W,wt=55): 807 P([1,0,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,384,a),rewrite([16,17,15,18,19]),eval(1)]. given #813 (W,wt=55): 808 P([1,0,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,385,a),rewrite([16,17,15,18,19]),eval(1)]. given #814 (W,wt=55): 809 P([1,0,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(4,a,388,a),rewrite([16,17,15,18,19]),eval(1)]. given #815 (W,wt=55): 810 P([1,0,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(4,a,393,a),rewrite([16,17,15,18,19]),eval(1)]. given #816 (W,wt=55): 811 P([1,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,395,a),rewrite([16,17,15,18,19]),eval(1)]. given #817 (W,wt=0): 4675 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,131,a,b,811,a),rewrite([12,11,13,10])]. given #818 (W,wt=55): 812 P([1,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,397,a),rewrite([16,17,15,18,19]),eval(1)]. given #819 (W,wt=0): 4690 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,131,a,b,812,a),rewrite([12,11,13,10])]. given #820 (W,wt=55): 813 P([1,1,1,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,401,a),rewrite([16,17,15,18,19]),eval(1)]. given #821 (W,wt=55): 814 P([1,1,0,0,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,402,a),rewrite([16,17,15,18,19]),eval(1)]. given #822 (W,wt=55): 815 P([1,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(4,a,403,a),rewrite([16,17,15,18,19]),eval(1)]. given #823 (W,wt=55): 816 P([1,0,1,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,404,a),rewrite([16,17,15,18,19]),eval(1)]. given #824 (W,wt=55): 817 P([1,0,0,0,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,405,a),rewrite([16,17,15,18,19]),eval(1)]. given #825 (W,wt=55): 818 P([1,1,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(4,a,406,a),rewrite([16,17,15,18,19]),eval(1)]. given #826 (W,wt=55): 819 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,407,a),rewrite([16,17,15,18,19]),eval(1)]. given #827 (W,wt=0): 4827 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,136,a,b,819,a),rewrite([6,7,5])]. given #828 (W,wt=55): 820 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,408,a),rewrite([16,17,15,18,19]),eval(1)]. given #829 (W,wt=0): 4842 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,136,a,b,820,a),rewrite([6,7,5])]. given #830 (W,wt=55): 821 P([1,1,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,423,a),rewrite([16,17,15,18,19]),eval(1)]. given #831 (W,wt=55): 822 P([1,1,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,424,a),rewrite([16,17,15,18,19]),eval(1)]. given #832 (W,wt=55): 823 P([1,1,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(4,a,428,a),rewrite([16,17,15,18,19]),eval(1)]. given #833 (W,wt=55): 824 P([1,1,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,431,a),rewrite([16,17,15,18,19]),eval(1)]. given #834 (W,wt=55): 825 P([1,1,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,432,a),rewrite([16,17,15,18,19]),eval(1)]. given #835 (W,wt=55): 826 P([1,1,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(4,a,435,a),rewrite([16,17,15,18,19]),eval(1)]. given #836 (W,wt=55): 827 P([1,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,438,a),rewrite([16,17,15,18,19]),eval(1)]. given #837 (W,wt=0): 4971 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,166,a,b,827,a),rewrite([12,13,11,10])]. given #838 (W,wt=55): 828 P([1,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,440,a),rewrite([16,17,15,18,19]),eval(1)]. given #839 (W,wt=0): 4986 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,166,a,b,828,a),rewrite([12,13,11,10])]. given #840 (W,wt=55): 829 P([1,1,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,447,a),rewrite([16,17,15,18,19]),eval(1)]. given #841 (W,wt=55): 830 P([1,1,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,448,a),rewrite([16,17,15,18,19]),eval(1)]. given #842 (W,wt=55): 831 P([1,1,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(4,a,450,a),rewrite([16,17,15,18,19]),eval(1)]. given #843 (W,wt=55): 832 P([1,1,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,453,a),rewrite([16,17,15,18,19]),eval(1)]. given #844 (W,wt=55): 833 P([1,1,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,454,a),rewrite([16,17,15,18,19]),eval(1)]. given #845 (W,wt=55): 834 P([1,1,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(4,a,456,a),rewrite([16,17,15,18,19]),eval(1)]. given #846 (W,wt=55): 835 P([1,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,460,a),rewrite([16,17,15,18,19]),eval(1)]. given #847 (W,wt=0): 5119 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,184,a,b,835,a),rewrite([12,13,11,10])]. given #848 (W,wt=55): 836 P([1,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,462,a),rewrite([16,17,15,18,19]),eval(1)]. given #849 (W,wt=0): 5134 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,184,a,b,836,a),rewrite([12,11,13,10])]. given #850 (W,wt=55): 837 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,466,a),rewrite([16,17,15,18,19]),eval(1)]. given #851 (W,wt=55): 838 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,467,a),rewrite([16,17,15,18,19]),eval(1)]. given #852 (W,wt=55): 839 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(4,a,468,a),rewrite([16,17,15,18,19]),eval(1)]. given #853 (W,wt=55): 840 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,469,a),rewrite([16,17,15,18,19]),eval(1)]. given #854 (W,wt=55): 841 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(4,a,470,a),rewrite([16,17,15,18,19]),eval(1)]. given #855 (W,wt=55): 842 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,471,a),rewrite([16,17,15,18,19]),eval(1)]. given #856 (W,wt=55): 843 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,472,a),rewrite([16,17,15,18,19]),eval(1)]. given #857 (W,wt=0): 5271 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,189,a,b,843,a),rewrite([6,7,5])]. given #858 (W,wt=55): 844 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,473,a),rewrite([16,17,15,18,19]),eval(1)]. given #859 (W,wt=0): 5286 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,189,a,b,844,a),rewrite([6,7,5])]. given #860 (W,wt=55): 845 P([1,1,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,487,a),rewrite([16,17,15,18,19]),eval(1)]. given #861 (W,wt=55): 846 P([1,0,1,0,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,488,a),rewrite([16,17,15,18,19]),eval(1)]. given #862 (W,wt=55): 847 P([1,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(4,a,489,a),rewrite([16,17,15,18,19]),eval(1)]. given #863 (W,wt=55): 848 P([1,0,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(4,a,490,a),rewrite([16,17,15,18,19]),eval(1)]. given #864 (W,wt=55): 849 P([1,0,0,0,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,491,a),rewrite([16,17,15,18,19]),eval(1)]. given #865 (W,wt=55): 850 P([1,1,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,492,a),rewrite([16,17,15,18,19]),eval(1)]. given #866 (W,wt=55): 851 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,493,a),rewrite([16,17,15,18,19]),eval(1)]. given #867 (W,wt=0): 5419 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,206,a,b,851,a),rewrite([6,7,5])]. given #868 (W,wt=55): 852 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,494,a),rewrite([16,17,15,18,19]),eval(1)]. given #869 (W,wt=0): 5434 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,206,a,b,852,a),rewrite([6,7,5])]. given #870 (W,wt=55): 853 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,525,a),rewrite([16,17,15,18,19]),eval(1)]. given #871 (W,wt=55): 854 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,526,a),rewrite([16,17,15,18,19]),eval(1)]. given #872 (W,wt=55): 855 P([1,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(4,a,527,a),rewrite([16,17,15,18,19]),eval(1)]. given #873 (W,wt=55): 856 P([1,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(4,a,528,a),rewrite([16,17,15,18,19]),eval(1)]. given #874 (W,wt=55): 857 P([1,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,529,a),rewrite([16,17,15,18,19]),eval(1)]. given #875 (W,wt=0): 5529 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,254,a,b,857,a),rewrite([12,11,13,10])]. given #876 (W,wt=55): 858 P([1,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,530,a),rewrite([16,17,15,18,19]),eval(1)]. given #877 (W,wt=55): 859 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,531,a),rewrite([16,17,15,18,19]),eval(1)]. given #878 (W,wt=0): 5567 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,244,a,b,859,a),rewrite([6,8,7,5])]. given #879 (W,wt=55): 860 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,532,a),rewrite([16,17,15,18,19]),eval(1)]. given #880 (W,wt=0): 5585 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,242,a,b,860,a),rewrite([6,7,5])]. given #881 (W,wt=55): 861 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,534,a),rewrite([16,17,15,18,19]),eval(1)]. given #882 (W,wt=55): 862 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,535,a),rewrite([16,17,15,18,19]),eval(1)]. given #883 (W,wt=55): 863 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(4,a,536,a),rewrite([16,17,15,18,19]),eval(1)]. given #884 (W,wt=55): 864 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,537,a),rewrite([16,17,15,18,19]),eval(1)]. given #885 (W,wt=0): 5662 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,254,a,b,864,a),rewrite([12,11,13,10])]. given #886 (W,wt=55): 865 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(4,a,538,a),rewrite([16,17,15,18,19]),eval(1)]. given #887 (W,wt=55): 866 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,539,a),rewrite([16,17,15,18,19]),eval(1)]. given #888 (W,wt=55): 867 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,540,a),rewrite([16,17,15,18,19]),eval(1)]. given #889 (W,wt=0): 5719 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,244,a,b,867,a),rewrite([6,7,8,5])]. given #890 (W,wt=55): 868 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,541,a),rewrite([16,17,15,18,19]),eval(1)]. given #891 (W,wt=0): 5736 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,243,a,b,868,a),rewrite([6,7,5])]. given #892 (W,wt=55): 869 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(4,a,543,a),rewrite([16,17,15,18,19]),eval(1)]. given #893 (W,wt=55): 870 P([1,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(4,a,544,a),rewrite([16,17,15,18,19]),eval(1)]. given #894 (W,wt=55): 871 P([1,0,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(4,a,545,a),rewrite([16,17,15,18,19]),eval(1)]. given #895 (W,wt=55): 872 P([1,0,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(4,a,546,a),rewrite([16,17,15,18,19]),eval(1)]. given #896 (W,wt=55): 873 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(4,a,547,a),rewrite([16,17,15,18,19]),eval(1)]. given #897 (W,wt=55): 874 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(4,a,548,a),rewrite([16,17,15,18,19]),eval(1)]. given #898 (W,wt=0): 5864 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,244,a,b,874,a),rewrite([6,7,5])]. given #899 (W,wt=55): 875 P([1,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,560,a),rewrite([16,17,15,18,19]),eval(1)]. given #900 (W,wt=55): 876 P([1,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,561,a),rewrite([16,17,15,18,19]),eval(1)]. given #901 (W,wt=0): 5899 P([1,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,266,a,b,876,a),rewrite([12,13,11,10])]. given #902 (W,wt=55): 877 P([1,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,562,a),rewrite([16,17,15,18,19]),eval(1)]. given #903 (W,wt=55): 878 P([1,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,564,a),rewrite([16,17,15,18,19]),eval(1)]. given #904 (W,wt=55): 879 P([1,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,565,a),rewrite([16,17,15,18,19]),eval(1)]. given #905 (W,wt=0): 5951 P([1,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,267,a,b,879,a),rewrite([12,11,13,10])]. given #906 (W,wt=55): 880 P([1,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,566,a),rewrite([16,17,15,18,19]),eval(1)]. given #907 (W,wt=55): 881 P([1,1,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(4,a,568,a),rewrite([16,17,15,18,19]),eval(1)]. given #908 (W,wt=55): 882 P([1,1,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(4,a,569,a),rewrite([16,17,15,18,19]),eval(1)]. given #909 (W,wt=55): 883 P([1,1,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(4,a,570,a),rewrite([16,17,15,18,19]),eval(1)]. given #910 (W,wt=55): 884 P([1,1,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,572,a),rewrite([16,17,15,18,19]),eval(1)]. given #911 (W,wt=55): 885 P([1,1,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,573,a),rewrite([16,17,15,18,19]),eval(1)]. given #912 (W,wt=55): 886 P([1,1,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(4,a,574,a),rewrite([16,17,15,18,19]),eval(1)]. given #913 (W,wt=55): 887 P([1,1,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,575,a),rewrite([16,17,15,18,19]),eval(1)]. given #914 (W,wt=0): 6133 P([1,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,264,a,b,887,a),rewrite([6,7,5])]. given #915 (W,wt=55): 888 P([1,1,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,576,a),rewrite([16,17,15,18,19]),eval(1)]. given #916 (W,wt=0): 6156 P([1,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,264,a,b,888,a),rewrite([6,7,5])]. given #917 (W,wt=55): 889 P([1,1,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(4,a,578,a),rewrite([16,17,15,18,19]),eval(1)]. given #918 (W,wt=55): 890 P([1,1,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(4,a,579,a),rewrite([16,17,15,18,19]),eval(1)]. given #919 (W,wt=55): 891 P([1,1,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(4,a,581,a),rewrite([16,17,15,18,19]),eval(1)]. given #920 (W,wt=55): 892 P([1,1,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(4,a,582,a),rewrite([16,17,15,18,19]),eval(1)]. given #921 (W,wt=55): 893 P([1,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(4,a,584,a),rewrite([16,17,15,18,19]),eval(1)]. given #922 (W,wt=55): 894 P([1,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(4,a,586,a),rewrite([16,17,15,18,19]),eval(1)]. given #923 (W,wt=0): 6272 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,894,a),rewrite([12,13,11,10])]. given #924 (W,wt=55): 895 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,587,a),rewrite([16,17,15,18,19]),eval(1)]. given #925 (W,wt=0): 6290 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,895,a),rewrite([12,13,11,10])]. given #926 (W,wt=55): 896 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,588,a),rewrite([16,17,15,18,19]),eval(1)]. given #927 (W,wt=0): 6301 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,268,a,b,896,a),rewrite([12,13,11,10])]. given #928 (W,wt=55): 897 P([1,1,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,611,a),rewrite([16,17,15,18,19]),eval(1)]. given #929 (W,wt=55): 898 P([1,0,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,612,a),rewrite([16,17,15,18,19]),eval(1)]. given #930 (W,wt=55): 899 P([1,0,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(4,a,613,a),rewrite([16,17,15,18,19]),eval(1)]. given #931 (W,wt=55): 900 P([1,0,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,614,a),rewrite([16,17,15,18,19]),eval(1)]. given #932 (W,wt=0): 6377 P([1,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,297,a,b,900,a),rewrite([6,7,5])]. given #933 (W,wt=55): 901 P([1,1,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,615,a),rewrite([16,17,15,18,19]),eval(1)]. given #934 (W,wt=0): 6400 P([1,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,297,a,b,901,a),rewrite([6,7,5])]. given #935 (W,wt=55): 902 P([1,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,617,a),rewrite([16,17,15,18,19]),eval(1)]. given #936 (W,wt=55): 903 P([1,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,618,a),rewrite([16,17,15,18,19]),eval(1)]. given #937 (W,wt=0): 6434 P([1,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,300,a,b,903,a),rewrite([12,11,13,10])]. given #938 (W,wt=55): 904 P([1,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,619,a),rewrite([16,17,15,18,19]),eval(1)]. given #939 (W,wt=55): 905 P([1,1,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(4,a,621,a),rewrite([16,17,15,18,19]),eval(1)]. given #940 (W,wt=55): 906 P([1,0,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(4,a,622,a),rewrite([16,17,15,18,19]),eval(1)]. given #941 (W,wt=55): 907 P([1,0,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(4,a,623,a),rewrite([16,17,15,18,19]),eval(1)]. given #942 (W,wt=55): 908 P([1,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,625,a),rewrite([16,17,15,18,19]),eval(1)]. given #943 (W,wt=55): 909 P([1,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,626,a),rewrite([16,17,15,18,19]),eval(1)]. given #944 (W,wt=0): 6570 P([1,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,299,a,b,909,a),rewrite([12,13,11,10])]. given #945 (W,wt=55): 910 P([1,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,627,a),rewrite([16,17,15,18,19]),eval(1)]. given #946 (W,wt=55): 911 P([1,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(4,a,629,a),rewrite([16,17,15,18,19]),eval(1)]. given #947 (W,wt=55): 912 P([1,1,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(4,a,631,a),rewrite([16,17,15,18,19]),eval(1)]. given #948 (W,wt=55): 913 P([1,0,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(4,a,632,a),rewrite([16,17,15,18,19]),eval(1)]. given #949 (W,wt=55): 914 P([1,0,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(4,a,634,a),rewrite([16,17,15,18,19]),eval(1)]. given #950 (W,wt=55): 915 P([1,0,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(4,a,635,a),rewrite([16,17,15,18,19]),eval(1)]. given #951 (W,wt=55): 916 P([1,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(4,a,637,a),rewrite([16,17,15,18,19]),eval(1)]. given #952 (W,wt=0): 6704 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,916,a),rewrite([12,11,13,10])]. given #953 (W,wt=55): 917 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,638,a),rewrite([16,17,15,18,19]),eval(1)]. given #954 (W,wt=0): 6722 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,301,a,b,917,a),rewrite([12,11,13,10])]. given #955 (W,wt=55): 918 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,639,a),rewrite([16,17,15,18,19]),eval(1)]. given #956 (W,wt=0): 6733 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,918,a),rewrite([12,11,13,10])]. given #957 (W,wt=55): 919 P([1,1,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,644,a),rewrite([16,17,15,18,19]),eval(1)]. given #958 (W,wt=55): 920 P([1,0,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,645,a),rewrite([16,17,15,18,19]),eval(1)]. given #959 (W,wt=55): 921 P([1,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(4,a,646,a),rewrite([16,17,15,18,19]),eval(1)]. given #960 (W,wt=55): 922 P([1,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(4,a,647,a),rewrite([16,17,15,18,19]),eval(1)]. given #961 (W,wt=55): 923 P([1,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,648,a),rewrite([16,17,15,18,19]),eval(1)]. given #962 (W,wt=55): 924 P([1,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,649,a),rewrite([16,17,15,18,19]),eval(1)]. given #963 (W,wt=0): 6840 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,315,a,b,924,a),rewrite([12,13,11,10])]. given #964 (W,wt=55): 925 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,650,a),rewrite([16,17,15,18,19]),eval(1)]. given #965 (W,wt=0): 6870 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,303,a,b,925,a),rewrite([6,7,5])]. given #966 (W,wt=55): 926 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,651,a),rewrite([16,17,15,18,19]),eval(1)]. given #967 (W,wt=0): 6888 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,304,a,b,926,a),rewrite([6,7,8,5])]. given #968 (W,wt=55): 927 P([1,1,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(4,a,653,a),rewrite([16,17,15,18,19]),eval(1)]. given #969 (W,wt=55): 928 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,654,a),rewrite([16,17,15,18,19]),eval(1)]. given #970 (W,wt=0): 6928 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,305,a,b,928,a),rewrite([6,7,5])]. given #971 (W,wt=55): 929 P([1,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(4,a,655,a),rewrite([16,17,15,18,19]),eval(1)]. given #972 (W,wt=55): 930 P([1,0,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(4,a,656,a),rewrite([16,17,15,18,19]),eval(1)]. given #973 (W,wt=55): 931 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(4,a,657,a),rewrite([16,17,15,18,19]),eval(1)]. given #974 (W,wt=55): 932 P([1,1,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(4,a,658,a),rewrite([16,17,15,18,19]),eval(1)]. given #975 (W,wt=55): 933 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(4,a,659,a),rewrite([16,17,15,18,19]),eval(1)]. given #976 (W,wt=0): 7034 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,304,a,b,933,a),rewrite([6,7,5])]. given #977 (W,wt=55): 934 P([1,1,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,661,a),rewrite([16,17,15,18,19]),eval(1)]. given #978 (W,wt=55): 935 P([1,1,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,662,a),rewrite([16,17,15,18,19]),eval(1)]. given #979 (W,wt=55): 936 P([1,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(4,a,663,a),rewrite([16,17,15,18,19]),eval(1)]. given #980 (W,wt=55): 937 P([1,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,664,a),rewrite([16,17,15,18,19]),eval(1)]. given #981 (W,wt=0): 7111 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,315,a,b,937,a),rewrite([12,13,11,10])]. given #982 (W,wt=55): 938 P([1,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,665,a),rewrite([16,17,15,18,19]),eval(1)]. given #983 (W,wt=55): 939 P([1,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(4,a,666,a),rewrite([16,17,15,18,19]),eval(1)]. given #984 (W,wt=55): 940 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,667,a),rewrite([16,17,15,18,19]),eval(1)]. given #985 (W,wt=0): 7168 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,305,a,b,940,a),rewrite([6,7,5])]. given #986 (W,wt=55): 941 P([1,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,679,a),rewrite([16,17,15,18,19]),eval(1)]. given #987 (W,wt=55): 942 P([1,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,680,a),rewrite([16,17,15,18,19]),eval(1)]. given #988 (W,wt=0): 7194 P([1,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,328,a,b,942,a),rewrite([12,11,13,10])]. given #989 (W,wt=55): 943 P([1,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,681,a),rewrite([16,17,15,18,19]),eval(1)]. given #990 (W,wt=55): 944 P([1,1,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,683,a),rewrite([16,17,15,18,19]),eval(1)]. given #991 (W,wt=55): 945 P([1,0,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,684,a),rewrite([16,17,15,18,19]),eval(1)]. given #992 (W,wt=55): 946 P([1,0,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(4,a,685,a),rewrite([16,17,15,18,19]),eval(1)]. given #993 (W,wt=55): 947 P([1,0,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,686,a),rewrite([16,17,15,18,19]),eval(1)]. given #994 (W,wt=0): 7294 P([1,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,325,a,b,947,a),rewrite([6,7,5])]. given #995 (W,wt=55): 948 P([1,1,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,687,a),rewrite([16,17,15,18,19]),eval(1)]. given #996 (W,wt=0): 7317 P([1,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,325,a,b,948,a),rewrite([6,7,5])]. given #997 (W,wt=55): 949 P([1,1,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(4,a,689,a),rewrite([16,17,15,18,19]),eval(1)]. given #998 (W,wt=55): 950 P([1,0,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(4,a,690,a),rewrite([16,17,15,18,19]),eval(1)]. given #999 (W,wt=55): 951 P([1,0,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(4,a,691,a),rewrite([16,17,15,18,19]),eval(1)]. given #1000 (W,wt=55): 952 P([1,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,693,a),rewrite([16,17,15,18,19]),eval(1)]. given #1001 (W,wt=55): 953 P([1,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,694,a),rewrite([16,17,15,18,19]),eval(1)]. given #1002 (W,wt=0): 7434 P([1,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,327,a,b,953,a),rewrite([12,13,11,10])]. given #1003 (W,wt=55): 954 P([1,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,695,a),rewrite([16,17,15,18,19]),eval(1)]. given #1004 (W,wt=55): 955 P([1,1,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(4,a,697,a),rewrite([16,17,15,18,19]),eval(1)]. given #1005 (W,wt=55): 956 P([1,0,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(4,a,698,a),rewrite([16,17,15,18,19]),eval(1)]. given #1006 (W,wt=55): 957 P([1,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(4,a,700,a),rewrite([16,17,15,18,19]),eval(1)]. given #1007 (W,wt=55): 958 P([1,0,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(4,a,702,a),rewrite([16,17,15,18,19]),eval(1)]. given #1008 (W,wt=55): 959 P([1,0,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(4,a,703,a),rewrite([16,17,15,18,19]),eval(1)]. given #1009 (W,wt=55): 960 P([1,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(4,a,705,a),rewrite([16,17,15,18,19]),eval(1)]. given #1010 (W,wt=0): 7568 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,329,a,b,960,a),rewrite([12,11,13,10])]. given #1011 (W,wt=55): 961 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,706,a),rewrite([16,17,15,18,19]),eval(1)]. given #1012 (W,wt=0): 7586 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,329,a,b,961,a),rewrite([12,11,13,10])]. given #1013 (W,wt=55): 962 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,707,a),rewrite([16,17,15,18,19]),eval(1)]. given #1014 (W,wt=0): 7597 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,329,a,b,962,a),rewrite([12,11,13,10])]. given #1015 (W,wt=55): 963 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,712,a),rewrite([16,17,15,18,19]),eval(1)]. given #1016 (W,wt=55): 964 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,713,a),rewrite([16,17,15,18,19]),eval(1)]. given #1017 (W,wt=55): 965 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(4,a,714,a),rewrite([16,17,15,18,19]),eval(1)]. given #1018 (W,wt=55): 966 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,715,a),rewrite([16,17,15,18,19]),eval(1)]. given #1019 (W,wt=55): 967 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(4,a,716,a),rewrite([16,17,15,18,19]),eval(1)]. given #1020 (W,wt=55): 968 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,717,a),rewrite([16,17,15,18,19]),eval(1)]. given #1021 (W,wt=0): 7704 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,343,a,b,968,a),rewrite([12,11,13,10])]. given #1022 (W,wt=55): 969 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,718,a),rewrite([16,17,15,18,19]),eval(1)]. given #1023 (W,wt=0): 7734 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,331,a,b,969,a),rewrite([6,7,5])]. given #1024 (W,wt=55): 970 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,719,a),rewrite([16,17,15,18,19]),eval(1)]. given #1025 (W,wt=0): 7752 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,332,a,b,970,a),rewrite([6,7,8,5])]. given #1026 (W,wt=55): 971 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,721,a),rewrite([16,17,15,18,19]),eval(1)]. given #1027 (W,wt=0): 7768 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,333,a,b,971,a),rewrite([6,7,5])]. given #1028 (W,wt=55): 972 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(4,a,722,a),rewrite([16,17,15,18,19]),eval(1)]. given #1029 (W,wt=55): 973 P([1,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(4,a,723,a),rewrite([16,17,15,18,19]),eval(1)]. given #1030 (W,wt=55): 974 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(4,a,724,a),rewrite([16,17,15,18,19]),eval(1)]. given #1031 (W,wt=55): 975 P([1,0,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(4,a,725,a),rewrite([16,17,15,18,19]),eval(1)]. given #1032 (W,wt=55): 976 P([1,1,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(4,a,726,a),rewrite([16,17,15,18,19]),eval(1)]. given #1033 (W,wt=55): 977 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(4,a,727,a),rewrite([16,17,15,18,19]),eval(1)]. given #1034 (W,wt=0): 7898 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,332,a,b,977,a),rewrite([6,7,5])]. given #1035 (W,wt=55): 978 P([1,1,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,729,a),rewrite([16,17,15,18,19]),eval(1)]. given #1036 (W,wt=55): 979 P([1,1,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,730,a),rewrite([16,17,15,18,19]),eval(1)]. given #1037 (W,wt=55): 980 P([1,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(4,a,731,a),rewrite([16,17,15,18,19]),eval(1)]. given #1038 (W,wt=55): 981 P([1,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,732,a),rewrite([16,17,15,18,19]),eval(1)]. given #1039 (W,wt=55): 982 P([1,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,733,a),rewrite([16,17,15,18,19]),eval(1)]. given #1040 (W,wt=0): 7990 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,343,a,b,982,a),rewrite([12,13,11,10])]. given #1041 (W,wt=55): 983 P([1,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(4,a,734,a),rewrite([16,17,15,18,19]),eval(1)]. given #1042 (W,wt=55): 984 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,735,a),rewrite([16,17,15,18,19]),eval(1)]. given #1043 (W,wt=0): 8032 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,333,a,b,984,a),rewrite([6,7,5])]. given #1044 (W,wt=55): 985 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(4,a,746,a),rewrite([16,17,15,18,19]),eval(1)]. given #1045 (W,wt=55): 986 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(4,a,747,a),rewrite([16,17,15,18,19]),eval(1)]. given #1046 (W,wt=55): 987 P([1,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(4,a,748,a),rewrite([16,17,15,18,19]),eval(1)]. given #1047 (W,wt=0): 8080 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,357,a,b,987,a),rewrite([12,11,13,10])]. given #1048 (W,wt=55): 988 P([1,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(4,a,749,a),rewrite([16,17,15,18,19]),eval(1)]. given #1049 (W,wt=55): 989 P([1,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(4,a,750,a),rewrite([16,17,15,18,19]),eval(1)]. given #1050 (W,wt=0): 8128 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,357,a,b,989,a),rewrite([12,11,13,10])]. given #1051 (W,wt=55): 990 P([1,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(4,a,751,a),rewrite([16,17,15,18,19]),eval(1)]. given #1052 (W,wt=0): 8149 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,357,a,b,990,a),rewrite([12,11,13,10])]. given #1053 (W,wt=55): 991 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(4,a,752,a),rewrite([16,17,15,18,19]),eval(1)]. given #1054 (W,wt=0): 8171 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,351,a,b,991,a),rewrite([6,8,7,5])]. given #1055 (W,wt=55): 992 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(4,a,753,a),rewrite([16,17,15,18,19]),eval(1)]. given #1056 (W,wt=0): 8193 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,350,a,b,992,a),rewrite([6,7,8,5])]. given #1057 (W,wt=55): 993 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(4,a,755,a),rewrite([16,17,15,18,19]),eval(1)]. given #1058 (W,wt=55): 994 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(4,a,756,a),rewrite([16,17,15,18,19]),eval(1)]. given #1059 (W,wt=55): 995 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(4,a,757,a),rewrite([16,17,15,18,19]),eval(1)]. given #1060 (W,wt=0): 8242 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,358,a,b,995,a),rewrite([12,11,13,10])]. given #1061 (W,wt=55): 996 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(4,a,758,a),rewrite([16,17,15,18,19]),eval(1)]. given #1062 (W,wt=0): 8272 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,358,a,b,996,a),rewrite([12,11,13,10])]. given #1063 (W,wt=55): 997 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(4,a,759,a),rewrite([16,17,15,18,19]),eval(1)]. given #1064 (W,wt=55): 998 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(4,a,760,a),rewrite([16,17,15,18,19]),eval(1)]. given #1065 (W,wt=0): 8311 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,358,a,b,998,a),rewrite([12,11,13,10])]. given #1066 (W,wt=55): 999 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(4,a,761,a),rewrite([16,17,15,18,19]),eval(1)]. given #1067 (W,wt=0): 8334 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,351,a,b,999,a),rewrite([6,7,8,5])]. given #1068 (W,wt=55): 1000 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(4,a,762,a),rewrite([16,17,15,18,19]),eval(1)]. given #1069 (W,wt=0): 8357 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,349,a,b,1000,a),rewrite([6,7,8,5])]. given #1070 (W,wt=55): 1001 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(4,a,764,a),rewrite([16,17,15,18,19]),eval(1)]. given #1071 (W,wt=0): 8387 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,350,a,b,1001,a),rewrite([6,7,5])]. given #1072 (W,wt=55): 1002 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(4,a,765,a),rewrite([16,17,15,18,19]),eval(1)]. given #1073 (W,wt=0): 8429 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,349,a,b,1002,a),rewrite([6,7,5])]. given #1074 (W,wt=55): 1003 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(4,a,766,a),rewrite([16,17,15,18,19]),eval(1)]. given #1075 (W,wt=0): 8468 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,351,a,b,1003,a),rewrite([6,7,5])]. given #1076 (W,wt=55): 1004 P([1,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(4,a,767,a),rewrite([16,17,15,18,19]),eval(1)]. given #1077 (W,wt=55): 1005 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(4,a,768,a),rewrite([16,17,15,18,19]),eval(1)]. given #1078 (W,wt=55): 1006 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(4,a,769,a),rewrite([16,17,15,18,19]),eval(1)]. given #1079 (W,wt=55): 1007 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(4,a,770,a),rewrite([16,17,15,18,19]),eval(1)]. given #1080 (W,wt=55): 1008 P([1,1,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(4,a,772,a),rewrite([16,17,15,18,19]),eval(1)]. given #1081 (W,wt=55): 1009 P([1,1,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(4,a,773,a),rewrite([16,17,15,18,19]),eval(1)]. given #1082 (W,wt=55): 1010 P([1,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(4,a,774,a),rewrite([16,17,15,18,19]),eval(1)]. given #1083 (W,wt=0): 8636 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,359,a,b,1010,a),rewrite([12,13,11,10])]. given #1084 (W,wt=55): 1011 P([1,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(4,a,775,a),rewrite([16,17,15,18,19]),eval(1)]. given #1085 (W,wt=0): 8666 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,359,a,b,1011,a),rewrite([12,13,11,10])]. given #1086 (W,wt=55): 1012 P([1,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(4,a,776,a),rewrite([16,17,15,18,19]),eval(1)]. given #1087 (W,wt=0): 8687 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,359,a,b,1012,a),rewrite([12,13,11,10])]. given #1088 (W,wt=55): 1013 P([1,1,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(4,a,777,a),rewrite([16,17,15,18,19]),eval(1)]. given #1089 (W,wt=55): 1014 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(4,a,778,a),rewrite([16,17,15,18,19]),eval(1)]. given #1090 (W,wt=0): 8731 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,349,a,b,1014,a),rewrite([6,8,7,5])]. given #1091 (W,wt=55): 1015 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(4,a,779,a),rewrite([16,17,15,18,19]),eval(1)]. given #1092 (W,wt=0): 8751 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,350,a,b,1015,a),rewrite([6,8,7,5])]. given #1093 (W,wt=55): 1016 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(4,a,781,a),rewrite([16,17,15,18,19]),eval(1)]. given #1094 (W,wt=55): 1017 P([1,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(4,a,782,a),rewrite([16,17,15,18,19]),eval(1)]. given #1095 (W,wt=55): 1018 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(4,a,783,a),rewrite([16,17,15,18,19]),eval(1)]. given #1096 (W,wt=55): 1019 P([1,0,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(4,a,784,a),rewrite([16,17,15,18,19]),eval(1)]. given #1097 (W,wt=55): 1020 P([1,1,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(4,a,785,a),rewrite([16,17,15,18,19]),eval(1)]. given #1098 (W,wt=55): 1021 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(4,a,787,a),rewrite([16,17,15,18,19]),eval(1)]. given #1099 (W,wt=55): 1022 P([1,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(4,a,788,a),rewrite([16,17,15,18,19]),eval(1)]. given #1100 (W,wt=55): 1023 P([1,0,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(4,a,789,a),rewrite([16,17,15,18,19]),eval(1)]. given #1101 (W,wt=55): 1024 P([1,0,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(4,a,790,a),rewrite([16,17,15,18,19]),eval(1)]. given #1102 (W,wt=55): 1025 P([1,1,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(4,a,791,a),rewrite([16,17,15,18,19]),eval(1)]. given #1103 (W,wt=55): 1026 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(4,a,793,a),rewrite([16,17,15,18,19]),eval(1)]. given #1104 (W,wt=55): 1027 P([1,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,1,1]:x]). [hyper(4,a,794,a),rewrite([16,17,15,18,19]),eval(1)]. given #1105 (W,wt=55): 1028 P([1,0,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(4,a,795,a),rewrite([16,17,15,18,19]),eval(1)]. given #1106 (W,wt=55): 1029 P([1,0,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(4,a,796,a),rewrite([16,17,15,18,19]),eval(1)]. given #1107 (W,wt=55): 1030 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(4,a,797,a),rewrite([16,17,15,18,19]),eval(1)]. given #1108 (W,wt=55): 1031 P([0,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,169,a,b,87,a),rewrite([13,11,12,10])]. given #1109 (W,wt=55): 1032 P([0,1,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,94,a,b,87,a),rewrite([13,11,12,10])]. given #1110 (W,wt=55): 1033 P([0,0,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,90,a,b,87,a),rewrite([13,11,12,10])]. given #1111 (W,wt=55): 1034 P([0,0,0,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,73,a,b,87,a),rewrite([13,11,12,10])]. given #1112 (W,wt=55): 1035 P([1,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,72,a,b,87,a),rewrite([11,12,13,10])]. given #1113 (W,wt=55): 1036 P([0,0,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,87,a),rewrite([13,11,12,10])]. given #1114 (W,wt=55): 1037 P([0,1,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,64,a,b,87,a),rewrite([13,11,12,10])]. given #1115 (W,wt=55): 1038 P([0,0,0,0,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,87,a),rewrite([13,12,11,10])]. given #1116 (W,wt=55): 1039 P([0,0,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,37,a,b,87,a),rewrite([13,11,12,10])]. given #1117 (W,wt=55): 1040 P([0,1,0,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,36,a,b,87,a),rewrite([13,11,12,10])]. given #1118 (W,wt=55): 1041 P([1,1,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,24,a,b,87,a),rewrite([11,12,13,10])]. given #1119 (W,wt=55): 1042 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(2,a,93,a,b,87,a),rewrite([8,6,7,5])]. given #1120 (W,wt=55): 1043 P([0,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,169,a,b,91,a),rewrite([13,11,12,10])]. given #1121 (W,wt=55): 1044 P([0,1,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,94,a,b,91,a),rewrite([13,11,12,10])]. given #1122 (W,wt=55): 1045 P([0,0,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,90,a,b,91,a),rewrite([13,11,12,10])]. given #1123 (W,wt=55): 1046 P([0,0,0,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,73,a,b,91,a),rewrite([13,11,12,10])]. given #1124 (W,wt=55): 1047 P([1,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,72,a,b,91,a),rewrite([11,12,13,10])]. given #1125 (W,wt=55): 1048 P([0,1,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,64,a,b,91,a),rewrite([13,11,12,10])]. given #1126 (W,wt=55): 1049 P([0,0,0,0,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,91,a),rewrite([13,12,11,10])]. given #1127 (W,wt=55): 1050 P([0,0,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,91,a),rewrite([13,11,12,10])]. given #1128 (W,wt=55): 1051 P([0,0,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,37,a,b,91,a),rewrite([13,11,12,10])]. given #1129 (W,wt=55): 1052 P([0,1,0,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,36,a,b,91,a),rewrite([13,11,12,10])]. given #1130 (W,wt=55): 1053 P([1,1,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,24,a,b,91,a),rewrite([11,12,13,10])]. given #1131 (W,wt=55): 1054 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(2,a,89,a,b,91,a),rewrite([8,6,7,5])]. given #1132 (W,wt=55): 1055 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(3,a,90,a,b,95,a),rewrite([12,13,11,10])]. given #1133 (W,wt=55): 1056 P([0,0,1,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,169,a,b,95,a),rewrite([7,6,5])]. given #1134 (W,wt=55): 1057 P([0,0,1,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,93,a,b,95,a),rewrite([7,6,5])]. given #1135 (W,wt=55): 1058 P([0,0,1,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,89,a,b,95,a),rewrite([7,6,5])]. given #1136 (W,wt=55): 1059 P([1,0,1,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,72,a,b,95,a),rewrite([6,7,5])]. given #1137 (W,wt=55): 1060 P([0,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,64,a,b,95,a),rewrite([7,6,5])]. given #1138 (W,wt=55): 1061 P([0,0,1,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,95,a),rewrite([7,8,6,5])]. given #1139 (W,wt=55): 1062 P([1,0,1,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,62,a,b,95,a),rewrite([6,7,5])]. given #1140 (W,wt=55): 1063 P([0,0,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,95,a),rewrite([7,6,5])]. given #1141 (W,wt=55): 1064 P([1,0,1,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,34,a,b,95,a),rewrite([6,7,5])]. given #1142 (W,wt=55): 1065 P([1,0,1,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,33,a,b,95,a),rewrite([6,7,5])]. given #1143 (W,wt=55): 1066 P([1,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,24,a,b,95,a),rewrite([6,7,5])]. given #1144 (W,wt=55): 1067 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(3,a,94,a,b,96,a),rewrite([12,11,13,10])]. given #1145 (W,wt=55): 1068 P([0,1,0,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,169,a,b,96,a),rewrite([7,6,5])]. given #1146 (W,wt=55): 1069 P([0,1,0,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,93,a,b,96,a),rewrite([7,6,5])]. given #1147 (W,wt=55): 1070 P([0,1,0,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,89,a,b,96,a),rewrite([7,6,5])]. given #1148 (W,wt=55): 1071 P([1,1,0,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,72,a,b,96,a),rewrite([6,7,5])]. given #1149 (W,wt=55): 1072 P([0,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,64,a,b,96,a),rewrite([7,6,5])]. given #1150 (W,wt=55): 1073 P([1,1,0,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,62,a,b,96,a),rewrite([6,7,5])]. given #1151 (W,wt=55): 1074 P([0,1,0,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,96,a),rewrite([7,6,8,5])]. given #1152 (W,wt=55): 1075 P([0,1,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,96,a),rewrite([7,6,5])]. given #1153 (W,wt=55): 1076 P([1,1,0,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,34,a,b,96,a),rewrite([6,7,5])]. given #1154 (W,wt=55): 1077 P([1,1,0,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,33,a,b,96,a),rewrite([6,7,5])]. given #1155 (W,wt=55): 1078 P([1,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,24,a,b,96,a),rewrite([6,7,5])]. given #1156 (W,wt=55): 1079 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,187,a,b,97,a),rewrite([13,11,12,10])]. given #1157 (W,wt=55): 1080 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,104,a,b,97,a),rewrite([13,11,12,10])]. given #1158 (W,wt=55): 1081 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,100,a,b,97,a),rewrite([13,12,11,10])]. given #1159 (W,wt=55): 1082 P([0,0,1,0,0,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,76,a,b,97,a),rewrite([13,12,11,10])]. given #1160 (W,wt=55): 1083 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,75,a,b,97,a),rewrite([11,12,13,10])]. given #1161 (W,wt=55): 1084 P([0,1,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,69,a,b,97,a),rewrite([13,11,12,10])]. given #1162 (W,wt=55): 1085 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,97,a),rewrite([13,12,11,10])]. given #1163 (W,wt=55): 1086 P([0,0,1,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,97,a),rewrite([13,12,11,10])]. given #1164 (W,wt=55): 1087 P([0,0,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,44,a,b,97,a),rewrite([13,12,11,10])]. given #1165 (W,wt=55): 1088 P([0,1,1,0,0,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,42,a,b,97,a),rewrite([13,11,12,10])]. given #1166 (W,wt=55): 1089 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,25,a,b,97,a),rewrite([11,12,13,10])]. given #1167 (W,wt=55): 1090 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(2,a,103,a,b,97,a),rewrite([8,6,7,5])]. given #1168 (W,wt=55): 1091 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,187,a,b,101,a),rewrite([13,11,12,10])]. given #1169 (W,wt=55): 1092 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,104,a,b,101,a),rewrite([13,11,12,10])]. given #1170 (W,wt=55): 1093 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,100,a,b,101,a),rewrite([13,12,11,10])]. given #1171 (W,wt=55): 1094 P([0,0,1,1,0,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,76,a,b,101,a),rewrite([13,12,11,10])]. given #1172 (W,wt=55): 1095 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,75,a,b,101,a),rewrite([11,12,13,10])]. given #1173 (W,wt=55): 1096 P([0,1,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,69,a,b,101,a),rewrite([13,11,12,10])]. given #1174 (W,wt=55): 1097 P([0,0,1,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,101,a),rewrite([13,12,11,10])]. given #1175 (W,wt=55): 1098 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,101,a),rewrite([13,12,11,10])]. given #1176 (W,wt=55): 1099 P([0,0,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,44,a,b,101,a),rewrite([13,12,11,10])]. given #1177 (W,wt=55): 1100 P([0,1,1,1,0,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,42,a,b,101,a),rewrite([13,11,12,10])]. given #1178 (W,wt=55): 1101 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,25,a,b,101,a),rewrite([11,12,13,10])]. given #1179 (W,wt=55): 1102 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(2,a,99,a,b,101,a),rewrite([8,6,7,5])]. given #1180 (W,wt=55): 1103 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(3,a,100,a,b,105,a),rewrite([12,13,11,10])]. given #1181 (W,wt=55): 1104 P([0,0,0,0,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,187,a,b,105,a),rewrite([7,6,5])]. given #1182 (W,wt=55): 1105 P([0,0,0,0,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,103,a,b,105,a),rewrite([7,6,5])]. given #1183 (W,wt=55): 1106 P([0,0,0,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,99,a,b,105,a),rewrite([7,6,5])]. given #1184 (W,wt=55): 1107 P([1,0,0,0,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,75,a,b,105,a),rewrite([6,7,5])]. given #1185 (W,wt=55): 1108 P([0,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,69,a,b,105,a),rewrite([7,6,5])]. given #1186 (W,wt=55): 1109 P([0,0,0,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,105,a),rewrite([7,8,6,5])]. given #1187 (W,wt=55): 1110 P([1,0,0,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,67,a,b,105,a),rewrite([6,7,5])]. given #1188 (W,wt=55): 1111 P([0,0,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,105,a),rewrite([7,6,5])]. given #1189 (W,wt=55): 1112 P([1,0,0,0,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,41,a,b,105,a),rewrite([6,7,5])]. given #1190 (W,wt=55): 1113 P([1,0,0,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,39,a,b,105,a),rewrite([6,7,5])]. given #1191 (W,wt=55): 1114 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,25,a,b,105,a),rewrite([6,7,5])]. given #1192 (W,wt=55): 1115 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(3,a,104,a,b,106,a),rewrite([12,11,13,10])]. given #1193 (W,wt=55): 1116 P([0,1,0,0,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,187,a,b,106,a),rewrite([7,6,5])]. given #1194 (W,wt=55): 1117 P([0,1,0,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,103,a,b,106,a),rewrite([7,6,5])]. given #1195 (W,wt=55): 1118 P([0,1,0,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,99,a,b,106,a),rewrite([7,6,5])]. given #1196 (W,wt=55): 1119 P([1,1,0,0,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,75,a,b,106,a),rewrite([6,7,5])]. given #1197 (W,wt=55): 1120 P([0,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,69,a,b,106,a),rewrite([7,6,5])]. given #1198 (W,wt=55): 1121 P([1,1,0,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,67,a,b,106,a),rewrite([6,7,5])]. given #1199 (W,wt=55): 1122 P([0,1,0,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,58,a,b,106,a),rewrite([7,6,8,5])]. given #1200 (W,wt=55): 1123 P([0,1,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,53,a,b,106,a),rewrite([7,6,5])]. given #1201 (W,wt=55): 1124 P([1,1,0,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,41,a,b,106,a),rewrite([6,7,5])]. given #1202 (W,wt=55): 1125 P([1,1,0,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,39,a,b,106,a),rewrite([6,7,5])]. given #1203 (W,wt=55): 1126 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,25,a,b,106,a),rewrite([6,7,5])]. given #1204 (W,wt=55): 1127 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,134,a,b,107,a),rewrite([13,12,11,10])]. given #1205 (W,wt=55): 1128 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,114,a,b,107,a),rewrite([13,12,11,10])]. given #1206 (W,wt=55): 1129 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,110,a,b,107,a),rewrite([13,12,11,10])]. given #1207 (W,wt=55): 1130 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,107,a),rewrite([13,12,11,10])]. given #1208 (W,wt=55): 1131 P([0,1,0,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,107,a),rewrite([13,12,11,10])]. given #1209 (W,wt=55): 1132 P([0,1,0,0,0,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,59,a,b,107,a),rewrite([13,12,11,10])]. given #1210 (W,wt=55): 1133 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,57,a,b,107,a),rewrite([11,12,13,10])]. given #1211 (W,wt=55): 1134 P([0,1,1,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,54,a,b,107,a),rewrite([13,12,11,10])]. given #1212 (W,wt=55): 1135 P([0,1,0,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,50,a,b,107,a),rewrite([13,12,11,10])]. given #1213 (W,wt=55): 1136 P([0,1,1,0,0,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,49,a,b,107,a),rewrite([13,12,11,10])]. given #1214 (W,wt=55): 1137 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,28,a,b,107,a),rewrite([11,12,13,10])]. given #1215 (W,wt=55): 1138 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,0,1,1]:x]). [hyper(2,a,113,a,b,107,a),rewrite([8,7,6,5])]. given #1216 (W,wt=55): 1139 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,134,a,b,111,a),rewrite([13,12,11,10])]. given #1217 (W,wt=55): 1140 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,114,a,b,111,a),rewrite([13,12,11,10])]. given #1218 (W,wt=55): 1141 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,110,a,b,111,a),rewrite([13,12,11,10])]. given #1219 (W,wt=55): 1142 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,111,a),rewrite([13,12,11,10])]. given #1220 (W,wt=55): 1143 P([0,1,0,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,111,a),rewrite([13,12,11,10])]. given #1221 (W,wt=55): 1144 P([0,1,0,1,0,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,59,a,b,111,a),rewrite([13,12,11,10])]. given #1222 (W,wt=55): 1145 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,57,a,b,111,a),rewrite([11,12,13,10])]. given #1223 (W,wt=55): 1146 P([0,1,1,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,54,a,b,111,a),rewrite([13,12,11,10])]. given #1224 (W,wt=55): 1147 P([0,1,0,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,50,a,b,111,a),rewrite([13,12,11,10])]. given #1225 (W,wt=55): 1148 P([0,1,1,1,0,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,49,a,b,111,a),rewrite([13,12,11,10])]. given #1226 (W,wt=55): 1149 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,28,a,b,111,a),rewrite([11,12,13,10])]. given #1227 (W,wt=55): 1150 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,1,1,1]:x]). [hyper(2,a,109,a,b,111,a),rewrite([8,7,6,5])]. given #1228 (W,wt=55): 1151 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(3,a,110,a,b,115,a),rewrite([12,13,11,10])]. given #1229 (W,wt=55): 1152 P([0,0,0,0,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,134,a,b,115,a),rewrite([7,6,5])]. given #1230 (W,wt=55): 1153 P([0,0,0,0,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,113,a,b,115,a),rewrite([7,6,5])]. given #1231 (W,wt=55): 1154 P([0,0,0,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,109,a,b,115,a),rewrite([7,6,5])]. given #1232 (W,wt=55): 1155 P([0,0,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,115,a),rewrite([7,8,6,5])]. given #1233 (W,wt=55): 1156 P([1,0,0,0,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,57,a,b,115,a),rewrite([6,7,5])]. given #1234 (W,wt=55): 1157 P([0,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,54,a,b,115,a),rewrite([7,6,5])]. given #1235 (W,wt=55): 1158 P([0,1,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,115,a),rewrite([7,6,5])]. given #1236 (W,wt=55): 1159 P([1,0,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,52,a,b,115,a),rewrite([6,7,5])]. given #1237 (W,wt=55): 1160 P([1,0,0,0,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,47,a,b,115,a),rewrite([6,7,5])]. given #1238 (W,wt=55): 1161 P([1,0,0,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,46,a,b,115,a),rewrite([6,7,5])]. given #1239 (W,wt=55): 1162 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,28,a,b,115,a),rewrite([6,7,5])]. given #1240 (W,wt=55): 1163 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(3,a,114,a,b,116,a),rewrite([12,11,13,10])]. given #1241 (W,wt=55): 1164 P([0,0,1,0,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,134,a,b,116,a),rewrite([7,6,5])]. given #1242 (W,wt=55): 1165 P([0,0,1,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,113,a,b,116,a),rewrite([7,6,5])]. given #1243 (W,wt=55): 1166 P([0,0,1,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,109,a,b,116,a),rewrite([7,6,5])]. given #1244 (W,wt=55): 1167 P([0,0,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,63,a,b,116,a),rewrite([7,6,8,5])]. given #1245 (W,wt=55): 1168 P([1,0,1,0,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,57,a,b,116,a),rewrite([6,7,5])]. given #1246 (W,wt=55): 1169 P([0,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,54,a,b,116,a),rewrite([7,6,5])]. given #1247 (W,wt=55): 1170 P([0,1,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,53,a,b,116,a),rewrite([7,6,5])]. given #1248 (W,wt=55): 1171 P([1,0,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,52,a,b,116,a),rewrite([6,7,5])]. given #1249 (W,wt=55): 1172 P([1,0,1,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,47,a,b,116,a),rewrite([6,7,5])]. given #1250 (W,wt=55): 1173 P([1,0,1,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,46,a,b,116,a),rewrite([6,7,5])]. given #1251 (W,wt=55): 1174 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,28,a,b,116,a),rewrite([6,7,5])]. given #1252 (W,wt=55): 1175 P([0,1,1,0,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,134,a,b,132,a),rewrite([13,12,11,10])]. given #1253 (W,wt=55): 1176 P([0,1,1,0,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,114,a,b,132,a),rewrite([13,12,11,10])]. given #1254 (W,wt=55): 1177 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,113,a,b,132,a),rewrite([13,12,11,10])]. given #1255 (W,wt=55): 1178 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,112,a,b,132,a),rewrite([13,12,11,10])]. given #1256 (W,wt=55): 1179 P([0,1,0,0,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,110,a,b,132,a),rewrite([13,12,11,10])]. given #1257 (W,wt=55): 1180 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,109,a,b,132,a),rewrite([13,12,11,10])]. given #1258 (W,wt=55): 1181 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,108,a,b,132,a),rewrite([13,12,11,10])]. given #1259 (W,wt=55): 1182 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,132,a),rewrite([13,12,11,10])]. given #1260 (W,wt=55): 1183 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,132,a),rewrite([13,12,11,10])]. given #1261 (W,wt=55): 1184 P([0,1,0,0,0,0,0,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,132,a),rewrite([13,12,11,10])]. given #1262 (W,wt=55): 1185 P([0,1,0,0,0,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,59,a,b,132,a),rewrite([13,12,11,10])]. given #1263 (W,wt=55): 1186 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,57,a,b,132,a),rewrite([11,12,13,10])]. given #1264 (W,wt=55): 1187 P([0,1,1,0,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,54,a,b,132,a),rewrite([13,12,11,10])]. given #1265 (W,wt=55): 1188 P([0,1,0,0,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,50,a,b,132,a),rewrite([13,12,11,10])]. given #1266 (W,wt=55): 1189 P([0,1,1,0,0,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,49,a,b,132,a),rewrite([13,12,11,10])]. given #1267 (W,wt=55): 1190 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,47,a,b,132,a),rewrite([11,12,13,10])]. given #1268 (W,wt=55): 1191 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,46,a,b,132,a),rewrite([11,12,13,10])]. given #1269 (W,wt=55): 1192 P([0,1,0,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,132,a),rewrite([13,12,11,10])]. given #1270 (W,wt=55): 1193 P([0,1,0,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,132,a),rewrite([13,12,11,10])]. given #1271 (W,wt=55): 1194 P([1,1,1,0,1,0,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,28,a,b,132,a),rewrite([11,12,13,10])]. given #1272 (W,wt=55): 1195 P([0,1,0,0,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,132,a),rewrite([13,12,11,10])]. given #1273 (W,wt=55): 1196 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,132,a),rewrite([13,12,11,10])]. given #1274 (W,wt=55): 1197 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,132,a),rewrite([13,12,11,10])]. given #1275 (W,wt=55): 1198 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,114,a,b,133,a),rewrite([12,11,13,10])]. given #1276 (W,wt=55): 1199 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,110,a,b,133,a),rewrite([12,13,11,10])]. given #1277 (W,wt=55): 1200 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,79,a,b,133,a),rewrite([12,13,11,10])]. given #1278 (W,wt=55): 1201 P([1,0,0,0,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,57,a,b,133,a),rewrite([6,7,5])]. given #1279 (W,wt=55): 1202 P([1,0,0,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,52,a,b,133,a),rewrite([6,7,5])]. given #1280 (W,wt=55): 1203 P([1,0,0,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,47,a,b,133,a),rewrite([6,7,5])]. given #1281 (W,wt=55): 1204 P([1,0,0,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,46,a,b,133,a),rewrite([6,7,5])]. given #1282 (W,wt=55): 1205 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,28,a,b,133,a),rewrite([6,7,5])]. given #1283 (W,wt=55): 1206 P([0,1,0,1,0,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,59,a,b,150,a),rewrite([13,12,11,10])]. given #1284 (W,wt=55): 1207 P([0,1,1,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,54,a,b,150,a),rewrite([13,12,11,10])]. given #1285 (W,wt=55): 1208 P([0,1,0,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,50,a,b,150,a),rewrite([13,12,11,10])]. given #1286 (W,wt=55): 1209 P([0,1,1,1,0,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,49,a,b,150,a),rewrite([13,12,11,10])]. given #1287 (W,wt=55): 1210 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,28,a,b,150,a),rewrite([11,12,13,10])]. given #1288 (W,wt=55): 1211 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,113,a,b,150,a),rewrite([8,7,6,5])]. given #1289 (W,wt=55): 1212 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,109,a,b,150,a),rewrite([8,7,6,5])]. given #1290 (W,wt=55): 1213 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,150,a),rewrite([8,7,6,5])]. given #1291 (W,wt=55): 1214 P([0,0,1,0,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,134,a,b,151,a),rewrite([7,6,5])]. given #1292 (W,wt=55): 1215 P([0,0,1,0,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,114,a,b,151,a),rewrite([7,6,5])]. given #1293 (W,wt=55): 1216 P([0,0,1,0,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,113,a,b,151,a),rewrite([7,6,5])]. given #1294 (W,wt=55): 1217 P([0,0,1,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,112,a,b,151,a),rewrite([7,6,5])]. given #1295 (W,wt=55): 1218 P([0,0,0,0,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,110,a,b,151,a),rewrite([7,6,5])]. given #1296 (W,wt=55): 1219 P([0,0,1,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,109,a,b,151,a),rewrite([7,6,5])]. given #1297 (W,wt=55): 1220 P([0,0,0,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,108,a,b,151,a),rewrite([7,6,5])]. given #1298 (W,wt=55): 1221 P([0,0,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,151,a),rewrite([7,6,5])]. given #1299 (W,wt=55): 1222 P([0,0,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,151,a),rewrite([7,6,5])]. given #1300 (W,wt=55): 1223 P([1,0,1,0,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,57,a,b,151,a),rewrite([6,7,5])]. given #1301 (W,wt=55): 1224 P([0,0,1,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,54,a,b,151,a),rewrite([7,6,5])]. given #1302 (W,wt=55): 1225 P([0,1,1,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,151,a),rewrite([7,6,5])]. given #1303 (W,wt=55): 1226 P([1,0,1,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,52,a,b,151,a),rewrite([6,7,5])]. given #1304 (W,wt=55): 1227 P([0,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,50,a,b,151,a),rewrite([7,6,5])]. given #1305 (W,wt=55): 1228 P([0,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,49,a,b,151,a),rewrite([7,6,5])]. given #1306 (W,wt=55): 1229 P([1,0,1,0,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,47,a,b,151,a),rewrite([6,7,5])]. given #1307 (W,wt=55): 1230 P([1,0,1,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,46,a,b,151,a),rewrite([6,7,5])]. given #1308 (W,wt=55): 1231 P([0,1,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,30,a,b,151,a),rewrite([7,6,5])]. given #1309 (W,wt=55): 1232 P([0,1,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,29,a,b,151,a),rewrite([7,6,5])]. given #1310 (W,wt=55): 1233 P([1,0,1,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,28,a,b,151,a),rewrite([6,7,5])]. given #1311 (W,wt=55): 1234 P([0,0,1,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,26,a,b,151,a),rewrite([7,6,5])]. given #1312 (W,wt=55): 1235 P([0,0,1,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,21,a,b,151,a),rewrite([7,6,5])]. given #1313 (W,wt=55): 1236 P([0,0,0,0,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,20,a,b,151,a),rewrite([7,6,5])]. given #1314 (W,wt=55): 1237 P([0,1,1,1,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,169,a,b,167,a),rewrite([13,11,12,10])]. given #1315 (W,wt=55): 1238 P([0,1,0,1,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,94,a,b,167,a),rewrite([13,11,12,10])]. given #1316 (W,wt=55): 1239 P([0,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,93,a,b,167,a),rewrite([13,11,12,10])]. given #1317 (W,wt=55): 1240 P([0,1,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,92,a,b,167,a),rewrite([13,11,12,10])]. given #1318 (W,wt=55): 1241 P([0,0,1,1,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,90,a,b,167,a),rewrite([13,11,12,10])]. given #1319 (W,wt=55): 1242 P([0,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,89,a,b,167,a),rewrite([13,11,12,10])]. given #1320 (W,wt=55): 1243 P([0,0,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,88,a,b,167,a),rewrite([13,11,12,10])]. given #1321 (W,wt=55): 1244 P([0,0,0,1,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,73,a,b,167,a),rewrite([13,11,12,10])]. given #1322 (W,wt=55): 1245 P([1,1,1,1,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,72,a,b,167,a),rewrite([11,12,13,10])]. given #1323 (W,wt=55): 1246 P([0,0,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,167,a),rewrite([13,11,12,10])]. given #1324 (W,wt=55): 1247 P([0,1,1,1,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,64,a,b,167,a),rewrite([13,11,12,10])]. given #1325 (W,wt=55): 1248 P([0,0,0,0,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,167,a),rewrite([13,12,11,10])]. given #1326 (W,wt=55): 1249 P([0,0,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,167,a),rewrite([13,11,12,10])]. given #1327 (W,wt=55): 1250 P([0,0,1,1,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,37,a,b,167,a),rewrite([13,11,12,10])]. given #1328 (W,wt=55): 1251 P([0,1,0,1,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,36,a,b,167,a),rewrite([13,11,12,10])]. given #1329 (W,wt=55): 1252 P([1,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,34,a,b,167,a),rewrite([11,12,13,10])]. given #1330 (W,wt=55): 1253 P([1,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,33,a,b,167,a),rewrite([11,12,13,10])]. given #1331 (W,wt=55): 1254 P([0,0,0,0,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,167,a),rewrite([13,12,11,10])]. given #1332 (W,wt=55): 1255 P([0,0,0,1,1,0,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,167,a),rewrite([13,11,12,10])]. given #1333 (W,wt=55): 1256 P([0,0,0,0,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,167,a),rewrite([13,12,11,10])]. given #1334 (W,wt=55): 1257 P([1,1,1,1,1,0,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,24,a,b,167,a),rewrite([11,12,13,10])]. given #1335 (W,wt=55): 1258 P([0,1,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,167,a),rewrite([13,11,12,10])]. given #1336 (W,wt=55): 1259 P([0,0,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,167,a),rewrite([13,11,12,10])]. given #1337 (W,wt=55): 1260 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,94,a,b,168,a),rewrite([12,11,13,10])]. given #1338 (W,wt=55): 1261 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,90,a,b,168,a),rewrite([12,13,11,10])]. given #1339 (W,wt=55): 1262 P([1,0,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,79,a,b,168,a),rewrite([12,13,11,10])]. given #1340 (W,wt=55): 1263 P([1,0,0,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,72,a,b,168,a),rewrite([6,7,5])]. given #1341 (W,wt=55): 1264 P([1,0,0,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,62,a,b,168,a),rewrite([6,7,5])]. given #1342 (W,wt=55): 1265 P([1,0,0,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,34,a,b,168,a),rewrite([6,7,5])]. given #1343 (W,wt=55): 1266 P([1,0,0,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,33,a,b,168,a),rewrite([6,7,5])]. given #1344 (W,wt=55): 1267 P([1,0,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,24,a,b,168,a),rewrite([6,7,5])]. given #1345 (W,wt=55): 1268 P([0,1,1,0,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,187,a,b,185,a),rewrite([13,11,12,10])]. given #1346 (W,wt=55): 1269 P([0,1,1,0,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,104,a,b,185,a),rewrite([13,11,12,10])]. given #1347 (W,wt=55): 1270 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,103,a,b,185,a),rewrite([13,11,12,10])]. given #1348 (W,wt=55): 1271 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,102,a,b,185,a),rewrite([13,11,12,10])]. given #1349 (W,wt=55): 1272 P([0,0,1,0,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,100,a,b,185,a),rewrite([13,12,11,10])]. given #1350 (W,wt=55): 1273 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,99,a,b,185,a),rewrite([13,11,12,10])]. given #1351 (W,wt=55): 1274 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,98,a,b,185,a),rewrite([13,12,11,10])]. given #1352 (W,wt=55): 1275 P([0,0,1,0,0,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,76,a,b,185,a),rewrite([13,12,11,10])]. given #1353 (W,wt=55): 1276 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,75,a,b,185,a),rewrite([11,12,13,10])]. given #1354 (W,wt=55): 1277 P([0,1,1,0,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,69,a,b,185,a),rewrite([13,11,12,10])]. given #1355 (W,wt=55): 1278 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,185,a),rewrite([13,12,11,10])]. given #1356 (W,wt=55): 1279 P([0,0,1,0,0,0,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,185,a),rewrite([13,12,11,10])]. given #1357 (W,wt=55): 1280 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,185,a),rewrite([13,12,11,10])]. given #1358 (W,wt=55): 1281 P([0,0,1,0,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,44,a,b,185,a),rewrite([13,12,11,10])]. given #1359 (W,wt=55): 1282 P([0,1,1,0,0,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,42,a,b,185,a),rewrite([13,11,12,10])]. given #1360 (W,wt=55): 1283 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,41,a,b,185,a),rewrite([11,12,13,10])]. given #1361 (W,wt=55): 1284 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,39,a,b,185,a),rewrite([11,12,13,10])]. given #1362 (W,wt=55): 1285 P([0,0,1,0,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,185,a),rewrite([13,12,11,10])]. given #1363 (W,wt=55): 1286 P([0,0,1,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,185,a),rewrite([13,12,11,10])]. given #1364 (W,wt=55): 1287 P([0,0,1,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,185,a),rewrite([13,12,11,10])]. given #1365 (W,wt=55): 1288 P([1,1,1,0,1,1,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,25,a,b,185,a),rewrite([11,12,13,10])]. given #1366 (W,wt=55): 1289 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,185,a),rewrite([13,11,12,10])]. given #1367 (W,wt=55): 1290 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,185,a),rewrite([13,12,11,10])]. given #1368 (W,wt=55): 1291 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,104,a,b,186,a),rewrite([12,11,13,10])]. given #1369 (W,wt=55): 1292 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,100,a,b,186,a),rewrite([12,13,11,10])]. given #1370 (W,wt=55): 1293 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,79,a,b,186,a),rewrite([12,13,11,10])]. given #1371 (W,wt=55): 1294 P([1,0,0,0,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,75,a,b,186,a),rewrite([6,7,5])]. given #1372 (W,wt=55): 1295 P([1,0,0,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,67,a,b,186,a),rewrite([6,7,5])]. given #1373 (W,wt=55): 1296 P([1,0,0,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,41,a,b,186,a),rewrite([6,7,5])]. given #1374 (W,wt=55): 1297 P([1,0,0,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,39,a,b,186,a),rewrite([6,7,5])]. given #1375 (W,wt=55): 1298 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,25,a,b,186,a),rewrite([6,7,5])]. given #1376 (W,wt=55): 1299 P([0,0,0,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,73,a,b,203,a),rewrite([13,11,12,10])]. given #1377 (W,wt=55): 1300 P([0,1,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,64,a,b,203,a),rewrite([13,11,12,10])]. given #1378 (W,wt=55): 1301 P([0,0,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,37,a,b,203,a),rewrite([13,11,12,10])]. given #1379 (W,wt=55): 1302 P([0,1,0,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,36,a,b,203,a),rewrite([13,11,12,10])]. given #1380 (W,wt=55): 1303 P([1,1,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,24,a,b,203,a),rewrite([11,12,13,10])]. given #1381 (W,wt=55): 1304 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,93,a,b,203,a),rewrite([8,6,7,5])]. given #1382 (W,wt=55): 1305 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,89,a,b,203,a),rewrite([8,6,7,5])]. given #1383 (W,wt=55): 1306 P([0,0,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,203,a),rewrite([8,6,7,5])]. given #1384 (W,wt=55): 1307 P([0,1,1,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,169,a,b,204,a),rewrite([7,6,5])]. given #1385 (W,wt=55): 1308 P([0,1,0,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,94,a,b,204,a),rewrite([7,6,5])]. given #1386 (W,wt=55): 1309 P([0,1,1,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,93,a,b,204,a),rewrite([7,6,5])]. given #1387 (W,wt=55): 1310 P([0,1,0,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,92,a,b,204,a),rewrite([7,6,5])]. given #1388 (W,wt=55): 1311 P([0,0,1,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,90,a,b,204,a),rewrite([7,6,5])]. given #1389 (W,wt=55): 1312 P([0,1,1,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,89,a,b,204,a),rewrite([7,6,5])]. given #1390 (W,wt=55): 1313 P([0,0,1,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,88,a,b,204,a),rewrite([7,6,5])]. given #1391 (W,wt=55): 1314 P([1,1,1,0,0,0,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,72,a,b,204,a),rewrite([6,7,5])]. given #1392 (W,wt=55): 1315 P([0,1,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,64,a,b,204,a),rewrite([7,6,5])]. given #1393 (W,wt=55): 1316 P([0,0,1,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,204,a),rewrite([7,6,5])]. given #1394 (W,wt=55): 1317 P([1,1,1,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,62,a,b,204,a),rewrite([6,7,5])]. given #1395 (W,wt=55): 1318 P([0,1,0,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,204,a),rewrite([7,6,5])]. given #1396 (W,wt=55): 1319 P([0,1,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,204,a),rewrite([7,6,5])]. given #1397 (W,wt=55): 1320 P([0,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,37,a,b,204,a),rewrite([7,6,5])]. given #1398 (W,wt=55): 1321 P([0,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,36,a,b,204,a),rewrite([7,6,5])]. given #1399 (W,wt=55): 1322 P([1,1,1,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,34,a,b,204,a),rewrite([6,7,5])]. given #1400 (W,wt=55): 1323 P([1,1,1,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,33,a,b,204,a),rewrite([6,7,5])]. given #1401 (W,wt=55): 1324 P([0,1,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,30,a,b,204,a),rewrite([7,6,5])]. given #1402 (W,wt=55): 1325 P([0,1,1,0,0,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,29,a,b,204,a),rewrite([7,6,5])]. given #1403 (W,wt=55): 1326 P([0,0,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,26,a,b,204,a),rewrite([7,6,5])]. given #1404 (W,wt=55): 1327 P([1,1,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,24,a,b,204,a),rewrite([6,7,5])]. given #1405 (W,wt=55): 1328 P([0,1,0,0,0,1,0,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,22,a,b,204,a),rewrite([7,6,5])]. given #1406 (W,wt=55): 1329 P([0,0,1,0,0,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,21,a,b,204,a),rewrite([7,6,5])]. given #1407 (W,wt=55): 1330 P([0,0,1,1,0,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,76,a,b,220,a),rewrite([13,12,11,10])]. given #1408 (W,wt=55): 1331 P([0,1,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,69,a,b,220,a),rewrite([13,11,12,10])]. given #1409 (W,wt=55): 1332 P([0,0,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,44,a,b,220,a),rewrite([13,12,11,10])]. given #1410 (W,wt=55): 1333 P([0,1,1,1,0,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,42,a,b,220,a),rewrite([13,11,12,10])]. given #1411 (W,wt=55): 1334 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,25,a,b,220,a),rewrite([11,12,13,10])]. given #1412 (W,wt=55): 1335 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,103,a,b,220,a),rewrite([8,6,7,5])]. given #1413 (W,wt=55): 1336 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,99,a,b,220,a),rewrite([8,6,7,5])]. given #1414 (W,wt=55): 1337 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,220,a),rewrite([8,7,6,5])]. given #1415 (W,wt=55): 1338 P([0,1,0,0,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,187,a,b,221,a),rewrite([7,6,5])]. given #1416 (W,wt=55): 1339 P([0,1,0,0,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,104,a,b,221,a),rewrite([7,6,5])]. given #1417 (W,wt=55): 1340 P([0,1,0,0,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,103,a,b,221,a),rewrite([7,6,5])]. given #1418 (W,wt=55): 1341 P([0,1,0,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,102,a,b,221,a),rewrite([7,6,5])]. given #1419 (W,wt=55): 1342 P([0,0,0,0,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,100,a,b,221,a),rewrite([7,6,5])]. given #1420 (W,wt=55): 1343 P([0,1,0,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,99,a,b,221,a),rewrite([7,6,5])]. given #1421 (W,wt=55): 1344 P([0,0,0,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,98,a,b,221,a),rewrite([7,6,5])]. given #1422 (W,wt=55): 1345 P([1,1,0,0,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,75,a,b,221,a),rewrite([6,7,5])]. given #1423 (W,wt=55): 1346 P([0,1,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,69,a,b,221,a),rewrite([7,6,5])]. given #1424 (W,wt=55): 1347 P([0,0,0,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,221,a),rewrite([7,6,5])]. given #1425 (W,wt=55): 1348 P([1,1,0,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,67,a,b,221,a),rewrite([6,7,5])]. given #1426 (W,wt=55): 1349 P([0,1,0,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,221,a),rewrite([7,6,5])]. given #1427 (W,wt=55): 1350 P([0,1,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,221,a),rewrite([7,6,5])]. given #1428 (W,wt=55): 1351 P([0,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,44,a,b,221,a),rewrite([7,6,5])]. given #1429 (W,wt=55): 1352 P([0,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,42,a,b,221,a),rewrite([7,6,5])]. given #1430 (W,wt=55): 1353 P([1,1,0,0,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,41,a,b,221,a),rewrite([6,7,5])]. given #1431 (W,wt=55): 1354 P([1,1,0,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,39,a,b,221,a),rewrite([6,7,5])]. given #1432 (W,wt=55): 1355 P([0,1,0,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,30,a,b,221,a),rewrite([7,6,5])]. given #1433 (W,wt=55): 1356 P([0,1,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,29,a,b,221,a),rewrite([7,6,5])]. given #1434 (W,wt=55): 1357 P([0,0,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,26,a,b,221,a),rewrite([7,6,5])]. given #1435 (W,wt=55): 1358 P([1,1,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,25,a,b,221,a),rewrite([6,7,5])]. given #1436 (W,wt=55): 1359 P([0,1,0,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,22,a,b,221,a),rewrite([7,6,5])]. given #1437 (W,wt=55): 1360 P([0,0,0,0,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,20,a,b,221,a),rewrite([7,6,5])]. given #1438 (W,wt=55): 1361 P([1,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,169,a,b,360,a),rewrite([12,11,13,10])]. given #1439 (W,wt=55): 1362 P([1,1,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,94,a,b,360,a),rewrite([12,11,13,10])]. given #1440 (W,wt=55): 1363 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,360,a),rewrite([12,13,11,10])]. given #1441 (W,wt=55): 1364 P([1,1,0,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,73,a,b,360,a),rewrite([12,13,11,10])]. given #1442 (W,wt=55): 1365 P([1,1,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,360,a),rewrite([12,13,11,10])]. given #1443 (W,wt=55): 1366 P([1,1,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,64,a,b,360,a),rewrite([12,11,13,10])]. given #1444 (W,wt=55): 1367 P([1,1,0,0,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,360,a),rewrite([12,13,11,10])]. given #1445 (W,wt=55): 1368 P([0,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,169,a,b,360,a),rewrite([7,6,8,5])]. given #1446 (W,wt=55): 1369 P([0,1,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,93,a,b,360,a),rewrite([7,6,8,5])]. given #1447 (W,wt=55): 1370 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,79,a,b,360,a),rewrite([7,8,6,5])]. given #1448 (W,wt=55): 1371 P([1,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,72,a,b,360,a),rewrite([6,7,8,5])]. given #1449 (W,wt=55): 1372 P([0,0,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,360,a),rewrite([7,8,6,5])]. given #1450 (W,wt=55): 1373 P([1,1,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,62,a,b,360,a),rewrite([6,7,5])]. given #1451 (W,wt=55): 1374 P([0,1,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,360,a),rewrite([7,6,5])]. given #1452 (W,wt=55): 1375 P([1,1,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,169,a,b,361,a),rewrite([12,11,13,10])]. given #1453 (W,wt=55): 1376 P([1,1,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,94,a,b,361,a),rewrite([12,11,13,10])]. given #1454 (W,wt=55): 1377 P([1,0,1,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,90,a,b,361,a),rewrite([12,13,11,10])]. given #1455 (W,wt=55): 1378 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,88,a,b,361,a),rewrite([12,13,11,10])]. given #1456 (W,wt=55): 1379 P([1,0,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,361,a),rewrite([12,13,11,10])]. given #1457 (W,wt=55): 1380 P([1,0,0,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,73,a,b,361,a),rewrite([12,13,11,10])]. given #1458 (W,wt=55): 1381 P([1,0,0,1,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,361,a),rewrite([12,13,11,10])]. given #1459 (W,wt=55): 1382 P([1,0,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,361,a),rewrite([12,13,11,10])]. given #1460 (W,wt=55): 1383 P([1,1,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,64,a,b,361,a),rewrite([12,11,13,10])]. given #1461 (W,wt=55): 1384 P([1,0,0,0,1,0,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,361,a),rewrite([12,13,11,10])]. given #1462 (W,wt=55): 1385 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,58,a,b,361,a),rewrite([12,11,13,10])]. given #1463 (W,wt=55): 1386 P([1,0,1,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,37,a,b,361,a),rewrite([12,13,11,10])]. given #1464 (W,wt=55): 1387 P([1,1,0,1,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,36,a,b,361,a),rewrite([12,11,13,10])]. given #1465 (W,wt=55): 1388 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,93,a,b,361,a),rewrite([7,6,8,5])]. given #1466 (W,wt=55): 1389 P([1,0,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,72,a,b,361,a),rewrite([6,7,8,5])]. given #1467 (W,wt=55): 1390 P([0,0,0,0,1,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,361,a),rewrite([7,8,6,5])]. given #1468 (W,wt=55): 1391 P([1,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,62,a,b,361,a),rewrite([6,7,5])]. given #1469 (W,wt=55): 1392 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,94,a,b,362,a),rewrite([12,11,13,10])]. given #1470 (W,wt=55): 1393 P([1,1,0,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,73,a,b,362,a),rewrite([12,13,11,10])]. given #1471 (W,wt=55): 1394 P([1,1,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,362,a),rewrite([12,13,11,10])]. given #1472 (W,wt=55): 1395 P([1,1,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,64,a,b,362,a),rewrite([12,11,13,10])]. given #1473 (W,wt=55): 1396 P([0,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,169,a,b,362,a),rewrite([7,6,5])]. given #1474 (W,wt=55): 1397 P([0,1,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,93,a,b,362,a),rewrite([7,6,5])]. given #1475 (W,wt=55): 1398 P([0,1,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,89,a,b,362,a),rewrite([7,6,5])]. given #1476 (W,wt=55): 1399 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,88,a,b,362,a),rewrite([7,6,5])]. given #1477 (W,wt=55): 1400 P([0,0,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,362,a),rewrite([7,8,6,5])]. given #1478 (W,wt=55): 1401 P([1,1,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,72,a,b,362,a),rewrite([6,7,5])]. given #1479 (W,wt=55): 1402 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,70,a,b,362,a),rewrite([7,8,6,5])]. given #1480 (W,wt=55): 1403 P([0,0,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,362,a),rewrite([7,8,6,5])]. given #1481 (W,wt=55): 1404 P([1,1,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,62,a,b,362,a),rewrite([6,7,5])]. given #1482 (W,wt=55): 1405 P([0,1,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,362,a),rewrite([7,6,8,5])]. given #1483 (W,wt=55): 1406 P([0,1,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,362,a),rewrite([7,6,5])]. given #1484 (W,wt=55): 1407 P([1,1,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,34,a,b,362,a),rewrite([6,7,5])]. given #1485 (W,wt=55): 1408 P([1,1,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,33,a,b,362,a),rewrite([6,7,5])]. given #1486 (W,wt=55): 1409 P([1,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,169,a,b,363,a),rewrite([12,11,13,10])]. given #1487 (W,wt=55): 1410 P([1,0,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,90,a,b,363,a),rewrite([12,13,11,10])]. given #1488 (W,wt=55): 1411 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,363,a),rewrite([12,13,11,10])]. given #1489 (W,wt=55): 1412 P([1,0,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,73,a,b,363,a),rewrite([12,13,11,10])]. given #1490 (W,wt=55): 1413 P([1,0,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,363,a),rewrite([12,13,11,10])]. given #1491 (W,wt=55): 1414 P([1,1,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,64,a,b,363,a),rewrite([12,11,13,10])]. given #1492 (W,wt=55): 1415 P([1,0,1,0,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,363,a),rewrite([12,13,11,10])]. given #1493 (W,wt=55): 1416 P([0,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,169,a,b,363,a),rewrite([7,6,8,5])]. given #1494 (W,wt=55): 1417 P([0,0,1,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,89,a,b,363,a),rewrite([7,6,8,5])]. given #1495 (W,wt=55): 1418 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,79,a,b,363,a),rewrite([7,8,6,5])]. given #1496 (W,wt=55): 1419 P([1,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,72,a,b,363,a),rewrite([6,7,8,5])]. given #1497 (W,wt=55): 1420 P([0,0,0,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,363,a),rewrite([7,8,6,5])]. given #1498 (W,wt=55): 1421 P([1,0,1,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,62,a,b,363,a),rewrite([6,7,5])]. given #1499 (W,wt=55): 1422 P([0,0,1,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,363,a),rewrite([7,6,5])]. given #1500 (W,wt=55): 1423 P([1,1,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,169,a,b,364,a),rewrite([12,11,13,10])]. given #1501 (W,wt=55): 1424 P([1,1,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,94,a,b,364,a),rewrite([12,11,13,10])]. given #1502 (W,wt=55): 1425 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,92,a,b,364,a),rewrite([12,11,13,10])]. given #1503 (W,wt=55): 1426 P([1,0,1,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,90,a,b,364,a),rewrite([12,13,11,10])]. given #1504 (W,wt=55): 1427 P([1,0,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,364,a),rewrite([12,13,11,10])]. given #1505 (W,wt=55): 1428 P([1,0,0,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,73,a,b,364,a),rewrite([12,13,11,10])]. given #1506 (W,wt=55): 1429 P([1,0,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,364,a),rewrite([12,13,11,10])]. given #1507 (W,wt=55): 1430 P([1,1,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,64,a,b,364,a),rewrite([12,11,13,10])]. given #1508 (W,wt=55): 1431 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,63,a,b,364,a),rewrite([12,13,11,10])]. given #1509 (W,wt=55): 1432 P([1,0,0,0,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,364,a),rewrite([12,13,11,10])]. given #1510 (W,wt=55): 1433 P([1,0,0,1,1,1,0,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,364,a),rewrite([12,13,11,10])]. given #1511 (W,wt=55): 1434 P([1,0,1,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,37,a,b,364,a),rewrite([12,13,11,10])]. given #1512 (W,wt=55): 1435 P([1,1,0,1,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,36,a,b,364,a),rewrite([12,11,13,10])]. given #1513 (W,wt=55): 1436 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,89,a,b,364,a),rewrite([7,6,8,5])]. given #1514 (W,wt=55): 1437 P([1,0,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,72,a,b,364,a),rewrite([6,7,8,5])]. given #1515 (W,wt=55): 1438 P([0,0,0,0,1,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,364,a),rewrite([7,8,6,5])]. given #1516 (W,wt=55): 1439 P([1,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,62,a,b,364,a),rewrite([6,7,5])]. given #1517 (W,wt=55): 1440 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,90,a,b,365,a),rewrite([12,13,11,10])]. given #1518 (W,wt=55): 1441 P([1,0,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,73,a,b,365,a),rewrite([12,13,11,10])]. given #1519 (W,wt=55): 1442 P([1,0,1,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,365,a),rewrite([12,13,11,10])]. given #1520 (W,wt=55): 1443 P([1,1,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,64,a,b,365,a),rewrite([12,11,13,10])]. given #1521 (W,wt=55): 1444 P([0,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,169,a,b,365,a),rewrite([7,6,5])]. given #1522 (W,wt=55): 1445 P([0,0,1,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,93,a,b,365,a),rewrite([7,6,5])]. given #1523 (W,wt=55): 1446 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,92,a,b,365,a),rewrite([7,6,5])]. given #1524 (W,wt=55): 1447 P([0,0,1,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,89,a,b,365,a),rewrite([7,6,5])]. given #1525 (W,wt=55): 1448 P([0,0,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,365,a),rewrite([7,8,6,5])]. given #1526 (W,wt=55): 1449 P([1,0,1,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,72,a,b,365,a),rewrite([6,7,5])]. given #1527 (W,wt=55): 1450 P([0,0,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,365,a),rewrite([7,8,6,5])]. given #1528 (W,wt=55): 1451 P([0,0,1,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,365,a),rewrite([7,8,6,5])]. given #1529 (W,wt=55): 1452 P([1,0,1,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,62,a,b,365,a),rewrite([6,7,5])]. given #1530 (W,wt=55): 1453 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,55,a,b,365,a),rewrite([7,8,6,5])]. given #1531 (W,wt=55): 1454 P([0,0,1,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,365,a),rewrite([7,6,5])]. given #1532 (W,wt=55): 1455 P([1,0,1,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,34,a,b,365,a),rewrite([6,7,5])]. given #1533 (W,wt=55): 1456 P([1,0,1,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,33,a,b,365,a),rewrite([6,7,5])]. given #1534 (W,wt=55): 1457 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,187,a,b,366,a),rewrite([12,11,13,10])]. given #1535 (W,wt=55): 1458 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,104,a,b,366,a),rewrite([12,11,13,10])]. given #1536 (W,wt=55): 1459 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,366,a),rewrite([12,11,13,10])]. given #1537 (W,wt=55): 1460 P([1,1,1,0,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,76,a,b,366,a),rewrite([12,13,11,10])]. given #1538 (W,wt=55): 1461 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,366,a),rewrite([12,11,13,10])]. given #1539 (W,wt=55): 1462 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,69,a,b,366,a),rewrite([12,11,13,10])]. given #1540 (W,wt=55): 1463 P([1,1,1,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,366,a),rewrite([12,13,11,10])]. given #1541 (W,wt=55): 1464 P([0,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,187,a,b,366,a),rewrite([7,6,8,5])]. given #1542 (W,wt=55): 1465 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,103,a,b,366,a),rewrite([7,6,8,5])]. given #1543 (W,wt=55): 1466 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,366,a),rewrite([7,6,8,5])]. given #1544 (W,wt=55): 1467 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,75,a,b,366,a),rewrite([6,7,8,5])]. given #1545 (W,wt=55): 1468 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,67,a,b,366,a),rewrite([6,7,5])]. given #1546 (W,wt=55): 1469 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,63,a,b,366,a),rewrite([7,6,8,5])]. given #1547 (W,wt=55): 1470 P([0,1,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,53,a,b,366,a),rewrite([7,6,5])]. given #1548 (W,wt=55): 1471 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,187,a,b,367,a),rewrite([12,11,13,10])]. given #1549 (W,wt=55): 1472 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,104,a,b,367,a),rewrite([12,11,13,10])]. given #1550 (W,wt=55): 1473 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,100,a,b,367,a),rewrite([12,13,11,10])]. given #1551 (W,wt=55): 1474 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,98,a,b,367,a),rewrite([12,13,11,10])]. given #1552 (W,wt=55): 1475 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,367,a),rewrite([12,13,11,10])]. given #1553 (W,wt=55): 1476 P([1,0,1,0,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,76,a,b,367,a),rewrite([12,13,11,10])]. given #1554 (W,wt=55): 1477 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,367,a),rewrite([12,13,11,10])]. given #1555 (W,wt=55): 1478 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,69,a,b,367,a),rewrite([12,11,13,10])]. given #1556 (W,wt=55): 1479 P([1,0,1,0,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,367,a),rewrite([12,13,11,10])]. given #1557 (W,wt=55): 1480 P([1,0,1,0,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,367,a),rewrite([12,13,11,10])]. given #1558 (W,wt=55): 1481 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,367,a),rewrite([12,11,13,10])]. given #1559 (W,wt=55): 1482 P([1,0,1,0,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,44,a,b,367,a),rewrite([12,13,11,10])]. given #1560 (W,wt=55): 1483 P([1,1,1,0,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,42,a,b,367,a),rewrite([12,11,13,10])]. given #1561 (W,wt=55): 1484 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,103,a,b,367,a),rewrite([7,6,8,5])]. given #1562 (W,wt=55): 1485 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,75,a,b,367,a),rewrite([6,7,8,5])]. given #1563 (W,wt=55): 1486 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,67,a,b,367,a),rewrite([6,7,5])]. given #1564 (W,wt=55): 1487 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,63,a,b,367,a),rewrite([7,8,6,5])]. given #1565 (W,wt=55): 1488 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,104,a,b,368,a),rewrite([12,11,13,10])]. given #1566 (W,wt=55): 1489 P([1,1,1,1,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,76,a,b,368,a),rewrite([12,13,11,10])]. given #1567 (W,wt=55): 1490 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,368,a),rewrite([12,11,13,10])]. given #1568 (W,wt=55): 1491 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,69,a,b,368,a),rewrite([12,11,13,10])]. given #1569 (W,wt=55): 1492 P([0,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,187,a,b,368,a),rewrite([7,6,5])]. given #1570 (W,wt=55): 1493 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,103,a,b,368,a),rewrite([7,6,5])]. given #1571 (W,wt=55): 1494 P([0,1,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,99,a,b,368,a),rewrite([7,6,5])]. given #1572 (W,wt=55): 1495 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,98,a,b,368,a),rewrite([7,6,5])]. given #1573 (W,wt=55): 1496 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,368,a),rewrite([7,6,8,5])]. given #1574 (W,wt=55): 1497 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,75,a,b,368,a),rewrite([6,7,5])]. given #1575 (W,wt=55): 1498 P([1,1,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,67,a,b,368,a),rewrite([6,7,5])]. given #1576 (W,wt=55): 1499 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,65,a,b,368,a),rewrite([7,8,6,5])]. given #1577 (W,wt=55): 1500 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,63,a,b,368,a),rewrite([7,6,8,5])]. given #1578 (W,wt=55): 1501 P([0,1,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,368,a),rewrite([7,6,8,5])]. given #1579 (W,wt=55): 1502 P([0,1,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,53,a,b,368,a),rewrite([7,6,5])]. given #1580 (W,wt=55): 1503 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,41,a,b,368,a),rewrite([6,7,5])]. given #1581 (W,wt=55): 1504 P([1,1,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,39,a,b,368,a),rewrite([6,7,5])]. given #1582 (W,wt=55): 1505 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,187,a,b,369,a),rewrite([12,11,13,10])]. given #1583 (W,wt=55): 1506 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,100,a,b,369,a),rewrite([12,13,11,10])]. given #1584 (W,wt=55): 1507 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,369,a),rewrite([12,13,11,10])]. given #1585 (W,wt=55): 1508 P([1,0,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,76,a,b,369,a),rewrite([12,13,11,10])]. given #1586 (W,wt=55): 1509 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,369,a),rewrite([12,13,11,10])]. given #1587 (W,wt=55): 1510 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,69,a,b,369,a),rewrite([12,11,13,10])]. given #1588 (W,wt=55): 1511 P([1,0,1,1,1,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,369,a),rewrite([12,13,11,10])]. given #1589 (W,wt=55): 1512 P([0,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,187,a,b,369,a),rewrite([7,6,8,5])]. given #1590 (W,wt=55): 1513 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,99,a,b,369,a),rewrite([7,6,8,5])]. given #1591 (W,wt=55): 1514 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,369,a),rewrite([7,8,6,5])]. given #1592 (W,wt=55): 1515 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,75,a,b,369,a),rewrite([6,7,8,5])]. given #1593 (W,wt=55): 1516 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,67,a,b,369,a),rewrite([6,7,5])]. given #1594 (W,wt=55): 1517 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,63,a,b,369,a),rewrite([7,8,6,5])]. given #1595 (W,wt=55): 1518 P([0,0,1,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,369,a),rewrite([7,6,5])]. given #1596 (W,wt=55): 1519 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,187,a,b,370,a),rewrite([12,11,13,10])]. given #1597 (W,wt=55): 1520 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,104,a,b,370,a),rewrite([12,11,13,10])]. given #1598 (W,wt=55): 1521 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,102,a,b,370,a),rewrite([12,11,13,10])]. given #1599 (W,wt=55): 1522 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,100,a,b,370,a),rewrite([12,13,11,10])]. given #1600 (W,wt=55): 1523 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,370,a),rewrite([12,13,11,10])]. given #1601 (W,wt=55): 1524 P([1,0,1,1,0,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,76,a,b,370,a),rewrite([12,13,11,10])]. given #1602 (W,wt=55): 1525 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,370,a),rewrite([12,13,11,10])]. given #1603 (W,wt=55): 1526 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,69,a,b,370,a),rewrite([12,11,13,10])]. given #1604 (W,wt=55): 1527 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,370,a),rewrite([12,13,11,10])]. given #1605 (W,wt=55): 1528 P([1,0,1,1,0,0,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,370,a),rewrite([12,13,11,10])]. given #1606 (W,wt=55): 1529 P([1,0,1,1,0,1,0,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,370,a),rewrite([12,13,11,10])]. given #1607 (W,wt=55): 1530 P([1,0,1,1,1,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,44,a,b,370,a),rewrite([12,13,11,10])]. given #1608 (W,wt=55): 1531 P([1,1,1,1,0,1,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,42,a,b,370,a),rewrite([12,11,13,10])]. given #1609 (W,wt=55): 1532 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,99,a,b,370,a),rewrite([7,6,8,5])]. given #1610 (W,wt=55): 1533 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,75,a,b,370,a),rewrite([6,7,8,5])]. given #1611 (W,wt=55): 1534 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,67,a,b,370,a),rewrite([6,7,5])]. given #1612 (W,wt=55): 1535 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,63,a,b,370,a),rewrite([7,8,6,5])]. given #1613 (W,wt=55): 1536 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,100,a,b,371,a),rewrite([12,13,11,10])]. given #1614 (W,wt=55): 1537 P([1,0,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,76,a,b,371,a),rewrite([12,13,11,10])]. given #1615 (W,wt=55): 1538 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,371,a),rewrite([12,13,11,10])]. given #1616 (W,wt=55): 1539 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,69,a,b,371,a),rewrite([12,11,13,10])]. given #1617 (W,wt=55): 1540 P([0,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,187,a,b,371,a),rewrite([7,6,5])]. given #1618 (W,wt=55): 1541 P([0,0,0,0,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,103,a,b,371,a),rewrite([7,6,5])]. given #1619 (W,wt=55): 1542 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,102,a,b,371,a),rewrite([7,6,5])]. given #1620 (W,wt=55): 1543 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,99,a,b,371,a),rewrite([7,6,5])]. given #1621 (W,wt=55): 1544 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,371,a),rewrite([7,8,6,5])]. given #1622 (W,wt=55): 1545 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,75,a,b,371,a),rewrite([6,7,5])]. given #1623 (W,wt=55): 1546 P([0,0,0,1,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,371,a),rewrite([7,8,6,5])]. given #1624 (W,wt=55): 1547 P([1,0,0,1,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,67,a,b,371,a),rewrite([6,7,5])]. given #1625 (W,wt=55): 1548 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,63,a,b,371,a),rewrite([7,8,6,5])]. given #1626 (W,wt=55): 1549 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,55,a,b,371,a),rewrite([7,8,6,5])]. given #1627 (W,wt=55): 1550 P([0,0,1,1,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,371,a),rewrite([7,6,5])]. given #1628 (W,wt=55): 1551 P([1,0,0,0,1,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,41,a,b,371,a),rewrite([6,7,5])]. given #1629 (W,wt=55): 1552 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,39,a,b,371,a),rewrite([6,7,5])]. given #1630 (W,wt=55): 1553 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,134,a,b,372,a),rewrite([12,11,13,10])]. given #1631 (W,wt=55): 1554 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,114,a,b,372,a),rewrite([12,11,13,10])]. given #1632 (W,wt=55): 1555 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,372,a),rewrite([12,11,13,10])]. given #1633 (W,wt=55): 1556 P([1,1,1,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,372,a),rewrite([12,13,11,10])]. given #1634 (W,wt=55): 1557 P([1,1,1,0,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,59,a,b,372,a),rewrite([12,13,11,10])]. given #1635 (W,wt=55): 1558 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,372,a),rewrite([12,11,13,10])]. given #1636 (W,wt=55): 1559 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,54,a,b,372,a),rewrite([12,11,13,10])]. given #1637 (W,wt=55): 1560 P([0,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,134,a,b,372,a),rewrite([7,6,8,5])]. given #1638 (W,wt=55): 1561 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,113,a,b,372,a),rewrite([7,6,8,5])]. given #1639 (W,wt=55): 1562 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,372,a),rewrite([7,6,8,5])]. given #1640 (W,wt=55): 1563 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,58,a,b,372,a),rewrite([7,6,8,5])]. given #1641 (W,wt=55): 1564 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,57,a,b,372,a),rewrite([6,7,8,5])]. given #1642 (W,wt=55): 1565 P([0,1,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,53,a,b,372,a),rewrite([7,6,5])]. given #1643 (W,wt=55): 1566 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,52,a,b,372,a),rewrite([6,7,5])]. given #1644 (W,wt=55): 1567 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,134,a,b,373,a),rewrite([12,11,13,10])]. given #1645 (W,wt=55): 1568 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,114,a,b,373,a),rewrite([12,11,13,10])]. given #1646 (W,wt=55): 1569 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,110,a,b,373,a),rewrite([12,13,11,10])]. given #1647 (W,wt=55): 1570 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,108,a,b,373,a),rewrite([12,13,11,10])]. given #1648 (W,wt=55): 1571 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,373,a),rewrite([12,13,11,10])]. given #1649 (W,wt=55): 1572 P([1,1,0,0,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,373,a),rewrite([12,13,11,10])]. given #1650 (W,wt=55): 1573 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,373,a),rewrite([12,11,13,10])]. given #1651 (W,wt=55): 1574 P([1,1,0,0,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,373,a),rewrite([12,13,11,10])]. given #1652 (W,wt=55): 1575 P([1,1,0,0,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,59,a,b,373,a),rewrite([12,13,11,10])]. given #1653 (W,wt=55): 1576 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,373,a),rewrite([12,13,11,10])]. given #1654 (W,wt=55): 1577 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,54,a,b,373,a),rewrite([12,11,13,10])]. given #1655 (W,wt=55): 1578 P([1,1,0,0,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,50,a,b,373,a),rewrite([12,13,11,10])]. given #1656 (W,wt=55): 1579 P([1,1,1,0,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,49,a,b,373,a),rewrite([12,11,13,10])]. given #1657 (W,wt=55): 1580 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,113,a,b,373,a),rewrite([7,6,8,5])]. given #1658 (W,wt=55): 1581 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,58,a,b,373,a),rewrite([7,6,8,5])]. given #1659 (W,wt=55): 1582 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,57,a,b,373,a),rewrite([6,7,8,5])]. given #1660 (W,wt=55): 1583 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,52,a,b,373,a),rewrite([6,7,5])]. given #1661 (W,wt=55): 1584 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,114,a,b,374,a),rewrite([12,11,13,10])]. given #1662 (W,wt=55): 1585 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,374,a),rewrite([12,13,11,10])]. given #1663 (W,wt=55): 1586 P([1,1,1,1,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,59,a,b,374,a),rewrite([12,13,11,10])]. given #1664 (W,wt=55): 1587 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,54,a,b,374,a),rewrite([12,11,13,10])]. given #1665 (W,wt=55): 1588 P([0,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,134,a,b,374,a),rewrite([7,6,5])]. given #1666 (W,wt=55): 1589 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,113,a,b,374,a),rewrite([7,6,5])]. given #1667 (W,wt=55): 1590 P([0,0,1,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,109,a,b,374,a),rewrite([7,6,5])]. given #1668 (W,wt=55): 1591 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,108,a,b,374,a),rewrite([7,6,5])]. given #1669 (W,wt=55): 1592 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,374,a),rewrite([7,6,8,5])]. given #1670 (W,wt=55): 1593 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,65,a,b,374,a),rewrite([7,8,6,5])]. given #1671 (W,wt=55): 1594 P([0,0,1,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,374,a),rewrite([7,6,8,5])]. given #1672 (W,wt=55): 1595 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,58,a,b,374,a),rewrite([7,6,8,5])]. given #1673 (W,wt=55): 1596 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,57,a,b,374,a),rewrite([6,7,5])]. given #1674 (W,wt=55): 1597 P([0,1,1,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,53,a,b,374,a),rewrite([7,6,5])]. given #1675 (W,wt=55): 1598 P([1,0,1,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,52,a,b,374,a),rewrite([6,7,5])]. given #1676 (W,wt=55): 1599 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,47,a,b,374,a),rewrite([6,7,5])]. given #1677 (W,wt=55): 1600 P([1,0,1,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,46,a,b,374,a),rewrite([6,7,5])]. given #1678 (W,wt=55): 1601 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,134,a,b,375,a),rewrite([12,11,13,10])]. given #1679 (W,wt=55): 1602 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,110,a,b,375,a),rewrite([12,13,11,10])]. given #1680 (W,wt=55): 1603 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,375,a),rewrite([12,13,11,10])]. given #1681 (W,wt=55): 1604 P([1,1,0,1,1,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,375,a),rewrite([12,13,11,10])]. given #1682 (W,wt=55): 1605 P([1,1,0,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,59,a,b,375,a),rewrite([12,13,11,10])]. given #1683 (W,wt=55): 1606 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,375,a),rewrite([12,13,11,10])]. given #1684 (W,wt=55): 1607 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,54,a,b,375,a),rewrite([12,11,13,10])]. given #1685 (W,wt=55): 1608 P([0,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,134,a,b,375,a),rewrite([7,6,8,5])]. given #1686 (W,wt=55): 1609 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,109,a,b,375,a),rewrite([7,6,8,5])]. given #1687 (W,wt=55): 1610 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,375,a),rewrite([7,8,6,5])]. given #1688 (W,wt=55): 1611 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,58,a,b,375,a),rewrite([7,6,8,5])]. given #1689 (W,wt=55): 1612 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,57,a,b,375,a),rewrite([6,7,8,5])]. given #1690 (W,wt=55): 1613 P([0,1,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,375,a),rewrite([7,6,5])]. given #1691 (W,wt=55): 1614 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,52,a,b,375,a),rewrite([6,7,5])]. given #1692 (W,wt=55): 1615 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,134,a,b,376,a),rewrite([12,11,13,10])]. given #1693 (W,wt=55): 1616 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,114,a,b,376,a),rewrite([12,11,13,10])]. given #1694 (W,wt=55): 1617 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,112,a,b,376,a),rewrite([12,11,13,10])]. given #1695 (W,wt=55): 1618 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,110,a,b,376,a),rewrite([12,13,11,10])]. given #1696 (W,wt=55): 1619 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,376,a),rewrite([12,13,11,10])]. given #1697 (W,wt=55): 1620 P([1,1,0,1,0,0,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,376,a),rewrite([12,13,11,10])]. given #1698 (W,wt=55): 1621 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,376,a),rewrite([12,13,11,10])]. given #1699 (W,wt=55): 1622 P([1,1,0,1,0,0,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,376,a),rewrite([12,13,11,10])]. given #1700 (W,wt=55): 1623 P([1,1,0,1,0,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,59,a,b,376,a),rewrite([12,13,11,10])]. given #1701 (W,wt=55): 1624 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,376,a),rewrite([12,13,11,10])]. given #1702 (W,wt=55): 1625 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,54,a,b,376,a),rewrite([12,11,13,10])]. given #1703 (W,wt=55): 1626 P([1,1,0,1,1,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,50,a,b,376,a),rewrite([12,13,11,10])]. given #1704 (W,wt=55): 1627 P([1,1,1,1,0,0,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,49,a,b,376,a),rewrite([12,11,13,10])]. given #1705 (W,wt=55): 1628 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,109,a,b,376,a),rewrite([7,6,8,5])]. given #1706 (W,wt=55): 1629 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,58,a,b,376,a),rewrite([7,6,8,5])]. given #1707 (W,wt=55): 1630 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,57,a,b,376,a),rewrite([6,7,8,5])]. given #1708 (W,wt=55): 1631 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,52,a,b,376,a),rewrite([6,7,5])]. given #1709 (W,wt=55): 1632 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,110,a,b,377,a),rewrite([12,13,11,10])]. given #1710 (W,wt=55): 1633 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,377,a),rewrite([12,13,11,10])]. given #1711 (W,wt=55): 1634 P([1,1,0,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,59,a,b,377,a),rewrite([12,13,11,10])]. given #1712 (W,wt=55): 1635 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,54,a,b,377,a),rewrite([12,11,13,10])]. given #1713 (W,wt=55): 1636 P([0,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,134,a,b,377,a),rewrite([7,6,5])]. given #1714 (W,wt=55): 1637 P([0,0,0,0,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,113,a,b,377,a),rewrite([7,6,5])]. given #1715 (W,wt=55): 1638 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,112,a,b,377,a),rewrite([7,6,5])]. given #1716 (W,wt=55): 1639 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,109,a,b,377,a),rewrite([7,6,5])]. given #1717 (W,wt=55): 1640 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,377,a),rewrite([7,8,6,5])]. given #1718 (W,wt=55): 1641 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,70,a,b,377,a),rewrite([7,8,6,5])]. given #1719 (W,wt=55): 1642 P([0,0,0,1,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,377,a),rewrite([7,8,6,5])]. given #1720 (W,wt=55): 1643 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,58,a,b,377,a),rewrite([7,6,8,5])]. given #1721 (W,wt=55): 1644 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,57,a,b,377,a),rewrite([6,7,5])]. given #1722 (W,wt=55): 1645 P([0,1,0,1,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,377,a),rewrite([7,6,5])]. given #1723 (W,wt=55): 1646 P([1,0,0,1,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,52,a,b,377,a),rewrite([6,7,5])]. given #1724 (W,wt=55): 1647 P([1,0,0,0,1,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,47,a,b,377,a),rewrite([6,7,5])]. given #1725 (W,wt=55): 1648 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,46,a,b,377,a),rewrite([6,7,5])]. given #1726 (W,wt=55): 1649 P([0,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,397,a,b,378,a),rewrite([13,11,12,10])]. given #1727 (W,wt=55): 1650 P([0,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,395,a,b,378,a),rewrite([13,11,12,10])]. given #1728 (W,wt=55): 1651 P([0,1,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,393,a,b,378,a),rewrite([13,11,12,10])]. given #1729 (W,wt=55): 1652 P([0,1,1,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,388,a,b,378,a),rewrite([13,11,12,10])]. given #1730 (W,wt=55): 1653 P([0,1,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,385,a,b,378,a),rewrite([13,11,12,10])]. given #1731 (W,wt=55): 1654 P([0,1,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,381,a,b,378,a),rewrite([13,11,12,10])]. given #1732 (W,wt=55): 1655 P([0,1,1,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,131,a,b,378,a),rewrite([13,11,12,10])]. given #1733 (W,wt=55): 1656 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,129,a,b,378,a),rewrite([11,12,13,10])]. given #1734 (W,wt=55): 1657 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,128,a,b,378,a),rewrite([11,12,13,10])]. given #1735 (W,wt=55): 1658 P([1,1,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,127,a,b,378,a),rewrite([11,12,13,10])]. given #1736 (W,wt=55): 1659 P([1,1,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,126,a,b,378,a),rewrite([11,12,13,10])]. given #1737 (W,wt=55): 1660 P([1,1,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,125,a,b,378,a),rewrite([11,12,13,10])]. given #1738 (W,wt=55): 1661 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,123,a,b,378,a),rewrite([11,12,13,10])]. given #1739 (W,wt=55): 1662 P([1,1,1,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,122,a,b,378,a),rewrite([11,12,13,10])]. given #1740 (W,wt=55): 1663 P([0,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,378,a),rewrite([13,12,11,10])]. given #1741 (W,wt=55): 1664 P([0,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,378,a),rewrite([13,12,11,10])]. given #1742 (W,wt=55): 1665 P([0,0,1,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,378,a),rewrite([13,12,11,10])]. given #1743 (W,wt=55): 1666 P([0,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,378,a),rewrite([13,12,11,10])]. given #1744 (W,wt=55): 1667 P([1,1,1,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,51,a,b,378,a),rewrite([11,12,13,10])]. given #1745 (W,wt=55): 1668 P([0,0,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,378,a),rewrite([13,12,11,10])]. given #1746 (W,wt=55): 1669 P([0,0,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,378,a),rewrite([13,12,11,10])]. given #1747 (W,wt=55): 1670 P([0,0,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,378,a),rewrite([13,12,11,10])]. given #1748 (W,wt=55): 1671 P([0,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,378,a),rewrite([13,11,12,10])]. given #1749 (W,wt=55): 1672 P([0,0,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(2,a,397,a,b,378,a),rewrite([8,6,7,5])]. given #1750 (W,wt=55): 1673 P([0,0,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(2,a,395,a,b,378,a),rewrite([8,6,7,5])]. given #1751 (W,wt=55): 1674 P([0,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,397,a,b,379,a),rewrite([13,11,12,10])]. given #1752 (W,wt=55): 1675 P([0,1,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,388,a,b,379,a),rewrite([13,11,12,10])]. given #1753 (W,wt=55): 1676 P([0,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,381,a,b,379,a),rewrite([13,11,12,10])]. given #1754 (W,wt=55): 1677 P([0,1,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,131,a,b,379,a),rewrite([13,11,12,10])]. given #1755 (W,wt=55): 1678 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,129,a,b,379,a),rewrite([11,12,13,10])]. given #1756 (W,wt=55): 1679 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,126,a,b,379,a),rewrite([11,12,13,10])]. given #1757 (W,wt=55): 1680 P([1,1,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,125,a,b,379,a),rewrite([11,12,13,10])]. given #1758 (W,wt=55): 1681 P([0,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,379,a),rewrite([13,12,11,10])]. given #1759 (W,wt=55): 1682 P([0,0,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,379,a),rewrite([13,12,11,10])]. given #1760 (W,wt=55): 1683 P([0,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,379,a),rewrite([13,12,11,10])]. given #1761 (W,wt=55): 1684 P([1,1,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(3,a,51,a,b,379,a),rewrite([11,12,13,10])]. given #1762 (W,wt=0): 9883 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(2,a,129,a,b,1684,a),rewrite([6,7,8,5])]. given #1763 (W,wt=55): 1685 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(2,a,397,a,b,379,a),rewrite([8,6,7,5])]. given #1764 (W,wt=55): 1686 P([0,0,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(2,a,395,a,b,379,a),rewrite([8,6,7,5])]. given #1765 (W,wt=55): 1687 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,379,a),rewrite([8,6,7,5])]. given #1766 (W,wt=55): 1688 P([0,0,1,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,1,1]:x]). [hyper(2,a,121,a,b,379,a),rewrite([6,7,5])]. given #1767 (W,wt=55): 1689 P([0,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,397,a,b,382,a),rewrite([13,11,12,10])]. given #1768 (W,wt=55): 1690 P([0,1,1,0,0,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,393,a,b,382,a),rewrite([13,11,12,10])]. given #1769 (W,wt=55): 1691 P([0,1,1,0,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,388,a,b,382,a),rewrite([13,11,12,10])]. given #1770 (W,wt=55): 1692 P([0,1,1,0,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,385,a,b,382,a),rewrite([13,11,12,10])]. given #1771 (W,wt=55): 1693 P([0,1,1,0,0,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,384,a,b,382,a),rewrite([13,11,12,10])]. given #1772 (W,wt=55): 1694 P([0,1,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,381,a,b,382,a),rewrite([13,11,12,10])]. given #1773 (W,wt=55): 1695 P([0,1,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,131,a,b,382,a),rewrite([13,11,12,10])]. given #1774 (W,wt=55): 1696 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,129,a,b,382,a),rewrite([11,12,13,10])]. given #1775 (W,wt=55): 1697 P([1,1,1,0,0,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,127,a,b,382,a),rewrite([11,12,13,10])]. given #1776 (W,wt=55): 1698 P([1,1,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,126,a,b,382,a),rewrite([11,12,13,10])]. given #1777 (W,wt=55): 1699 P([1,1,1,0,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,125,a,b,382,a),rewrite([11,12,13,10])]. given #1778 (W,wt=55): 1700 P([1,1,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,123,a,b,382,a),rewrite([11,12,13,10])]. given #1779 (W,wt=55): 1701 P([1,1,1,0,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,122,a,b,382,a),rewrite([11,12,13,10])]. given #1780 (W,wt=55): 1702 P([1,1,1,0,0,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,120,a,b,382,a),rewrite([11,12,13,10])]. given #1781 (W,wt=55): 1703 P([0,0,1,0,0,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,382,a),rewrite([13,12,11,10])]. given #1782 (W,wt=55): 1704 P([0,0,1,0,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,382,a),rewrite([13,12,11,10])]. given #1783 (W,wt=55): 1705 P([0,0,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,382,a),rewrite([13,12,11,10])]. given #1784 (W,wt=55): 1706 P([1,1,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,51,a,b,382,a),rewrite([11,12,13,10])]. given #1785 (W,wt=55): 1707 P([0,0,1,0,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,382,a),rewrite([13,12,11,10])]. given #1786 (W,wt=55): 1708 P([0,0,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,382,a),rewrite([13,12,11,10])]. given #1787 (W,wt=55): 1709 P([0,0,1,0,0,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,382,a),rewrite([13,12,11,10])]. given #1788 (W,wt=55): 1710 P([0,1,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,382,a),rewrite([13,11,12,10])]. given #1789 (W,wt=55): 1711 P([0,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,382,a),rewrite([13,12,11,10])]. given #1790 (W,wt=55): 1712 P([0,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,395,a,b,383,a),rewrite([13,11,12,10])]. given #1791 (W,wt=55): 1713 P([0,1,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,388,a,b,383,a),rewrite([13,11,12,10])]. given #1792 (W,wt=55): 1714 P([0,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,385,a,b,383,a),rewrite([13,11,12,10])]. given #1793 (W,wt=55): 1715 P([0,1,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,131,a,b,383,a),rewrite([13,11,12,10])]. given #1794 (W,wt=55): 1716 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,128,a,b,383,a),rewrite([11,12,13,10])]. given #1795 (W,wt=55): 1717 P([1,1,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,126,a,b,383,a),rewrite([11,12,13,10])]. given #1796 (W,wt=55): 1718 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,125,a,b,383,a),rewrite([11,12,13,10])]. given #1797 (W,wt=55): 1719 P([0,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,383,a),rewrite([13,12,11,10])]. given #1798 (W,wt=55): 1720 P([0,0,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,383,a),rewrite([13,12,11,10])]. given #1799 (W,wt=55): 1721 P([0,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,383,a),rewrite([13,12,11,10])]. given #1800 (W,wt=55): 1722 P([1,1,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(3,a,51,a,b,383,a),rewrite([11,12,13,10])]. given #1801 (W,wt=0): 9916 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(2,a,128,a,b,1722,a),rewrite([6,7,8,5])]. given #1802 (W,wt=55): 1723 P([0,0,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(2,a,397,a,b,383,a),rewrite([8,6,7,5])]. given #1803 (W,wt=55): 1724 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(2,a,395,a,b,383,a),rewrite([8,6,7,5])]. given #1804 (W,wt=55): 1725 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(2,a,381,a,b,383,a),rewrite([8,6,7,5])]. given #1805 (W,wt=55): 1726 P([0,0,0,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,1,1]:x]). [hyper(2,a,119,a,b,383,a),rewrite([6,7,5])]. given #1806 (W,wt=55): 1727 P([0,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,395,a,b,386,a),rewrite([13,11,12,10])]. given #1807 (W,wt=55): 1728 P([0,1,0,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,393,a,b,386,a),rewrite([13,11,12,10])]. given #1808 (W,wt=55): 1729 P([0,1,0,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,388,a,b,386,a),rewrite([13,11,12,10])]. given #1809 (W,wt=55): 1730 P([0,1,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,385,a,b,386,a),rewrite([13,11,12,10])]. given #1810 (W,wt=55): 1731 P([0,1,0,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,381,a,b,386,a),rewrite([13,11,12,10])]. given #1811 (W,wt=55): 1732 P([0,1,0,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,380,a,b,386,a),rewrite([13,11,12,10])]. given #1812 (W,wt=55): 1733 P([0,1,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,131,a,b,386,a),rewrite([13,11,12,10])]. given #1813 (W,wt=55): 1734 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,128,a,b,386,a),rewrite([11,12,13,10])]. given #1814 (W,wt=55): 1735 P([1,1,0,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,127,a,b,386,a),rewrite([11,13,12,10])]. given #1815 (W,wt=55): 1736 P([1,1,0,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,126,a,b,386,a),rewrite([11,13,12,10])]. given #1816 (W,wt=55): 1737 P([1,1,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,125,a,b,386,a),rewrite([11,13,12,10])]. given #1817 (W,wt=55): 1738 P([1,1,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,123,a,b,386,a),rewrite([11,13,12,10])]. given #1818 (W,wt=55): 1739 P([1,1,0,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,122,a,b,386,a),rewrite([11,13,12,10])]. given #1819 (W,wt=55): 1740 P([1,1,0,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,118,a,b,386,a),rewrite([11,13,12,10])]. given #1820 (W,wt=55): 1741 P([0,0,0,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,386,a),rewrite([13,11,12,10])]. given #1821 (W,wt=55): 1742 P([0,0,0,0,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,386,a),rewrite([13,12,11,10])]. given #1822 (W,wt=55): 1743 P([0,0,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,386,a),rewrite([13,11,12,10])]. given #1823 (W,wt=55): 1744 P([1,1,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,51,a,b,386,a),rewrite([11,13,12,10])]. given #1824 (W,wt=55): 1745 P([0,0,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,386,a),rewrite([13,12,11,10])]. given #1825 (W,wt=55): 1746 P([0,0,0,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,386,a),rewrite([13,11,12,10])]. given #1826 (W,wt=55): 1747 P([0,0,0,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,386,a),rewrite([13,12,11,10])]. given #1827 (W,wt=55): 1748 P([0,1,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,386,a),rewrite([13,11,12,10])]. given #1828 (W,wt=55): 1749 P([0,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,386,a),rewrite([13,11,12,10])]. given #1829 (W,wt=55): 1750 P([0,1,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(3,a,131,a,b,387,a),rewrite([13,11,12,10])]. given #1830 (W,wt=55): 1751 P([1,1,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(3,a,51,a,b,387,a),rewrite([11,12,13,10])]. given #1831 (W,wt=55): 1752 P([0,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,397,a,b,387,a),rewrite([8,6,7,5])]. given #1832 (W,wt=55): 1753 P([0,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,395,a,b,387,a),rewrite([8,6,7,5])]. given #1833 (W,wt=55): 1754 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,393,a,b,387,a),rewrite([8,6,7,5])]. given #1834 (W,wt=55): 1755 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,385,a,b,387,a),rewrite([8,6,7,5])]. given #1835 (W,wt=55): 1756 P([0,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,384,a,b,387,a),rewrite([8,6,7,5])]. given #1836 (W,wt=55): 1757 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,381,a,b,387,a),rewrite([8,6,7,5])]. given #1837 (W,wt=55): 1758 P([0,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,380,a,b,387,a),rewrite([8,6,7,5])]. given #1838 (W,wt=55): 1759 P([0,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,123,a,b,387,a),rewrite([6,7,5])]. given #1839 (W,wt=55): 1760 P([0,0,1,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,121,a,b,387,a),rewrite([6,7,5])]. given #1840 (W,wt=55): 1761 P([0,0,0,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,119,a,b,387,a),rewrite([6,7,5])]. given #1841 (W,wt=55): 1762 P([0,0,0,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,0,1]:x]). [hyper(2,a,117,a,b,387,a),rewrite([6,7,5])]. given #1842 (W,wt=55): 1763 P([0,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,397,a,b,389,a),rewrite([13,11,12,10])]. given #1843 (W,wt=55): 1764 P([0,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,395,a,b,389,a),rewrite([13,11,12,10])]. given #1844 (W,wt=55): 1765 P([0,1,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,393,a,b,389,a),rewrite([13,11,12,10])]. given #1845 (W,wt=55): 1766 P([0,1,1,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,131,a,b,389,a),rewrite([13,11,12,10])]. given #1846 (W,wt=55): 1767 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,129,a,b,389,a),rewrite([11,12,13,10])]. given #1847 (W,wt=55): 1768 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,128,a,b,389,a),rewrite([11,12,13,10])]. given #1848 (W,wt=55): 1769 P([1,1,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,127,a,b,389,a),rewrite([11,12,13,10])]. given #1849 (W,wt=55): 1770 P([0,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,389,a),rewrite([13,12,11,10])]. given #1850 (W,wt=55): 1771 P([0,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,389,a),rewrite([13,12,11,10])]. given #1851 (W,wt=55): 1772 P([0,0,1,0,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,389,a),rewrite([13,12,11,10])]. given #1852 (W,wt=55): 1773 P([1,1,1,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,51,a,b,389,a),rewrite([11,12,13,10])]. given #1853 (W,wt=55): 1774 P([0,0,0,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,397,a,b,389,a),rewrite([8,6,7,5])]. given #1854 (W,wt=55): 1775 P([0,0,1,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,395,a,b,389,a),rewrite([8,6,7,5])]. given #1855 (W,wt=55): 1776 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,393,a,b,389,a),rewrite([8,6,7,5])]. given #1856 (W,wt=55): 1777 P([0,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(3,a,395,a,b,390,a),rewrite([13,11,12,10])]. given #1857 (W,wt=55): 1778 P([0,1,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(3,a,131,a,b,390,a),rewrite([13,11,12,10])]. given #1858 (W,wt=55): 1779 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(3,a,128,a,b,390,a),rewrite([11,12,13,10])]. given #1859 (W,wt=55): 1780 P([0,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,390,a),rewrite([13,12,11,10])]. given #1860 (W,wt=55): 1781 P([1,1,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(3,a,51,a,b,390,a),rewrite([11,12,13,10])]. given #1861 (W,wt=55): 1782 P([0,0,0,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,397,a,b,390,a),rewrite([8,6,7,5])]. given #1862 (W,wt=55): 1783 P([0,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,395,a,b,390,a),rewrite([8,6,7,5])]. given #1863 (W,wt=55): 1784 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,393,a,b,390,a),rewrite([8,6,7,5])]. given #1864 (W,wt=55): 1785 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,381,a,b,390,a),rewrite([8,6,7,5])]. given #1865 (W,wt=55): 1786 P([0,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,380,a,b,390,a),rewrite([8,6,7,5])]. given #1866 (W,wt=55): 1787 P([0,0,0,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,1,0,1]:x]). [hyper(2,a,119,a,b,390,a),rewrite([6,7,5])]. given #1867 (W,wt=55): 1788 P([0,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(3,a,397,a,b,391,a),rewrite([13,11,12,10])]. given #1868 (W,wt=55): 1789 P([0,1,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(3,a,131,a,b,391,a),rewrite([13,11,12,10])]. given #1869 (W,wt=55): 1790 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(3,a,129,a,b,391,a),rewrite([11,12,13,10])]. given #1870 (W,wt=55): 1791 P([0,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,391,a),rewrite([13,12,11,10])]. given #1871 (W,wt=55): 1792 P([1,1,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(3,a,51,a,b,391,a),rewrite([11,12,13,10])]. given #1872 (W,wt=55): 1793 P([0,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,397,a,b,391,a),rewrite([8,6,7,5])]. given #1873 (W,wt=55): 1794 P([0,0,1,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,395,a,b,391,a),rewrite([8,6,7,5])]. given #1874 (W,wt=55): 1795 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,393,a,b,391,a),rewrite([8,6,7,5])]. given #1875 (W,wt=55): 1796 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,385,a,b,391,a),rewrite([8,6,7,5])]. given #1876 (W,wt=55): 1797 P([0,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,384,a,b,391,a),rewrite([8,6,7,5])]. given #1877 (W,wt=55): 1798 P([0,0,1,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[1,1,0,1,0,0,0,1]:x]). [hyper(2,a,121,a,b,391,a),rewrite([6,7,5])]. given #1878 (W,wt=55): 1799 P([0,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(3,a,388,a,b,392,a),rewrite([13,11,12,10])]. given #1879 (W,wt=55): 1800 P([0,1,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(3,a,131,a,b,392,a),rewrite([13,11,12,10])]. given #1880 (W,wt=55): 1801 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(3,a,126,a,b,392,a),rewrite([11,12,13,10])]. given #1881 (W,wt=55): 1802 P([0,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,392,a),rewrite([13,12,11,10])]. given #1882 (W,wt=55): 1803 P([1,1,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(3,a,51,a,b,392,a),rewrite([11,12,13,10])]. given #1883 (W,wt=0): 10014 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,129,a,b,1803,a),rewrite([6,7,5])]. given #1884 (W,wt=0): 10015 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,128,a,b,1803,a),rewrite([6,7,5])]. given #1885 (W,wt=55): 1804 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,397,a,b,392,a),rewrite([8,6,7,5])]. given #1886 (W,wt=55): 1805 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,395,a,b,392,a),rewrite([8,6,7,5])]. given #1887 (W,wt=55): 1806 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,385,a,b,392,a),rewrite([8,6,7,5])]. given #1888 (W,wt=55): 1807 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,381,a,b,392,a),rewrite([8,6,7,5])]. given #1889 (W,wt=55): 1808 P([0,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,123,a,b,392,a),rewrite([6,7,8,5])]. given #1890 (W,wt=55): 1809 P([0,0,1,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,121,a,b,392,a),rewrite([6,7,5])]. given #1891 (W,wt=55): 1810 P([0,0,0,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,0,0,1,1]:x]). [hyper(2,a,119,a,b,392,a),rewrite([6,7,5])]. given #1892 (W,wt=55): 1811 P([0,1,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,388,a,b,394,a),rewrite([13,11,12,10])]. given #1893 (W,wt=55): 1812 P([0,1,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,381,a,b,394,a),rewrite([13,11,12,10])]. given #1894 (W,wt=55): 1813 P([0,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,131,a,b,394,a),rewrite([13,11,12,10])]. given #1895 (W,wt=55): 1814 P([1,1,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,126,a,b,394,a),rewrite([11,13,12,10])]. given #1896 (W,wt=55): 1815 P([1,1,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,125,a,b,394,a),rewrite([11,13,12,10])]. given #1897 (W,wt=55): 1816 P([0,0,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,394,a),rewrite([13,12,11,10])]. given #1898 (W,wt=55): 1817 P([0,0,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,394,a),rewrite([13,11,12,10])]. given #1899 (W,wt=55): 1819 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,394,a),rewrite([8,6,7,5])]. given #1900 (W,wt=55): 1820 P([0,1,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,1818,a),rewrite([7,6,8,5])]. given #1901 (W,wt=55): 1821 P([1,1,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(2,a,125,a,b,1818,a),rewrite([6,8,7,5])]. given #1902 (W,wt=55): 1822 P([0,1,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,388,a,b,396,a),rewrite([13,11,12,10])]. given #1903 (W,wt=55): 1823 P([0,1,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,385,a,b,396,a),rewrite([13,11,12,10])]. given #1904 (W,wt=55): 1824 P([0,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,131,a,b,396,a),rewrite([13,11,12,10])]. given #1905 (W,wt=55): 1825 P([1,1,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,126,a,b,396,a),rewrite([11,12,13,10])]. given #1906 (W,wt=55): 1826 P([1,1,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,125,a,b,396,a),rewrite([11,12,13,10])]. given #1907 (W,wt=55): 1827 P([0,0,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,396,a),rewrite([13,12,11,10])]. given #1908 (W,wt=55): 1828 P([0,0,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,396,a),rewrite([13,12,11,10])]. given #1909 (W,wt=55): 1830 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(2,a,381,a,b,396,a),rewrite([8,6,7,5])]. given #1910 (W,wt=55): 1831 P([0,1,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(2,a,381,a,b,1829,a),rewrite([7,6,8,5])]. given #1911 (W,wt=55): 1832 P([1,1,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(2,a,126,a,b,1829,a),rewrite([6,7,8,5])]. given #1912 (W,wt=55): 1833 P([1,0,0,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,129,a,b,398,a),rewrite([6,7,5])]. given #1913 (W,wt=55): 1834 P([1,0,1,1,0,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,128,a,b,398,a),rewrite([6,7,5])]. given #1914 (W,wt=55): 1835 P([1,0,0,0,0,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,127,a,b,398,a),rewrite([6,7,5])]. given #1915 (W,wt=55): 1836 P([1,0,0,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,126,a,b,398,a),rewrite([6,7,5])]. given #1916 (W,wt=55): 1837 P([1,0,0,0,0,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,125,a,b,398,a),rewrite([6,7,5])]. given #1917 (W,wt=55): 1838 P([1,0,0,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,123,a,b,398,a),rewrite([6,7,5])]. given #1918 (W,wt=55): 1839 P([1,0,0,0,0,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,122,a,b,398,a),rewrite([6,7,5])]. given #1919 (W,wt=55): 1840 P([1,0,1,1,0,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,121,a,b,398,a),rewrite([6,7,5])]. given #1920 (W,wt=55): 1841 P([1,0,0,0,0,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,120,a,b,398,a),rewrite([6,7,5])]. given #1921 (W,wt=55): 1842 P([1,0,0,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,119,a,b,398,a),rewrite([6,7,5])]. given #1922 (W,wt=55): 1843 P([1,0,0,1,0,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,118,a,b,398,a),rewrite([6,7,5])]. given #1923 (W,wt=55): 1844 P([1,0,0,1,0,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,117,a,b,398,a),rewrite([6,7,5])]. given #1924 (W,wt=55): 1845 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,51,a,b,398,a),rewrite([6,7,5])]. given #1925 (W,wt=55): 1846 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,114,a,b,399,a),rewrite([12,11,13,10])]. given #1926 (W,wt=55): 1847 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,110,a,b,399,a),rewrite([12,13,11,10])]. given #1927 (W,wt=55): 1848 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,79,a,b,399,a),rewrite([12,13,11,10])]. given #1928 (W,wt=55): 1849 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,399,a),rewrite([12,13,11,10])]. given #1929 (W,wt=55): 1850 P([1,1,0,1,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,59,a,b,399,a),rewrite([12,13,11,10])]. given #1930 (W,wt=55): 1851 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,54,a,b,399,a),rewrite([12,11,13,10])]. given #1931 (W,wt=55): 1852 P([1,1,0,1,1,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,50,a,b,399,a),rewrite([12,13,11,10])]. given #1932 (W,wt=55): 1853 P([1,1,1,1,0,1,1,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,49,a,b,399,a),rewrite([12,11,13,10])]. given #1933 (W,wt=55): 1854 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,113,a,b,399,a),rewrite([7,6,5])]. given #1934 (W,wt=55): 1855 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,109,a,b,399,a),rewrite([7,6,5])]. given #1935 (W,wt=55): 1856 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,399,a),rewrite([7,8,6,5])]. given #1936 (W,wt=55): 1857 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,58,a,b,399,a),rewrite([7,6,8,5])]. given #1937 (W,wt=55): 1858 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,57,a,b,399,a),rewrite([6,7,5])]. given #1938 (W,wt=55): 1859 P([1,0,0,1,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,52,a,b,399,a),rewrite([6,7,5])]. given #1939 (W,wt=55): 1860 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,47,a,b,399,a),rewrite([6,7,5])]. given #1940 (W,wt=55): 1861 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,46,a,b,399,a),rewrite([6,7,5])]. given #1941 (W,wt=55): 1862 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,149,a,b,400,a),rewrite([13,11,12,10])]. given #1942 (W,wt=55): 1863 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,148,a,b,400,a),rewrite([13,11,12,10])]. given #1943 (W,wt=55): 1864 P([0,0,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,147,a,b,400,a),rewrite([13,11,12,10])]. given #1944 (W,wt=55): 1865 P([0,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,146,a,b,400,a),rewrite([13,11,12,10])]. given #1945 (W,wt=55): 1866 P([0,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,145,a,b,400,a),rewrite([13,11,12,10])]. given #1946 (W,wt=55): 1867 P([0,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,144,a,b,400,a),rewrite([13,11,12,10])]. given #1947 (W,wt=55): 1868 P([0,1,0,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,143,a,b,400,a),rewrite([13,11,12,10])]. given #1948 (W,wt=55): 1869 P([0,0,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,141,a,b,400,a),rewrite([13,11,12,10])]. given #1949 (W,wt=55): 1870 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,140,a,b,400,a),rewrite([13,11,12,10])]. given #1950 (W,wt=55): 1871 P([0,0,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,139,a,b,400,a),rewrite([13,11,12,10])]. given #1951 (W,wt=55): 1872 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,138,a,b,400,a),rewrite([13,11,12,10])]. given #1952 (W,wt=55): 1873 P([0,0,0,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,137,a,b,400,a),rewrite([13,11,12,10])]. given #1953 (W,wt=55): 1874 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,56,a,b,400,a),rewrite([11,12,13,10])]. given #1954 (W,wt=55): 1875 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(3,a,408,a,b,409,a),rewrite([12,13,11,10])]. given #1955 (W,wt=55): 1876 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(3,a,407,a,b,409,a),rewrite([12,11,13,10])]. given #1956 (W,wt=55): 1877 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,408,a,b,409,a),rewrite([7,8,6,5])]. given #1957 (W,wt=55): 1878 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,407,a,b,409,a),rewrite([7,6,8,5])]. given #1958 (W,wt=55): 1879 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,406,a,b,409,a),rewrite([7,6,5])]. given #1959 (W,wt=55): 1880 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,405,a,b,409,a),rewrite([7,6,5])]. given #1960 (W,wt=55): 1881 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,404,a,b,409,a),rewrite([7,6,5])]. given #1961 (W,wt=55): 1882 P([0,1,1,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,403,a,b,409,a),rewrite([7,6,5])]. given #1962 (W,wt=55): 1883 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,149,a,b,409,a),rewrite([7,8,6,5])]. given #1963 (W,wt=55): 1884 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,148,a,b,409,a),rewrite([7,6,8,5])]. given #1964 (W,wt=55): 1885 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,147,a,b,409,a),rewrite([7,6,5])]. given #1965 (W,wt=55): 1886 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,146,a,b,409,a),rewrite([7,6,5])]. given #1966 (W,wt=55): 1887 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,145,a,b,409,a),rewrite([7,6,5])]. given #1967 (W,wt=55): 1888 P([0,1,1,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,144,a,b,409,a),rewrite([7,6,5])]. given #1968 (W,wt=55): 1889 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,143,a,b,409,a),rewrite([7,6,5])]. given #1969 (W,wt=55): 1890 P([1,1,1,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,136,a,b,409,a),rewrite([6,7,5])]. given #1970 (W,wt=55): 1891 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,409,a),rewrite([7,6,5])]. given #1971 (W,wt=55): 1892 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,63,a,b,409,a),rewrite([7,6,5])]. given #1972 (W,wt=55): 1893 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,58,a,b,409,a),rewrite([7,6,5])]. given #1973 (W,wt=55): 1894 P([1,1,1,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,56,a,b,409,a),rewrite([6,7,5])]. given #1974 (W,wt=55): 1895 P([0,1,1,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,53,a,b,409,a),rewrite([7,6,5])]. given #1975 (W,wt=55): 1896 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,30,a,b,409,a),rewrite([7,6,5])]. given #1976 (W,wt=55): 1897 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,29,a,b,409,a),rewrite([7,6,5])]. given #1977 (W,wt=55): 1898 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,26,a,b,409,a),rewrite([7,6,5])]. given #1978 (W,wt=55): 1899 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,22,a,b,409,a),rewrite([7,6,5])]. given #1979 (W,wt=55): 1900 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,407,a,b,410,a),rewrite([7,6,5])]. given #1980 (W,wt=55): 1901 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,406,a,b,410,a),rewrite([7,6,5])]. given #1981 (W,wt=55): 1902 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,405,a,b,410,a),rewrite([7,6,5])]. given #1982 (W,wt=55): 1903 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,404,a,b,410,a),rewrite([7,6,5])]. given #1983 (W,wt=55): 1904 P([0,1,1,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,403,a,b,410,a),rewrite([7,6,5])]. given #1984 (W,wt=55): 1905 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,402,a,b,410,a),rewrite([7,6,5])]. given #1985 (W,wt=55): 1906 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,148,a,b,410,a),rewrite([7,6,5])]. given #1986 (W,wt=55): 1907 P([0,0,1,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,147,a,b,410,a),rewrite([7,6,5])]. given #1987 (W,wt=55): 1908 P([0,1,1,0,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,146,a,b,410,a),rewrite([7,6,5])]. given #1988 (W,wt=55): 1909 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,145,a,b,410,a),rewrite([7,6,5])]. given #1989 (W,wt=55): 1910 P([0,1,1,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,144,a,b,410,a),rewrite([7,6,5])]. given #1990 (W,wt=55): 1911 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,143,a,b,410,a),rewrite([7,6,5])]. given #1991 (W,wt=55): 1912 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,141,a,b,410,a),rewrite([7,6,5])]. given #1992 (W,wt=55): 1913 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,136,a,b,410,a),rewrite([6,7,5])]. given #1993 (W,wt=55): 1914 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,410,a),rewrite([7,6,5])]. given #1994 (W,wt=55): 1915 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,410,a),rewrite([7,6,5])]. given #1995 (W,wt=55): 1916 P([1,1,1,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,56,a,b,410,a),rewrite([6,7,5])]. given #1996 (W,wt=55): 1917 P([0,1,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,410,a),rewrite([7,6,5])]. given #1997 (W,wt=55): 1918 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,30,a,b,410,a),rewrite([7,6,5])]. given #1998 (W,wt=55): 1919 P([0,1,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,29,a,b,410,a),rewrite([7,6,5])]. given #1999 (W,wt=55): 1920 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,26,a,b,410,a),rewrite([7,6,5])]. given #2000 (W,wt=55): 1921 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,22,a,b,410,a),rewrite([7,6,5])]. given #2001 (W,wt=55): 1922 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,21,a,b,410,a),rewrite([7,6,5])]. given #2002 (W,wt=55): 1923 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(3,a,408,a,b,411,a),rewrite([12,13,11,10])]. given #2003 (W,wt=55): 1924 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(3,a,407,a,b,411,a),rewrite([12,11,13,10])]. given #2004 (W,wt=0): 10134 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,1924,a),rewrite([6,7,5])]. given #2005 (W,wt=55): 1925 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(3,a,405,a,b,411,a),rewrite([12,11,13,10])]. given #2006 (W,wt=55): 1926 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(3,a,140,a,b,411,a),rewrite([12,13,11,10])]. given #2007 (W,wt=55): 1927 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,407,a,b,411,a),rewrite([7,6,8,5])]. given #2008 (W,wt=55): 1928 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,405,a,b,411,a),rewrite([7,6,8,5])]. given #2009 (W,wt=55): 1929 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,404,a,b,411,a),rewrite([7,6,5])]. given #2010 (W,wt=55): 1930 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,148,a,b,411,a),rewrite([7,6,8,5])]. given #2011 (W,wt=55): 1931 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,146,a,b,411,a),rewrite([7,6,8,5])]. given #2012 (W,wt=55): 1932 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,145,a,b,411,a),rewrite([7,6,5])]. given #2013 (W,wt=55): 1933 P([1,1,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,136,a,b,411,a),rewrite([6,7,5])]. given #2014 (W,wt=55): 1934 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,63,a,b,411,a),rewrite([7,6,8,5])]. given #2015 (W,wt=55): 1935 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,58,a,b,411,a),rewrite([7,6,8,5])]. given #2016 (W,wt=55): 1936 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,411,a),rewrite([6,7,5])]. given #2017 (W,wt=55): 1937 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,0]:x]). [hyper(2,a,53,a,b,411,a),rewrite([7,6,5])]. given #2018 (W,wt=55): 1938 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,408,a,b,412,a),rewrite([7,6,5])]. given #2019 (W,wt=55): 1939 P([0,0,1,1,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,406,a,b,412,a),rewrite([7,6,5])]. given #2020 (W,wt=55): 1940 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,405,a,b,412,a),rewrite([7,6,5])]. given #2021 (W,wt=55): 1941 P([0,1,0,1,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,404,a,b,412,a),rewrite([7,6,5])]. given #2022 (W,wt=55): 1942 P([0,1,1,1,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,403,a,b,412,a),rewrite([7,6,5])]. given #2023 (W,wt=55): 1943 P([0,0,0,1,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,401,a,b,412,a),rewrite([7,6,5])]. given #2024 (W,wt=55): 1944 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,149,a,b,412,a),rewrite([7,6,5])]. given #2025 (W,wt=55): 1945 P([0,0,1,1,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,147,a,b,412,a),rewrite([7,6,5])]. given #2026 (W,wt=55): 1946 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,146,a,b,412,a),rewrite([7,6,5])]. given #2027 (W,wt=55): 1947 P([0,1,0,1,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,145,a,b,412,a),rewrite([7,6,5])]. given #2028 (W,wt=55): 1948 P([0,1,1,1,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,144,a,b,412,a),rewrite([7,6,5])]. given #2029 (W,wt=55): 1949 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,143,a,b,412,a),rewrite([7,6,5])]. given #2030 (W,wt=55): 1950 P([0,0,0,1,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,139,a,b,412,a),rewrite([7,6,5])]. given #2031 (W,wt=55): 1951 P([1,1,1,1,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,136,a,b,412,a),rewrite([6,7,5])]. given #2032 (W,wt=55): 1952 P([0,0,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,412,a),rewrite([7,6,5])]. given #2033 (W,wt=55): 1953 P([0,1,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,412,a),rewrite([7,6,5])]. given #2034 (W,wt=55): 1954 P([1,1,1,1,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,56,a,b,412,a),rewrite([6,7,5])]. given #2035 (W,wt=55): 1955 P([0,1,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,412,a),rewrite([7,6,5])]. given #2036 (W,wt=55): 1956 P([0,1,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,30,a,b,412,a),rewrite([7,6,5])]. given #2037 (W,wt=55): 1957 P([0,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,29,a,b,412,a),rewrite([7,6,5])]. given #2038 (W,wt=55): 1958 P([0,0,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,26,a,b,412,a),rewrite([7,6,5])]. given #2039 (W,wt=55): 1959 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,22,a,b,412,a),rewrite([7,6,5])]. given #2040 (W,wt=55): 1960 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,20,a,b,412,a),rewrite([7,6,5])]. given #2041 (W,wt=55): 1961 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(3,a,408,a,b,413,a),rewrite([12,13,11,10])]. given #2042 (W,wt=0): 10146 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,56,a,b,1961,a),rewrite([6,7,5])]. given #2043 (W,wt=55): 1962 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(3,a,407,a,b,413,a),rewrite([12,11,13,10])]. given #2044 (W,wt=55): 1963 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(3,a,404,a,b,413,a),rewrite([12,11,13,10])]. given #2045 (W,wt=55): 1964 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(3,a,138,a,b,413,a),rewrite([12,13,11,10])]. given #2046 (W,wt=55): 1965 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,408,a,b,413,a),rewrite([7,8,6,5])]. given #2047 (W,wt=55): 1966 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,405,a,b,413,a),rewrite([7,6,5])]. given #2048 (W,wt=55): 1967 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,404,a,b,413,a),rewrite([7,6,8,5])]. given #2049 (W,wt=55): 1968 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,149,a,b,413,a),rewrite([7,8,6,5])]. given #2050 (W,wt=55): 1969 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,146,a,b,413,a),rewrite([7,6,5])]. given #2051 (W,wt=55): 1970 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,145,a,b,413,a),rewrite([7,6,8,5])]. given #2052 (W,wt=55): 1971 P([1,1,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,136,a,b,413,a),rewrite([6,7,5])]. given #2053 (W,wt=55): 1972 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,413,a),rewrite([7,8,6,5])]. given #2054 (W,wt=55): 1973 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,58,a,b,413,a),rewrite([7,6,8,5])]. given #2055 (W,wt=55): 1974 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,56,a,b,413,a),rewrite([6,7,5])]. given #2056 (W,wt=55): 1975 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,0]:x]). [hyper(2,a,53,a,b,413,a),rewrite([7,6,5])]. given #2057 (W,wt=55): 1976 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,408,a,b,414,a),rewrite([12,13,11,10])]. given #2058 (W,wt=55): 1977 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,407,a,b,414,a),rewrite([12,13,11,10])]. given #2059 (W,wt=55): 1978 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,406,a,b,414,a),rewrite([12,13,11,10])]. given #2060 (W,wt=55): 1979 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,408,a,b,414,a),rewrite([7,8,6,5])]. given #2061 (W,wt=55): 1980 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,407,a,b,414,a),rewrite([7,8,6,5])]. given #2062 (W,wt=55): 1981 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,406,a,b,414,a),rewrite([7,8,6,5])]. given #2063 (W,wt=55): 1982 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,149,a,b,414,a),rewrite([7,8,6,5])]. given #2064 (W,wt=55): 1983 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,148,a,b,414,a),rewrite([7,8,6,5])]. given #2065 (W,wt=55): 1984 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,147,a,b,414,a),rewrite([7,8,6,5])]. given #2066 (W,wt=55): 1985 P([1,0,1,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,136,a,b,414,a),rewrite([6,7,5])]. given #2067 (W,wt=55): 1986 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,414,a),rewrite([7,8,6,5])]. given #2068 (W,wt=55): 1987 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,63,a,b,414,a),rewrite([7,8,6,5])]. given #2069 (W,wt=55): 1988 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,56,a,b,414,a),rewrite([6,7,5])]. given #2070 (W,wt=55): 1989 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,53,a,b,414,a),rewrite([7,6,5])]. given #2071 (W,wt=55): 1990 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,408,a,b,415,a),rewrite([12,13,11,10])]. given #2072 (W,wt=55): 1991 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,407,a,b,415,a),rewrite([12,13,11,10])]. given #2073 (W,wt=55): 1992 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,406,a,b,415,a),rewrite([12,13,11,10])]. given #2074 (W,wt=55): 1993 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,405,a,b,415,a),rewrite([12,11,13,10])]. given #2075 (W,wt=55): 1994 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,404,a,b,415,a),rewrite([12,11,13,10])]. given #2076 (W,wt=55): 1995 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,402,a,b,415,a),rewrite([12,13,11,10])]. given #2077 (W,wt=55): 1996 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,401,a,b,415,a),rewrite([12,13,11,10])]. given #2078 (W,wt=55): 1997 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,143,a,b,415,a),rewrite([12,11,13,10])]. given #2079 (W,wt=55): 1998 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,140,a,b,415,a),rewrite([12,13,11,10])]. given #2080 (W,wt=55): 1999 P([1,0,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,138,a,b,415,a),rewrite([12,13,11,10])]. given #2081 (W,wt=55): 2000 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(3,a,137,a,b,415,a),rewrite([12,13,11,10])]. given #2082 (W,wt=55): 2001 P([1,0,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(2,a,136,a,b,415,a),rewrite([6,7,5])]. given #2083 (W,wt=55): 2002 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,415,a),rewrite([6,7,5])]. given #2084 (W,wt=55): 2003 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,408,a,b,416,a),rewrite([12,13,11,10])]. given #2085 (W,wt=55): 2004 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,407,a,b,416,a),rewrite([12,13,11,10])]. given #2086 (W,wt=55): 2005 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,406,a,b,416,a),rewrite([12,13,11,10])]. given #2087 (W,wt=55): 2006 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,405,a,b,416,a),rewrite([12,11,13,10])]. given #2088 (W,wt=55): 2007 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,402,a,b,416,a),rewrite([12,13,11,10])]. given #2089 (W,wt=55): 2008 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(3,a,140,a,b,416,a),rewrite([12,13,11,10])]. given #2090 (W,wt=55): 2009 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(2,a,407,a,b,416,a),rewrite([7,8,6,5])]. given #2091 (W,wt=55): 2010 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(2,a,148,a,b,416,a),rewrite([7,8,6,5])]. given #2092 (W,wt=55): 2011 P([1,0,1,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(2,a,136,a,b,416,a),rewrite([6,7,5])]. given #2093 (W,wt=55): 2012 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(2,a,63,a,b,416,a),rewrite([7,8,6,5])]. given #2094 (W,wt=55): 2013 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,416,a),rewrite([6,7,5])]. given #2095 (W,wt=55): 2014 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,408,a,b,417,a),rewrite([12,13,11,10])]. given #2096 (W,wt=55): 2015 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,407,a,b,417,a),rewrite([12,13,11,10])]. given #2097 (W,wt=55): 2016 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,406,a,b,417,a),rewrite([12,13,11,10])]. given #2098 (W,wt=55): 2017 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,404,a,b,417,a),rewrite([12,11,13,10])]. given #2099 (W,wt=55): 2018 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,401,a,b,417,a),rewrite([12,13,11,10])]. given #2100 (W,wt=55): 2019 P([1,0,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(3,a,138,a,b,417,a),rewrite([12,13,11,10])]. given #2101 (W,wt=55): 2020 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(2,a,408,a,b,417,a),rewrite([7,8,6,5])]. given #2102 (W,wt=55): 2021 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(2,a,149,a,b,417,a),rewrite([7,8,6,5])]. given #2103 (W,wt=55): 2022 P([1,0,0,0,1,0,0,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(2,a,136,a,b,417,a),rewrite([6,7,5])]. given #2104 (W,wt=55): 2023 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,417,a),rewrite([7,8,6,5])]. given #2105 (W,wt=55): 2024 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,0]:x]). [hyper(2,a,56,a,b,417,a),rewrite([6,7,5])]. given #2106 (W,wt=55): 2025 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,408,a,b,418,a),rewrite([12,13,11,10])]. given #2107 (W,wt=0): 10254 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,2025,a),rewrite([6,7,5])]. given #2108 (W,wt=55): 2026 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,407,a,b,418,a),rewrite([12,11,13,10])]. given #2109 (W,wt=0): 10264 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,2026,a),rewrite([6,7,5])]. given #2110 (W,wt=55): 2027 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,405,a,b,418,a),rewrite([12,11,13,10])]. given #2111 (W,wt=55): 2028 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,404,a,b,418,a),rewrite([12,11,13,10])]. given #2112 (W,wt=55): 2029 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,143,a,b,418,a),rewrite([12,11,13,10])]. given #2113 (W,wt=55): 2030 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,140,a,b,418,a),rewrite([12,13,11,10])]. given #2114 (W,wt=55): 2031 P([1,1,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(3,a,138,a,b,418,a),rewrite([12,13,11,10])]. given #2115 (W,wt=55): 2032 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,405,a,b,418,a),rewrite([7,6,8,5])]. given #2116 (W,wt=55): 2033 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,146,a,b,418,a),rewrite([7,6,8,5])]. given #2117 (W,wt=55): 2034 P([1,1,0,0,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,136,a,b,418,a),rewrite([6,7,5])]. given #2118 (W,wt=55): 2035 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,58,a,b,418,a),rewrite([7,6,8,5])]. given #2119 (W,wt=55): 2036 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,0]:x]). [hyper(2,a,56,a,b,418,a),rewrite([6,7,5])]. given #2120 (W,wt=55): 2037 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(3,a,404,a,b,419,a),rewrite([12,11,13,10])]. given #2121 (W,wt=55): 2038 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,405,a,b,419,a),rewrite([7,6,5])]. given #2122 (W,wt=55): 2039 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,404,a,b,419,a),rewrite([7,6,8,5])]. given #2123 (W,wt=55): 2040 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,146,a,b,419,a),rewrite([7,6,5])]. given #2124 (W,wt=55): 2041 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,145,a,b,419,a),rewrite([7,6,8,5])]. given #2125 (W,wt=55): 2042 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,136,a,b,419,a),rewrite([6,7,5])]. given #2126 (W,wt=55): 2043 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,419,a),rewrite([7,6,8,5])]. given #2127 (W,wt=55): 2045 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,419,a),rewrite([7,6,5])]. given #2128 (W,wt=55): 2046 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(3,a,404,a,b,2044,a),rewrite([12,11,13,10])]. given #2129 (W,wt=55): 2047 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(3,a,145,a,b,2044,a),rewrite([12,11,13,10])]. given #2130 (W,wt=55): 2048 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(3,a,405,a,b,420,a),rewrite([12,11,13,10])]. given #2131 (W,wt=55): 2049 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,405,a,b,420,a),rewrite([7,6,8,5])]. given #2132 (W,wt=55): 2050 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,404,a,b,420,a),rewrite([7,6,5])]. given #2133 (W,wt=55): 2051 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,146,a,b,420,a),rewrite([7,6,8,5])]. given #2134 (W,wt=55): 2052 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,145,a,b,420,a),rewrite([7,6,5])]. given #2135 (W,wt=55): 2053 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,136,a,b,420,a),rewrite([6,7,5])]. given #2136 (W,wt=55): 2054 P([0,1,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,58,a,b,420,a),rewrite([7,6,8,5])]. given #2137 (W,wt=55): 2056 P([0,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,53,a,b,420,a),rewrite([7,6,5])]. given #2138 (W,wt=55): 2057 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(3,a,405,a,b,2055,a),rewrite([12,11,13,10])]. given #2139 (W,wt=55): 2058 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(3,a,146,a,b,2055,a),rewrite([12,11,13,10])]. given #2140 (W,wt=55): 2059 P([0,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,440,a,b,421,a),rewrite([13,12,11,10])]. given #2141 (W,wt=55): 2060 P([0,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,438,a,b,421,a),rewrite([13,11,12,10])]. given #2142 (W,wt=55): 2061 P([0,1,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,435,a,b,421,a),rewrite([13,12,11,10])]. given #2143 (W,wt=55): 2062 P([0,1,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,432,a,b,421,a),rewrite([13,12,11,10])]. given #2144 (W,wt=55): 2063 P([0,1,1,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,428,a,b,421,a),rewrite([13,12,11,10])]. given #2145 (W,wt=55): 2064 P([0,1,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,424,a,b,421,a),rewrite([13,12,11,10])]. given #2146 (W,wt=55): 2065 P([0,1,1,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,166,a,b,421,a),rewrite([13,12,11,10])]. given #2147 (W,wt=55): 2066 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,164,a,b,421,a),rewrite([11,12,13,10])]. given #2148 (W,wt=55): 2067 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,163,a,b,421,a),rewrite([11,12,13,10])]. given #2149 (W,wt=55): 2068 P([1,1,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,162,a,b,421,a),rewrite([11,12,13,10])]. given #2150 (W,wt=55): 2069 P([1,1,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,161,a,b,421,a),rewrite([11,12,13,10])]. given #2151 (W,wt=55): 2070 P([1,1,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,160,a,b,421,a),rewrite([11,12,13,10])]. given #2152 (W,wt=55): 2071 P([1,1,1,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,156,a,b,421,a),rewrite([11,12,13,10])]. given #2153 (W,wt=55): 2072 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,154,a,b,421,a),rewrite([11,12,13,10])]. given #2154 (W,wt=55): 2073 P([0,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,421,a),rewrite([13,12,11,10])]. given #2155 (W,wt=55): 2074 P([0,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,421,a),rewrite([13,12,11,10])]. given #2156 (W,wt=55): 2075 P([1,1,1,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,61,a,b,421,a),rewrite([11,12,13,10])]. given #2157 (W,wt=55): 2076 P([0,1,1,0,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,421,a),rewrite([13,12,11,10])]. given #2158 (W,wt=55): 2077 P([0,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,421,a),rewrite([13,12,11,10])]. given #2159 (W,wt=55): 2078 P([0,1,1,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,421,a),rewrite([13,12,11,10])]. given #2160 (W,wt=55): 2079 P([0,1,1,1,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,421,a),rewrite([13,12,11,10])]. given #2161 (W,wt=55): 2080 P([0,1,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,421,a),rewrite([13,12,11,10])]. given #2162 (W,wt=55): 2081 P([0,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,421,a),rewrite([13,12,11,10])]. given #2163 (W,wt=55): 2082 P([0,0,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(2,a,440,a,b,421,a),rewrite([8,7,6,5])]. given #2164 (W,wt=55): 2083 P([0,1,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(2,a,438,a,b,421,a),rewrite([8,6,7,5])]. given #2165 (W,wt=55): 2084 P([0,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,438,a,b,422,a),rewrite([13,11,12,10])]. given #2166 (W,wt=55): 2085 P([0,1,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,432,a,b,422,a),rewrite([13,12,11,10])]. given #2167 (W,wt=55): 2086 P([0,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,424,a,b,422,a),rewrite([13,12,11,10])]. given #2168 (W,wt=55): 2087 P([0,1,1,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,166,a,b,422,a),rewrite([13,12,11,10])]. given #2169 (W,wt=55): 2088 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,163,a,b,422,a),rewrite([11,12,13,10])]. given #2170 (W,wt=55): 2089 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,162,a,b,422,a),rewrite([11,12,13,10])]. given #2171 (W,wt=55): 2090 P([1,1,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,160,a,b,422,a),rewrite([11,12,13,10])]. given #2172 (W,wt=55): 2091 P([0,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,422,a),rewrite([13,12,11,10])]. given #2173 (W,wt=55): 2092 P([1,1,1,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,61,a,b,422,a),rewrite([11,12,13,10])]. given #2174 (W,wt=0): 10343 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(2,a,163,a,b,2092,a),rewrite([6,7,8,5])]. given #2175 (W,wt=55): 2093 P([0,1,1,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,422,a),rewrite([13,12,11,10])]. given #2176 (W,wt=55): 2094 P([0,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,422,a),rewrite([13,12,11,10])]. given #2177 (W,wt=55): 2095 P([0,0,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(2,a,440,a,b,422,a),rewrite([8,7,6,5])]. given #2178 (W,wt=55): 2096 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(2,a,438,a,b,422,a),rewrite([8,6,7,5])]. given #2179 (W,wt=55): 2097 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,422,a),rewrite([8,7,6,5])]. given #2180 (W,wt=55): 2098 P([0,0,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,1,1]:x]). [hyper(2,a,155,a,b,422,a),rewrite([6,7,5])]. given #2181 (W,wt=55): 2099 P([0,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,440,a,b,425,a),rewrite([13,12,11,10])]. given #2182 (W,wt=55): 2100 P([0,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,438,a,b,425,a),rewrite([13,11,12,10])]. given #2183 (W,wt=55): 2101 P([0,1,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,435,a,b,425,a),rewrite([13,12,11,10])]. given #2184 (W,wt=55): 2102 P([0,1,1,1,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,166,a,b,425,a),rewrite([13,12,11,10])]. given #2185 (W,wt=55): 2103 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,164,a,b,425,a),rewrite([11,12,13,10])]. given #2186 (W,wt=55): 2104 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,163,a,b,425,a),rewrite([11,12,13,10])]. given #2187 (W,wt=55): 2105 P([1,1,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,161,a,b,425,a),rewrite([11,12,13,10])]. given #2188 (W,wt=55): 2106 P([0,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,425,a),rewrite([13,12,11,10])]. given #2189 (W,wt=55): 2107 P([1,1,1,1,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,61,a,b,425,a),rewrite([11,12,13,10])]. given #2190 (W,wt=55): 2108 P([0,1,1,1,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,425,a),rewrite([13,12,11,10])]. given #2191 (W,wt=55): 2109 P([0,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,425,a),rewrite([13,12,11,10])]. given #2192 (W,wt=55): 2110 P([0,0,1,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,440,a,b,425,a),rewrite([8,7,6,5])]. given #2193 (W,wt=55): 2111 P([0,1,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,438,a,b,425,a),rewrite([8,6,7,5])]. given #2194 (W,wt=55): 2112 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,435,a,b,425,a),rewrite([8,7,6,5])]. given #2195 (W,wt=55): 2113 P([0,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,440,a,b,426,a),rewrite([13,12,11,10])]. given #2196 (W,wt=55): 2114 P([0,1,0,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,435,a,b,426,a),rewrite([13,12,11,10])]. given #2197 (W,wt=55): 2115 P([0,1,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,432,a,b,426,a),rewrite([13,12,11,10])]. given #2198 (W,wt=55): 2116 P([0,1,0,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,428,a,b,426,a),rewrite([13,12,11,10])]. given #2199 (W,wt=55): 2117 P([0,1,0,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,424,a,b,426,a),rewrite([13,12,11,10])]. given #2200 (W,wt=55): 2118 P([0,1,0,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,423,a,b,426,a),rewrite([13,12,11,10])]. given #2201 (W,wt=55): 2119 P([0,1,0,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,166,a,b,426,a),rewrite([13,12,11,10])]. given #2202 (W,wt=55): 2120 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,164,a,b,426,a),rewrite([11,12,13,10])]. given #2203 (W,wt=55): 2121 P([1,1,0,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,162,a,b,426,a),rewrite([11,12,13,10])]. given #2204 (W,wt=55): 2122 P([1,1,0,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,161,a,b,426,a),rewrite([11,12,13,10])]. given #2205 (W,wt=55): 2123 P([1,1,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,160,a,b,426,a),rewrite([11,12,13,10])]. given #2206 (W,wt=55): 2124 P([1,1,0,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,156,a,b,426,a),rewrite([11,12,13,10])]. given #2207 (W,wt=55): 2125 P([1,1,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,154,a,b,426,a),rewrite([11,12,13,10])]. given #2208 (W,wt=55): 2126 P([1,1,0,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,153,a,b,426,a),rewrite([11,12,13,10])]. given #2209 (W,wt=55): 2127 P([0,1,0,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,426,a),rewrite([13,12,11,10])]. given #2210 (W,wt=55): 2128 P([0,1,0,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,426,a),rewrite([13,12,11,10])]. given #2211 (W,wt=55): 2129 P([1,1,0,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,61,a,b,426,a),rewrite([11,12,13,10])]. given #2212 (W,wt=55): 2130 P([0,1,0,0,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,426,a),rewrite([13,12,11,10])]. given #2213 (W,wt=55): 2131 P([0,1,0,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,426,a),rewrite([13,12,11,10])]. given #2214 (W,wt=55): 2132 P([0,1,0,1,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,426,a),rewrite([13,12,11,10])]. given #2215 (W,wt=55): 2133 P([0,1,0,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,426,a),rewrite([13,12,11,10])]. given #2216 (W,wt=55): 2134 P([0,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,426,a),rewrite([13,12,11,10])]. given #2217 (W,wt=55): 2135 P([0,1,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,426,a),rewrite([13,12,11,10])]. given #2218 (W,wt=55): 2136 P([0,1,1,1,1,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(3,a,166,a,b,427,a),rewrite([13,12,11,10])]. given #2219 (W,wt=55): 2137 P([1,1,1,1,1,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(3,a,61,a,b,427,a),rewrite([11,12,13,10])]. given #2220 (W,wt=55): 2138 P([0,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,440,a,b,427,a),rewrite([8,7,6,5])]. given #2221 (W,wt=55): 2139 P([0,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,438,a,b,427,a),rewrite([8,6,7,5])]. given #2222 (W,wt=55): 2140 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,435,a,b,427,a),rewrite([8,7,6,5])]. given #2223 (W,wt=55): 2141 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,432,a,b,427,a),rewrite([8,7,6,5])]. given #2224 (W,wt=55): 2142 P([0,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,431,a,b,427,a),rewrite([8,7,6,5])]. given #2225 (W,wt=55): 2143 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,424,a,b,427,a),rewrite([8,7,6,5])]. given #2226 (W,wt=55): 2144 P([0,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,423,a,b,427,a),rewrite([8,7,6,5])]. given #2227 (W,wt=55): 2145 P([0,1,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,157,a,b,427,a),rewrite([6,7,5])]. given #2228 (W,wt=55): 2146 P([0,0,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,155,a,b,427,a),rewrite([6,7,5])]. given #2229 (W,wt=55): 2147 P([0,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,154,a,b,427,a),rewrite([6,7,5])]. given #2230 (W,wt=55): 2148 P([0,0,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,0,1]:x]). [hyper(2,a,152,a,b,427,a),rewrite([6,7,5])]. given #2231 (W,wt=55): 2149 P([0,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,438,a,b,429,a),rewrite([13,11,12,10])]. given #2232 (W,wt=55): 2150 P([0,0,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,435,a,b,429,a),rewrite([13,12,11,10])]. given #2233 (W,wt=55): 2151 P([0,0,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,432,a,b,429,a),rewrite([13,12,11,10])]. given #2234 (W,wt=55): 2152 P([0,0,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,431,a,b,429,a),rewrite([13,12,11,10])]. given #2235 (W,wt=55): 2153 P([0,0,1,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,428,a,b,429,a),rewrite([13,12,11,10])]. given #2236 (W,wt=55): 2154 P([0,0,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,424,a,b,429,a),rewrite([13,12,11,10])]. given #2237 (W,wt=55): 2155 P([0,0,1,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,166,a,b,429,a),rewrite([13,12,11,10])]. given #2238 (W,wt=55): 2156 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,163,a,b,429,a),rewrite([11,12,13,10])]. given #2239 (W,wt=55): 2157 P([1,0,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,162,a,b,429,a),rewrite([11,13,12,10])]. given #2240 (W,wt=55): 2158 P([1,0,1,1,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,161,a,b,429,a),rewrite([11,13,12,10])]. given #2241 (W,wt=55): 2159 P([1,0,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,160,a,b,429,a),rewrite([11,13,12,10])]. given #2242 (W,wt=55): 2160 P([1,0,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,158,a,b,429,a),rewrite([11,13,12,10])]. given #2243 (W,wt=55): 2161 P([1,0,1,0,1,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,156,a,b,429,a),rewrite([11,13,12,10])]. given #2244 (W,wt=55): 2162 P([1,0,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,154,a,b,429,a),rewrite([11,13,12,10])]. given #2245 (W,wt=55): 2163 P([0,0,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,429,a),rewrite([13,12,11,10])]. given #2246 (W,wt=55): 2164 P([1,0,1,0,1,0,0,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,61,a,b,429,a),rewrite([11,13,12,10])]. given #2247 (W,wt=55): 2165 P([0,0,1,0,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,429,a),rewrite([13,12,11,10])]. given #2248 (W,wt=55): 2166 P([0,0,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,429,a),rewrite([13,12,11,10])]. given #2249 (W,wt=55): 2167 P([0,0,1,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,429,a),rewrite([13,12,11,10])]. given #2250 (W,wt=55): 2168 P([0,0,1,1,0,0,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,429,a),rewrite([13,12,11,10])]. given #2251 (W,wt=55): 2169 P([0,0,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,429,a),rewrite([13,12,11,10])]. given #2252 (W,wt=55): 2170 P([0,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,429,a),rewrite([13,11,12,10])]. given #2253 (W,wt=55): 2171 P([0,0,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,429,a),rewrite([13,12,11,10])]. given #2254 (W,wt=55): 2172 P([0,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,440,a,b,430,a),rewrite([13,12,11,10])]. given #2255 (W,wt=55): 2173 P([0,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,432,a,b,430,a),rewrite([13,12,11,10])]. given #2256 (W,wt=55): 2174 P([0,1,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,428,a,b,430,a),rewrite([13,12,11,10])]. given #2257 (W,wt=55): 2175 P([0,1,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,166,a,b,430,a),rewrite([13,12,11,10])]. given #2258 (W,wt=55): 2176 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,164,a,b,430,a),rewrite([11,12,13,10])]. given #2259 (W,wt=55): 2177 P([1,1,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,162,a,b,430,a),rewrite([11,12,13,10])]. given #2260 (W,wt=55): 2178 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,160,a,b,430,a),rewrite([11,12,13,10])]. given #2261 (W,wt=55): 2179 P([0,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,430,a),rewrite([13,12,11,10])]. given #2262 (W,wt=55): 2180 P([0,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,430,a),rewrite([13,12,11,10])]. given #2263 (W,wt=55): 2181 P([1,1,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,61,a,b,430,a),rewrite([11,12,13,10])]. given #2264 (W,wt=0): 10414 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(2,a,164,a,b,2181,a),rewrite([6,7,8,5])]. given #2265 (W,wt=55): 2182 P([0,1,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,430,a),rewrite([13,12,11,10])]. given #2266 (W,wt=55): 2183 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(2,a,440,a,b,430,a),rewrite([8,7,6,5])]. given #2267 (W,wt=55): 2184 P([0,1,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(2,a,438,a,b,430,a),rewrite([8,6,7,5])]. given #2268 (W,wt=55): 2185 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,430,a),rewrite([8,7,6,5])]. given #2269 (W,wt=55): 2186 P([0,1,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,1,0,1]:x]). [hyper(2,a,157,a,b,430,a),rewrite([6,7,5])]. given #2270 (W,wt=55): 2187 P([0,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(3,a,440,a,b,433,a),rewrite([13,12,11,10])]. given #2271 (W,wt=55): 2188 P([0,1,1,1,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(3,a,166,a,b,433,a),rewrite([13,12,11,10])]. given #2272 (W,wt=55): 2189 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(3,a,164,a,b,433,a),rewrite([11,12,13,10])]. given #2273 (W,wt=55): 2190 P([0,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,433,a),rewrite([13,12,11,10])]. given #2274 (W,wt=55): 2191 P([1,1,1,1,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(3,a,61,a,b,433,a),rewrite([11,12,13,10])]. given #2275 (W,wt=55): 2192 P([0,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,440,a,b,433,a),rewrite([8,7,6,5])]. given #2276 (W,wt=55): 2193 P([0,1,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,438,a,b,433,a),rewrite([8,6,7,5])]. given #2277 (W,wt=55): 2194 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,435,a,b,433,a),rewrite([8,7,6,5])]. given #2278 (W,wt=55): 2195 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,424,a,b,433,a),rewrite([8,7,6,5])]. given #2279 (W,wt=55): 2196 P([0,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,423,a,b,433,a),rewrite([8,7,6,5])]. given #2280 (W,wt=55): 2197 P([0,1,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,1,0,1]:x]). [hyper(2,a,157,a,b,433,a),rewrite([6,7,5])]. given #2281 (W,wt=55): 2198 P([0,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(3,a,432,a,b,434,a),rewrite([13,12,11,10])]. given #2282 (W,wt=55): 2199 P([0,1,1,0,1,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(3,a,166,a,b,434,a),rewrite([13,12,11,10])]. given #2283 (W,wt=55): 2200 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(3,a,162,a,b,434,a),rewrite([11,12,13,10])]. given #2284 (W,wt=55): 2201 P([0,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,434,a),rewrite([13,12,11,10])]. given #2285 (W,wt=55): 2202 P([1,1,1,0,1,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(3,a,61,a,b,434,a),rewrite([11,12,13,10])]. given #2286 (W,wt=0): 10455 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,164,a,b,2202,a),rewrite([6,7,5])]. given #2287 (W,wt=0): 10456 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,163,a,b,2202,a),rewrite([6,7,5])]. given #2288 (W,wt=55): 2203 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,440,a,b,434,a),rewrite([8,7,6,5])]. given #2289 (W,wt=55): 2204 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,438,a,b,434,a),rewrite([8,6,7,5])]. given #2290 (W,wt=55): 2205 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,432,a,b,434,a),rewrite([8,7,6,5])]. given #2291 (W,wt=55): 2206 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,424,a,b,434,a),rewrite([8,7,6,5])]. given #2292 (W,wt=55): 2207 P([0,1,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,157,a,b,434,a),rewrite([6,7,5])]. given #2293 (W,wt=55): 2208 P([0,0,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,155,a,b,434,a),rewrite([6,7,5])]. given #2294 (W,wt=55): 2209 P([0,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[1,0,0,1,1,0,0,1]:x]). [hyper(2,a,154,a,b,434,a),rewrite([6,7,8,5])]. given #2295 (W,wt=55): 2210 P([0,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(3,a,438,a,b,436,a),rewrite([13,11,12,10])]. given #2296 (W,wt=55): 2211 P([0,1,1,1,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(3,a,166,a,b,436,a),rewrite([13,12,11,10])]. given #2297 (W,wt=55): 2212 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(3,a,163,a,b,436,a),rewrite([11,12,13,10])]. given #2298 (W,wt=55): 2213 P([1,1,1,1,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(3,a,61,a,b,436,a),rewrite([11,12,13,10])]. given #2299 (W,wt=55): 2214 P([0,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,436,a),rewrite([13,12,11,10])]. given #2300 (W,wt=55): 2215 P([0,0,1,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,440,a,b,436,a),rewrite([8,7,6,5])]. given #2301 (W,wt=55): 2216 P([0,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,438,a,b,436,a),rewrite([8,6,7,5])]. given #2302 (W,wt=55): 2217 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,435,a,b,436,a),rewrite([8,7,6,5])]. given #2303 (W,wt=55): 2218 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,432,a,b,436,a),rewrite([8,7,6,5])]. given #2304 (W,wt=55): 2219 P([0,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,431,a,b,436,a),rewrite([8,7,6,5])]. given #2305 (W,wt=55): 2220 P([0,0,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,0,0,1,0,1,1]:x]). [hyper(2,a,155,a,b,436,a),rewrite([6,7,5])]. given #2306 (W,wt=55): 2221 P([0,0,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,432,a,b,437,a),rewrite([13,12,11,10])]. given #2307 (W,wt=55): 2222 P([0,0,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,428,a,b,437,a),rewrite([13,12,11,10])]. given #2308 (W,wt=55): 2223 P([0,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,166,a,b,437,a),rewrite([13,12,11,10])]. given #2309 (W,wt=55): 2224 P([1,0,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,162,a,b,437,a),rewrite([11,13,12,10])]. given #2310 (W,wt=55): 2225 P([1,0,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,160,a,b,437,a),rewrite([11,13,12,10])]. given #2311 (W,wt=55): 2226 P([0,0,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,437,a),rewrite([13,12,11,10])]. given #2312 (W,wt=55): 2228 P([0,0,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,437,a),rewrite([13,12,11,10])]. given #2313 (W,wt=55): 2229 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,437,a),rewrite([8,7,6,5])]. given #2314 (W,wt=55): 2230 P([0,0,0,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,2227,a),rewrite([7,8,6,5])]. given #2315 (W,wt=55): 2231 P([1,0,0,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(2,a,162,a,b,2227,a),rewrite([6,8,7,5])]. given #2316 (W,wt=55): 2232 P([0,1,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,432,a,b,439,a),rewrite([13,12,11,10])]. given #2317 (W,wt=55): 2233 P([0,1,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,424,a,b,439,a),rewrite([13,12,11,10])]. given #2318 (W,wt=55): 2234 P([0,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,166,a,b,439,a),rewrite([13,12,11,10])]. given #2319 (W,wt=55): 2235 P([1,1,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,162,a,b,439,a),rewrite([11,12,13,10])]. given #2320 (W,wt=55): 2236 P([1,1,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,160,a,b,439,a),rewrite([11,12,13,10])]. given #2321 (W,wt=55): 2237 P([0,1,0,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,439,a),rewrite([13,12,11,10])]. given #2322 (W,wt=55): 2239 P([0,1,0,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,439,a),rewrite([13,12,11,10])]. given #2323 (W,wt=55): 2240 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,439,a),rewrite([8,7,6,5])]. given #2324 (W,wt=55): 2241 P([0,0,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,2238,a),rewrite([7,8,6,5])]. given #2325 (W,wt=55): 2242 P([1,0,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(2,a,160,a,b,2238,a),rewrite([6,7,8,5])]. given #2326 (W,wt=55): 2243 P([1,0,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,164,a,b,441,a),rewrite([6,7,5])]. given #2327 (W,wt=55): 2244 P([1,1,0,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,163,a,b,441,a),rewrite([6,7,5])]. given #2328 (W,wt=55): 2245 P([1,0,0,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,162,a,b,441,a),rewrite([6,7,5])]. given #2329 (W,wt=55): 2246 P([1,0,0,1,0,0,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,161,a,b,441,a),rewrite([6,7,5])]. given #2330 (W,wt=55): 2247 P([1,0,0,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,160,a,b,441,a),rewrite([6,7,5])]. given #2331 (W,wt=55): 2248 P([1,0,0,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,158,a,b,441,a),rewrite([6,7,5])]. given #2332 (W,wt=55): 2249 P([1,1,0,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,157,a,b,441,a),rewrite([6,7,5])]. given #2333 (W,wt=55): 2250 P([1,0,0,0,0,0,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,156,a,b,441,a),rewrite([6,7,5])]. given #2334 (W,wt=55): 2251 P([1,0,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,155,a,b,441,a),rewrite([6,7,5])]. given #2335 (W,wt=55): 2252 P([1,0,0,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,154,a,b,441,a),rewrite([6,7,5])]. given #2336 (W,wt=55): 2253 P([1,0,0,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,153,a,b,441,a),rewrite([6,7,5])]. given #2337 (W,wt=55): 2254 P([1,0,0,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,152,a,b,441,a),rewrite([6,7,5])]. given #2338 (W,wt=55): 2255 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,61,a,b,441,a),rewrite([6,7,5])]. given #2339 (W,wt=55): 2256 P([1,1,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,94,a,b,442,a),rewrite([12,11,13,10])]. given #2340 (W,wt=55): 2257 P([1,0,1,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,90,a,b,442,a),rewrite([12,13,11,10])]. given #2341 (W,wt=55): 2258 P([1,0,0,1,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,79,a,b,442,a),rewrite([12,13,11,10])]. given #2342 (W,wt=55): 2259 P([1,0,0,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,73,a,b,442,a),rewrite([12,13,11,10])]. given #2343 (W,wt=55): 2260 P([1,0,0,0,1,1,1,1],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,442,a),rewrite([12,13,11,10])]. given #2344 (W,wt=55): 2261 P([1,1,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,64,a,b,442,a),rewrite([12,11,13,10])]. given #2345 (W,wt=55): 2262 P([1,0,1,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,37,a,b,442,a),rewrite([12,13,11,10])]. given #2346 (W,wt=55): 2263 P([1,1,0,1,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,36,a,b,442,a),rewrite([12,11,13,10])]. given #2347 (W,wt=55): 2264 P([0,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,93,a,b,442,a),rewrite([7,6,5])]. given #2348 (W,wt=55): 2265 P([0,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,89,a,b,442,a),rewrite([7,6,5])]. given #2349 (W,wt=55): 2266 P([0,0,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,442,a),rewrite([7,8,6,5])]. given #2350 (W,wt=55): 2267 P([1,0,0,0,0,0,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,72,a,b,442,a),rewrite([6,7,5])]. given #2351 (W,wt=55): 2268 P([0,0,0,0,1,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,442,a),rewrite([7,8,6,5])]. given #2352 (W,wt=55): 2269 P([1,0,0,0,0,1,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,62,a,b,442,a),rewrite([6,7,5])]. given #2353 (W,wt=55): 2270 P([1,0,0,0,0,0,1,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,34,a,b,442,a),rewrite([6,7,5])]. given #2354 (W,wt=55): 2271 P([1,0,0,0,0,1,0,0],[[0,0,0,0,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,33,a,b,442,a),rewrite([6,7,5])]. given #2355 (W,wt=55): 2272 P([0,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,462,a,b,443,a),rewrite([13,12,11,10])]. given #2356 (W,wt=55): 2273 P([0,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,460,a,b,443,a),rewrite([13,11,12,10])]. given #2357 (W,wt=55): 2274 P([0,1,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,456,a,b,443,a),rewrite([13,12,11,10])]. given #2358 (W,wt=55): 2275 P([0,1,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,454,a,b,443,a),rewrite([13,12,11,10])]. given #2359 (W,wt=55): 2276 P([0,1,1,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,450,a,b,443,a),rewrite([13,12,11,10])]. given #2360 (W,wt=55): 2277 P([0,1,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,448,a,b,443,a),rewrite([13,12,11,10])]. given #2361 (W,wt=55): 2278 P([0,1,1,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,184,a,b,443,a),rewrite([13,12,11,10])]. given #2362 (W,wt=55): 2279 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,182,a,b,443,a),rewrite([11,12,13,10])]. given #2363 (W,wt=55): 2280 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,181,a,b,443,a),rewrite([11,12,13,10])]. given #2364 (W,wt=55): 2281 P([1,1,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,180,a,b,443,a),rewrite([11,12,13,10])]. given #2365 (W,wt=55): 2282 P([1,1,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,179,a,b,443,a),rewrite([11,12,13,10])]. given #2366 (W,wt=55): 2283 P([1,1,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,178,a,b,443,a),rewrite([11,12,13,10])]. given #2367 (W,wt=55): 2284 P([1,1,1,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,174,a,b,443,a),rewrite([11,12,13,10])]. given #2368 (W,wt=55): 2285 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,171,a,b,443,a),rewrite([11,12,13,10])]. given #2369 (W,wt=55): 2286 P([0,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,443,a),rewrite([13,12,11,10])]. given #2370 (W,wt=55): 2287 P([1,1,1,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,66,a,b,443,a),rewrite([11,12,13,10])]. given #2371 (W,wt=55): 2288 P([0,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,443,a),rewrite([13,12,11,10])]. given #2372 (W,wt=55): 2289 P([0,1,0,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,443,a),rewrite([13,12,11,10])]. given #2373 (W,wt=55): 2290 P([0,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,443,a),rewrite([13,12,11,10])]. given #2374 (W,wt=55): 2291 P([0,1,0,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,443,a),rewrite([13,12,11,10])]. given #2375 (W,wt=55): 2292 P([0,1,0,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,443,a),rewrite([13,12,11,10])]. given #2376 (W,wt=55): 2293 P([0,1,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,443,a),rewrite([13,12,11,10])]. given #2377 (W,wt=55): 2294 P([0,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,443,a),rewrite([13,12,11,10])]. given #2378 (W,wt=55): 2295 P([0,0,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(2,a,462,a,b,443,a),rewrite([8,7,6,5])]. given #2379 (W,wt=55): 2296 P([0,1,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(2,a,460,a,b,443,a),rewrite([8,6,7,5])]. given #2380 (W,wt=55): 2297 P([0,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,462,a,b,444,a),rewrite([13,12,11,10])]. given #2381 (W,wt=55): 2298 P([0,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,460,a,b,444,a),rewrite([13,11,12,10])]. given #2382 (W,wt=55): 2299 P([0,1,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,456,a,b,444,a),rewrite([13,12,11,10])]. given #2383 (W,wt=55): 2300 P([0,1,1,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,184,a,b,444,a),rewrite([13,12,11,10])]. given #2384 (W,wt=55): 2301 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,182,a,b,444,a),rewrite([11,12,13,10])]. given #2385 (W,wt=55): 2302 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,181,a,b,444,a),rewrite([11,12,13,10])]. given #2386 (W,wt=55): 2303 P([1,1,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,178,a,b,444,a),rewrite([11,12,13,10])]. given #2387 (W,wt=55): 2304 P([1,1,1,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,66,a,b,444,a),rewrite([11,12,13,10])]. given #2388 (W,wt=55): 2305 P([0,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,444,a),rewrite([13,12,11,10])]. given #2389 (W,wt=55): 2306 P([0,1,0,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,444,a),rewrite([13,12,11,10])]. given #2390 (W,wt=55): 2307 P([0,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,444,a),rewrite([13,12,11,10])]. given #2391 (W,wt=55): 2308 P([0,0,0,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,462,a,b,444,a),rewrite([8,7,6,5])]. given #2392 (W,wt=55): 2309 P([0,1,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,460,a,b,444,a),rewrite([8,6,7,5])]. given #2393 (W,wt=55): 2310 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,456,a,b,444,a),rewrite([8,7,6,5])]. given #2394 (W,wt=55): 2311 P([0,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,462,a,b,445,a),rewrite([13,12,11,10])]. given #2395 (W,wt=55): 2312 P([0,1,1,0,0,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,456,a,b,445,a),rewrite([13,12,11,10])]. given #2396 (W,wt=55): 2313 P([0,1,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,454,a,b,445,a),rewrite([13,12,11,10])]. given #2397 (W,wt=55): 2314 P([0,1,1,0,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,450,a,b,445,a),rewrite([13,12,11,10])]. given #2398 (W,wt=55): 2315 P([0,1,1,0,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,448,a,b,445,a),rewrite([13,12,11,10])]. given #2399 (W,wt=55): 2316 P([0,1,1,0,0,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,447,a,b,445,a),rewrite([13,12,11,10])]. given #2400 (W,wt=55): 2317 P([0,1,1,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,184,a,b,445,a),rewrite([13,12,11,10])]. given #2401 (W,wt=55): 2318 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,182,a,b,445,a),rewrite([11,12,13,10])]. given #2402 (W,wt=55): 2319 P([1,1,1,0,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,180,a,b,445,a),rewrite([11,12,13,10])]. given #2403 (W,wt=55): 2320 P([1,1,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,179,a,b,445,a),rewrite([11,12,13,10])]. given #2404 (W,wt=55): 2321 P([1,1,1,0,0,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,178,a,b,445,a),rewrite([11,12,13,10])]. given #2405 (W,wt=55): 2322 P([1,1,1,0,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,174,a,b,445,a),rewrite([11,12,13,10])]. given #2406 (W,wt=55): 2323 P([1,1,1,0,0,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,173,a,b,445,a),rewrite([11,12,13,10])]. given #2407 (W,wt=55): 2324 P([1,1,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,171,a,b,445,a),rewrite([11,12,13,10])]. given #2408 (W,wt=55): 2325 P([0,1,0,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,445,a),rewrite([13,12,11,10])]. given #2409 (W,wt=55): 2326 P([1,1,1,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,66,a,b,445,a),rewrite([11,12,13,10])]. given #2410 (W,wt=55): 2327 P([0,1,0,0,0,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,445,a),rewrite([13,12,11,10])]. given #2411 (W,wt=55): 2328 P([0,1,0,0,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,445,a),rewrite([13,12,11,10])]. given #2412 (W,wt=55): 2329 P([0,1,0,0,0,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,445,a),rewrite([13,12,11,10])]. given #2413 (W,wt=55): 2330 P([0,1,0,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,445,a),rewrite([13,12,11,10])]. given #2414 (W,wt=55): 2331 P([0,1,0,0,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,445,a),rewrite([13,12,11,10])]. given #2415 (W,wt=55): 2332 P([0,1,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,445,a),rewrite([13,12,11,10])]. given #2416 (W,wt=55): 2333 P([0,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,445,a),rewrite([13,12,11,10])]. given #2417 (W,wt=55): 2334 P([0,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,460,a,b,446,a),rewrite([13,11,12,10])]. given #2418 (W,wt=55): 2335 P([0,1,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,454,a,b,446,a),rewrite([13,12,11,10])]. given #2419 (W,wt=55): 2336 P([0,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,448,a,b,446,a),rewrite([13,12,11,10])]. given #2420 (W,wt=55): 2337 P([0,1,1,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,184,a,b,446,a),rewrite([13,12,11,10])]. given #2421 (W,wt=55): 2338 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,181,a,b,446,a),rewrite([11,12,13,10])]. given #2422 (W,wt=55): 2339 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,180,a,b,446,a),rewrite([11,12,13,10])]. given #2423 (W,wt=55): 2340 P([1,1,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,179,a,b,446,a),rewrite([11,12,13,10])]. given #2424 (W,wt=55): 2341 P([0,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,446,a),rewrite([13,12,11,10])]. given #2425 (W,wt=55): 2342 P([1,1,1,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,66,a,b,446,a),rewrite([11,12,13,10])]. given #2426 (W,wt=0): 10614 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(2,a,181,a,b,2342,a),rewrite([6,7,8,5])]. given #2427 (W,wt=55): 2343 P([0,1,0,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,446,a),rewrite([13,12,11,10])]. given #2428 (W,wt=55): 2344 P([0,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,446,a),rewrite([13,12,11,10])]. given #2429 (W,wt=55): 2345 P([0,0,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(2,a,462,a,b,446,a),rewrite([8,7,6,5])]. given #2430 (W,wt=55): 2346 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(2,a,460,a,b,446,a),rewrite([8,6,7,5])]. given #2431 (W,wt=55): 2347 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(2,a,454,a,b,446,a),rewrite([8,7,6,5])]. given #2432 (W,wt=55): 2348 P([0,0,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,1,1]:x]). [hyper(2,a,172,a,b,446,a),rewrite([6,7,5])]. given #2433 (W,wt=55): 2349 P([0,1,1,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(3,a,184,a,b,449,a),rewrite([13,12,11,10])]. given #2434 (W,wt=55): 2350 P([1,1,1,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(3,a,66,a,b,449,a),rewrite([11,12,13,10])]. given #2435 (W,wt=55): 2351 P([0,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,462,a,b,449,a),rewrite([8,7,6,5])]. given #2436 (W,wt=55): 2352 P([0,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,460,a,b,449,a),rewrite([8,6,7,5])]. given #2437 (W,wt=55): 2353 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,456,a,b,449,a),rewrite([8,7,6,5])]. given #2438 (W,wt=55): 2354 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,454,a,b,449,a),rewrite([8,7,6,5])]. given #2439 (W,wt=55): 2355 P([0,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,453,a,b,449,a),rewrite([8,7,6,5])]. given #2440 (W,wt=55): 2356 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,448,a,b,449,a),rewrite([8,7,6,5])]. given #2441 (W,wt=55): 2357 P([0,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,447,a,b,449,a),rewrite([8,7,6,5])]. given #2442 (W,wt=55): 2358 P([0,1,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,175,a,b,449,a),rewrite([6,7,5])]. given #2443 (W,wt=55): 2359 P([0,0,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,172,a,b,449,a),rewrite([6,7,5])]. given #2444 (W,wt=55): 2360 P([0,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,171,a,b,449,a),rewrite([6,7,5])]. given #2445 (W,wt=55): 2361 P([0,0,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,0,1]:x]). [hyper(2,a,170,a,b,449,a),rewrite([6,7,5])]. given #2446 (W,wt=55): 2362 P([0,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,460,a,b,451,a),rewrite([13,11,12,10])]. given #2447 (W,wt=55): 2363 P([0,0,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,456,a,b,451,a),rewrite([13,11,12,10])]. given #2448 (W,wt=55): 2364 P([0,0,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,454,a,b,451,a),rewrite([13,11,12,10])]. given #2449 (W,wt=55): 2365 P([0,0,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,453,a,b,451,a),rewrite([13,11,12,10])]. given #2450 (W,wt=55): 2366 P([0,0,1,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,450,a,b,451,a),rewrite([13,11,12,10])]. given #2451 (W,wt=55): 2367 P([0,0,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,448,a,b,451,a),rewrite([13,11,12,10])]. given #2452 (W,wt=55): 2368 P([0,0,1,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,184,a,b,451,a),rewrite([13,11,12,10])]. given #2453 (W,wt=55): 2369 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,181,a,b,451,a),rewrite([11,12,13,10])]. given #2454 (W,wt=55): 2370 P([1,0,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,180,a,b,451,a),rewrite([11,13,12,10])]. given #2455 (W,wt=55): 2371 P([1,0,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,179,a,b,451,a),rewrite([11,13,12,10])]. given #2456 (W,wt=55): 2372 P([1,0,1,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,178,a,b,451,a),rewrite([11,13,12,10])]. given #2457 (W,wt=55): 2373 P([1,0,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,176,a,b,451,a),rewrite([11,13,12,10])]. given #2458 (W,wt=55): 2374 P([1,0,1,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,174,a,b,451,a),rewrite([11,13,12,10])]. given #2459 (W,wt=55): 2375 P([1,0,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,171,a,b,451,a),rewrite([11,13,12,10])]. given #2460 (W,wt=55): 2376 P([0,0,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,451,a),rewrite([13,11,12,10])]. given #2461 (W,wt=55): 2377 P([1,0,1,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,66,a,b,451,a),rewrite([11,13,12,10])]. given #2462 (W,wt=55): 2378 P([0,0,0,0,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,451,a),rewrite([13,12,11,10])]. given #2463 (W,wt=55): 2379 P([0,0,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,451,a),rewrite([13,11,12,10])]. given #2464 (W,wt=55): 2380 P([0,0,0,0,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,451,a),rewrite([13,12,11,10])]. given #2465 (W,wt=55): 2381 P([0,0,0,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,451,a),rewrite([13,11,12,10])]. given #2466 (W,wt=55): 2382 P([0,0,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,451,a),rewrite([13,12,11,10])]. given #2467 (W,wt=55): 2383 P([0,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,451,a),rewrite([13,11,12,10])]. given #2468 (W,wt=55): 2384 P([0,0,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,451,a),rewrite([13,11,12,10])]. given #2469 (W,wt=55): 2385 P([0,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,462,a,b,452,a),rewrite([13,12,11,10])]. given #2470 (W,wt=55): 2386 P([0,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,454,a,b,452,a),rewrite([13,12,11,10])]. given #2471 (W,wt=55): 2387 P([0,1,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,450,a,b,452,a),rewrite([13,12,11,10])]. given #2472 (W,wt=55): 2388 P([0,1,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,184,a,b,452,a),rewrite([13,12,11,10])]. given #2473 (W,wt=55): 2389 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,182,a,b,452,a),rewrite([11,12,13,10])]. given #2474 (W,wt=55): 2390 P([1,1,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,180,a,b,452,a),rewrite([11,12,13,10])]. given #2475 (W,wt=55): 2391 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,179,a,b,452,a),rewrite([11,12,13,10])]. given #2476 (W,wt=55): 2392 P([0,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,452,a),rewrite([13,12,11,10])]. given #2477 (W,wt=55): 2393 P([1,1,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,66,a,b,452,a),rewrite([11,12,13,10])]. given #2478 (W,wt=0): 10667 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(2,a,182,a,b,2393,a),rewrite([6,7,8,5])]. given #2479 (W,wt=55): 2394 P([0,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,452,a),rewrite([13,12,11,10])]. given #2480 (W,wt=55): 2395 P([0,1,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,452,a),rewrite([13,12,11,10])]. given #2481 (W,wt=55): 2396 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(2,a,462,a,b,452,a),rewrite([8,7,6,5])]. given #2482 (W,wt=55): 2397 P([0,1,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(2,a,460,a,b,452,a),rewrite([8,6,7,5])]. given #2483 (W,wt=55): 2398 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,452,a),rewrite([8,7,6,5])]. given #2484 (W,wt=55): 2399 P([0,1,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,1,0,1]:x]). [hyper(2,a,175,a,b,452,a),rewrite([6,7,5])]. given #2485 (W,wt=55): 2400 P([0,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(3,a,454,a,b,455,a),rewrite([13,12,11,10])]. given #2486 (W,wt=55): 2401 P([0,1,1,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(3,a,184,a,b,455,a),rewrite([13,12,11,10])]. given #2487 (W,wt=55): 2402 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(3,a,180,a,b,455,a),rewrite([11,12,13,10])]. given #2488 (W,wt=55): 2403 P([0,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,455,a),rewrite([13,12,11,10])]. given #2489 (W,wt=55): 2404 P([1,1,1,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(3,a,66,a,b,455,a),rewrite([11,12,13,10])]. given #2490 (W,wt=0): 10690 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,182,a,b,2404,a),rewrite([6,7,5])]. given #2491 (W,wt=0): 10691 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,181,a,b,2404,a),rewrite([6,7,5])]. given #2492 (W,wt=55): 2405 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,462,a,b,455,a),rewrite([8,7,6,5])]. given #2493 (W,wt=55): 2406 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,460,a,b,455,a),rewrite([8,6,7,5])]. given #2494 (W,wt=55): 2407 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,454,a,b,455,a),rewrite([8,7,6,5])]. given #2495 (W,wt=55): 2408 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,448,a,b,455,a),rewrite([8,7,6,5])]. given #2496 (W,wt=55): 2409 P([0,1,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,175,a,b,455,a),rewrite([6,7,5])]. given #2497 (W,wt=55): 2410 P([0,0,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,172,a,b,455,a),rewrite([6,7,5])]. given #2498 (W,wt=55): 2411 P([0,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,1,0,1]:x]). [hyper(2,a,171,a,b,455,a),rewrite([6,7,8,5])]. given #2499 (W,wt=55): 2412 P([0,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(3,a,462,a,b,457,a),rewrite([13,12,11,10])]. given #2500 (W,wt=55): 2413 P([0,1,1,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(3,a,184,a,b,457,a),rewrite([13,12,11,10])]. given #2501 (W,wt=55): 2414 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(3,a,182,a,b,457,a),rewrite([11,12,13,10])]. given #2502 (W,wt=55): 2415 P([1,1,1,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(3,a,66,a,b,457,a),rewrite([11,12,13,10])]. given #2503 (W,wt=55): 2416 P([0,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,457,a),rewrite([13,12,11,10])]. given #2504 (W,wt=55): 2417 P([0,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,462,a,b,457,a),rewrite([8,7,6,5])]. given #2505 (W,wt=55): 2418 P([0,1,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,460,a,b,457,a),rewrite([8,6,7,5])]. given #2506 (W,wt=55): 2419 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,456,a,b,457,a),rewrite([8,7,6,5])]. given #2507 (W,wt=55): 2420 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,448,a,b,457,a),rewrite([8,7,6,5])]. given #2508 (W,wt=55): 2421 P([0,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,447,a,b,457,a),rewrite([8,7,6,5])]. given #2509 (W,wt=55): 2422 P([0,1,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[1,0,1,1,0,0,0,1]:x]). [hyper(2,a,175,a,b,457,a),rewrite([6,7,5])]. given #2510 (W,wt=55): 2423 P([0,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(3,a,460,a,b,458,a),rewrite([13,11,12,10])]. given #2511 (W,wt=55): 2424 P([0,1,1,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(3,a,184,a,b,458,a),rewrite([13,12,11,10])]. given #2512 (W,wt=55): 2425 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(3,a,181,a,b,458,a),rewrite([11,12,13,10])]. given #2513 (W,wt=55): 2426 P([1,1,1,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(3,a,66,a,b,458,a),rewrite([11,12,13,10])]. given #2514 (W,wt=55): 2427 P([0,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,458,a),rewrite([13,12,11,10])]. given #2515 (W,wt=55): 2428 P([0,0,0,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,462,a,b,458,a),rewrite([8,7,6,5])]. given #2516 (W,wt=55): 2429 P([0,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,460,a,b,458,a),rewrite([8,6,7,5])]. given #2517 (W,wt=55): 2430 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,456,a,b,458,a),rewrite([8,7,6,5])]. given #2518 (W,wt=55): 2431 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,454,a,b,458,a),rewrite([8,7,6,5])]. given #2519 (W,wt=55): 2432 P([0,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,453,a,b,458,a),rewrite([8,7,6,5])]. given #2520 (W,wt=55): 2433 P([0,0,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,0,0,1,1]:x]). [hyper(2,a,172,a,b,458,a),rewrite([6,7,5])]. given #2521 (W,wt=55): 2434 P([0,0,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,454,a,b,459,a),rewrite([13,11,12,10])]. given #2522 (W,wt=55): 2435 P([0,0,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,450,a,b,459,a),rewrite([13,11,12,10])]. given #2523 (W,wt=55): 2436 P([0,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,184,a,b,459,a),rewrite([13,11,12,10])]. given #2524 (W,wt=55): 2437 P([1,0,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,180,a,b,459,a),rewrite([11,13,12,10])]. given #2525 (W,wt=55): 2438 P([1,0,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,179,a,b,459,a),rewrite([11,13,12,10])]. given #2526 (W,wt=55): 2439 P([0,0,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,459,a),rewrite([13,11,12,10])]. given #2527 (W,wt=55): 2441 P([0,0,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,459,a),rewrite([13,12,11,10])]. given #2528 (W,wt=55): 2442 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,459,a),rewrite([8,6,7,5])]. given #2529 (W,wt=55): 2443 P([0,0,1,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,2440,a),rewrite([7,8,6,5])]. given #2530 (W,wt=55): 2444 P([1,0,1,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(2,a,180,a,b,2440,a),rewrite([6,8,7,5])]. given #2531 (W,wt=55): 2445 P([0,1,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,454,a,b,461,a),rewrite([13,12,11,10])]. given #2532 (W,wt=55): 2446 P([0,1,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,448,a,b,461,a),rewrite([13,12,11,10])]. given #2533 (W,wt=55): 2447 P([0,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,184,a,b,461,a),rewrite([13,12,11,10])]. given #2534 (W,wt=55): 2448 P([1,1,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,180,a,b,461,a),rewrite([11,12,13,10])]. given #2535 (W,wt=55): 2449 P([1,1,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,179,a,b,461,a),rewrite([11,12,13,10])]. given #2536 (W,wt=55): 2450 P([0,1,0,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,461,a),rewrite([13,12,11,10])]. given #2537 (W,wt=55): 2452 P([0,1,0,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,461,a),rewrite([13,12,11,10])]. given #2538 (W,wt=55): 2453 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(2,a,454,a,b,461,a),rewrite([8,7,6,5])]. given #2539 (W,wt=55): 2454 P([0,0,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(2,a,454,a,b,2451,a),rewrite([7,6,8,5])]. given #2540 (W,wt=55): 2455 P([1,0,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(2,a,179,a,b,2451,a),rewrite([6,7,8,5])]. given #2541 (W,wt=55): 2456 P([1,0,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,182,a,b,463,a),rewrite([6,7,5])]. given #2542 (W,wt=55): 2457 P([1,1,0,1,0,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,181,a,b,463,a),rewrite([6,7,5])]. given #2543 (W,wt=55): 2458 P([1,0,0,0,0,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,180,a,b,463,a),rewrite([6,7,5])]. given #2544 (W,wt=55): 2459 P([1,0,0,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,179,a,b,463,a),rewrite([6,7,5])]. given #2545 (W,wt=55): 2460 P([1,0,0,0,0,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,178,a,b,463,a),rewrite([6,7,5])]. given #2546 (W,wt=55): 2461 P([1,0,0,1,0,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,176,a,b,463,a),rewrite([6,7,5])]. given #2547 (W,wt=55): 2462 P([1,1,0,1,0,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,175,a,b,463,a),rewrite([6,7,5])]. given #2548 (W,wt=55): 2463 P([1,0,0,0,0,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,174,a,b,463,a),rewrite([6,7,5])]. given #2549 (W,wt=55): 2464 P([1,0,0,0,0,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,173,a,b,463,a),rewrite([6,7,5])]. given #2550 (W,wt=55): 2465 P([1,0,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,172,a,b,463,a),rewrite([6,7,5])]. given #2551 (W,wt=55): 2466 P([1,0,0,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,171,a,b,463,a),rewrite([6,7,5])]. given #2552 (W,wt=55): 2467 P([1,0,0,1,0,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,170,a,b,463,a),rewrite([6,7,5])]. given #2553 (W,wt=55): 2468 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,66,a,b,463,a),rewrite([6,7,5])]. given #2554 (W,wt=55): 2469 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,104,a,b,464,a),rewrite([12,11,13,10])]. given #2555 (W,wt=55): 2470 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,100,a,b,464,a),rewrite([12,13,11,10])]. given #2556 (W,wt=55): 2471 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,79,a,b,464,a),rewrite([12,13,11,10])]. given #2557 (W,wt=55): 2472 P([1,0,1,1,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,76,a,b,464,a),rewrite([12,13,11,10])]. given #2558 (W,wt=55): 2473 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,464,a),rewrite([12,13,11,10])]. given #2559 (W,wt=55): 2474 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,69,a,b,464,a),rewrite([12,11,13,10])]. given #2560 (W,wt=55): 2475 P([1,0,1,1,1,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,44,a,b,464,a),rewrite([12,13,11,10])]. given #2561 (W,wt=55): 2476 P([1,1,1,1,0,1,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,42,a,b,464,a),rewrite([12,11,13,10])]. given #2562 (W,wt=55): 2477 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,103,a,b,464,a),rewrite([7,6,5])]. given #2563 (W,wt=55): 2478 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,99,a,b,464,a),rewrite([7,6,5])]. given #2564 (W,wt=55): 2479 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,464,a),rewrite([7,8,6,5])]. given #2565 (W,wt=55): 2480 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,75,a,b,464,a),rewrite([6,7,5])]. given #2566 (W,wt=55): 2481 P([1,0,0,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,67,a,b,464,a),rewrite([6,7,5])]. given #2567 (W,wt=55): 2482 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,63,a,b,464,a),rewrite([7,8,6,5])]. given #2568 (W,wt=55): 2483 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,41,a,b,464,a),rewrite([6,7,5])]. given #2569 (W,wt=55): 2484 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,39,a,b,464,a),rewrite([6,7,5])]. given #2570 (W,wt=55): 2485 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,202,a,b,465,a),rewrite([13,11,12,10])]. given #2571 (W,wt=55): 2486 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,201,a,b,465,a),rewrite([13,11,12,10])]. given #2572 (W,wt=55): 2487 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,200,a,b,465,a),rewrite([13,11,12,10])]. given #2573 (W,wt=55): 2488 P([0,1,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,199,a,b,465,a),rewrite([13,11,12,10])]. given #2574 (W,wt=55): 2489 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,198,a,b,465,a),rewrite([13,11,12,10])]. given #2575 (W,wt=55): 2490 P([0,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,197,a,b,465,a),rewrite([13,11,12,10])]. given #2576 (W,wt=55): 2491 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,196,a,b,465,a),rewrite([13,12,11,10])]. given #2577 (W,wt=55): 2492 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,195,a,b,465,a),rewrite([13,11,12,10])]. given #2578 (W,wt=55): 2493 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,193,a,b,465,a),rewrite([13,11,12,10])]. given #2579 (W,wt=55): 2494 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,192,a,b,465,a),rewrite([13,12,11,10])]. given #2580 (W,wt=55): 2495 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,191,a,b,465,a),rewrite([13,12,11,10])]. given #2581 (W,wt=55): 2496 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,190,a,b,465,a),rewrite([13,12,11,10])]. given #2582 (W,wt=55): 2497 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,71,a,b,465,a),rewrite([11,12,13,10])]. given #2583 (W,wt=55): 2498 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(3,a,473,a,b,474,a),rewrite([12,11,13,10])]. given #2584 (W,wt=55): 2499 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(3,a,472,a,b,474,a),rewrite([12,11,13,10])]. given #2585 (W,wt=55): 2500 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,473,a,b,474,a),rewrite([7,6,8,5])]. given #2586 (W,wt=55): 2501 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,472,a,b,474,a),rewrite([7,6,8,5])]. given #2587 (W,wt=55): 2502 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,471,a,b,474,a),rewrite([7,6,5])]. given #2588 (W,wt=55): 2503 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,470,a,b,474,a),rewrite([7,6,5])]. given #2589 (W,wt=55): 2504 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,469,a,b,474,a),rewrite([7,6,5])]. given #2590 (W,wt=55): 2505 P([0,1,1,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,468,a,b,474,a),rewrite([7,6,5])]. given #2591 (W,wt=55): 2506 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,202,a,b,474,a),rewrite([7,6,8,5])]. given #2592 (W,wt=55): 2507 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,201,a,b,474,a),rewrite([7,6,8,5])]. given #2593 (W,wt=55): 2508 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,200,a,b,474,a),rewrite([7,6,5])]. given #2594 (W,wt=55): 2509 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,199,a,b,474,a),rewrite([7,6,5])]. given #2595 (W,wt=55): 2510 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,198,a,b,474,a),rewrite([7,6,5])]. given #2596 (W,wt=55): 2511 P([0,1,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,197,a,b,474,a),rewrite([7,6,5])]. given #2597 (W,wt=55): 2512 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,192,a,b,474,a),rewrite([7,6,5])]. given #2598 (W,wt=55): 2513 P([1,1,1,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,189,a,b,474,a),rewrite([6,7,5])]. given #2599 (W,wt=55): 2514 P([1,1,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,474,a),rewrite([6,7,5])]. given #2600 (W,wt=55): 2515 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,68,a,b,474,a),rewrite([7,6,5])]. given #2601 (W,wt=55): 2516 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,63,a,b,474,a),rewrite([7,6,5])]. given #2602 (W,wt=55): 2517 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,58,a,b,474,a),rewrite([7,6,5])]. given #2603 (W,wt=55): 2518 P([0,1,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,53,a,b,474,a),rewrite([7,6,5])]. given #2604 (W,wt=55): 2519 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,30,a,b,474,a),rewrite([7,6,5])]. given #2605 (W,wt=55): 2520 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,29,a,b,474,a),rewrite([7,6,5])]. given #2606 (W,wt=55): 2521 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,26,a,b,474,a),rewrite([7,6,5])]. given #2607 (W,wt=55): 2522 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,20,a,b,474,a),rewrite([7,6,5])]. given #2608 (W,wt=55): 2523 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,473,a,b,475,a),rewrite([7,6,5])]. given #2609 (W,wt=55): 2524 P([0,0,1,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,471,a,b,475,a),rewrite([7,6,5])]. given #2610 (W,wt=55): 2525 P([0,1,1,0,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,470,a,b,475,a),rewrite([7,6,5])]. given #2611 (W,wt=55): 2526 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,469,a,b,475,a),rewrite([7,6,5])]. given #2612 (W,wt=55): 2527 P([0,1,1,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,468,a,b,475,a),rewrite([7,6,5])]. given #2613 (W,wt=55): 2528 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,466,a,b,475,a),rewrite([7,6,5])]. given #2614 (W,wt=55): 2529 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,202,a,b,475,a),rewrite([7,6,5])]. given #2615 (W,wt=55): 2530 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,200,a,b,475,a),rewrite([7,6,5])]. given #2616 (W,wt=55): 2531 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,199,a,b,475,a),rewrite([7,6,5])]. given #2617 (W,wt=55): 2532 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,198,a,b,475,a),rewrite([7,6,5])]. given #2618 (W,wt=55): 2533 P([0,1,1,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,197,a,b,475,a),rewrite([7,6,5])]. given #2619 (W,wt=55): 2534 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,193,a,b,475,a),rewrite([7,6,5])]. given #2620 (W,wt=55): 2535 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,192,a,b,475,a),rewrite([7,6,5])]. given #2621 (W,wt=55): 2536 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,189,a,b,475,a),rewrite([6,7,5])]. given #2622 (W,wt=55): 2537 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,71,a,b,475,a),rewrite([6,7,5])]. given #2623 (W,wt=55): 2538 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,475,a),rewrite([7,6,5])]. given #2624 (W,wt=55): 2539 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,475,a),rewrite([7,6,5])]. given #2625 (W,wt=55): 2540 P([0,1,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,475,a),rewrite([7,6,5])]. given #2626 (W,wt=55): 2541 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,30,a,b,475,a),rewrite([7,6,5])]. given #2627 (W,wt=55): 2542 P([0,1,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,29,a,b,475,a),rewrite([7,6,5])]. given #2628 (W,wt=55): 2543 P([0,0,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,26,a,b,475,a),rewrite([7,6,5])]. given #2629 (W,wt=55): 2544 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,21,a,b,475,a),rewrite([7,6,5])]. given #2630 (W,wt=55): 2545 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,20,a,b,475,a),rewrite([7,6,5])]. given #2631 (W,wt=55): 2546 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,473,a,b,476,a),rewrite([12,11,13,10])]. given #2632 (W,wt=55): 2547 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,472,a,b,476,a),rewrite([12,11,13,10])]. given #2633 (W,wt=55): 2548 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,470,a,b,476,a),rewrite([12,11,13,10])]. given #2634 (W,wt=55): 2549 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,473,a,b,476,a),rewrite([7,6,8,5])]. given #2635 (W,wt=55): 2550 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,472,a,b,476,a),rewrite([7,6,8,5])]. given #2636 (W,wt=55): 2551 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,470,a,b,476,a),rewrite([7,6,8,5])]. given #2637 (W,wt=55): 2552 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,202,a,b,476,a),rewrite([7,6,8,5])]. given #2638 (W,wt=55): 2553 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,201,a,b,476,a),rewrite([7,6,8,5])]. given #2639 (W,wt=55): 2554 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,199,a,b,476,a),rewrite([7,6,8,5])]. given #2640 (W,wt=55): 2555 P([1,1,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,189,a,b,476,a),rewrite([6,7,5])]. given #2641 (W,wt=55): 2556 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,71,a,b,476,a),rewrite([6,7,5])]. given #2642 (W,wt=55): 2557 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,63,a,b,476,a),rewrite([7,6,8,5])]. given #2643 (W,wt=55): 2558 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,58,a,b,476,a),rewrite([7,6,8,5])]. given #2644 (W,wt=55): 2559 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,53,a,b,476,a),rewrite([7,6,5])]. given #2645 (W,wt=55): 2560 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(3,a,473,a,b,477,a),rewrite([12,11,13,10])]. given #2646 (W,wt=55): 2561 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(3,a,472,a,b,477,a),rewrite([12,11,13,10])]. given #2647 (W,wt=0): 10863 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,2561,a),rewrite([6,7,5])]. given #2648 (W,wt=55): 2562 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(3,a,469,a,b,477,a),rewrite([12,11,13,10])]. given #2649 (W,wt=55): 2563 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(3,a,191,a,b,477,a),rewrite([12,13,11,10])]. given #2650 (W,wt=55): 2564 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,472,a,b,477,a),rewrite([7,6,8,5])]. given #2651 (W,wt=55): 2565 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,471,a,b,477,a),rewrite([7,6,5])]. given #2652 (W,wt=55): 2566 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,469,a,b,477,a),rewrite([7,6,8,5])]. given #2653 (W,wt=55): 2567 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,201,a,b,477,a),rewrite([7,6,8,5])]. given #2654 (W,wt=55): 2568 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,200,a,b,477,a),rewrite([7,6,5])]. given #2655 (W,wt=55): 2569 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,198,a,b,477,a),rewrite([7,6,8,5])]. given #2656 (W,wt=55): 2570 P([1,1,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,189,a,b,477,a),rewrite([6,7,5])]. given #2657 (W,wt=55): 2571 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,477,a),rewrite([6,7,5])]. given #2658 (W,wt=55): 2572 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,68,a,b,477,a),rewrite([7,8,6,5])]. given #2659 (W,wt=55): 2573 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,58,a,b,477,a),rewrite([7,6,8,5])]. given #2660 (W,wt=55): 2574 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,0]:x]). [hyper(2,a,53,a,b,477,a),rewrite([7,6,5])]. given #2661 (W,wt=55): 2575 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(3,a,473,a,b,478,a),rewrite([12,13,11,10])]. given #2662 (W,wt=0): 10875 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,2575,a),rewrite([6,7,5])]. given #2663 (W,wt=55): 2576 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(3,a,472,a,b,478,a),rewrite([12,11,13,10])]. given #2664 (W,wt=55): 2577 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(3,a,471,a,b,478,a),rewrite([12,13,11,10])]. given #2665 (W,wt=55): 2578 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(3,a,196,a,b,478,a),rewrite([12,13,11,10])]. given #2666 (W,wt=55): 2579 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,473,a,b,478,a),rewrite([7,8,6,5])]. given #2667 (W,wt=55): 2580 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,471,a,b,478,a),rewrite([7,8,6,5])]. given #2668 (W,wt=55): 2581 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,469,a,b,478,a),rewrite([7,6,5])]. given #2669 (W,wt=55): 2582 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,202,a,b,478,a),rewrite([7,8,6,5])]. given #2670 (W,wt=55): 2583 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,200,a,b,478,a),rewrite([7,8,6,5])]. given #2671 (W,wt=55): 2584 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,198,a,b,478,a),rewrite([7,6,5])]. given #2672 (W,wt=55): 2585 P([1,0,1,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,189,a,b,478,a),rewrite([6,7,5])]. given #2673 (W,wt=55): 2586 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,478,a),rewrite([6,7,5])]. given #2674 (W,wt=55): 2587 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,68,a,b,478,a),rewrite([7,8,6,5])]. given #2675 (W,wt=55): 2588 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,63,a,b,478,a),rewrite([7,8,6,5])]. given #2676 (W,wt=55): 2589 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,0]:x]). [hyper(2,a,53,a,b,478,a),rewrite([7,6,5])]. given #2677 (W,wt=55): 2590 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,472,a,b,479,a),rewrite([7,6,5])]. given #2678 (W,wt=55): 2591 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,471,a,b,479,a),rewrite([7,6,5])]. given #2679 (W,wt=55): 2592 P([0,1,1,0,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,470,a,b,479,a),rewrite([7,6,5])]. given #2680 (W,wt=55): 2593 P([0,1,0,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,469,a,b,479,a),rewrite([7,6,5])]. given #2681 (W,wt=55): 2594 P([0,1,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,468,a,b,479,a),rewrite([7,6,5])]. given #2682 (W,wt=55): 2595 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,467,a,b,479,a),rewrite([7,6,5])]. given #2683 (W,wt=55): 2596 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,201,a,b,479,a),rewrite([7,6,5])]. given #2684 (W,wt=55): 2597 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,200,a,b,479,a),rewrite([7,6,5])]. given #2685 (W,wt=55): 2598 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,199,a,b,479,a),rewrite([7,6,5])]. given #2686 (W,wt=55): 2599 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,198,a,b,479,a),rewrite([7,6,5])]. given #2687 (W,wt=55): 2600 P([0,1,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,197,a,b,479,a),rewrite([7,6,5])]. given #2688 (W,wt=55): 2601 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,195,a,b,479,a),rewrite([7,6,5])]. given #2689 (W,wt=55): 2602 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,192,a,b,479,a),rewrite([7,6,5])]. given #2690 (W,wt=55): 2603 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,189,a,b,479,a),rewrite([6,7,5])]. given #2691 (W,wt=55): 2604 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,71,a,b,479,a),rewrite([6,7,5])]. given #2692 (W,wt=55): 2605 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,479,a),rewrite([7,6,5])]. given #2693 (W,wt=55): 2606 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,479,a),rewrite([7,6,5])]. given #2694 (W,wt=55): 2607 P([0,1,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,479,a),rewrite([7,6,5])]. given #2695 (W,wt=55): 2608 P([0,1,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,30,a,b,479,a),rewrite([7,6,5])]. given #2696 (W,wt=55): 2609 P([0,1,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,29,a,b,479,a),rewrite([7,6,5])]. given #2697 (W,wt=55): 2610 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,26,a,b,479,a),rewrite([7,6,5])]. given #2698 (W,wt=55): 2611 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,22,a,b,479,a),rewrite([7,6,5])]. given #2699 (W,wt=55): 2612 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,20,a,b,479,a),rewrite([7,6,5])]. given #2700 (W,wt=55): 2613 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,473,a,b,480,a),rewrite([12,13,11,10])]. given #2701 (W,wt=55): 2614 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,472,a,b,480,a),rewrite([12,11,13,10])]. given #2702 (W,wt=55): 2615 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,471,a,b,480,a),rewrite([12,13,11,10])]. given #2703 (W,wt=55): 2616 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,470,a,b,480,a),rewrite([12,11,13,10])]. given #2704 (W,wt=55): 2617 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,469,a,b,480,a),rewrite([12,11,13,10])]. given #2705 (W,wt=55): 2618 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,467,a,b,480,a),rewrite([12,11,13,10])]. given #2706 (W,wt=55): 2619 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,466,a,b,480,a),rewrite([12,13,11,10])]. given #2707 (W,wt=55): 2620 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,196,a,b,480,a),rewrite([12,13,11,10])]. given #2708 (W,wt=55): 2621 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,192,a,b,480,a),rewrite([12,13,11,10])]. given #2709 (W,wt=55): 2622 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,191,a,b,480,a),rewrite([12,13,11,10])]. given #2710 (W,wt=55): 2623 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(3,a,190,a,b,480,a),rewrite([12,13,11,10])]. given #2711 (W,wt=55): 2624 P([1,0,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(2,a,189,a,b,480,a),rewrite([6,7,5])]. given #2712 (W,wt=55): 2625 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,0]:x]). [hyper(2,a,71,a,b,480,a),rewrite([6,7,5])]. given #2713 (W,wt=55): 2626 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,473,a,b,481,a),rewrite([12,13,11,10])]. given #2714 (W,wt=55): 2627 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,472,a,b,481,a),rewrite([12,11,13,10])]. given #2715 (W,wt=55): 2628 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,471,a,b,481,a),rewrite([12,13,11,10])]. given #2716 (W,wt=55): 2629 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,470,a,b,481,a),rewrite([12,11,13,10])]. given #2717 (W,wt=55): 2630 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,466,a,b,481,a),rewrite([12,13,11,10])]. given #2718 (W,wt=55): 2631 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(3,a,196,a,b,481,a),rewrite([12,13,11,10])]. given #2719 (W,wt=55): 2632 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(2,a,473,a,b,481,a),rewrite([7,8,6,5])]. given #2720 (W,wt=55): 2633 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(2,a,202,a,b,481,a),rewrite([7,8,6,5])]. given #2721 (W,wt=55): 2634 P([1,0,1,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(2,a,189,a,b,481,a),rewrite([6,7,5])]. given #2722 (W,wt=55): 2635 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(2,a,71,a,b,481,a),rewrite([6,7,5])]. given #2723 (W,wt=55): 2636 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,0]:x]). [hyper(2,a,63,a,b,481,a),rewrite([7,8,6,5])]. given #2724 (W,wt=55): 2637 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,473,a,b,482,a),rewrite([12,13,11,10])]. given #2725 (W,wt=0): 10947 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,2637,a),rewrite([6,7,5])]. given #2726 (W,wt=55): 2638 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,472,a,b,482,a),rewrite([12,11,13,10])]. given #2727 (W,wt=0): 10957 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,2638,a),rewrite([6,7,5])]. given #2728 (W,wt=55): 2639 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,471,a,b,482,a),rewrite([12,13,11,10])]. given #2729 (W,wt=55): 2640 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,469,a,b,482,a),rewrite([12,11,13,10])]. given #2730 (W,wt=55): 2641 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,196,a,b,482,a),rewrite([12,13,11,10])]. given #2731 (W,wt=55): 2642 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,192,a,b,482,a),rewrite([12,13,11,10])]. given #2732 (W,wt=55): 2643 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(3,a,191,a,b,482,a),rewrite([12,13,11,10])]. given #2733 (W,wt=55): 2644 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,471,a,b,482,a),rewrite([7,8,6,5])]. given #2734 (W,wt=55): 2645 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,200,a,b,482,a),rewrite([7,8,6,5])]. given #2735 (W,wt=55): 2646 P([1,0,0,0,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,189,a,b,482,a),rewrite([6,7,5])]. given #2736 (W,wt=55): 2647 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,71,a,b,482,a),rewrite([6,7,5])]. given #2737 (W,wt=55): 2648 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,0]:x]). [hyper(2,a,68,a,b,482,a),rewrite([7,8,6,5])]. given #2738 (W,wt=55): 2649 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,473,a,b,483,a),rewrite([12,11,13,10])]. given #2739 (W,wt=55): 2650 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,472,a,b,483,a),rewrite([12,11,13,10])]. given #2740 (W,wt=55): 2651 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,470,a,b,483,a),rewrite([12,11,13,10])]. given #2741 (W,wt=55): 2652 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,469,a,b,483,a),rewrite([12,11,13,10])]. given #2742 (W,wt=55): 2653 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,467,a,b,483,a),rewrite([12,11,13,10])]. given #2743 (W,wt=55): 2654 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(3,a,191,a,b,483,a),rewrite([12,13,11,10])]. given #2744 (W,wt=55): 2655 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(2,a,472,a,b,483,a),rewrite([7,6,8,5])]. given #2745 (W,wt=55): 2656 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(2,a,201,a,b,483,a),rewrite([7,6,8,5])]. given #2746 (W,wt=55): 2657 P([1,1,0,0,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(2,a,189,a,b,483,a),rewrite([6,7,5])]. given #2747 (W,wt=55): 2658 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(2,a,71,a,b,483,a),rewrite([6,7,5])]. given #2748 (W,wt=55): 2659 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,0]:x]). [hyper(2,a,58,a,b,483,a),rewrite([7,6,8,5])]. given #2749 (W,wt=55): 2660 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(3,a,471,a,b,484,a),rewrite([12,13,11,10])]. given #2750 (W,wt=55): 2661 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,471,a,b,484,a),rewrite([7,8,6,5])]. given #2751 (W,wt=55): 2662 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,469,a,b,484,a),rewrite([7,6,5])]. given #2752 (W,wt=55): 2663 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,200,a,b,484,a),rewrite([7,8,6,5])]. given #2753 (W,wt=55): 2664 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,198,a,b,484,a),rewrite([7,6,5])]. given #2754 (W,wt=55): 2665 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,189,a,b,484,a),rewrite([6,7,5])]. given #2755 (W,wt=55): 2667 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,484,a),rewrite([7,8,6,5])]. given #2756 (W,wt=55): 2668 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,484,a),rewrite([7,6,5])]. given #2757 (W,wt=55): 2669 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(3,a,471,a,b,2666,a),rewrite([12,13,11,10])]. given #2758 (W,wt=55): 2670 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,0]:x]). [hyper(3,a,200,a,b,2666,a),rewrite([12,13,11,10])]. given #2759 (W,wt=55): 2671 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(3,a,469,a,b,485,a),rewrite([12,11,13,10])]. given #2760 (W,wt=55): 2672 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,471,a,b,485,a),rewrite([7,6,5])]. given #2761 (W,wt=55): 2673 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,469,a,b,485,a),rewrite([7,6,8,5])]. given #2762 (W,wt=55): 2674 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,200,a,b,485,a),rewrite([7,6,5])]. given #2763 (W,wt=55): 2675 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,198,a,b,485,a),rewrite([7,6,8,5])]. given #2764 (W,wt=55): 2676 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,189,a,b,485,a),rewrite([6,7,5])]. given #2765 (W,wt=55): 2678 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,485,a),rewrite([7,8,6,5])]. given #2766 (W,wt=55): 2679 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,485,a),rewrite([7,6,5])]. given #2767 (W,wt=55): 2680 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(3,a,469,a,b,2677,a),rewrite([12,11,13,10])]. given #2768 (W,wt=55): 2681 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(3,a,198,a,b,2677,a),rewrite([12,11,13,10])]. given #2769 (W,wt=55): 2682 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,219,a,b,486,a),rewrite([13,11,12,10])]. given #2770 (W,wt=55): 2683 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,218,a,b,486,a),rewrite([13,11,12,10])]. given #2771 (W,wt=55): 2684 P([0,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,217,a,b,486,a),rewrite([13,11,12,10])]. given #2772 (W,wt=55): 2685 P([0,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,216,a,b,486,a),rewrite([13,11,12,10])]. given #2773 (W,wt=55): 2686 P([0,1,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,215,a,b,486,a),rewrite([13,11,12,10])]. given #2774 (W,wt=55): 2687 P([0,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,214,a,b,486,a),rewrite([13,11,12,10])]. given #2775 (W,wt=55): 2688 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,213,a,b,486,a),rewrite([13,11,12,10])]. given #2776 (W,wt=55): 2689 P([0,1,0,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,212,a,b,486,a),rewrite([13,11,12,10])]. given #2777 (W,wt=55): 2690 P([0,0,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,210,a,b,486,a),rewrite([13,11,12,10])]. given #2778 (W,wt=55): 2691 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,209,a,b,486,a),rewrite([13,12,11,10])]. given #2779 (W,wt=55): 2692 P([0,0,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,208,a,b,486,a),rewrite([13,11,12,10])]. given #2780 (W,wt=55): 2693 P([0,0,0,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,207,a,b,486,a),rewrite([13,11,12,10])]. given #2781 (W,wt=55): 2694 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,74,a,b,486,a),rewrite([11,12,13,10])]. given #2782 (W,wt=55): 2695 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(3,a,494,a,b,495,a),rewrite([12,13,11,10])]. given #2783 (W,wt=55): 2696 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(3,a,493,a,b,495,a),rewrite([12,11,13,10])]. given #2784 (W,wt=55): 2697 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,494,a,b,495,a),rewrite([7,8,6,5])]. given #2785 (W,wt=55): 2698 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,493,a,b,495,a),rewrite([7,6,8,5])]. given #2786 (W,wt=55): 2699 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,492,a,b,495,a),rewrite([7,6,5])]. given #2787 (W,wt=55): 2700 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,491,a,b,495,a),rewrite([7,6,5])]. given #2788 (W,wt=55): 2701 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,490,a,b,495,a),rewrite([7,6,5])]. given #2789 (W,wt=55): 2702 P([0,1,1,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,489,a,b,495,a),rewrite([7,6,5])]. given #2790 (W,wt=55): 2703 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,219,a,b,495,a),rewrite([7,8,6,5])]. given #2791 (W,wt=55): 2704 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,218,a,b,495,a),rewrite([7,6,8,5])]. given #2792 (W,wt=55): 2705 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,217,a,b,495,a),rewrite([7,6,5])]. given #2793 (W,wt=55): 2706 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,216,a,b,495,a),rewrite([7,6,5])]. given #2794 (W,wt=55): 2707 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,215,a,b,495,a),rewrite([7,6,5])]. given #2795 (W,wt=55): 2708 P([0,1,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,214,a,b,495,a),rewrite([7,6,5])]. given #2796 (W,wt=55): 2709 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,210,a,b,495,a),rewrite([7,6,5])]. given #2797 (W,wt=55): 2710 P([1,1,1,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,206,a,b,495,a),rewrite([6,7,5])]. given #2798 (W,wt=55): 2711 P([1,1,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,74,a,b,495,a),rewrite([6,7,5])]. given #2799 (W,wt=55): 2712 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,495,a),rewrite([7,6,5])]. given #2800 (W,wt=55): 2713 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,63,a,b,495,a),rewrite([7,6,5])]. given #2801 (W,wt=55): 2714 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,58,a,b,495,a),rewrite([7,6,5])]. given #2802 (W,wt=55): 2715 P([0,1,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,53,a,b,495,a),rewrite([7,6,5])]. given #2803 (W,wt=55): 2716 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,30,a,b,495,a),rewrite([7,6,5])]. given #2804 (W,wt=55): 2717 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,29,a,b,495,a),rewrite([7,6,5])]. given #2805 (W,wt=55): 2718 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,26,a,b,495,a),rewrite([7,6,5])]. given #2806 (W,wt=55): 2719 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,21,a,b,495,a),rewrite([7,6,5])]. given #2807 (W,wt=55): 2720 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(3,a,494,a,b,496,a),rewrite([12,13,11,10])]. given #2808 (W,wt=55): 2721 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(3,a,493,a,b,496,a),rewrite([12,11,13,10])]. given #2809 (W,wt=0): 11051 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,2721,a),rewrite([6,7,5])]. given #2810 (W,wt=55): 2722 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(3,a,491,a,b,496,a),rewrite([12,11,13,10])]. given #2811 (W,wt=55): 2723 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(3,a,209,a,b,496,a),rewrite([12,13,11,10])]. given #2812 (W,wt=55): 2724 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,493,a,b,496,a),rewrite([7,6,8,5])]. given #2813 (W,wt=55): 2725 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,492,a,b,496,a),rewrite([7,6,5])]. given #2814 (W,wt=55): 2726 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,491,a,b,496,a),rewrite([7,6,8,5])]. given #2815 (W,wt=55): 2727 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,218,a,b,496,a),rewrite([7,6,8,5])]. given #2816 (W,wt=55): 2728 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,217,a,b,496,a),rewrite([7,6,5])]. given #2817 (W,wt=55): 2729 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,216,a,b,496,a),rewrite([7,6,8,5])]. given #2818 (W,wt=55): 2730 P([1,1,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,206,a,b,496,a),rewrite([6,7,5])]. given #2819 (W,wt=55): 2731 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,496,a),rewrite([6,7,5])]. given #2820 (W,wt=55): 2732 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,63,a,b,496,a),rewrite([7,6,8,5])]. given #2821 (W,wt=55): 2733 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,58,a,b,496,a),rewrite([7,6,8,5])]. given #2822 (W,wt=55): 2734 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,0]:x]). [hyper(2,a,53,a,b,496,a),rewrite([7,6,5])]. given #2823 (W,wt=55): 2735 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,494,a,b,497,a),rewrite([7,6,5])]. given #2824 (W,wt=55): 2736 P([0,0,1,1,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,492,a,b,497,a),rewrite([7,6,5])]. given #2825 (W,wt=55): 2737 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,491,a,b,497,a),rewrite([7,6,5])]. given #2826 (W,wt=55): 2738 P([0,1,0,1,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,490,a,b,497,a),rewrite([7,6,5])]. given #2827 (W,wt=55): 2739 P([0,1,1,1,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,489,a,b,497,a),rewrite([7,6,5])]. given #2828 (W,wt=55): 2740 P([0,0,0,1,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,487,a,b,497,a),rewrite([7,6,5])]. given #2829 (W,wt=55): 2741 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,219,a,b,497,a),rewrite([7,6,5])]. given #2830 (W,wt=55): 2742 P([0,0,1,1,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,217,a,b,497,a),rewrite([7,6,5])]. given #2831 (W,wt=55): 2743 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,216,a,b,497,a),rewrite([7,6,5])]. given #2832 (W,wt=55): 2744 P([0,1,0,1,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,215,a,b,497,a),rewrite([7,6,5])]. given #2833 (W,wt=55): 2745 P([0,1,1,1,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,214,a,b,497,a),rewrite([7,6,5])]. given #2834 (W,wt=55): 2746 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,210,a,b,497,a),rewrite([7,6,5])]. given #2835 (W,wt=55): 2747 P([0,0,0,1,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,208,a,b,497,a),rewrite([7,6,5])]. given #2836 (W,wt=55): 2748 P([1,1,1,1,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,206,a,b,497,a),rewrite([6,7,5])]. given #2837 (W,wt=55): 2749 P([1,1,1,1,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,74,a,b,497,a),rewrite([6,7,5])]. given #2838 (W,wt=55): 2750 P([0,0,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,497,a),rewrite([7,6,5])]. given #2839 (W,wt=55): 2751 P([0,0,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,497,a),rewrite([7,6,5])]. given #2840 (W,wt=55): 2752 P([0,1,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,497,a),rewrite([7,6,5])]. given #2841 (W,wt=55): 2753 P([0,1,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,30,a,b,497,a),rewrite([7,6,5])]. given #2842 (W,wt=55): 2754 P([0,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,29,a,b,497,a),rewrite([7,6,5])]. given #2843 (W,wt=55): 2755 P([0,0,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,26,a,b,497,a),rewrite([7,6,5])]. given #2844 (W,wt=55): 2756 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,21,a,b,497,a),rewrite([7,6,5])]. given #2845 (W,wt=55): 2757 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,20,a,b,497,a),rewrite([7,6,5])]. given #2846 (W,wt=55): 2758 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,494,a,b,498,a),rewrite([12,13,11,10])]. given #2847 (W,wt=55): 2759 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,493,a,b,498,a),rewrite([12,11,13,10])]. given #2848 (W,wt=55): 2760 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,490,a,b,498,a),rewrite([12,11,13,10])]. given #2849 (W,wt=55): 2761 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,494,a,b,498,a),rewrite([7,8,6,5])]. given #2850 (W,wt=55): 2762 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,493,a,b,498,a),rewrite([7,6,8,5])]. given #2851 (W,wt=55): 2763 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,490,a,b,498,a),rewrite([7,6,8,5])]. given #2852 (W,wt=55): 2764 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,219,a,b,498,a),rewrite([7,8,6,5])]. given #2853 (W,wt=55): 2765 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,218,a,b,498,a),rewrite([7,6,8,5])]. given #2854 (W,wt=55): 2766 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,215,a,b,498,a),rewrite([7,6,8,5])]. given #2855 (W,wt=55): 2767 P([1,1,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,206,a,b,498,a),rewrite([6,7,5])]. given #2856 (W,wt=55): 2768 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,74,a,b,498,a),rewrite([6,7,5])]. given #2857 (W,wt=55): 2769 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,498,a),rewrite([7,8,6,5])]. given #2858 (W,wt=55): 2770 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,58,a,b,498,a),rewrite([7,6,8,5])]. given #2859 (W,wt=55): 2771 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,53,a,b,498,a),rewrite([7,6,5])]. given #2860 (W,wt=55): 2772 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(3,a,494,a,b,499,a),rewrite([12,13,11,10])]. given #2861 (W,wt=0): 11081 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,74,a,b,2772,a),rewrite([6,7,5])]. given #2862 (W,wt=55): 2773 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(3,a,493,a,b,499,a),rewrite([12,11,13,10])]. given #2863 (W,wt=55): 2774 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(3,a,492,a,b,499,a),rewrite([12,13,11,10])]. given #2864 (W,wt=55): 2775 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(3,a,213,a,b,499,a),rewrite([12,13,11,10])]. given #2865 (W,wt=55): 2776 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,494,a,b,499,a),rewrite([7,8,6,5])]. given #2866 (W,wt=55): 2777 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,492,a,b,499,a),rewrite([7,8,6,5])]. given #2867 (W,wt=55): 2778 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,491,a,b,499,a),rewrite([7,6,5])]. given #2868 (W,wt=55): 2779 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,219,a,b,499,a),rewrite([7,8,6,5])]. given #2869 (W,wt=55): 2780 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,217,a,b,499,a),rewrite([7,8,6,5])]. given #2870 (W,wt=55): 2781 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,216,a,b,499,a),rewrite([7,6,5])]. given #2871 (W,wt=55): 2782 P([1,0,1,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,206,a,b,499,a),rewrite([6,7,5])]. given #2872 (W,wt=55): 2783 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,74,a,b,499,a),rewrite([6,7,5])]. given #2873 (W,wt=55): 2784 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,499,a),rewrite([7,8,6,5])]. given #2874 (W,wt=55): 2785 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,63,a,b,499,a),rewrite([7,8,6,5])]. given #2875 (W,wt=55): 2786 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,0]:x]). [hyper(2,a,53,a,b,499,a),rewrite([7,6,5])]. given #2876 (W,wt=55): 2787 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,493,a,b,500,a),rewrite([7,6,5])]. given #2877 (W,wt=55): 2788 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,492,a,b,500,a),rewrite([7,6,5])]. given #2878 (W,wt=55): 2789 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,491,a,b,500,a),rewrite([7,6,5])]. given #2879 (W,wt=55): 2790 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,490,a,b,500,a),rewrite([7,6,5])]. given #2880 (W,wt=55): 2791 P([0,1,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,489,a,b,500,a),rewrite([7,6,5])]. given #2881 (W,wt=55): 2792 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,488,a,b,500,a),rewrite([7,6,5])]. given #2882 (W,wt=55): 2793 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,218,a,b,500,a),rewrite([7,6,5])]. given #2883 (W,wt=55): 2794 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,217,a,b,500,a),rewrite([7,6,5])]. given #2884 (W,wt=55): 2795 P([0,1,1,0,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,216,a,b,500,a),rewrite([7,6,5])]. given #2885 (W,wt=55): 2796 P([0,1,0,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,215,a,b,500,a),rewrite([7,6,5])]. given #2886 (W,wt=55): 2797 P([0,1,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,214,a,b,500,a),rewrite([7,6,5])]. given #2887 (W,wt=55): 2798 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,212,a,b,500,a),rewrite([7,6,5])]. given #2888 (W,wt=55): 2799 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,210,a,b,500,a),rewrite([7,6,5])]. given #2889 (W,wt=55): 2800 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,206,a,b,500,a),rewrite([6,7,5])]. given #2890 (W,wt=55): 2801 P([1,1,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,74,a,b,500,a),rewrite([6,7,5])]. given #2891 (W,wt=55): 2802 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,500,a),rewrite([7,6,5])]. given #2892 (W,wt=55): 2803 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,500,a),rewrite([7,6,5])]. given #2893 (W,wt=55): 2804 P([0,1,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,500,a),rewrite([7,6,5])]. given #2894 (W,wt=55): 2805 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,30,a,b,500,a),rewrite([7,6,5])]. given #2895 (W,wt=55): 2806 P([0,1,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,29,a,b,500,a),rewrite([7,6,5])]. given #2896 (W,wt=55): 2807 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,26,a,b,500,a),rewrite([7,6,5])]. given #2897 (W,wt=55): 2808 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,22,a,b,500,a),rewrite([7,6,5])]. given #2898 (W,wt=55): 2809 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,21,a,b,500,a),rewrite([7,6,5])]. given #2899 (W,wt=55): 2810 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,494,a,b,501,a),rewrite([12,13,11,10])]. given #2900 (W,wt=55): 2811 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,493,a,b,501,a),rewrite([12,11,13,10])]. given #2901 (W,wt=55): 2812 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,492,a,b,501,a),rewrite([12,13,11,10])]. given #2902 (W,wt=55): 2813 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,491,a,b,501,a),rewrite([12,11,13,10])]. given #2903 (W,wt=55): 2814 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,490,a,b,501,a),rewrite([12,11,13,10])]. given #2904 (W,wt=55): 2815 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,488,a,b,501,a),rewrite([12,11,13,10])]. given #2905 (W,wt=55): 2816 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,487,a,b,501,a),rewrite([12,13,11,10])]. given #2906 (W,wt=55): 2817 P([1,0,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,213,a,b,501,a),rewrite([12,13,11,10])]. given #2907 (W,wt=55): 2818 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,210,a,b,501,a),rewrite([12,13,11,10])]. given #2908 (W,wt=55): 2819 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,209,a,b,501,a),rewrite([12,13,11,10])]. given #2909 (W,wt=55): 2820 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(3,a,207,a,b,501,a),rewrite([12,13,11,10])]. given #2910 (W,wt=55): 2821 P([1,0,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(2,a,206,a,b,501,a),rewrite([6,7,5])]. given #2911 (W,wt=55): 2822 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,501,a),rewrite([6,7,5])]. given #2912 (W,wt=55): 2823 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,494,a,b,502,a),rewrite([12,13,11,10])]. given #2913 (W,wt=0): 11135 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,2823,a),rewrite([6,7,5])]. given #2914 (W,wt=55): 2824 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,493,a,b,502,a),rewrite([12,11,13,10])]. given #2915 (W,wt=0): 11145 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,2824,a),rewrite([6,7,5])]. given #2916 (W,wt=55): 2825 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,492,a,b,502,a),rewrite([12,13,11,10])]. given #2917 (W,wt=55): 2826 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,491,a,b,502,a),rewrite([12,11,13,10])]. given #2918 (W,wt=55): 2827 P([1,0,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,213,a,b,502,a),rewrite([12,13,11,10])]. given #2919 (W,wt=55): 2828 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,210,a,b,502,a),rewrite([12,13,11,10])]. given #2920 (W,wt=55): 2829 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(3,a,209,a,b,502,a),rewrite([12,13,11,10])]. given #2921 (W,wt=55): 2830 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,492,a,b,502,a),rewrite([7,8,6,5])]. given #2922 (W,wt=55): 2831 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,217,a,b,502,a),rewrite([7,8,6,5])]. given #2923 (W,wt=55): 2832 P([1,0,1,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,206,a,b,502,a),rewrite([6,7,5])]. given #2924 (W,wt=55): 2833 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,502,a),rewrite([6,7,5])]. given #2925 (W,wt=55): 2834 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,0]:x]). [hyper(2,a,63,a,b,502,a),rewrite([7,8,6,5])]. given #2926 (W,wt=55): 2835 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,494,a,b,503,a),rewrite([12,13,11,10])]. given #2927 (W,wt=55): 2836 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,493,a,b,503,a),rewrite([12,11,13,10])]. given #2928 (W,wt=55): 2837 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,492,a,b,503,a),rewrite([12,13,11,10])]. given #2929 (W,wt=55): 2838 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,490,a,b,503,a),rewrite([12,11,13,10])]. given #2930 (W,wt=55): 2839 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,487,a,b,503,a),rewrite([12,13,11,10])]. given #2931 (W,wt=55): 2840 P([1,0,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(3,a,213,a,b,503,a),rewrite([12,13,11,10])]. given #2932 (W,wt=55): 2841 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(2,a,494,a,b,503,a),rewrite([7,8,6,5])]. given #2933 (W,wt=55): 2842 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(2,a,219,a,b,503,a),rewrite([7,8,6,5])]. given #2934 (W,wt=55): 2843 P([1,0,0,0,1,0,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(2,a,206,a,b,503,a),rewrite([6,7,5])]. given #2935 (W,wt=55): 2844 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(2,a,74,a,b,503,a),rewrite([6,7,5])]. given #2936 (W,wt=55): 2845 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,503,a),rewrite([7,8,6,5])]. given #2937 (W,wt=55): 2846 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,494,a,b,504,a),rewrite([12,13,11,10])]. given #2938 (W,wt=55): 2847 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,493,a,b,504,a),rewrite([12,11,13,10])]. given #2939 (W,wt=55): 2848 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,491,a,b,504,a),rewrite([12,11,13,10])]. given #2940 (W,wt=55): 2849 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,490,a,b,504,a),rewrite([12,11,13,10])]. given #2941 (W,wt=55): 2850 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,488,a,b,504,a),rewrite([12,11,13,10])]. given #2942 (W,wt=55): 2851 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(3,a,209,a,b,504,a),rewrite([12,13,11,10])]. given #2943 (W,wt=55): 2852 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(2,a,493,a,b,504,a),rewrite([7,6,8,5])]. given #2944 (W,wt=55): 2853 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(2,a,218,a,b,504,a),rewrite([7,6,8,5])]. given #2945 (W,wt=55): 2854 P([1,1,0,0,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(2,a,206,a,b,504,a),rewrite([6,7,5])]. given #2946 (W,wt=55): 2855 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(2,a,74,a,b,504,a),rewrite([6,7,5])]. given #2947 (W,wt=55): 2856 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,0]:x]). [hyper(2,a,58,a,b,504,a),rewrite([7,6,8,5])]. given #2948 (W,wt=55): 2857 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(3,a,492,a,b,505,a),rewrite([12,13,11,10])]. given #2949 (W,wt=55): 2858 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,492,a,b,505,a),rewrite([7,8,6,5])]. given #2950 (W,wt=55): 2859 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,491,a,b,505,a),rewrite([7,6,5])]. given #2951 (W,wt=55): 2860 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,217,a,b,505,a),rewrite([7,8,6,5])]. given #2952 (W,wt=55): 2861 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,216,a,b,505,a),rewrite([7,6,5])]. given #2953 (W,wt=55): 2862 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,206,a,b,505,a),rewrite([6,7,5])]. given #2954 (W,wt=55): 2864 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,505,a),rewrite([7,8,6,5])]. given #2955 (W,wt=55): 2865 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,505,a),rewrite([7,6,5])]. given #2956 (W,wt=55): 2866 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(3,a,492,a,b,2863,a),rewrite([12,13,11,10])]. given #2957 (W,wt=55): 2867 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,0]:x]). [hyper(3,a,217,a,b,2863,a),rewrite([12,13,11,10])]. given #2958 (W,wt=55): 2868 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(3,a,491,a,b,506,a),rewrite([12,11,13,10])]. given #2959 (W,wt=55): 2869 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,492,a,b,506,a),rewrite([7,6,5])]. given #2960 (W,wt=55): 2870 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,491,a,b,506,a),rewrite([7,6,8,5])]. given #2961 (W,wt=55): 2871 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,217,a,b,506,a),rewrite([7,6,5])]. given #2962 (W,wt=55): 2872 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,216,a,b,506,a),rewrite([7,6,8,5])]. given #2963 (W,wt=55): 2873 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,206,a,b,506,a),rewrite([6,7,5])]. given #2964 (W,wt=55): 2875 P([0,0,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,63,a,b,506,a),rewrite([7,6,8,5])]. given #2965 (W,wt=55): 2876 P([0,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,53,a,b,506,a),rewrite([7,6,5])]. given #2966 (W,wt=55): 2877 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(3,a,491,a,b,2874,a),rewrite([12,11,13,10])]. given #2967 (W,wt=55): 2878 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(3,a,216,a,b,2874,a),rewrite([12,11,13,10])]. given #2968 (W,wt=55): 2879 P([1,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,239,a,b,507,a),rewrite([11,12,13,10])]. given #2969 (W,wt=55): 2880 P([1,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,238,a,b,507,a),rewrite([11,12,13,10])]. given #2970 (W,wt=55): 2881 P([1,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,237,a,b,507,a),rewrite([11,12,13,10])]. given #2971 (W,wt=55): 2882 P([1,1,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,235,a,b,507,a),rewrite([11,12,13,10])]. given #2972 (W,wt=55): 2883 P([1,1,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,232,a,b,507,a),rewrite([11,12,13,10])]. given #2973 (W,wt=55): 2884 P([1,1,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,231,a,b,507,a),rewrite([11,12,13,10])]. given #2974 (W,wt=55): 2885 P([1,1,1,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,227,a,b,507,a),rewrite([11,12,13,10])]. given #2975 (W,wt=55): 2886 P([1,1,1,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,77,a,b,507,a),rewrite([11,12,13,10])]. given #2976 (W,wt=55): 2887 P([0,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,507,a),rewrite([13,12,11,10])]. given #2977 (W,wt=55): 2888 P([0,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,507,a),rewrite([13,12,11,10])]. given #2978 (W,wt=55): 2889 P([0,1,1,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,507,a),rewrite([13,12,11,10])]. given #2979 (W,wt=55): 2890 P([0,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,507,a),rewrite([13,12,11,10])]. given #2980 (W,wt=55): 2891 P([0,1,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,507,a),rewrite([13,12,11,10])]. given #2981 (W,wt=55): 2892 P([0,1,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,507,a),rewrite([13,12,11,10])]. given #2982 (W,wt=55): 2893 P([0,1,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,507,a),rewrite([13,12,11,10])]. given #2983 (W,wt=55): 2894 P([0,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,239,a,b,507,a),rewrite([6,7,8,5])]. given #2984 (W,wt=55): 2895 P([0,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,238,a,b,507,a),rewrite([6,7,8,5])]. given #2985 (W,wt=55): 2896 P([0,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,237,a,b,507,a),rewrite([6,7,8,5])]. given #2986 (W,wt=55): 2897 P([0,0,1,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,236,a,b,507,a),rewrite([6,7,5])]. given #2987 (W,wt=55): 2898 P([0,1,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,234,a,b,507,a),rewrite([6,7,5])]. given #2988 (W,wt=55): 2899 P([0,1,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,1,1]:x]). [hyper(2,a,233,a,b,507,a),rewrite([6,7,5])]. given #2989 (W,wt=55): 2900 P([1,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,239,a,b,508,a),rewrite([11,12,13,10])]. given #2990 (W,wt=55): 2901 P([1,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,237,a,b,508,a),rewrite([11,12,13,10])]. given #2991 (W,wt=55): 2902 P([1,1,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,231,a,b,508,a),rewrite([11,12,13,10])]. given #2992 (W,wt=55): 2903 P([1,1,1,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,77,a,b,508,a),rewrite([11,12,13,10])]. given #2993 (W,wt=0): 11319 P([1,1,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,233,a,b,2903,a),rewrite([6,7,5])]. given #2994 (W,wt=55): 2904 P([0,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,508,a),rewrite([13,12,11,10])]. given #2995 (W,wt=55): 2905 P([0,1,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,508,a),rewrite([13,12,11,10])]. given #2996 (W,wt=55): 2906 P([0,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,508,a),rewrite([13,12,11,10])]. given #2997 (W,wt=55): 2907 P([0,0,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,239,a,b,508,a),rewrite([6,7,8,5])]. given #2998 (W,wt=55): 2908 P([0,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,238,a,b,508,a),rewrite([6,7,5])]. given #2999 (W,wt=55): 2909 P([0,1,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,237,a,b,508,a),rewrite([6,7,8,5])]. given #3000 (W,wt=55): 2910 P([0,0,1,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,236,a,b,508,a),rewrite([6,7,5])]. given #3001 (W,wt=55): 2911 P([0,1,1,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,234,a,b,508,a),rewrite([6,7,5])]. given #3002 (W,wt=55): 2912 P([0,1,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,233,a,b,508,a),rewrite([6,7,5])]. given #3003 (W,wt=55): 2913 P([0,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,231,a,b,508,a),rewrite([6,7,8,5])]. given #3004 (W,wt=55): 2914 P([0,0,1,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,1,1]:x]). [hyper(2,a,226,a,b,508,a),rewrite([6,7,5])]. given #3005 (W,wt=55): 2915 P([1,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,239,a,b,509,a),rewrite([11,12,13,10])]. given #3006 (W,wt=55): 2916 P([1,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,238,a,b,509,a),rewrite([11,12,13,10])]. given #3007 (W,wt=55): 2917 P([1,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,237,a,b,509,a),rewrite([11,12,13,10])]. given #3008 (W,wt=55): 2918 P([1,1,1,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,235,a,b,509,a),rewrite([11,12,13,10])]. given #3009 (W,wt=55): 2919 P([1,1,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,232,a,b,509,a),rewrite([11,12,13,10])]. given #3010 (W,wt=55): 2920 P([1,1,1,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,231,a,b,509,a),rewrite([11,12,13,10])]. given #3011 (W,wt=55): 2921 P([1,1,1,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,227,a,b,509,a),rewrite([11,12,13,10])]. given #3012 (W,wt=55): 2922 P([1,1,1,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,225,a,b,509,a),rewrite([11,12,13,10])]. given #3013 (W,wt=55): 2923 P([1,1,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,77,a,b,509,a),rewrite([11,12,13,10])]. given #3014 (W,wt=55): 2924 P([0,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,509,a),rewrite([13,12,11,10])]. given #3015 (W,wt=55): 2925 P([0,1,1,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,509,a),rewrite([13,12,11,10])]. given #3016 (W,wt=55): 2926 P([0,1,1,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,509,a),rewrite([13,12,11,10])]. given #3017 (W,wt=55): 2927 P([0,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,509,a),rewrite([13,12,11,10])]. given #3018 (W,wt=55): 2928 P([0,1,1,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,509,a),rewrite([13,12,11,10])]. given #3019 (W,wt=55): 2929 P([0,1,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,509,a),rewrite([13,12,11,10])]. given #3020 (W,wt=55): 2930 P([0,1,1,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,509,a),rewrite([13,12,11,10])]. given #3021 (W,wt=55): 2931 P([0,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,509,a),rewrite([13,12,11,10])]. given #3022 (W,wt=55): 2932 P([0,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(2,a,238,a,b,509,a),rewrite([6,7,8,5])]. given #3023 (W,wt=55): 2933 P([0,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,1,1,1,1]:x]). [hyper(2,a,237,a,b,509,a),rewrite([6,7,8,5])]. given #3024 (W,wt=55): 2934 P([1,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,238,a,b,510,a),rewrite([11,12,13,10])]. given #3025 (W,wt=55): 2935 P([1,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,237,a,b,510,a),rewrite([11,12,13,10])]. given #3026 (W,wt=55): 2936 P([1,1,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,232,a,b,510,a),rewrite([11,12,13,10])]. given #3027 (W,wt=55): 2937 P([1,1,1,1,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,77,a,b,510,a),rewrite([11,12,13,10])]. given #3028 (W,wt=0): 11394 P([1,1,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,234,a,b,2937,a),rewrite([6,7,5])]. given #3029 (W,wt=55): 2938 P([0,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,510,a),rewrite([13,12,11,10])]. given #3030 (W,wt=55): 2939 P([0,1,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,510,a),rewrite([13,12,11,10])]. given #3031 (W,wt=55): 2940 P([0,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,510,a),rewrite([13,12,11,10])]. given #3032 (W,wt=55): 2941 P([0,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,239,a,b,510,a),rewrite([6,7,5])]. given #3033 (W,wt=55): 2942 P([0,0,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,238,a,b,510,a),rewrite([6,7,8,5])]. given #3034 (W,wt=55): 2943 P([0,1,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,237,a,b,510,a),rewrite([6,7,8,5])]. given #3035 (W,wt=55): 2944 P([0,0,1,1,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,236,a,b,510,a),rewrite([6,7,5])]. given #3036 (W,wt=55): 2945 P([0,1,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,234,a,b,510,a),rewrite([6,7,5])]. given #3037 (W,wt=55): 2946 P([0,1,0,1,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,233,a,b,510,a),rewrite([6,7,5])]. given #3038 (W,wt=55): 2947 P([0,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,232,a,b,510,a),rewrite([6,7,8,5])]. given #3039 (W,wt=55): 2948 P([0,0,0,1,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,1,1]:x]). [hyper(2,a,224,a,b,510,a),rewrite([6,7,5])]. given #3040 (W,wt=55): 2949 P([1,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,239,a,b,511,a),rewrite([11,12,13,10])]. given #3041 (W,wt=55): 2950 P([1,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,238,a,b,511,a),rewrite([11,12,13,10])]. given #3042 (W,wt=55): 2951 P([1,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,237,a,b,511,a),rewrite([11,13,12,10])]. given #3043 (W,wt=55): 2952 P([1,1,0,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,235,a,b,511,a),rewrite([11,12,13,10])]. given #3044 (W,wt=55): 2953 P([1,1,0,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,232,a,b,511,a),rewrite([11,12,13,10])]. given #3045 (W,wt=55): 2954 P([1,1,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,231,a,b,511,a),rewrite([11,12,13,10])]. given #3046 (W,wt=55): 2955 P([1,1,0,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,227,a,b,511,a),rewrite([11,12,13,10])]. given #3047 (W,wt=55): 2956 P([1,1,0,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,223,a,b,511,a),rewrite([11,12,13,10])]. given #3048 (W,wt=55): 2957 P([1,1,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,77,a,b,511,a),rewrite([11,12,13,10])]. given #3049 (W,wt=55): 2958 P([0,1,0,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,511,a),rewrite([13,12,11,10])]. given #3050 (W,wt=55): 2959 P([0,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,511,a),rewrite([13,12,11,10])]. given #3051 (W,wt=55): 2960 P([0,1,0,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,511,a),rewrite([13,12,11,10])]. given #3052 (W,wt=55): 2961 P([0,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,511,a),rewrite([13,12,11,10])]. given #3053 (W,wt=55): 2962 P([0,1,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,511,a),rewrite([13,12,11,10])]. given #3054 (W,wt=55): 2963 P([0,1,0,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,511,a),rewrite([13,12,11,10])]. given #3055 (W,wt=55): 2964 P([0,1,0,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,511,a),rewrite([13,12,11,10])]. given #3056 (W,wt=55): 2965 P([0,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,511,a),rewrite([13,12,11,10])]. given #3057 (W,wt=55): 2966 P([0,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(2,a,239,a,b,511,a),rewrite([6,7,8,5])]. given #3058 (W,wt=55): 2967 P([0,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,1,1,1]:x]). [hyper(2,a,237,a,b,511,a),rewrite([6,8,7,5])]. given #3059 (W,wt=55): 2968 P([1,1,1,1,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(3,a,77,a,b,512,a),rewrite([11,12,13,10])]. given #3060 (W,wt=55): 2969 P([0,0,0,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,239,a,b,512,a),rewrite([6,7,5])]. given #3061 (W,wt=55): 2970 P([0,0,1,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,238,a,b,512,a),rewrite([6,7,5])]. given #3062 (W,wt=55): 2971 P([0,1,0,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,237,a,b,512,a),rewrite([6,7,5])]. given #3063 (W,wt=55): 2972 P([0,0,1,1,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,236,a,b,512,a),rewrite([6,7,5])]. given #3064 (W,wt=55): 2973 P([0,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,235,a,b,512,a),rewrite([6,7,5])]. given #3065 (W,wt=55): 2974 P([0,1,1,1,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,234,a,b,512,a),rewrite([6,7,5])]. given #3066 (W,wt=55): 2975 P([0,1,0,1,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,233,a,b,512,a),rewrite([6,7,5])]. given #3067 (W,wt=55): 2976 P([0,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,232,a,b,512,a),rewrite([6,7,5])]. given #3068 (W,wt=55): 2977 P([0,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,231,a,b,512,a),rewrite([6,7,5])]. given #3069 (W,wt=55): 2978 P([0,0,0,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,229,a,b,512,a),rewrite([6,7,5])]. given #3070 (W,wt=55): 2979 P([0,1,0,1,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,228,a,b,512,a),rewrite([6,7,5])]. given #3071 (W,wt=55): 2980 P([0,0,1,1,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,226,a,b,512,a),rewrite([6,7,5])]. given #3072 (W,wt=55): 2981 P([0,0,0,0,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,225,a,b,512,a),rewrite([6,7,5])]. given #3073 (W,wt=55): 2982 P([0,0,0,1,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,224,a,b,512,a),rewrite([6,7,5])]. given #3074 (W,wt=55): 2983 P([0,0,0,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,223,a,b,512,a),rewrite([6,7,5])]. given #3075 (W,wt=55): 2984 P([0,0,0,1,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,0,1]:x]). [hyper(2,a,222,a,b,512,a),rewrite([6,7,5])]. given #3076 (W,wt=55): 2985 P([1,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,239,a,b,513,a),rewrite([11,13,12,10])]. given #3077 (W,wt=55): 2986 P([1,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,238,a,b,513,a),rewrite([11,13,12,10])]. given #3078 (W,wt=55): 2987 P([1,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,237,a,b,513,a),rewrite([11,12,13,10])]. given #3079 (W,wt=55): 2988 P([1,0,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,235,a,b,513,a),rewrite([11,13,12,10])]. given #3080 (W,wt=55): 2989 P([1,0,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,232,a,b,513,a),rewrite([11,13,12,10])]. given #3081 (W,wt=55): 2990 P([1,0,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,231,a,b,513,a),rewrite([11,13,12,10])]. given #3082 (W,wt=55): 2991 P([1,0,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,229,a,b,513,a),rewrite([11,13,12,10])]. given #3083 (W,wt=55): 2992 P([1,0,1,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,227,a,b,513,a),rewrite([11,13,12,10])]. given #3084 (W,wt=55): 2993 P([1,0,1,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,77,a,b,513,a),rewrite([11,13,12,10])]. given #3085 (W,wt=55): 2994 P([0,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,513,a),rewrite([13,12,11,10])]. given #3086 (W,wt=55): 2995 P([0,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,65,a,b,513,a),rewrite([13,12,11,10])]. given #3087 (W,wt=55): 2996 P([0,0,1,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,513,a),rewrite([13,12,11,10])]. given #3088 (W,wt=55): 2997 P([0,0,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,513,a),rewrite([13,12,11,10])]. given #3089 (W,wt=55): 2998 P([0,0,1,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,513,a),rewrite([13,12,11,10])]. given #3090 (W,wt=55): 2999 P([0,0,1,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,513,a),rewrite([13,12,11,10])]. given #3091 (W,wt=55): 3000 P([0,0,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,513,a),rewrite([13,12,11,10])]. given #3092 (W,wt=55): 3001 P([0,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,513,a),rewrite([13,11,12,10])]. given #3093 (W,wt=55): 3002 P([0,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(2,a,239,a,b,513,a),rewrite([6,8,7,5])]. given #3094 (W,wt=55): 3003 P([0,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,1,1]:x]). [hyper(2,a,238,a,b,513,a),rewrite([6,8,7,5])]. given #3095 (W,wt=55): 3004 P([1,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,239,a,b,514,a),rewrite([11,12,13,10])]. given #3096 (W,wt=55): 3005 P([1,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,238,a,b,514,a),rewrite([11,12,13,10])]. given #3097 (W,wt=55): 3006 P([1,1,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,235,a,b,514,a),rewrite([11,12,13,10])]. given #3098 (W,wt=55): 3007 P([1,1,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,77,a,b,514,a),rewrite([11,12,13,10])]. given #3099 (W,wt=0): 11515 P([1,0,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,236,a,b,3007,a),rewrite([6,7,5])]. given #3100 (W,wt=55): 3008 P([0,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,514,a),rewrite([13,12,11,10])]. given #3101 (W,wt=55): 3009 P([0,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,514,a),rewrite([13,12,11,10])]. given #3102 (W,wt=55): 3010 P([0,1,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,514,a),rewrite([13,12,11,10])]. given #3103 (W,wt=55): 3011 P([0,0,0,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,239,a,b,514,a),rewrite([6,7,8,5])]. given #3104 (W,wt=55): 3012 P([0,0,1,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,238,a,b,514,a),rewrite([6,7,8,5])]. given #3105 (W,wt=55): 3013 P([0,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,237,a,b,514,a),rewrite([6,7,5])]. given #3106 (W,wt=55): 3014 P([0,0,1,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,236,a,b,514,a),rewrite([6,7,5])]. given #3107 (W,wt=55): 3015 P([0,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,235,a,b,514,a),rewrite([6,7,8,5])]. given #3108 (W,wt=55): 3016 P([0,1,1,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,234,a,b,514,a),rewrite([6,7,5])]. given #3109 (W,wt=55): 3017 P([0,1,0,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,233,a,b,514,a),rewrite([6,7,5])]. given #3110 (W,wt=55): 3018 P([0,1,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,1,0,1]:x]). [hyper(2,a,228,a,b,514,a),rewrite([6,7,5])]. given #3111 (W,wt=55): 3019 P([1,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(3,a,238,a,b,515,a),rewrite([11,12,13,10])]. given #3112 (W,wt=55): 3020 P([1,1,1,1,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(3,a,77,a,b,515,a),rewrite([11,12,13,10])]. given #3113 (W,wt=55): 3021 P([0,1,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,515,a),rewrite([13,12,11,10])]. given #3114 (W,wt=55): 3022 P([0,0,0,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,239,a,b,515,a),rewrite([6,7,5])]. given #3115 (W,wt=55): 3023 P([0,0,1,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,238,a,b,515,a),rewrite([6,7,8,5])]. given #3116 (W,wt=55): 3024 P([0,1,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,237,a,b,515,a),rewrite([6,7,5])]. given #3117 (W,wt=55): 3025 P([0,0,1,1,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,236,a,b,515,a),rewrite([6,7,5])]. given #3118 (W,wt=55): 3026 P([0,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,235,a,b,515,a),rewrite([6,7,8,5])]. given #3119 (W,wt=55): 3027 P([0,1,1,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,234,a,b,515,a),rewrite([6,7,5])]. given #3120 (W,wt=55): 3028 P([0,1,0,1,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,233,a,b,515,a),rewrite([6,7,5])]. given #3121 (W,wt=55): 3029 P([0,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,232,a,b,515,a),rewrite([6,7,8,5])]. given #3122 (W,wt=55): 3030 P([0,1,0,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,228,a,b,515,a),rewrite([6,7,5])]. given #3123 (W,wt=55): 3031 P([0,0,0,1,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,224,a,b,515,a),rewrite([6,7,5])]. given #3124 (W,wt=55): 3032 P([0,0,0,1,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,1,0,1]:x]). [hyper(2,a,223,a,b,515,a),rewrite([6,7,8,5])]. given #3125 (W,wt=55): 3033 P([1,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(3,a,239,a,b,516,a),rewrite([11,12,13,10])]. given #3126 (W,wt=55): 3034 P([1,1,1,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(3,a,77,a,b,516,a),rewrite([11,12,13,10])]. given #3127 (W,wt=55): 3035 P([0,1,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,516,a),rewrite([13,12,11,10])]. given #3128 (W,wt=55): 3036 P([0,0,0,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,239,a,b,516,a),rewrite([6,7,8,5])]. given #3129 (W,wt=55): 3037 P([0,0,1,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,238,a,b,516,a),rewrite([6,7,5])]. given #3130 (W,wt=55): 3038 P([0,1,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,237,a,b,516,a),rewrite([6,7,5])]. given #3131 (W,wt=55): 3039 P([0,0,1,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,236,a,b,516,a),rewrite([6,7,5])]. given #3132 (W,wt=55): 3040 P([0,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,235,a,b,516,a),rewrite([6,7,8,5])]. given #3133 (W,wt=55): 3041 P([0,1,1,0,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,234,a,b,516,a),rewrite([6,7,5])]. given #3134 (W,wt=55): 3042 P([0,1,0,0,1,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,233,a,b,516,a),rewrite([6,7,5])]. given #3135 (W,wt=55): 3043 P([0,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,231,a,b,516,a),rewrite([6,7,8,5])]. given #3136 (W,wt=55): 3044 P([0,1,0,0,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,228,a,b,516,a),rewrite([6,7,5])]. given #3137 (W,wt=55): 3045 P([0,0,1,0,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,226,a,b,516,a),rewrite([6,7,5])]. given #3138 (W,wt=55): 3046 P([0,0,0,0,0,1,1,0],[[0,1,1,1,1,1,1,1],[1,0,0,1,0,0,0,1]:x]). [hyper(2,a,225,a,b,516,a),rewrite([6,7,8,5])]. given #3139 (W,wt=55): 3047 P([1,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,239,a,b,517,a),rewrite([11,13,12,10])]. given #3140 (W,wt=55): 3048 P([1,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,237,a,b,517,a),rewrite([11,12,13,10])]. given #3141 (W,wt=55): 3049 P([1,0,1,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,235,a,b,517,a),rewrite([11,13,12,10])]. given #3142 (W,wt=55): 3050 P([1,0,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,232,a,b,517,a),rewrite([11,13,12,10])]. given #3143 (W,wt=55): 3051 P([1,0,1,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,231,a,b,517,a),rewrite([11,13,12,10])]. given #3144 (W,wt=55): 3052 P([1,0,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,229,a,b,517,a),rewrite([11,13,12,10])]. given #3145 (W,wt=55): 3053 P([1,0,1,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,227,a,b,517,a),rewrite([11,13,12,10])]. given #3146 (W,wt=55): 3054 P([1,0,1,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,225,a,b,517,a),rewrite([11,13,12,10])]. given #3147 (W,wt=55): 3055 P([1,0,1,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,77,a,b,517,a),rewrite([11,13,12,10])]. given #3148 (W,wt=55): 3056 P([0,0,1,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,517,a),rewrite([13,12,11,10])]. given #3149 (W,wt=55): 3057 P([0,0,1,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,517,a),rewrite([13,12,11,10])]. given #3150 (W,wt=55): 3058 P([0,0,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,517,a),rewrite([13,12,11,10])]. given #3151 (W,wt=55): 3059 P([0,0,1,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,517,a),rewrite([13,12,11,10])]. given #3152 (W,wt=55): 3060 P([0,0,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,517,a),rewrite([13,12,11,10])]. given #3153 (W,wt=55): 3061 P([0,0,1,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,517,a),rewrite([13,12,11,10])]. given #3154 (W,wt=55): 3062 P([0,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,517,a),rewrite([13,11,12,10])]. given #3155 (W,wt=55): 3063 P([0,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,517,a),rewrite([13,12,11,10])]. given #3156 (W,wt=55): 3064 P([1,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,238,a,b,518,a),rewrite([11,13,12,10])]. given #3157 (W,wt=55): 3065 P([1,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,237,a,b,518,a),rewrite([11,13,12,10])]. given #3158 (W,wt=55): 3066 P([1,0,0,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,235,a,b,518,a),rewrite([11,13,12,10])]. given #3159 (W,wt=55): 3067 P([1,0,0,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,232,a,b,518,a),rewrite([11,13,12,10])]. given #3160 (W,wt=55): 3068 P([1,0,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,231,a,b,518,a),rewrite([11,13,12,10])]. given #3161 (W,wt=55): 3069 P([1,0,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,229,a,b,518,a),rewrite([11,13,12,10])]. given #3162 (W,wt=55): 3070 P([1,0,0,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,227,a,b,518,a),rewrite([11,13,12,10])]. given #3163 (W,wt=55): 3071 P([1,0,0,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,223,a,b,518,a),rewrite([11,13,12,10])]. given #3164 (W,wt=55): 3072 P([1,0,0,0,1,0,0,0],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,77,a,b,518,a),rewrite([11,13,12,10])]. given #3165 (W,wt=55): 3073 P([0,0,0,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,518,a),rewrite([13,11,12,10])]. given #3166 (W,wt=55): 3074 P([0,0,0,0,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,518,a),rewrite([13,12,11,10])]. given #3167 (W,wt=55): 3075 P([0,0,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,518,a),rewrite([13,11,12,10])]. given #3168 (W,wt=55): 3076 P([0,0,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,518,a),rewrite([13,12,11,10])]. given #3169 (W,wt=55): 3077 P([0,0,0,1,1,0,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,518,a),rewrite([13,11,12,10])]. given #3170 (W,wt=55): 3078 P([0,0,0,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,518,a),rewrite([13,12,11,10])]. given #3171 (W,wt=55): 3079 P([0,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,518,a),rewrite([13,11,12,10])]. given #3172 (W,wt=55): 3080 P([0,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,518,a),rewrite([13,11,12,10])]. given #3173 (W,wt=55): 3081 P([1,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(3,a,237,a,b,519,a),rewrite([11,12,13,10])]. given #3174 (W,wt=55): 3082 P([1,1,1,1,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(3,a,77,a,b,519,a),rewrite([11,12,13,10])]. given #3175 (W,wt=55): 3083 P([0,1,1,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,519,a),rewrite([13,12,11,10])]. given #3176 (W,wt=55): 3084 P([0,0,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,239,a,b,519,a),rewrite([6,7,5])]. given #3177 (W,wt=55): 3085 P([0,0,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,238,a,b,519,a),rewrite([6,7,5])]. given #3178 (W,wt=55): 3086 P([0,1,0,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,237,a,b,519,a),rewrite([6,7,8,5])]. given #3179 (W,wt=55): 3087 P([0,0,1,1,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,236,a,b,519,a),rewrite([6,7,5])]. given #3180 (W,wt=55): 3088 P([0,1,1,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,234,a,b,519,a),rewrite([6,7,5])]. given #3181 (W,wt=55): 3089 P([0,1,0,1,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,233,a,b,519,a),rewrite([6,7,5])]. given #3182 (W,wt=55): 3090 P([0,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,232,a,b,519,a),rewrite([6,7,8,5])]. given #3183 (W,wt=55): 3091 P([0,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,231,a,b,519,a),rewrite([6,7,8,5])]. given #3184 (W,wt=55): 3092 P([0,0,0,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,229,a,b,519,a),rewrite([6,7,8,5])]. given #3185 (W,wt=55): 3093 P([0,0,1,1,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,226,a,b,519,a),rewrite([6,7,5])]. given #3186 (W,wt=55): 3094 P([0,0,0,1,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,0,0,1,1]:x]). [hyper(2,a,224,a,b,519,a),rewrite([6,7,5])]. given #3187 (W,wt=55): 3095 P([1,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,239,a,b,520,a),rewrite([11,12,13,10])]. given #3188 (W,wt=55): 3096 P([1,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,238,a,b,520,a),rewrite([11,12,13,10])]. given #3189 (W,wt=55): 3097 P([1,1,0,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,235,a,b,520,a),rewrite([11,12,13,10])]. given #3190 (W,wt=55): 3098 P([1,1,0,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,232,a,b,520,a),rewrite([11,12,13,10])]. given #3191 (W,wt=55): 3099 P([1,1,0,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,231,a,b,520,a),rewrite([11,12,13,10])]. given #3192 (W,wt=55): 3100 P([1,1,0,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,227,a,b,520,a),rewrite([11,12,13,10])]. given #3193 (W,wt=55): 3101 P([1,1,0,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,225,a,b,520,a),rewrite([11,12,13,10])]. given #3194 (W,wt=55): 3102 P([1,1,0,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,223,a,b,520,a),rewrite([11,12,13,10])]. given #3195 (W,wt=55): 3103 P([1,1,0,0,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,77,a,b,520,a),rewrite([11,12,13,10])]. given #3196 (W,wt=55): 3104 P([0,1,0,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,520,a),rewrite([13,12,11,10])]. given #3197 (W,wt=55): 3105 P([0,1,0,0,0,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,520,a),rewrite([13,12,11,10])]. given #3198 (W,wt=55): 3106 P([0,1,0,0,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,520,a),rewrite([13,12,11,10])]. given #3199 (W,wt=55): 3107 P([0,1,0,0,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,520,a),rewrite([13,12,11,10])]. given #3200 (W,wt=55): 3108 P([0,1,0,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,520,a),rewrite([13,12,11,10])]. given #3201 (W,wt=55): 3109 P([0,1,0,0,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,520,a),rewrite([13,12,11,10])]. given #3202 (W,wt=55): 3110 P([0,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,520,a),rewrite([13,12,11,10])]. given #3203 (W,wt=55): 3111 P([0,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,520,a),rewrite([13,12,11,10])]. given #3204 (W,wt=55): 3112 P([1,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,239,a,b,521,a),rewrite([11,13,12,10])]. given #3205 (W,wt=55): 3113 P([1,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,238,a,b,521,a),rewrite([11,13,12,10])]. given #3206 (W,wt=55): 3114 P([1,0,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,235,a,b,521,a),rewrite([11,13,12,10])]. given #3207 (W,wt=55): 3116 P([0,0,1,1,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,521,a),rewrite([13,12,11,10])]. given #3208 (W,wt=55): 3117 P([0,0,1,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,521,a),rewrite([13,12,11,10])]. given #3209 (W,wt=55): 3118 P([0,0,1,0,1,0,1,1],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,521,a),rewrite([13,12,11,10])]. given #3210 (W,wt=55): 3119 P([0,0,0,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,239,a,b,521,a),rewrite([6,8,7,5])]. given #3211 (W,wt=55): 3120 P([0,0,1,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,238,a,b,521,a),rewrite([6,8,7,5])]. given #3212 (W,wt=55): 3121 P([0,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,235,a,b,521,a),rewrite([6,8,7,5])]. given #3213 (W,wt=55): 3122 P([1,0,0,0,1,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,239,a,b,3115,a),rewrite([6,8,7,5])]. given #3214 (W,wt=55): 3123 P([1,0,1,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,238,a,b,3115,a),rewrite([6,8,7,5])]. given #3215 (W,wt=55): 3124 P([1,0,0,0,0,0,1,0],[[0,1,1,1,1,1,1,1],[1,1,0,1,0,1,0,1]:x]). [hyper(2,a,235,a,b,3115,a),rewrite([6,8,7,5])]. given #3216 (W,wt=55): 3125 P([1,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,239,a,b,522,a),rewrite([11,12,13,10])]. given #3217 (W,wt=55): 3126 P([1,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,237,a,b,522,a),rewrite([11,13,12,10])]. given #3218 (W,wt=55): 3127 P([1,1,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,231,a,b,522,a),rewrite([11,12,13,10])]. given #3219 (W,wt=55): 3129 P([0,1,0,0,1,1,1,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,522,a),rewrite([13,12,11,10])]. given #3220 (W,wt=55): 3130 P([0,1,0,0,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,522,a),rewrite([13,12,11,10])]. given #3221 (W,wt=55): 3131 P([0,1,0,1,1,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,522,a),rewrite([13,12,11,10])]. given #3222 (W,wt=55): 3132 P([0,0,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,239,a,b,522,a),rewrite([6,7,8,5])]. given #3223 (W,wt=55): 3133 P([0,1,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,237,a,b,522,a),rewrite([6,8,7,5])]. given #3224 (W,wt=55): 3134 P([0,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,231,a,b,522,a),rewrite([6,7,8,5])]. given #3225 (W,wt=55): 3135 P([1,0,0,0,1,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,239,a,b,3128,a),rewrite([6,7,8,5])]. given #3226 (W,wt=55): 3136 P([1,1,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,237,a,b,3128,a),rewrite([6,8,7,5])]. given #3227 (W,wt=55): 3137 P([1,0,0,0,0,1,0,0],[[0,1,1,1,1,1,1,1],[1,0,1,1,0,0,1,1]:x]). [hyper(2,a,231,a,b,3128,a),rewrite([6,7,8,5])]. given #3228 (W,wt=55): 3138 P([1,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,238,a,b,523,a),rewrite([11,12,13,10])]. given #3229 (W,wt=55): 3139 P([1,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,237,a,b,523,a),rewrite([11,12,13,10])]. given #3230 (W,wt=55): 3140 P([1,1,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,232,a,b,523,a),rewrite([11,12,13,10])]. given #3231 (W,wt=55): 3142 P([0,1,1,1,0,0,1,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,523,a),rewrite([13,12,11,10])]. given #3232 (W,wt=55): 3143 P([0,1,1,1,0,0,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,523,a),rewrite([13,12,11,10])]. given #3233 (W,wt=55): 3144 P([0,1,1,1,0,1,0,1],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,523,a),rewrite([13,12,11,10])]. given #3234 (W,wt=55): 3145 P([0,0,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,238,a,b,523,a),rewrite([6,7,8,5])]. given #3235 (W,wt=55): 3146 P([0,1,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,237,a,b,523,a),rewrite([6,7,8,5])]. given #3236 (W,wt=55): 3147 P([0,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,232,a,b,523,a),rewrite([6,7,8,5])]. given #3237 (W,wt=55): 3148 P([1,0,1,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,238,a,b,3141,a),rewrite([6,7,8,5])]. given #3238 (W,wt=55): 3149 P([1,1,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,237,a,b,3141,a),rewrite([6,7,8,5])]. given #3239 (W,wt=55): 3150 P([1,0,0,1,0,0,0,0],[[0,1,1,1,1,1,1,1],[1,0,0,0,1,1,1,1]:x]). [hyper(2,a,232,a,b,3141,a),rewrite([6,7,8,5])]. given #3240 (W,wt=55): 3151 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,254,a,b,524,a),rewrite([13,11,12,10])]. given #3241 (W,wt=55): 3152 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,253,a,b,524,a),rewrite([13,11,12,10])]. given #3242 (W,wt=55): 3153 P([0,1,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,252,a,b,524,a),rewrite([13,11,12,10])]. given #3243 (W,wt=55): 3154 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,251,a,b,524,a),rewrite([13,11,12,10])]. given #3244 (W,wt=55): 3155 P([0,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,250,a,b,524,a),rewrite([13,11,12,10])]. given #3245 (W,wt=55): 3156 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,249,a,b,524,a),rewrite([13,11,12,10])]. given #3246 (W,wt=55): 3157 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,247,a,b,524,a),rewrite([13,11,12,10])]. given #3247 (W,wt=55): 3158 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,246,a,b,524,a),rewrite([13,11,12,10])]. given #3248 (W,wt=55): 3159 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,245,a,b,524,a),rewrite([13,12,11,10])]. given #3249 (W,wt=55): 3160 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,78,a,b,524,a),rewrite([11,13,12,10])]. given #3250 (W,wt=55): 3161 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,254,a,b,533,a),rewrite([13,11,12,10])]. given #3251 (W,wt=55): 3162 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,253,a,b,533,a),rewrite([13,11,12,10])]. given #3252 (W,wt=55): 3163 P([0,1,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,252,a,b,533,a),rewrite([13,11,12,10])]. given #3253 (W,wt=55): 3164 P([0,1,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,251,a,b,533,a),rewrite([13,11,12,10])]. given #3254 (W,wt=55): 3165 P([0,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,250,a,b,533,a),rewrite([13,11,12,10])]. given #3255 (W,wt=55): 3166 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,249,a,b,533,a),rewrite([13,11,12,10])]. given #3256 (W,wt=55): 3167 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,247,a,b,533,a),rewrite([13,11,12,10])]. given #3257 (W,wt=55): 3168 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,246,a,b,533,a),rewrite([13,12,11,10])]. given #3258 (W,wt=55): 3169 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,245,a,b,533,a),rewrite([13,12,11,10])]. given #3259 (W,wt=55): 3170 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,78,a,b,533,a),rewrite([11,12,13,10])]. given #3260 (W,wt=55): 3171 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,254,a,b,542,a),rewrite([13,11,12,10])]. given #3261 (W,wt=55): 3172 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,542,a),rewrite([13,11,12,10])]. given #3262 (W,wt=55): 3173 P([0,1,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,542,a),rewrite([13,11,12,10])]. given #3263 (W,wt=55): 3174 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,251,a,b,542,a),rewrite([13,11,12,10])]. given #3264 (W,wt=55): 3175 P([0,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,250,a,b,542,a),rewrite([13,11,12,10])]. given #3265 (W,wt=55): 3176 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,249,a,b,542,a),rewrite([13,11,12,10])]. given #3266 (W,wt=55): 3177 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,247,a,b,542,a),rewrite([13,11,12,10])]. given #3267 (W,wt=55): 3178 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,246,a,b,542,a),rewrite([13,12,11,10])]. given #3268 (W,wt=55): 3179 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,245,a,b,542,a),rewrite([13,12,11,10])]. given #3269 (W,wt=55): 3180 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,78,a,b,542,a),rewrite([11,12,13,10])]. given #3270 (W,wt=55): 3181 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(2,a,540,a,b,542,a),rewrite([8,6,7,5])]. given #3271 (W,wt=55): 3182 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[1,1,1,0,1,0,1,1]:x]). [hyper(2,a,531,a,b,542,a),rewrite([8,6,7,5])]. given #3272 (W,wt=55): 3183 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,547,a,b,549,a),rewrite([7,6,5])]. given #3273 (W,wt=55): 3184 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,546,a,b,549,a),rewrite([7,6,5])]. given #3274 (W,wt=55): 3185 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,545,a,b,549,a),rewrite([7,6,5])]. given #3275 (W,wt=55): 3186 P([0,1,1,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,544,a,b,549,a),rewrite([7,6,5])]. given #3276 (W,wt=55): 3187 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,541,a,b,549,a),rewrite([7,6,5])]. given #3277 (W,wt=55): 3188 P([0,0,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,539,a,b,549,a),rewrite([7,6,5])]. given #3278 (W,wt=55): 3189 P([0,1,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,538,a,b,549,a),rewrite([7,6,5])]. given #3279 (W,wt=55): 3190 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,537,a,b,549,a),rewrite([7,6,5])]. given #3280 (W,wt=55): 3191 P([0,1,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,536,a,b,549,a),rewrite([7,6,5])]. given #3281 (W,wt=55): 3192 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,534,a,b,549,a),rewrite([7,6,5])]. given #3282 (W,wt=55): 3193 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,532,a,b,549,a),rewrite([7,6,5])]. given #3283 (W,wt=55): 3194 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,530,a,b,549,a),rewrite([7,6,5])]. given #3284 (W,wt=55): 3195 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,529,a,b,549,a),rewrite([7,6,5])]. given #3285 (W,wt=55): 3196 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,528,a,b,549,a),rewrite([7,6,5])]. given #3286 (W,wt=55): 3197 P([0,1,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,527,a,b,549,a),rewrite([7,6,5])]. given #3287 (W,wt=55): 3198 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,525,a,b,549,a),rewrite([7,6,5])]. given #3288 (W,wt=55): 3199 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,253,a,b,549,a),rewrite([7,6,5])]. given #3289 (W,wt=55): 3200 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,252,a,b,549,a),rewrite([7,6,5])]. given #3290 (W,wt=55): 3201 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,251,a,b,549,a),rewrite([7,6,5])]. given #3291 (W,wt=55): 3202 P([0,1,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,250,a,b,549,a),rewrite([7,6,5])]. given #3292 (W,wt=55): 3203 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,247,a,b,549,a),rewrite([7,6,5])]. given #3293 (W,wt=55): 3204 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,246,a,b,549,a),rewrite([7,6,5])]. given #3294 (W,wt=55): 3205 P([1,1,1,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,244,a,b,549,a),rewrite([6,7,5])]. given #3295 (W,wt=55): 3206 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,243,a,b,549,a),rewrite([6,7,5])]. given #3296 (W,wt=55): 3207 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,242,a,b,549,a),rewrite([6,7,5])]. given #3297 (W,wt=55): 3208 P([1,1,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,549,a),rewrite([6,7,5])]. given #3298 (W,wt=55): 3209 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,549,a),rewrite([7,6,5])]. given #3299 (W,wt=55): 3210 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,549,a),rewrite([7,6,5])]. given #3300 (W,wt=55): 3211 P([0,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,549,a),rewrite([7,6,5])]. given #3301 (W,wt=55): 3212 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,30,a,b,549,a),rewrite([7,6,5])]. given #3302 (W,wt=55): 3213 P([0,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,29,a,b,549,a),rewrite([7,6,5])]. given #3303 (W,wt=55): 3214 P([0,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,26,a,b,549,a),rewrite([7,6,5])]. given #3304 (W,wt=55): 3215 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,21,a,b,549,a),rewrite([7,6,5])]. given #3305 (W,wt=55): 3216 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,20,a,b,549,a),rewrite([7,6,5])]. given #3306 (W,wt=55): 3217 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(3,a,546,a,b,550,a),rewrite([12,11,13,10])]. given #3307 (W,wt=55): 3218 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,547,a,b,550,a),rewrite([7,6,5])]. given #3308 (W,wt=55): 3219 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,546,a,b,550,a),rewrite([7,6,8,5])]. given #3309 (W,wt=55): 3220 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,539,a,b,550,a),rewrite([7,6,5])]. given #3310 (W,wt=55): 3221 P([0,1,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,538,a,b,550,a),rewrite([7,6,8,5])]. given #3311 (W,wt=55): 3222 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,530,a,b,550,a),rewrite([7,6,5])]. given #3312 (W,wt=55): 3223 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,529,a,b,550,a),rewrite([7,6,8,5])]. given #3313 (W,wt=55): 3224 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,253,a,b,550,a),rewrite([7,6,5])]. given #3314 (W,wt=55): 3225 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,252,a,b,550,a),rewrite([7,6,8,5])]. given #3315 (W,wt=55): 3226 P([1,1,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,244,a,b,550,a),rewrite([6,7,5])]. given #3316 (W,wt=55): 3227 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,243,a,b,550,a),rewrite([6,7,5])]. given #3317 (W,wt=55): 3228 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,242,a,b,550,a),rewrite([6,7,5])]. given #3318 (W,wt=55): 3229 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,550,a),rewrite([6,7,5])]. given #3319 (W,wt=55): 3230 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,63,a,b,550,a),rewrite([7,6,8,5])]. given #3320 (W,wt=55): 3231 P([0,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,0]:x]). [hyper(2,a,53,a,b,550,a),rewrite([7,6,5])]. given #3321 (W,wt=55): 3232 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(3,a,545,a,b,551,a),rewrite([12,11,13,10])]. given #3322 (W,wt=55): 3233 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,547,a,b,551,a),rewrite([7,6,5])]. given #3323 (W,wt=55): 3234 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,545,a,b,551,a),rewrite([7,6,8,5])]. given #3324 (W,wt=55): 3235 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,539,a,b,551,a),rewrite([7,6,5])]. given #3325 (W,wt=55): 3236 P([0,1,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,537,a,b,551,a),rewrite([7,6,8,5])]. given #3326 (W,wt=55): 3237 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,530,a,b,551,a),rewrite([7,6,5])]. given #3327 (W,wt=55): 3238 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,528,a,b,551,a),rewrite([7,6,8,5])]. given #3328 (W,wt=55): 3239 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,253,a,b,551,a),rewrite([7,6,5])]. given #3329 (W,wt=55): 3240 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,251,a,b,551,a),rewrite([7,6,8,5])]. given #3330 (W,wt=55): 3241 P([1,1,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,244,a,b,551,a),rewrite([6,7,5])]. given #3331 (W,wt=55): 3242 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,243,a,b,551,a),rewrite([6,7,5])]. given #3332 (W,wt=55): 3243 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,242,a,b,551,a),rewrite([6,7,5])]. given #3333 (W,wt=55): 3244 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,551,a),rewrite([6,7,5])]. given #3334 (W,wt=55): 3245 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,551,a),rewrite([7,8,6,5])]. given #3335 (W,wt=55): 3246 P([0,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,551,a),rewrite([7,6,5])]. given #3336 (W,wt=55): 3247 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(3,a,548,a,b,552,a),rewrite([12,11,13,10])]. given #3337 (W,wt=55): 3248 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(3,a,547,a,b,552,a),rewrite([12,13,11,10])]. given #3338 (W,wt=0): 11669 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,3248,a),rewrite([6,7,5])]. given #3339 (W,wt=55): 3249 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,547,a,b,552,a),rewrite([7,8,6,5])]. given #3340 (W,wt=55): 3250 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,546,a,b,552,a),rewrite([7,6,5])]. given #3341 (W,wt=55): 3251 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,545,a,b,552,a),rewrite([7,6,5])]. given #3342 (W,wt=55): 3252 P([0,0,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,539,a,b,552,a),rewrite([7,8,6,5])]. given #3343 (W,wt=55): 3253 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,538,a,b,552,a),rewrite([7,6,5])]. given #3344 (W,wt=55): 3254 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,537,a,b,552,a),rewrite([7,6,5])]. given #3345 (W,wt=55): 3255 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,530,a,b,552,a),rewrite([7,8,6,5])]. given #3346 (W,wt=55): 3256 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,529,a,b,552,a),rewrite([7,6,5])]. given #3347 (W,wt=55): 3257 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,528,a,b,552,a),rewrite([7,6,5])]. given #3348 (W,wt=55): 3258 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,253,a,b,552,a),rewrite([7,8,6,5])]. given #3349 (W,wt=55): 3259 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,252,a,b,552,a),rewrite([7,6,5])]. given #3350 (W,wt=55): 3260 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,251,a,b,552,a),rewrite([7,6,5])]. given #3351 (W,wt=55): 3261 P([1,0,1,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,244,a,b,552,a),rewrite([6,7,5])]. given #3352 (W,wt=55): 3262 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,243,a,b,552,a),rewrite([6,7,5])]. given #3353 (W,wt=55): 3263 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,242,a,b,552,a),rewrite([6,7,5])]. given #3354 (W,wt=55): 3264 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,552,a),rewrite([6,7,5])]. given #3355 (W,wt=55): 3265 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,552,a),rewrite([7,8,6,5])]. given #3356 (W,wt=55): 3266 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,552,a),rewrite([7,8,6,5])]. given #3357 (W,wt=55): 3267 P([0,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,552,a),rewrite([7,6,5])]. given #3358 (W,wt=55): 3268 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,548,a,b,553,a),rewrite([12,11,13,10])]. given #3359 (W,wt=55): 3269 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,547,a,b,553,a),rewrite([12,13,11,10])]. given #3360 (W,wt=0): 11677 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,3269,a),rewrite([6,7,5])]. given #3361 (W,wt=55): 3270 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,546,a,b,553,a),rewrite([12,11,13,10])]. given #3362 (W,wt=55): 3271 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,545,a,b,553,a),rewrite([12,11,13,10])]. given #3363 (W,wt=55): 3272 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,543,a,b,553,a),rewrite([12,11,13,10])]. given #3364 (W,wt=55): 3273 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,541,a,b,553,a),rewrite([12,13,11,10])]. given #3365 (W,wt=55): 3274 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,532,a,b,553,a),rewrite([12,13,11,10])]. given #3366 (W,wt=55): 3275 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(3,a,245,a,b,553,a),rewrite([12,13,11,10])]. given #3367 (W,wt=55): 3276 P([1,0,0,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(2,a,244,a,b,553,a),rewrite([6,7,5])]. given #3368 (W,wt=55): 3277 P([1,0,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(2,a,243,a,b,553,a),rewrite([6,7,5])]. given #3369 (W,wt=55): 3278 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(2,a,242,a,b,553,a),rewrite([6,7,5])]. given #3370 (W,wt=55): 3279 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,553,a),rewrite([6,7,5])]. given #3371 (W,wt=55): 3280 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(3,a,548,a,b,554,a),rewrite([12,11,13,10])]. given #3372 (W,wt=55): 3281 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(3,a,547,a,b,554,a),rewrite([12,13,11,10])]. given #3373 (W,wt=0): 11714 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,3281,a),rewrite([6,7,5])]. given #3374 (W,wt=55): 3282 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(3,a,546,a,b,554,a),rewrite([12,11,13,10])]. given #3375 (W,wt=55): 3283 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(3,a,541,a,b,554,a),rewrite([12,13,11,10])]. given #3376 (W,wt=55): 3284 P([0,0,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,547,a,b,554,a),rewrite([7,8,6,5])]. given #3377 (W,wt=55): 3285 P([0,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,539,a,b,554,a),rewrite([7,8,6,5])]. given #3378 (W,wt=55): 3286 P([0,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,530,a,b,554,a),rewrite([7,8,6,5])]. given #3379 (W,wt=55): 3287 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,253,a,b,554,a),rewrite([7,8,6,5])]. given #3380 (W,wt=55): 3288 P([1,0,1,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,244,a,b,554,a),rewrite([6,7,5])]. given #3381 (W,wt=55): 3289 P([1,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,243,a,b,554,a),rewrite([6,7,5])]. given #3382 (W,wt=55): 3290 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,242,a,b,554,a),rewrite([6,7,5])]. given #3383 (W,wt=55): 3291 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,554,a),rewrite([6,7,5])]. given #3384 (W,wt=55): 3292 P([0,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,0]:x]). [hyper(2,a,63,a,b,554,a),rewrite([7,8,6,5])]. given #3385 (W,wt=55): 3293 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(3,a,548,a,b,555,a),rewrite([12,11,13,10])]. given #3386 (W,wt=55): 3294 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(3,a,547,a,b,555,a),rewrite([12,13,11,10])]. given #3387 (W,wt=0): 11735 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,3294,a),rewrite([6,7,5])]. given #3388 (W,wt=55): 3295 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(3,a,545,a,b,555,a),rewrite([12,11,13,10])]. given #3389 (W,wt=55): 3296 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(3,a,532,a,b,555,a),rewrite([12,13,11,10])]. given #3390 (W,wt=55): 3297 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,547,a,b,555,a),rewrite([7,8,6,5])]. given #3391 (W,wt=55): 3298 P([0,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,539,a,b,555,a),rewrite([7,8,6,5])]. given #3392 (W,wt=55): 3299 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,530,a,b,555,a),rewrite([7,8,6,5])]. given #3393 (W,wt=55): 3300 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,253,a,b,555,a),rewrite([7,8,6,5])]. given #3394 (W,wt=55): 3301 P([1,0,0,0,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,244,a,b,555,a),rewrite([6,7,5])]. given #3395 (W,wt=55): 3302 P([1,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,243,a,b,555,a),rewrite([6,7,5])]. given #3396 (W,wt=55): 3303 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,242,a,b,555,a),rewrite([6,7,5])]. given #3397 (W,wt=55): 3304 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,78,a,b,555,a),rewrite([6,7,5])]. given #3398 (W,wt=55): 3305 P([0,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,555,a),rewrite([7,8,6,5])]. given #3399 (W,wt=55): 3306 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,546,a,b,556,a),rewrite([12,11,13,10])]. given #3400 (W,wt=55): 3307 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,545,a,b,556,a),rewrite([12,11,13,10])]. given #3401 (W,wt=55): 3308 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(3,a,543,a,b,556,a),rewrite([12,11,13,10])]. given #3402 (W,wt=55): 3309 P([1,1,0,0,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,244,a,b,556,a),rewrite([6,7,5])]. given #3403 (W,wt=55): 3310 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,243,a,b,556,a),rewrite([6,7,5])]. given #3404 (W,wt=55): 3311 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,242,a,b,556,a),rewrite([6,7,5])]. given #3405 (W,wt=55): 3312 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,0]:x]). [hyper(2,a,78,a,b,556,a),rewrite([6,7,5])]. given #3406 (W,wt=55): 3313 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,244,a,b,557,a),rewrite([6,7,5])]. given #3407 (W,wt=55): 3314 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,243,a,b,557,a),rewrite([6,7,5])]. given #3408 (W,wt=55): 3315 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,242,a,b,557,a),rewrite([6,7,5])]. given #3409 (W,wt=55): 3317 P([0,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,584,a,b,558,a),rewrite([13,12,11,10])]. given #3410 (W,wt=55): 3318 P([0,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,582,a,b,558,a),rewrite([13,12,11,10])]. given #3411 (W,wt=55): 3319 P([0,1,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,581,a,b,558,a),rewrite([13,12,11,10])]. given #3412 (W,wt=55): 3320 P([0,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,579,a,b,558,a),rewrite([13,12,11,10])]. given #3413 (W,wt=55): 3321 P([0,1,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,578,a,b,558,a),rewrite([13,12,11,10])]. given #3414 (W,wt=55): 3322 P([0,1,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,576,a,b,558,a),rewrite([13,12,11,10])]. given #3415 (W,wt=55): 3323 P([0,1,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,575,a,b,558,a),rewrite([13,12,11,10])]. given #3416 (W,wt=55): 3324 P([0,1,1,0,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,570,a,b,558,a),rewrite([13,12,11,10])]. given #3417 (W,wt=55): 3325 P([0,1,1,0,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,569,a,b,558,a),rewrite([13,12,11,10])]. given #3418 (W,wt=55): 3326 P([0,1,0,0,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,568,a,b,558,a),rewrite([13,12,11,10])]. given #3419 (W,wt=55): 3327 P([0,1,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,566,a,b,558,a),rewrite([13,12,11,10])]. given #3420 (W,wt=55): 3328 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,565,a,b,558,a),rewrite([13,12,11,10])]. given #3421 (W,wt=55): 3329 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,564,a,b,558,a),rewrite([13,12,11,10])]. given #3422 (W,wt=55): 3330 P([0,1,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,562,a,b,558,a),rewrite([13,12,11,10])]. given #3423 (W,wt=55): 3331 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,561,a,b,558,a),rewrite([13,12,11,10])]. given #3424 (W,wt=55): 3332 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,560,a,b,558,a),rewrite([13,12,11,10])]. given #3425 (W,wt=55): 3333 P([0,1,1,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,268,a,b,558,a),rewrite([13,12,11,10])]. given #3426 (W,wt=55): 3334 P([0,1,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,267,a,b,558,a),rewrite([13,12,11,10])]. given #3427 (W,wt=55): 3335 P([0,1,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,266,a,b,558,a),rewrite([13,12,11,10])]. given #3428 (W,wt=55): 3336 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,263,a,b,558,a),rewrite([11,12,13,10])]. given #3429 (W,wt=55): 3337 P([1,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,262,a,b,558,a),rewrite([11,12,13,10])]. given #3430 (W,wt=55): 3338 P([1,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,261,a,b,558,a),rewrite([11,12,13,10])]. given #3431 (W,wt=55): 3339 P([1,1,1,0,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,258,a,b,558,a),rewrite([11,12,13,10])]. given #3432 (W,wt=55): 3340 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,257,a,b,558,a),rewrite([11,12,13,10])]. given #3433 (W,wt=55): 3341 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,256,a,b,558,a),rewrite([11,12,13,10])]. given #3434 (W,wt=55): 3342 P([1,1,1,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,80,a,b,558,a),rewrite([11,12,13,10])]. given #3435 (W,wt=55): 3343 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,70,a,b,558,a),rewrite([13,12,11,10])]. given #3436 (W,wt=55): 3344 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,558,a),rewrite([13,12,11,10])]. given #3437 (W,wt=55): 3345 P([0,1,0,0,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,558,a),rewrite([13,12,11,10])]. given #3438 (W,wt=55): 3346 P([0,1,0,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,558,a),rewrite([13,12,11,10])]. given #3439 (W,wt=55): 3347 P([0,1,0,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,558,a),rewrite([13,12,11,10])]. given #3440 (W,wt=55): 3348 P([0,1,0,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,558,a),rewrite([13,12,11,10])]. given #3441 (W,wt=55): 3349 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,21,a,b,558,a),rewrite([13,12,11,10])]. given #3442 (W,wt=55): 3350 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,558,a),rewrite([13,12,11,10])]. given #3443 (W,wt=55): 3351 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,584,a,b,559,a),rewrite([13,12,11,10])]. given #3444 (W,wt=55): 3352 P([0,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,579,a,b,559,a),rewrite([13,12,11,10])]. given #3445 (W,wt=55): 3353 P([0,1,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,578,a,b,559,a),rewrite([13,12,11,10])]. given #3446 (W,wt=55): 3354 P([0,1,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,576,a,b,559,a),rewrite([13,12,11,10])]. given #3447 (W,wt=55): 3355 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,566,a,b,559,a),rewrite([13,12,11,10])]. given #3448 (W,wt=55): 3356 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,562,a,b,559,a),rewrite([13,12,11,10])]. given #3449 (W,wt=55): 3357 P([0,1,1,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,268,a,b,559,a),rewrite([13,12,11,10])]. given #3450 (W,wt=55): 3358 P([0,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,267,a,b,559,a),rewrite([13,12,11,10])]. given #3451 (W,wt=55): 3359 P([0,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,266,a,b,559,a),rewrite([13,12,11,10])]. given #3452 (W,wt=55): 3360 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,263,a,b,559,a),rewrite([11,12,13,10])]. given #3453 (W,wt=55): 3361 P([1,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,261,a,b,559,a),rewrite([11,12,13,10])]. given #3454 (W,wt=55): 3362 P([1,1,1,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,80,a,b,559,a),rewrite([11,12,13,10])]. given #3455 (W,wt=55): 3363 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,559,a),rewrite([13,12,11,10])]. given #3456 (W,wt=55): 3364 P([0,1,0,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,559,a),rewrite([13,12,11,10])]. given #3457 (W,wt=55): 3365 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,1,1]:x]). [hyper(2,a,579,a,b,559,a),rewrite([8,7,6,5])]. given #3458 (W,wt=55): 3366 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,584,a,b,563,a),rewrite([13,12,11,10])]. given #3459 (W,wt=55): 3367 P([0,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,582,a,b,563,a),rewrite([13,12,11,10])]. given #3460 (W,wt=55): 3368 P([0,1,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,581,a,b,563,a),rewrite([13,12,11,10])]. given #3461 (W,wt=55): 3369 P([0,1,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,575,a,b,563,a),rewrite([13,12,11,10])]. given #3462 (W,wt=55): 3370 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,566,a,b,563,a),rewrite([13,12,11,10])]. given #3463 (W,wt=55): 3371 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,562,a,b,563,a),rewrite([13,12,11,10])]. given #3464 (W,wt=55): 3372 P([0,1,1,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,268,a,b,563,a),rewrite([13,12,11,10])]. given #3465 (W,wt=55): 3373 P([0,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,267,a,b,563,a),rewrite([13,12,11,10])]. given #3466 (W,wt=55): 3374 P([0,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,266,a,b,563,a),rewrite([13,12,11,10])]. given #3467 (W,wt=55): 3375 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,263,a,b,563,a),rewrite([11,12,13,10])]. given #3468 (W,wt=55): 3376 P([1,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,262,a,b,563,a),rewrite([11,12,13,10])]. given #3469 (W,wt=55): 3377 P([1,1,1,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,80,a,b,563,a),rewrite([11,12,13,10])]. given #3470 (W,wt=55): 3378 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,563,a),rewrite([13,12,11,10])]. given #3471 (W,wt=55): 3379 P([0,1,0,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,563,a),rewrite([13,12,11,10])]. given #3472 (W,wt=55): 3380 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,1,1]:x]). [hyper(2,a,582,a,b,563,a),rewrite([8,7,6,5])]. given #3473 (W,wt=55): 3381 P([0,1,1,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(3,a,268,a,b,567,a),rewrite([13,12,11,10])]. given #3474 (W,wt=55): 3382 P([0,1,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(3,a,267,a,b,567,a),rewrite([13,12,11,10])]. given #3475 (W,wt=55): 3383 P([0,1,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(3,a,266,a,b,567,a),rewrite([13,12,11,10])]. given #3476 (W,wt=55): 3384 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(3,a,80,a,b,567,a),rewrite([11,12,13,10])]. given #3477 (W,wt=0): 11789 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,263,a,b,3384,a),rewrite([6,7,5])]. given #3478 (W,wt=55): 3385 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,588,a,b,567,a),rewrite([8,6,7,5])]. given #3479 (W,wt=55): 3386 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,584,a,b,567,a),rewrite([8,7,6,5])]. given #3480 (W,wt=55): 3387 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,582,a,b,567,a),rewrite([8,7,6,5])]. given #3481 (W,wt=55): 3388 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,579,a,b,567,a),rewrite([8,7,6,5])]. given #3482 (W,wt=55): 3389 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,574,a,b,567,a),rewrite([8,7,6,5])]. given #3483 (W,wt=55): 3390 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,565,a,b,567,a),rewrite([8,7,6,5])]. given #3484 (W,wt=55): 3391 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,561,a,b,567,a),rewrite([8,7,6,5])]. given #3485 (W,wt=55): 3392 P([0,0,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,0,1]:x]). [hyper(2,a,255,a,b,567,a),rewrite([6,7,5])]. given #3486 (W,wt=55): 3393 P([0,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,584,a,b,571,a),rewrite([13,12,11,10])]. given #3487 (W,wt=55): 3394 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,582,a,b,571,a),rewrite([13,12,11,10])]. given #3488 (W,wt=55): 3395 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,581,a,b,571,a),rewrite([13,12,11,10])]. given #3489 (W,wt=55): 3396 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,579,a,b,571,a),rewrite([13,12,11,10])]. given #3490 (W,wt=55): 3397 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,578,a,b,571,a),rewrite([13,12,11,10])]. given #3491 (W,wt=55): 3398 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,576,a,b,571,a),rewrite([13,12,11,10])]. given #3492 (W,wt=55): 3399 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,575,a,b,571,a),rewrite([13,12,11,10])]. given #3493 (W,wt=55): 3400 P([0,1,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,569,a,b,571,a),rewrite([13,12,11,10])]. given #3494 (W,wt=55): 3401 P([0,1,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,568,a,b,571,a),rewrite([13,12,11,10])]. given #3495 (W,wt=55): 3402 P([0,1,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,571,a),rewrite([13,12,11,10])]. given #3496 (W,wt=55): 3403 P([0,1,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,267,a,b,571,a),rewrite([13,12,11,10])]. given #3497 (W,wt=55): 3404 P([0,1,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,266,a,b,571,a),rewrite([13,12,11,10])]. given #3498 (W,wt=55): 3405 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,263,a,b,571,a),rewrite([11,12,13,10])]. given #3499 (W,wt=55): 3406 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,262,a,b,571,a),rewrite([11,12,13,10])]. given #3500 (W,wt=55): 3407 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,261,a,b,571,a),rewrite([11,12,13,10])]. given #3501 (W,wt=55): 3408 P([1,1,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,80,a,b,571,a),rewrite([11,12,13,10])]. given #3502 (W,wt=0): 11818 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(2,a,263,a,b,3408,a),rewrite([6,7,8,5])]. given #3503 (W,wt=55): 3409 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,571,a),rewrite([13,12,11,10])]. given #3504 (W,wt=55): 3410 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,571,a),rewrite([13,12,11,10])]. given #3505 (W,wt=55): 3411 P([0,1,0,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,571,a),rewrite([13,12,11,10])]. given #3506 (W,wt=55): 3412 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(2,a,588,a,b,571,a),rewrite([8,6,7,5])]. given #3507 (W,wt=55): 3413 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,571,a),rewrite([8,7,6,5])]. given #3508 (W,wt=55): 3414 P([0,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,584,a,b,577,a),rewrite([13,12,11,10])]. given #3509 (W,wt=55): 3415 P([0,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,581,a,b,577,a),rewrite([13,12,11,10])]. given #3510 (W,wt=55): 3416 P([0,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,575,a,b,577,a),rewrite([13,12,11,10])]. given #3511 (W,wt=55): 3417 P([0,1,1,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,268,a,b,577,a),rewrite([13,12,11,10])]. given #3512 (W,wt=55): 3418 P([0,1,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,267,a,b,577,a),rewrite([13,12,11,10])]. given #3513 (W,wt=55): 3419 P([0,1,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,266,a,b,577,a),rewrite([13,12,11,10])]. given #3514 (W,wt=55): 3420 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,263,a,b,577,a),rewrite([11,12,13,10])]. given #3515 (W,wt=55): 3421 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,80,a,b,577,a),rewrite([11,12,13,10])]. given #3516 (W,wt=0): 11837 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(2,a,263,a,b,3421,a),rewrite([6,7,8,5])]. given #3517 (W,wt=55): 3422 P([0,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,577,a),rewrite([13,12,11,10])]. given #3518 (W,wt=55): 3423 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(2,a,588,a,b,577,a),rewrite([8,6,7,5])]. given #3519 (W,wt=55): 3424 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(2,a,584,a,b,577,a),rewrite([8,7,6,5])]. given #3520 (W,wt=55): 3425 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(2,a,582,a,b,577,a),rewrite([8,7,6,5])]. given #3521 (W,wt=55): 3426 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,1,0,1]:x]). [hyper(2,a,561,a,b,577,a),rewrite([8,7,6,5])]. given #3522 (W,wt=55): 3427 P([0,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,584,a,b,580,a),rewrite([13,12,11,10])]. given #3523 (W,wt=55): 3428 P([0,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,578,a,b,580,a),rewrite([13,12,11,10])]. given #3524 (W,wt=55): 3429 P([0,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,576,a,b,580,a),rewrite([13,12,11,10])]. given #3525 (W,wt=55): 3430 P([0,1,1,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,268,a,b,580,a),rewrite([13,12,11,10])]. given #3526 (W,wt=55): 3431 P([0,1,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,267,a,b,580,a),rewrite([13,12,11,10])]. given #3527 (W,wt=55): 3432 P([0,1,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,266,a,b,580,a),rewrite([13,12,11,10])]. given #3528 (W,wt=55): 3433 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,263,a,b,580,a),rewrite([11,12,13,10])]. given #3529 (W,wt=55): 3434 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,80,a,b,580,a),rewrite([11,12,13,10])]. given #3530 (W,wt=0): 11858 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(2,a,263,a,b,3434,a),rewrite([6,7,8,5])]. given #3531 (W,wt=55): 3435 P([0,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,580,a),rewrite([13,12,11,10])]. given #3532 (W,wt=55): 3436 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(2,a,588,a,b,580,a),rewrite([8,6,7,5])]. given #3533 (W,wt=55): 3437 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(2,a,584,a,b,580,a),rewrite([8,7,6,5])]. given #3534 (W,wt=55): 3438 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(2,a,579,a,b,580,a),rewrite([8,7,6,5])]. given #3535 (W,wt=55): 3439 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[1,0,1,1,1,0,0,1]:x]). [hyper(2,a,565,a,b,580,a),rewrite([8,7,6,5])]. given #3536 (W,wt=55): 3440 P([0,1,1,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,268,a,b,583,a),rewrite([13,12,11,10])]. given #3537 (W,wt=55): 3441 P([0,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,267,a,b,583,a),rewrite([13,12,11,10])]. given #3538 (W,wt=55): 3442 P([0,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,266,a,b,583,a),rewrite([13,12,11,10])]. given #3539 (W,wt=55): 3443 P([1,1,1,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(3,a,80,a,b,583,a),rewrite([11,12,13,10])]. given #3540 (W,wt=55): 3444 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,582,a,b,583,a),rewrite([8,7,6,5])]. given #3541 (W,wt=55): 3445 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,579,a,b,583,a),rewrite([8,7,6,5])]. given #3542 (W,wt=55): 3446 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[1,0,1,0,1,0,1,1]:x]). [hyper(2,a,574,a,b,583,a),rewrite([8,7,6,5])]. given #3543 (W,wt=55): 3447 P([0,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,585,a),rewrite([13,11,12,10])]. given #3544 (W,wt=55): 3448 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,267,a,b,585,a),rewrite([13,11,12,10])]. given #3545 (W,wt=55): 3449 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,266,a,b,585,a),rewrite([13,11,12,10])]. given #3546 (W,wt=55): 3451 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,264,a,b,589,a),rewrite([6,7,5])]. given #3547 (W,wt=55): 3452 P([1,0,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,263,a,b,589,a),rewrite([6,7,5])]. given #3548 (W,wt=55): 3453 P([1,0,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,262,a,b,589,a),rewrite([6,7,5])]. given #3549 (W,wt=55): 3454 P([1,0,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,261,a,b,589,a),rewrite([6,7,5])]. given #3550 (W,wt=55): 3455 P([1,0,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,260,a,b,589,a),rewrite([6,7,5])]. given #3551 (W,wt=55): 3456 P([1,0,1,0,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,258,a,b,589,a),rewrite([6,7,5])]. given #3552 (W,wt=55): 3457 P([1,0,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,257,a,b,589,a),rewrite([6,7,5])]. given #3553 (W,wt=55): 3458 P([1,0,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,256,a,b,589,a),rewrite([6,7,5])]. given #3554 (W,wt=55): 3459 P([1,0,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,255,a,b,589,a),rewrite([6,7,5])]. given #3555 (W,wt=55): 3460 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,80,a,b,589,a),rewrite([6,7,5])]. given #3556 (W,wt=55): 3461 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,264,a,b,590,a),rewrite([6,7,5])]. given #3557 (W,wt=55): 3462 P([1,0,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,263,a,b,590,a),rewrite([6,7,5])]. given #3558 (W,wt=55): 3463 P([1,0,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,262,a,b,590,a),rewrite([6,7,5])]. given #3559 (W,wt=55): 3464 P([1,0,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,261,a,b,590,a),rewrite([6,7,5])]. given #3560 (W,wt=55): 3465 P([1,0,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,260,a,b,590,a),rewrite([6,7,5])]. given #3561 (W,wt=55): 3466 P([1,0,0,0,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,258,a,b,590,a),rewrite([6,7,5])]. given #3562 (W,wt=55): 3467 P([1,0,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,257,a,b,590,a),rewrite([6,7,5])]. given #3563 (W,wt=55): 3468 P([1,0,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,256,a,b,590,a),rewrite([6,7,5])]. given #3564 (W,wt=55): 3469 P([1,0,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,255,a,b,590,a),rewrite([6,7,5])]. given #3565 (W,wt=55): 3470 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,80,a,b,590,a),rewrite([6,7,5])]. given #3566 (W,wt=55): 3471 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(3,a,588,a,b,591,a),rewrite([12,11,13,10])]. given #3567 (W,wt=55): 3472 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(3,a,587,a,b,591,a),rewrite([12,11,13,10])]. given #3568 (W,wt=55): 3473 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,264,a,b,591,a),rewrite([6,7,5])]. given #3569 (W,wt=55): 3474 P([1,0,0,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,263,a,b,591,a),rewrite([6,7,5])]. given #3570 (W,wt=55): 3475 P([1,0,0,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,262,a,b,591,a),rewrite([6,7,5])]. given #3571 (W,wt=55): 3476 P([1,0,0,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,261,a,b,591,a),rewrite([6,7,5])]. given #3572 (W,wt=55): 3477 P([1,0,0,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,260,a,b,591,a),rewrite([6,7,5])]. given #3573 (W,wt=55): 3478 P([1,0,0,0,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,258,a,b,591,a),rewrite([6,7,5])]. given #3574 (W,wt=55): 3479 P([1,0,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,257,a,b,591,a),rewrite([6,7,5])]. given #3575 (W,wt=55): 3480 P([1,0,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,256,a,b,591,a),rewrite([6,7,5])]. given #3576 (W,wt=55): 3481 P([1,0,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,255,a,b,591,a),rewrite([6,7,5])]. given #3577 (W,wt=55): 3482 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,80,a,b,591,a),rewrite([6,7,5])]. given #3578 (W,wt=55): 3483 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,287,a,b,592,a),rewrite([12,13,11,10])]. given #3579 (W,wt=55): 3484 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,286,a,b,592,a),rewrite([12,11,13,10])]. given #3580 (W,wt=55): 3485 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,285,a,b,592,a),rewrite([12,11,13,10])]. given #3581 (W,wt=55): 3486 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,283,a,b,592,a),rewrite([12,13,11,10])]. given #3582 (W,wt=55): 3487 P([1,1,1,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,280,a,b,592,a),rewrite([12,11,13,10])]. given #3583 (W,wt=55): 3488 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(3,a,279,a,b,592,a),rewrite([12,13,11,10])]. given #3584 (W,wt=55): 3489 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,287,a,b,592,a),rewrite([7,8,6,5])]. given #3585 (W,wt=55): 3490 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,286,a,b,592,a),rewrite([7,6,8,5])]. given #3586 (W,wt=55): 3491 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,285,a,b,592,a),rewrite([7,6,8,5])]. given #3587 (W,wt=55): 3492 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,284,a,b,592,a),rewrite([7,6,5])]. given #3588 (W,wt=55): 3493 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,282,a,b,592,a),rewrite([7,6,5])]. given #3589 (W,wt=55): 3494 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,281,a,b,592,a),rewrite([7,6,5])]. given #3590 (W,wt=55): 3495 P([0,1,1,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,278,a,b,592,a),rewrite([7,6,5])]. given #3591 (W,wt=55): 3496 P([1,1,1,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,592,a),rewrite([6,7,5])]. given #3592 (W,wt=55): 3497 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,68,a,b,592,a),rewrite([7,6,5])]. given #3593 (W,wt=55): 3498 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,63,a,b,592,a),rewrite([7,6,5])]. given #3594 (W,wt=55): 3499 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,58,a,b,592,a),rewrite([7,6,5])]. given #3595 (W,wt=55): 3500 P([0,1,1,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,53,a,b,592,a),rewrite([7,6,5])]. given #3596 (W,wt=55): 3501 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,30,a,b,592,a),rewrite([7,6,5])]. given #3597 (W,wt=55): 3502 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,29,a,b,592,a),rewrite([7,6,5])]. given #3598 (W,wt=55): 3503 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,1,0]:x]). [hyper(2,a,26,a,b,592,a),rewrite([7,6,5])]. given #3599 (W,wt=55): 3504 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(3,a,287,a,b,593,a),rewrite([12,13,11,10])]. given #3600 (W,wt=55): 3505 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(3,a,285,a,b,593,a),rewrite([12,11,13,10])]. given #3601 (W,wt=55): 3506 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,287,a,b,593,a),rewrite([7,8,6,5])]. given #3602 (W,wt=55): 3507 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,286,a,b,593,a),rewrite([7,6,5])]. given #3603 (W,wt=55): 3508 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,285,a,b,593,a),rewrite([7,6,8,5])]. given #3604 (W,wt=55): 3509 P([0,0,1,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,284,a,b,593,a),rewrite([7,6,5])]. given #3605 (W,wt=55): 3510 P([0,1,1,0,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,282,a,b,593,a),rewrite([7,6,5])]. given #3606 (W,wt=55): 3511 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,281,a,b,593,a),rewrite([7,6,5])]. given #3607 (W,wt=55): 3512 P([0,1,1,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,278,a,b,593,a),rewrite([7,6,5])]. given #3608 (W,wt=55): 3513 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,274,a,b,593,a),rewrite([7,6,5])]. given #3609 (W,wt=55): 3514 P([1,1,1,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,81,a,b,593,a),rewrite([6,7,5])]. given #3610 (W,wt=55): 3515 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,593,a),rewrite([7,6,5])]. given #3611 (W,wt=55): 3516 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,63,a,b,593,a),rewrite([7,6,5])]. given #3612 (W,wt=55): 3517 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,58,a,b,593,a),rewrite([7,6,5])]. given #3613 (W,wt=55): 3518 P([0,1,1,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,53,a,b,593,a),rewrite([7,6,5])]. given #3614 (W,wt=55): 3519 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,30,a,b,593,a),rewrite([7,6,5])]. given #3615 (W,wt=55): 3520 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,29,a,b,593,a),rewrite([7,6,5])]. given #3616 (W,wt=55): 3521 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,26,a,b,593,a),rewrite([7,6,5])]. given #3617 (W,wt=55): 3522 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,1,0]:x]). [hyper(2,a,21,a,b,593,a),rewrite([7,6,5])]. given #3618 (W,wt=55): 3523 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,287,a,b,594,a),rewrite([12,13,11,10])]. given #3619 (W,wt=55): 3524 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,286,a,b,594,a),rewrite([12,11,13,10])]. given #3620 (W,wt=55): 3525 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,285,a,b,594,a),rewrite([12,11,13,10])]. given #3621 (W,wt=55): 3526 P([1,1,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,283,a,b,594,a),rewrite([12,13,11,10])]. given #3622 (W,wt=55): 3527 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,282,a,b,594,a),rewrite([12,11,13,10])]. given #3623 (W,wt=55): 3528 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,280,a,b,594,a),rewrite([12,11,13,10])]. given #3624 (W,wt=0): 12045 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,81,a,b,3528,a),rewrite([6,7,5])]. given #3625 (W,wt=55): 3529 P([1,1,1,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,279,a,b,594,a),rewrite([12,13,11,10])]. given #3626 (W,wt=55): 3530 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(3,a,273,a,b,594,a),rewrite([12,13,11,10])]. given #3627 (W,wt=55): 3531 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,286,a,b,594,a),rewrite([7,6,8,5])]. given #3628 (W,wt=55): 3532 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,285,a,b,594,a),rewrite([7,6,8,5])]. given #3629 (W,wt=55): 3533 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,282,a,b,594,a),rewrite([7,6,8,5])]. given #3630 (W,wt=55): 3534 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,81,a,b,594,a),rewrite([6,7,5])]. given #3631 (W,wt=55): 3535 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,63,a,b,594,a),rewrite([7,6,8,5])]. given #3632 (W,wt=55): 3536 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,58,a,b,594,a),rewrite([7,6,8,5])]. given #3633 (W,wt=55): 3537 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,1,1,1,0]:x]). [hyper(2,a,53,a,b,594,a),rewrite([7,6,5])]. given #3634 (W,wt=55): 3538 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(3,a,286,a,b,595,a),rewrite([12,11,13,10])]. given #3635 (W,wt=55): 3539 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(3,a,285,a,b,595,a),rewrite([12,11,13,10])]. given #3636 (W,wt=55): 3540 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,287,a,b,595,a),rewrite([7,6,5])]. given #3637 (W,wt=55): 3541 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,286,a,b,595,a),rewrite([7,6,8,5])]. given #3638 (W,wt=55): 3542 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,285,a,b,595,a),rewrite([7,6,8,5])]. given #3639 (W,wt=55): 3543 P([0,0,1,1,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,284,a,b,595,a),rewrite([7,6,5])]. given #3640 (W,wt=55): 3544 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,282,a,b,595,a),rewrite([7,6,5])]. given #3641 (W,wt=55): 3545 P([0,1,0,1,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,281,a,b,595,a),rewrite([7,6,5])]. given #3642 (W,wt=55): 3546 P([0,1,1,1,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,278,a,b,595,a),rewrite([7,6,5])]. given #3643 (W,wt=55): 3547 P([0,0,0,1,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,272,a,b,595,a),rewrite([7,6,5])]. given #3644 (W,wt=55): 3548 P([1,1,1,1,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,81,a,b,595,a),rewrite([6,7,5])]. given #3645 (W,wt=55): 3549 P([0,0,0,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,68,a,b,595,a),rewrite([7,6,5])]. given #3646 (W,wt=55): 3550 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,63,a,b,595,a),rewrite([7,6,5])]. given #3647 (W,wt=55): 3551 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,58,a,b,595,a),rewrite([7,6,5])]. given #3648 (W,wt=55): 3552 P([0,1,1,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,53,a,b,595,a),rewrite([7,6,5])]. given #3649 (W,wt=55): 3553 P([0,1,0,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,30,a,b,595,a),rewrite([7,6,5])]. given #3650 (W,wt=55): 3554 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,29,a,b,595,a),rewrite([7,6,5])]. given #3651 (W,wt=55): 3555 P([0,0,1,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,26,a,b,595,a),rewrite([7,6,5])]. given #3652 (W,wt=55): 3556 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,1,0]:x]). [hyper(2,a,20,a,b,595,a),rewrite([7,6,5])]. given #3653 (W,wt=55): 3557 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,287,a,b,596,a),rewrite([12,13,11,10])]. given #3654 (W,wt=55): 3558 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,286,a,b,596,a),rewrite([12,11,13,10])]. given #3655 (W,wt=55): 3559 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,285,a,b,596,a),rewrite([12,11,13,10])]. given #3656 (W,wt=55): 3560 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,283,a,b,596,a),rewrite([12,13,11,10])]. given #3657 (W,wt=55): 3561 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,281,a,b,596,a),rewrite([12,11,13,10])]. given #3658 (W,wt=55): 3562 P([1,1,0,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,280,a,b,596,a),rewrite([12,13,11,10])]. given #3659 (W,wt=55): 3563 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,279,a,b,596,a),rewrite([12,13,11,10])]. given #3660 (W,wt=0): 12126 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,3563,a),rewrite([6,7,5])]. given #3661 (W,wt=55): 3564 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(3,a,271,a,b,596,a),rewrite([12,13,11,10])]. given #3662 (W,wt=55): 3565 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,287,a,b,596,a),rewrite([7,8,6,5])]. given #3663 (W,wt=55): 3566 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,285,a,b,596,a),rewrite([7,6,8,5])]. given #3664 (W,wt=55): 3567 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,281,a,b,596,a),rewrite([7,6,8,5])]. given #3665 (W,wt=55): 3568 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,596,a),rewrite([6,7,5])]. given #3666 (W,wt=55): 3569 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,68,a,b,596,a),rewrite([7,8,6,5])]. given #3667 (W,wt=55): 3570 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,58,a,b,596,a),rewrite([7,6,8,5])]. given #3668 (W,wt=55): 3571 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,1,1,0]:x]). [hyper(2,a,53,a,b,596,a),rewrite([7,6,5])]. given #3669 (W,wt=55): 3572 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,287,a,b,597,a),rewrite([12,13,11,10])]. given #3670 (W,wt=55): 3573 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,286,a,b,597,a),rewrite([12,13,11,10])]. given #3671 (W,wt=55): 3574 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,285,a,b,597,a),rewrite([12,11,13,10])]. given #3672 (W,wt=55): 3575 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,284,a,b,597,a),rewrite([12,13,11,10])]. given #3673 (W,wt=55): 3576 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,283,a,b,597,a),rewrite([12,13,11,10])]. given #3674 (W,wt=0): 12162 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,3576,a),rewrite([6,7,5])]. given #3675 (W,wt=55): 3577 P([1,0,1,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,280,a,b,597,a),rewrite([12,13,11,10])]. given #3676 (W,wt=55): 3578 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,279,a,b,597,a),rewrite([12,13,11,10])]. given #3677 (W,wt=55): 3579 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(3,a,277,a,b,597,a),rewrite([12,13,11,10])]. given #3678 (W,wt=55): 3580 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,287,a,b,597,a),rewrite([7,8,6,5])]. given #3679 (W,wt=55): 3581 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,286,a,b,597,a),rewrite([7,8,6,5])]. given #3680 (W,wt=55): 3582 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,284,a,b,597,a),rewrite([7,8,6,5])]. given #3681 (W,wt=55): 3583 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,597,a),rewrite([6,7,5])]. given #3682 (W,wt=55): 3584 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,68,a,b,597,a),rewrite([7,8,6,5])]. given #3683 (W,wt=55): 3585 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,63,a,b,597,a),rewrite([7,8,6,5])]. given #3684 (W,wt=55): 3586 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,1,0]:x]). [hyper(2,a,53,a,b,597,a),rewrite([7,6,5])]. given #3685 (W,wt=55): 3587 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(3,a,287,a,b,598,a),rewrite([12,13,11,10])]. given #3686 (W,wt=55): 3588 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(3,a,286,a,b,598,a),rewrite([12,11,13,10])]. given #3687 (W,wt=55): 3589 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,287,a,b,598,a),rewrite([7,8,6,5])]. given #3688 (W,wt=55): 3590 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,286,a,b,598,a),rewrite([7,6,8,5])]. given #3689 (W,wt=55): 3591 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,285,a,b,598,a),rewrite([7,6,5])]. given #3690 (W,wt=55): 3592 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,284,a,b,598,a),rewrite([7,6,5])]. given #3691 (W,wt=55): 3593 P([0,1,1,0,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,282,a,b,598,a),rewrite([7,6,5])]. given #3692 (W,wt=55): 3594 P([0,1,0,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,281,a,b,598,a),rewrite([7,6,5])]. given #3693 (W,wt=55): 3595 P([0,1,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,278,a,b,598,a),rewrite([7,6,5])]. given #3694 (W,wt=55): 3596 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,276,a,b,598,a),rewrite([7,6,5])]. given #3695 (W,wt=55): 3597 P([1,1,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,81,a,b,598,a),rewrite([6,7,5])]. given #3696 (W,wt=55): 3598 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,598,a),rewrite([7,6,5])]. given #3697 (W,wt=55): 3599 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,63,a,b,598,a),rewrite([7,6,5])]. given #3698 (W,wt=55): 3600 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,58,a,b,598,a),rewrite([7,6,5])]. given #3699 (W,wt=55): 3601 P([0,1,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,53,a,b,598,a),rewrite([7,6,5])]. given #3700 (W,wt=55): 3602 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,30,a,b,598,a),rewrite([7,6,5])]. given #3701 (W,wt=55): 3603 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,29,a,b,598,a),rewrite([7,6,5])]. given #3702 (W,wt=55): 3604 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,26,a,b,598,a),rewrite([7,6,5])]. given #3703 (W,wt=55): 3605 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,1,0,0]:x]). [hyper(2,a,22,a,b,598,a),rewrite([7,6,5])]. given #3704 (W,wt=55): 3606 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,287,a,b,599,a),rewrite([12,13,11,10])]. given #3705 (W,wt=55): 3607 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,286,a,b,599,a),rewrite([12,13,11,10])]. given #3706 (W,wt=55): 3608 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,285,a,b,599,a),rewrite([12,11,13,10])]. given #3707 (W,wt=55): 3609 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,284,a,b,599,a),rewrite([12,13,11,10])]. given #3708 (W,wt=55): 3610 P([1,0,0,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,283,a,b,599,a),rewrite([12,13,11,10])]. given #3709 (W,wt=55): 3611 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,282,a,b,599,a),rewrite([12,11,13,10])]. given #3710 (W,wt=55): 3612 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,281,a,b,599,a),rewrite([12,11,13,10])]. given #3711 (W,wt=55): 3613 P([1,0,0,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,280,a,b,599,a),rewrite([12,13,11,10])]. given #3712 (W,wt=55): 3614 P([1,0,0,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,279,a,b,599,a),rewrite([12,13,11,10])]. given #3713 (W,wt=55): 3615 P([1,0,0,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,277,a,b,599,a),rewrite([12,13,11,10])]. given #3714 (W,wt=55): 3616 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,276,a,b,599,a),rewrite([12,11,13,10])]. given #3715 (W,wt=55): 3617 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,274,a,b,599,a),rewrite([12,13,11,10])]. given #3716 (W,wt=55): 3618 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,273,a,b,599,a),rewrite([12,13,11,10])]. given #3717 (W,wt=55): 3619 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,272,a,b,599,a),rewrite([12,13,11,10])]. given #3718 (W,wt=55): 3620 P([1,0,0,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,271,a,b,599,a),rewrite([12,13,11,10])]. given #3719 (W,wt=55): 3621 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(3,a,270,a,b,599,a),rewrite([12,13,11,10])]. given #3720 (W,wt=55): 3622 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,1,1,1,1,1,0]:x]). [hyper(2,a,81,a,b,599,a),rewrite([6,7,5])]. given #3721 (W,wt=55): 3623 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,287,a,b,600,a),rewrite([7,6,5])]. given #3722 (W,wt=55): 3624 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,285,a,b,600,a),rewrite([7,6,5])]. given #3723 (W,wt=55): 3625 P([0,0,1,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,284,a,b,600,a),rewrite([7,6,5])]. given #3724 (W,wt=55): 3626 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,282,a,b,600,a),rewrite([7,6,5])]. given #3725 (W,wt=55): 3627 P([0,1,0,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,281,a,b,600,a),rewrite([7,6,5])]. given #3726 (W,wt=55): 3628 P([0,1,1,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,278,a,b,600,a),rewrite([7,6,5])]. given #3727 (W,wt=55): 3629 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,276,a,b,600,a),rewrite([7,6,5])]. given #3728 (W,wt=55): 3630 P([0,0,0,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,272,a,b,600,a),rewrite([7,6,5])]. given #3729 (W,wt=55): 3631 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,81,a,b,600,a),rewrite([6,7,5])]. given #3730 (W,wt=55): 3632 P([0,0,0,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,600,a),rewrite([7,6,5])]. given #3731 (W,wt=55): 3633 P([0,1,0,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,600,a),rewrite([7,6,5])]. given #3732 (W,wt=55): 3634 P([0,1,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,600,a),rewrite([7,6,5])]. given #3733 (W,wt=55): 3635 P([0,1,0,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,30,a,b,600,a),rewrite([7,6,5])]. given #3734 (W,wt=55): 3636 P([0,1,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,29,a,b,600,a),rewrite([7,6,5])]. given #3735 (W,wt=55): 3637 P([0,0,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,26,a,b,600,a),rewrite([7,6,5])]. given #3736 (W,wt=55): 3638 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,22,a,b,600,a),rewrite([7,6,5])]. given #3737 (W,wt=55): 3639 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,20,a,b,600,a),rewrite([7,6,5])]. given #3738 (W,wt=55): 3640 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,286,a,b,601,a),rewrite([7,6,5])]. given #3739 (W,wt=55): 3641 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,285,a,b,601,a),rewrite([7,6,5])]. given #3740 (W,wt=55): 3642 P([0,0,1,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,284,a,b,601,a),rewrite([7,6,5])]. given #3741 (W,wt=55): 3643 P([0,1,1,0,0,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,282,a,b,601,a),rewrite([7,6,5])]. given #3742 (W,wt=55): 3644 P([0,1,0,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,281,a,b,601,a),rewrite([7,6,5])]. given #3743 (W,wt=55): 3645 P([0,1,1,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,278,a,b,601,a),rewrite([7,6,5])]. given #3744 (W,wt=55): 3646 P([0,1,0,0,0,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,276,a,b,601,a),rewrite([7,6,5])]. given #3745 (W,wt=55): 3647 P([0,0,1,0,0,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,274,a,b,601,a),rewrite([7,6,5])]. given #3746 (W,wt=55): 3648 P([1,1,1,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,81,a,b,601,a),rewrite([6,7,5])]. given #3747 (W,wt=55): 3649 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,601,a),rewrite([7,6,5])]. given #3748 (W,wt=55): 3650 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,601,a),rewrite([7,6,5])]. given #3749 (W,wt=55): 3651 P([0,1,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,601,a),rewrite([7,6,5])]. given #3750 (W,wt=55): 3652 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,30,a,b,601,a),rewrite([7,6,5])]. given #3751 (W,wt=55): 3653 P([0,1,1,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,29,a,b,601,a),rewrite([7,6,5])]. given #3752 (W,wt=55): 3654 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,26,a,b,601,a),rewrite([7,6,5])]. given #3753 (W,wt=55): 3655 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,22,a,b,601,a),rewrite([7,6,5])]. given #3754 (W,wt=55): 3656 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,21,a,b,601,a),rewrite([7,6,5])]. given #3755 (W,wt=55): 3657 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,287,a,b,602,a),rewrite([12,13,11,10])]. given #3756 (W,wt=55): 3658 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,286,a,b,602,a),rewrite([12,13,11,10])]. given #3757 (W,wt=55): 3659 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,285,a,b,602,a),rewrite([12,11,13,10])]. given #3758 (W,wt=55): 3660 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,284,a,b,602,a),rewrite([12,13,11,10])]. given #3759 (W,wt=55): 3661 P([1,0,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,283,a,b,602,a),rewrite([12,13,11,10])]. given #3760 (W,wt=55): 3662 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,282,a,b,602,a),rewrite([12,11,13,10])]. given #3761 (W,wt=55): 3663 P([1,0,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,280,a,b,602,a),rewrite([12,13,11,10])]. given #3762 (W,wt=55): 3664 P([1,0,1,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,279,a,b,602,a),rewrite([12,13,11,10])]. given #3763 (W,wt=55): 3665 P([1,0,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,277,a,b,602,a),rewrite([12,13,11,10])]. given #3764 (W,wt=55): 3666 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,274,a,b,602,a),rewrite([12,13,11,10])]. given #3765 (W,wt=55): 3667 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(3,a,273,a,b,602,a),rewrite([12,13,11,10])]. given #3766 (W,wt=55): 3668 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(2,a,286,a,b,602,a),rewrite([7,8,6,5])]. given #3767 (W,wt=55): 3669 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(2,a,81,a,b,602,a),rewrite([6,7,5])]. given #3768 (W,wt=55): 3670 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,1,1,1,0]:x]). [hyper(2,a,63,a,b,602,a),rewrite([7,8,6,5])]. given #3769 (W,wt=55): 3671 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,287,a,b,603,a),rewrite([12,13,11,10])]. given #3770 (W,wt=55): 3672 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,286,a,b,603,a),rewrite([12,13,11,10])]. given #3771 (W,wt=55): 3673 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,285,a,b,603,a),rewrite([12,11,13,10])]. given #3772 (W,wt=55): 3674 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,284,a,b,603,a),rewrite([12,13,11,10])]. given #3773 (W,wt=55): 3675 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,283,a,b,603,a),rewrite([12,13,11,10])]. given #3774 (W,wt=55): 3676 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,281,a,b,603,a),rewrite([12,11,13,10])]. given #3775 (W,wt=55): 3677 P([1,0,0,1,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,280,a,b,603,a),rewrite([12,13,11,10])]. given #3776 (W,wt=55): 3678 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,279,a,b,603,a),rewrite([12,13,11,10])]. given #3777 (W,wt=55): 3679 P([1,0,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,277,a,b,603,a),rewrite([12,13,11,10])]. given #3778 (W,wt=55): 3680 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,272,a,b,603,a),rewrite([12,13,11,10])]. given #3779 (W,wt=55): 3681 P([1,0,0,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(3,a,271,a,b,603,a),rewrite([12,13,11,10])]. given #3780 (W,wt=55): 3682 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(2,a,287,a,b,603,a),rewrite([7,8,6,5])]. given #3781 (W,wt=55): 3683 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(2,a,81,a,b,603,a),rewrite([6,7,5])]. given #3782 (W,wt=55): 3684 P([0,0,0,0,1,0,0,1],[[0,0,0,0,0,0,0,1],[0,1,1,1,0,1,1,0]:x]). [hyper(2,a,68,a,b,603,a),rewrite([7,8,6,5])]. given #3783 (W,wt=55): 3685 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,287,a,b,604,a),rewrite([7,6,5])]. given #3784 (W,wt=55): 3686 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,286,a,b,604,a),rewrite([7,6,5])]. given #3785 (W,wt=55): 3687 P([0,0,1,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,284,a,b,604,a),rewrite([7,6,5])]. given #3786 (W,wt=55): 3688 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,282,a,b,604,a),rewrite([7,6,5])]. given #3787 (W,wt=55): 3689 P([0,1,0,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,281,a,b,604,a),rewrite([7,6,5])]. given #3788 (W,wt=55): 3690 P([0,1,1,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,278,a,b,604,a),rewrite([7,6,5])]. given #3789 (W,wt=55): 3691 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,274,a,b,604,a),rewrite([7,6,5])]. given #3790 (W,wt=55): 3692 P([0,0,0,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,272,a,b,604,a),rewrite([7,6,5])]. given #3791 (W,wt=55): 3693 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,81,a,b,604,a),rewrite([6,7,5])]. given #3792 (W,wt=55): 3694 P([0,0,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,68,a,b,604,a),rewrite([7,6,5])]. given #3793 (W,wt=55): 3695 P([0,0,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,63,a,b,604,a),rewrite([7,6,5])]. given #3794 (W,wt=55): 3696 P([0,1,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,53,a,b,604,a),rewrite([7,6,5])]. given #3795 (W,wt=55): 3697 P([0,1,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,30,a,b,604,a),rewrite([7,6,5])]. given #3796 (W,wt=55): 3698 P([0,1,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,29,a,b,604,a),rewrite([7,6,5])]. given #3797 (W,wt=55): 3699 P([0,0,1,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,26,a,b,604,a),rewrite([7,6,5])]. given #3798 (W,wt=55): 3700 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,21,a,b,604,a),rewrite([7,6,5])]. given #3799 (W,wt=55): 3701 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]:x]). [hyper(2,a,20,a,b,604,a),rewrite([7,6,5])]. given #3800 (W,wt=55): 3702 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,287,a,b,605,a),rewrite([12,13,11,10])]. given #3801 (W,wt=55): 3703 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,286,a,b,605,a),rewrite([12,11,13,10])]. given #3802 (W,wt=55): 3704 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,285,a,b,605,a),rewrite([12,11,13,10])]. given #3803 (W,wt=55): 3705 P([1,1,0,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,283,a,b,605,a),rewrite([12,13,11,10])]. given #3804 (W,wt=55): 3706 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,282,a,b,605,a),rewrite([12,11,13,10])]. given #3805 (W,wt=55): 3707 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,281,a,b,605,a),rewrite([12,11,13,10])]. given #3806 (W,wt=55): 3708 P([1,1,0,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,280,a,b,605,a),rewrite([12,13,11,10])]. given #3807 (W,wt=55): 3709 P([1,1,0,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,279,a,b,605,a),rewrite([12,13,11,10])]. given #3808 (W,wt=55): 3710 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,276,a,b,605,a),rewrite([12,11,13,10])]. given #3809 (W,wt=55): 3711 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,273,a,b,605,a),rewrite([12,13,11,10])]. given #3810 (W,wt=55): 3712 P([1,1,0,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(3,a,271,a,b,605,a),rewrite([12,13,11,10])]. given #3811 (W,wt=55): 3713 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(2,a,285,a,b,605,a),rewrite([7,6,8,5])]. given #3812 (W,wt=55): 3714 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(2,a,81,a,b,605,a),rewrite([6,7,5])]. given #3813 (W,wt=55): 3715 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,1,1,1,0]:x]). [hyper(2,a,58,a,b,605,a),rewrite([7,6,8,5])]. given #3814 (W,wt=55): 3716 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,287,a,b,606,a),rewrite([12,13,11,10])]. given #3815 (W,wt=55): 3717 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,286,a,b,606,a),rewrite([12,13,11,10])]. given #3816 (W,wt=55): 3718 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,284,a,b,606,a),rewrite([12,13,11,10])]. given #3817 (W,wt=55): 3719 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,287,a,b,606,a),rewrite([7,8,6,5])]. given #3818 (W,wt=55): 3720 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,286,a,b,606,a),rewrite([7,8,6,5])]. given #3819 (W,wt=55): 3721 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,284,a,b,606,a),rewrite([7,8,6,5])]. given #3820 (W,wt=55): 3723 P([0,0,0,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,68,a,b,606,a),rewrite([7,8,6,5])]. given #3821 (W,wt=55): 3724 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,63,a,b,606,a),rewrite([7,8,6,5])]. given #3822 (W,wt=55): 3725 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(2,a,53,a,b,606,a),rewrite([7,6,5])]. given #3823 (W,wt=55): 3726 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,287,a,b,3722,a),rewrite([12,13,11,10])]. given #3824 (W,wt=55): 3727 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,286,a,b,3722,a),rewrite([12,13,11,10])]. given #3825 (W,wt=55): 3728 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,1,0,1,0,1,0,0]:x]). [hyper(3,a,284,a,b,3722,a),rewrite([12,13,11,10])]. given #3826 (W,wt=55): 3729 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,287,a,b,607,a),rewrite([12,13,11,10])]. given #3827 (W,wt=55): 3730 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,285,a,b,607,a),rewrite([12,11,13,10])]. given #3828 (W,wt=55): 3731 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,281,a,b,607,a),rewrite([12,11,13,10])]. given #3829 (W,wt=55): 3732 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,287,a,b,607,a),rewrite([7,8,6,5])]. given #3830 (W,wt=55): 3733 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,285,a,b,607,a),rewrite([7,6,8,5])]. given #3831 (W,wt=55): 3734 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,281,a,b,607,a),rewrite([7,6,8,5])]. given #3832 (W,wt=55): 3736 P([0,0,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,68,a,b,607,a),rewrite([7,8,6,5])]. given #3833 (W,wt=55): 3737 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,58,a,b,607,a),rewrite([7,6,8,5])]. given #3834 (W,wt=55): 3738 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(2,a,53,a,b,607,a),rewrite([7,6,5])]. given #3835 (W,wt=55): 3739 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,287,a,b,3735,a),rewrite([12,13,11,10])]. given #3836 (W,wt=55): 3740 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,285,a,b,3735,a),rewrite([12,11,13,10])]. given #3837 (W,wt=55): 3741 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,1,1,0,0,1,0]:x]). [hyper(3,a,281,a,b,3735,a),rewrite([12,11,13,10])]. given #3838 (W,wt=55): 3742 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,286,a,b,608,a),rewrite([12,11,13,10])]. given #3839 (W,wt=55): 3743 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,285,a,b,608,a),rewrite([12,11,13,10])]. given #3840 (W,wt=55): 3744 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,282,a,b,608,a),rewrite([12,11,13,10])]. given #3841 (W,wt=55): 3745 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,286,a,b,608,a),rewrite([7,6,8,5])]. given #3842 (W,wt=55): 3746 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,285,a,b,608,a),rewrite([7,6,8,5])]. given #3843 (W,wt=55): 3747 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,282,a,b,608,a),rewrite([7,6,8,5])]. given #3844 (W,wt=55): 3749 P([0,0,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,63,a,b,608,a),rewrite([7,6,8,5])]. given #3845 (W,wt=55): 3750 P([0,1,0,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,58,a,b,608,a),rewrite([7,6,8,5])]. given #3846 (W,wt=55): 3751 P([0,1,1,1,0,0,0,1],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(2,a,53,a,b,608,a),rewrite([7,6,5])]. given #3847 (W,wt=55): 3752 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,286,a,b,3748,a),rewrite([12,11,13,10])]. given #3848 (W,wt=55): 3753 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,285,a,b,3748,a),rewrite([12,11,13,10])]. given #3849 (W,wt=55): 3754 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,0,1],[0,0,0,0,1,1,1,0]:x]). [hyper(3,a,282,a,b,3748,a),rewrite([12,11,13,10])]. given #3850 (W,wt=55): 3755 P([0,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,635,a,b,609,a),rewrite([13,11,12,10])]. given #3851 (W,wt=55): 3756 P([0,1,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,634,a,b,609,a),rewrite([13,11,12,10])]. given #3852 (W,wt=55): 3757 P([0,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,632,a,b,609,a),rewrite([13,11,12,10])]. given #3853 (W,wt=55): 3758 P([0,0,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,631,a,b,609,a),rewrite([13,12,11,10])]. given #3854 (W,wt=55): 3759 P([0,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,629,a,b,609,a),rewrite([13,11,12,10])]. given #3855 (W,wt=55): 3760 P([0,0,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,627,a,b,609,a),rewrite([13,12,11,10])]. given #3856 (W,wt=55): 3761 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,626,a,b,609,a),rewrite([13,11,12,10])]. given #3857 (W,wt=55): 3762 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,625,a,b,609,a),rewrite([13,12,11,10])]. given #3858 (W,wt=55): 3763 P([0,1,1,0,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,623,a,b,609,a),rewrite([13,11,12,10])]. given #3859 (W,wt=55): 3764 P([0,1,1,0,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,622,a,b,609,a),rewrite([13,11,12,10])]. given #3860 (W,wt=55): 3765 P([0,0,1,0,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,621,a,b,609,a),rewrite([13,12,11,10])]. given #3861 (W,wt=55): 3766 P([0,1,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,619,a,b,609,a),rewrite([13,11,12,10])]. given #3862 (W,wt=55): 3767 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,618,a,b,609,a),rewrite([13,11,12,10])]. given #3863 (W,wt=55): 3768 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,617,a,b,609,a),rewrite([13,11,12,10])]. given #3864 (W,wt=55): 3769 P([0,0,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,615,a,b,609,a),rewrite([13,12,11,10])]. given #3865 (W,wt=55): 3770 P([0,1,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,614,a,b,609,a),rewrite([13,11,12,10])]. given #3866 (W,wt=55): 3771 P([0,1,1,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,301,a,b,609,a),rewrite([13,11,12,10])]. given #3867 (W,wt=55): 3772 P([0,1,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,300,a,b,609,a),rewrite([13,11,12,10])]. given #3868 (W,wt=55): 3773 P([0,0,1,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,299,a,b,609,a),rewrite([13,12,11,10])]. given #3869 (W,wt=55): 3774 P([1,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,296,a,b,609,a),rewrite([11,12,13,10])]. given #3870 (W,wt=55): 3775 P([1,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,295,a,b,609,a),rewrite([11,12,13,10])]. given #3871 (W,wt=55): 3776 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,294,a,b,609,a),rewrite([11,12,13,10])]. given #3872 (W,wt=55): 3777 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,293,a,b,609,a),rewrite([11,12,13,10])]. given #3873 (W,wt=55): 3778 P([1,1,1,0,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,292,a,b,609,a),rewrite([11,12,13,10])]. given #3874 (W,wt=55): 3779 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,290,a,b,609,a),rewrite([11,12,13,10])]. given #3875 (W,wt=55): 3780 P([1,1,1,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,82,a,b,609,a),rewrite([11,12,13,10])]. given #3876 (W,wt=55): 3781 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,65,a,b,609,a),rewrite([13,12,11,10])]. given #3877 (W,wt=55): 3782 P([0,0,1,0,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,60,a,b,609,a),rewrite([13,12,11,10])]. given #3878 (W,wt=55): 3783 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,55,a,b,609,a),rewrite([13,12,11,10])]. given #3879 (W,wt=55): 3784 P([0,0,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,32,a,b,609,a),rewrite([13,12,11,10])]. given #3880 (W,wt=55): 3785 P([0,0,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,31,a,b,609,a),rewrite([13,12,11,10])]. given #3881 (W,wt=55): 3786 P([0,0,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,27,a,b,609,a),rewrite([13,12,11,10])]. given #3882 (W,wt=55): 3787 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,22,a,b,609,a),rewrite([13,11,12,10])]. given #3883 (W,wt=55): 3788 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,1,1]:x]). [hyper(3,a,20,a,b,609,a),rewrite([13,12,11,10])]. given #3884 (W,wt=55): 3789 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,635,a,b,610,a),rewrite([13,11,12,10])]. given #3885 (W,wt=55): 3790 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,634,a,b,610,a),rewrite([13,11,12,10])]. given #3886 (W,wt=55): 3791 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,632,a,b,610,a),rewrite([13,11,12,10])]. given #3887 (W,wt=55): 3792 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,631,a,b,610,a),rewrite([13,12,11,10])]. given #3888 (W,wt=55): 3793 P([0,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,629,a,b,610,a),rewrite([13,11,12,10])]. given #3889 (W,wt=55): 3794 P([0,0,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,627,a,b,610,a),rewrite([13,12,11,10])]. given #3890 (W,wt=55): 3795 P([0,1,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,622,a,b,610,a),rewrite([13,11,12,10])]. given #3891 (W,wt=55): 3796 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,615,a,b,610,a),rewrite([13,12,11,10])]. given #3892 (W,wt=55): 3797 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,614,a,b,610,a),rewrite([13,11,12,10])]. given #3893 (W,wt=55): 3798 P([0,1,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,610,a),rewrite([13,11,12,10])]. given #3894 (W,wt=55): 3799 P([0,1,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,300,a,b,610,a),rewrite([13,11,12,10])]. given #3895 (W,wt=55): 3800 P([0,0,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,299,a,b,610,a),rewrite([13,12,11,10])]. given #3896 (W,wt=55): 3801 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,296,a,b,610,a),rewrite([11,12,13,10])]. given #3897 (W,wt=55): 3802 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,295,a,b,610,a),rewrite([11,12,13,10])]. given #3898 (W,wt=55): 3803 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,294,a,b,610,a),rewrite([11,12,13,10])]. given #3899 (W,wt=55): 3804 P([1,1,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,82,a,b,610,a),rewrite([11,12,13,10])]. given #3900 (W,wt=0): 12342 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(2,a,294,a,b,3804,a),rewrite([6,7,8,5])]. given #3901 (W,wt=55): 3805 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,610,a),rewrite([13,12,11,10])]. given #3902 (W,wt=55): 3806 P([0,0,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,610,a),rewrite([13,12,11,10])]. given #3903 (W,wt=55): 3807 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,610,a),rewrite([13,12,11,10])]. given #3904 (W,wt=55): 3808 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(2,a,639,a,b,610,a),rewrite([8,6,7,5])]. given #3905 (W,wt=55): 3809 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,610,a),rewrite([8,6,7,5])]. given #3906 (W,wt=55): 3810 P([0,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,632,a,b,616,a),rewrite([13,11,12,10])]. given #3907 (W,wt=55): 3811 P([0,0,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,631,a,b,616,a),rewrite([13,12,11,10])]. given #3908 (W,wt=55): 3812 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,629,a,b,616,a),rewrite([13,11,12,10])]. given #3909 (W,wt=55): 3813 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,627,a,b,616,a),rewrite([13,12,11,10])]. given #3910 (W,wt=55): 3814 P([0,1,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,622,a,b,616,a),rewrite([13,11,12,10])]. given #3911 (W,wt=55): 3815 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,619,a,b,616,a),rewrite([13,11,12,10])]. given #3912 (W,wt=55): 3816 P([0,1,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,301,a,b,616,a),rewrite([13,11,12,10])]. given #3913 (W,wt=55): 3817 P([0,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,300,a,b,616,a),rewrite([13,11,12,10])]. given #3914 (W,wt=55): 3818 P([0,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,299,a,b,616,a),rewrite([13,12,11,10])]. given #3915 (W,wt=55): 3819 P([1,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,295,a,b,616,a),rewrite([11,12,13,10])]. given #3916 (W,wt=55): 3820 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,294,a,b,616,a),rewrite([11,12,13,10])]. given #3917 (W,wt=55): 3821 P([1,1,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,82,a,b,616,a),rewrite([11,12,13,10])]. given #3918 (W,wt=55): 3822 P([0,0,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,616,a),rewrite([13,12,11,10])]. given #3919 (W,wt=55): 3823 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,616,a),rewrite([13,12,11,10])]. given #3920 (W,wt=55): 3824 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,1,1]:x]). [hyper(2,a,632,a,b,616,a),rewrite([8,6,7,5])]. given #3921 (W,wt=55): 3825 P([0,1,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(3,a,301,a,b,620,a),rewrite([13,11,12,10])]. given #3922 (W,wt=55): 3826 P([0,1,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(3,a,300,a,b,620,a),rewrite([13,11,12,10])]. given #3923 (W,wt=55): 3827 P([0,0,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(3,a,299,a,b,620,a),rewrite([13,12,11,10])]. given #3924 (W,wt=55): 3828 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(3,a,82,a,b,620,a),rewrite([11,12,13,10])]. given #3925 (W,wt=0): 12374 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,294,a,b,3828,a),rewrite([6,7,5])]. given #3926 (W,wt=55): 3829 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,639,a,b,620,a),rewrite([8,6,7,5])]. given #3927 (W,wt=55): 3830 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,635,a,b,620,a),rewrite([8,6,7,5])]. given #3928 (W,wt=55): 3831 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,632,a,b,620,a),rewrite([8,6,7,5])]. given #3929 (W,wt=55): 3832 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,629,a,b,620,a),rewrite([8,6,7,5])]. given #3930 (W,wt=55): 3833 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,626,a,b,620,a),rewrite([8,6,7,5])]. given #3931 (W,wt=55): 3834 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,618,a,b,620,a),rewrite([8,6,7,5])]. given #3932 (W,wt=55): 3835 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,613,a,b,620,a),rewrite([8,6,7,5])]. given #3933 (W,wt=55): 3836 P([0,0,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,0,1]:x]). [hyper(2,a,288,a,b,620,a),rewrite([6,7,5])]. given #3934 (W,wt=55): 3837 P([0,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,635,a,b,624,a),rewrite([13,11,12,10])]. given #3935 (W,wt=55): 3838 P([0,1,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,634,a,b,624,a),rewrite([13,11,12,10])]. given #3936 (W,wt=55): 3839 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,629,a,b,624,a),rewrite([13,11,12,10])]. given #3937 (W,wt=55): 3840 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,627,a,b,624,a),rewrite([13,12,11,10])]. given #3938 (W,wt=55): 3841 P([0,0,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,621,a,b,624,a),rewrite([13,12,11,10])]. given #3939 (W,wt=55): 3842 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,619,a,b,624,a),rewrite([13,11,12,10])]. given #3940 (W,wt=55): 3843 P([0,1,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,301,a,b,624,a),rewrite([13,11,12,10])]. given #3941 (W,wt=55): 3844 P([0,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,300,a,b,624,a),rewrite([13,11,12,10])]. given #3942 (W,wt=55): 3845 P([0,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,299,a,b,624,a),rewrite([13,12,11,10])]. given #3943 (W,wt=55): 3846 P([1,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,296,a,b,624,a),rewrite([11,12,13,10])]. given #3944 (W,wt=55): 3847 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,294,a,b,624,a),rewrite([11,12,13,10])]. given #3945 (W,wt=55): 3848 P([1,1,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,82,a,b,624,a),rewrite([11,12,13,10])]. given #3946 (W,wt=55): 3849 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,624,a),rewrite([13,12,11,10])]. given #3947 (W,wt=55): 3850 P([0,0,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,624,a),rewrite([13,12,11,10])]. given #3948 (W,wt=55): 3851 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,1,0,1]:x]). [hyper(2,a,635,a,b,624,a),rewrite([8,6,7,5])]. given #3949 (W,wt=55): 3852 P([0,1,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,301,a,b,628,a),rewrite([13,11,12,10])]. given #3950 (W,wt=55): 3853 P([0,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,300,a,b,628,a),rewrite([13,11,12,10])]. given #3951 (W,wt=55): 3854 P([0,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,299,a,b,628,a),rewrite([13,12,11,10])]. given #3952 (W,wt=55): 3855 P([1,1,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(3,a,82,a,b,628,a),rewrite([11,12,13,10])]. given #3953 (W,wt=55): 3856 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,635,a,b,628,a),rewrite([8,6,7,5])]. given #3954 (W,wt=55): 3857 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,632,a,b,628,a),rewrite([8,6,7,5])]. given #3955 (W,wt=55): 3858 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,1,0,1]:x]). [hyper(2,a,613,a,b,628,a),rewrite([8,6,7,5])]. given #3956 (W,wt=55): 3859 P([0,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,635,a,b,630,a),rewrite([13,11,12,10])]. given #3957 (W,wt=55): 3860 P([0,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,634,a,b,630,a),rewrite([13,11,12,10])]. given #3958 (W,wt=55): 3861 P([0,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,627,a,b,630,a),rewrite([13,12,11,10])]. given #3959 (W,wt=55): 3862 P([0,1,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,301,a,b,630,a),rewrite([13,11,12,10])]. given #3960 (W,wt=55): 3863 P([0,1,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,300,a,b,630,a),rewrite([13,11,12,10])]. given #3961 (W,wt=55): 3864 P([0,0,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,299,a,b,630,a),rewrite([13,12,11,10])]. given #3962 (W,wt=55): 3865 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,296,a,b,630,a),rewrite([11,12,13,10])]. given #3963 (W,wt=55): 3866 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,82,a,b,630,a),rewrite([11,12,13,10])]. given #3964 (W,wt=0): 12414 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(2,a,294,a,b,3866,a),rewrite([6,7,8,5])]. given #3965 (W,wt=55): 3867 P([0,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,630,a),rewrite([13,12,11,10])]. given #3966 (W,wt=55): 3868 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(2,a,639,a,b,630,a),rewrite([8,6,7,5])]. given #3967 (W,wt=55): 3869 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(2,a,635,a,b,630,a),rewrite([8,6,7,5])]. given #3968 (W,wt=55): 3870 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(2,a,629,a,b,630,a),rewrite([8,6,7,5])]. given #3969 (W,wt=55): 3871 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[1,1,0,1,1,0,0,1]:x]). [hyper(2,a,618,a,b,630,a),rewrite([8,6,7,5])]. given #3970 (W,wt=55): 3872 P([0,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,632,a,b,633,a),rewrite([13,11,12,10])]. given #3971 (W,wt=55): 3873 P([0,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,631,a,b,633,a),rewrite([13,12,11,10])]. given #3972 (W,wt=55): 3874 P([0,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,622,a,b,633,a),rewrite([13,11,12,10])]. given #3973 (W,wt=55): 3875 P([0,1,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,301,a,b,633,a),rewrite([13,11,12,10])]. given #3974 (W,wt=55): 3876 P([0,1,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,300,a,b,633,a),rewrite([13,11,12,10])]. given #3975 (W,wt=55): 3877 P([0,0,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,299,a,b,633,a),rewrite([13,12,11,10])]. given #3976 (W,wt=55): 3878 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,295,a,b,633,a),rewrite([11,12,13,10])]. given #3977 (W,wt=55): 3879 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,82,a,b,633,a),rewrite([11,12,13,10])]. given #3978 (W,wt=0): 12435 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(2,a,294,a,b,3879,a),rewrite([6,7,8,5])]. given #3979 (W,wt=55): 3880 P([0,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,633,a),rewrite([13,12,11,10])]. given #3980 (W,wt=55): 3881 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(2,a,639,a,b,633,a),rewrite([8,6,7,5])]. given #3981 (W,wt=55): 3882 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(2,a,632,a,b,633,a),rewrite([8,6,7,5])]. given #3982 (W,wt=55): 3883 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(2,a,629,a,b,633,a),rewrite([8,6,7,5])]. given #3983 (W,wt=55): 3884 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,0,0,1,0,1,1]:x]). [hyper(2,a,626,a,b,633,a),rewrite([8,6,7,5])]. given #3984 (W,wt=55): 3885 P([0,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,636,a),rewrite([13,11,12,10])]. given #3985 (W,wt=55): 3886 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,300,a,b,636,a),rewrite([13,11,12,10])]. given #3986 (W,wt=55): 3887 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,299,a,b,636,a),rewrite([13,11,12,10])]. given #3987 (W,wt=55): 3889 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,297,a,b,640,a),rewrite([6,7,5])]. given #3988 (W,wt=55): 3890 P([1,1,0,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,296,a,b,640,a),rewrite([6,7,5])]. given #3989 (W,wt=55): 3891 P([1,1,0,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,295,a,b,640,a),rewrite([6,7,5])]. given #3990 (W,wt=55): 3892 P([1,1,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,294,a,b,640,a),rewrite([6,7,5])]. given #3991 (W,wt=55): 3893 P([1,1,0,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,293,a,b,640,a),rewrite([6,7,5])]. given #3992 (W,wt=55): 3894 P([1,1,0,0,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,292,a,b,640,a),rewrite([6,7,5])]. given #3993 (W,wt=55): 3895 P([1,1,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,290,a,b,640,a),rewrite([6,7,5])]. given #3994 (W,wt=55): 3896 P([1,1,0,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,289,a,b,640,a),rewrite([6,7,5])]. given #3995 (W,wt=55): 3897 P([1,1,0,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,288,a,b,640,a),rewrite([6,7,5])]. given #3996 (W,wt=55): 3898 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,82,a,b,640,a),rewrite([6,7,5])]. given #3997 (W,wt=55): 3899 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,297,a,b,641,a),rewrite([6,7,5])]. given #3998 (W,wt=55): 3900 P([1,0,0,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,296,a,b,641,a),rewrite([6,7,5])]. given #3999 (W,wt=55): 3901 P([1,0,0,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,295,a,b,641,a),rewrite([6,7,5])]. given #4000 (W,wt=55): 3902 P([1,0,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,294,a,b,641,a),rewrite([6,7,5])]. given #4001 (W,wt=55): 3903 P([1,0,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,293,a,b,641,a),rewrite([6,7,5])]. given #4002 (W,wt=55): 3904 P([1,0,0,0,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,292,a,b,641,a),rewrite([6,7,5])]. given #4003 (W,wt=55): 3905 P([1,0,0,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,290,a,b,641,a),rewrite([6,7,5])]. given #4004 (W,wt=55): 3906 P([1,0,0,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,289,a,b,641,a),rewrite([6,7,5])]. given #4005 (W,wt=55): 3907 P([1,0,0,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,288,a,b,641,a),rewrite([6,7,5])]. given #4006 (W,wt=55): 3908 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,82,a,b,641,a),rewrite([6,7,5])]. given #4007 (W,wt=55): 3909 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(3,a,639,a,b,642,a),rewrite([12,13,11,10])]. given #4008 (W,wt=55): 3910 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(3,a,638,a,b,642,a),rewrite([12,11,13,10])]. given #4009 (W,wt=55): 3911 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,297,a,b,642,a),rewrite([6,7,5])]. given #4010 (W,wt=55): 3912 P([1,0,0,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,296,a,b,642,a),rewrite([6,7,5])]. given #4011 (W,wt=55): 3913 P([1,0,0,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,295,a,b,642,a),rewrite([6,7,5])]. given #4012 (W,wt=55): 3914 P([1,0,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,294,a,b,642,a),rewrite([6,7,5])]. given #4013 (W,wt=55): 3915 P([1,0,0,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,293,a,b,642,a),rewrite([6,7,5])]. given #4014 (W,wt=55): 3916 P([1,0,0,0,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,292,a,b,642,a),rewrite([6,7,5])]. given #4015 (W,wt=55): 3917 P([1,0,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,290,a,b,642,a),rewrite([6,7,5])]. given #4016 (W,wt=55): 3918 P([1,0,0,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,289,a,b,642,a),rewrite([6,7,5])]. given #4017 (W,wt=55): 3919 P([1,0,0,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,288,a,b,642,a),rewrite([6,7,5])]. given #4018 (W,wt=55): 3920 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,82,a,b,642,a),rewrite([6,7,5])]. given #4019 (W,wt=55): 3921 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,315,a,b,643,a),rewrite([13,11,12,10])]. given #4020 (W,wt=55): 3922 P([0,0,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,314,a,b,643,a),rewrite([13,11,12,10])]. given #4021 (W,wt=55): 3923 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,313,a,b,643,a),rewrite([13,11,12,10])]. given #4022 (W,wt=55): 3924 P([0,1,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,312,a,b,643,a),rewrite([13,11,12,10])]. given #4023 (W,wt=55): 3925 P([0,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,311,a,b,643,a),rewrite([13,11,12,10])]. given #4024 (W,wt=55): 3926 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,310,a,b,643,a),rewrite([13,11,12,10])]. given #4025 (W,wt=55): 3927 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,309,a,b,643,a),rewrite([13,11,12,10])]. given #4026 (W,wt=55): 3928 P([0,0,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,307,a,b,643,a),rewrite([13,11,12,10])]. given #4027 (W,wt=55): 3929 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,306,a,b,643,a),rewrite([13,11,12,10])]. given #4028 (W,wt=55): 3930 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,83,a,b,643,a),rewrite([11,12,13,10])]. given #4029 (W,wt=55): 3931 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,315,a,b,652,a),rewrite([13,11,12,10])]. given #4030 (W,wt=55): 3932 P([0,0,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,314,a,b,652,a),rewrite([13,11,12,10])]. given #4031 (W,wt=55): 3933 P([0,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,313,a,b,652,a),rewrite([13,11,12,10])]. given #4032 (W,wt=55): 3934 P([0,1,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,312,a,b,652,a),rewrite([13,11,12,10])]. given #4033 (W,wt=55): 3935 P([0,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,311,a,b,652,a),rewrite([13,11,12,10])]. given #4034 (W,wt=55): 3936 P([0,1,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,310,a,b,652,a),rewrite([13,11,12,10])]. given #4035 (W,wt=55): 3937 P([0,0,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,309,a,b,652,a),rewrite([13,11,12,10])]. given #4036 (W,wt=55): 3938 P([0,0,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,307,a,b,652,a),rewrite([13,11,12,10])]. given #4037 (W,wt=55): 3939 P([0,0,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,306,a,b,652,a),rewrite([13,11,12,10])]. given #4038 (W,wt=55): 3940 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,83,a,b,652,a),rewrite([11,12,13,10])]. given #4039 (W,wt=55): 3941 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(2,a,667,a,b,652,a),rewrite([8,6,7,5])]. given #4040 (W,wt=55): 3942 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(2,a,651,a,b,652,a),rewrite([8,6,7,5])]. given #4041 (W,wt=55): 3943 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,315,a,b,660,a),rewrite([13,11,12,10])]. given #4042 (W,wt=55): 3944 P([0,0,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,314,a,b,660,a),rewrite([13,11,12,10])]. given #4043 (W,wt=55): 3945 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,313,a,b,660,a),rewrite([13,11,12,10])]. given #4044 (W,wt=55): 3946 P([0,1,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,312,a,b,660,a),rewrite([13,11,12,10])]. given #4045 (W,wt=55): 3947 P([0,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,311,a,b,660,a),rewrite([13,11,12,10])]. given #4046 (W,wt=55): 3948 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,310,a,b,660,a),rewrite([13,11,12,10])]. given #4047 (W,wt=55): 3949 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,309,a,b,660,a),rewrite([13,11,12,10])]. given #4048 (W,wt=55): 3950 P([0,0,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,307,a,b,660,a),rewrite([13,11,12,10])]. given #4049 (W,wt=55): 3951 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,306,a,b,660,a),rewrite([13,11,12,10])]. given #4050 (W,wt=55): 3952 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,83,a,b,660,a),rewrite([11,13,12,10])]. given #4051 (W,wt=55): 3953 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,666,a,b,668,a),rewrite([7,6,5])]. given #4052 (W,wt=55): 3954 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,665,a,b,668,a),rewrite([7,6,5])]. given #4053 (W,wt=55): 3955 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,664,a,b,668,a),rewrite([7,6,5])]. given #4054 (W,wt=55): 3956 P([0,1,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,663,a,b,668,a),rewrite([7,6,5])]. given #4055 (W,wt=55): 3957 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,662,a,b,668,a),rewrite([7,6,5])]. given #4056 (W,wt=55): 3958 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,658,a,b,668,a),rewrite([7,6,5])]. given #4057 (W,wt=55): 3959 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,657,a,b,668,a),rewrite([7,6,5])]. given #4058 (W,wt=55): 3960 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,656,a,b,668,a),rewrite([7,6,5])]. given #4059 (W,wt=55): 3961 P([0,1,1,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,655,a,b,668,a),rewrite([7,6,5])]. given #4060 (W,wt=55): 3962 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,654,a,b,668,a),rewrite([7,6,5])]. given #4061 (W,wt=55): 3963 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,650,a,b,668,a),rewrite([7,6,5])]. given #4062 (W,wt=55): 3964 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,649,a,b,668,a),rewrite([7,6,5])]. given #4063 (W,wt=55): 3965 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,648,a,b,668,a),rewrite([7,6,5])]. given #4064 (W,wt=55): 3966 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,647,a,b,668,a),rewrite([7,6,5])]. given #4065 (W,wt=55): 3967 P([0,1,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,646,a,b,668,a),rewrite([7,6,5])]. given #4066 (W,wt=55): 3968 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,645,a,b,668,a),rewrite([7,6,5])]. given #4067 (W,wt=55): 3969 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,314,a,b,668,a),rewrite([7,6,5])]. given #4068 (W,wt=55): 3970 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,313,a,b,668,a),rewrite([7,6,5])]. given #4069 (W,wt=55): 3971 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,312,a,b,668,a),rewrite([7,6,5])]. given #4070 (W,wt=55): 3972 P([0,1,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,311,a,b,668,a),rewrite([7,6,5])]. given #4071 (W,wt=55): 3973 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,310,a,b,668,a),rewrite([7,6,5])]. given #4072 (W,wt=55): 3974 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,309,a,b,668,a),rewrite([7,6,5])]. given #4073 (W,wt=55): 3975 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,305,a,b,668,a),rewrite([6,7,5])]. given #4074 (W,wt=55): 3976 P([1,1,1,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,304,a,b,668,a),rewrite([6,7,5])]. given #4075 (W,wt=55): 3977 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,303,a,b,668,a),rewrite([6,7,5])]. given #4076 (W,wt=55): 3978 P([1,1,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,83,a,b,668,a),rewrite([6,7,5])]. given #4077 (W,wt=55): 3979 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,668,a),rewrite([7,6,5])]. given #4078 (W,wt=55): 3980 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,668,a),rewrite([7,6,5])]. given #4079 (W,wt=55): 3981 P([0,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,668,a),rewrite([7,6,5])]. given #4080 (W,wt=55): 3982 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,30,a,b,668,a),rewrite([7,6,5])]. given #4081 (W,wt=55): 3983 P([0,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,29,a,b,668,a),rewrite([7,6,5])]. given #4082 (W,wt=55): 3984 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,26,a,b,668,a),rewrite([7,6,5])]. given #4083 (W,wt=55): 3985 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,22,a,b,668,a),rewrite([7,6,5])]. given #4084 (W,wt=55): 3986 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,0,0,0,0]:x]). [hyper(2,a,21,a,b,668,a),rewrite([7,6,5])]. given #4085 (W,wt=55): 3987 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(3,a,667,a,b,669,a),rewrite([12,13,11,10])]. given #4086 (W,wt=55): 3988 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(3,a,665,a,b,669,a),rewrite([12,11,13,10])]. given #4087 (W,wt=0): 12499 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,3988,a),rewrite([6,7,5])]. given #4088 (W,wt=55): 3989 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,666,a,b,669,a),rewrite([7,6,5])]. given #4089 (W,wt=55): 3990 P([0,1,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,665,a,b,669,a),rewrite([7,6,8,5])]. given #4090 (W,wt=55): 3991 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,664,a,b,669,a),rewrite([7,6,5])]. given #4091 (W,wt=55): 3992 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,658,a,b,669,a),rewrite([7,6,5])]. given #4092 (W,wt=55): 3993 P([0,1,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,657,a,b,669,a),rewrite([7,6,8,5])]. given #4093 (W,wt=55): 3994 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,656,a,b,669,a),rewrite([7,6,5])]. given #4094 (W,wt=55): 3995 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,649,a,b,669,a),rewrite([7,6,5])]. given #4095 (W,wt=55): 3996 P([0,1,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,648,a,b,669,a),rewrite([7,6,8,5])]. given #4096 (W,wt=55): 3997 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,647,a,b,669,a),rewrite([7,6,5])]. given #4097 (W,wt=55): 3998 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,314,a,b,669,a),rewrite([7,6,5])]. given #4098 (W,wt=55): 3999 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,313,a,b,669,a),rewrite([7,6,8,5])]. given #4099 (W,wt=55): 4000 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,312,a,b,669,a),rewrite([7,6,5])]. given #4100 (W,wt=55): 4001 P([1,1,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,305,a,b,669,a),rewrite([6,7,5])]. given #4101 (W,wt=55): 4002 P([1,1,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,304,a,b,669,a),rewrite([6,7,5])]. given #4102 (W,wt=55): 4003 P([1,1,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,303,a,b,669,a),rewrite([6,7,5])]. given #4103 (W,wt=55): 4004 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,669,a),rewrite([6,7,5])]. given #4104 (W,wt=55): 4005 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,63,a,b,669,a),rewrite([7,6,8,5])]. given #4105 (W,wt=55): 4006 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,58,a,b,669,a),rewrite([7,6,8,5])]. given #4106 (W,wt=55): 4007 P([0,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,0]:x]). [hyper(2,a,53,a,b,669,a),rewrite([7,6,5])]. given #4107 (W,wt=55): 4008 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(3,a,664,a,b,670,a),rewrite([12,11,13,10])]. given #4108 (W,wt=55): 4009 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,665,a,b,670,a),rewrite([7,6,5])]. given #4109 (W,wt=55): 4010 P([0,1,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,664,a,b,670,a),rewrite([7,6,8,5])]. given #4110 (W,wt=55): 4011 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,657,a,b,670,a),rewrite([7,6,5])]. given #4111 (W,wt=55): 4012 P([0,1,0,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,656,a,b,670,a),rewrite([7,6,8,5])]. given #4112 (W,wt=55): 4013 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,648,a,b,670,a),rewrite([7,6,5])]. given #4113 (W,wt=55): 4014 P([0,1,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,647,a,b,670,a),rewrite([7,6,8,5])]. given #4114 (W,wt=55): 4015 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,313,a,b,670,a),rewrite([7,6,5])]. given #4115 (W,wt=55): 4016 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,312,a,b,670,a),rewrite([7,6,8,5])]. given #4116 (W,wt=55): 4017 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,305,a,b,670,a),rewrite([6,7,5])]. given #4117 (W,wt=55): 4018 P([1,1,0,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,304,a,b,670,a),rewrite([6,7,5])]. given #4118 (W,wt=55): 4019 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,303,a,b,670,a),rewrite([6,7,5])]. given #4119 (W,wt=55): 4020 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,83,a,b,670,a),rewrite([6,7,5])]. given #4120 (W,wt=55): 4021 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,58,a,b,670,a),rewrite([7,6,8,5])]. given #4121 (W,wt=55): 4022 P([0,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,670,a),rewrite([7,6,5])]. given #4122 (W,wt=55): 4023 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(3,a,666,a,b,671,a),rewrite([12,13,11,10])]. given #4123 (W,wt=55): 4024 P([0,0,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,666,a,b,671,a),rewrite([7,8,6,5])]. given #4124 (W,wt=55): 4025 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,665,a,b,671,a),rewrite([7,6,5])]. given #4125 (W,wt=55): 4026 P([0,0,1,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,658,a,b,671,a),rewrite([7,8,6,5])]. given #4126 (W,wt=55): 4027 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,657,a,b,671,a),rewrite([7,6,5])]. given #4127 (W,wt=55): 4028 P([0,0,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,649,a,b,671,a),rewrite([7,8,6,5])]. given #4128 (W,wt=55): 4029 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,648,a,b,671,a),rewrite([7,6,5])]. given #4129 (W,wt=55): 4030 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,314,a,b,671,a),rewrite([7,8,6,5])]. given #4130 (W,wt=55): 4031 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,313,a,b,671,a),rewrite([7,6,5])]. given #4131 (W,wt=55): 4032 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,305,a,b,671,a),rewrite([6,7,5])]. given #4132 (W,wt=55): 4033 P([1,0,1,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,304,a,b,671,a),rewrite([6,7,5])]. given #4133 (W,wt=55): 4034 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,303,a,b,671,a),rewrite([6,7,5])]. given #4134 (W,wt=55): 4035 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,83,a,b,671,a),rewrite([6,7,5])]. given #4135 (W,wt=55): 4036 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,63,a,b,671,a),rewrite([7,8,6,5])]. given #4136 (W,wt=55): 4037 P([0,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,0]:x]). [hyper(2,a,53,a,b,671,a),rewrite([7,6,5])]. given #4137 (W,wt=55): 4038 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,667,a,b,672,a),rewrite([12,13,11,10])]. given #4138 (W,wt=55): 4039 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,666,a,b,672,a),rewrite([12,13,11,10])]. given #4139 (W,wt=55): 4040 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,665,a,b,672,a),rewrite([12,11,13,10])]. given #4140 (W,wt=0): 12519 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,4040,a),rewrite([6,7,5])]. given #4141 (W,wt=55): 4041 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,664,a,b,672,a),rewrite([12,11,13,10])]. given #4142 (W,wt=55): 4042 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,662,a,b,672,a),rewrite([12,13,11,10])]. given #4143 (W,wt=55): 4043 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,661,a,b,672,a),rewrite([12,13,11,10])]. given #4144 (W,wt=55): 4044 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,650,a,b,672,a),rewrite([12,11,13,10])]. given #4145 (W,wt=55): 4045 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(3,a,306,a,b,672,a),rewrite([12,13,11,10])]. given #4146 (W,wt=55): 4046 P([1,0,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(2,a,305,a,b,672,a),rewrite([6,7,5])]. given #4147 (W,wt=55): 4047 P([1,0,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(2,a,304,a,b,672,a),rewrite([6,7,5])]. given #4148 (W,wt=55): 4048 P([1,0,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(2,a,303,a,b,672,a),rewrite([6,7,5])]. given #4149 (W,wt=55): 4049 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,672,a),rewrite([6,7,5])]. given #4150 (W,wt=55): 4050 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(3,a,667,a,b,673,a),rewrite([12,13,11,10])]. given #4151 (W,wt=55): 4051 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(3,a,666,a,b,673,a),rewrite([12,13,11,10])]. given #4152 (W,wt=55): 4052 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(3,a,665,a,b,673,a),rewrite([12,11,13,10])]. given #4153 (W,wt=0): 12556 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,4052,a),rewrite([6,7,5])]. given #4154 (W,wt=55): 4053 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(3,a,662,a,b,673,a),rewrite([12,13,11,10])]. given #4155 (W,wt=55): 4054 P([0,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,666,a,b,673,a),rewrite([7,8,6,5])]. given #4156 (W,wt=55): 4055 P([0,0,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,658,a,b,673,a),rewrite([7,8,6,5])]. given #4157 (W,wt=55): 4056 P([0,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,649,a,b,673,a),rewrite([7,8,6,5])]. given #4158 (W,wt=55): 4057 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,314,a,b,673,a),rewrite([7,8,6,5])]. given #4159 (W,wt=55): 4058 P([1,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,305,a,b,673,a),rewrite([6,7,5])]. given #4160 (W,wt=55): 4059 P([1,0,1,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,304,a,b,673,a),rewrite([6,7,5])]. given #4161 (W,wt=55): 4060 P([1,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,303,a,b,673,a),rewrite([6,7,5])]. given #4162 (W,wt=55): 4061 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,673,a),rewrite([6,7,5])]. given #4163 (W,wt=55): 4062 P([0,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,0]:x]). [hyper(2,a,63,a,b,673,a),rewrite([7,8,6,5])]. given #4164 (W,wt=55): 4063 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,666,a,b,674,a),rewrite([12,13,11,10])]. given #4165 (W,wt=55): 4064 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,664,a,b,674,a),rewrite([12,11,13,10])]. given #4166 (W,wt=55): 4065 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(3,a,661,a,b,674,a),rewrite([12,13,11,10])]. given #4167 (W,wt=55): 4066 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,305,a,b,674,a),rewrite([6,7,5])]. given #4168 (W,wt=55): 4067 P([1,0,0,0,1,0,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,304,a,b,674,a),rewrite([6,7,5])]. given #4169 (W,wt=55): 4068 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,303,a,b,674,a),rewrite([6,7,5])]. given #4170 (W,wt=55): 4069 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,0]:x]). [hyper(2,a,83,a,b,674,a),rewrite([6,7,5])]. given #4171 (W,wt=55): 4070 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(3,a,667,a,b,675,a),rewrite([12,13,11,10])]. given #4172 (W,wt=55): 4071 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(3,a,665,a,b,675,a),rewrite([12,11,13,10])]. given #4173 (W,wt=0): 12585 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,4071,a),rewrite([6,7,5])]. given #4174 (W,wt=55): 4072 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(3,a,664,a,b,675,a),rewrite([12,11,13,10])]. given #4175 (W,wt=55): 4073 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(3,a,650,a,b,675,a),rewrite([12,11,13,10])]. given #4176 (W,wt=55): 4074 P([0,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,665,a,b,675,a),rewrite([7,6,8,5])]. given #4177 (W,wt=55): 4075 P([0,1,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,657,a,b,675,a),rewrite([7,6,8,5])]. given #4178 (W,wt=55): 4076 P([0,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,648,a,b,675,a),rewrite([7,6,8,5])]. given #4179 (W,wt=55): 4077 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,313,a,b,675,a),rewrite([7,6,8,5])]. given #4180 (W,wt=55): 4078 P([1,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,305,a,b,675,a),rewrite([6,7,5])]. given #4181 (W,wt=55): 4079 P([1,1,0,0,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,304,a,b,675,a),rewrite([6,7,5])]. given #4182 (W,wt=55): 4080 P([1,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,303,a,b,675,a),rewrite([6,7,5])]. given #4183 (W,wt=55): 4081 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,83,a,b,675,a),rewrite([6,7,5])]. given #4184 (W,wt=55): 4082 P([0,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,0]:x]). [hyper(2,a,58,a,b,675,a),rewrite([7,6,8,5])]. given #4185 (W,wt=55): 4083 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,305,a,b,676,a),rewrite([6,7,5])]. given #4186 (W,wt=55): 4084 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,304,a,b,676,a),rewrite([6,7,5])]. given #4187 (W,wt=55): 4085 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,303,a,b,676,a),rewrite([6,7,5])]. given #4188 (W,wt=55): 4087 P([0,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,703,a,b,677,a),rewrite([13,11,12,10])]. given #4189 (W,wt=55): 4088 P([0,1,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,702,a,b,677,a),rewrite([13,11,12,10])]. given #4190 (W,wt=55): 4089 P([0,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,700,a,b,677,a),rewrite([13,11,12,10])]. given #4191 (W,wt=55): 4090 P([0,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,698,a,b,677,a),rewrite([13,11,12,10])]. given #4192 (W,wt=55): 4091 P([0,0,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,697,a,b,677,a),rewrite([13,11,12,10])]. given #4193 (W,wt=55): 4092 P([0,0,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,695,a,b,677,a),rewrite([13,11,12,10])]. given #4194 (W,wt=55): 4093 P([0,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,694,a,b,677,a),rewrite([13,11,12,10])]. given #4195 (W,wt=55): 4094 P([0,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,693,a,b,677,a),rewrite([13,11,12,10])]. given #4196 (W,wt=55): 4095 P([0,1,1,0,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,691,a,b,677,a),rewrite([13,11,12,10])]. given #4197 (W,wt=55): 4096 P([0,1,0,0,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,690,a,b,677,a),rewrite([13,11,12,10])]. given #4198 (W,wt=55): 4097 P([0,0,1,0,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,689,a,b,677,a),rewrite([13,11,12,10])]. given #4199 (W,wt=55): 4098 P([0,0,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,687,a,b,677,a),rewrite([13,11,12,10])]. given #4200 (W,wt=55): 4099 P([0,1,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,686,a,b,677,a),rewrite([13,11,12,10])]. given #4201 (W,wt=55): 4100 P([0,1,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,681,a,b,677,a),rewrite([13,11,12,10])]. given #4202 (W,wt=55): 4101 P([0,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,680,a,b,677,a),rewrite([13,11,12,10])]. given #4203 (W,wt=55): 4102 P([0,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,679,a,b,677,a),rewrite([13,11,12,10])]. given #4204 (W,wt=55): 4103 P([0,1,1,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,329,a,b,677,a),rewrite([13,11,12,10])]. given #4205 (W,wt=55): 4104 P([0,1,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,328,a,b,677,a),rewrite([13,11,12,10])]. given #4206 (W,wt=55): 4105 P([0,0,1,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,327,a,b,677,a),rewrite([13,11,12,10])]. given #4207 (W,wt=55): 4106 P([1,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,324,a,b,677,a),rewrite([11,13,12,10])]. given #4208 (W,wt=55): 4107 P([1,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,323,a,b,677,a),rewrite([11,12,13,10])]. given #4209 (W,wt=55): 4108 P([1,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,322,a,b,677,a),rewrite([11,13,12,10])]. given #4210 (W,wt=55): 4109 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,321,a,b,677,a),rewrite([11,12,13,10])]. given #4211 (W,wt=55): 4110 P([1,1,1,0,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,320,a,b,677,a),rewrite([11,13,12,10])]. given #4212 (W,wt=55): 4111 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,317,a,b,677,a),rewrite([11,12,13,10])]. given #4213 (W,wt=55): 4112 P([1,1,1,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,84,a,b,677,a),rewrite([11,13,12,10])]. given #4214 (W,wt=55): 4113 P([0,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,70,a,b,677,a),rewrite([13,11,12,10])]. given #4215 (W,wt=55): 4114 P([0,0,0,0,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,677,a),rewrite([13,12,11,10])]. given #4216 (W,wt=55): 4115 P([0,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,55,a,b,677,a),rewrite([13,11,12,10])]. given #4217 (W,wt=55): 4116 P([0,0,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,677,a),rewrite([13,12,11,10])]. given #4218 (W,wt=55): 4117 P([0,0,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,677,a),rewrite([13,11,12,10])]. given #4219 (W,wt=55): 4118 P([0,0,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,677,a),rewrite([13,12,11,10])]. given #4220 (W,wt=55): 4119 P([0,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,22,a,b,677,a),rewrite([13,11,12,10])]. given #4221 (W,wt=55): 4120 P([0,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,1,1]:x]). [hyper(3,a,21,a,b,677,a),rewrite([13,11,12,10])]. given #4222 (W,wt=55): 4121 P([0,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,700,a,b,678,a),rewrite([13,11,12,10])]. given #4223 (W,wt=55): 4122 P([0,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,698,a,b,678,a),rewrite([13,11,12,10])]. given #4224 (W,wt=55): 4123 P([0,0,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,697,a,b,678,a),rewrite([13,11,12,10])]. given #4225 (W,wt=55): 4124 P([0,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,695,a,b,678,a),rewrite([13,11,12,10])]. given #4226 (W,wt=55): 4125 P([0,1,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,690,a,b,678,a),rewrite([13,11,12,10])]. given #4227 (W,wt=55): 4126 P([0,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,681,a,b,678,a),rewrite([13,11,12,10])]. given #4228 (W,wt=55): 4127 P([0,1,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,329,a,b,678,a),rewrite([13,11,12,10])]. given #4229 (W,wt=55): 4128 P([0,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,328,a,b,678,a),rewrite([13,11,12,10])]. given #4230 (W,wt=55): 4129 P([0,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,327,a,b,678,a),rewrite([13,11,12,10])]. given #4231 (W,wt=55): 4130 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,323,a,b,678,a),rewrite([11,12,13,10])]. given #4232 (W,wt=55): 4131 P([1,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,322,a,b,678,a),rewrite([11,13,12,10])]. given #4233 (W,wt=55): 4132 P([1,1,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,84,a,b,678,a),rewrite([11,13,12,10])]. given #4234 (W,wt=55): 4133 P([0,0,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,678,a),rewrite([13,12,11,10])]. given #4235 (W,wt=55): 4134 P([0,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,678,a),rewrite([13,11,12,10])]. given #4236 (W,wt=55): 4135 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,1,1]:x]). [hyper(2,a,698,a,b,678,a),rewrite([8,6,7,5])]. given #4237 (W,wt=55): 4136 P([0,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,703,a,b,682,a),rewrite([13,11,12,10])]. given #4238 (W,wt=55): 4137 P([0,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,702,a,b,682,a),rewrite([13,11,12,10])]. given #4239 (W,wt=55): 4138 P([0,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,700,a,b,682,a),rewrite([13,11,12,10])]. given #4240 (W,wt=55): 4139 P([0,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,698,a,b,682,a),rewrite([13,11,12,10])]. given #4241 (W,wt=55): 4140 P([0,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,697,a,b,682,a),rewrite([13,11,12,10])]. given #4242 (W,wt=55): 4141 P([0,0,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,695,a,b,682,a),rewrite([13,11,12,10])]. given #4243 (W,wt=55): 4142 P([0,1,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,690,a,b,682,a),rewrite([13,11,12,10])]. given #4244 (W,wt=55): 4143 P([0,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,687,a,b,682,a),rewrite([13,11,12,10])]. given #4245 (W,wt=55): 4144 P([0,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,686,a,b,682,a),rewrite([13,11,12,10])]. given #4246 (W,wt=55): 4145 P([0,1,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,329,a,b,682,a),rewrite([13,11,12,10])]. given #4247 (W,wt=55): 4146 P([0,1,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,328,a,b,682,a),rewrite([13,11,12,10])]. given #4248 (W,wt=55): 4147 P([0,0,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,327,a,b,682,a),rewrite([13,11,12,10])]. given #4249 (W,wt=55): 4148 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,324,a,b,682,a),rewrite([11,12,13,10])]. given #4250 (W,wt=55): 4149 P([1,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,323,a,b,682,a),rewrite([11,12,13,10])]. given #4251 (W,wt=55): 4150 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,322,a,b,682,a),rewrite([11,12,13,10])]. given #4252 (W,wt=55): 4151 P([1,1,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,84,a,b,682,a),rewrite([11,12,13,10])]. given #4253 (W,wt=0): 12620 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,4151,a),rewrite([6,7,8,5])]. given #4254 (W,wt=55): 4152 P([0,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,682,a),rewrite([13,11,12,10])]. given #4255 (W,wt=55): 4153 P([0,0,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,682,a),rewrite([13,12,11,10])]. given #4256 (W,wt=55): 4154 P([0,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,682,a),rewrite([13,11,12,10])]. given #4257 (W,wt=55): 4155 P([0,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(2,a,707,a,b,682,a),rewrite([8,6,7,5])]. given #4258 (W,wt=55): 4156 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,1,1]:x]). [hyper(2,a,700,a,b,682,a),rewrite([8,6,7,5])]. given #4259 (W,wt=55): 4157 P([0,1,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(3,a,329,a,b,688,a),rewrite([13,11,12,10])]. given #4260 (W,wt=55): 4158 P([0,1,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(3,a,328,a,b,688,a),rewrite([13,11,12,10])]. given #4261 (W,wt=55): 4159 P([0,0,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(3,a,327,a,b,688,a),rewrite([13,11,12,10])]. given #4262 (W,wt=55): 4160 P([1,1,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(3,a,84,a,b,688,a),rewrite([11,12,13,10])]. given #4263 (W,wt=0): 12647 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,4160,a),rewrite([6,7,5])]. given #4264 (W,wt=55): 4161 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,707,a,b,688,a),rewrite([8,6,7,5])]. given #4265 (W,wt=55): 4162 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,703,a,b,688,a),rewrite([8,6,7,5])]. given #4266 (W,wt=55): 4163 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,700,a,b,688,a),rewrite([8,6,7,5])]. given #4267 (W,wt=55): 4164 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,698,a,b,688,a),rewrite([8,6,7,5])]. given #4268 (W,wt=55): 4165 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,694,a,b,688,a),rewrite([8,6,7,5])]. given #4269 (W,wt=55): 4166 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,685,a,b,688,a),rewrite([8,6,7,5])]. given #4270 (W,wt=55): 4167 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,680,a,b,688,a),rewrite([8,6,7,5])]. given #4271 (W,wt=55): 4168 P([0,0,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,0,1]:x]). [hyper(2,a,316,a,b,688,a),rewrite([6,7,5])]. given #4272 (W,wt=55): 4169 P([0,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,703,a,b,692,a),rewrite([13,11,12,10])]. given #4273 (W,wt=55): 4170 P([0,1,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,702,a,b,692,a),rewrite([13,11,12,10])]. given #4274 (W,wt=55): 4171 P([0,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,700,a,b,692,a),rewrite([13,11,12,10])]. given #4275 (W,wt=55): 4172 P([0,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,695,a,b,692,a),rewrite([13,11,12,10])]. given #4276 (W,wt=55): 4173 P([0,0,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,689,a,b,692,a),rewrite([13,11,12,10])]. given #4277 (W,wt=55): 4174 P([0,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,681,a,b,692,a),rewrite([13,11,12,10])]. given #4278 (W,wt=55): 4175 P([0,1,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,329,a,b,692,a),rewrite([13,11,12,10])]. given #4279 (W,wt=55): 4176 P([0,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,328,a,b,692,a),rewrite([13,11,12,10])]. given #4280 (W,wt=55): 4177 P([0,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,327,a,b,692,a),rewrite([13,11,12,10])]. given #4281 (W,wt=55): 4178 P([1,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,324,a,b,692,a),rewrite([11,13,12,10])]. given #4282 (W,wt=55): 4179 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,323,a,b,692,a),rewrite([11,12,13,10])]. given #4283 (W,wt=55): 4180 P([1,1,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,84,a,b,692,a),rewrite([11,13,12,10])]. given #4284 (W,wt=55): 4181 P([0,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,692,a),rewrite([13,11,12,10])]. given #4285 (W,wt=55): 4182 P([0,0,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,692,a),rewrite([13,12,11,10])]. given #4286 (W,wt=55): 4183 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,1,0,1]:x]). [hyper(2,a,703,a,b,692,a),rewrite([8,6,7,5])]. given #4287 (W,wt=55): 4184 P([0,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,703,a,b,696,a),rewrite([13,11,12,10])]. given #4288 (W,wt=55): 4185 P([0,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,702,a,b,696,a),rewrite([13,11,12,10])]. given #4289 (W,wt=55): 4186 P([0,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,695,a,b,696,a),rewrite([13,11,12,10])]. given #4290 (W,wt=55): 4187 P([0,1,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,329,a,b,696,a),rewrite([13,11,12,10])]. given #4291 (W,wt=55): 4188 P([0,1,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,328,a,b,696,a),rewrite([13,11,12,10])]. given #4292 (W,wt=55): 4189 P([0,0,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,327,a,b,696,a),rewrite([13,11,12,10])]. given #4293 (W,wt=55): 4190 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,324,a,b,696,a),rewrite([11,12,13,10])]. given #4294 (W,wt=55): 4191 P([1,1,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,84,a,b,696,a),rewrite([11,12,13,10])]. given #4295 (W,wt=0): 12676 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,4191,a),rewrite([6,7,8,5])]. given #4296 (W,wt=55): 4192 P([0,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,696,a),rewrite([13,11,12,10])]. given #4297 (W,wt=55): 4193 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(2,a,707,a,b,696,a),rewrite([8,6,7,5])]. given #4298 (W,wt=55): 4194 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(2,a,703,a,b,696,a),rewrite([8,6,7,5])]. given #4299 (W,wt=55): 4195 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(2,a,700,a,b,696,a),rewrite([8,6,7,5])]. given #4300 (W,wt=55): 4196 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,1,0,1]:x]). [hyper(2,a,680,a,b,696,a),rewrite([8,6,7,5])]. given #4301 (W,wt=55): 4197 P([0,1,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,329,a,b,699,a),rewrite([13,11,12,10])]. given #4302 (W,wt=55): 4198 P([0,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,328,a,b,699,a),rewrite([13,11,12,10])]. given #4303 (W,wt=55): 4199 P([0,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,327,a,b,699,a),rewrite([13,11,12,10])]. given #4304 (W,wt=55): 4200 P([1,1,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(3,a,84,a,b,699,a),rewrite([11,13,12,10])]. given #4305 (W,wt=55): 4201 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,703,a,b,699,a),rewrite([8,6,7,5])]. given #4306 (W,wt=55): 4202 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,698,a,b,699,a),rewrite([8,6,7,5])]. given #4307 (W,wt=55): 4203 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[1,1,1,1,0,0,0,1]:x]). [hyper(2,a,685,a,b,699,a),rewrite([8,6,7,5])]. given #4308 (W,wt=55): 4204 P([0,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,700,a,b,701,a),rewrite([13,11,12,10])]. given #4309 (W,wt=55): 4205 P([0,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,697,a,b,701,a),rewrite([13,11,12,10])]. given #4310 (W,wt=55): 4206 P([0,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,690,a,b,701,a),rewrite([13,11,12,10])]. given #4311 (W,wt=55): 4207 P([0,1,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,329,a,b,701,a),rewrite([13,11,12,10])]. given #4312 (W,wt=55): 4208 P([0,1,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,328,a,b,701,a),rewrite([13,11,12,10])]. given #4313 (W,wt=55): 4209 P([0,0,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,327,a,b,701,a),rewrite([13,11,12,10])]. given #4314 (W,wt=55): 4210 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,323,a,b,701,a),rewrite([11,12,13,10])]. given #4315 (W,wt=55): 4211 P([1,1,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,84,a,b,701,a),rewrite([11,12,13,10])]. given #4316 (W,wt=0): 12708 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,4211,a),rewrite([6,7,8,5])]. given #4317 (W,wt=55): 4212 P([0,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,701,a),rewrite([13,12,11,10])]. given #4318 (W,wt=55): 4213 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(2,a,707,a,b,701,a),rewrite([8,6,7,5])]. given #4319 (W,wt=55): 4214 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(2,a,700,a,b,701,a),rewrite([8,6,7,5])]. given #4320 (W,wt=55): 4215 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(2,a,698,a,b,701,a),rewrite([8,6,7,5])]. given #4321 (W,wt=55): 4216 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,0,0,1,1]:x]). [hyper(2,a,694,a,b,701,a),rewrite([8,6,7,5])]. given #4322 (W,wt=55): 4217 P([0,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,329,a,b,704,a),rewrite([13,11,12,10])]. given #4323 (W,wt=55): 4218 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,328,a,b,704,a),rewrite([13,11,12,10])]. given #4324 (W,wt=55): 4219 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,327,a,b,704,a),rewrite([13,11,12,10])]. given #4325 (W,wt=55): 4221 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,325,a,b,708,a),rewrite([6,7,5])]. given #4326 (W,wt=55): 4222 P([1,1,0,0,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,324,a,b,708,a),rewrite([6,7,5])]. given #4327 (W,wt=55): 4223 P([1,1,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,323,a,b,708,a),rewrite([6,7,5])]. given #4328 (W,wt=55): 4224 P([1,1,0,0,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,322,a,b,708,a),rewrite([6,7,5])]. given #4329 (W,wt=55): 4225 P([1,1,0,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,321,a,b,708,a),rewrite([6,7,5])]. given #4330 (W,wt=55): 4226 P([1,1,0,0,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,320,a,b,708,a),rewrite([6,7,5])]. given #4331 (W,wt=55): 4227 P([1,1,0,0,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,319,a,b,708,a),rewrite([6,7,5])]. given #4332 (W,wt=55): 4228 P([1,1,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,317,a,b,708,a),rewrite([6,7,5])]. given #4333 (W,wt=55): 4229 P([1,1,0,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,316,a,b,708,a),rewrite([6,7,5])]. given #4334 (W,wt=55): 4230 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,84,a,b,708,a),rewrite([6,7,5])]. given #4335 (W,wt=55): 4231 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,325,a,b,709,a),rewrite([6,7,5])]. given #4336 (W,wt=55): 4232 P([1,0,1,0,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,324,a,b,709,a),rewrite([6,7,5])]. given #4337 (W,wt=55): 4233 P([1,0,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,323,a,b,709,a),rewrite([6,7,5])]. given #4338 (W,wt=55): 4234 P([1,0,1,0,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,322,a,b,709,a),rewrite([6,7,5])]. given #4339 (W,wt=55): 4235 P([1,0,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,321,a,b,709,a),rewrite([6,7,5])]. given #4340 (W,wt=55): 4236 P([1,0,1,0,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,320,a,b,709,a),rewrite([6,7,5])]. given #4341 (W,wt=55): 4237 P([1,0,1,0,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,319,a,b,709,a),rewrite([6,7,5])]. given #4342 (W,wt=55): 4238 P([1,0,1,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,317,a,b,709,a),rewrite([6,7,5])]. given #4343 (W,wt=55): 4239 P([1,0,1,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,316,a,b,709,a),rewrite([6,7,5])]. given #4344 (W,wt=55): 4240 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,84,a,b,709,a),rewrite([6,7,5])]. given #4345 (W,wt=55): 4241 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(3,a,707,a,b,710,a),rewrite([12,13,11,10])]. given #4346 (W,wt=55): 4242 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(3,a,706,a,b,710,a),rewrite([12,11,13,10])]. given #4347 (W,wt=55): 4243 P([1,0,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,325,a,b,710,a),rewrite([6,7,5])]. given #4348 (W,wt=55): 4244 P([1,0,0,0,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,324,a,b,710,a),rewrite([6,7,5])]. given #4349 (W,wt=55): 4245 P([1,0,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,323,a,b,710,a),rewrite([6,7,5])]. given #4350 (W,wt=55): 4246 P([1,0,0,0,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,322,a,b,710,a),rewrite([6,7,5])]. given #4351 (W,wt=55): 4247 P([1,0,0,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,321,a,b,710,a),rewrite([6,7,5])]. given #4352 (W,wt=55): 4248 P([1,0,0,0,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,320,a,b,710,a),rewrite([6,7,5])]. given #4353 (W,wt=55): 4249 P([1,0,0,0,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,319,a,b,710,a),rewrite([6,7,5])]. given #4354 (W,wt=55): 4250 P([1,0,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,317,a,b,710,a),rewrite([6,7,5])]. given #4355 (W,wt=55): 4251 P([1,0,0,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,316,a,b,710,a),rewrite([6,7,5])]. given #4356 (W,wt=55): 4252 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,84,a,b,710,a),rewrite([6,7,5])]. given #4357 (W,wt=55): 4253 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,343,a,b,711,a),rewrite([13,11,12,10])]. given #4358 (W,wt=55): 4254 P([0,0,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,342,a,b,711,a),rewrite([13,11,12,10])]. given #4359 (W,wt=55): 4255 P([0,1,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,341,a,b,711,a),rewrite([13,11,12,10])]. given #4360 (W,wt=55): 4256 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,340,a,b,711,a),rewrite([13,11,12,10])]. given #4361 (W,wt=55): 4257 P([0,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,339,a,b,711,a),rewrite([13,11,12,10])]. given #4362 (W,wt=55): 4258 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,338,a,b,711,a),rewrite([13,11,12,10])]. given #4363 (W,wt=55): 4259 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,337,a,b,711,a),rewrite([13,11,12,10])]. given #4364 (W,wt=55): 4260 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,336,a,b,711,a),rewrite([13,12,11,10])]. given #4365 (W,wt=55): 4261 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,334,a,b,711,a),rewrite([13,12,11,10])]. given #4366 (W,wt=55): 4262 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,85,a,b,711,a),rewrite([11,12,13,10])]. given #4367 (W,wt=55): 4263 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,343,a,b,720,a),rewrite([13,11,12,10])]. given #4368 (W,wt=55): 4264 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,720,a),rewrite([13,11,12,10])]. given #4369 (W,wt=55): 4265 P([0,1,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,720,a),rewrite([13,11,12,10])]. given #4370 (W,wt=55): 4266 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,340,a,b,720,a),rewrite([13,11,12,10])]. given #4371 (W,wt=55): 4267 P([0,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,339,a,b,720,a),rewrite([13,11,12,10])]. given #4372 (W,wt=55): 4268 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,338,a,b,720,a),rewrite([13,11,12,10])]. given #4373 (W,wt=55): 4269 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,337,a,b,720,a),rewrite([13,11,12,10])]. given #4374 (W,wt=55): 4270 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,336,a,b,720,a),rewrite([13,12,11,10])]. given #4375 (W,wt=55): 4271 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,334,a,b,720,a),rewrite([13,12,11,10])]. given #4376 (W,wt=55): 4272 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,85,a,b,720,a),rewrite([11,12,13,10])]. given #4377 (W,wt=55): 4273 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(2,a,735,a,b,720,a),rewrite([8,6,7,5])]. given #4378 (W,wt=55): 4274 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(2,a,719,a,b,720,a),rewrite([8,6,7,5])]. given #4379 (W,wt=55): 4275 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,343,a,b,728,a),rewrite([13,11,12,10])]. given #4380 (W,wt=55): 4276 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,342,a,b,728,a),rewrite([13,11,12,10])]. given #4381 (W,wt=55): 4277 P([0,1,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,341,a,b,728,a),rewrite([13,11,12,10])]. given #4382 (W,wt=55): 4278 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,340,a,b,728,a),rewrite([13,11,12,10])]. given #4383 (W,wt=55): 4279 P([0,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,339,a,b,728,a),rewrite([13,11,12,10])]. given #4384 (W,wt=55): 4280 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,338,a,b,728,a),rewrite([13,11,12,10])]. given #4385 (W,wt=55): 4281 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,337,a,b,728,a),rewrite([13,11,12,10])]. given #4386 (W,wt=55): 4282 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,336,a,b,728,a),rewrite([13,11,12,10])]. given #4387 (W,wt=55): 4283 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,334,a,b,728,a),rewrite([13,11,12,10])]. given #4388 (W,wt=55): 4284 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,85,a,b,728,a),rewrite([11,13,12,10])]. given #4389 (W,wt=55): 4285 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,734,a,b,736,a),rewrite([7,6,5])]. given #4390 (W,wt=55): 4286 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,733,a,b,736,a),rewrite([7,6,5])]. given #4391 (W,wt=55): 4287 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,732,a,b,736,a),rewrite([7,6,5])]. given #4392 (W,wt=55): 4288 P([0,1,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,731,a,b,736,a),rewrite([7,6,5])]. given #4393 (W,wt=55): 4289 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,729,a,b,736,a),rewrite([7,6,5])]. given #4394 (W,wt=55): 4290 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,726,a,b,736,a),rewrite([7,6,5])]. given #4395 (W,wt=55): 4291 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,725,a,b,736,a),rewrite([7,6,5])]. given #4396 (W,wt=55): 4292 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,724,a,b,736,a),rewrite([7,6,5])]. given #4397 (W,wt=55): 4293 P([0,1,1,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,723,a,b,736,a),rewrite([7,6,5])]. given #4398 (W,wt=55): 4294 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,721,a,b,736,a),rewrite([7,6,5])]. given #4399 (W,wt=55): 4295 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,718,a,b,736,a),rewrite([7,6,5])]. given #4400 (W,wt=55): 4296 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,717,a,b,736,a),rewrite([7,6,5])]. given #4401 (W,wt=55): 4297 P([0,1,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,716,a,b,736,a),rewrite([7,6,5])]. given #4402 (W,wt=55): 4298 P([0,1,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,715,a,b,736,a),rewrite([7,6,5])]. given #4403 (W,wt=55): 4299 P([0,1,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,714,a,b,736,a),rewrite([7,6,5])]. given #4404 (W,wt=55): 4300 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,713,a,b,736,a),rewrite([7,6,5])]. given #4405 (W,wt=55): 4301 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,342,a,b,736,a),rewrite([7,6,5])]. given #4406 (W,wt=55): 4302 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,341,a,b,736,a),rewrite([7,6,5])]. given #4407 (W,wt=55): 4303 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,340,a,b,736,a),rewrite([7,6,5])]. given #4408 (W,wt=55): 4304 P([0,1,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,339,a,b,736,a),rewrite([7,6,5])]. given #4409 (W,wt=55): 4305 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,338,a,b,736,a),rewrite([7,6,5])]. given #4410 (W,wt=55): 4306 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,336,a,b,736,a),rewrite([7,6,5])]. given #4411 (W,wt=55): 4307 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,333,a,b,736,a),rewrite([6,7,5])]. given #4412 (W,wt=55): 4308 P([1,1,1,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,332,a,b,736,a),rewrite([6,7,5])]. given #4413 (W,wt=55): 4309 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,331,a,b,736,a),rewrite([6,7,5])]. given #4414 (W,wt=55): 4310 P([1,1,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,736,a),rewrite([6,7,5])]. given #4415 (W,wt=55): 4311 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,736,a),rewrite([7,6,5])]. given #4416 (W,wt=55): 4312 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,736,a),rewrite([7,6,5])]. given #4417 (W,wt=55): 4313 P([0,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,736,a),rewrite([7,6,5])]. given #4418 (W,wt=55): 4314 P([0,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,30,a,b,736,a),rewrite([7,6,5])]. given #4419 (W,wt=55): 4315 P([0,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,29,a,b,736,a),rewrite([7,6,5])]. given #4420 (W,wt=55): 4316 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,26,a,b,736,a),rewrite([7,6,5])]. given #4421 (W,wt=55): 4317 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,22,a,b,736,a),rewrite([7,6,5])]. given #4422 (W,wt=55): 4318 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,0,1,0,0]:x]). [hyper(2,a,20,a,b,736,a),rewrite([7,6,5])]. given #4423 (W,wt=55): 4319 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(3,a,733,a,b,737,a),rewrite([12,11,13,10])]. given #4424 (W,wt=55): 4320 P([0,1,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,733,a,b,737,a),rewrite([7,6,8,5])]. given #4425 (W,wt=55): 4321 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,732,a,b,737,a),rewrite([7,6,5])]. given #4426 (W,wt=55): 4322 P([0,1,1,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,725,a,b,737,a),rewrite([7,6,8,5])]. given #4427 (W,wt=55): 4323 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,724,a,b,737,a),rewrite([7,6,5])]. given #4428 (W,wt=55): 4324 P([0,1,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,716,a,b,737,a),rewrite([7,6,8,5])]. given #4429 (W,wt=55): 4325 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,715,a,b,737,a),rewrite([7,6,5])]. given #4430 (W,wt=55): 4326 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,341,a,b,737,a),rewrite([7,6,8,5])]. given #4431 (W,wt=55): 4327 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,340,a,b,737,a),rewrite([7,6,5])]. given #4432 (W,wt=55): 4328 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,333,a,b,737,a),rewrite([6,7,5])]. given #4433 (W,wt=55): 4329 P([1,1,1,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,332,a,b,737,a),rewrite([6,7,5])]. given #4434 (W,wt=55): 4330 P([1,1,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,331,a,b,737,a),rewrite([6,7,5])]. given #4435 (W,wt=55): 4331 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,737,a),rewrite([6,7,5])]. given #4436 (W,wt=55): 4332 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,58,a,b,737,a),rewrite([7,6,8,5])]. given #4437 (W,wt=55): 4333 P([0,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,0]:x]). [hyper(2,a,53,a,b,737,a),rewrite([7,6,5])]. given #4438 (W,wt=55): 4334 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(3,a,735,a,b,738,a),rewrite([12,11,13,10])]. given #4439 (W,wt=55): 4335 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(3,a,732,a,b,738,a),rewrite([12,11,13,10])]. given #4440 (W,wt=0): 12777 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,4335,a),rewrite([6,7,5])]. given #4441 (W,wt=55): 4336 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,734,a,b,738,a),rewrite([7,6,5])]. given #4442 (W,wt=55): 4337 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,733,a,b,738,a),rewrite([7,6,5])]. given #4443 (W,wt=55): 4338 P([0,1,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,732,a,b,738,a),rewrite([7,6,8,5])]. given #4444 (W,wt=55): 4339 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,726,a,b,738,a),rewrite([7,6,5])]. given #4445 (W,wt=55): 4340 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,725,a,b,738,a),rewrite([7,6,5])]. given #4446 (W,wt=55): 4341 P([0,1,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,724,a,b,738,a),rewrite([7,6,8,5])]. given #4447 (W,wt=55): 4342 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,717,a,b,738,a),rewrite([7,6,5])]. given #4448 (W,wt=55): 4343 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,716,a,b,738,a),rewrite([7,6,5])]. given #4449 (W,wt=55): 4344 P([0,1,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,715,a,b,738,a),rewrite([7,6,8,5])]. given #4450 (W,wt=55): 4345 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,342,a,b,738,a),rewrite([7,6,5])]. given #4451 (W,wt=55): 4346 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,341,a,b,738,a),rewrite([7,6,5])]. given #4452 (W,wt=55): 4347 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,340,a,b,738,a),rewrite([7,6,8,5])]. given #4453 (W,wt=55): 4348 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,333,a,b,738,a),rewrite([6,7,5])]. given #4454 (W,wt=55): 4349 P([1,1,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,332,a,b,738,a),rewrite([6,7,5])]. given #4455 (W,wt=55): 4350 P([1,1,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,331,a,b,738,a),rewrite([6,7,5])]. given #4456 (W,wt=55): 4351 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,738,a),rewrite([6,7,5])]. given #4457 (W,wt=55): 4352 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,738,a),rewrite([7,8,6,5])]. given #4458 (W,wt=55): 4353 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,58,a,b,738,a),rewrite([7,6,8,5])]. given #4459 (W,wt=55): 4354 P([0,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,738,a),rewrite([7,6,5])]. given #4460 (W,wt=55): 4355 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(3,a,734,a,b,739,a),rewrite([12,13,11,10])]. given #4461 (W,wt=55): 4356 P([0,0,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,734,a,b,739,a),rewrite([7,8,6,5])]. given #4462 (W,wt=55): 4357 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,732,a,b,739,a),rewrite([7,6,5])]. given #4463 (W,wt=55): 4358 P([0,0,1,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,726,a,b,739,a),rewrite([7,8,6,5])]. given #4464 (W,wt=55): 4359 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,724,a,b,739,a),rewrite([7,6,5])]. given #4465 (W,wt=55): 4360 P([0,0,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,717,a,b,739,a),rewrite([7,8,6,5])]. given #4466 (W,wt=55): 4361 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,715,a,b,739,a),rewrite([7,6,5])]. given #4467 (W,wt=55): 4362 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,342,a,b,739,a),rewrite([7,8,6,5])]. given #4468 (W,wt=55): 4363 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,340,a,b,739,a),rewrite([7,6,5])]. given #4469 (W,wt=55): 4364 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,333,a,b,739,a),rewrite([6,7,5])]. given #4470 (W,wt=55): 4365 P([1,0,1,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,332,a,b,739,a),rewrite([6,7,5])]. given #4471 (W,wt=55): 4366 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,331,a,b,739,a),rewrite([6,7,5])]. given #4472 (W,wt=55): 4367 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,739,a),rewrite([6,7,5])]. given #4473 (W,wt=55): 4368 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,739,a),rewrite([7,8,6,5])]. given #4474 (W,wt=55): 4369 P([0,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,0]:x]). [hyper(2,a,53,a,b,739,a),rewrite([7,6,5])]. given #4475 (W,wt=55): 4370 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,735,a,b,740,a),rewrite([12,13,11,10])]. given #4476 (W,wt=55): 4371 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,734,a,b,740,a),rewrite([12,13,11,10])]. given #4477 (W,wt=55): 4372 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,733,a,b,740,a),rewrite([12,11,13,10])]. given #4478 (W,wt=55): 4373 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,732,a,b,740,a),rewrite([12,11,13,10])]. given #4479 (W,wt=0): 12797 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,4373,a),rewrite([6,7,5])]. given #4480 (W,wt=55): 4374 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,730,a,b,740,a),rewrite([12,13,11,10])]. given #4481 (W,wt=55): 4375 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,729,a,b,740,a),rewrite([12,13,11,10])]. given #4482 (W,wt=55): 4376 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,718,a,b,740,a),rewrite([12,11,13,10])]. given #4483 (W,wt=55): 4377 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(3,a,334,a,b,740,a),rewrite([12,13,11,10])]. given #4484 (W,wt=55): 4378 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(2,a,333,a,b,740,a),rewrite([6,7,5])]. given #4485 (W,wt=55): 4379 P([1,0,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(2,a,332,a,b,740,a),rewrite([6,7,5])]. given #4486 (W,wt=55): 4380 P([1,0,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(2,a,331,a,b,740,a),rewrite([6,7,5])]. given #4487 (W,wt=55): 4381 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,740,a),rewrite([6,7,5])]. given #4488 (W,wt=55): 4382 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,734,a,b,741,a),rewrite([12,13,11,10])]. given #4489 (W,wt=55): 4383 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,733,a,b,741,a),rewrite([12,11,13,10])]. given #4490 (W,wt=55): 4384 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(3,a,730,a,b,741,a),rewrite([12,13,11,10])]. given #4491 (W,wt=55): 4385 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,333,a,b,741,a),rewrite([6,7,5])]. given #4492 (W,wt=55): 4386 P([1,0,1,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,332,a,b,741,a),rewrite([6,7,5])]. given #4493 (W,wt=55): 4387 P([1,0,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,331,a,b,741,a),rewrite([6,7,5])]. given #4494 (W,wt=55): 4388 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,741,a),rewrite([6,7,5])]. given #4495 (W,wt=55): 4389 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(3,a,735,a,b,742,a),rewrite([12,13,11,10])]. given #4496 (W,wt=55): 4390 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(3,a,734,a,b,742,a),rewrite([12,13,11,10])]. given #4497 (W,wt=55): 4391 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(3,a,732,a,b,742,a),rewrite([12,11,13,10])]. given #4498 (W,wt=0): 12842 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,4391,a),rewrite([6,7,5])]. given #4499 (W,wt=55): 4392 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(3,a,729,a,b,742,a),rewrite([12,13,11,10])]. given #4500 (W,wt=55): 4393 P([0,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,734,a,b,742,a),rewrite([7,8,6,5])]. given #4501 (W,wt=55): 4394 P([0,0,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,726,a,b,742,a),rewrite([7,8,6,5])]. given #4502 (W,wt=55): 4395 P([0,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,717,a,b,742,a),rewrite([7,8,6,5])]. given #4503 (W,wt=55): 4396 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,342,a,b,742,a),rewrite([7,8,6,5])]. given #4504 (W,wt=55): 4397 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,333,a,b,742,a),rewrite([6,7,5])]. given #4505 (W,wt=55): 4398 P([1,0,0,0,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,332,a,b,742,a),rewrite([6,7,5])]. given #4506 (W,wt=55): 4399 P([1,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,331,a,b,742,a),rewrite([6,7,5])]. given #4507 (W,wt=55): 4400 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,85,a,b,742,a),rewrite([6,7,5])]. given #4508 (W,wt=55): 4401 P([0,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,0]:x]). [hyper(2,a,68,a,b,742,a),rewrite([7,8,6,5])]. given #4509 (W,wt=55): 4402 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(3,a,735,a,b,743,a),rewrite([12,11,13,10])]. given #4510 (W,wt=55): 4403 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(3,a,733,a,b,743,a),rewrite([12,11,13,10])]. given #4511 (W,wt=55): 4404 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(3,a,732,a,b,743,a),rewrite([12,11,13,10])]. given #4512 (W,wt=0): 12863 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,4404,a),rewrite([6,7,5])]. given #4513 (W,wt=55): 4405 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(3,a,718,a,b,743,a),rewrite([12,11,13,10])]. given #4514 (W,wt=55): 4406 P([0,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,733,a,b,743,a),rewrite([7,6,8,5])]. given #4515 (W,wt=55): 4407 P([0,1,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,725,a,b,743,a),rewrite([7,6,8,5])]. given #4516 (W,wt=55): 4408 P([0,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,716,a,b,743,a),rewrite([7,6,8,5])]. given #4517 (W,wt=55): 4409 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,341,a,b,743,a),rewrite([7,6,8,5])]. given #4518 (W,wt=55): 4410 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,333,a,b,743,a),rewrite([6,7,5])]. given #4519 (W,wt=55): 4411 P([1,1,0,0,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,332,a,b,743,a),rewrite([6,7,5])]. given #4520 (W,wt=55): 4412 P([1,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,331,a,b,743,a),rewrite([6,7,5])]. given #4521 (W,wt=55): 4413 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,85,a,b,743,a),rewrite([6,7,5])]. given #4522 (W,wt=55): 4414 P([0,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,0]:x]). [hyper(2,a,58,a,b,743,a),rewrite([7,6,8,5])]. given #4523 (W,wt=55): 4415 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,333,a,b,744,a),rewrite([6,7,5])]. given #4524 (W,wt=55): 4416 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,332,a,b,744,a),rewrite([6,7,5])]. given #4525 (W,wt=55): 4417 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,331,a,b,744,a),rewrite([6,7,5])]. given #4526 (W,wt=55): 4419 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,359,a,b,745,a),rewrite([13,11,12,10])]. given #4527 (W,wt=55): 4420 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,358,a,b,745,a),rewrite([13,11,12,10])]. given #4528 (W,wt=55): 4421 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,357,a,b,745,a),rewrite([13,11,12,10])]. given #4529 (W,wt=55): 4422 P([0,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,356,a,b,745,a),rewrite([13,11,12,10])]. given #4530 (W,wt=55): 4423 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,355,a,b,745,a),rewrite([13,11,12,10])]. given #4531 (W,wt=55): 4424 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,354,a,b,745,a),rewrite([13,11,12,10])]. given #4532 (W,wt=55): 4425 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,353,a,b,745,a),rewrite([13,11,12,10])]. given #4533 (W,wt=55): 4426 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,1,1]:x]). [hyper(3,a,86,a,b,745,a),rewrite([11,13,12,10])]. given #4534 (W,wt=55): 4427 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,359,a,b,754,a),rewrite([13,11,12,10])]. given #4535 (W,wt=55): 4428 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,358,a,b,754,a),rewrite([13,11,12,10])]. given #4536 (W,wt=55): 4429 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,357,a,b,754,a),rewrite([13,11,12,10])]. given #4537 (W,wt=55): 4430 P([0,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,356,a,b,754,a),rewrite([13,11,12,10])]. given #4538 (W,wt=55): 4431 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,355,a,b,754,a),rewrite([13,11,12,10])]. given #4539 (W,wt=55): 4432 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,354,a,b,754,a),rewrite([13,11,12,10])]. given #4540 (W,wt=55): 4433 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,353,a,b,754,a),rewrite([13,12,11,10])]. given #4541 (W,wt=55): 4434 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,1,1]:x]). [hyper(3,a,86,a,b,754,a),rewrite([11,12,13,10])]. given #4542 (W,wt=55): 4435 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,359,a,b,763,a),rewrite([13,11,12,10])]. given #4543 (W,wt=55): 4436 P([0,1,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,358,a,b,763,a),rewrite([13,11,12,10])]. given #4544 (W,wt=55): 4437 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,357,a,b,763,a),rewrite([13,11,12,10])]. given #4545 (W,wt=55): 4438 P([0,1,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,356,a,b,763,a),rewrite([13,11,12,10])]. given #4546 (W,wt=55): 4439 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,355,a,b,763,a),rewrite([13,11,12,10])]. given #4547 (W,wt=55): 4440 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,354,a,b,763,a),rewrite([13,11,12,10])]. given #4548 (W,wt=55): 4441 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,353,a,b,763,a),rewrite([13,12,11,10])]. given #4549 (W,wt=55): 4442 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(3,a,86,a,b,763,a),rewrite([11,12,13,10])]. given #4550 (W,wt=55): 4443 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,797,a,b,763,a),rewrite([8,6,7,5])]. given #4551 (W,wt=55): 4444 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,791,a,b,763,a),rewrite([8,6,7,5])]. given #4552 (W,wt=55): 4445 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,785,a,b,763,a),rewrite([8,6,7,5])]. given #4553 (W,wt=55): 4446 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,777,a,b,763,a),rewrite([8,6,7,5])]. given #4554 (W,wt=55): 4447 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,760,a,b,763,a),rewrite([8,6,7,5])]. given #4555 (W,wt=55): 4448 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,0,1]:x]). [hyper(2,a,751,a,b,763,a),rewrite([8,6,7,5])]. given #4556 (W,wt=55): 4449 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,359,a,b,771,a),rewrite([13,11,12,10])]. given #4557 (W,wt=55): 4450 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,358,a,b,771,a),rewrite([13,11,12,10])]. given #4558 (W,wt=55): 4451 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,357,a,b,771,a),rewrite([13,11,12,10])]. given #4559 (W,wt=55): 4452 P([0,1,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,356,a,b,771,a),rewrite([13,11,12,10])]. given #4560 (W,wt=55): 4453 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,355,a,b,771,a),rewrite([13,11,12,10])]. given #4561 (W,wt=55): 4454 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,354,a,b,771,a),rewrite([13,11,12,10])]. given #4562 (W,wt=55): 4455 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,353,a,b,771,a),rewrite([13,11,12,10])]. given #4563 (W,wt=55): 4456 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,1,0,1]:x]). [hyper(3,a,86,a,b,771,a),rewrite([11,13,12,10])]. given #4564 (W,wt=55): 4457 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,359,a,b,780,a),rewrite([13,11,12,10])]. given #4565 (W,wt=55): 4458 P([0,1,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,358,a,b,780,a),rewrite([13,11,12,10])]. given #4566 (W,wt=55): 4459 P([0,1,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,357,a,b,780,a),rewrite([13,11,12,10])]. given #4567 (W,wt=55): 4460 P([0,1,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,356,a,b,780,a),rewrite([13,11,12,10])]. given #4568 (W,wt=55): 4461 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,355,a,b,780,a),rewrite([13,11,12,10])]. given #4569 (W,wt=55): 4462 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,354,a,b,780,a),rewrite([13,11,12,10])]. given #4570 (W,wt=55): 4463 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,353,a,b,780,a),rewrite([13,12,11,10])]. given #4571 (W,wt=55): 4464 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(3,a,86,a,b,780,a),rewrite([11,12,13,10])]. given #4572 (W,wt=55): 4465 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(2,a,797,a,b,780,a),rewrite([8,6,7,5])]. given #4573 (W,wt=55): 4466 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,1,0,1]:x]). [hyper(2,a,791,a,b,780,a),rewrite([8,6,7,5])]. given #4574 (W,wt=55): 4467 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,359,a,b,786,a),rewrite([13,11,12,10])]. given #4575 (W,wt=55): 4468 P([0,1,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,358,a,b,786,a),rewrite([13,11,12,10])]. given #4576 (W,wt=55): 4469 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,357,a,b,786,a),rewrite([13,11,12,10])]. given #4577 (W,wt=55): 4470 P([0,1,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,356,a,b,786,a),rewrite([13,11,12,10])]. given #4578 (W,wt=55): 4471 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,355,a,b,786,a),rewrite([13,11,12,10])]. given #4579 (W,wt=55): 4472 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,354,a,b,786,a),rewrite([13,11,12,10])]. given #4580 (W,wt=55): 4473 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,353,a,b,786,a),rewrite([13,11,12,10])]. given #4581 (W,wt=55): 4474 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(3,a,86,a,b,786,a),rewrite([11,13,12,10])]. given #4582 (W,wt=55): 4475 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(2,a,797,a,b,786,a),rewrite([8,6,7,5])]. given #4583 (W,wt=55): 4476 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,1,1,0,0,1]:x]). [hyper(2,a,785,a,b,786,a),rewrite([8,6,7,5])]. given #4584 (W,wt=55): 4477 P([0,0,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,359,a,b,792,a),rewrite([13,11,12,10])]. given #4585 (W,wt=55): 4478 P([0,1,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,358,a,b,792,a),rewrite([13,11,12,10])]. given #4586 (W,wt=55): 4479 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,357,a,b,792,a),rewrite([13,11,12,10])]. given #4587 (W,wt=55): 4480 P([0,1,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,356,a,b,792,a),rewrite([13,11,12,10])]. given #4588 (W,wt=55): 4481 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,355,a,b,792,a),rewrite([13,11,12,10])]. given #4589 (W,wt=55): 4482 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,354,a,b,792,a),rewrite([13,11,12,10])]. given #4590 (W,wt=55): 4483 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,353,a,b,792,a),rewrite([13,12,11,10])]. given #4591 (W,wt=55): 4484 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(3,a,86,a,b,792,a),rewrite([11,12,13,10])]. given #4592 (W,wt=55): 4485 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(2,a,791,a,b,792,a),rewrite([8,6,7,5])]. given #4593 (W,wt=55): 4486 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[1,1,1,0,1,0,1,1]:x]). [hyper(2,a,785,a,b,792,a),rewrite([8,6,7,5])]. given #4594 (W,wt=55): 4487 P([1,1,1,0,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,351,a,b,798,a),rewrite([6,7,5])]. given #4595 (W,wt=55): 4488 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,350,a,b,798,a),rewrite([6,7,5])]. given #4596 (W,wt=55): 4489 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,349,a,b,798,a),rewrite([6,7,5])]. given #4597 (W,wt=55): 4490 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,348,a,b,798,a),rewrite([6,7,5])]. given #4598 (W,wt=55): 4491 P([1,1,1,0,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,347,a,b,798,a),rewrite([6,7,5])]. given #4599 (W,wt=55): 4492 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,346,a,b,798,a),rewrite([6,7,5])]. given #4600 (W,wt=55): 4493 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,345,a,b,798,a),rewrite([6,7,5])]. given #4601 (W,wt=55): 4494 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,0]:x]). [hyper(2,a,86,a,b,798,a),rewrite([6,7,5])]. given #4602 (W,wt=55): 4495 P([1,1,0,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,351,a,b,799,a),rewrite([6,7,5])]. given #4603 (W,wt=55): 4496 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,350,a,b,799,a),rewrite([6,7,5])]. given #4604 (W,wt=55): 4497 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,349,a,b,799,a),rewrite([6,7,5])]. given #4605 (W,wt=55): 4498 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,348,a,b,799,a),rewrite([6,7,5])]. given #4606 (W,wt=55): 4499 P([1,1,0,0,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,347,a,b,799,a),rewrite([6,7,5])]. given #4607 (W,wt=55): 4500 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,346,a,b,799,a),rewrite([6,7,5])]. given #4608 (W,wt=55): 4501 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,345,a,b,799,a),rewrite([6,7,5])]. given #4609 (W,wt=55): 4502 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,0]:x]). [hyper(2,a,86,a,b,799,a),rewrite([6,7,5])]. given #4610 (W,wt=55): 4503 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,351,a,b,800,a),rewrite([6,7,5])]. given #4611 (W,wt=55): 4504 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,350,a,b,800,a),rewrite([6,7,5])]. given #4612 (W,wt=55): 4505 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,349,a,b,800,a),rewrite([6,7,5])]. given #4613 (W,wt=55): 4506 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,348,a,b,800,a),rewrite([6,7,5])]. given #4614 (W,wt=55): 4507 P([1,0,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,347,a,b,800,a),rewrite([6,7,5])]. given #4615 (W,wt=55): 4508 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,346,a,b,800,a),rewrite([6,7,5])]. given #4616 (W,wt=55): 4509 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,345,a,b,800,a),rewrite([6,7,5])]. given #4617 (W,wt=55): 4510 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,0]:x]). [hyper(2,a,86,a,b,800,a),rewrite([6,7,5])]. given #4618 (W,wt=55): 4511 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,797,a,b,801,a),rewrite([12,13,11,10])]. given #4619 (W,wt=55): 4512 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,796,a,b,801,a),rewrite([12,11,13,10])]. given #4620 (W,wt=55): 4513 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,795,a,b,801,a),rewrite([12,11,13,10])]. given #4621 (W,wt=55): 4514 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,793,a,b,801,a),rewrite([12,11,13,10])]. given #4622 (W,wt=55): 4515 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,787,a,b,801,a),rewrite([12,13,11,10])]. given #4623 (W,wt=55): 4516 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(3,a,781,a,b,801,a),rewrite([12,13,11,10])]. given #4624 (W,wt=55): 4517 P([1,0,0,0,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,351,a,b,801,a),rewrite([6,7,5])]. given #4625 (W,wt=55): 4518 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,350,a,b,801,a),rewrite([6,7,5])]. given #4626 (W,wt=55): 4519 P([1,0,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,349,a,b,801,a),rewrite([6,7,5])]. given #4627 (W,wt=55): 4520 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,348,a,b,801,a),rewrite([6,7,5])]. given #4628 (W,wt=55): 4521 P([1,0,0,0,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,347,a,b,801,a),rewrite([6,7,5])]. given #4629 (W,wt=55): 4522 P([1,0,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,346,a,b,801,a),rewrite([6,7,5])]. given #4630 (W,wt=55): 4523 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,345,a,b,801,a),rewrite([6,7,5])]. given #4631 (W,wt=55): 4524 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,0]:x]). [hyper(2,a,86,a,b,801,a),rewrite([6,7,5])]. given #4632 (W,wt=55): 4525 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(3,a,797,a,b,802,a),rewrite([12,13,11,10])]. given #4633 (W,wt=55): 4526 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(3,a,796,a,b,802,a),rewrite([12,11,13,10])]. given #4634 (W,wt=55): 4527 P([1,0,1,0,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,351,a,b,802,a),rewrite([6,7,5])]. given #4635 (W,wt=55): 4528 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,350,a,b,802,a),rewrite([6,7,5])]. given #4636 (W,wt=55): 4529 P([1,0,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,349,a,b,802,a),rewrite([6,7,5])]. given #4637 (W,wt=55): 4530 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,348,a,b,802,a),rewrite([6,7,5])]. given #4638 (W,wt=55): 4531 P([1,0,1,0,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,347,a,b,802,a),rewrite([6,7,5])]. given #4639 (W,wt=55): 4532 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,346,a,b,802,a),rewrite([6,7,5])]. given #4640 (W,wt=55): 4533 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,345,a,b,802,a),rewrite([6,7,5])]. given #4641 (W,wt=55): 4534 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,0,0,0]:x]). [hyper(2,a,86,a,b,802,a),rewrite([6,7,5])]. given #4642 (W,wt=55): 4535 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(3,a,797,a,b,803,a),rewrite([12,13,11,10])]. given #4643 (W,wt=55): 4536 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(3,a,795,a,b,803,a),rewrite([12,11,13,10])]. given #4644 (W,wt=55): 4537 P([1,0,0,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,351,a,b,803,a),rewrite([6,7,5])]. given #4645 (W,wt=55): 4538 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,350,a,b,803,a),rewrite([6,7,5])]. given #4646 (W,wt=55): 4539 P([1,0,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,349,a,b,803,a),rewrite([6,7,5])]. given #4647 (W,wt=55): 4540 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,348,a,b,803,a),rewrite([6,7,5])]. given #4648 (W,wt=55): 4541 P([1,0,0,0,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,347,a,b,803,a),rewrite([6,7,5])]. given #4649 (W,wt=55): 4542 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,346,a,b,803,a),rewrite([6,7,5])]. given #4650 (W,wt=55): 4543 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,345,a,b,803,a),rewrite([6,7,5])]. given #4651 (W,wt=55): 4544 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,0,0,0]:x]). [hyper(2,a,86,a,b,803,a),rewrite([6,7,5])]. given #4652 (W,wt=55): 4545 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(3,a,796,a,b,804,a),rewrite([12,11,13,10])]. given #4653 (W,wt=55): 4546 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(3,a,795,a,b,804,a),rewrite([12,11,13,10])]. given #4654 (W,wt=55): 4547 P([1,1,0,0,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,351,a,b,804,a),rewrite([6,7,5])]. given #4655 (W,wt=55): 4548 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,350,a,b,804,a),rewrite([6,7,5])]. given #4656 (W,wt=55): 4549 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,349,a,b,804,a),rewrite([6,7,5])]. given #4657 (W,wt=55): 4550 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,348,a,b,804,a),rewrite([6,7,5])]. given #4658 (W,wt=55): 4551 P([1,1,0,0,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,347,a,b,804,a),rewrite([6,7,5])]. given #4659 (W,wt=55): 4552 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,346,a,b,804,a),rewrite([6,7,5])]. given #4660 (W,wt=55): 4553 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,345,a,b,804,a),rewrite([6,7,5])]. given #4661 (W,wt=55): 4554 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,0,0,0]:x]). [hyper(2,a,86,a,b,804,a),rewrite([6,7,5])]. given #4662 (W,wt=55): 4555 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,397,a,b,805,a),rewrite([12,11,13,10])]. given #4663 (W,wt=55): 4556 P([1,1,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,388,a,b,805,a),rewrite([12,11,13,10])]. given #4664 (W,wt=55): 4557 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,381,a,b,805,a),rewrite([12,11,13,10])]. given #4665 (W,wt=55): 4558 P([1,1,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,131,a,b,805,a),rewrite([12,11,13,10])]. given #4666 (W,wt=0): 13093 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,129,a,b,4558,a),rewrite([6,7,8,5])]. given #4667 (W,wt=55): 4559 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,805,a),rewrite([12,13,11,10])]. given #4668 (W,wt=55): 4560 P([1,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,805,a),rewrite([12,13,11,10])]. given #4669 (W,wt=55): 4561 P([1,0,1,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,805,a),rewrite([12,13,11,10])]. given #4670 (W,wt=55): 4562 P([1,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,805,a),rewrite([12,13,11,10])]. given #4671 (W,wt=55): 4563 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,397,a,b,805,a),rewrite([7,6,8,5])]. given #4672 (W,wt=55): 4564 P([0,0,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,395,a,b,805,a),rewrite([7,6,5])]. given #4673 (W,wt=55): 4565 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,805,a),rewrite([7,6,8,5])]. given #4674 (W,wt=55): 4566 P([1,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,129,a,b,805,a),rewrite([6,7,8,5])]. given #4675 (W,wt=55): 4567 P([1,0,1,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,128,a,b,805,a),rewrite([6,7,5])]. given #4676 (W,wt=55): 4568 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,127,a,b,805,a),rewrite([6,7,8,5])]. given #4677 (W,wt=55): 4569 P([1,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,125,a,b,805,a),rewrite([6,7,8,5])]. given #4678 (W,wt=55): 4570 P([1,0,1,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,121,a,b,805,a),rewrite([6,7,5])]. given #4679 (W,wt=55): 4571 P([0,0,1,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,805,a),rewrite([7,8,6,5])]. given #4680 (W,wt=55): 4572 P([0,0,1,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,805,a),rewrite([7,6,5])]. given #4681 (W,wt=55): 4573 P([1,1,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,397,a,b,806,a),rewrite([12,11,13,10])]. given #4682 (W,wt=55): 4574 P([1,1,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,131,a,b,806,a),rewrite([12,11,13,10])]. given #4683 (W,wt=55): 4575 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,79,a,b,806,a),rewrite([12,13,11,10])]. given #4684 (W,wt=55): 4576 P([1,0,1,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,806,a),rewrite([12,13,11,10])]. given #4685 (W,wt=55): 4577 P([0,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,397,a,b,806,a),rewrite([7,6,8,5])]. given #4686 (W,wt=55): 4578 P([0,0,1,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,395,a,b,806,a),rewrite([7,6,5])]. given #4687 (W,wt=55): 4579 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,393,a,b,806,a),rewrite([7,6,8,5])]. given #4688 (W,wt=55): 4580 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,385,a,b,806,a),rewrite([7,6,8,5])]. given #4689 (W,wt=55): 4581 P([0,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,384,a,b,806,a),rewrite([7,6,8,5])]. given #4690 (W,wt=55): 4582 P([1,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,129,a,b,806,a),rewrite([6,7,8,5])]. given #4691 (W,wt=55): 4583 P([1,0,1,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,128,a,b,806,a),rewrite([6,7,5])]. given #4692 (W,wt=55): 4584 P([1,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,127,a,b,806,a),rewrite([6,7,8,5])]. given #4693 (W,wt=55): 4585 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,126,a,b,806,a),rewrite([6,7,5])]. given #4694 (W,wt=55): 4586 P([1,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,125,a,b,806,a),rewrite([6,7,8,5])]. given #4695 (W,wt=55): 4587 P([1,0,1,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,121,a,b,806,a),rewrite([6,7,5])]. given #4696 (W,wt=55): 4588 P([1,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,120,a,b,806,a),rewrite([6,7,8,5])]. given #4697 (W,wt=55): 4589 P([0,0,1,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,806,a),rewrite([7,8,6,5])]. given #4698 (W,wt=55): 4590 P([0,0,1,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,806,a),rewrite([7,6,5])]. given #4699 (W,wt=55): 4591 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,395,a,b,807,a),rewrite([12,11,13,10])]. given #4700 (W,wt=55): 4592 P([1,1,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,388,a,b,807,a),rewrite([12,11,13,10])]. given #4701 (W,wt=55): 4593 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,385,a,b,807,a),rewrite([12,11,13,10])]. given #4702 (W,wt=55): 4594 P([1,1,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,131,a,b,807,a),rewrite([12,11,13,10])]. given #4703 (W,wt=0): 13188 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,128,a,b,4594,a),rewrite([6,7,8,5])]. given #4704 (W,wt=55): 4595 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,807,a),rewrite([12,13,11,10])]. given #4705 (W,wt=55): 4596 P([1,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,807,a),rewrite([12,13,11,10])]. given #4706 (W,wt=55): 4597 P([1,0,1,1,1,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,807,a),rewrite([12,13,11,10])]. given #4707 (W,wt=55): 4598 P([1,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,807,a),rewrite([12,13,11,10])]. given #4708 (W,wt=55): 4599 P([0,0,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,397,a,b,807,a),rewrite([7,6,5])]. given #4709 (W,wt=55): 4600 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,395,a,b,807,a),rewrite([7,6,8,5])]. given #4710 (W,wt=55): 4601 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,381,a,b,807,a),rewrite([7,6,8,5])]. given #4711 (W,wt=55): 4602 P([1,0,0,0,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,129,a,b,807,a),rewrite([6,7,5])]. given #4712 (W,wt=55): 4603 P([1,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,128,a,b,807,a),rewrite([6,7,8,5])]. given #4713 (W,wt=55): 4604 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,127,a,b,807,a),rewrite([6,7,8,5])]. given #4714 (W,wt=55): 4605 P([1,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,126,a,b,807,a),rewrite([6,7,8,5])]. given #4715 (W,wt=55): 4606 P([1,0,0,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,119,a,b,807,a),rewrite([6,7,5])]. given #4716 (W,wt=55): 4607 P([0,0,0,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,807,a),rewrite([7,8,6,5])]. given #4717 (W,wt=55): 4608 P([0,0,1,1,1,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,807,a),rewrite([7,6,5])]. given #4718 (W,wt=55): 4609 P([1,1,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,395,a,b,808,a),rewrite([12,11,13,10])]. given #4719 (W,wt=55): 4610 P([1,1,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,131,a,b,808,a),rewrite([12,11,13,10])]. given #4720 (W,wt=55): 4611 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,79,a,b,808,a),rewrite([12,13,11,10])]. given #4721 (W,wt=55): 4612 P([1,0,1,1,1,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,808,a),rewrite([12,13,11,10])]. given #4722 (W,wt=55): 4613 P([0,0,0,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,397,a,b,808,a),rewrite([7,6,5])]. given #4723 (W,wt=55): 4614 P([0,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,395,a,b,808,a),rewrite([7,6,8,5])]. given #4724 (W,wt=55): 4615 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,393,a,b,808,a),rewrite([7,6,8,5])]. given #4725 (W,wt=55): 4616 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,381,a,b,808,a),rewrite([7,6,8,5])]. given #4726 (W,wt=55): 4617 P([0,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,380,a,b,808,a),rewrite([7,6,8,5])]. given #4727 (W,wt=55): 4618 P([1,0,0,0,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,129,a,b,808,a),rewrite([6,7,5])]. given #4728 (W,wt=55): 4619 P([1,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,128,a,b,808,a),rewrite([6,7,8,5])]. given #4729 (W,wt=55): 4620 P([1,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,127,a,b,808,a),rewrite([6,7,8,5])]. given #4730 (W,wt=55): 4621 P([1,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,126,a,b,808,a),rewrite([6,7,8,5])]. given #4731 (W,wt=55): 4622 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,125,a,b,808,a),rewrite([6,7,5])]. given #4732 (W,wt=55): 4623 P([1,0,0,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,119,a,b,808,a),rewrite([6,7,5])]. given #4733 (W,wt=55): 4624 P([1,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,118,a,b,808,a),rewrite([6,7,8,5])]. given #4734 (W,wt=55): 4625 P([0,0,0,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,808,a),rewrite([7,8,6,5])]. given #4735 (W,wt=55): 4626 P([0,0,1,1,1,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,808,a),rewrite([7,6,5])]. given #4736 (W,wt=55): 4627 P([1,1,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,131,a,b,809,a),rewrite([12,11,13,10])]. given #4737 (W,wt=55): 4628 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,79,a,b,809,a),rewrite([12,13,11,10])]. given #4738 (W,wt=55): 4629 P([0,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,397,a,b,809,a),rewrite([7,6,5])]. given #4739 (W,wt=55): 4630 P([0,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,395,a,b,809,a),rewrite([7,6,5])]. given #4740 (W,wt=55): 4631 P([0,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,393,a,b,809,a),rewrite([7,6,5])]. given #4741 (W,wt=55): 4632 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,385,a,b,809,a),rewrite([7,6,5])]. given #4742 (W,wt=55): 4633 P([0,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,384,a,b,809,a),rewrite([7,6,5])]. given #4743 (W,wt=55): 4634 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,381,a,b,809,a),rewrite([7,6,5])]. given #4744 (W,wt=55): 4635 P([0,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,380,a,b,809,a),rewrite([7,6,5])]. given #4745 (W,wt=55): 4636 P([1,0,0,0,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,129,a,b,809,a),rewrite([6,7,5])]. given #4746 (W,wt=55): 4637 P([1,0,1,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,128,a,b,809,a),rewrite([6,7,5])]. given #4747 (W,wt=55): 4638 P([1,0,0,0,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,127,a,b,809,a),rewrite([6,7,5])]. given #4748 (W,wt=55): 4639 P([1,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,126,a,b,809,a),rewrite([6,7,5])]. given #4749 (W,wt=55): 4640 P([1,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,125,a,b,809,a),rewrite([6,7,5])]. given #4750 (W,wt=55): 4641 P([1,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,123,a,b,809,a),rewrite([6,7,5])]. given #4751 (W,wt=55): 4642 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,122,a,b,809,a),rewrite([6,7,5])]. given #4752 (W,wt=55): 4643 P([1,0,1,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,121,a,b,809,a),rewrite([6,7,5])]. given #4753 (W,wt=55): 4644 P([1,0,0,0,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,120,a,b,809,a),rewrite([6,7,5])]. given #4754 (W,wt=55): 4645 P([1,0,0,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,119,a,b,809,a),rewrite([6,7,5])]. given #4755 (W,wt=55): 4646 P([1,0,0,1,0,0,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,118,a,b,809,a),rewrite([6,7,5])]. given #4756 (W,wt=55): 4647 P([1,0,0,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,117,a,b,809,a),rewrite([6,7,5])]. given #4757 (W,wt=55): 4648 P([0,0,0,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,809,a),rewrite([7,8,6,5])]. given #4758 (W,wt=55): 4649 P([0,0,0,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,809,a),rewrite([7,8,6,5])]. given #4759 (W,wt=55): 4650 P([0,0,1,1,0,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,809,a),rewrite([7,8,6,5])]. given #4760 (W,wt=55): 4651 P([0,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,809,a),rewrite([7,8,6,5])]. given #4761 (W,wt=55): 4652 P([0,0,1,1,1,1,1,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,809,a),rewrite([7,6,5])]. given #4762 (W,wt=55): 4653 P([1,1,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,388,a,b,810,a),rewrite([12,11,13,10])]. given #4763 (W,wt=55): 4654 P([1,1,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,131,a,b,810,a),rewrite([12,11,13,10])]. given #4764 (W,wt=0): 13301 P([1,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,129,a,b,4654,a),rewrite([6,7,5])]. given #4765 (W,wt=0): 13302 P([1,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,128,a,b,4654,a),rewrite([6,7,5])]. given #4766 (W,wt=55): 4655 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,79,a,b,810,a),rewrite([12,13,11,10])]. given #4767 (W,wt=55): 4656 P([1,0,1,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,810,a),rewrite([12,13,11,10])]. given #4768 (W,wt=55): 4657 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,397,a,b,810,a),rewrite([7,6,5])]. given #4769 (W,wt=55): 4658 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,395,a,b,810,a),rewrite([7,6,5])]. given #4770 (W,wt=55): 4659 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,385,a,b,810,a),rewrite([7,6,8,5])]. given #4771 (W,wt=55): 4660 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,381,a,b,810,a),rewrite([7,6,8,5])]. given #4772 (W,wt=55): 4661 P([1,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,129,a,b,810,a),rewrite([6,7,5])]. given #4773 (W,wt=55): 4662 P([1,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,128,a,b,810,a),rewrite([6,7,5])]. given #4774 (W,wt=55): 4663 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,127,a,b,810,a),rewrite([6,7,5])]. given #4775 (W,wt=55): 4664 P([1,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,126,a,b,810,a),rewrite([6,7,8,5])]. given #4776 (W,wt=55): 4665 P([1,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,125,a,b,810,a),rewrite([6,7,8,5])]. given #4777 (W,wt=55): 4666 P([1,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,123,a,b,810,a),rewrite([6,7,8,5])]. given #4778 (W,wt=55): 4667 P([1,0,1,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,121,a,b,810,a),rewrite([6,7,5])]. given #4779 (W,wt=55): 4668 P([1,0,0,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,119,a,b,810,a),rewrite([6,7,5])]. given #4780 (W,wt=55): 4669 P([0,0,0,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,810,a),rewrite([7,8,6,5])]. given #4781 (W,wt=55): 4670 P([0,0,0,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,810,a),rewrite([7,8,6,5])]. given #4782 (W,wt=55): 4671 P([0,0,1,1,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,63,a,b,810,a),rewrite([7,8,6,5])]. given #4783 (W,wt=55): 4672 P([0,0,1,1,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,810,a),rewrite([7,6,5])]. given #4784 (W,wt=55): 4673 P([1,1,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,388,a,b,811,a),rewrite([12,11,13,10])]. given #4785 (W,wt=55): 4674 P([1,1,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,381,a,b,811,a),rewrite([12,11,13,10])]. given #4786 (W,wt=55): 4676 P([1,0,0,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,811,a),rewrite([12,13,11,10])]. given #4787 (W,wt=55): 4677 P([1,0,0,0,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,811,a),rewrite([12,13,11,10])]. given #4788 (W,wt=55): 4678 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,63,a,b,811,a),rewrite([12,13,11,10])]. given #4789 (W,wt=55): 4679 P([1,0,0,0,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,811,a),rewrite([12,13,11,10])]. given #4790 (W,wt=55): 4680 P([1,0,0,1,1,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,811,a),rewrite([12,13,11,10])]. given #4791 (W,wt=55): 4681 P([0,0,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,397,a,b,811,a),rewrite([7,6,8,5])]. given #4792 (W,wt=55): 4682 P([0,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,811,a),rewrite([7,6,8,5])]. given #4793 (W,wt=55): 4683 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,128,a,b,811,a),rewrite([6,7,5])]. given #4794 (W,wt=55): 4684 P([1,0,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,125,a,b,811,a),rewrite([6,8,7,5])]. given #4795 (W,wt=55): 4685 P([0,1,0,0,1,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,397,a,b,4675,a),rewrite([7,6,8,5])]. given #4796 (W,wt=55): 4686 P([0,1,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,385,a,b,4675,a),rewrite([7,6,8,5])]. given #4797 (W,wt=55): 4687 P([1,1,0,0,0,1,0,0],[[0,0,1,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,125,a,b,4675,a),rewrite([6,8,7,5])]. given #4798 (W,wt=55): 4688 P([1,1,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,388,a,b,812,a),rewrite([12,11,13,10])]. given #4799 (W,wt=55): 4689 P([1,1,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,385,a,b,812,a),rewrite([12,11,13,10])]. given #4800 (W,wt=55): 4691 P([1,0,1,1,0,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,812,a),rewrite([12,13,11,10])]. given #4801 (W,wt=55): 4692 P([1,0,1,1,0,0,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,812,a),rewrite([12,13,11,10])]. given #4802 (W,wt=55): 4693 P([1,0,1,1,1,1,1,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,812,a),rewrite([12,13,11,10])]. given #4803 (W,wt=55): 4694 P([1,0,1,1,0,0,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,812,a),rewrite([12,13,11,10])]. given #4804 (W,wt=55): 4695 P([1,0,1,1,0,1,0,1],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,812,a),rewrite([12,13,11,10])]. given #4805 (W,wt=55): 4696 P([0,0,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,395,a,b,812,a),rewrite([7,6,8,5])]. given #4806 (W,wt=55): 4697 P([0,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,381,a,b,812,a),rewrite([7,6,8,5])]. given #4807 (W,wt=55): 4698 P([1,0,0,0,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,129,a,b,812,a),rewrite([6,7,5])]. given #4808 (W,wt=55): 4699 P([1,0,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,126,a,b,812,a),rewrite([6,7,8,5])]. given #4809 (W,wt=55): 4700 P([0,1,1,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,395,a,b,4690,a),rewrite([7,6,8,5])]. given #4810 (W,wt=55): 4701 P([0,1,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,381,a,b,4690,a),rewrite([7,6,8,5])]. given #4811 (W,wt=55): 4702 P([1,1,0,1,0,0,0,0],[[0,0,1,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,126,a,b,4690,a),rewrite([6,7,8,5])]. given #4812 (W,wt=55): 4703 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,408,a,b,813,a),rewrite([12,13,11,10])]. given #4813 (W,wt=55): 4704 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,407,a,b,813,a),rewrite([12,11,13,10])]. given #4814 (W,wt=0): 13384 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,56,a,b,4704,a),rewrite([6,7,5])]. given #4815 (W,wt=55): 4705 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,405,a,b,813,a),rewrite([12,11,13,10])]. given #4816 (W,wt=55): 4706 P([1,1,1,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,149,a,b,813,a),rewrite([12,13,11,10])]. given #4817 (W,wt=55): 4707 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,148,a,b,813,a),rewrite([12,11,13,10])]. given #4818 (W,wt=55): 4708 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,147,a,b,813,a),rewrite([12,11,13,10])]. given #4819 (W,wt=55): 4709 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,146,a,b,813,a),rewrite([12,11,13,10])]. given #4820 (W,wt=55): 4710 P([1,1,1,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,140,a,b,813,a),rewrite([12,13,11,10])]. given #4821 (W,wt=55): 4711 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,813,a),rewrite([12,13,11,10])]. given #4822 (W,wt=55): 4712 P([1,1,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,813,a),rewrite([12,13,11,10])]. given #4823 (W,wt=55): 4713 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,407,a,b,813,a),rewrite([7,6,8,5])]. given #4824 (W,wt=55): 4714 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,405,a,b,813,a),rewrite([7,6,8,5])]. given #4825 (W,wt=55): 4715 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,404,a,b,813,a),rewrite([7,6,5])]. given #4826 (W,wt=55): 4716 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,136,a,b,813,a),rewrite([6,7,5])]. given #4827 (W,wt=55): 4717 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,813,a),rewrite([7,6,8,5])]. given #4828 (W,wt=55): 4718 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,63,a,b,813,a),rewrite([7,6,8,5])]. given #4829 (W,wt=55): 4719 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,58,a,b,813,a),rewrite([7,6,8,5])]. given #4830 (W,wt=55): 4720 P([0,1,1,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,53,a,b,813,a),rewrite([7,6,5])]. given #4831 (W,wt=55): 4721 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,408,a,b,814,a),rewrite([12,13,11,10])]. given #4832 (W,wt=0): 13421 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,56,a,b,4721,a),rewrite([6,7,5])]. given #4833 (W,wt=55): 4722 P([1,1,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,407,a,b,814,a),rewrite([12,11,13,10])]. given #4834 (W,wt=55): 4723 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,404,a,b,814,a),rewrite([12,11,13,10])]. given #4835 (W,wt=55): 4724 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,149,a,b,814,a),rewrite([12,13,11,10])]. given #4836 (W,wt=55): 4725 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,148,a,b,814,a),rewrite([12,11,13,10])]. given #4837 (W,wt=55): 4726 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,147,a,b,814,a),rewrite([12,11,13,10])]. given #4838 (W,wt=55): 4727 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,145,a,b,814,a),rewrite([12,11,13,10])]. given #4839 (W,wt=55): 4728 P([1,1,0,1,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,138,a,b,814,a),rewrite([12,13,11,10])]. given #4840 (W,wt=55): 4729 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,814,a),rewrite([12,13,11,10])]. given #4841 (W,wt=55): 4730 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,814,a),rewrite([12,13,11,10])]. given #4842 (W,wt=55): 4731 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,408,a,b,814,a),rewrite([7,8,6,5])]. given #4843 (W,wt=55): 4732 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,405,a,b,814,a),rewrite([7,6,5])]. given #4844 (W,wt=55): 4733 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,404,a,b,814,a),rewrite([7,6,8,5])]. given #4845 (W,wt=55): 4734 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,136,a,b,814,a),rewrite([6,7,5])]. given #4846 (W,wt=55): 4735 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,79,a,b,814,a),rewrite([7,8,6,5])]. given #4847 (W,wt=55): 4736 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,814,a),rewrite([7,8,6,5])]. given #4848 (W,wt=55): 4737 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,814,a),rewrite([7,6,8,5])]. given #4849 (W,wt=55): 4738 P([0,1,0,0,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,814,a),rewrite([7,6,5])]. given #4850 (W,wt=55): 4739 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,408,a,b,815,a),rewrite([12,13,11,10])]. given #4851 (W,wt=55): 4740 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,407,a,b,815,a),rewrite([12,13,11,10])]. given #4852 (W,wt=55): 4741 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,406,a,b,815,a),rewrite([12,13,11,10])]. given #4853 (W,wt=55): 4742 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,405,a,b,815,a),rewrite([12,11,13,10])]. given #4854 (W,wt=55): 4743 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,404,a,b,815,a),rewrite([12,11,13,10])]. given #4855 (W,wt=55): 4744 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,402,a,b,815,a),rewrite([12,13,11,10])]. given #4856 (W,wt=55): 4745 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,401,a,b,815,a),rewrite([12,13,11,10])]. given #4857 (W,wt=55): 4746 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,149,a,b,815,a),rewrite([12,13,11,10])]. given #4858 (W,wt=55): 4747 P([1,0,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,148,a,b,815,a),rewrite([12,13,11,10])]. given #4859 (W,wt=55): 4748 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,147,a,b,815,a),rewrite([12,13,11,10])]. given #4860 (W,wt=55): 4749 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,146,a,b,815,a),rewrite([12,11,13,10])]. given #4861 (W,wt=55): 4750 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,145,a,b,815,a),rewrite([12,11,13,10])]. given #4862 (W,wt=55): 4751 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,144,a,b,815,a),rewrite([12,11,13,10])]. given #4863 (W,wt=55): 4752 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,143,a,b,815,a),rewrite([12,11,13,10])]. given #4864 (W,wt=55): 4753 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,141,a,b,815,a),rewrite([12,13,11,10])]. given #4865 (W,wt=55): 4754 P([1,0,0,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,140,a,b,815,a),rewrite([12,13,11,10])]. given #4866 (W,wt=55): 4755 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,139,a,b,815,a),rewrite([12,13,11,10])]. given #4867 (W,wt=55): 4756 P([1,0,0,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,138,a,b,815,a),rewrite([12,13,11,10])]. given #4868 (W,wt=55): 4757 P([1,0,0,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,137,a,b,815,a),rewrite([12,13,11,10])]. given #4869 (W,wt=55): 4758 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,815,a),rewrite([12,13,11,10])]. given #4870 (W,wt=55): 4759 P([1,0,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,815,a),rewrite([12,13,11,10])]. given #4871 (W,wt=55): 4760 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,815,a),rewrite([12,13,11,10])]. given #4872 (W,wt=55): 4761 P([1,0,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,815,a),rewrite([12,13,11,10])]. given #4873 (W,wt=55): 4762 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,815,a),rewrite([12,11,13,10])]. given #4874 (W,wt=55): 4763 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,136,a,b,815,a),rewrite([6,7,5])]. given #4875 (W,wt=55): 4764 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,815,a),rewrite([7,8,6,5])]. given #4876 (W,wt=55): 4765 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,408,a,b,816,a),rewrite([12,13,11,10])]. given #4877 (W,wt=55): 4766 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,407,a,b,816,a),rewrite([12,13,11,10])]. given #4878 (W,wt=55): 4767 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,406,a,b,816,a),rewrite([12,13,11,10])]. given #4879 (W,wt=55): 4768 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,405,a,b,816,a),rewrite([12,11,13,10])]. given #4880 (W,wt=55): 4769 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,402,a,b,816,a),rewrite([12,13,11,10])]. given #4881 (W,wt=55): 4770 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,149,a,b,816,a),rewrite([12,13,11,10])]. given #4882 (W,wt=55): 4771 P([1,0,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,148,a,b,816,a),rewrite([12,13,11,10])]. given #4883 (W,wt=55): 4772 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,147,a,b,816,a),rewrite([12,13,11,10])]. given #4884 (W,wt=55): 4773 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,146,a,b,816,a),rewrite([12,11,13,10])]. given #4885 (W,wt=55): 4774 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,145,a,b,816,a),rewrite([12,11,13,10])]. given #4886 (W,wt=55): 4775 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,141,a,b,816,a),rewrite([12,13,11,10])]. given #4887 (W,wt=55): 4776 P([1,0,1,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,140,a,b,816,a),rewrite([12,13,11,10])]. given #4888 (W,wt=55): 4777 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,816,a),rewrite([12,13,11,10])]. given #4889 (W,wt=55): 4778 P([1,0,1,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,816,a),rewrite([12,13,11,10])]. given #4890 (W,wt=55): 4779 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,407,a,b,816,a),rewrite([7,8,6,5])]. given #4891 (W,wt=55): 4780 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,136,a,b,816,a),rewrite([6,7,5])]. given #4892 (W,wt=55): 4781 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,816,a),rewrite([7,8,6,5])]. given #4893 (W,wt=55): 4782 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,63,a,b,816,a),rewrite([7,8,6,5])]. given #4894 (W,wt=55): 4783 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,408,a,b,817,a),rewrite([12,13,11,10])]. given #4895 (W,wt=55): 4784 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,407,a,b,817,a),rewrite([12,13,11,10])]. given #4896 (W,wt=55): 4785 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,406,a,b,817,a),rewrite([12,13,11,10])]. given #4897 (W,wt=55): 4786 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,404,a,b,817,a),rewrite([12,11,13,10])]. given #4898 (W,wt=55): 4787 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,401,a,b,817,a),rewrite([12,13,11,10])]. given #4899 (W,wt=55): 4788 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,149,a,b,817,a),rewrite([12,13,11,10])]. given #4900 (W,wt=55): 4789 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,148,a,b,817,a),rewrite([12,13,11,10])]. given #4901 (W,wt=55): 4790 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,147,a,b,817,a),rewrite([12,13,11,10])]. given #4902 (W,wt=55): 4791 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,146,a,b,817,a),rewrite([12,11,13,10])]. given #4903 (W,wt=55): 4792 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,145,a,b,817,a),rewrite([12,11,13,10])]. given #4904 (W,wt=55): 4793 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,139,a,b,817,a),rewrite([12,13,11,10])]. given #4905 (W,wt=55): 4794 P([1,0,0,1,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,138,a,b,817,a),rewrite([12,13,11,10])]. given #4906 (W,wt=55): 4795 P([1,0,0,1,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,817,a),rewrite([12,13,11,10])]. given #4907 (W,wt=55): 4796 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,817,a),rewrite([12,13,11,10])]. given #4908 (W,wt=55): 4797 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,408,a,b,817,a),rewrite([7,8,6,5])]. given #4909 (W,wt=55): 4798 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,136,a,b,817,a),rewrite([6,7,5])]. given #4910 (W,wt=55): 4799 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,79,a,b,817,a),rewrite([7,8,6,5])]. given #4911 (W,wt=55): 4800 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,68,a,b,817,a),rewrite([7,8,6,5])]. given #4912 (W,wt=55): 4801 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,408,a,b,818,a),rewrite([12,13,11,10])]. given #4913 (W,wt=0): 13585 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,56,a,b,4801,a),rewrite([6,7,5])]. given #4914 (W,wt=55): 4802 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,407,a,b,818,a),rewrite([12,11,13,10])]. given #4915 (W,wt=0): 13595 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,56,a,b,4802,a),rewrite([6,7,5])]. given #4916 (W,wt=55): 4803 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,405,a,b,818,a),rewrite([12,11,13,10])]. given #4917 (W,wt=55): 4804 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,404,a,b,818,a),rewrite([12,11,13,10])]. given #4918 (W,wt=55): 4805 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,149,a,b,818,a),rewrite([12,13,11,10])]. given #4919 (W,wt=55): 4806 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,148,a,b,818,a),rewrite([12,11,13,10])]. given #4920 (W,wt=55): 4807 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,147,a,b,818,a),rewrite([12,11,13,10])]. given #4921 (W,wt=55): 4808 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,146,a,b,818,a),rewrite([12,11,13,10])]. given #4922 (W,wt=55): 4809 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,145,a,b,818,a),rewrite([12,11,13,10])]. given #4923 (W,wt=55): 4810 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,143,a,b,818,a),rewrite([12,11,13,10])]. given #4924 (W,wt=55): 4811 P([1,1,0,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,140,a,b,818,a),rewrite([12,13,11,10])]. given #4925 (W,wt=55): 4812 P([1,1,0,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,138,a,b,818,a),rewrite([12,13,11,10])]. given #4926 (W,wt=55): 4813 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,818,a),rewrite([12,13,11,10])]. given #4927 (W,wt=55): 4814 P([1,1,0,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,818,a),rewrite([12,13,11,10])]. given #4928 (W,wt=55): 4815 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,818,a),rewrite([12,13,11,10])]. given #4929 (W,wt=55): 4816 P([1,1,0,0,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,818,a),rewrite([12,13,11,10])]. given #4930 (W,wt=55): 4817 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,405,a,b,818,a),rewrite([7,6,8,5])]. given #4931 (W,wt=55): 4818 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,136,a,b,818,a),rewrite([6,7,5])]. given #4932 (W,wt=55): 4819 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,818,a),rewrite([7,8,6,5])]. given #4933 (W,wt=55): 4820 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,58,a,b,818,a),rewrite([7,6,8,5])]. given #4934 (W,wt=55): 4821 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,408,a,b,819,a),rewrite([12,13,11,10])]. given #4935 (W,wt=55): 4822 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,404,a,b,819,a),rewrite([12,11,13,10])]. given #4936 (W,wt=55): 4823 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,148,a,b,819,a),rewrite([12,11,13,10])]. given #4937 (W,wt=55): 4824 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,145,a,b,819,a),rewrite([12,11,13,10])]. given #4938 (W,wt=55): 4825 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,405,a,b,819,a),rewrite([7,6,5])]. given #4939 (W,wt=55): 4826 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,404,a,b,819,a),rewrite([7,6,8,5])]. given #4940 (W,wt=55): 4828 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,819,a),rewrite([7,8,6,5])]. given #4941 (W,wt=55): 4829 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,70,a,b,819,a),rewrite([7,8,6,5])]. given #4942 (W,wt=55): 4830 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,819,a),rewrite([7,8,6,5])]. given #4943 (W,wt=55): 4831 P([0,1,0,0,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,819,a),rewrite([7,6,8,5])]. given #4944 (W,wt=55): 4832 P([0,1,0,0,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,819,a),rewrite([7,6,5])]. given #4945 (W,wt=55): 4833 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,408,a,b,4827,a),rewrite([12,13,11,10])]. given #4946 (W,wt=55): 4834 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,404,a,b,4827,a),rewrite([12,11,13,10])]. given #4947 (W,wt=55): 4835 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,145,a,b,4827,a),rewrite([12,11,13,10])]. given #4948 (W,wt=55): 4836 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,407,a,b,820,a),rewrite([12,11,13,10])]. given #4949 (W,wt=55): 4837 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,405,a,b,820,a),rewrite([12,11,13,10])]. given #4950 (W,wt=55): 4838 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,149,a,b,820,a),rewrite([12,11,13,10])]. given #4951 (W,wt=55): 4839 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,146,a,b,820,a),rewrite([12,11,13,10])]. given #4952 (W,wt=55): 4840 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,405,a,b,820,a),rewrite([7,6,8,5])]. given #4953 (W,wt=55): 4841 P([0,1,0,1,0,0,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,404,a,b,820,a),rewrite([7,6,5])]. given #4954 (W,wt=55): 4843 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,820,a),rewrite([7,6,8,5])]. given #4955 (W,wt=55): 4844 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,65,a,b,820,a),rewrite([7,8,6,5])]. given #4956 (W,wt=55): 4845 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,63,a,b,820,a),rewrite([7,6,8,5])]. given #4957 (W,wt=55): 4846 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,820,a),rewrite([7,6,8,5])]. given #4958 (W,wt=55): 4847 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,53,a,b,820,a),rewrite([7,6,5])]. given #4959 (W,wt=55): 4848 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,407,a,b,4842,a),rewrite([12,11,13,10])]. given #4960 (W,wt=55): 4849 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,405,a,b,4842,a),rewrite([12,11,13,10])]. given #4961 (W,wt=55): 4850 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,146,a,b,4842,a),rewrite([12,11,13,10])]. given #4962 (W,wt=55): 4851 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,438,a,b,821,a),rewrite([12,11,13,10])]. given #4963 (W,wt=55): 4852 P([1,1,1,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,432,a,b,821,a),rewrite([12,13,11,10])]. given #4964 (W,wt=55): 4853 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,424,a,b,821,a),rewrite([12,13,11,10])]. given #4965 (W,wt=55): 4854 P([1,1,1,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,166,a,b,821,a),rewrite([12,13,11,10])]. given #4966 (W,wt=0): 13686 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,163,a,b,4854,a),rewrite([6,7,8,5])]. given #4967 (W,wt=55): 4855 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,821,a),rewrite([12,11,13,10])]. given #4968 (W,wt=55): 4856 P([1,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,821,a),rewrite([12,13,11,10])]. given #4969 (W,wt=55): 4857 P([1,1,1,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,821,a),rewrite([12,13,11,10])]. given #4970 (W,wt=55): 4858 P([1,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,821,a),rewrite([12,11,13,10])]. given #4971 (W,wt=55): 4859 P([0,0,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,440,a,b,821,a),rewrite([7,6,5])]. given #4972 (W,wt=55): 4860 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,438,a,b,821,a),rewrite([7,6,8,5])]. given #4973 (W,wt=55): 4861 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,821,a),rewrite([7,8,6,5])]. given #4974 (W,wt=55): 4862 P([1,0,1,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,164,a,b,821,a),rewrite([6,7,5])]. given #4975 (W,wt=55): 4863 P([1,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,163,a,b,821,a),rewrite([6,7,8,5])]. given #4976 (W,wt=55): 4864 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,162,a,b,821,a),rewrite([6,7,8,5])]. given #4977 (W,wt=55): 4865 P([1,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,160,a,b,821,a),rewrite([6,7,8,5])]. given #4978 (W,wt=55): 4866 P([1,0,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,155,a,b,821,a),rewrite([6,7,5])]. given #4979 (W,wt=55): 4867 P([0,0,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,63,a,b,821,a),rewrite([7,6,8,5])]. given #4980 (W,wt=55): 4868 P([0,1,1,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,53,a,b,821,a),rewrite([7,6,5])]. given #4981 (W,wt=55): 4869 P([1,1,1,1,1,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,438,a,b,822,a),rewrite([12,11,13,10])]. given #4982 (W,wt=55): 4870 P([1,1,1,1,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,166,a,b,822,a),rewrite([12,11,13,10])]. given #4983 (W,wt=55): 4871 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,79,a,b,822,a),rewrite([12,11,13,10])]. given #4984 (W,wt=55): 4872 P([1,1,1,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,822,a),rewrite([12,13,11,10])]. given #4985 (W,wt=55): 4873 P([0,0,1,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,440,a,b,822,a),rewrite([7,6,5])]. given #4986 (W,wt=55): 4874 P([0,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,438,a,b,822,a),rewrite([7,6,8,5])]. given #4987 (W,wt=55): 4875 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,435,a,b,822,a),rewrite([7,6,8,5])]. given #4988 (W,wt=55): 4876 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,432,a,b,822,a),rewrite([7,6,8,5])]. given #4989 (W,wt=55): 4877 P([0,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,431,a,b,822,a),rewrite([7,6,8,5])]. given #4990 (W,wt=55): 4878 P([1,0,1,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,164,a,b,822,a),rewrite([6,7,5])]. given #4991 (W,wt=55): 4879 P([1,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,163,a,b,822,a),rewrite([6,7,8,5])]. given #4992 (W,wt=55): 4880 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,162,a,b,822,a),rewrite([6,7,5])]. given #4993 (W,wt=55): 4881 P([1,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,161,a,b,822,a),rewrite([6,7,8,5])]. given #4994 (W,wt=55): 4882 P([1,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,160,a,b,822,a),rewrite([6,7,8,5])]. given #4995 (W,wt=55): 4883 P([1,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,158,a,b,822,a),rewrite([6,7,8,5])]. given #4996 (W,wt=55): 4884 P([1,0,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,155,a,b,822,a),rewrite([6,7,5])]. given #4997 (W,wt=55): 4885 P([0,0,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,822,a),rewrite([7,6,8,5])]. given #4998 (W,wt=55): 4886 P([0,1,1,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,53,a,b,822,a),rewrite([7,6,5])]. given #4999 (W,wt=55): 4887 P([1,1,1,1,1,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,166,a,b,823,a),rewrite([12,11,13,10])]. given #5000 (W,wt=55): 4888 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,79,a,b,823,a),rewrite([12,11,13,10])]. given #5001 (W,wt=55): 4889 P([0,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,440,a,b,823,a),rewrite([7,6,5])]. given #5002 (W,wt=55): 4890 P([0,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,438,a,b,823,a),rewrite([7,6,5])]. given #5003 (W,wt=55): 4891 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,435,a,b,823,a),rewrite([7,6,5])]. given #5004 (W,wt=55): 4892 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,432,a,b,823,a),rewrite([7,6,5])]. given #5005 (W,wt=55): 4893 P([0,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,431,a,b,823,a),rewrite([7,6,5])]. given #5006 (W,wt=55): 4894 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,424,a,b,823,a),rewrite([7,6,5])]. given #5007 (W,wt=55): 4895 P([0,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,423,a,b,823,a),rewrite([7,6,5])]. given #5008 (W,wt=55): 4896 P([1,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,164,a,b,823,a),rewrite([6,7,5])]. given #5009 (W,wt=55): 4897 P([1,1,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,163,a,b,823,a),rewrite([6,7,5])]. given #5010 (W,wt=55): 4898 P([1,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,162,a,b,823,a),rewrite([6,7,5])]. given #5011 (W,wt=55): 4899 P([1,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,161,a,b,823,a),rewrite([6,7,5])]. given #5012 (W,wt=55): 4900 P([1,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,160,a,b,823,a),rewrite([6,7,5])]. given #5013 (W,wt=55): 4901 P([1,0,0,1,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,158,a,b,823,a),rewrite([6,7,5])]. given #5014 (W,wt=55): 4902 P([1,1,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,157,a,b,823,a),rewrite([6,7,5])]. given #5015 (W,wt=55): 4903 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,156,a,b,823,a),rewrite([6,7,5])]. given #5016 (W,wt=55): 4904 P([1,0,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,155,a,b,823,a),rewrite([6,7,5])]. given #5017 (W,wt=55): 4905 P([1,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,154,a,b,823,a),rewrite([6,7,5])]. given #5018 (W,wt=55): 4906 P([1,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,153,a,b,823,a),rewrite([6,7,5])]. given #5019 (W,wt=55): 4907 P([1,0,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,152,a,b,823,a),rewrite([6,7,5])]. given #5020 (W,wt=55): 4908 P([0,0,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,823,a),rewrite([7,6,8,5])]. given #5021 (W,wt=55): 4909 P([0,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,65,a,b,823,a),rewrite([7,8,6,5])]. given #5022 (W,wt=55): 4910 P([0,0,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,823,a),rewrite([7,6,8,5])]. given #5023 (W,wt=55): 4911 P([0,1,0,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,823,a),rewrite([7,6,8,5])]. given #5024 (W,wt=55): 4912 P([0,1,1,1,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,53,a,b,823,a),rewrite([7,6,5])]. given #5025 (W,wt=55): 4913 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,440,a,b,824,a),rewrite([12,11,13,10])]. given #5026 (W,wt=55): 4914 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,432,a,b,824,a),rewrite([12,13,11,10])]. given #5027 (W,wt=55): 4915 P([1,1,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,428,a,b,824,a),rewrite([12,13,11,10])]. given #5028 (W,wt=55): 4916 P([1,1,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,166,a,b,824,a),rewrite([12,13,11,10])]. given #5029 (W,wt=0): 13814 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,164,a,b,4916,a),rewrite([6,7,8,5])]. given #5030 (W,wt=55): 4917 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,824,a),rewrite([12,11,13,10])]. given #5031 (W,wt=55): 4918 P([1,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,824,a),rewrite([12,11,13,10])]. given #5032 (W,wt=55): 4919 P([1,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,824,a),rewrite([12,13,11,10])]. given #5033 (W,wt=55): 4920 P([1,1,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,824,a),rewrite([12,13,11,10])]. given #5034 (W,wt=55): 4921 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,440,a,b,824,a),rewrite([7,6,8,5])]. given #5035 (W,wt=55): 4922 P([0,1,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,438,a,b,824,a),rewrite([7,6,5])]. given #5036 (W,wt=55): 4923 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,824,a),rewrite([7,8,6,5])]. given #5037 (W,wt=55): 4924 P([1,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,164,a,b,824,a),rewrite([6,7,8,5])]. given #5038 (W,wt=55): 4925 P([1,1,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,163,a,b,824,a),rewrite([6,7,5])]. given #5039 (W,wt=55): 4926 P([1,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,162,a,b,824,a),rewrite([6,7,8,5])]. given #5040 (W,wt=55): 4927 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,161,a,b,824,a),rewrite([6,7,8,5])]. given #5041 (W,wt=55): 4928 P([1,1,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,157,a,b,824,a),rewrite([6,7,5])]. given #5042 (W,wt=55): 4929 P([0,1,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,58,a,b,824,a),rewrite([7,6,8,5])]. given #5043 (W,wt=55): 4930 P([0,1,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,53,a,b,824,a),rewrite([7,6,5])]. given #5044 (W,wt=55): 4931 P([1,1,1,1,1,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,440,a,b,825,a),rewrite([12,11,13,10])]. given #5045 (W,wt=55): 4932 P([1,1,1,1,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,166,a,b,825,a),rewrite([12,11,13,10])]. given #5046 (W,wt=55): 4933 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,79,a,b,825,a),rewrite([12,11,13,10])]. given #5047 (W,wt=55): 4934 P([1,1,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,825,a),rewrite([12,11,13,10])]. given #5048 (W,wt=55): 4935 P([0,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,440,a,b,825,a),rewrite([7,6,8,5])]. given #5049 (W,wt=55): 4936 P([0,1,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,438,a,b,825,a),rewrite([7,6,5])]. given #5050 (W,wt=55): 4937 P([0,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,435,a,b,825,a),rewrite([7,6,8,5])]. given #5051 (W,wt=55): 4938 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,424,a,b,825,a),rewrite([7,6,8,5])]. given #5052 (W,wt=55): 4939 P([0,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,423,a,b,825,a),rewrite([7,6,8,5])]. given #5053 (W,wt=55): 4940 P([1,0,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,164,a,b,825,a),rewrite([6,7,8,5])]. given #5054 (W,wt=55): 4941 P([1,1,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,163,a,b,825,a),rewrite([6,7,5])]. given #5055 (W,wt=55): 4942 P([1,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,162,a,b,825,a),rewrite([6,7,8,5])]. given #5056 (W,wt=55): 4943 P([1,0,0,1,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,161,a,b,825,a),rewrite([6,7,8,5])]. given #5057 (W,wt=55): 4944 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,160,a,b,825,a),rewrite([6,7,5])]. given #5058 (W,wt=55): 4945 P([1,1,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,157,a,b,825,a),rewrite([6,7,5])]. given #5059 (W,wt=55): 4946 P([1,0,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,153,a,b,825,a),rewrite([6,7,8,5])]. given #5060 (W,wt=55): 4947 P([0,1,0,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,825,a),rewrite([7,6,8,5])]. given #5061 (W,wt=55): 4948 P([0,1,1,1,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,53,a,b,825,a),rewrite([7,6,5])]. given #5062 (W,wt=55): 4949 P([1,1,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,432,a,b,826,a),rewrite([12,13,11,10])]. given #5063 (W,wt=55): 4950 P([1,1,1,0,1,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,166,a,b,826,a),rewrite([12,13,11,10])]. given #5064 (W,wt=0): 13893 P([1,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,164,a,b,4950,a),rewrite([6,7,5])]. given #5065 (W,wt=0): 13894 P([1,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,163,a,b,4950,a),rewrite([6,7,5])]. given #5066 (W,wt=55): 4951 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,79,a,b,826,a),rewrite([12,11,13,10])]. given #5067 (W,wt=55): 4952 P([1,1,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,826,a),rewrite([12,13,11,10])]. given #5068 (W,wt=55): 4953 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,440,a,b,826,a),rewrite([7,6,5])]. given #5069 (W,wt=55): 4954 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,438,a,b,826,a),rewrite([7,6,5])]. given #5070 (W,wt=55): 4955 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,432,a,b,826,a),rewrite([7,8,6,5])]. given #5071 (W,wt=55): 4956 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,424,a,b,826,a),rewrite([7,8,6,5])]. given #5072 (W,wt=55): 4957 P([1,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,164,a,b,826,a),rewrite([6,7,5])]. given #5073 (W,wt=55): 4958 P([1,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,163,a,b,826,a),rewrite([6,7,5])]. given #5074 (W,wt=55): 4959 P([1,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,162,a,b,826,a),rewrite([6,7,8,5])]. given #5075 (W,wt=55): 4960 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,161,a,b,826,a),rewrite([6,7,5])]. given #5076 (W,wt=55): 4961 P([1,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,160,a,b,826,a),rewrite([6,7,8,5])]. given #5077 (W,wt=55): 4962 P([1,1,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,157,a,b,826,a),rewrite([6,7,5])]. given #5078 (W,wt=55): 4963 P([1,0,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,155,a,b,826,a),rewrite([6,7,5])]. given #5079 (W,wt=55): 4964 P([1,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,154,a,b,826,a),rewrite([6,7,8,5])]. given #5080 (W,wt=55): 4965 P([0,0,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,826,a),rewrite([7,6,8,5])]. given #5081 (W,wt=55): 4966 P([0,0,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,63,a,b,826,a),rewrite([7,6,8,5])]. given #5082 (W,wt=55): 4967 P([0,1,0,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,58,a,b,826,a),rewrite([7,6,8,5])]. given #5083 (W,wt=55): 4968 P([0,1,1,0,0,1,1,0],[[0,1,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,53,a,b,826,a),rewrite([7,6,5])]. given #5084 (W,wt=55): 4969 P([1,0,1,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,432,a,b,827,a),rewrite([12,13,11,10])]. given #5085 (W,wt=55): 4970 P([1,0,1,0,1,0,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,428,a,b,827,a),rewrite([12,13,11,10])]. given #5086 (W,wt=55): 4972 P([1,0,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,827,a),rewrite([12,13,11,10])]. given #5087 (W,wt=55): 4973 P([1,0,1,1,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,827,a),rewrite([12,13,11,10])]. given #5088 (W,wt=55): 4974 P([1,0,1,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,827,a),rewrite([12,13,11,10])]. given #5089 (W,wt=55): 4975 P([1,0,1,0,0,0,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,827,a),rewrite([12,13,11,10])]. given #5090 (W,wt=55): 4976 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,827,a),rewrite([12,11,13,10])]. given #5091 (W,wt=55): 4977 P([0,0,1,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,440,a,b,827,a),rewrite([7,8,6,5])]. given #5092 (W,wt=55): 4978 P([0,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,827,a),rewrite([7,8,6,5])]. given #5093 (W,wt=55): 4979 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,163,a,b,827,a),rewrite([6,7,5])]. given #5094 (W,wt=55): 4980 P([1,0,0,0,0,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,162,a,b,827,a),rewrite([6,8,7,5])]. given #5095 (W,wt=55): 4981 P([0,0,1,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,440,a,b,4971,a),rewrite([7,8,6,5])]. given #5096 (W,wt=55): 4982 P([0,0,0,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,424,a,b,4971,a),rewrite([7,8,6,5])]. given #5097 (W,wt=55): 4983 P([1,0,0,0,1,0,1,0],[[0,1,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,162,a,b,4971,a),rewrite([6,8,7,5])]. given #5098 (W,wt=55): 4984 P([1,1,0,0,1,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,432,a,b,828,a),rewrite([12,13,11,10])]. given #5099 (W,wt=55): 4985 P([1,1,0,0,1,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,424,a,b,828,a),rewrite([12,13,11,10])]. given #5100 (W,wt=55): 4987 P([1,1,0,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,828,a),rewrite([12,13,11,10])]. given #5101 (W,wt=55): 4988 P([1,1,0,0,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,828,a),rewrite([12,13,11,10])]. given #5102 (W,wt=55): 4989 P([1,1,1,1,0,1,1,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,828,a),rewrite([12,11,13,10])]. given #5103 (W,wt=55): 4990 P([1,1,0,0,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,828,a),rewrite([12,13,11,10])]. given #5104 (W,wt=55): 4991 P([1,1,0,1,0,1,0,1],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,828,a),rewrite([12,13,11,10])]. given #5105 (W,wt=55): 4992 P([0,1,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,438,a,b,828,a),rewrite([7,6,8,5])]. given #5106 (W,wt=55): 4993 P([0,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,828,a),rewrite([7,8,6,5])]. given #5107 (W,wt=55): 4994 P([1,0,0,0,0,0,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,164,a,b,828,a),rewrite([6,7,5])]. given #5108 (W,wt=55): 4995 P([1,0,0,0,0,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,160,a,b,828,a),rewrite([6,7,8,5])]. given #5109 (W,wt=55): 4996 P([0,1,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,438,a,b,4986,a),rewrite([7,6,8,5])]. given #5110 (W,wt=55): 4997 P([0,0,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,432,a,b,4986,a),rewrite([7,8,6,5])]. given #5111 (W,wt=55): 4998 P([1,0,0,0,1,1,0,0],[[0,1,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,160,a,b,4986,a),rewrite([6,7,8,5])]. given #5112 (W,wt=55): 4999 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,460,a,b,829,a),rewrite([12,11,13,10])]. given #5113 (W,wt=55): 5000 P([1,1,1,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,454,a,b,829,a),rewrite([12,11,13,10])]. given #5114 (W,wt=55): 5001 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,448,a,b,829,a),rewrite([12,11,13,10])]. given #5115 (W,wt=55): 5002 P([1,1,1,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,184,a,b,829,a),rewrite([12,11,13,10])]. given #5116 (W,wt=0): 13982 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,181,a,b,5002,a),rewrite([6,7,8,5])]. given #5117 (W,wt=55): 5003 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,829,a),rewrite([12,13,11,10])]. given #5118 (W,wt=55): 5004 P([1,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,829,a),rewrite([12,13,11,10])]. given #5119 (W,wt=55): 5005 P([1,1,0,1,1,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,829,a),rewrite([12,13,11,10])]. given #5120 (W,wt=55): 5006 P([1,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,829,a),rewrite([12,13,11,10])]. given #5121 (W,wt=55): 5007 P([0,0,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,462,a,b,829,a),rewrite([7,6,5])]. given #5122 (W,wt=55): 5008 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,460,a,b,829,a),rewrite([7,6,8,5])]. given #5123 (W,wt=55): 5009 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,454,a,b,829,a),rewrite([7,6,8,5])]. given #5124 (W,wt=55): 5010 P([1,0,0,0,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,182,a,b,829,a),rewrite([6,7,5])]. given #5125 (W,wt=55): 5011 P([1,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,181,a,b,829,a),rewrite([6,7,8,5])]. given #5126 (W,wt=55): 5012 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,180,a,b,829,a),rewrite([6,7,8,5])]. given #5127 (W,wt=55): 5013 P([1,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,179,a,b,829,a),rewrite([6,7,8,5])]. given #5128 (W,wt=55): 5014 P([1,0,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,172,a,b,829,a),rewrite([6,7,5])]. given #5129 (W,wt=55): 5015 P([0,0,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,829,a),rewrite([7,8,6,5])]. given #5130 (W,wt=55): 5016 P([0,1,0,1,1,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,829,a),rewrite([7,6,5])]. given #5131 (W,wt=55): 5017 P([1,1,1,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,460,a,b,830,a),rewrite([12,11,13,10])]. given #5132 (W,wt=55): 5018 P([1,1,1,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,184,a,b,830,a),rewrite([12,11,13,10])]. given #5133 (W,wt=55): 5019 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,79,a,b,830,a),rewrite([12,13,11,10])]. given #5134 (W,wt=55): 5020 P([1,1,0,1,1,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,830,a),rewrite([12,13,11,10])]. given #5135 (W,wt=55): 5021 P([0,0,0,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,462,a,b,830,a),rewrite([7,6,5])]. given #5136 (W,wt=55): 5022 P([0,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,460,a,b,830,a),rewrite([7,6,8,5])]. given #5137 (W,wt=55): 5023 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,456,a,b,830,a),rewrite([7,6,8,5])]. given #5138 (W,wt=55): 5024 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,454,a,b,830,a),rewrite([7,6,8,5])]. given #5139 (W,wt=55): 5025 P([0,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,453,a,b,830,a),rewrite([7,6,8,5])]. given #5140 (W,wt=55): 5026 P([1,0,0,0,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,182,a,b,830,a),rewrite([6,7,5])]. given #5141 (W,wt=55): 5027 P([1,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,181,a,b,830,a),rewrite([6,7,8,5])]. given #5142 (W,wt=55): 5028 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,180,a,b,830,a),rewrite([6,7,5])]. given #5143 (W,wt=55): 5029 P([1,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,179,a,b,830,a),rewrite([6,7,8,5])]. given #5144 (W,wt=55): 5030 P([1,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,178,a,b,830,a),rewrite([6,7,8,5])]. given #5145 (W,wt=55): 5031 P([1,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,176,a,b,830,a),rewrite([6,7,8,5])]. given #5146 (W,wt=55): 5032 P([1,0,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,172,a,b,830,a),rewrite([6,7,5])]. given #5147 (W,wt=55): 5033 P([0,0,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,830,a),rewrite([7,8,6,5])]. given #5148 (W,wt=55): 5034 P([0,1,0,1,1,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,830,a),rewrite([7,6,5])]. given #5149 (W,wt=55): 5035 P([1,1,1,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,184,a,b,831,a),rewrite([12,11,13,10])]. given #5150 (W,wt=55): 5036 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,79,a,b,831,a),rewrite([12,13,11,10])]. given #5151 (W,wt=55): 5037 P([0,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,462,a,b,831,a),rewrite([7,6,5])]. given #5152 (W,wt=55): 5038 P([0,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,460,a,b,831,a),rewrite([7,6,5])]. given #5153 (W,wt=55): 5039 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,456,a,b,831,a),rewrite([7,6,5])]. given #5154 (W,wt=55): 5040 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,454,a,b,831,a),rewrite([7,6,5])]. given #5155 (W,wt=55): 5041 P([0,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,453,a,b,831,a),rewrite([7,6,5])]. given #5156 (W,wt=55): 5042 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,448,a,b,831,a),rewrite([7,6,5])]. given #5157 (W,wt=55): 5043 P([0,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,447,a,b,831,a),rewrite([7,6,5])]. given #5158 (W,wt=55): 5044 P([1,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,182,a,b,831,a),rewrite([6,7,5])]. given #5159 (W,wt=55): 5045 P([1,1,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,181,a,b,831,a),rewrite([6,7,5])]. given #5160 (W,wt=55): 5046 P([1,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,180,a,b,831,a),rewrite([6,7,5])]. given #5161 (W,wt=55): 5047 P([1,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,179,a,b,831,a),rewrite([6,7,5])]. given #5162 (W,wt=55): 5048 P([1,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,178,a,b,831,a),rewrite([6,7,5])]. given #5163 (W,wt=55): 5049 P([1,0,0,1,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,176,a,b,831,a),rewrite([6,7,5])]. given #5164 (W,wt=55): 5050 P([1,1,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,175,a,b,831,a),rewrite([6,7,5])]. given #5165 (W,wt=55): 5051 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,174,a,b,831,a),rewrite([6,7,5])]. given #5166 (W,wt=55): 5052 P([1,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,173,a,b,831,a),rewrite([6,7,5])]. given #5167 (W,wt=55): 5053 P([1,0,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,172,a,b,831,a),rewrite([6,7,5])]. given #5168 (W,wt=55): 5054 P([1,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,171,a,b,831,a),rewrite([6,7,5])]. given #5169 (W,wt=55): 5055 P([1,0,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,170,a,b,831,a),rewrite([6,7,5])]. given #5170 (W,wt=55): 5056 P([0,0,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,831,a),rewrite([7,8,6,5])]. given #5171 (W,wt=55): 5057 P([0,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,831,a),rewrite([7,8,6,5])]. given #5172 (W,wt=55): 5058 P([0,0,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,831,a),rewrite([7,8,6,5])]. given #5173 (W,wt=55): 5059 P([0,1,0,1,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,831,a),rewrite([7,6,8,5])]. given #5174 (W,wt=55): 5060 P([0,1,0,1,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,831,a),rewrite([7,6,5])]. given #5175 (W,wt=55): 5061 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,462,a,b,832,a),rewrite([12,11,13,10])]. given #5176 (W,wt=55): 5062 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,454,a,b,832,a),rewrite([12,11,13,10])]. given #5177 (W,wt=55): 5063 P([1,1,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,450,a,b,832,a),rewrite([12,11,13,10])]. given #5178 (W,wt=55): 5064 P([1,1,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,184,a,b,832,a),rewrite([12,11,13,10])]. given #5179 (W,wt=0): 14110 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,182,a,b,5064,a),rewrite([6,7,8,5])]. given #5180 (W,wt=55): 5065 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,832,a),rewrite([12,13,11,10])]. given #5181 (W,wt=55): 5066 P([1,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,832,a),rewrite([12,13,11,10])]. given #5182 (W,wt=55): 5067 P([1,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,832,a),rewrite([12,13,11,10])]. given #5183 (W,wt=55): 5068 P([1,1,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,832,a),rewrite([12,13,11,10])]. given #5184 (W,wt=55): 5069 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,462,a,b,832,a),rewrite([7,6,8,5])]. given #5185 (W,wt=55): 5070 P([0,1,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,460,a,b,832,a),rewrite([7,6,5])]. given #5186 (W,wt=55): 5071 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,832,a),rewrite([7,6,8,5])]. given #5187 (W,wt=55): 5072 P([1,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,182,a,b,832,a),rewrite([6,7,8,5])]. given #5188 (W,wt=55): 5073 P([1,1,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,181,a,b,832,a),rewrite([6,7,5])]. given #5189 (W,wt=55): 5074 P([1,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,180,a,b,832,a),rewrite([6,7,8,5])]. given #5190 (W,wt=55): 5075 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,179,a,b,832,a),rewrite([6,7,8,5])]. given #5191 (W,wt=55): 5076 P([1,1,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,175,a,b,832,a),rewrite([6,7,5])]. given #5192 (W,wt=55): 5077 P([0,1,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,832,a),rewrite([7,6,8,5])]. given #5193 (W,wt=55): 5078 P([0,1,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,832,a),rewrite([7,6,5])]. given #5194 (W,wt=55): 5079 P([1,1,1,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,462,a,b,833,a),rewrite([12,11,13,10])]. given #5195 (W,wt=55): 5080 P([1,1,1,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,184,a,b,833,a),rewrite([12,11,13,10])]. given #5196 (W,wt=55): 5081 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,79,a,b,833,a),rewrite([12,13,11,10])]. given #5197 (W,wt=55): 5082 P([1,1,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,833,a),rewrite([12,13,11,10])]. given #5198 (W,wt=55): 5083 P([0,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,462,a,b,833,a),rewrite([7,6,8,5])]. given #5199 (W,wt=55): 5084 P([0,1,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,460,a,b,833,a),rewrite([7,6,5])]. given #5200 (W,wt=55): 5085 P([0,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,456,a,b,833,a),rewrite([7,6,8,5])]. given #5201 (W,wt=55): 5086 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,448,a,b,833,a),rewrite([7,6,8,5])]. given #5202 (W,wt=55): 5087 P([0,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,447,a,b,833,a),rewrite([7,6,8,5])]. given #5203 (W,wt=55): 5088 P([1,0,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,182,a,b,833,a),rewrite([6,7,8,5])]. given #5204 (W,wt=55): 5089 P([1,1,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,181,a,b,833,a),rewrite([6,7,5])]. given #5205 (W,wt=55): 5090 P([1,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,180,a,b,833,a),rewrite([6,7,8,5])]. given #5206 (W,wt=55): 5091 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,179,a,b,833,a),rewrite([6,7,5])]. given #5207 (W,wt=55): 5092 P([1,0,0,0,0,1,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,178,a,b,833,a),rewrite([6,7,8,5])]. given #5208 (W,wt=55): 5093 P([1,1,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,175,a,b,833,a),rewrite([6,7,5])]. given #5209 (W,wt=55): 5094 P([1,0,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,173,a,b,833,a),rewrite([6,7,8,5])]. given #5210 (W,wt=55): 5095 P([0,1,0,0,0,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,833,a),rewrite([7,6,8,5])]. given #5211 (W,wt=55): 5096 P([0,1,0,0,1,1,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,833,a),rewrite([7,6,5])]. given #5212 (W,wt=55): 5097 P([1,1,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,454,a,b,834,a),rewrite([12,11,13,10])]. given #5213 (W,wt=55): 5098 P([1,1,1,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,184,a,b,834,a),rewrite([12,11,13,10])]. given #5214 (W,wt=0): 14189 P([1,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,182,a,b,5098,a),rewrite([6,7,5])]. given #5215 (W,wt=0): 14190 P([1,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,181,a,b,5098,a),rewrite([6,7,5])]. given #5216 (W,wt=55): 5099 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,79,a,b,834,a),rewrite([12,13,11,10])]. given #5217 (W,wt=55): 5100 P([1,1,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,834,a),rewrite([12,13,11,10])]. given #5218 (W,wt=55): 5101 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,462,a,b,834,a),rewrite([7,6,5])]. given #5219 (W,wt=55): 5102 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,460,a,b,834,a),rewrite([7,6,5])]. given #5220 (W,wt=55): 5103 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,454,a,b,834,a),rewrite([7,6,8,5])]. given #5221 (W,wt=55): 5104 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,448,a,b,834,a),rewrite([7,6,8,5])]. given #5222 (W,wt=55): 5105 P([1,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,182,a,b,834,a),rewrite([6,7,5])]. given #5223 (W,wt=55): 5106 P([1,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,181,a,b,834,a),rewrite([6,7,5])]. given #5224 (W,wt=55): 5107 P([1,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,180,a,b,834,a),rewrite([6,7,8,5])]. given #5225 (W,wt=55): 5108 P([1,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,179,a,b,834,a),rewrite([6,7,8,5])]. given #5226 (W,wt=55): 5109 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,178,a,b,834,a),rewrite([6,7,5])]. given #5227 (W,wt=55): 5110 P([1,1,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,175,a,b,834,a),rewrite([6,7,5])]. given #5228 (W,wt=55): 5111 P([1,0,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,172,a,b,834,a),rewrite([6,7,5])]. given #5229 (W,wt=55): 5112 P([1,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,171,a,b,834,a),rewrite([6,7,8,5])]. given #5230 (W,wt=55): 5113 P([0,0,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,834,a),rewrite([7,8,6,5])]. given #5231 (W,wt=55): 5114 P([0,0,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,834,a),rewrite([7,8,6,5])]. given #5232 (W,wt=55): 5115 P([0,1,0,1,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,58,a,b,834,a),rewrite([7,6,8,5])]. given #5233 (W,wt=55): 5116 P([0,1,0,1,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,834,a),rewrite([7,6,5])]. given #5234 (W,wt=55): 5117 P([1,0,1,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,454,a,b,835,a),rewrite([12,13,11,10])]. given #5235 (W,wt=55): 5118 P([1,0,1,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,450,a,b,835,a),rewrite([12,13,11,10])]. given #5236 (W,wt=55): 5120 P([1,0,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,835,a),rewrite([12,13,11,10])]. given #5237 (W,wt=55): 5121 P([1,0,0,1,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,835,a),rewrite([12,13,11,10])]. given #5238 (W,wt=55): 5122 P([1,0,0,0,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,835,a),rewrite([12,13,11,10])]. given #5239 (W,wt=55): 5123 P([1,0,0,0,1,0,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,835,a),rewrite([12,13,11,10])]. given #5240 (W,wt=55): 5124 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,58,a,b,835,a),rewrite([12,11,13,10])]. given #5241 (W,wt=55): 5125 P([0,0,0,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,462,a,b,835,a),rewrite([7,8,6,5])]. given #5242 (W,wt=55): 5126 P([0,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,835,a),rewrite([7,8,6,5])]. given #5243 (W,wt=55): 5127 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,181,a,b,835,a),rewrite([6,7,5])]. given #5244 (W,wt=55): 5128 P([1,0,0,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,180,a,b,835,a),rewrite([6,8,7,5])]. given #5245 (W,wt=55): 5129 P([0,0,1,0,1,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,462,a,b,5119,a),rewrite([7,8,6,5])]. given #5246 (W,wt=55): 5130 P([0,0,1,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,448,a,b,5119,a),rewrite([7,8,6,5])]. given #5247 (W,wt=55): 5131 P([1,0,1,0,0,0,1,0],[[0,1,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,180,a,b,5119,a),rewrite([6,8,7,5])]. given #5248 (W,wt=55): 5132 P([1,1,1,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,454,a,b,836,a),rewrite([12,11,13,10])]. given #5249 (W,wt=55): 5133 P([1,1,1,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,448,a,b,836,a),rewrite([12,11,13,10])]. given #5250 (W,wt=55): 5135 P([1,1,0,1,0,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,836,a),rewrite([12,13,11,10])]. given #5251 (W,wt=55): 5136 P([1,1,0,1,0,0,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,836,a),rewrite([12,13,11,10])]. given #5252 (W,wt=55): 5137 P([1,1,0,1,1,1,1,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,836,a),rewrite([12,13,11,10])]. given #5253 (W,wt=55): 5138 P([1,1,0,1,0,0,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,836,a),rewrite([12,13,11,10])]. given #5254 (W,wt=55): 5139 P([1,1,0,1,0,1,0,1],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,836,a),rewrite([12,13,11,10])]. given #5255 (W,wt=55): 5140 P([0,1,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,460,a,b,836,a),rewrite([7,6,8,5])]. given #5256 (W,wt=55): 5141 P([0,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,454,a,b,836,a),rewrite([7,6,8,5])]. given #5257 (W,wt=55): 5142 P([1,0,0,0,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,182,a,b,836,a),rewrite([6,7,5])]. given #5258 (W,wt=55): 5143 P([1,0,0,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,179,a,b,836,a),rewrite([6,7,8,5])]. given #5259 (W,wt=55): 5144 P([0,1,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,460,a,b,5134,a),rewrite([7,6,8,5])]. given #5260 (W,wt=55): 5145 P([0,0,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,454,a,b,5134,a),rewrite([7,6,8,5])]. given #5261 (W,wt=55): 5146 P([1,0,1,1,0,0,0,0],[[0,1,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,179,a,b,5134,a),rewrite([6,7,8,5])]. given #5262 (W,wt=55): 5147 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,473,a,b,837,a),rewrite([12,11,13,10])]. given #5263 (W,wt=55): 5148 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,472,a,b,837,a),rewrite([12,11,13,10])]. given #5264 (W,wt=0): 14271 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,71,a,b,5148,a),rewrite([6,7,5])]. given #5265 (W,wt=55): 5149 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,469,a,b,837,a),rewrite([12,11,13,10])]. given #5266 (W,wt=55): 5150 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,202,a,b,837,a),rewrite([12,11,13,10])]. given #5267 (W,wt=55): 5151 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,201,a,b,837,a),rewrite([12,11,13,10])]. given #5268 (W,wt=55): 5152 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,200,a,b,837,a),rewrite([12,11,13,10])]. given #5269 (W,wt=55): 5153 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,198,a,b,837,a),rewrite([12,11,13,10])]. given #5270 (W,wt=55): 5154 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,191,a,b,837,a),rewrite([12,13,11,10])]. given #5271 (W,wt=55): 5155 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,837,a),rewrite([12,13,11,10])]. given #5272 (W,wt=55): 5156 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,837,a),rewrite([12,13,11,10])]. given #5273 (W,wt=55): 5157 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,472,a,b,837,a),rewrite([7,6,8,5])]. given #5274 (W,wt=55): 5158 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,471,a,b,837,a),rewrite([7,6,5])]. given #5275 (W,wt=55): 5159 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,469,a,b,837,a),rewrite([7,6,8,5])]. given #5276 (W,wt=55): 5160 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,189,a,b,837,a),rewrite([6,7,5])]. given #5277 (W,wt=55): 5161 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,837,a),rewrite([7,8,6,5])]. given #5278 (W,wt=55): 5162 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,837,a),rewrite([7,8,6,5])]. given #5279 (W,wt=55): 5163 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,58,a,b,837,a),rewrite([7,6,8,5])]. given #5280 (W,wt=55): 5164 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,837,a),rewrite([7,6,5])]. given #5281 (W,wt=55): 5165 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,473,a,b,838,a),rewrite([12,13,11,10])]. given #5282 (W,wt=0): 14308 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,71,a,b,5165,a),rewrite([6,7,5])]. given #5283 (W,wt=55): 5166 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,472,a,b,838,a),rewrite([12,11,13,10])]. given #5284 (W,wt=55): 5167 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,471,a,b,838,a),rewrite([12,13,11,10])]. given #5285 (W,wt=55): 5168 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,202,a,b,838,a),rewrite([12,13,11,10])]. given #5286 (W,wt=55): 5169 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,201,a,b,838,a),rewrite([12,11,13,10])]. given #5287 (W,wt=55): 5170 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,200,a,b,838,a),rewrite([12,13,11,10])]. given #5288 (W,wt=55): 5171 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,199,a,b,838,a),rewrite([12,11,13,10])]. given #5289 (W,wt=55): 5172 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,196,a,b,838,a),rewrite([12,13,11,10])]. given #5290 (W,wt=55): 5173 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,838,a),rewrite([12,13,11,10])]. given #5291 (W,wt=55): 5174 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,838,a),rewrite([12,13,11,10])]. given #5292 (W,wt=55): 5175 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,473,a,b,838,a),rewrite([7,8,6,5])]. given #5293 (W,wt=55): 5176 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,471,a,b,838,a),rewrite([7,8,6,5])]. given #5294 (W,wt=55): 5177 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,469,a,b,838,a),rewrite([7,6,5])]. given #5295 (W,wt=55): 5178 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,189,a,b,838,a),rewrite([6,7,5])]. given #5296 (W,wt=55): 5179 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,838,a),rewrite([7,8,6,5])]. given #5297 (W,wt=55): 5180 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,838,a),rewrite([7,8,6,5])]. given #5298 (W,wt=55): 5181 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,63,a,b,838,a),rewrite([7,8,6,5])]. given #5299 (W,wt=55): 5182 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,838,a),rewrite([7,6,5])]. given #5300 (W,wt=55): 5183 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,473,a,b,839,a),rewrite([12,13,11,10])]. given #5301 (W,wt=55): 5184 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,472,a,b,839,a),rewrite([12,11,13,10])]. given #5302 (W,wt=55): 5185 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,471,a,b,839,a),rewrite([12,13,11,10])]. given #5303 (W,wt=55): 5186 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,470,a,b,839,a),rewrite([12,11,13,10])]. given #5304 (W,wt=55): 5187 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,469,a,b,839,a),rewrite([12,11,13,10])]. given #5305 (W,wt=55): 5188 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,467,a,b,839,a),rewrite([12,11,13,10])]. given #5306 (W,wt=55): 5189 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,466,a,b,839,a),rewrite([12,13,11,10])]. given #5307 (W,wt=55): 5190 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,202,a,b,839,a),rewrite([12,13,11,10])]. given #5308 (W,wt=55): 5191 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,201,a,b,839,a),rewrite([12,11,13,10])]. given #5309 (W,wt=55): 5192 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,200,a,b,839,a),rewrite([12,13,11,10])]. given #5310 (W,wt=55): 5193 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,199,a,b,839,a),rewrite([12,11,13,10])]. given #5311 (W,wt=55): 5194 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,198,a,b,839,a),rewrite([12,11,13,10])]. given #5312 (W,wt=55): 5195 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,197,a,b,839,a),rewrite([12,11,13,10])]. given #5313 (W,wt=55): 5196 P([1,0,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,196,a,b,839,a),rewrite([12,13,11,10])]. given #5314 (W,wt=55): 5197 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,195,a,b,839,a),rewrite([12,11,13,10])]. given #5315 (W,wt=55): 5198 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,193,a,b,839,a),rewrite([12,13,11,10])]. given #5316 (W,wt=55): 5199 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,192,a,b,839,a),rewrite([12,13,11,10])]. given #5317 (W,wt=55): 5200 P([1,0,0,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,191,a,b,839,a),rewrite([12,13,11,10])]. given #5318 (W,wt=55): 5201 P([1,0,0,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,190,a,b,839,a),rewrite([12,13,11,10])]. given #5319 (W,wt=55): 5202 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,839,a),rewrite([12,13,11,10])]. given #5320 (W,wt=55): 5203 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,839,a),rewrite([12,13,11,10])]. given #5321 (W,wt=55): 5204 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,839,a),rewrite([12,13,11,10])]. given #5322 (W,wt=55): 5205 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,839,a),rewrite([12,13,11,10])]. given #5323 (W,wt=55): 5206 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,839,a),rewrite([12,13,11,10])]. given #5324 (W,wt=55): 5207 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,189,a,b,839,a),rewrite([6,7,5])]. given #5325 (W,wt=55): 5208 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,79,a,b,839,a),rewrite([7,8,6,5])]. given #5326 (W,wt=55): 5209 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,473,a,b,840,a),rewrite([12,13,11,10])]. given #5327 (W,wt=55): 5210 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,472,a,b,840,a),rewrite([12,11,13,10])]. given #5328 (W,wt=55): 5211 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,471,a,b,840,a),rewrite([12,13,11,10])]. given #5329 (W,wt=55): 5212 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,470,a,b,840,a),rewrite([12,11,13,10])]. given #5330 (W,wt=55): 5213 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,466,a,b,840,a),rewrite([12,13,11,10])]. given #5331 (W,wt=55): 5214 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,202,a,b,840,a),rewrite([12,13,11,10])]. given #5332 (W,wt=55): 5215 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,201,a,b,840,a),rewrite([12,11,13,10])]. given #5333 (W,wt=55): 5216 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,200,a,b,840,a),rewrite([12,13,11,10])]. given #5334 (W,wt=55): 5217 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,199,a,b,840,a),rewrite([12,11,13,10])]. given #5335 (W,wt=55): 5218 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,198,a,b,840,a),rewrite([12,11,13,10])]. given #5336 (W,wt=55): 5219 P([1,0,1,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,196,a,b,840,a),rewrite([12,13,11,10])]. given #5337 (W,wt=55): 5220 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,193,a,b,840,a),rewrite([12,13,11,10])]. given #5338 (W,wt=55): 5221 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,840,a),rewrite([12,13,11,10])]. given #5339 (W,wt=55): 5222 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,840,a),rewrite([12,13,11,10])]. given #5340 (W,wt=55): 5223 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,473,a,b,840,a),rewrite([7,8,6,5])]. given #5341 (W,wt=55): 5224 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,189,a,b,840,a),rewrite([6,7,5])]. given #5342 (W,wt=55): 5225 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,79,a,b,840,a),rewrite([7,8,6,5])]. given #5343 (W,wt=55): 5226 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,63,a,b,840,a),rewrite([7,8,6,5])]. given #5344 (W,wt=55): 5227 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,473,a,b,841,a),rewrite([12,13,11,10])]. given #5345 (W,wt=0): 14437 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,71,a,b,5227,a),rewrite([6,7,5])]. given #5346 (W,wt=55): 5228 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,472,a,b,841,a),rewrite([12,11,13,10])]. given #5347 (W,wt=0): 14447 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,71,a,b,5228,a),rewrite([6,7,5])]. given #5348 (W,wt=55): 5229 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,471,a,b,841,a),rewrite([12,13,11,10])]. given #5349 (W,wt=55): 5230 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,469,a,b,841,a),rewrite([12,11,13,10])]. given #5350 (W,wt=55): 5231 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,202,a,b,841,a),rewrite([12,13,11,10])]. given #5351 (W,wt=55): 5232 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,201,a,b,841,a),rewrite([12,11,13,10])]. given #5352 (W,wt=55): 5233 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,200,a,b,841,a),rewrite([12,13,11,10])]. given #5353 (W,wt=55): 5234 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,199,a,b,841,a),rewrite([12,11,13,10])]. given #5354 (W,wt=55): 5235 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,198,a,b,841,a),rewrite([12,11,13,10])]. given #5355 (W,wt=55): 5236 P([1,0,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,196,a,b,841,a),rewrite([12,13,11,10])]. given #5356 (W,wt=55): 5237 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,192,a,b,841,a),rewrite([12,13,11,10])]. given #5357 (W,wt=55): 5238 P([1,0,0,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,191,a,b,841,a),rewrite([12,13,11,10])]. given #5358 (W,wt=55): 5239 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,841,a),rewrite([12,13,11,10])]. given #5359 (W,wt=55): 5240 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,841,a),rewrite([12,13,11,10])]. given #5360 (W,wt=55): 5241 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,841,a),rewrite([12,13,11,10])]. given #5361 (W,wt=55): 5242 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,841,a),rewrite([12,13,11,10])]. given #5362 (W,wt=55): 5243 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,471,a,b,841,a),rewrite([7,8,6,5])]. given #5363 (W,wt=55): 5244 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,189,a,b,841,a),rewrite([6,7,5])]. given #5364 (W,wt=55): 5245 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,841,a),rewrite([7,8,6,5])]. given #5365 (W,wt=55): 5246 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,841,a),rewrite([7,8,6,5])]. given #5366 (W,wt=55): 5247 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,473,a,b,842,a),rewrite([12,11,13,10])]. given #5367 (W,wt=55): 5248 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,472,a,b,842,a),rewrite([12,11,13,10])]. given #5368 (W,wt=55): 5249 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,470,a,b,842,a),rewrite([12,11,13,10])]. given #5369 (W,wt=55): 5250 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,469,a,b,842,a),rewrite([12,11,13,10])]. given #5370 (W,wt=55): 5251 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,467,a,b,842,a),rewrite([12,11,13,10])]. given #5371 (W,wt=55): 5252 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,202,a,b,842,a),rewrite([12,11,13,10])]. given #5372 (W,wt=55): 5253 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,201,a,b,842,a),rewrite([12,11,13,10])]. given #5373 (W,wt=55): 5254 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,200,a,b,842,a),rewrite([12,11,13,10])]. given #5374 (W,wt=55): 5255 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,199,a,b,842,a),rewrite([12,11,13,10])]. given #5375 (W,wt=55): 5256 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,198,a,b,842,a),rewrite([12,11,13,10])]. given #5376 (W,wt=55): 5257 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,195,a,b,842,a),rewrite([12,11,13,10])]. given #5377 (W,wt=55): 5258 P([1,1,0,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,191,a,b,842,a),rewrite([12,13,11,10])]. given #5378 (W,wt=55): 5259 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,842,a),rewrite([12,13,11,10])]. given #5379 (W,wt=55): 5260 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,842,a),rewrite([12,13,11,10])]. given #5380 (W,wt=55): 5261 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,472,a,b,842,a),rewrite([7,6,8,5])]. given #5381 (W,wt=55): 5262 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,189,a,b,842,a),rewrite([6,7,5])]. given #5382 (W,wt=55): 5263 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,79,a,b,842,a),rewrite([7,8,6,5])]. given #5383 (W,wt=55): 5264 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,58,a,b,842,a),rewrite([7,6,8,5])]. given #5384 (W,wt=55): 5265 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,473,a,b,843,a),rewrite([12,13,11,10])]. given #5385 (W,wt=55): 5266 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,471,a,b,843,a),rewrite([12,13,11,10])]. given #5386 (W,wt=55): 5267 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,201,a,b,843,a),rewrite([12,11,13,10])]. given #5387 (W,wt=55): 5268 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,200,a,b,843,a),rewrite([12,13,11,10])]. given #5388 (W,wt=55): 5269 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,471,a,b,843,a),rewrite([7,8,6,5])]. given #5389 (W,wt=55): 5270 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,469,a,b,843,a),rewrite([7,6,5])]. given #5390 (W,wt=55): 5272 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,843,a),rewrite([7,8,6,5])]. given #5391 (W,wt=55): 5273 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,843,a),rewrite([7,8,6,5])]. given #5392 (W,wt=55): 5274 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,63,a,b,843,a),rewrite([7,8,6,5])]. given #5393 (W,wt=55): 5275 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,55,a,b,843,a),rewrite([7,8,6,5])]. given #5394 (W,wt=55): 5276 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,843,a),rewrite([7,6,5])]. given #5395 (W,wt=55): 5277 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,473,a,b,5271,a),rewrite([12,13,11,10])]. given #5396 (W,wt=55): 5278 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,471,a,b,5271,a),rewrite([12,13,11,10])]. given #5397 (W,wt=55): 5279 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,200,a,b,5271,a),rewrite([12,13,11,10])]. given #5398 (W,wt=55): 5280 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,472,a,b,844,a),rewrite([12,11,13,10])]. given #5399 (W,wt=55): 5281 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,469,a,b,844,a),rewrite([12,11,13,10])]. given #5400 (W,wt=55): 5282 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,202,a,b,844,a),rewrite([12,11,13,10])]. given #5401 (W,wt=55): 5283 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,198,a,b,844,a),rewrite([12,11,13,10])]. given #5402 (W,wt=55): 5284 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,471,a,b,844,a),rewrite([7,6,5])]. given #5403 (W,wt=55): 5285 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,469,a,b,844,a),rewrite([7,6,8,5])]. given #5404 (W,wt=55): 5287 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,844,a),rewrite([7,8,6,5])]. given #5405 (W,wt=55): 5288 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,70,a,b,844,a),rewrite([7,8,6,5])]. given #5406 (W,wt=55): 5289 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,844,a),rewrite([7,8,6,5])]. given #5407 (W,wt=55): 5290 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,58,a,b,844,a),rewrite([7,6,8,5])]. given #5408 (W,wt=55): 5291 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,844,a),rewrite([7,6,5])]. given #5409 (W,wt=55): 5292 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,472,a,b,5286,a),rewrite([12,11,13,10])]. given #5410 (W,wt=55): 5293 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,469,a,b,5286,a),rewrite([12,11,13,10])]. given #5411 (W,wt=55): 5294 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,198,a,b,5286,a),rewrite([12,11,13,10])]. given #5412 (W,wt=55): 5295 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,494,a,b,845,a),rewrite([12,13,11,10])]. given #5413 (W,wt=55): 5296 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,493,a,b,845,a),rewrite([12,11,13,10])]. given #5414 (W,wt=0): 14567 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,74,a,b,5296,a),rewrite([6,7,5])]. given #5415 (W,wt=55): 5297 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,491,a,b,845,a),rewrite([12,11,13,10])]. given #5416 (W,wt=55): 5298 P([1,1,1,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,219,a,b,845,a),rewrite([12,13,11,10])]. given #5417 (W,wt=55): 5299 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,218,a,b,845,a),rewrite([12,11,13,10])]. given #5418 (W,wt=55): 5300 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,217,a,b,845,a),rewrite([12,11,13,10])]. given #5419 (W,wt=55): 5301 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,216,a,b,845,a),rewrite([12,11,13,10])]. given #5420 (W,wt=55): 5302 P([1,1,1,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,209,a,b,845,a),rewrite([12,13,11,10])]. given #5421 (W,wt=55): 5303 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,845,a),rewrite([12,13,11,10])]. given #5422 (W,wt=55): 5304 P([1,1,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,845,a),rewrite([12,13,11,10])]. given #5423 (W,wt=55): 5305 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,493,a,b,845,a),rewrite([7,6,8,5])]. given #5424 (W,wt=55): 5306 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,492,a,b,845,a),rewrite([7,6,5])]. given #5425 (W,wt=55): 5307 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,491,a,b,845,a),rewrite([7,6,8,5])]. given #5426 (W,wt=55): 5308 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,206,a,b,845,a),rewrite([6,7,5])]. given #5427 (W,wt=55): 5309 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,845,a),rewrite([7,6,8,5])]. given #5428 (W,wt=55): 5310 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,63,a,b,845,a),rewrite([7,6,8,5])]. given #5429 (W,wt=55): 5311 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,58,a,b,845,a),rewrite([7,6,8,5])]. given #5430 (W,wt=55): 5312 P([0,1,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,53,a,b,845,a),rewrite([7,6,5])]. given #5431 (W,wt=55): 5313 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,494,a,b,846,a),rewrite([12,13,11,10])]. given #5432 (W,wt=0): 14604 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,74,a,b,5313,a),rewrite([6,7,5])]. given #5433 (W,wt=55): 5314 P([1,1,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,493,a,b,846,a),rewrite([12,11,13,10])]. given #5434 (W,wt=55): 5315 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,492,a,b,846,a),rewrite([12,13,11,10])]. given #5435 (W,wt=55): 5316 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,219,a,b,846,a),rewrite([12,13,11,10])]. given #5436 (W,wt=55): 5317 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,218,a,b,846,a),rewrite([12,11,13,10])]. given #5437 (W,wt=55): 5318 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,217,a,b,846,a),rewrite([12,13,11,10])]. given #5438 (W,wt=55): 5319 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,216,a,b,846,a),rewrite([12,11,13,10])]. given #5439 (W,wt=55): 5320 P([1,0,1,1,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,213,a,b,846,a),rewrite([12,13,11,10])]. given #5440 (W,wt=55): 5321 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,846,a),rewrite([12,13,11,10])]. given #5441 (W,wt=55): 5322 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,846,a),rewrite([12,13,11,10])]. given #5442 (W,wt=55): 5323 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,494,a,b,846,a),rewrite([7,8,6,5])]. given #5443 (W,wt=55): 5324 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,492,a,b,846,a),rewrite([7,8,6,5])]. given #5444 (W,wt=55): 5325 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,491,a,b,846,a),rewrite([7,6,5])]. given #5445 (W,wt=55): 5326 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,206,a,b,846,a),rewrite([6,7,5])]. given #5446 (W,wt=55): 5327 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,79,a,b,846,a),rewrite([7,8,6,5])]. given #5447 (W,wt=55): 5328 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,846,a),rewrite([7,8,6,5])]. given #5448 (W,wt=55): 5329 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,846,a),rewrite([7,8,6,5])]. given #5449 (W,wt=55): 5330 P([0,0,1,0,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,846,a),rewrite([7,6,5])]. given #5450 (W,wt=55): 5331 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,494,a,b,847,a),rewrite([12,13,11,10])]. given #5451 (W,wt=55): 5332 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,493,a,b,847,a),rewrite([12,11,13,10])]. given #5452 (W,wt=55): 5333 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,492,a,b,847,a),rewrite([12,13,11,10])]. given #5453 (W,wt=55): 5334 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,491,a,b,847,a),rewrite([12,11,13,10])]. given #5454 (W,wt=55): 5335 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,490,a,b,847,a),rewrite([12,11,13,10])]. given #5455 (W,wt=55): 5336 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,488,a,b,847,a),rewrite([12,11,13,10])]. given #5456 (W,wt=55): 5337 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,487,a,b,847,a),rewrite([12,13,11,10])]. given #5457 (W,wt=55): 5338 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,219,a,b,847,a),rewrite([12,13,11,10])]. given #5458 (W,wt=55): 5339 P([1,1,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,218,a,b,847,a),rewrite([12,11,13,10])]. given #5459 (W,wt=55): 5340 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,217,a,b,847,a),rewrite([12,13,11,10])]. given #5460 (W,wt=55): 5341 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,216,a,b,847,a),rewrite([12,11,13,10])]. given #5461 (W,wt=55): 5342 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,215,a,b,847,a),rewrite([12,11,13,10])]. given #5462 (W,wt=55): 5343 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,214,a,b,847,a),rewrite([12,11,13,10])]. given #5463 (W,wt=55): 5344 P([1,0,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,213,a,b,847,a),rewrite([12,13,11,10])]. given #5464 (W,wt=55): 5345 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,212,a,b,847,a),rewrite([12,11,13,10])]. given #5465 (W,wt=55): 5346 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,210,a,b,847,a),rewrite([12,13,11,10])]. given #5466 (W,wt=55): 5347 P([1,0,0,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,209,a,b,847,a),rewrite([12,13,11,10])]. given #5467 (W,wt=55): 5348 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,208,a,b,847,a),rewrite([12,13,11,10])]. given #5468 (W,wt=55): 5349 P([1,0,0,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,207,a,b,847,a),rewrite([12,13,11,10])]. given #5469 (W,wt=55): 5350 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,847,a),rewrite([12,13,11,10])]. given #5470 (W,wt=55): 5351 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,847,a),rewrite([12,13,11,10])]. given #5471 (W,wt=55): 5352 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,847,a),rewrite([12,13,11,10])]. given #5472 (W,wt=55): 5353 P([1,0,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,847,a),rewrite([12,13,11,10])]. given #5473 (W,wt=55): 5354 P([1,0,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,847,a),rewrite([12,13,11,10])]. given #5474 (W,wt=55): 5355 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,206,a,b,847,a),rewrite([6,7,5])]. given #5475 (W,wt=55): 5356 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,847,a),rewrite([7,8,6,5])]. given #5476 (W,wt=55): 5357 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,494,a,b,848,a),rewrite([12,13,11,10])]. given #5477 (W,wt=0): 14698 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,74,a,b,5357,a),rewrite([6,7,5])]. given #5478 (W,wt=55): 5358 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,493,a,b,848,a),rewrite([12,11,13,10])]. given #5479 (W,wt=0): 14708 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,74,a,b,5358,a),rewrite([6,7,5])]. given #5480 (W,wt=55): 5359 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,492,a,b,848,a),rewrite([12,13,11,10])]. given #5481 (W,wt=55): 5360 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,491,a,b,848,a),rewrite([12,11,13,10])]. given #5482 (W,wt=55): 5361 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,219,a,b,848,a),rewrite([12,13,11,10])]. given #5483 (W,wt=55): 5362 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,218,a,b,848,a),rewrite([12,11,13,10])]. given #5484 (W,wt=55): 5363 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,217,a,b,848,a),rewrite([12,13,11,10])]. given #5485 (W,wt=55): 5364 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,216,a,b,848,a),rewrite([12,11,13,10])]. given #5486 (W,wt=55): 5365 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,215,a,b,848,a),rewrite([12,11,13,10])]. given #5487 (W,wt=55): 5366 P([1,0,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,213,a,b,848,a),rewrite([12,13,11,10])]. given #5488 (W,wt=55): 5367 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,210,a,b,848,a),rewrite([12,13,11,10])]. given #5489 (W,wt=55): 5368 P([1,0,1,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,209,a,b,848,a),rewrite([12,13,11,10])]. given #5490 (W,wt=55): 5369 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,848,a),rewrite([12,13,11,10])]. given #5491 (W,wt=55): 5370 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,848,a),rewrite([12,13,11,10])]. given #5492 (W,wt=55): 5371 P([1,0,1,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,848,a),rewrite([12,13,11,10])]. given #5493 (W,wt=55): 5372 P([1,0,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,848,a),rewrite([12,13,11,10])]. given #5494 (W,wt=55): 5373 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,492,a,b,848,a),rewrite([7,8,6,5])]. given #5495 (W,wt=55): 5374 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,206,a,b,848,a),rewrite([6,7,5])]. given #5496 (W,wt=55): 5375 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,848,a),rewrite([7,8,6,5])]. given #5497 (W,wt=55): 5376 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,63,a,b,848,a),rewrite([7,8,6,5])]. given #5498 (W,wt=55): 5377 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,494,a,b,849,a),rewrite([12,13,11,10])]. given #5499 (W,wt=55): 5378 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,493,a,b,849,a),rewrite([12,11,13,10])]. given #5500 (W,wt=55): 5379 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,492,a,b,849,a),rewrite([12,13,11,10])]. given #5501 (W,wt=55): 5380 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,490,a,b,849,a),rewrite([12,11,13,10])]. given #5502 (W,wt=55): 5381 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,487,a,b,849,a),rewrite([12,13,11,10])]. given #5503 (W,wt=55): 5382 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,219,a,b,849,a),rewrite([12,13,11,10])]. given #5504 (W,wt=55): 5383 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,218,a,b,849,a),rewrite([12,11,13,10])]. given #5505 (W,wt=55): 5384 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,217,a,b,849,a),rewrite([12,13,11,10])]. given #5506 (W,wt=55): 5385 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,216,a,b,849,a),rewrite([12,11,13,10])]. given #5507 (W,wt=55): 5386 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,215,a,b,849,a),rewrite([12,11,13,10])]. given #5508 (W,wt=55): 5387 P([1,0,0,1,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,213,a,b,849,a),rewrite([12,13,11,10])]. given #5509 (W,wt=55): 5388 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,208,a,b,849,a),rewrite([12,13,11,10])]. given #5510 (W,wt=55): 5389 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,849,a),rewrite([12,13,11,10])]. given #5511 (W,wt=55): 5390 P([1,0,0,1,1,1,0,1],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,849,a),rewrite([12,13,11,10])]. given #5512 (W,wt=55): 5391 P([0,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,494,a,b,849,a),rewrite([7,8,6,5])]. given #5513 (W,wt=55): 5392 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,206,a,b,849,a),rewrite([6,7,5])]. given #5514 (W,wt=55): 5393 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,79,a,b,849,a),rewrite([7,8,6,5])]. given #5515 (W,wt=55): 5394 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,68,a,b,849,a),rewrite([7,8,6,5])]. given #5516 (W,wt=55): 5395 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,494,a,b,850,a),rewrite([12,13,11,10])]. given #5517 (W,wt=55): 5396 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,493,a,b,850,a),rewrite([12,11,13,10])]. given #5518 (W,wt=55): 5397 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,491,a,b,850,a),rewrite([12,11,13,10])]. given #5519 (W,wt=55): 5398 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,490,a,b,850,a),rewrite([12,11,13,10])]. given #5520 (W,wt=55): 5399 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,488,a,b,850,a),rewrite([12,11,13,10])]. given #5521 (W,wt=55): 5400 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,219,a,b,850,a),rewrite([12,13,11,10])]. given #5522 (W,wt=55): 5401 P([1,1,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,218,a,b,850,a),rewrite([12,11,13,10])]. given #5523 (W,wt=55): 5402 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,217,a,b,850,a),rewrite([12,11,13,10])]. given #5524 (W,wt=55): 5403 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,216,a,b,850,a),rewrite([12,11,13,10])]. given #5525 (W,wt=55): 5404 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,215,a,b,850,a),rewrite([12,11,13,10])]. given #5526 (W,wt=55): 5405 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,212,a,b,850,a),rewrite([12,11,13,10])]. given #5527 (W,wt=55): 5406 P([1,1,0,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,209,a,b,850,a),rewrite([12,13,11,10])]. given #5528 (W,wt=55): 5407 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,850,a),rewrite([12,13,11,10])]. given #5529 (W,wt=55): 5408 P([1,1,0,0,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,850,a),rewrite([12,13,11,10])]. given #5530 (W,wt=55): 5409 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,493,a,b,850,a),rewrite([7,6,8,5])]. given #5531 (W,wt=55): 5410 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,206,a,b,850,a),rewrite([6,7,5])]. given #5532 (W,wt=55): 5411 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,850,a),rewrite([7,8,6,5])]. given #5533 (W,wt=55): 5412 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,58,a,b,850,a),rewrite([7,6,8,5])]. given #5534 (W,wt=55): 5413 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,494,a,b,851,a),rewrite([12,13,11,10])]. given #5535 (W,wt=55): 5414 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,492,a,b,851,a),rewrite([12,13,11,10])]. given #5536 (W,wt=55): 5415 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,218,a,b,851,a),rewrite([12,11,13,10])]. given #5537 (W,wt=55): 5416 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,217,a,b,851,a),rewrite([12,13,11,10])]. given #5538 (W,wt=55): 5417 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,492,a,b,851,a),rewrite([7,8,6,5])]. given #5539 (W,wt=55): 5418 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,491,a,b,851,a),rewrite([7,6,5])]. given #5540 (W,wt=55): 5420 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,851,a),rewrite([7,8,6,5])]. given #5541 (W,wt=55): 5421 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,851,a),rewrite([7,8,6,5])]. given #5542 (W,wt=55): 5422 P([0,0,1,0,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,851,a),rewrite([7,8,6,5])]. given #5543 (W,wt=55): 5423 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,55,a,b,851,a),rewrite([7,8,6,5])]. given #5544 (W,wt=55): 5424 P([0,0,1,0,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,851,a),rewrite([7,6,5])]. given #5545 (W,wt=55): 5425 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,494,a,b,5419,a),rewrite([12,13,11,10])]. given #5546 (W,wt=55): 5426 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,492,a,b,5419,a),rewrite([12,13,11,10])]. given #5547 (W,wt=55): 5427 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,217,a,b,5419,a),rewrite([12,13,11,10])]. given #5548 (W,wt=55): 5428 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,493,a,b,852,a),rewrite([12,11,13,10])]. given #5549 (W,wt=55): 5429 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,491,a,b,852,a),rewrite([12,11,13,10])]. given #5550 (W,wt=55): 5430 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,219,a,b,852,a),rewrite([12,11,13,10])]. given #5551 (W,wt=55): 5431 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,216,a,b,852,a),rewrite([12,11,13,10])]. given #5552 (W,wt=55): 5432 P([0,0,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,492,a,b,852,a),rewrite([7,6,5])]. given #5553 (W,wt=55): 5433 P([0,1,1,1,0,0,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,491,a,b,852,a),rewrite([7,6,8,5])]. given #5554 (W,wt=55): 5435 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,852,a),rewrite([7,6,8,5])]. given #5555 (W,wt=55): 5436 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,65,a,b,852,a),rewrite([7,8,6,5])]. given #5556 (W,wt=55): 5437 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,852,a),rewrite([7,6,8,5])]. given #5557 (W,wt=55): 5438 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,58,a,b,852,a),rewrite([7,6,8,5])]. given #5558 (W,wt=55): 5439 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,53,a,b,852,a),rewrite([7,6,5])]. given #5559 (W,wt=55): 5440 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,493,a,b,5434,a),rewrite([12,11,13,10])]. given #5560 (W,wt=55): 5441 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,491,a,b,5434,a),rewrite([12,11,13,10])]. given #5561 (W,wt=55): 5442 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,216,a,b,5434,a),rewrite([12,11,13,10])]. given #5562 (W,wt=55): 5443 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,548,a,b,853,a),rewrite([12,11,13,10])]. given #5563 (W,wt=55): 5444 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,546,a,b,853,a),rewrite([12,11,13,10])]. given #5564 (W,wt=55): 5445 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,531,a,b,853,a),rewrite([12,11,13,10])]. given #5565 (W,wt=55): 5446 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,529,a,b,853,a),rewrite([12,11,13,10])]. given #5566 (W,wt=55): 5447 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,253,a,b,853,a),rewrite([12,11,13,10])]. given #5567 (W,wt=55): 5448 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,252,a,b,853,a),rewrite([12,11,13,10])]. given #5568 (W,wt=55): 5449 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,547,a,b,853,a),rewrite([7,6,8,5])]. given #5569 (W,wt=55): 5450 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,546,a,b,853,a),rewrite([7,6,8,5])]. given #5570 (W,wt=55): 5451 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,540,a,b,853,a),rewrite([7,6,8,5])]. given #5571 (W,wt=55): 5452 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,539,a,b,853,a),rewrite([7,6,8,5])]. given #5572 (W,wt=55): 5453 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,538,a,b,853,a),rewrite([7,6,8,5])]. given #5573 (W,wt=55): 5454 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,244,a,b,853,a),rewrite([6,8,7,5])]. given #5574 (W,wt=55): 5455 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,79,a,b,853,a),rewrite([7,6,8,5])]. given #5575 (W,wt=55): 5456 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,548,a,b,854,a),rewrite([12,11,13,10])]. given #5576 (W,wt=55): 5457 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,547,a,b,854,a),rewrite([12,13,11,10])]. given #5577 (W,wt=0): 14875 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,78,a,b,5457,a),rewrite([6,8,7,5])]. given #5578 (W,wt=55): 5458 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,531,a,b,854,a),rewrite([12,11,13,10])]. given #5579 (W,wt=55): 5459 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,530,a,b,854,a),rewrite([12,13,11,10])]. given #5580 (W,wt=55): 5460 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,254,a,b,854,a),rewrite([12,11,13,10])]. given #5581 (W,wt=55): 5461 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,253,a,b,854,a),rewrite([12,13,11,10])]. given #5582 (W,wt=55): 5462 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,252,a,b,854,a),rewrite([12,11,13,10])]. given #5583 (W,wt=55): 5463 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,854,a),rewrite([12,13,11,10])]. given #5584 (W,wt=55): 5464 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,854,a),rewrite([12,13,11,10])]. given #5585 (W,wt=55): 5465 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,547,a,b,854,a),rewrite([7,8,6,5])]. given #5586 (W,wt=55): 5466 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,546,a,b,854,a),rewrite([7,6,8,5])]. given #5587 (W,wt=55): 5467 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,545,a,b,854,a),rewrite([7,6,8,5])]. given #5588 (W,wt=55): 5468 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,540,a,b,854,a),rewrite([7,6,8,5])]. given #5589 (W,wt=55): 5469 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,539,a,b,854,a),rewrite([7,8,6,5])]. given #5590 (W,wt=55): 5470 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,538,a,b,854,a),rewrite([7,6,8,5])]. given #5591 (W,wt=55): 5471 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,537,a,b,854,a),rewrite([7,6,8,5])]. given #5592 (W,wt=55): 5472 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,244,a,b,854,a),rewrite([6,8,7,5])]. given #5593 (W,wt=55): 5473 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,548,a,b,855,a),rewrite([12,11,13,10])]. given #5594 (W,wt=55): 5474 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,547,a,b,855,a),rewrite([12,13,11,10])]. given #5595 (W,wt=0): 14907 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,78,a,b,5474,a),rewrite([6,8,7,5])]. given #5596 (W,wt=55): 5475 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,546,a,b,855,a),rewrite([12,11,13,10])]. given #5597 (W,wt=55): 5476 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,545,a,b,855,a),rewrite([12,11,13,10])]. given #5598 (W,wt=55): 5477 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,543,a,b,855,a),rewrite([12,11,13,10])]. given #5599 (W,wt=55): 5478 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,541,a,b,855,a),rewrite([12,13,11,10])]. given #5600 (W,wt=55): 5479 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,532,a,b,855,a),rewrite([12,13,11,10])]. given #5601 (W,wt=55): 5480 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,531,a,b,855,a),rewrite([12,11,13,10])]. given #5602 (W,wt=55): 5481 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,530,a,b,855,a),rewrite([12,13,11,10])]. given #5603 (W,wt=55): 5482 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,529,a,b,855,a),rewrite([12,11,13,10])]. given #5604 (W,wt=55): 5483 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,528,a,b,855,a),rewrite([12,11,13,10])]. given #5605 (W,wt=55): 5484 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,526,a,b,855,a),rewrite([12,11,13,10])]. given #5606 (W,wt=55): 5485 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,525,a,b,855,a),rewrite([12,13,11,10])]. given #5607 (W,wt=55): 5486 P([1,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,254,a,b,855,a),rewrite([12,11,13,10])]. given #5608 (W,wt=55): 5487 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,253,a,b,855,a),rewrite([12,13,11,10])]. given #5609 (W,wt=55): 5488 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,252,a,b,855,a),rewrite([12,11,13,10])]. given #5610 (W,wt=55): 5489 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,251,a,b,855,a),rewrite([12,11,13,10])]. given #5611 (W,wt=55): 5490 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,250,a,b,855,a),rewrite([12,11,13,10])]. given #5612 (W,wt=55): 5491 P([1,1,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,249,a,b,855,a),rewrite([12,11,13,10])]. given #5613 (W,wt=55): 5492 P([1,0,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,247,a,b,855,a),rewrite([12,13,11,10])]. given #5614 (W,wt=55): 5493 P([1,0,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,246,a,b,855,a),rewrite([12,13,11,10])]. given #5615 (W,wt=55): 5494 P([1,0,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,245,a,b,855,a),rewrite([12,13,11,10])]. given #5616 (W,wt=55): 5495 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,855,a),rewrite([12,13,11,10])]. given #5617 (W,wt=55): 5496 P([1,0,0,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,855,a),rewrite([12,13,11,10])]. given #5618 (W,wt=55): 5497 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,855,a),rewrite([12,13,11,10])]. given #5619 (W,wt=55): 5498 P([1,0,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,855,a),rewrite([12,13,11,10])]. given #5620 (W,wt=55): 5499 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,855,a),rewrite([12,13,11,10])]. given #5621 (W,wt=55): 5500 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,540,a,b,855,a),rewrite([7,6,8,5])]. given #5622 (W,wt=55): 5501 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,244,a,b,855,a),rewrite([6,8,7,5])]. given #5623 (W,wt=55): 5502 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,548,a,b,856,a),rewrite([12,11,13,10])]. given #5624 (W,wt=55): 5503 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,547,a,b,856,a),rewrite([12,13,11,10])]. given #5625 (W,wt=0): 14947 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,78,a,b,5503,a),rewrite([6,8,7,5])]. given #5626 (W,wt=55): 5504 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,546,a,b,856,a),rewrite([12,11,13,10])]. given #5627 (W,wt=55): 5505 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,541,a,b,856,a),rewrite([12,13,11,10])]. given #5628 (W,wt=55): 5506 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,531,a,b,856,a),rewrite([12,11,13,10])]. given #5629 (W,wt=55): 5507 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,530,a,b,856,a),rewrite([12,13,11,10])]. given #5630 (W,wt=55): 5508 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,529,a,b,856,a),rewrite([12,11,13,10])]. given #5631 (W,wt=55): 5509 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,254,a,b,856,a),rewrite([12,11,13,10])]. given #5632 (W,wt=55): 5510 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,253,a,b,856,a),rewrite([12,13,11,10])]. given #5633 (W,wt=55): 5511 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,252,a,b,856,a),rewrite([12,11,13,10])]. given #5634 (W,wt=55): 5512 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,251,a,b,856,a),rewrite([12,11,13,10])]. given #5635 (W,wt=55): 5513 P([1,0,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,247,a,b,856,a),rewrite([12,13,11,10])]. given #5636 (W,wt=55): 5514 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,856,a),rewrite([12,13,11,10])]. given #5637 (W,wt=55): 5515 P([1,0,1,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,856,a),rewrite([12,13,11,10])]. given #5638 (W,wt=55): 5516 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,856,a),rewrite([12,13,11,10])]. given #5639 (W,wt=55): 5517 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,547,a,b,856,a),rewrite([7,8,6,5])]. given #5640 (W,wt=55): 5518 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,540,a,b,856,a),rewrite([7,6,8,5])]. given #5641 (W,wt=55): 5519 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,539,a,b,856,a),rewrite([7,8,6,5])]. given #5642 (W,wt=55): 5520 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,244,a,b,856,a),rewrite([6,8,7,5])]. given #5643 (W,wt=55): 5521 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,548,a,b,857,a),rewrite([12,11,13,10])]. given #5644 (W,wt=55): 5522 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,547,a,b,857,a),rewrite([12,13,11,10])]. given #5645 (W,wt=0): 14978 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,78,a,b,5522,a),rewrite([6,8,7,5])]. given #5646 (W,wt=55): 5523 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,545,a,b,857,a),rewrite([12,11,13,10])]. given #5647 (W,wt=55): 5524 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,532,a,b,857,a),rewrite([12,13,11,10])]. given #5648 (W,wt=55): 5525 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,531,a,b,857,a),rewrite([12,11,13,10])]. given #5649 (W,wt=55): 5526 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,530,a,b,857,a),rewrite([12,13,11,10])]. given #5650 (W,wt=55): 5527 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,528,a,b,857,a),rewrite([12,11,13,10])]. given #5651 (W,wt=55): 5528 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,525,a,b,857,a),rewrite([12,13,11,10])]. given #5652 (W,wt=55): 5530 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,253,a,b,857,a),rewrite([12,13,11,10])]. given #5653 (W,wt=55): 5531 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,252,a,b,857,a),rewrite([12,11,13,10])]. given #5654 (W,wt=55): 5532 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,251,a,b,857,a),rewrite([12,11,13,10])]. given #5655 (W,wt=55): 5533 P([1,0,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,246,a,b,857,a),rewrite([12,13,11,10])]. given #5656 (W,wt=55): 5534 P([1,0,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,857,a),rewrite([12,13,11,10])]. given #5657 (W,wt=55): 5535 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,857,a),rewrite([12,13,11,10])]. given #5658 (W,wt=55): 5536 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,547,a,b,857,a),rewrite([7,8,6,5])]. given #5659 (W,wt=55): 5537 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,540,a,b,857,a),rewrite([7,6,8,5])]. given #5660 (W,wt=55): 5538 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,539,a,b,857,a),rewrite([7,8,6,5])]. given #5661 (W,wt=55): 5539 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,244,a,b,857,a),rewrite([6,8,7,5])]. given #5662 (W,wt=55): 5540 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,545,a,b,5529,a),rewrite([7,6,8,5])]. given #5663 (W,wt=55): 5541 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,540,a,b,5529,a),rewrite([7,6,8,5])]. given #5664 (W,wt=55): 5542 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,537,a,b,5529,a),rewrite([7,6,8,5])]. given #5665 (W,wt=55): 5543 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,244,a,b,5529,a),rewrite([6,8,7,5])]. given #5666 (W,wt=55): 5544 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,548,a,b,858,a),rewrite([12,11,13,10])]. given #5667 (W,wt=55): 5545 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,546,a,b,858,a),rewrite([12,11,13,10])]. given #5668 (W,wt=55): 5546 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,545,a,b,858,a),rewrite([12,11,13,10])]. given #5669 (W,wt=55): 5547 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,543,a,b,858,a),rewrite([12,11,13,10])]. given #5670 (W,wt=55): 5548 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,531,a,b,858,a),rewrite([12,11,13,10])]. given #5671 (W,wt=55): 5549 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,529,a,b,858,a),rewrite([12,11,13,10])]. given #5672 (W,wt=55): 5550 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,528,a,b,858,a),rewrite([12,11,13,10])]. given #5673 (W,wt=55): 5551 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,526,a,b,858,a),rewrite([12,11,13,10])]. given #5674 (W,wt=55): 5552 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,253,a,b,858,a),rewrite([12,11,13,10])]. given #5675 (W,wt=55): 5553 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,252,a,b,858,a),rewrite([12,11,13,10])]. given #5676 (W,wt=55): 5554 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,251,a,b,858,a),rewrite([12,11,13,10])]. given #5677 (W,wt=55): 5555 P([1,1,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,249,a,b,858,a),rewrite([12,11,13,10])]. given #5678 (W,wt=55): 5556 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,540,a,b,858,a),rewrite([7,6,8,5])]. given #5679 (W,wt=55): 5557 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,539,a,b,858,a),rewrite([7,6,8,5])]. given #5680 (W,wt=55): 5558 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,244,a,b,858,a),rewrite([6,8,7,5])]. given #5681 (W,wt=55): 5559 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,547,a,b,859,a),rewrite([12,13,11,10])]. given #5682 (W,wt=55): 5560 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,530,a,b,859,a),rewrite([12,13,11,10])]. given #5683 (W,wt=55): 5561 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,254,a,b,859,a),rewrite([12,11,13,10])]. given #5684 (W,wt=55): 5562 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,540,a,b,859,a),rewrite([7,6,8,5])]. given #5685 (W,wt=55): 5563 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,539,a,b,859,a),rewrite([7,8,6,5])]. given #5686 (W,wt=55): 5564 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,538,a,b,859,a),rewrite([7,6,8,5])]. given #5687 (W,wt=55): 5565 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,537,a,b,859,a),rewrite([7,6,8,5])]. given #5688 (W,wt=55): 5566 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,535,a,b,859,a),rewrite([7,6,8,5])]. given #5689 (W,wt=55): 5568 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,547,a,b,5567,a),rewrite([12,13,11,10])]. given #5690 (W,wt=55): 5569 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,530,a,b,5567,a),rewrite([12,13,11,10])]. given #5691 (W,wt=55): 5570 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,548,a,b,860,a),rewrite([12,11,13,10])]. given #5692 (W,wt=55): 5571 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,546,a,b,860,a),rewrite([12,11,13,10])]. given #5693 (W,wt=55): 5572 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,860,a),rewrite([12,11,13,10])]. given #5694 (W,wt=55): 5573 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,860,a),rewrite([12,11,13,10])]. given #5695 (W,wt=55): 5574 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,547,a,b,860,a),rewrite([7,6,5])]. given #5696 (W,wt=55): 5575 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,546,a,b,860,a),rewrite([7,6,8,5])]. given #5697 (W,wt=55): 5576 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,540,a,b,860,a),rewrite([7,6,8,5])]. given #5698 (W,wt=55): 5577 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,539,a,b,860,a),rewrite([7,6,5])]. given #5699 (W,wt=55): 5578 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,538,a,b,860,a),rewrite([7,6,8,5])]. given #5700 (W,wt=55): 5579 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,531,a,b,860,a),rewrite([7,6,8,5])]. given #5701 (W,wt=55): 5580 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,530,a,b,860,a),rewrite([7,6,5])]. given #5702 (W,wt=55): 5581 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,529,a,b,860,a),rewrite([7,6,8,5])]. given #5703 (W,wt=55): 5582 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,525,a,b,860,a),rewrite([7,6,5])]. given #5704 (W,wt=55): 5583 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,244,a,b,860,a),rewrite([6,7,5])]. given #5705 (W,wt=55): 5584 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,243,a,b,860,a),rewrite([6,7,5])]. given #5706 (W,wt=55): 5586 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,860,a),rewrite([7,6,8,5])]. given #5707 (W,wt=55): 5587 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,65,a,b,860,a),rewrite([7,8,6,5])]. given #5708 (W,wt=55): 5588 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,860,a),rewrite([7,6,8,5])]. given #5709 (W,wt=55): 5589 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,58,a,b,860,a),rewrite([7,6,8,5])]. given #5710 (W,wt=55): 5590 P([0,1,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,53,a,b,860,a),rewrite([7,6,5])]. given #5711 (W,wt=55): 5591 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,548,a,b,5585,a),rewrite([12,11,13,10])]. given #5712 (W,wt=55): 5592 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,546,a,b,5585,a),rewrite([12,11,13,10])]. given #5713 (W,wt=55): 5593 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,5585,a),rewrite([12,11,13,10])]. given #5714 (W,wt=55): 5594 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,5585,a),rewrite([12,11,13,10])]. given #5715 (W,wt=55): 5595 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,548,a,b,861,a),rewrite([12,11,13,10])]. given #5716 (W,wt=55): 5596 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,545,a,b,861,a),rewrite([12,11,13,10])]. given #5717 (W,wt=55): 5597 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,540,a,b,861,a),rewrite([12,11,13,10])]. given #5718 (W,wt=55): 5598 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,537,a,b,861,a),rewrite([12,11,13,10])]. given #5719 (W,wt=55): 5599 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,253,a,b,861,a),rewrite([12,11,13,10])]. given #5720 (W,wt=55): 5600 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,251,a,b,861,a),rewrite([12,11,13,10])]. given #5721 (W,wt=55): 5601 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,547,a,b,861,a),rewrite([7,6,8,5])]. given #5722 (W,wt=55): 5602 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,545,a,b,861,a),rewrite([7,6,8,5])]. given #5723 (W,wt=55): 5603 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,531,a,b,861,a),rewrite([7,6,8,5])]. given #5724 (W,wt=55): 5604 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,530,a,b,861,a),rewrite([7,6,8,5])]. given #5725 (W,wt=55): 5605 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,528,a,b,861,a),rewrite([7,6,8,5])]. given #5726 (W,wt=55): 5606 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,244,a,b,861,a),rewrite([6,7,8,5])]. given #5727 (W,wt=55): 5607 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,861,a),rewrite([7,8,6,5])]. given #5728 (W,wt=55): 5608 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,548,a,b,862,a),rewrite([12,11,13,10])]. given #5729 (W,wt=55): 5609 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,547,a,b,862,a),rewrite([12,13,11,10])]. given #5730 (W,wt=0): 15103 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,78,a,b,5609,a),rewrite([6,7,8,5])]. given #5731 (W,wt=55): 5610 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,540,a,b,862,a),rewrite([12,11,13,10])]. given #5732 (W,wt=55): 5611 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,539,a,b,862,a),rewrite([12,13,11,10])]. given #5733 (W,wt=55): 5612 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,254,a,b,862,a),rewrite([12,11,13,10])]. given #5734 (W,wt=55): 5613 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,253,a,b,862,a),rewrite([12,13,11,10])]. given #5735 (W,wt=55): 5614 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,252,a,b,862,a),rewrite([12,11,13,10])]. given #5736 (W,wt=55): 5615 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,862,a),rewrite([12,13,11,10])]. given #5737 (W,wt=55): 5616 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,862,a),rewrite([12,13,11,10])]. given #5738 (W,wt=55): 5617 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,547,a,b,862,a),rewrite([7,8,6,5])]. given #5739 (W,wt=55): 5618 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,546,a,b,862,a),rewrite([7,6,8,5])]. given #5740 (W,wt=55): 5619 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,545,a,b,862,a),rewrite([7,6,8,5])]. given #5741 (W,wt=55): 5620 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,531,a,b,862,a),rewrite([7,6,8,5])]. given #5742 (W,wt=55): 5621 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,530,a,b,862,a),rewrite([7,8,6,5])]. given #5743 (W,wt=55): 5622 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,529,a,b,862,a),rewrite([7,6,8,5])]. given #5744 (W,wt=55): 5623 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,528,a,b,862,a),rewrite([7,6,8,5])]. given #5745 (W,wt=55): 5624 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,244,a,b,862,a),rewrite([6,7,8,5])]. given #5746 (W,wt=55): 5625 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,548,a,b,863,a),rewrite([12,11,13,10])]. given #5747 (W,wt=55): 5626 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,547,a,b,863,a),rewrite([12,13,11,10])]. given #5748 (W,wt=0): 15135 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,78,a,b,5626,a),rewrite([6,7,8,5])]. given #5749 (W,wt=55): 5627 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,546,a,b,863,a),rewrite([12,11,13,10])]. given #5750 (W,wt=55): 5628 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,545,a,b,863,a),rewrite([12,11,13,10])]. given #5751 (W,wt=55): 5629 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,543,a,b,863,a),rewrite([12,11,13,10])]. given #5752 (W,wt=55): 5630 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,541,a,b,863,a),rewrite([12,13,11,10])]. given #5753 (W,wt=55): 5631 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,540,a,b,863,a),rewrite([12,11,13,10])]. given #5754 (W,wt=55): 5632 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,539,a,b,863,a),rewrite([12,13,11,10])]. given #5755 (W,wt=55): 5633 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,538,a,b,863,a),rewrite([12,11,13,10])]. given #5756 (W,wt=55): 5634 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,537,a,b,863,a),rewrite([12,11,13,10])]. given #5757 (W,wt=55): 5635 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,535,a,b,863,a),rewrite([12,11,13,10])]. given #5758 (W,wt=55): 5636 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,534,a,b,863,a),rewrite([12,13,11,10])]. given #5759 (W,wt=55): 5637 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,532,a,b,863,a),rewrite([12,13,11,10])]. given #5760 (W,wt=55): 5638 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,254,a,b,863,a),rewrite([12,11,13,10])]. given #5761 (W,wt=55): 5639 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,253,a,b,863,a),rewrite([12,13,11,10])]. given #5762 (W,wt=55): 5640 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,252,a,b,863,a),rewrite([12,11,13,10])]. given #5763 (W,wt=55): 5641 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,251,a,b,863,a),rewrite([12,11,13,10])]. given #5764 (W,wt=55): 5642 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,250,a,b,863,a),rewrite([12,11,13,10])]. given #5765 (W,wt=55): 5643 P([1,1,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,249,a,b,863,a),rewrite([12,11,13,10])]. given #5766 (W,wt=55): 5644 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,247,a,b,863,a),rewrite([12,13,11,10])]. given #5767 (W,wt=55): 5645 P([1,0,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,246,a,b,863,a),rewrite([12,13,11,10])]. given #5768 (W,wt=55): 5646 P([1,0,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,245,a,b,863,a),rewrite([12,13,11,10])]. given #5769 (W,wt=55): 5647 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,863,a),rewrite([12,13,11,10])]. given #5770 (W,wt=55): 5648 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,863,a),rewrite([12,13,11,10])]. given #5771 (W,wt=55): 5649 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,863,a),rewrite([12,13,11,10])]. given #5772 (W,wt=55): 5650 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,863,a),rewrite([12,13,11,10])]. given #5773 (W,wt=55): 5651 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,863,a),rewrite([12,13,11,10])]. given #5774 (W,wt=55): 5652 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,531,a,b,863,a),rewrite([7,6,8,5])]. given #5775 (W,wt=55): 5653 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,244,a,b,863,a),rewrite([6,7,8,5])]. given #5776 (W,wt=55): 5654 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,548,a,b,864,a),rewrite([12,11,13,10])]. given #5777 (W,wt=55): 5655 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,547,a,b,864,a),rewrite([12,13,11,10])]. given #5778 (W,wt=0): 15173 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,78,a,b,5655,a),rewrite([6,7,8,5])]. given #5779 (W,wt=55): 5656 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,546,a,b,864,a),rewrite([12,11,13,10])]. given #5780 (W,wt=55): 5657 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,541,a,b,864,a),rewrite([12,13,11,10])]. given #5781 (W,wt=55): 5658 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,540,a,b,864,a),rewrite([12,11,13,10])]. given #5782 (W,wt=55): 5659 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,539,a,b,864,a),rewrite([12,13,11,10])]. given #5783 (W,wt=55): 5660 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,538,a,b,864,a),rewrite([12,11,13,10])]. given #5784 (W,wt=55): 5661 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,534,a,b,864,a),rewrite([12,13,11,10])]. given #5785 (W,wt=55): 5663 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,253,a,b,864,a),rewrite([12,13,11,10])]. given #5786 (W,wt=55): 5664 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,252,a,b,864,a),rewrite([12,11,13,10])]. given #5787 (W,wt=55): 5665 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,251,a,b,864,a),rewrite([12,11,13,10])]. given #5788 (W,wt=55): 5666 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,247,a,b,864,a),rewrite([12,13,11,10])]. given #5789 (W,wt=55): 5667 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,864,a),rewrite([12,13,11,10])]. given #5790 (W,wt=55): 5668 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,864,a),rewrite([12,13,11,10])]. given #5791 (W,wt=55): 5669 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,547,a,b,864,a),rewrite([7,8,6,5])]. given #5792 (W,wt=55): 5670 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,531,a,b,864,a),rewrite([7,6,8,5])]. given #5793 (W,wt=55): 5671 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,530,a,b,864,a),rewrite([7,8,6,5])]. given #5794 (W,wt=55): 5672 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,244,a,b,864,a),rewrite([6,7,8,5])]. given #5795 (W,wt=55): 5673 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,546,a,b,5662,a),rewrite([7,6,8,5])]. given #5796 (W,wt=55): 5674 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,531,a,b,5662,a),rewrite([7,6,8,5])]. given #5797 (W,wt=55): 5675 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,529,a,b,5662,a),rewrite([7,6,8,5])]. given #5798 (W,wt=55): 5676 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,244,a,b,5662,a),rewrite([6,7,8,5])]. given #5799 (W,wt=55): 5677 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,548,a,b,865,a),rewrite([12,11,13,10])]. given #5800 (W,wt=55): 5678 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,547,a,b,865,a),rewrite([12,13,11,10])]. given #5801 (W,wt=0): 15204 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,78,a,b,5678,a),rewrite([6,7,8,5])]. given #5802 (W,wt=55): 5679 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,545,a,b,865,a),rewrite([12,11,13,10])]. given #5803 (W,wt=55): 5680 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,540,a,b,865,a),rewrite([12,11,13,10])]. given #5804 (W,wt=55): 5681 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,539,a,b,865,a),rewrite([12,13,11,10])]. given #5805 (W,wt=55): 5682 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,537,a,b,865,a),rewrite([12,11,13,10])]. given #5806 (W,wt=55): 5683 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,532,a,b,865,a),rewrite([12,13,11,10])]. given #5807 (W,wt=55): 5684 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,254,a,b,865,a),rewrite([12,11,13,10])]. given #5808 (W,wt=55): 5685 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,253,a,b,865,a),rewrite([12,13,11,10])]. given #5809 (W,wt=55): 5686 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,252,a,b,865,a),rewrite([12,11,13,10])]. given #5810 (W,wt=55): 5687 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,251,a,b,865,a),rewrite([12,11,13,10])]. given #5811 (W,wt=55): 5688 P([1,0,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,246,a,b,865,a),rewrite([12,13,11,10])]. given #5812 (W,wt=55): 5689 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,865,a),rewrite([12,13,11,10])]. given #5813 (W,wt=55): 5690 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,865,a),rewrite([12,13,11,10])]. given #5814 (W,wt=55): 5691 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,865,a),rewrite([12,13,11,10])]. given #5815 (W,wt=55): 5692 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,547,a,b,865,a),rewrite([7,8,6,5])]. given #5816 (W,wt=55): 5693 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,531,a,b,865,a),rewrite([7,6,8,5])]. given #5817 (W,wt=55): 5694 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,530,a,b,865,a),rewrite([7,8,6,5])]. given #5818 (W,wt=55): 5695 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,244,a,b,865,a),rewrite([6,7,8,5])]. given #5819 (W,wt=55): 5696 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,548,a,b,866,a),rewrite([12,11,13,10])]. given #5820 (W,wt=55): 5697 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,546,a,b,866,a),rewrite([12,11,13,10])]. given #5821 (W,wt=55): 5698 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,545,a,b,866,a),rewrite([12,11,13,10])]. given #5822 (W,wt=55): 5699 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,543,a,b,866,a),rewrite([12,11,13,10])]. given #5823 (W,wt=55): 5700 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,540,a,b,866,a),rewrite([12,11,13,10])]. given #5824 (W,wt=55): 5701 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,538,a,b,866,a),rewrite([12,11,13,10])]. given #5825 (W,wt=55): 5702 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,537,a,b,866,a),rewrite([12,11,13,10])]. given #5826 (W,wt=55): 5703 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,535,a,b,866,a),rewrite([12,11,13,10])]. given #5827 (W,wt=55): 5704 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,253,a,b,866,a),rewrite([12,11,13,10])]. given #5828 (W,wt=55): 5705 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,252,a,b,866,a),rewrite([12,11,13,10])]. given #5829 (W,wt=55): 5706 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,251,a,b,866,a),rewrite([12,11,13,10])]. given #5830 (W,wt=55): 5707 P([1,1,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,249,a,b,866,a),rewrite([12,11,13,10])]. given #5831 (W,wt=55): 5708 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,531,a,b,866,a),rewrite([7,6,8,5])]. given #5832 (W,wt=55): 5709 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,530,a,b,866,a),rewrite([7,6,8,5])]. given #5833 (W,wt=55): 5710 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,244,a,b,866,a),rewrite([6,7,8,5])]. given #5834 (W,wt=55): 5711 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,547,a,b,867,a),rewrite([12,13,11,10])]. given #5835 (W,wt=55): 5712 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,539,a,b,867,a),rewrite([12,13,11,10])]. given #5836 (W,wt=55): 5713 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,254,a,b,867,a),rewrite([12,11,13,10])]. given #5837 (W,wt=55): 5714 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,531,a,b,867,a),rewrite([7,6,8,5])]. given #5838 (W,wt=55): 5715 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,530,a,b,867,a),rewrite([7,8,6,5])]. given #5839 (W,wt=55): 5716 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,529,a,b,867,a),rewrite([7,6,8,5])]. given #5840 (W,wt=55): 5717 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,528,a,b,867,a),rewrite([7,6,8,5])]. given #5841 (W,wt=55): 5718 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,526,a,b,867,a),rewrite([7,6,8,5])]. given #5842 (W,wt=55): 5720 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,547,a,b,5719,a),rewrite([12,13,11,10])]. given #5843 (W,wt=55): 5721 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,539,a,b,5719,a),rewrite([12,13,11,10])]. given #5844 (W,wt=55): 5722 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,548,a,b,868,a),rewrite([12,11,13,10])]. given #5845 (W,wt=55): 5723 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,545,a,b,868,a),rewrite([12,11,13,10])]. given #5846 (W,wt=55): 5724 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,253,a,b,868,a),rewrite([12,11,13,10])]. given #5847 (W,wt=55): 5725 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,251,a,b,868,a),rewrite([12,11,13,10])]. given #5848 (W,wt=55): 5726 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,547,a,b,868,a),rewrite([7,6,5])]. given #5849 (W,wt=55): 5727 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,545,a,b,868,a),rewrite([7,6,8,5])]. given #5850 (W,wt=55): 5728 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,540,a,b,868,a),rewrite([7,6,8,5])]. given #5851 (W,wt=55): 5729 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,539,a,b,868,a),rewrite([7,6,5])]. given #5852 (W,wt=55): 5730 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,537,a,b,868,a),rewrite([7,6,8,5])]. given #5853 (W,wt=55): 5731 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,534,a,b,868,a),rewrite([7,6,5])]. given #5854 (W,wt=55): 5732 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,531,a,b,868,a),rewrite([7,6,8,5])]. given #5855 (W,wt=55): 5733 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,530,a,b,868,a),rewrite([7,6,5])]. given #5856 (W,wt=55): 5734 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,528,a,b,868,a),rewrite([7,6,8,5])]. given #5857 (W,wt=55): 5735 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,244,a,b,868,a),rewrite([6,7,5])]. given #5858 (W,wt=55): 5737 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,242,a,b,868,a),rewrite([6,7,5])]. given #5859 (W,wt=55): 5738 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,868,a),rewrite([7,8,6,5])]. given #5860 (W,wt=55): 5739 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,70,a,b,868,a),rewrite([7,8,6,5])]. given #5861 (W,wt=55): 5740 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,868,a),rewrite([7,8,6,5])]. given #5862 (W,wt=55): 5741 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,58,a,b,868,a),rewrite([7,6,8,5])]. given #5863 (W,wt=55): 5742 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,868,a),rewrite([7,6,5])]. given #5864 (W,wt=55): 5743 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,548,a,b,5736,a),rewrite([12,11,13,10])]. given #5865 (W,wt=55): 5744 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,545,a,b,5736,a),rewrite([12,11,13,10])]. given #5866 (W,wt=55): 5745 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,253,a,b,5736,a),rewrite([12,11,13,10])]. given #5867 (W,wt=55): 5746 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,251,a,b,5736,a),rewrite([12,11,13,10])]. given #5868 (W,wt=55): 5747 P([1,1,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,548,a,b,869,a),rewrite([12,11,13,10])]. given #5869 (W,wt=55): 5748 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,547,a,b,869,a),rewrite([12,13,11,10])]. given #5870 (W,wt=0): 15326 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,78,a,b,5748,a),rewrite([6,7,5])]. given #5871 (W,wt=55): 5749 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,254,a,b,869,a),rewrite([12,11,13,10])]. given #5872 (W,wt=55): 5750 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,253,a,b,869,a),rewrite([12,13,11,10])]. given #5873 (W,wt=55): 5751 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,252,a,b,869,a),rewrite([12,11,13,10])]. given #5874 (W,wt=55): 5752 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,869,a),rewrite([12,13,11,10])]. given #5875 (W,wt=55): 5753 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,547,a,b,869,a),rewrite([7,8,6,5])]. given #5876 (W,wt=55): 5754 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,546,a,b,869,a),rewrite([7,6,5])]. given #5877 (W,wt=55): 5755 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,545,a,b,869,a),rewrite([7,6,5])]. given #5878 (W,wt=55): 5756 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,540,a,b,869,a),rewrite([7,6,8,5])]. given #5879 (W,wt=55): 5757 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,539,a,b,869,a),rewrite([7,8,6,5])]. given #5880 (W,wt=55): 5758 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,538,a,b,869,a),rewrite([7,6,5])]. given #5881 (W,wt=55): 5759 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,537,a,b,869,a),rewrite([7,6,5])]. given #5882 (W,wt=55): 5760 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,531,a,b,869,a),rewrite([7,6,8,5])]. given #5883 (W,wt=55): 5761 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,530,a,b,869,a),rewrite([7,8,6,5])]. given #5884 (W,wt=55): 5762 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,529,a,b,869,a),rewrite([7,6,5])]. given #5885 (W,wt=55): 5763 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,528,a,b,869,a),rewrite([7,6,5])]. given #5886 (W,wt=55): 5764 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,244,a,b,869,a),rewrite([6,7,5])]. given #5887 (W,wt=55): 5765 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,243,a,b,869,a),rewrite([6,7,5])]. given #5888 (W,wt=55): 5766 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,242,a,b,869,a),rewrite([6,7,5])]. given #5889 (W,wt=55): 5767 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,869,a),rewrite([7,8,6,5])]. given #5890 (W,wt=55): 5768 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,869,a),rewrite([7,8,6,5])]. given #5891 (W,wt=55): 5769 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,63,a,b,869,a),rewrite([7,8,6,5])]. given #5892 (W,wt=55): 5770 P([0,0,1,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,869,a),rewrite([7,6,5])]. given #5893 (W,wt=55): 5771 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,548,a,b,870,a),rewrite([12,11,13,10])]. given #5894 (W,wt=55): 5772 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,547,a,b,870,a),rewrite([12,13,11,10])]. given #5895 (W,wt=0): 15379 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,78,a,b,5772,a),rewrite([6,7,5])]. given #5896 (W,wt=55): 5773 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,546,a,b,870,a),rewrite([12,11,13,10])]. given #5897 (W,wt=55): 5774 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,545,a,b,870,a),rewrite([12,11,13,10])]. given #5898 (W,wt=55): 5775 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,543,a,b,870,a),rewrite([12,11,13,10])]. given #5899 (W,wt=55): 5776 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,541,a,b,870,a),rewrite([12,13,11,10])]. given #5900 (W,wt=55): 5777 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,532,a,b,870,a),rewrite([12,13,11,10])]. given #5901 (W,wt=55): 5778 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,254,a,b,870,a),rewrite([12,11,13,10])]. given #5902 (W,wt=55): 5779 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,870,a),rewrite([12,13,11,10])]. given #5903 (W,wt=55): 5780 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,870,a),rewrite([12,11,13,10])]. given #5904 (W,wt=55): 5781 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,251,a,b,870,a),rewrite([12,11,13,10])]. given #5905 (W,wt=55): 5782 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,250,a,b,870,a),rewrite([12,11,13,10])]. given #5906 (W,wt=55): 5783 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,249,a,b,870,a),rewrite([12,11,13,10])]. given #5907 (W,wt=55): 5784 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,247,a,b,870,a),rewrite([12,13,11,10])]. given #5908 (W,wt=55): 5785 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,246,a,b,870,a),rewrite([12,13,11,10])]. given #5909 (W,wt=55): 5786 P([1,0,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,245,a,b,870,a),rewrite([12,13,11,10])]. given #5910 (W,wt=55): 5787 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,79,a,b,870,a),rewrite([12,13,11,10])]. given #5911 (W,wt=55): 5788 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,870,a),rewrite([12,13,11,10])]. given #5912 (W,wt=55): 5789 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,540,a,b,870,a),rewrite([7,6,8,5])]. given #5913 (W,wt=55): 5790 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,531,a,b,870,a),rewrite([7,6,8,5])]. given #5914 (W,wt=55): 5791 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,244,a,b,870,a),rewrite([6,7,5])]. given #5915 (W,wt=55): 5792 P([1,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,243,a,b,870,a),rewrite([6,7,5])]. given #5916 (W,wt=55): 5793 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,242,a,b,870,a),rewrite([6,7,5])]. given #5917 (W,wt=55): 5794 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,870,a),rewrite([7,8,6,5])]. given #5918 (W,wt=55): 5795 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,548,a,b,871,a),rewrite([12,11,13,10])]. given #5919 (W,wt=55): 5796 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,547,a,b,871,a),rewrite([12,13,11,10])]. given #5920 (W,wt=0): 15468 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,78,a,b,5796,a),rewrite([6,7,5])]. given #5921 (W,wt=55): 5797 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,546,a,b,871,a),rewrite([12,11,13,10])]. given #5922 (W,wt=55): 5798 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,541,a,b,871,a),rewrite([12,13,11,10])]. given #5923 (W,wt=55): 5799 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,254,a,b,871,a),rewrite([12,11,13,10])]. given #5924 (W,wt=0): 15482 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,242,a,b,5799,a),rewrite([6,7,5])]. given #5925 (W,wt=55): 5800 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,871,a),rewrite([12,13,11,10])]. given #5926 (W,wt=55): 5801 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,871,a),rewrite([12,11,13,10])]. given #5927 (W,wt=55): 5802 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,251,a,b,871,a),rewrite([12,11,13,10])]. given #5928 (W,wt=55): 5803 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,247,a,b,871,a),rewrite([12,13,11,10])]. given #5929 (W,wt=55): 5804 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,871,a),rewrite([12,13,11,10])]. given #5930 (W,wt=55): 5805 P([0,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,547,a,b,871,a),rewrite([7,8,6,5])]. given #5931 (W,wt=55): 5806 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,540,a,b,871,a),rewrite([7,6,8,5])]. given #5932 (W,wt=55): 5807 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,539,a,b,871,a),rewrite([7,8,6,5])]. given #5933 (W,wt=55): 5808 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,531,a,b,871,a),rewrite([7,6,8,5])]. given #5934 (W,wt=55): 5809 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,530,a,b,871,a),rewrite([7,8,6,5])]. given #5935 (W,wt=55): 5810 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,244,a,b,871,a),rewrite([6,7,5])]. given #5936 (W,wt=55): 5811 P([1,0,1,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,243,a,b,871,a),rewrite([6,7,5])]. given #5937 (W,wt=55): 5812 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,242,a,b,871,a),rewrite([6,7,5])]. given #5938 (W,wt=55): 5813 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,871,a),rewrite([7,8,6,5])]. given #5939 (W,wt=55): 5814 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,871,a),rewrite([7,8,6,5])]. given #5940 (W,wt=55): 5815 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,548,a,b,872,a),rewrite([12,11,13,10])]. given #5941 (W,wt=55): 5816 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,547,a,b,872,a),rewrite([12,13,11,10])]. given #5942 (W,wt=0): 15536 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,78,a,b,5816,a),rewrite([6,7,5])]. given #5943 (W,wt=55): 5817 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,545,a,b,872,a),rewrite([12,11,13,10])]. given #5944 (W,wt=55): 5818 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,532,a,b,872,a),rewrite([12,13,11,10])]. given #5945 (W,wt=55): 5819 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,254,a,b,872,a),rewrite([12,11,13,10])]. given #5946 (W,wt=0): 15549 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,243,a,b,5819,a),rewrite([6,7,5])]. given #5947 (W,wt=55): 5820 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,253,a,b,872,a),rewrite([12,13,11,10])]. given #5948 (W,wt=55): 5821 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,252,a,b,872,a),rewrite([12,11,13,10])]. given #5949 (W,wt=55): 5822 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,251,a,b,872,a),rewrite([12,11,13,10])]. given #5950 (W,wt=55): 5823 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,246,a,b,872,a),rewrite([12,13,11,10])]. given #5951 (W,wt=55): 5824 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,872,a),rewrite([12,13,11,10])]. given #5952 (W,wt=55): 5825 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,547,a,b,872,a),rewrite([7,8,6,5])]. given #5953 (W,wt=55): 5826 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,540,a,b,872,a),rewrite([7,6,8,5])]. given #5954 (W,wt=55): 5827 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,539,a,b,872,a),rewrite([7,8,6,5])]. given #5955 (W,wt=55): 5828 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,531,a,b,872,a),rewrite([7,6,8,5])]. given #5956 (W,wt=55): 5829 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,530,a,b,872,a),rewrite([7,8,6,5])]. given #5957 (W,wt=55): 5830 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,244,a,b,872,a),rewrite([6,7,5])]. given #5958 (W,wt=55): 5831 P([1,0,0,0,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,243,a,b,872,a),rewrite([6,7,5])]. given #5959 (W,wt=55): 5832 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,242,a,b,872,a),rewrite([6,7,5])]. given #5960 (W,wt=55): 5833 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,872,a),rewrite([7,8,6,5])]. given #5961 (W,wt=55): 5834 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,872,a),rewrite([7,8,6,5])]. given #5962 (W,wt=55): 5835 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,548,a,b,873,a),rewrite([12,11,13,10])]. given #5963 (W,wt=55): 5836 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,546,a,b,873,a),rewrite([12,11,13,10])]. given #5964 (W,wt=55): 5837 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,545,a,b,873,a),rewrite([12,11,13,10])]. given #5965 (W,wt=55): 5838 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,543,a,b,873,a),rewrite([12,11,13,10])]. given #5966 (W,wt=55): 5839 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,253,a,b,873,a),rewrite([12,11,13,10])]. given #5967 (W,wt=55): 5840 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,252,a,b,873,a),rewrite([12,11,13,10])]. given #5968 (W,wt=55): 5841 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,251,a,b,873,a),rewrite([12,11,13,10])]. given #5969 (W,wt=55): 5842 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,249,a,b,873,a),rewrite([12,11,13,10])]. given #5970 (W,wt=55): 5843 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,540,a,b,873,a),rewrite([7,6,8,5])]. given #5971 (W,wt=55): 5844 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,539,a,b,873,a),rewrite([7,6,5])]. given #5972 (W,wt=55): 5845 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,531,a,b,873,a),rewrite([7,6,8,5])]. given #5973 (W,wt=55): 5846 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,530,a,b,873,a),rewrite([7,6,5])]. given #5974 (W,wt=55): 5847 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,244,a,b,873,a),rewrite([6,7,5])]. given #5975 (W,wt=55): 5848 P([1,1,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,243,a,b,873,a),rewrite([6,7,5])]. given #5976 (W,wt=55): 5849 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,242,a,b,873,a),rewrite([6,7,5])]. given #5977 (W,wt=55): 5850 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,79,a,b,873,a),rewrite([7,8,6,5])]. given #5978 (W,wt=55): 5851 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,58,a,b,873,a),rewrite([7,6,8,5])]. given #5979 (W,wt=55): 5852 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,547,a,b,874,a),rewrite([12,13,11,10])]. given #5980 (W,wt=55): 5853 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,254,a,b,874,a),rewrite([12,11,13,10])]. given #5981 (W,wt=55): 5854 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,540,a,b,874,a),rewrite([7,6,5])]. given #5982 (W,wt=55): 5855 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,539,a,b,874,a),rewrite([7,8,6,5])]. given #5983 (W,wt=55): 5856 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,538,a,b,874,a),rewrite([7,6,5])]. given #5984 (W,wt=55): 5857 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,537,a,b,874,a),rewrite([7,6,5])]. given #5985 (W,wt=55): 5858 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,535,a,b,874,a),rewrite([7,6,5])]. given #5986 (W,wt=55): 5859 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,531,a,b,874,a),rewrite([7,6,5])]. given #5987 (W,wt=55): 5860 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,530,a,b,874,a),rewrite([7,8,6,5])]. given #5988 (W,wt=55): 5861 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,529,a,b,874,a),rewrite([7,6,5])]. given #5989 (W,wt=55): 5862 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,528,a,b,874,a),rewrite([7,6,5])]. given #5990 (W,wt=55): 5863 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,526,a,b,874,a),rewrite([7,6,5])]. given #5991 (W,wt=55): 5865 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,243,a,b,874,a),rewrite([6,7,5])]. given #5992 (W,wt=55): 5866 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,242,a,b,874,a),rewrite([6,7,5])]. given #5993 (W,wt=55): 5867 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,874,a),rewrite([7,8,6,5])]. given #5994 (W,wt=55): 5868 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,874,a),rewrite([7,8,6,5])]. given #5995 (W,wt=55): 5869 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,874,a),rewrite([7,8,6,5])]. given #5996 (W,wt=55): 5870 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,874,a),rewrite([7,8,6,5])]. given #5997 (W,wt=55): 5871 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,874,a),rewrite([7,6,5])]. given #5998 (W,wt=55): 5872 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,547,a,b,5864,a),rewrite([12,13,11,10])]. given #5999 (W,wt=55): 5873 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,539,a,b,5864,a),rewrite([12,13,11,10])]. given #6000 (W,wt=55): 5874 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,0,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,530,a,b,5864,a),rewrite([12,13,11,10])]. given #6001 (W,wt=55): 5875 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,588,a,b,875,a),rewrite([12,11,13,10])]. given #6002 (W,wt=55): 5876 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,584,a,b,875,a),rewrite([12,11,13,10])]. given #6003 (W,wt=55): 5877 P([1,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,579,a,b,875,a),rewrite([12,11,13,10])]. given #6004 (W,wt=55): 5878 P([1,1,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,578,a,b,875,a),rewrite([12,11,13,10])]. given #6005 (W,wt=55): 5879 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,566,a,b,875,a),rewrite([12,11,13,10])]. given #6006 (W,wt=55): 5880 P([1,1,1,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,268,a,b,875,a),rewrite([12,11,13,10])]. given #6007 (W,wt=55): 5881 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,875,a),rewrite([12,11,13,10])]. given #6008 (W,wt=55): 5882 P([0,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,588,a,b,875,a),rewrite([7,6,8,5])]. given #6009 (W,wt=55): 5883 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,587,a,b,875,a),rewrite([7,6,8,5])]. given #6010 (W,wt=55): 5884 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,579,a,b,875,a),rewrite([7,6,8,5])]. given #6011 (W,wt=55): 5885 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,576,a,b,875,a),rewrite([7,8,6,5])]. given #6012 (W,wt=55): 5886 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,263,a,b,875,a),rewrite([6,7,8,5])]. given #6013 (W,wt=55): 5887 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,261,a,b,875,a),rewrite([6,7,8,5])]. given #6014 (W,wt=55): 5888 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,588,a,b,876,a),rewrite([12,11,13,10])]. given #6015 (W,wt=55): 5889 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,587,a,b,876,a),rewrite([12,11,13,10])]. given #6016 (W,wt=55): 5890 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,584,a,b,876,a),rewrite([12,11,13,10])]. given #6017 (W,wt=55): 5891 P([1,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,579,a,b,876,a),rewrite([12,11,13,10])]. given #6018 (W,wt=55): 5892 P([1,1,1,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,578,a,b,876,a),rewrite([12,11,13,10])]. given #6019 (W,wt=55): 5893 P([1,1,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,576,a,b,876,a),rewrite([12,13,11,10])]. given #6020 (W,wt=55): 5894 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,566,a,b,876,a),rewrite([12,11,13,10])]. given #6021 (W,wt=55): 5895 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,562,a,b,876,a),rewrite([12,13,11,10])]. given #6022 (W,wt=55): 5896 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,560,a,b,876,a),rewrite([12,13,11,10])]. given #6023 (W,wt=55): 5897 P([1,1,1,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,268,a,b,876,a),rewrite([12,11,13,10])]. given #6024 (W,wt=55): 5898 P([1,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,267,a,b,876,a),rewrite([12,11,13,10])]. given #6025 (W,wt=55): 5900 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,876,a),rewrite([12,13,11,10])]. given #6026 (W,wt=55): 5901 P([1,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,876,a),rewrite([12,13,11,10])]. given #6027 (W,wt=55): 5902 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,876,a),rewrite([12,11,13,10])]. given #6028 (W,wt=55): 5903 P([1,1,0,0,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,876,a),rewrite([12,13,11,10])]. given #6029 (W,wt=55): 5904 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,876,a),rewrite([12,13,11,10])]. given #6030 (W,wt=55): 5905 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,588,a,b,876,a),rewrite([7,6,8,5])]. given #6031 (W,wt=55): 5906 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,579,a,b,876,a),rewrite([7,6,8,5])]. given #6032 (W,wt=55): 5907 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,263,a,b,876,a),rewrite([6,7,8,5])]. given #6033 (W,wt=55): 5908 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,261,a,b,876,a),rewrite([6,7,8,5])]. given #6034 (W,wt=55): 5909 P([0,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,587,a,b,5899,a),rewrite([7,6,8,5])]. given #6035 (W,wt=55): 5910 P([0,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,579,a,b,5899,a),rewrite([7,6,8,5])]. given #6036 (W,wt=55): 5911 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,263,a,b,5899,a),rewrite([6,7,8,5])]. given #6037 (W,wt=55): 5912 P([1,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,261,a,b,5899,a),rewrite([6,7,8,5])]. given #6038 (W,wt=55): 5913 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,588,a,b,877,a),rewrite([12,11,13,10])]. given #6039 (W,wt=55): 5914 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,566,a,b,877,a),rewrite([12,11,13,10])]. given #6040 (W,wt=55): 5915 P([1,1,1,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,268,a,b,877,a),rewrite([12,11,13,10])]. given #6041 (W,wt=55): 5916 P([0,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,588,a,b,877,a),rewrite([7,6,8,5])]. given #6042 (W,wt=55): 5917 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,587,a,b,877,a),rewrite([7,6,8,5])]. given #6043 (W,wt=55): 5918 P([0,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,582,a,b,877,a),rewrite([7,6,8,5])]. given #6044 (W,wt=55): 5919 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,581,a,b,877,a),rewrite([7,6,8,5])]. given #6045 (W,wt=55): 5920 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,579,a,b,877,a),rewrite([7,6,8,5])]. given #6046 (W,wt=55): 5921 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,576,a,b,877,a),rewrite([7,6,8,5])]. given #6047 (W,wt=55): 5922 P([0,0,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,574,a,b,877,a),rewrite([7,6,8,5])]. given #6048 (W,wt=55): 5923 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,572,a,b,877,a),rewrite([7,6,8,5])]. given #6049 (W,wt=55): 5924 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,263,a,b,877,a),rewrite([6,7,5])]. given #6050 (W,wt=55): 5925 P([1,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,262,a,b,877,a),rewrite([6,7,8,5])]. given #6051 (W,wt=55): 5926 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,261,a,b,877,a),rewrite([6,7,8,5])]. given #6052 (W,wt=55): 5927 P([1,0,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,260,a,b,877,a),rewrite([6,7,8,5])]. given #6053 (W,wt=55): 5928 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,587,a,b,878,a),rewrite([12,11,13,10])]. given #6054 (W,wt=55): 5929 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,584,a,b,878,a),rewrite([12,11,13,10])]. given #6055 (W,wt=55): 5930 P([1,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,582,a,b,878,a),rewrite([12,11,13,10])]. given #6056 (W,wt=55): 5931 P([1,1,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,581,a,b,878,a),rewrite([12,13,11,10])]. given #6057 (W,wt=55): 5932 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,562,a,b,878,a),rewrite([12,13,11,10])]. given #6058 (W,wt=55): 5933 P([1,1,1,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,268,a,b,878,a),rewrite([12,11,13,10])]. given #6059 (W,wt=55): 5934 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,878,a),rewrite([12,13,11,10])]. given #6060 (W,wt=55): 5935 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,588,a,b,878,a),rewrite([7,6,8,5])]. given #6061 (W,wt=55): 5936 P([0,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,587,a,b,878,a),rewrite([7,6,8,5])]. given #6062 (W,wt=55): 5937 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,582,a,b,878,a),rewrite([7,6,8,5])]. given #6063 (W,wt=55): 5938 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,575,a,b,878,a),rewrite([7,6,8,5])]. given #6064 (W,wt=55): 5939 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,263,a,b,878,a),rewrite([6,7,8,5])]. given #6065 (W,wt=55): 5940 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,262,a,b,878,a),rewrite([6,7,8,5])]. given #6066 (W,wt=55): 5941 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,588,a,b,879,a),rewrite([12,11,13,10])]. given #6067 (W,wt=55): 5942 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,587,a,b,879,a),rewrite([12,11,13,10])]. given #6068 (W,wt=55): 5943 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,584,a,b,879,a),rewrite([12,11,13,10])]. given #6069 (W,wt=55): 5944 P([1,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,582,a,b,879,a),rewrite([12,11,13,10])]. given #6070 (W,wt=55): 5945 P([1,1,0,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,581,a,b,879,a),rewrite([12,13,11,10])]. given #6071 (W,wt=55): 5946 P([1,1,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,575,a,b,879,a),rewrite([12,11,13,10])]. given #6072 (W,wt=55): 5947 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,566,a,b,879,a),rewrite([12,11,13,10])]. given #6073 (W,wt=55): 5948 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,564,a,b,879,a),rewrite([12,11,13,10])]. given #6074 (W,wt=55): 5949 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,562,a,b,879,a),rewrite([12,13,11,10])]. given #6075 (W,wt=55): 5950 P([1,1,1,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,268,a,b,879,a),rewrite([12,11,13,10])]. given #6076 (W,wt=55): 5952 P([1,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,266,a,b,879,a),rewrite([12,13,11,10])]. given #6077 (W,wt=55): 5953 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,879,a),rewrite([12,13,11,10])]. given #6078 (W,wt=55): 5954 P([1,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,879,a),rewrite([12,13,11,10])]. given #6079 (W,wt=55): 5955 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,879,a),rewrite([12,13,11,10])]. given #6080 (W,wt=55): 5956 P([1,1,0,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,879,a),rewrite([12,13,11,10])]. given #6081 (W,wt=55): 5957 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,879,a),rewrite([12,13,11,10])]. given #6082 (W,wt=55): 5958 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,588,a,b,879,a),rewrite([7,6,8,5])]. given #6083 (W,wt=55): 5959 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,582,a,b,879,a),rewrite([7,6,8,5])]. given #6084 (W,wt=55): 5960 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,263,a,b,879,a),rewrite([6,7,8,5])]. given #6085 (W,wt=55): 5961 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,262,a,b,879,a),rewrite([6,7,8,5])]. given #6086 (W,wt=55): 5962 P([0,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,588,a,b,5951,a),rewrite([7,6,8,5])]. given #6087 (W,wt=55): 5963 P([0,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,582,a,b,5951,a),rewrite([7,6,8,5])]. given #6088 (W,wt=55): 5964 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,263,a,b,5951,a),rewrite([6,7,8,5])]. given #6089 (W,wt=55): 5965 P([1,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,262,a,b,5951,a),rewrite([6,7,8,5])]. given #6090 (W,wt=55): 5966 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,587,a,b,880,a),rewrite([12,11,13,10])]. given #6091 (W,wt=55): 5967 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,562,a,b,880,a),rewrite([12,13,11,10])]. given #6092 (W,wt=55): 5968 P([1,1,1,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,268,a,b,880,a),rewrite([12,11,13,10])]. given #6093 (W,wt=55): 5969 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,588,a,b,880,a),rewrite([7,6,8,5])]. given #6094 (W,wt=55): 5970 P([0,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,587,a,b,880,a),rewrite([7,6,8,5])]. given #6095 (W,wt=55): 5971 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,582,a,b,880,a),rewrite([7,6,8,5])]. given #6096 (W,wt=55): 5972 P([0,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,579,a,b,880,a),rewrite([7,6,8,5])]. given #6097 (W,wt=55): 5973 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,578,a,b,880,a),rewrite([7,6,8,5])]. given #6098 (W,wt=55): 5974 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,575,a,b,880,a),rewrite([7,6,8,5])]. given #6099 (W,wt=55): 5975 P([0,0,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,574,a,b,880,a),rewrite([7,6,8,5])]. given #6100 (W,wt=55): 5976 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,573,a,b,880,a),rewrite([7,6,8,5])]. given #6101 (W,wt=55): 5977 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,263,a,b,880,a),rewrite([6,7,5])]. given #6102 (W,wt=55): 5978 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,262,a,b,880,a),rewrite([6,7,8,5])]. given #6103 (W,wt=55): 5979 P([1,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,261,a,b,880,a),rewrite([6,7,8,5])]. given #6104 (W,wt=55): 5980 P([1,0,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,260,a,b,880,a),rewrite([6,7,8,5])]. given #6105 (W,wt=55): 5981 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,588,a,b,881,a),rewrite([12,11,13,10])]. given #6106 (W,wt=55): 5982 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,268,a,b,881,a),rewrite([12,11,13,10])]. given #6107 (W,wt=0): 15833 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,263,a,b,5982,a),rewrite([6,7,5])]. given #6108 (W,wt=55): 5983 P([0,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,588,a,b,881,a),rewrite([7,6,8,5])]. given #6109 (W,wt=55): 5984 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,587,a,b,881,a),rewrite([7,6,5])]. given #6110 (W,wt=55): 5985 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,584,a,b,881,a),rewrite([7,6,5])]. given #6111 (W,wt=55): 5986 P([0,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,582,a,b,881,a),rewrite([7,6,5])]. given #6112 (W,wt=55): 5987 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,581,a,b,881,a),rewrite([7,6,5])]. given #6113 (W,wt=55): 5988 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,579,a,b,881,a),rewrite([7,6,5])]. given #6114 (W,wt=55): 5989 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,576,a,b,881,a),rewrite([7,6,5])]. given #6115 (W,wt=55): 5990 P([0,0,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,574,a,b,881,a),rewrite([7,6,5])]. given #6116 (W,wt=55): 5991 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,572,a,b,881,a),rewrite([7,6,5])]. given #6117 (W,wt=55): 5992 P([0,0,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,565,a,b,881,a),rewrite([7,6,5])]. given #6118 (W,wt=55): 5993 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,562,a,b,881,a),rewrite([7,6,5])]. given #6119 (W,wt=55): 5994 P([0,0,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,561,a,b,881,a),rewrite([7,6,5])]. given #6120 (W,wt=55): 5995 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,560,a,b,881,a),rewrite([7,6,5])]. given #6121 (W,wt=55): 5996 P([1,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,264,a,b,881,a),rewrite([6,7,5])]. given #6122 (W,wt=55): 5997 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,263,a,b,881,a),rewrite([6,7,5])]. given #6123 (W,wt=55): 5998 P([1,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,262,a,b,881,a),rewrite([6,7,5])]. given #6124 (W,wt=55): 5999 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,261,a,b,881,a),rewrite([6,7,5])]. given #6125 (W,wt=55): 6000 P([1,0,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,260,a,b,881,a),rewrite([6,7,5])]. given #6126 (W,wt=55): 6001 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,258,a,b,881,a),rewrite([6,7,5])]. given #6127 (W,wt=55): 6002 P([1,0,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,257,a,b,881,a),rewrite([6,7,5])]. given #6128 (W,wt=55): 6003 P([1,0,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,256,a,b,881,a),rewrite([6,7,5])]. given #6129 (W,wt=55): 6004 P([1,0,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,255,a,b,881,a),rewrite([6,7,5])]. given #6130 (W,wt=55): 6005 P([0,0,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,881,a),rewrite([7,6,8,5])]. given #6131 (W,wt=55): 6006 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,65,a,b,881,a),rewrite([7,8,6,5])]. given #6132 (W,wt=55): 6007 P([0,0,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,881,a),rewrite([7,6,8,5])]. given #6133 (W,wt=55): 6008 P([0,1,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,881,a),rewrite([7,6,8,5])]. given #6134 (W,wt=55): 6009 P([0,1,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,53,a,b,881,a),rewrite([7,6,5])]. given #6135 (W,wt=55): 6010 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,587,a,b,882,a),rewrite([12,11,13,10])]. given #6136 (W,wt=55): 6011 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,268,a,b,882,a),rewrite([12,11,13,10])]. given #6137 (W,wt=0): 15868 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,263,a,b,6011,a),rewrite([6,7,5])]. given #6138 (W,wt=55): 6012 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,588,a,b,882,a),rewrite([7,6,5])]. given #6139 (W,wt=55): 6013 P([0,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,587,a,b,882,a),rewrite([7,6,8,5])]. given #6140 (W,wt=55): 6014 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,584,a,b,882,a),rewrite([7,6,5])]. given #6141 (W,wt=55): 6015 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,582,a,b,882,a),rewrite([7,6,5])]. given #6142 (W,wt=55): 6016 P([0,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,579,a,b,882,a),rewrite([7,6,5])]. given #6143 (W,wt=55): 6017 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,578,a,b,882,a),rewrite([7,6,5])]. given #6144 (W,wt=55): 6018 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,575,a,b,882,a),rewrite([7,6,5])]. given #6145 (W,wt=55): 6019 P([0,0,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,574,a,b,882,a),rewrite([7,6,5])]. given #6146 (W,wt=55): 6020 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,573,a,b,882,a),rewrite([7,6,5])]. given #6147 (W,wt=55): 6021 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,566,a,b,882,a),rewrite([7,6,5])]. given #6148 (W,wt=55): 6022 P([0,0,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,565,a,b,882,a),rewrite([7,6,5])]. given #6149 (W,wt=55): 6023 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,564,a,b,882,a),rewrite([7,6,5])]. given #6150 (W,wt=55): 6024 P([0,0,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,561,a,b,882,a),rewrite([7,6,5])]. given #6151 (W,wt=55): 6025 P([1,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,264,a,b,882,a),rewrite([6,7,5])]. given #6152 (W,wt=55): 6026 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,263,a,b,882,a),rewrite([6,7,5])]. given #6153 (W,wt=55): 6027 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,262,a,b,882,a),rewrite([6,7,5])]. given #6154 (W,wt=55): 6028 P([1,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,261,a,b,882,a),rewrite([6,7,5])]. given #6155 (W,wt=55): 6029 P([1,0,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,260,a,b,882,a),rewrite([6,7,5])]. given #6156 (W,wt=55): 6030 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,258,a,b,882,a),rewrite([6,7,5])]. given #6157 (W,wt=55): 6031 P([1,0,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,257,a,b,882,a),rewrite([6,7,5])]. given #6158 (W,wt=55): 6032 P([1,0,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,256,a,b,882,a),rewrite([6,7,5])]. given #6159 (W,wt=55): 6033 P([1,0,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,255,a,b,882,a),rewrite([6,7,5])]. given #6160 (W,wt=55): 6034 P([0,0,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,882,a),rewrite([7,8,6,5])]. given #6161 (W,wt=55): 6035 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,882,a),rewrite([7,8,6,5])]. given #6162 (W,wt=55): 6036 P([0,0,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,882,a),rewrite([7,8,6,5])]. given #6163 (W,wt=55): 6037 P([0,1,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,882,a),rewrite([7,6,8,5])]. given #6164 (W,wt=55): 6038 P([0,1,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,882,a),rewrite([7,6,5])]. given #6165 (W,wt=55): 6039 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,588,a,b,883,a),rewrite([12,11,13,10])]. given #6166 (W,wt=55): 6040 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,587,a,b,883,a),rewrite([12,11,13,10])]. given #6167 (W,wt=55): 6041 P([1,1,1,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,268,a,b,883,a),rewrite([12,11,13,10])]. given #6168 (W,wt=0): 15920 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,263,a,b,6041,a),rewrite([6,7,5])]. given #6169 (W,wt=55): 6042 P([1,1,1,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,267,a,b,883,a),rewrite([12,11,13,10])]. given #6170 (W,wt=55): 6043 P([1,1,0,1,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,266,a,b,883,a),rewrite([12,13,11,10])]. given #6171 (W,wt=55): 6044 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(3,a,79,a,b,883,a),rewrite([12,13,11,10])]. given #6172 (W,wt=55): 6045 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,588,a,b,883,a),rewrite([7,6,8,5])]. given #6173 (W,wt=55): 6046 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,584,a,b,883,a),rewrite([7,6,5])]. given #6174 (W,wt=55): 6047 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,582,a,b,883,a),rewrite([7,6,5])]. given #6175 (W,wt=55): 6048 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,579,a,b,883,a),rewrite([7,6,5])]. given #6176 (W,wt=55): 6049 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,574,a,b,883,a),rewrite([7,6,5])]. given #6177 (W,wt=55): 6050 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,565,a,b,883,a),rewrite([7,6,5])]. given #6178 (W,wt=55): 6051 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,561,a,b,883,a),rewrite([7,6,5])]. given #6179 (W,wt=55): 6052 P([1,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,264,a,b,883,a),rewrite([6,7,5])]. given #6180 (W,wt=55): 6053 P([1,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,263,a,b,883,a),rewrite([6,7,5])]. given #6181 (W,wt=55): 6054 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,262,a,b,883,a),rewrite([6,7,5])]. given #6182 (W,wt=55): 6055 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,261,a,b,883,a),rewrite([6,7,5])]. given #6183 (W,wt=55): 6056 P([1,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,260,a,b,883,a),rewrite([6,7,5])]. given #6184 (W,wt=55): 6057 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,258,a,b,883,a),rewrite([6,7,5])]. given #6185 (W,wt=55): 6058 P([1,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,257,a,b,883,a),rewrite([6,7,5])]. given #6186 (W,wt=55): 6059 P([1,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,256,a,b,883,a),rewrite([6,7,5])]. given #6187 (W,wt=55): 6060 P([1,0,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,255,a,b,883,a),rewrite([6,7,5])]. given #6188 (W,wt=55): 6061 P([0,0,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,883,a),rewrite([7,8,6,5])]. given #6189 (W,wt=55): 6062 P([0,1,0,1,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,883,a),rewrite([7,6,8,5])]. given #6190 (W,wt=55): 6063 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,588,a,b,884,a),rewrite([12,11,13,10])]. given #6191 (W,wt=55): 6064 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,584,a,b,884,a),rewrite([12,11,13,10])]. given #6192 (W,wt=55): 6065 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,582,a,b,884,a),rewrite([12,11,13,10])]. given #6193 (W,wt=55): 6066 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,579,a,b,884,a),rewrite([12,11,13,10])]. given #6194 (W,wt=55): 6067 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,578,a,b,884,a),rewrite([12,11,13,10])]. given #6195 (W,wt=55): 6068 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,575,a,b,884,a),rewrite([12,11,13,10])]. given #6196 (W,wt=55): 6069 P([1,1,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,569,a,b,884,a),rewrite([12,11,13,10])]. given #6197 (W,wt=55): 6070 P([1,1,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,884,a),rewrite([12,11,13,10])]. given #6198 (W,wt=0): 16004 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,263,a,b,6070,a),rewrite([6,7,8,5])]. given #6199 (W,wt=55): 6071 P([0,1,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,588,a,b,884,a),rewrite([7,6,8,5])]. given #6200 (W,wt=55): 6072 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,587,a,b,884,a),rewrite([7,6,5])]. given #6201 (W,wt=55): 6073 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,884,a),rewrite([7,6,8,5])]. given #6202 (W,wt=55): 6074 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,562,a,b,884,a),rewrite([7,8,6,5])]. given #6203 (W,wt=55): 6075 P([1,1,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,264,a,b,884,a),rewrite([6,7,5])]. given #6204 (W,wt=55): 6076 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,263,a,b,884,a),rewrite([6,7,8,5])]. given #6205 (W,wt=55): 6077 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,262,a,b,884,a),rewrite([6,7,8,5])]. given #6206 (W,wt=55): 6078 P([0,1,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,58,a,b,884,a),rewrite([7,6,8,5])]. given #6207 (W,wt=55): 6079 P([0,1,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,53,a,b,884,a),rewrite([7,6,5])]. given #6208 (W,wt=55): 6080 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,587,a,b,885,a),rewrite([12,11,13,10])]. given #6209 (W,wt=55): 6081 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,584,a,b,885,a),rewrite([12,11,13,10])]. given #6210 (W,wt=55): 6082 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,582,a,b,885,a),rewrite([12,11,13,10])]. given #6211 (W,wt=55): 6083 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,581,a,b,885,a),rewrite([12,13,11,10])]. given #6212 (W,wt=55): 6084 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,579,a,b,885,a),rewrite([12,11,13,10])]. given #6213 (W,wt=55): 6085 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,576,a,b,885,a),rewrite([12,13,11,10])]. given #6214 (W,wt=55): 6086 P([1,1,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,568,a,b,885,a),rewrite([12,13,11,10])]. given #6215 (W,wt=55): 6087 P([1,1,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,268,a,b,885,a),rewrite([12,11,13,10])]. given #6216 (W,wt=0): 16051 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,263,a,b,6087,a),rewrite([6,7,8,5])]. given #6217 (W,wt=55): 6088 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,588,a,b,885,a),rewrite([7,6,5])]. given #6218 (W,wt=55): 6089 P([0,1,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,587,a,b,885,a),rewrite([7,6,8,5])]. given #6219 (W,wt=55): 6090 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,584,a,b,885,a),rewrite([7,6,8,5])]. given #6220 (W,wt=55): 6091 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,566,a,b,885,a),rewrite([7,6,8,5])]. given #6221 (W,wt=55): 6092 P([1,1,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,264,a,b,885,a),rewrite([6,7,5])]. given #6222 (W,wt=55): 6093 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,263,a,b,885,a),rewrite([6,7,8,5])]. given #6223 (W,wt=55): 6094 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,262,a,b,885,a),rewrite([6,7,8,5])]. given #6224 (W,wt=55): 6095 P([0,1,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,58,a,b,885,a),rewrite([7,6,8,5])]. given #6225 (W,wt=55): 6096 P([0,1,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,53,a,b,885,a),rewrite([7,6,5])]. given #6226 (W,wt=55): 6097 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,588,a,b,886,a),rewrite([12,11,13,10])]. given #6227 (W,wt=55): 6098 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,587,a,b,886,a),rewrite([12,11,13,10])]. given #6228 (W,wt=55): 6099 P([1,1,1,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,584,a,b,886,a),rewrite([12,11,13,10])]. given #6229 (W,wt=55): 6100 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,582,a,b,886,a),rewrite([12,11,13,10])]. given #6230 (W,wt=55): 6101 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,581,a,b,886,a),rewrite([12,13,11,10])]. given #6231 (W,wt=55): 6102 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,579,a,b,886,a),rewrite([12,11,13,10])]. given #6232 (W,wt=55): 6103 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,578,a,b,886,a),rewrite([12,11,13,10])]. given #6233 (W,wt=55): 6104 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,576,a,b,886,a),rewrite([12,13,11,10])]. given #6234 (W,wt=55): 6105 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,575,a,b,886,a),rewrite([12,11,13,10])]. given #6235 (W,wt=55): 6106 P([1,1,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,569,a,b,886,a),rewrite([12,11,13,10])]. given #6236 (W,wt=55): 6107 P([1,1,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,568,a,b,886,a),rewrite([12,13,11,10])]. given #6237 (W,wt=55): 6108 P([1,1,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,268,a,b,886,a),rewrite([12,11,13,10])]. given #6238 (W,wt=0): 16114 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,263,a,b,6108,a),rewrite([6,7,8,5])]. given #6239 (W,wt=55): 6109 P([1,1,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,267,a,b,886,a),rewrite([12,11,13,10])]. given #6240 (W,wt=55): 6110 P([1,1,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,266,a,b,886,a),rewrite([12,13,11,10])]. given #6241 (W,wt=55): 6111 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,886,a),rewrite([12,13,11,10])]. given #6242 (W,wt=55): 6112 P([1,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,886,a),rewrite([12,13,11,10])]. given #6243 (W,wt=55): 6113 P([1,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,886,a),rewrite([12,13,11,10])]. given #6244 (W,wt=55): 6114 P([1,1,0,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,886,a),rewrite([12,13,11,10])]. given #6245 (W,wt=55): 6115 P([0,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,588,a,b,886,a),rewrite([7,6,8,5])]. given #6246 (W,wt=55): 6116 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,886,a),rewrite([7,6,8,5])]. given #6247 (W,wt=55): 6117 P([1,1,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,264,a,b,886,a),rewrite([6,7,5])]. given #6248 (W,wt=55): 6118 P([1,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,263,a,b,886,a),rewrite([6,7,8,5])]. given #6249 (W,wt=55): 6119 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,262,a,b,886,a),rewrite([6,7,8,5])]. given #6250 (W,wt=55): 6120 P([0,1,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,58,a,b,886,a),rewrite([7,6,8,5])]. given #6251 (W,wt=55): 6121 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,587,a,b,887,a),rewrite([12,11,13,10])]. given #6252 (W,wt=55): 6122 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,584,a,b,887,a),rewrite([12,11,13,10])]. given #6253 (W,wt=55): 6123 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,576,a,b,887,a),rewrite([12,13,11,10])]. given #6254 (W,wt=55): 6124 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,268,a,b,887,a),rewrite([12,11,13,10])]. given #6255 (W,wt=0): 16158 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,263,a,b,6124,a),rewrite([6,7,8,5])]. given #6256 (W,wt=55): 6125 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,588,a,b,887,a),rewrite([7,6,5])]. given #6257 (W,wt=55): 6126 P([0,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,587,a,b,887,a),rewrite([7,6,8,5])]. given #6258 (W,wt=55): 6127 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,584,a,b,887,a),rewrite([7,6,8,5])]. given #6259 (W,wt=55): 6128 P([0,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,579,a,b,887,a),rewrite([7,6,8,5])]. given #6260 (W,wt=55): 6129 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,578,a,b,887,a),rewrite([7,6,8,5])]. given #6261 (W,wt=55): 6130 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,566,a,b,887,a),rewrite([7,6,8,5])]. given #6262 (W,wt=55): 6131 P([0,0,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,565,a,b,887,a),rewrite([7,6,8,5])]. given #6263 (W,wt=55): 6132 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,564,a,b,887,a),rewrite([7,6,8,5])]. given #6264 (W,wt=55): 6134 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,263,a,b,887,a),rewrite([6,7,8,5])]. given #6265 (W,wt=55): 6135 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,262,a,b,887,a),rewrite([6,7,5])]. given #6266 (W,wt=55): 6136 P([1,0,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,261,a,b,887,a),rewrite([6,7,8,5])]. given #6267 (W,wt=55): 6137 P([1,0,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,257,a,b,887,a),rewrite([6,7,8,5])]. given #6268 (W,wt=55): 6138 P([0,1,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,887,a),rewrite([7,6,8,5])]. given #6269 (W,wt=55): 6139 P([0,1,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,887,a),rewrite([7,6,5])]. given #6270 (W,wt=55): 6140 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,587,a,b,6133,a),rewrite([12,11,13,10])]. given #6271 (W,wt=55): 6141 P([1,1,1,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,579,a,b,6133,a),rewrite([12,11,13,10])]. given #6272 (W,wt=55): 6142 P([1,1,0,0,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,576,a,b,6133,a),rewrite([12,13,11,10])]. given #6273 (W,wt=55): 6143 P([1,1,1,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,268,a,b,6133,a),rewrite([12,11,13,10])]. given #6274 (W,wt=55): 6144 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,588,a,b,888,a),rewrite([12,11,13,10])]. given #6275 (W,wt=55): 6145 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,584,a,b,888,a),rewrite([12,11,13,10])]. given #6276 (W,wt=55): 6146 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,575,a,b,888,a),rewrite([12,11,13,10])]. given #6277 (W,wt=55): 6147 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,268,a,b,888,a),rewrite([12,11,13,10])]. given #6278 (W,wt=0): 16187 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,263,a,b,6147,a),rewrite([6,7,8,5])]. given #6279 (W,wt=55): 6148 P([0,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,588,a,b,888,a),rewrite([7,6,8,5])]. given #6280 (W,wt=55): 6149 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,587,a,b,888,a),rewrite([7,6,5])]. given #6281 (W,wt=55): 6150 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,584,a,b,888,a),rewrite([7,6,8,5])]. given #6282 (W,wt=55): 6151 P([0,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,582,a,b,888,a),rewrite([7,6,8,5])]. given #6283 (W,wt=55): 6152 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,581,a,b,888,a),rewrite([7,6,8,5])]. given #6284 (W,wt=55): 6153 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,562,a,b,888,a),rewrite([7,6,8,5])]. given #6285 (W,wt=55): 6154 P([0,0,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,561,a,b,888,a),rewrite([7,6,8,5])]. given #6286 (W,wt=55): 6155 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,560,a,b,888,a),rewrite([7,6,8,5])]. given #6287 (W,wt=55): 6157 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,263,a,b,888,a),rewrite([6,7,8,5])]. given #6288 (W,wt=55): 6158 P([1,0,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,262,a,b,888,a),rewrite([6,7,8,5])]. given #6289 (W,wt=55): 6159 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,261,a,b,888,a),rewrite([6,7,5])]. given #6290 (W,wt=55): 6160 P([1,0,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,256,a,b,888,a),rewrite([6,7,8,5])]. given #6291 (W,wt=55): 6161 P([0,1,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,888,a),rewrite([7,6,8,5])]. given #6292 (W,wt=55): 6162 P([0,1,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,53,a,b,888,a),rewrite([7,6,5])]. given #6293 (W,wt=55): 6163 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,588,a,b,6156,a),rewrite([12,11,13,10])]. given #6294 (W,wt=55): 6164 P([1,1,1,1,1,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,582,a,b,6156,a),rewrite([12,11,13,10])]. given #6295 (W,wt=55): 6165 P([1,1,1,1,0,0,0,1],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,575,a,b,6156,a),rewrite([12,11,13,10])]. given #6296 (W,wt=55): 6166 P([1,1,1,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,268,a,b,6156,a),rewrite([12,11,13,10])]. given #6297 (W,wt=55): 6167 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,587,a,b,889,a),rewrite([12,11,13,10])]. given #6298 (W,wt=55): 6168 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,584,a,b,889,a),rewrite([12,11,13,10])]. given #6299 (W,wt=55): 6169 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,581,a,b,889,a),rewrite([12,13,11,10])]. given #6300 (W,wt=55): 6170 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,268,a,b,889,a),rewrite([12,11,13,10])]. given #6301 (W,wt=0): 16219 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,263,a,b,6170,a),rewrite([6,7,8,5])]. given #6302 (W,wt=55): 6171 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,588,a,b,889,a),rewrite([7,6,5])]. given #6303 (W,wt=55): 6172 P([0,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,587,a,b,889,a),rewrite([7,6,8,5])]. given #6304 (W,wt=55): 6173 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,584,a,b,889,a),rewrite([7,6,8,5])]. given #6305 (W,wt=55): 6174 P([0,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,582,a,b,889,a),rewrite([7,6,8,5])]. given #6306 (W,wt=55): 6175 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,575,a,b,889,a),rewrite([7,6,8,5])]. given #6307 (W,wt=55): 6176 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,566,a,b,889,a),rewrite([7,6,8,5])]. given #6308 (W,wt=55): 6177 P([0,0,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,561,a,b,889,a),rewrite([7,6,8,5])]. given #6309 (W,wt=55): 6178 P([1,1,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,264,a,b,889,a),rewrite([6,7,5])]. given #6310 (W,wt=55): 6179 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,263,a,b,889,a),rewrite([6,7,8,5])]. given #6311 (W,wt=55): 6180 P([1,0,0,1,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,262,a,b,889,a),rewrite([6,7,8,5])]. given #6312 (W,wt=55): 6181 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,261,a,b,889,a),rewrite([6,7,5])]. given #6313 (W,wt=55): 6182 P([1,0,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,256,a,b,889,a),rewrite([6,7,8,5])]. given #6314 (W,wt=55): 6183 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,889,a),rewrite([7,8,6,5])]. given #6315 (W,wt=55): 6184 P([0,1,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,58,a,b,889,a),rewrite([7,6,8,5])]. given #6316 (W,wt=55): 6185 P([0,1,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,889,a),rewrite([7,6,5])]. given #6317 (W,wt=55): 6186 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,588,a,b,890,a),rewrite([12,11,13,10])]. given #6318 (W,wt=55): 6187 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,587,a,b,890,a),rewrite([12,11,13,10])]. given #6319 (W,wt=55): 6188 P([1,1,1,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,584,a,b,890,a),rewrite([12,11,13,10])]. given #6320 (W,wt=55): 6189 P([1,1,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,581,a,b,890,a),rewrite([12,13,11,10])]. given #6321 (W,wt=55): 6190 P([1,1,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,575,a,b,890,a),rewrite([12,11,13,10])]. given #6322 (W,wt=55): 6191 P([1,1,1,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,268,a,b,890,a),rewrite([12,11,13,10])]. given #6323 (W,wt=0): 16268 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,263,a,b,6191,a),rewrite([6,7,8,5])]. given #6324 (W,wt=55): 6192 P([1,1,1,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,267,a,b,890,a),rewrite([12,11,13,10])]. given #6325 (W,wt=0): 16277 P([1,1,1,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,264,a,b,6192,a),rewrite([6,7,5])]. given #6326 (W,wt=55): 6193 P([1,1,0,1,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,266,a,b,890,a),rewrite([12,13,11,10])]. given #6327 (W,wt=55): 6194 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,79,a,b,890,a),rewrite([12,13,11,10])]. given #6328 (W,wt=55): 6195 P([1,1,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,890,a),rewrite([12,13,11,10])]. given #6329 (W,wt=55): 6196 P([0,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,588,a,b,890,a),rewrite([7,6,8,5])]. given #6330 (W,wt=55): 6197 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,584,a,b,890,a),rewrite([7,6,8,5])]. given #6331 (W,wt=55): 6198 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,582,a,b,890,a),rewrite([7,6,8,5])]. given #6332 (W,wt=55): 6199 P([0,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,561,a,b,890,a),rewrite([7,6,8,5])]. given #6333 (W,wt=55): 6200 P([1,1,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,264,a,b,890,a),rewrite([6,7,5])]. given #6334 (W,wt=55): 6201 P([1,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,263,a,b,890,a),rewrite([6,7,8,5])]. given #6335 (W,wt=55): 6202 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,262,a,b,890,a),rewrite([6,7,8,5])]. given #6336 (W,wt=55): 6203 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,261,a,b,890,a),rewrite([6,7,5])]. given #6337 (W,wt=55): 6204 P([1,0,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,256,a,b,890,a),rewrite([6,7,8,5])]. given #6338 (W,wt=55): 6205 P([0,1,0,1,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,890,a),rewrite([7,6,8,5])]. given #6339 (W,wt=55): 6206 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,588,a,b,891,a),rewrite([12,11,13,10])]. given #6340 (W,wt=55): 6207 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,584,a,b,891,a),rewrite([12,11,13,10])]. given #6341 (W,wt=55): 6208 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,578,a,b,891,a),rewrite([12,11,13,10])]. given #6342 (W,wt=55): 6209 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,268,a,b,891,a),rewrite([12,11,13,10])]. given #6343 (W,wt=0): 16320 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,263,a,b,6209,a),rewrite([6,7,8,5])]. given #6344 (W,wt=55): 6210 P([0,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,588,a,b,891,a),rewrite([7,6,8,5])]. given #6345 (W,wt=55): 6211 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,587,a,b,891,a),rewrite([7,6,5])]. given #6346 (W,wt=55): 6212 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,584,a,b,891,a),rewrite([7,6,8,5])]. given #6347 (W,wt=55): 6213 P([0,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,579,a,b,891,a),rewrite([7,6,8,5])]. given #6348 (W,wt=55): 6214 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,576,a,b,891,a),rewrite([7,8,6,5])]. given #6349 (W,wt=55): 6215 P([0,0,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,565,a,b,891,a),rewrite([7,6,8,5])]. given #6350 (W,wt=55): 6216 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,562,a,b,891,a),rewrite([7,8,6,5])]. given #6351 (W,wt=55): 6217 P([1,1,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,264,a,b,891,a),rewrite([6,7,5])]. given #6352 (W,wt=55): 6218 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,263,a,b,891,a),rewrite([6,7,8,5])]. given #6353 (W,wt=55): 6219 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,262,a,b,891,a),rewrite([6,7,5])]. given #6354 (W,wt=55): 6220 P([1,0,1,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,261,a,b,891,a),rewrite([6,7,8,5])]. given #6355 (W,wt=55): 6221 P([1,0,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,257,a,b,891,a),rewrite([6,7,8,5])]. given #6356 (W,wt=55): 6222 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,891,a),rewrite([7,6,8,5])]. given #6357 (W,wt=55): 6223 P([0,1,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,58,a,b,891,a),rewrite([7,6,8,5])]. given #6358 (W,wt=55): 6224 P([0,1,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,53,a,b,891,a),rewrite([7,6,5])]. given #6359 (W,wt=55): 6225 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,588,a,b,892,a),rewrite([12,11,13,10])]. given #6360 (W,wt=55): 6226 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,587,a,b,892,a),rewrite([12,11,13,10])]. given #6361 (W,wt=55): 6227 P([1,1,1,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,584,a,b,892,a),rewrite([12,11,13,10])]. given #6362 (W,wt=55): 6228 P([1,1,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,578,a,b,892,a),rewrite([12,11,13,10])]. given #6363 (W,wt=55): 6229 P([1,1,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,576,a,b,892,a),rewrite([12,13,11,10])]. given #6364 (W,wt=55): 6230 P([1,1,1,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,268,a,b,892,a),rewrite([12,11,13,10])]. given #6365 (W,wt=0): 16369 P([1,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,263,a,b,6230,a),rewrite([6,7,8,5])]. given #6366 (W,wt=55): 6231 P([1,1,1,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,267,a,b,892,a),rewrite([12,11,13,10])]. given #6367 (W,wt=55): 6232 P([1,1,0,0,1,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,266,a,b,892,a),rewrite([12,13,11,10])]. given #6368 (W,wt=0): 16381 P([1,1,0,0,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,264,a,b,6232,a),rewrite([6,7,5])]. given #6369 (W,wt=55): 6233 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,79,a,b,892,a),rewrite([12,13,11,10])]. given #6370 (W,wt=55): 6234 P([1,1,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,892,a),rewrite([12,13,11,10])]. given #6371 (W,wt=55): 6235 P([0,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,588,a,b,892,a),rewrite([7,6,8,5])]. given #6372 (W,wt=55): 6236 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,584,a,b,892,a),rewrite([7,6,8,5])]. given #6373 (W,wt=55): 6237 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,579,a,b,892,a),rewrite([7,6,8,5])]. given #6374 (W,wt=55): 6238 P([0,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,565,a,b,892,a),rewrite([7,6,8,5])]. given #6375 (W,wt=55): 6239 P([1,1,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,264,a,b,892,a),rewrite([6,7,5])]. given #6376 (W,wt=55): 6240 P([1,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,263,a,b,892,a),rewrite([6,7,8,5])]. given #6377 (W,wt=55): 6241 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,262,a,b,892,a),rewrite([6,7,5])]. given #6378 (W,wt=55): 6242 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,261,a,b,892,a),rewrite([6,7,8,5])]. given #6379 (W,wt=55): 6243 P([1,0,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,257,a,b,892,a),rewrite([6,7,8,5])]. given #6380 (W,wt=55): 6244 P([0,1,0,0,0,1,1,0],[[0,1,0,1,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,58,a,b,892,a),rewrite([7,6,8,5])]. given #6381 (W,wt=55): 6245 P([1,1,1,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,588,a,b,893,a),rewrite([12,11,13,10])]. given #6382 (W,wt=55): 6246 P([1,1,0,1,1,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,587,a,b,893,a),rewrite([12,11,13,10])]. given #6383 (W,wt=55): 6247 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,566,a,b,893,a),rewrite([12,11,13,10])]. given #6384 (W,wt=55): 6248 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,562,a,b,893,a),rewrite([12,13,11,10])]. given #6385 (W,wt=55): 6249 P([1,1,1,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,268,a,b,893,a),rewrite([12,11,13,10])]. given #6386 (W,wt=55): 6250 P([1,1,1,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,267,a,b,893,a),rewrite([12,11,13,10])]. given #6387 (W,wt=55): 6251 P([1,1,0,1,1,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,266,a,b,893,a),rewrite([12,13,11,10])]. given #6388 (W,wt=55): 6252 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,79,a,b,893,a),rewrite([12,13,11,10])]. given #6389 (W,wt=55): 6253 P([1,1,0,1,0,1,0,1],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,893,a),rewrite([12,13,11,10])]. given #6390 (W,wt=55): 6254 P([0,1,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,588,a,b,893,a),rewrite([7,6,8,5])]. given #6391 (W,wt=55): 6255 P([0,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,582,a,b,893,a),rewrite([7,6,8,5])]. given #6392 (W,wt=55): 6256 P([0,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,579,a,b,893,a),rewrite([7,6,8,5])]. given #6393 (W,wt=55): 6257 P([0,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,574,a,b,893,a),rewrite([7,6,8,5])]. given #6394 (W,wt=55): 6258 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,263,a,b,893,a),rewrite([6,7,5])]. given #6395 (W,wt=55): 6259 P([1,0,0,1,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,262,a,b,893,a),rewrite([6,7,8,5])]. given #6396 (W,wt=55): 6260 P([1,0,0,0,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,261,a,b,893,a),rewrite([6,7,8,5])]. given #6397 (W,wt=55): 6261 P([1,0,0,1,0,1,0,0],[[0,1,0,1,0,1,1,1],[0,0,1,0,1,0,1,1]:x]). [hyper(2,a,260,a,b,893,a),rewrite([6,7,8,5])]. given #6398 (W,wt=55): 6262 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,588,a,b,894,a),rewrite([12,11,13,10])]. given #6399 (W,wt=55): 6263 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,587,a,b,894,a),rewrite([12,11,13,10])]. given #6400 (W,wt=55): 6264 P([1,0,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,581,a,b,894,a),rewrite([12,13,11,10])]. given #6401 (W,wt=55): 6265 P([1,0,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,578,a,b,894,a),rewrite([12,13,11,10])]. given #6402 (W,wt=55): 6266 P([1,0,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,576,a,b,894,a),rewrite([12,13,11,10])]. given #6403 (W,wt=55): 6267 P([1,0,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,575,a,b,894,a),rewrite([12,13,11,10])]. given #6404 (W,wt=55): 6268 P([1,0,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,573,a,b,894,a),rewrite([12,13,11,10])]. given #6405 (W,wt=55): 6269 P([1,0,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,572,a,b,894,a),rewrite([12,13,11,10])]. given #6406 (W,wt=55): 6270 P([1,0,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,569,a,b,894,a),rewrite([12,13,11,10])]. given #6407 (W,wt=55): 6271 P([1,0,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,568,a,b,894,a),rewrite([12,13,11,10])]. given #6408 (W,wt=55): 6273 P([1,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,267,a,b,894,a),rewrite([12,13,11,10])]. given #6409 (W,wt=55): 6274 P([1,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,266,a,b,894,a),rewrite([12,13,11,10])]. given #6410 (W,wt=55): 6275 P([1,0,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,894,a),rewrite([12,13,11,10])]. given #6411 (W,wt=55): 6276 P([1,0,0,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,894,a),rewrite([12,13,11,10])]. given #6412 (W,wt=55): 6277 P([1,0,0,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,894,a),rewrite([12,13,11,10])]. given #6413 (W,wt=55): 6278 P([1,0,0,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,894,a),rewrite([12,13,11,10])]. given #6414 (W,wt=55): 6279 P([1,1,0,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,894,a),rewrite([12,11,13,10])]. given #6415 (W,wt=55): 6280 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,894,a),rewrite([7,8,6,5])]. given #6416 (W,wt=55): 6281 P([1,0,0,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,264,a,b,894,a),rewrite([6,7,5])]. given #6417 (W,wt=55): 6282 P([0,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,6272,a),rewrite([7,8,6,5])]. given #6418 (W,wt=55): 6283 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,566,a,b,6272,a),rewrite([7,8,6,5])]. given #6419 (W,wt=55): 6284 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,562,a,b,6272,a),rewrite([7,8,6,5])]. given #6420 (W,wt=55): 6285 P([1,1,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,588,a,b,895,a),rewrite([12,11,13,10])]. given #6421 (W,wt=55): 6286 P([1,0,1,0,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,578,a,b,895,a),rewrite([12,13,11,10])]. given #6422 (W,wt=55): 6287 P([1,0,1,1,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,575,a,b,895,a),rewrite([12,13,11,10])]. given #6423 (W,wt=55): 6288 P([1,0,1,1,0,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,573,a,b,895,a),rewrite([12,13,11,10])]. given #6424 (W,wt=55): 6289 P([1,0,1,0,0,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,569,a,b,895,a),rewrite([12,13,11,10])]. given #6425 (W,wt=55): 6291 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,895,a),rewrite([7,8,6,5])]. given #6426 (W,wt=55): 6292 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,562,a,b,895,a),rewrite([7,8,6,5])]. given #6427 (W,wt=55): 6293 P([1,0,1,0,0,0,0,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,264,a,b,895,a),rewrite([6,7,5])]. given #6428 (W,wt=55): 6294 P([0,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,584,a,b,6290,a),rewrite([7,8,6,5])]. given #6429 (W,wt=55): 6295 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,562,a,b,6290,a),rewrite([7,8,6,5])]. given #6430 (W,wt=55): 6296 P([1,1,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,587,a,b,896,a),rewrite([12,11,13,10])]. given #6431 (W,wt=55): 6297 P([1,0,0,1,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,581,a,b,896,a),rewrite([12,13,11,10])]. given #6432 (W,wt=55): 6298 P([1,0,0,0,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,576,a,b,896,a),rewrite([12,13,11,10])]. given #6433 (W,wt=55): 6299 P([1,0,0,1,1,1,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,572,a,b,896,a),rewrite([12,13,11,10])]. given #6434 (W,wt=55): 6300 P([1,0,0,0,1,0,1,1],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,568,a,b,896,a),rewrite([12,13,11,10])]. given #6435 (W,wt=55): 6302 P([0,0,0,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,584,a,b,896,a),rewrite([7,8,6,5])]. given #6436 (W,wt=55): 6303 P([0,0,0,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,566,a,b,896,a),rewrite([7,8,6,5])]. given #6437 (W,wt=55): 6304 P([1,0,0,0,1,0,0,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,264,a,b,896,a),rewrite([6,7,5])]. given #6438 (W,wt=55): 6305 P([0,0,1,0,1,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,584,a,b,6301,a),rewrite([7,8,6,5])]. given #6439 (W,wt=55): 6306 P([0,0,1,0,0,0,1,0],[[0,1,0,1,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,566,a,b,6301,a),rewrite([7,8,6,5])]. given #6440 (W,wt=55): 6307 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,638,a,b,897,a),rewrite([12,11,13,10])]. given #6441 (W,wt=55): 6308 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,635,a,b,897,a),rewrite([12,11,13,10])]. given #6442 (W,wt=55): 6309 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,634,a,b,897,a),rewrite([12,11,13,10])]. given #6443 (W,wt=55): 6310 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,632,a,b,897,a),rewrite([12,11,13,10])]. given #6444 (W,wt=55): 6311 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,629,a,b,897,a),rewrite([12,11,13,10])]. given #6445 (W,wt=55): 6312 P([1,1,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,622,a,b,897,a),rewrite([12,11,13,10])]. given #6446 (W,wt=55): 6313 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,614,a,b,897,a),rewrite([12,11,13,10])]. given #6447 (W,wt=55): 6314 P([1,1,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,897,a),rewrite([12,11,13,10])]. given #6448 (W,wt=0): 16512 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,294,a,b,6314,a),rewrite([6,7,8,5])]. given #6449 (W,wt=55): 6315 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,639,a,b,897,a),rewrite([7,6,5])]. given #6450 (W,wt=55): 6316 P([0,1,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,638,a,b,897,a),rewrite([7,6,8,5])]. given #6451 (W,wt=55): 6317 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,897,a),rewrite([7,6,8,5])]. given #6452 (W,wt=55): 6318 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,627,a,b,897,a),rewrite([7,8,6,5])]. given #6453 (W,wt=55): 6319 P([1,1,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,297,a,b,897,a),rewrite([6,7,5])]. given #6454 (W,wt=55): 6320 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,296,a,b,897,a),rewrite([6,7,8,5])]. given #6455 (W,wt=55): 6321 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,294,a,b,897,a),rewrite([6,7,8,5])]. given #6456 (W,wt=55): 6322 P([0,0,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,63,a,b,897,a),rewrite([7,6,8,5])]. given #6457 (W,wt=55): 6323 P([0,1,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,53,a,b,897,a),rewrite([7,6,5])]. given #6458 (W,wt=55): 6324 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,639,a,b,898,a),rewrite([12,13,11,10])]. given #6459 (W,wt=55): 6325 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,635,a,b,898,a),rewrite([12,11,13,10])]. given #6460 (W,wt=55): 6326 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,632,a,b,898,a),rewrite([12,11,13,10])]. given #6461 (W,wt=55): 6327 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,631,a,b,898,a),rewrite([12,13,11,10])]. given #6462 (W,wt=55): 6328 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,629,a,b,898,a),rewrite([12,11,13,10])]. given #6463 (W,wt=55): 6329 P([1,0,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,627,a,b,898,a),rewrite([12,13,11,10])]. given #6464 (W,wt=55): 6330 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,615,a,b,898,a),rewrite([12,13,11,10])]. given #6465 (W,wt=55): 6331 P([1,1,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,301,a,b,898,a),rewrite([12,11,13,10])]. given #6466 (W,wt=0): 16559 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,294,a,b,6331,a),rewrite([6,7,8,5])]. given #6467 (W,wt=55): 6332 P([0,0,1,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,639,a,b,898,a),rewrite([7,8,6,5])]. given #6468 (W,wt=55): 6333 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,638,a,b,898,a),rewrite([7,6,5])]. given #6469 (W,wt=55): 6334 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,629,a,b,898,a),rewrite([7,6,8,5])]. given #6470 (W,wt=55): 6335 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,619,a,b,898,a),rewrite([7,6,8,5])]. given #6471 (W,wt=55): 6336 P([1,0,1,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,297,a,b,898,a),rewrite([6,7,5])]. given #6472 (W,wt=55): 6337 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,296,a,b,898,a),rewrite([6,7,8,5])]. given #6473 (W,wt=55): 6338 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,294,a,b,898,a),rewrite([6,7,8,5])]. given #6474 (W,wt=55): 6339 P([0,0,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,63,a,b,898,a),rewrite([7,8,6,5])]. given #6475 (W,wt=55): 6340 P([0,0,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,53,a,b,898,a),rewrite([7,6,5])]. given #6476 (W,wt=55): 6341 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,639,a,b,899,a),rewrite([12,13,11,10])]. given #6477 (W,wt=55): 6342 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,638,a,b,899,a),rewrite([12,11,13,10])]. given #6478 (W,wt=55): 6343 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,635,a,b,899,a),rewrite([12,11,13,10])]. given #6479 (W,wt=55): 6344 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,634,a,b,899,a),rewrite([12,11,13,10])]. given #6480 (W,wt=55): 6345 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,632,a,b,899,a),rewrite([12,11,13,10])]. given #6481 (W,wt=55): 6346 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,631,a,b,899,a),rewrite([12,13,11,10])]. given #6482 (W,wt=55): 6347 P([1,1,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,629,a,b,899,a),rewrite([12,11,13,10])]. given #6483 (W,wt=55): 6348 P([1,0,1,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,627,a,b,899,a),rewrite([12,13,11,10])]. given #6484 (W,wt=55): 6349 P([1,1,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,622,a,b,899,a),rewrite([12,11,13,10])]. given #6485 (W,wt=55): 6350 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,615,a,b,899,a),rewrite([12,13,11,10])]. given #6486 (W,wt=55): 6351 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,614,a,b,899,a),rewrite([12,11,13,10])]. given #6487 (W,wt=55): 6352 P([1,1,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,301,a,b,899,a),rewrite([12,11,13,10])]. given #6488 (W,wt=0): 16622 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,294,a,b,6352,a),rewrite([6,7,8,5])]. given #6489 (W,wt=55): 6353 P([1,1,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,300,a,b,899,a),rewrite([12,11,13,10])]. given #6490 (W,wt=55): 6354 P([1,0,1,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,299,a,b,899,a),rewrite([12,13,11,10])]. given #6491 (W,wt=55): 6355 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,899,a),rewrite([12,13,11,10])]. given #6492 (W,wt=55): 6356 P([1,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,899,a),rewrite([12,13,11,10])]. given #6493 (W,wt=55): 6357 P([1,0,1,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,899,a),rewrite([12,13,11,10])]. given #6494 (W,wt=55): 6358 P([1,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,899,a),rewrite([12,13,11,10])]. given #6495 (W,wt=55): 6359 P([0,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,639,a,b,899,a),rewrite([7,8,6,5])]. given #6496 (W,wt=55): 6360 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,899,a),rewrite([7,6,8,5])]. given #6497 (W,wt=55): 6361 P([1,0,1,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,297,a,b,899,a),rewrite([6,7,5])]. given #6498 (W,wt=55): 6362 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,296,a,b,899,a),rewrite([6,7,8,5])]. given #6499 (W,wt=55): 6363 P([1,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,294,a,b,899,a),rewrite([6,7,8,5])]. given #6500 (W,wt=55): 6364 P([0,0,1,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,63,a,b,899,a),rewrite([7,8,6,5])]. given #6501 (W,wt=55): 6365 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,639,a,b,900,a),rewrite([12,13,11,10])]. given #6502 (W,wt=55): 6366 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,635,a,b,900,a),rewrite([12,11,13,10])]. given #6503 (W,wt=55): 6367 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,627,a,b,900,a),rewrite([12,13,11,10])]. given #6504 (W,wt=55): 6368 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,301,a,b,900,a),rewrite([12,11,13,10])]. given #6505 (W,wt=0): 16667 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,294,a,b,6368,a),rewrite([6,7,8,5])]. given #6506 (W,wt=55): 6369 P([0,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,639,a,b,900,a),rewrite([7,8,6,5])]. given #6507 (W,wt=55): 6370 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,638,a,b,900,a),rewrite([7,6,5])]. given #6508 (W,wt=55): 6371 P([0,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,635,a,b,900,a),rewrite([7,6,8,5])]. given #6509 (W,wt=55): 6372 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,634,a,b,900,a),rewrite([7,6,8,5])]. given #6510 (W,wt=55): 6373 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,629,a,b,900,a),rewrite([7,6,8,5])]. given #6511 (W,wt=55): 6374 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,619,a,b,900,a),rewrite([7,6,8,5])]. given #6512 (W,wt=55): 6375 P([0,0,0,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,618,a,b,900,a),rewrite([7,6,8,5])]. given #6513 (W,wt=55): 6376 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,617,a,b,900,a),rewrite([7,6,8,5])]. given #6514 (W,wt=55): 6378 P([1,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,296,a,b,900,a),rewrite([6,7,8,5])]. given #6515 (W,wt=55): 6379 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,295,a,b,900,a),rewrite([6,7,5])]. given #6516 (W,wt=55): 6380 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,294,a,b,900,a),rewrite([6,7,8,5])]. given #6517 (W,wt=55): 6381 P([1,0,0,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,290,a,b,900,a),rewrite([6,7,8,5])]. given #6518 (W,wt=55): 6382 P([0,0,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,900,a),rewrite([7,8,6,5])]. given #6519 (W,wt=55): 6383 P([0,0,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,900,a),rewrite([7,6,5])]. given #6520 (W,wt=55): 6384 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,639,a,b,6377,a),rewrite([12,13,11,10])]. given #6521 (W,wt=55): 6385 P([1,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,635,a,b,6377,a),rewrite([12,11,13,10])]. given #6522 (W,wt=55): 6386 P([1,0,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,621,a,b,6377,a),rewrite([12,13,11,10])]. given #6523 (W,wt=55): 6387 P([1,1,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,301,a,b,6377,a),rewrite([12,11,13,10])]. given #6524 (W,wt=55): 6388 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,638,a,b,901,a),rewrite([12,11,13,10])]. given #6525 (W,wt=55): 6389 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,632,a,b,901,a),rewrite([12,11,13,10])]. given #6526 (W,wt=55): 6390 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,622,a,b,901,a),rewrite([12,11,13,10])]. given #6527 (W,wt=55): 6391 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,301,a,b,901,a),rewrite([12,11,13,10])]. given #6528 (W,wt=0): 16696 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,294,a,b,6391,a),rewrite([6,7,8,5])]. given #6529 (W,wt=55): 6392 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,639,a,b,901,a),rewrite([7,6,5])]. given #6530 (W,wt=55): 6393 P([0,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,638,a,b,901,a),rewrite([7,6,8,5])]. given #6531 (W,wt=55): 6394 P([0,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,632,a,b,901,a),rewrite([7,6,8,5])]. given #6532 (W,wt=55): 6395 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,631,a,b,901,a),rewrite([7,6,8,5])]. given #6533 (W,wt=55): 6396 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,629,a,b,901,a),rewrite([7,6,8,5])]. given #6534 (W,wt=55): 6397 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,627,a,b,901,a),rewrite([7,6,8,5])]. given #6535 (W,wt=55): 6398 P([0,1,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,626,a,b,901,a),rewrite([7,6,8,5])]. given #6536 (W,wt=55): 6399 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,625,a,b,901,a),rewrite([7,6,8,5])]. given #6537 (W,wt=55): 6401 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,296,a,b,901,a),rewrite([6,7,5])]. given #6538 (W,wt=55): 6402 P([1,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,295,a,b,901,a),rewrite([6,7,8,5])]. given #6539 (W,wt=55): 6403 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,294,a,b,901,a),rewrite([6,7,8,5])]. given #6540 (W,wt=55): 6404 P([1,1,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,293,a,b,901,a),rewrite([6,7,8,5])]. given #6541 (W,wt=55): 6405 P([0,0,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,901,a),rewrite([7,6,8,5])]. given #6542 (W,wt=55): 6406 P([0,1,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,53,a,b,901,a),rewrite([7,6,5])]. given #6543 (W,wt=55): 6407 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,638,a,b,6400,a),rewrite([12,11,13,10])]. given #6544 (W,wt=55): 6408 P([1,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,632,a,b,6400,a),rewrite([12,11,13,10])]. given #6545 (W,wt=55): 6409 P([1,1,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,622,a,b,6400,a),rewrite([12,11,13,10])]. given #6546 (W,wt=55): 6410 P([1,1,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,301,a,b,6400,a),rewrite([12,11,13,10])]. given #6547 (W,wt=55): 6411 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,639,a,b,902,a),rewrite([12,13,11,10])]. given #6548 (W,wt=55): 6412 P([1,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,632,a,b,902,a),rewrite([12,11,13,10])]. given #6549 (W,wt=55): 6413 P([1,0,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,631,a,b,902,a),rewrite([12,13,11,10])]. given #6550 (W,wt=55): 6414 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,629,a,b,902,a),rewrite([12,11,13,10])]. given #6551 (W,wt=55): 6415 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,627,a,b,902,a),rewrite([12,13,11,10])]. given #6552 (W,wt=55): 6416 P([1,1,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,301,a,b,902,a),rewrite([12,11,13,10])]. given #6553 (W,wt=55): 6417 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,902,a),rewrite([12,13,11,10])]. given #6554 (W,wt=55): 6418 P([0,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,639,a,b,902,a),rewrite([7,8,6,5])]. given #6555 (W,wt=55): 6419 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,638,a,b,902,a),rewrite([7,6,8,5])]. given #6556 (W,wt=55): 6420 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,632,a,b,902,a),rewrite([7,6,8,5])]. given #6557 (W,wt=55): 6421 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,614,a,b,902,a),rewrite([7,6,8,5])]. given #6558 (W,wt=55): 6422 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,296,a,b,902,a),rewrite([6,7,8,5])]. given #6559 (W,wt=55): 6423 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,295,a,b,902,a),rewrite([6,7,8,5])]. given #6560 (W,wt=55): 6424 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,639,a,b,903,a),rewrite([12,13,11,10])]. given #6561 (W,wt=55): 6425 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,638,a,b,903,a),rewrite([12,11,13,10])]. given #6562 (W,wt=55): 6426 P([1,1,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,632,a,b,903,a),rewrite([12,11,13,10])]. given #6563 (W,wt=55): 6427 P([1,0,1,1,1,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,631,a,b,903,a),rewrite([12,13,11,10])]. given #6564 (W,wt=55): 6428 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,629,a,b,903,a),rewrite([12,11,13,10])]. given #6565 (W,wt=55): 6429 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,627,a,b,903,a),rewrite([12,13,11,10])]. given #6566 (W,wt=55): 6430 P([1,1,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,622,a,b,903,a),rewrite([12,11,13,10])]. given #6567 (W,wt=55): 6431 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,619,a,b,903,a),rewrite([12,11,13,10])]. given #6568 (W,wt=55): 6432 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,617,a,b,903,a),rewrite([12,11,13,10])]. given #6569 (W,wt=55): 6433 P([1,1,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,301,a,b,903,a),rewrite([12,11,13,10])]. given #6570 (W,wt=55): 6435 P([1,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,299,a,b,903,a),rewrite([12,13,11,10])]. given #6571 (W,wt=55): 6436 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,903,a),rewrite([12,13,11,10])]. given #6572 (W,wt=55): 6437 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,903,a),rewrite([12,13,11,10])]. given #6573 (W,wt=55): 6438 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,903,a),rewrite([12,13,11,10])]. given #6574 (W,wt=55): 6439 P([1,0,1,1,0,0,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,903,a),rewrite([12,13,11,10])]. given #6575 (W,wt=55): 6440 P([1,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,903,a),rewrite([12,13,11,10])]. given #6576 (W,wt=55): 6441 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,639,a,b,903,a),rewrite([7,8,6,5])]. given #6577 (W,wt=55): 6442 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,632,a,b,903,a),rewrite([7,6,8,5])]. given #6578 (W,wt=55): 6443 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,296,a,b,903,a),rewrite([6,7,8,5])]. given #6579 (W,wt=55): 6444 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,295,a,b,903,a),rewrite([6,7,8,5])]. given #6580 (W,wt=55): 6445 P([0,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,638,a,b,6434,a),rewrite([7,6,8,5])]. given #6581 (W,wt=55): 6446 P([0,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,632,a,b,6434,a),rewrite([7,6,8,5])]. given #6582 (W,wt=55): 6447 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,296,a,b,6434,a),rewrite([6,7,8,5])]. given #6583 (W,wt=55): 6448 P([1,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,295,a,b,6434,a),rewrite([6,7,8,5])]. given #6584 (W,wt=55): 6449 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,639,a,b,904,a),rewrite([12,13,11,10])]. given #6585 (W,wt=55): 6450 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,627,a,b,904,a),rewrite([12,13,11,10])]. given #6586 (W,wt=55): 6451 P([1,1,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,301,a,b,904,a),rewrite([12,11,13,10])]. given #6587 (W,wt=55): 6452 P([0,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,639,a,b,904,a),rewrite([7,8,6,5])]. given #6588 (W,wt=55): 6453 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,638,a,b,904,a),rewrite([7,6,8,5])]. given #6589 (W,wt=55): 6454 P([0,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,635,a,b,904,a),rewrite([7,6,8,5])]. given #6590 (W,wt=55): 6455 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,634,a,b,904,a),rewrite([7,6,8,5])]. given #6591 (W,wt=55): 6456 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,632,a,b,904,a),rewrite([7,6,8,5])]. given #6592 (W,wt=55): 6457 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,614,a,b,904,a),rewrite([7,6,8,5])]. given #6593 (W,wt=55): 6458 P([0,0,0,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,613,a,b,904,a),rewrite([7,6,8,5])]. given #6594 (W,wt=55): 6459 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,612,a,b,904,a),rewrite([7,6,8,5])]. given #6595 (W,wt=55): 6460 P([1,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,296,a,b,904,a),rewrite([6,7,8,5])]. given #6596 (W,wt=55): 6461 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,295,a,b,904,a),rewrite([6,7,8,5])]. given #6597 (W,wt=55): 6462 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,294,a,b,904,a),rewrite([6,7,5])]. given #6598 (W,wt=55): 6463 P([1,0,0,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,289,a,b,904,a),rewrite([6,7,8,5])]. given #6599 (W,wt=55): 6464 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,638,a,b,905,a),rewrite([12,11,13,10])]. given #6600 (W,wt=55): 6465 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,301,a,b,905,a),rewrite([12,11,13,10])]. given #6601 (W,wt=0): 16804 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,294,a,b,6465,a),rewrite([6,7,5])]. given #6602 (W,wt=55): 6466 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,639,a,b,905,a),rewrite([7,6,5])]. given #6603 (W,wt=55): 6467 P([0,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,638,a,b,905,a),rewrite([7,6,8,5])]. given #6604 (W,wt=55): 6468 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,635,a,b,905,a),rewrite([7,6,5])]. given #6605 (W,wt=55): 6469 P([0,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,632,a,b,905,a),rewrite([7,6,5])]. given #6606 (W,wt=55): 6470 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,631,a,b,905,a),rewrite([7,6,5])]. given #6607 (W,wt=55): 6471 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,629,a,b,905,a),rewrite([7,6,5])]. given #6608 (W,wt=55): 6472 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,627,a,b,905,a),rewrite([7,6,5])]. given #6609 (W,wt=55): 6473 P([0,1,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,626,a,b,905,a),rewrite([7,6,5])]. given #6610 (W,wt=55): 6474 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,625,a,b,905,a),rewrite([7,6,5])]. given #6611 (W,wt=55): 6475 P([0,1,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,618,a,b,905,a),rewrite([7,6,5])]. given #6612 (W,wt=55): 6476 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,615,a,b,905,a),rewrite([7,6,5])]. given #6613 (W,wt=55): 6477 P([0,1,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,613,a,b,905,a),rewrite([7,6,5])]. given #6614 (W,wt=55): 6478 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,611,a,b,905,a),rewrite([7,6,5])]. given #6615 (W,wt=55): 6479 P([1,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,297,a,b,905,a),rewrite([6,7,5])]. given #6616 (W,wt=55): 6480 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,296,a,b,905,a),rewrite([6,7,5])]. given #6617 (W,wt=55): 6481 P([1,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,295,a,b,905,a),rewrite([6,7,5])]. given #6618 (W,wt=55): 6482 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,294,a,b,905,a),rewrite([6,7,5])]. given #6619 (W,wt=55): 6483 P([1,1,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,293,a,b,905,a),rewrite([6,7,5])]. given #6620 (W,wt=55): 6484 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,292,a,b,905,a),rewrite([6,7,5])]. given #6621 (W,wt=55): 6485 P([1,1,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,290,a,b,905,a),rewrite([6,7,5])]. given #6622 (W,wt=55): 6486 P([1,1,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,289,a,b,905,a),rewrite([6,7,5])]. given #6623 (W,wt=55): 6487 P([1,1,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,288,a,b,905,a),rewrite([6,7,5])]. given #6624 (W,wt=55): 6488 P([0,0,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,905,a),rewrite([7,6,8,5])]. given #6625 (W,wt=55): 6489 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,65,a,b,905,a),rewrite([7,8,6,5])]. given #6626 (W,wt=55): 6490 P([0,0,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,905,a),rewrite([7,6,8,5])]. given #6627 (W,wt=55): 6491 P([0,1,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,905,a),rewrite([7,6,8,5])]. given #6628 (W,wt=55): 6492 P([0,1,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,53,a,b,905,a),rewrite([7,6,5])]. given #6629 (W,wt=55): 6493 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,639,a,b,906,a),rewrite([12,13,11,10])]. given #6630 (W,wt=55): 6494 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,301,a,b,906,a),rewrite([12,11,13,10])]. given #6631 (W,wt=0): 16839 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,294,a,b,6494,a),rewrite([6,7,5])]. given #6632 (W,wt=55): 6495 P([0,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,639,a,b,906,a),rewrite([7,8,6,5])]. given #6633 (W,wt=55): 6496 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,638,a,b,906,a),rewrite([7,6,5])]. given #6634 (W,wt=55): 6497 P([0,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,635,a,b,906,a),rewrite([7,6,5])]. given #6635 (W,wt=55): 6498 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,634,a,b,906,a),rewrite([7,6,5])]. given #6636 (W,wt=55): 6499 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,632,a,b,906,a),rewrite([7,6,5])]. given #6637 (W,wt=55): 6500 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,629,a,b,906,a),rewrite([7,6,5])]. given #6638 (W,wt=55): 6501 P([0,0,0,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,626,a,b,906,a),rewrite([7,6,5])]. given #6639 (W,wt=55): 6502 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,619,a,b,906,a),rewrite([7,6,5])]. given #6640 (W,wt=55): 6503 P([0,0,0,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,618,a,b,906,a),rewrite([7,6,5])]. given #6641 (W,wt=55): 6504 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,617,a,b,906,a),rewrite([7,6,5])]. given #6642 (W,wt=55): 6505 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,614,a,b,906,a),rewrite([7,6,5])]. given #6643 (W,wt=55): 6506 P([0,0,0,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,613,a,b,906,a),rewrite([7,6,5])]. given #6644 (W,wt=55): 6507 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,612,a,b,906,a),rewrite([7,6,5])]. given #6645 (W,wt=55): 6508 P([1,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,297,a,b,906,a),rewrite([6,7,5])]. given #6646 (W,wt=55): 6509 P([1,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,296,a,b,906,a),rewrite([6,7,5])]. given #6647 (W,wt=55): 6510 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,295,a,b,906,a),rewrite([6,7,5])]. given #6648 (W,wt=55): 6511 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,294,a,b,906,a),rewrite([6,7,5])]. given #6649 (W,wt=55): 6512 P([1,0,0,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,293,a,b,906,a),rewrite([6,7,5])]. given #6650 (W,wt=55): 6513 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,292,a,b,906,a),rewrite([6,7,5])]. given #6651 (W,wt=55): 6514 P([1,0,0,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,290,a,b,906,a),rewrite([6,7,5])]. given #6652 (W,wt=55): 6515 P([1,0,0,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,289,a,b,906,a),rewrite([6,7,5])]. given #6653 (W,wt=55): 6516 P([1,0,0,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,288,a,b,906,a),rewrite([6,7,5])]. given #6654 (W,wt=55): 6517 P([0,0,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,906,a),rewrite([7,8,6,5])]. given #6655 (W,wt=55): 6518 P([0,0,0,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,906,a),rewrite([7,8,6,5])]. given #6656 (W,wt=55): 6519 P([0,0,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,906,a),rewrite([7,8,6,5])]. given #6657 (W,wt=55): 6520 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,906,a),rewrite([7,8,6,5])]. given #6658 (W,wt=55): 6521 P([0,0,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,906,a),rewrite([7,6,5])]. given #6659 (W,wt=55): 6522 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,639,a,b,907,a),rewrite([12,13,11,10])]. given #6660 (W,wt=55): 6523 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,638,a,b,907,a),rewrite([12,11,13,10])]. given #6661 (W,wt=55): 6524 P([1,1,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,301,a,b,907,a),rewrite([12,11,13,10])]. given #6662 (W,wt=0): 16891 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,294,a,b,6524,a),rewrite([6,7,5])]. given #6663 (W,wt=55): 6525 P([1,1,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,300,a,b,907,a),rewrite([12,11,13,10])]. given #6664 (W,wt=55): 6526 P([1,0,1,1,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,299,a,b,907,a),rewrite([12,13,11,10])]. given #6665 (W,wt=55): 6527 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(3,a,79,a,b,907,a),rewrite([12,13,11,10])]. given #6666 (W,wt=55): 6528 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,639,a,b,907,a),rewrite([7,8,6,5])]. given #6667 (W,wt=55): 6529 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,635,a,b,907,a),rewrite([7,6,5])]. given #6668 (W,wt=55): 6530 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,632,a,b,907,a),rewrite([7,6,5])]. given #6669 (W,wt=55): 6531 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,629,a,b,907,a),rewrite([7,6,5])]. given #6670 (W,wt=55): 6532 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,626,a,b,907,a),rewrite([7,6,5])]. given #6671 (W,wt=55): 6533 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,618,a,b,907,a),rewrite([7,6,5])]. given #6672 (W,wt=55): 6534 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,613,a,b,907,a),rewrite([7,6,5])]. given #6673 (W,wt=55): 6535 P([1,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,297,a,b,907,a),rewrite([6,7,5])]. given #6674 (W,wt=55): 6536 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,296,a,b,907,a),rewrite([6,7,5])]. given #6675 (W,wt=55): 6537 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,295,a,b,907,a),rewrite([6,7,5])]. given #6676 (W,wt=55): 6538 P([1,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,294,a,b,907,a),rewrite([6,7,5])]. given #6677 (W,wt=55): 6539 P([1,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,293,a,b,907,a),rewrite([6,7,5])]. given #6678 (W,wt=55): 6540 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,292,a,b,907,a),rewrite([6,7,5])]. given #6679 (W,wt=55): 6541 P([1,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,290,a,b,907,a),rewrite([6,7,5])]. given #6680 (W,wt=55): 6542 P([1,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,289,a,b,907,a),rewrite([6,7,5])]. given #6681 (W,wt=55): 6543 P([1,0,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,288,a,b,907,a),rewrite([6,7,5])]. given #6682 (W,wt=55): 6544 P([0,0,0,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,907,a),rewrite([7,8,6,5])]. given #6683 (W,wt=55): 6545 P([0,0,1,1,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,907,a),rewrite([7,8,6,5])]. given #6684 (W,wt=55): 6546 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,638,a,b,908,a),rewrite([12,11,13,10])]. given #6685 (W,wt=55): 6547 P([1,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,635,a,b,908,a),rewrite([12,11,13,10])]. given #6686 (W,wt=55): 6548 P([1,1,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,634,a,b,908,a),rewrite([12,11,13,10])]. given #6687 (W,wt=55): 6549 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,629,a,b,908,a),rewrite([12,11,13,10])]. given #6688 (W,wt=55): 6550 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,619,a,b,908,a),rewrite([12,11,13,10])]. given #6689 (W,wt=55): 6551 P([1,1,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,301,a,b,908,a),rewrite([12,11,13,10])]. given #6690 (W,wt=55): 6552 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,908,a),rewrite([12,11,13,10])]. given #6691 (W,wt=55): 6553 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,639,a,b,908,a),rewrite([7,6,8,5])]. given #6692 (W,wt=55): 6554 P([0,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,638,a,b,908,a),rewrite([7,6,8,5])]. given #6693 (W,wt=55): 6555 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,635,a,b,908,a),rewrite([7,6,8,5])]. given #6694 (W,wt=55): 6556 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,615,a,b,908,a),rewrite([7,8,6,5])]. given #6695 (W,wt=55): 6557 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,296,a,b,908,a),rewrite([6,7,8,5])]. given #6696 (W,wt=55): 6558 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,295,a,b,908,a),rewrite([6,7,8,5])]. given #6697 (W,wt=55): 6559 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,639,a,b,909,a),rewrite([12,13,11,10])]. given #6698 (W,wt=55): 6560 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,638,a,b,909,a),rewrite([12,11,13,10])]. given #6699 (W,wt=55): 6561 P([1,1,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,635,a,b,909,a),rewrite([12,11,13,10])]. given #6700 (W,wt=55): 6562 P([1,1,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,634,a,b,909,a),rewrite([12,11,13,10])]. given #6701 (W,wt=55): 6563 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,629,a,b,909,a),rewrite([12,11,13,10])]. given #6702 (W,wt=55): 6564 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,627,a,b,909,a),rewrite([12,13,11,10])]. given #6703 (W,wt=55): 6565 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,625,a,b,909,a),rewrite([12,13,11,10])]. given #6704 (W,wt=55): 6566 P([1,0,1,0,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,621,a,b,909,a),rewrite([12,13,11,10])]. given #6705 (W,wt=55): 6567 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,619,a,b,909,a),rewrite([12,11,13,10])]. given #6706 (W,wt=55): 6568 P([1,1,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,301,a,b,909,a),rewrite([12,11,13,10])]. given #6707 (W,wt=55): 6569 P([1,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,300,a,b,909,a),rewrite([12,11,13,10])]. given #6708 (W,wt=55): 6571 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,909,a),rewrite([12,13,11,10])]. given #6709 (W,wt=55): 6572 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,909,a),rewrite([12,13,11,10])]. given #6710 (W,wt=55): 6573 P([1,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,909,a),rewrite([12,13,11,10])]. given #6711 (W,wt=55): 6574 P([1,0,1,0,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,909,a),rewrite([12,13,11,10])]. given #6712 (W,wt=55): 6575 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,909,a),rewrite([12,11,13,10])]. given #6713 (W,wt=55): 6576 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,639,a,b,909,a),rewrite([7,8,6,5])]. given #6714 (W,wt=55): 6577 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,635,a,b,909,a),rewrite([7,6,8,5])]. given #6715 (W,wt=55): 6578 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,296,a,b,909,a),rewrite([6,7,8,5])]. given #6716 (W,wt=55): 6579 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,295,a,b,909,a),rewrite([6,7,8,5])]. given #6717 (W,wt=55): 6580 P([0,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,639,a,b,6570,a),rewrite([7,8,6,5])]. given #6718 (W,wt=55): 6581 P([0,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,635,a,b,6570,a),rewrite([7,6,8,5])]. given #6719 (W,wt=55): 6582 P([1,0,0,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,296,a,b,6570,a),rewrite([6,7,8,5])]. given #6720 (W,wt=55): 6583 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,295,a,b,6570,a),rewrite([6,7,8,5])]. given #6721 (W,wt=55): 6584 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,638,a,b,910,a),rewrite([12,11,13,10])]. given #6722 (W,wt=55): 6585 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,619,a,b,910,a),rewrite([12,11,13,10])]. given #6723 (W,wt=55): 6586 P([1,1,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,301,a,b,910,a),rewrite([12,11,13,10])]. given #6724 (W,wt=55): 6587 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,639,a,b,910,a),rewrite([7,6,8,5])]. given #6725 (W,wt=55): 6588 P([0,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,638,a,b,910,a),rewrite([7,6,8,5])]. given #6726 (W,wt=55): 6589 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,635,a,b,910,a),rewrite([7,6,8,5])]. given #6727 (W,wt=55): 6590 P([0,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,632,a,b,910,a),rewrite([7,6,8,5])]. given #6728 (W,wt=55): 6591 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,631,a,b,910,a),rewrite([7,6,8,5])]. given #6729 (W,wt=55): 6592 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,615,a,b,910,a),rewrite([7,6,8,5])]. given #6730 (W,wt=55): 6593 P([0,1,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,613,a,b,910,a),rewrite([7,6,8,5])]. given #6731 (W,wt=55): 6594 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,611,a,b,910,a),rewrite([7,6,8,5])]. given #6732 (W,wt=55): 6595 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,296,a,b,910,a),rewrite([6,7,8,5])]. given #6733 (W,wt=55): 6596 P([1,1,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,295,a,b,910,a),rewrite([6,7,8,5])]. given #6734 (W,wt=55): 6597 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,294,a,b,910,a),rewrite([6,7,5])]. given #6735 (W,wt=55): 6598 P([1,1,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,289,a,b,910,a),rewrite([6,7,8,5])]. given #6736 (W,wt=55): 6599 P([1,0,1,1,1,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,639,a,b,911,a),rewrite([12,13,11,10])]. given #6737 (W,wt=55): 6600 P([1,1,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,638,a,b,911,a),rewrite([12,11,13,10])]. given #6738 (W,wt=55): 6601 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,627,a,b,911,a),rewrite([12,13,11,10])]. given #6739 (W,wt=55): 6602 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,619,a,b,911,a),rewrite([12,11,13,10])]. given #6740 (W,wt=55): 6603 P([1,1,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,301,a,b,911,a),rewrite([12,11,13,10])]. given #6741 (W,wt=55): 6604 P([1,1,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,300,a,b,911,a),rewrite([12,11,13,10])]. given #6742 (W,wt=55): 6605 P([1,0,1,1,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,299,a,b,911,a),rewrite([12,13,11,10])]. given #6743 (W,wt=55): 6606 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,79,a,b,911,a),rewrite([12,13,11,10])]. given #6744 (W,wt=55): 6607 P([1,0,1,1,0,0,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,911,a),rewrite([12,13,11,10])]. given #6745 (W,wt=55): 6608 P([0,0,1,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,639,a,b,911,a),rewrite([7,8,6,5])]. given #6746 (W,wt=55): 6609 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,635,a,b,911,a),rewrite([7,6,8,5])]. given #6747 (W,wt=55): 6610 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,632,a,b,911,a),rewrite([7,6,8,5])]. given #6748 (W,wt=55): 6611 P([0,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,613,a,b,911,a),rewrite([7,6,8,5])]. given #6749 (W,wt=55): 6612 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,296,a,b,911,a),rewrite([6,7,8,5])]. given #6750 (W,wt=55): 6613 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,295,a,b,911,a),rewrite([6,7,8,5])]. given #6751 (W,wt=55): 6614 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,294,a,b,911,a),rewrite([6,7,5])]. given #6752 (W,wt=55): 6615 P([1,0,0,1,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,289,a,b,911,a),rewrite([6,7,8,5])]. given #6753 (W,wt=55): 6616 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,638,a,b,912,a),rewrite([12,11,13,10])]. given #6754 (W,wt=55): 6617 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,635,a,b,912,a),rewrite([12,11,13,10])]. given #6755 (W,wt=55): 6618 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,634,a,b,912,a),rewrite([12,11,13,10])]. given #6756 (W,wt=55): 6619 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,301,a,b,912,a),rewrite([12,11,13,10])]. given #6757 (W,wt=0): 17083 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,294,a,b,6619,a),rewrite([6,7,8,5])]. given #6758 (W,wt=55): 6620 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,639,a,b,912,a),rewrite([7,6,5])]. given #6759 (W,wt=55): 6621 P([0,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,638,a,b,912,a),rewrite([7,6,8,5])]. given #6760 (W,wt=55): 6622 P([0,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,635,a,b,912,a),rewrite([7,6,8,5])]. given #6761 (W,wt=55): 6623 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,629,a,b,912,a),rewrite([7,6,8,5])]. given #6762 (W,wt=55): 6624 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,627,a,b,912,a),rewrite([7,8,6,5])]. given #6763 (W,wt=55): 6625 P([0,1,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,618,a,b,912,a),rewrite([7,6,8,5])]. given #6764 (W,wt=55): 6626 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,615,a,b,912,a),rewrite([7,8,6,5])]. given #6765 (W,wt=55): 6627 P([1,1,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,297,a,b,912,a),rewrite([6,7,5])]. given #6766 (W,wt=55): 6628 P([1,1,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,296,a,b,912,a),rewrite([6,7,8,5])]. given #6767 (W,wt=55): 6629 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,295,a,b,912,a),rewrite([6,7,5])]. given #6768 (W,wt=55): 6630 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,294,a,b,912,a),rewrite([6,7,8,5])]. given #6769 (W,wt=55): 6631 P([1,1,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,290,a,b,912,a),rewrite([6,7,8,5])]. given #6770 (W,wt=55): 6632 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,912,a),rewrite([7,6,8,5])]. given #6771 (W,wt=55): 6633 P([0,0,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,63,a,b,912,a),rewrite([7,6,8,5])]. given #6772 (W,wt=55): 6634 P([0,1,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,53,a,b,912,a),rewrite([7,6,5])]. given #6773 (W,wt=55): 6635 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,639,a,b,913,a),rewrite([12,13,11,10])]. given #6774 (W,wt=55): 6636 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,638,a,b,913,a),rewrite([12,11,13,10])]. given #6775 (W,wt=55): 6637 P([1,1,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,635,a,b,913,a),rewrite([12,11,13,10])]. given #6776 (W,wt=55): 6638 P([1,1,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,634,a,b,913,a),rewrite([12,11,13,10])]. given #6777 (W,wt=55): 6639 P([1,0,1,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,627,a,b,913,a),rewrite([12,13,11,10])]. given #6778 (W,wt=55): 6640 P([1,1,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,301,a,b,913,a),rewrite([12,11,13,10])]. given #6779 (W,wt=0): 17132 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,294,a,b,6640,a),rewrite([6,7,8,5])]. given #6780 (W,wt=55): 6641 P([1,1,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,300,a,b,913,a),rewrite([12,11,13,10])]. given #6781 (W,wt=55): 6642 P([1,0,1,0,1,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,299,a,b,913,a),rewrite([12,13,11,10])]. given #6782 (W,wt=0): 17143 P([1,0,1,0,1,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,297,a,b,6642,a),rewrite([6,7,5])]. given #6783 (W,wt=55): 6643 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,79,a,b,913,a),rewrite([12,13,11,10])]. given #6784 (W,wt=55): 6644 P([1,0,1,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,913,a),rewrite([12,13,11,10])]. given #6785 (W,wt=55): 6645 P([0,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,639,a,b,913,a),rewrite([7,8,6,5])]. given #6786 (W,wt=55): 6646 P([0,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,635,a,b,913,a),rewrite([7,6,8,5])]. given #6787 (W,wt=55): 6647 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,629,a,b,913,a),rewrite([7,6,8,5])]. given #6788 (W,wt=55): 6648 P([0,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,618,a,b,913,a),rewrite([7,6,8,5])]. given #6789 (W,wt=55): 6649 P([1,0,1,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,297,a,b,913,a),rewrite([6,7,5])]. given #6790 (W,wt=55): 6650 P([1,0,0,0,0,0,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,296,a,b,913,a),rewrite([6,7,8,5])]. given #6791 (W,wt=55): 6651 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,295,a,b,913,a),rewrite([6,7,5])]. given #6792 (W,wt=55): 6652 P([1,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,294,a,b,913,a),rewrite([6,7,8,5])]. given #6793 (W,wt=55): 6653 P([1,0,0,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,290,a,b,913,a),rewrite([6,7,8,5])]. given #6794 (W,wt=55): 6654 P([0,0,1,0,0,1,1,0],[[0,0,1,1,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,63,a,b,913,a),rewrite([7,8,6,5])]. given #6795 (W,wt=55): 6655 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,639,a,b,914,a),rewrite([12,13,11,10])]. given #6796 (W,wt=55): 6656 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,632,a,b,914,a),rewrite([12,11,13,10])]. given #6797 (W,wt=55): 6657 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,631,a,b,914,a),rewrite([12,13,11,10])]. given #6798 (W,wt=55): 6658 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,301,a,b,914,a),rewrite([12,11,13,10])]. given #6799 (W,wt=0): 17184 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,294,a,b,6658,a),rewrite([6,7,8,5])]. given #6800 (W,wt=55): 6659 P([0,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,639,a,b,914,a),rewrite([7,8,6,5])]. given #6801 (W,wt=55): 6660 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,638,a,b,914,a),rewrite([7,6,5])]. given #6802 (W,wt=55): 6661 P([0,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,632,a,b,914,a),rewrite([7,6,8,5])]. given #6803 (W,wt=55): 6662 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,629,a,b,914,a),rewrite([7,6,8,5])]. given #6804 (W,wt=55): 6663 P([0,0,0,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,626,a,b,914,a),rewrite([7,6,8,5])]. given #6805 (W,wt=55): 6664 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,619,a,b,914,a),rewrite([7,6,8,5])]. given #6806 (W,wt=55): 6665 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,614,a,b,914,a),rewrite([7,6,8,5])]. given #6807 (W,wt=55): 6666 P([1,0,1,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,297,a,b,914,a),rewrite([6,7,5])]. given #6808 (W,wt=55): 6667 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,296,a,b,914,a),rewrite([6,7,5])]. given #6809 (W,wt=55): 6668 P([1,0,0,1,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,295,a,b,914,a),rewrite([6,7,8,5])]. given #6810 (W,wt=55): 6669 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,294,a,b,914,a),rewrite([6,7,8,5])]. given #6811 (W,wt=55): 6670 P([1,0,0,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,293,a,b,914,a),rewrite([6,7,8,5])]. given #6812 (W,wt=55): 6671 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,914,a),rewrite([7,8,6,5])]. given #6813 (W,wt=55): 6672 P([0,0,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,63,a,b,914,a),rewrite([7,8,6,5])]. given #6814 (W,wt=55): 6673 P([0,0,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,914,a),rewrite([7,6,5])]. given #6815 (W,wt=55): 6674 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,639,a,b,915,a),rewrite([12,13,11,10])]. given #6816 (W,wt=55): 6675 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,638,a,b,915,a),rewrite([12,11,13,10])]. given #6817 (W,wt=55): 6676 P([1,1,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,632,a,b,915,a),rewrite([12,11,13,10])]. given #6818 (W,wt=55): 6677 P([1,0,1,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,631,a,b,915,a),rewrite([12,13,11,10])]. given #6819 (W,wt=55): 6678 P([1,1,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,622,a,b,915,a),rewrite([12,11,13,10])]. given #6820 (W,wt=55): 6679 P([1,1,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,301,a,b,915,a),rewrite([12,11,13,10])]. given #6821 (W,wt=0): 17233 P([1,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,294,a,b,6679,a),rewrite([6,7,8,5])]. given #6822 (W,wt=55): 6680 P([1,1,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,300,a,b,915,a),rewrite([12,11,13,10])]. given #6823 (W,wt=0): 17241 P([1,1,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,297,a,b,6680,a),rewrite([6,7,5])]. given #6824 (W,wt=55): 6681 P([1,0,1,1,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,299,a,b,915,a),rewrite([12,13,11,10])]. given #6825 (W,wt=55): 6682 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,79,a,b,915,a),rewrite([12,13,11,10])]. given #6826 (W,wt=55): 6683 P([1,0,1,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(3,a,60,a,b,915,a),rewrite([12,13,11,10])]. given #6827 (W,wt=55): 6684 P([0,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,639,a,b,915,a),rewrite([7,8,6,5])]. given #6828 (W,wt=55): 6685 P([0,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,632,a,b,915,a),rewrite([7,6,8,5])]. given #6829 (W,wt=55): 6686 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,629,a,b,915,a),rewrite([7,6,8,5])]. given #6830 (W,wt=55): 6687 P([0,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,626,a,b,915,a),rewrite([7,6,8,5])]. given #6831 (W,wt=55): 6688 P([1,0,1,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,297,a,b,915,a),rewrite([6,7,5])]. given #6832 (W,wt=55): 6689 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,296,a,b,915,a),rewrite([6,7,5])]. given #6833 (W,wt=55): 6690 P([1,0,0,1,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,295,a,b,915,a),rewrite([6,7,8,5])]. given #6834 (W,wt=55): 6691 P([1,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,294,a,b,915,a),rewrite([6,7,8,5])]. given #6835 (W,wt=55): 6692 P([1,0,0,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,293,a,b,915,a),rewrite([6,7,8,5])]. given #6836 (W,wt=55): 6693 P([0,0,1,1,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,0,0,1,0,1,1]:x]). [hyper(2,a,63,a,b,915,a),rewrite([7,8,6,5])]. given #6837 (W,wt=55): 6694 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,639,a,b,916,a),rewrite([12,13,11,10])]. given #6838 (W,wt=55): 6695 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,638,a,b,916,a),rewrite([12,11,13,10])]. given #6839 (W,wt=55): 6696 P([1,1,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,634,a,b,916,a),rewrite([12,11,13,10])]. given #6840 (W,wt=55): 6697 P([1,0,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,631,a,b,916,a),rewrite([12,13,11,10])]. given #6841 (W,wt=55): 6698 P([1,0,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,627,a,b,916,a),rewrite([12,13,11,10])]. given #6842 (W,wt=55): 6699 P([1,1,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,622,a,b,916,a),rewrite([12,11,13,10])]. given #6843 (W,wt=55): 6700 P([1,0,0,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,615,a,b,916,a),rewrite([12,13,11,10])]. given #6844 (W,wt=55): 6701 P([1,1,0,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,614,a,b,916,a),rewrite([12,11,13,10])]. given #6845 (W,wt=55): 6702 P([1,1,0,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,612,a,b,916,a),rewrite([12,11,13,10])]. given #6846 (W,wt=55): 6703 P([1,0,0,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,611,a,b,916,a),rewrite([12,13,11,10])]. given #6847 (W,wt=55): 6705 P([1,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,300,a,b,916,a),rewrite([12,11,13,10])]. given #6848 (W,wt=55): 6706 P([1,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,299,a,b,916,a),rewrite([12,13,11,10])]. given #6849 (W,wt=55): 6707 P([1,0,0,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,916,a),rewrite([12,13,11,10])]. given #6850 (W,wt=55): 6708 P([1,0,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,916,a),rewrite([12,13,11,10])]. given #6851 (W,wt=55): 6709 P([1,0,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,916,a),rewrite([12,13,11,10])]. given #6852 (W,wt=55): 6710 P([1,0,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,916,a),rewrite([12,13,11,10])]. given #6853 (W,wt=55): 6711 P([1,0,0,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,916,a),rewrite([12,13,11,10])]. given #6854 (W,wt=55): 6712 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,916,a),rewrite([7,6,8,5])]. given #6855 (W,wt=55): 6713 P([1,0,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,297,a,b,916,a),rewrite([6,7,5])]. given #6856 (W,wt=55): 6714 P([0,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,6704,a),rewrite([7,6,8,5])]. given #6857 (W,wt=55): 6715 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,627,a,b,6704,a),rewrite([7,8,6,5])]. given #6858 (W,wt=55): 6716 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,619,a,b,6704,a),rewrite([7,6,8,5])]. given #6859 (W,wt=55): 6717 P([1,0,1,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,639,a,b,917,a),rewrite([12,13,11,10])]. given #6860 (W,wt=55): 6718 P([1,0,0,1,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,631,a,b,917,a),rewrite([12,13,11,10])]. given #6861 (W,wt=55): 6719 P([1,0,0,0,1,1,0,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,627,a,b,917,a),rewrite([12,13,11,10])]. given #6862 (W,wt=55): 6720 P([1,0,0,0,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,615,a,b,917,a),rewrite([12,13,11,10])]. given #6863 (W,wt=55): 6721 P([1,0,0,1,1,1,1,1],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,611,a,b,917,a),rewrite([12,13,11,10])]. given #6864 (W,wt=55): 6723 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,629,a,b,917,a),rewrite([7,6,8,5])]. given #6865 (W,wt=55): 6724 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,619,a,b,917,a),rewrite([7,6,8,5])]. given #6866 (W,wt=55): 6725 P([1,0,0,0,1,0,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,297,a,b,917,a),rewrite([6,7,5])]. given #6867 (W,wt=55): 6726 P([0,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,629,a,b,6722,a),rewrite([7,6,8,5])]. given #6868 (W,wt=55): 6727 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,619,a,b,6722,a),rewrite([7,6,8,5])]. given #6869 (W,wt=55): 6728 P([1,1,1,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,638,a,b,918,a),rewrite([12,11,13,10])]. given #6870 (W,wt=55): 6729 P([1,1,0,0,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,634,a,b,918,a),rewrite([12,11,13,10])]. given #6871 (W,wt=55): 6730 P([1,1,0,0,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,622,a,b,918,a),rewrite([12,11,13,10])]. given #6872 (W,wt=55): 6731 P([1,1,0,1,0,1,0,1],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,614,a,b,918,a),rewrite([12,11,13,10])]. given #6873 (W,wt=55): 6732 P([1,1,0,1,0,1,1,1],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,612,a,b,918,a),rewrite([12,11,13,10])]. given #6874 (W,wt=55): 6734 P([0,1,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,918,a),rewrite([7,6,8,5])]. given #6875 (W,wt=55): 6735 P([0,0,0,0,0,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,627,a,b,918,a),rewrite([7,8,6,5])]. given #6876 (W,wt=55): 6736 P([1,1,0,0,0,0,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,297,a,b,918,a),rewrite([6,7,5])]. given #6877 (W,wt=55): 6737 P([0,1,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,629,a,b,6733,a),rewrite([7,6,8,5])]. given #6878 (W,wt=55): 6738 P([0,0,0,0,1,1,0,0],[[0,0,1,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,627,a,b,6733,a),rewrite([7,8,6,5])]. given #6879 (W,wt=55): 6739 P([1,1,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,667,a,b,919,a),rewrite([12,13,11,10])]. given #6880 (W,wt=55): 6740 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,665,a,b,919,a),rewrite([12,11,13,10])]. given #6881 (W,wt=0): 17302 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,83,a,b,6740,a),rewrite([6,7,8,5])]. given #6882 (W,wt=55): 6741 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,651,a,b,919,a),rewrite([12,13,11,10])]. given #6883 (W,wt=55): 6742 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,648,a,b,919,a),rewrite([12,11,13,10])]. given #6884 (W,wt=55): 6743 P([1,1,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,315,a,b,919,a),rewrite([12,13,11,10])]. given #6885 (W,wt=55): 6744 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,314,a,b,919,a),rewrite([12,11,13,10])]. given #6886 (W,wt=55): 6745 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,313,a,b,919,a),rewrite([12,11,13,10])]. given #6887 (W,wt=55): 6746 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,919,a),rewrite([12,13,11,10])]. given #6888 (W,wt=55): 6747 P([1,1,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,919,a),rewrite([12,13,11,10])]. given #6889 (W,wt=55): 6748 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,667,a,b,919,a),rewrite([7,8,6,5])]. given #6890 (W,wt=55): 6749 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,666,a,b,919,a),rewrite([7,6,8,5])]. given #6891 (W,wt=55): 6750 P([0,1,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,665,a,b,919,a),rewrite([7,6,8,5])]. given #6892 (W,wt=55): 6751 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,664,a,b,919,a),rewrite([7,6,8,5])]. given #6893 (W,wt=55): 6752 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,658,a,b,919,a),rewrite([7,6,8,5])]. given #6894 (W,wt=55): 6753 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,657,a,b,919,a),rewrite([7,6,8,5])]. given #6895 (W,wt=55): 6754 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,656,a,b,919,a),rewrite([7,6,8,5])]. given #6896 (W,wt=55): 6755 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,304,a,b,919,a),rewrite([6,7,8,5])]. given #6897 (W,wt=55): 6756 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,667,a,b,920,a),rewrite([12,13,11,10])]. given #6898 (W,wt=55): 6757 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,666,a,b,920,a),rewrite([12,13,11,10])]. given #6899 (W,wt=55): 6758 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,651,a,b,920,a),rewrite([12,13,11,10])]. given #6900 (W,wt=55): 6759 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,649,a,b,920,a),rewrite([12,13,11,10])]. given #6901 (W,wt=55): 6760 P([1,0,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,314,a,b,920,a),rewrite([12,13,11,10])]. given #6902 (W,wt=55): 6761 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,313,a,b,920,a),rewrite([12,11,13,10])]. given #6903 (W,wt=55): 6762 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,667,a,b,920,a),rewrite([7,8,6,5])]. given #6904 (W,wt=55): 6763 P([0,0,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,666,a,b,920,a),rewrite([7,8,6,5])]. given #6905 (W,wt=55): 6764 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,665,a,b,920,a),rewrite([7,6,8,5])]. given #6906 (W,wt=55): 6765 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,658,a,b,920,a),rewrite([7,8,6,5])]. given #6907 (W,wt=55): 6766 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,657,a,b,920,a),rewrite([7,6,8,5])]. given #6908 (W,wt=55): 6767 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,304,a,b,920,a),rewrite([6,7,8,5])]. given #6909 (W,wt=55): 6768 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,79,a,b,920,a),rewrite([7,8,6,5])]. given #6910 (W,wt=55): 6769 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,667,a,b,921,a),rewrite([12,13,11,10])]. given #6911 (W,wt=55): 6770 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,666,a,b,921,a),rewrite([12,13,11,10])]. given #6912 (W,wt=55): 6771 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,665,a,b,921,a),rewrite([12,11,13,10])]. given #6913 (W,wt=0): 17357 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,83,a,b,6771,a),rewrite([6,7,8,5])]. given #6914 (W,wt=55): 6772 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,664,a,b,921,a),rewrite([12,11,13,10])]. given #6915 (W,wt=55): 6773 P([1,0,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,662,a,b,921,a),rewrite([12,13,11,10])]. given #6916 (W,wt=55): 6774 P([1,0,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,661,a,b,921,a),rewrite([12,13,11,10])]. given #6917 (W,wt=55): 6775 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,651,a,b,921,a),rewrite([12,13,11,10])]. given #6918 (W,wt=55): 6776 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,650,a,b,921,a),rewrite([12,11,13,10])]. given #6919 (W,wt=55): 6777 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,649,a,b,921,a),rewrite([12,13,11,10])]. given #6920 (W,wt=55): 6778 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,648,a,b,921,a),rewrite([12,11,13,10])]. given #6921 (W,wt=55): 6779 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,647,a,b,921,a),rewrite([12,11,13,10])]. given #6922 (W,wt=55): 6780 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,645,a,b,921,a),rewrite([12,11,13,10])]. given #6923 (W,wt=55): 6781 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,644,a,b,921,a),rewrite([12,13,11,10])]. given #6924 (W,wt=55): 6782 P([1,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,315,a,b,921,a),rewrite([12,13,11,10])]. given #6925 (W,wt=55): 6783 P([1,0,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,314,a,b,921,a),rewrite([12,13,11,10])]. given #6926 (W,wt=55): 6784 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,313,a,b,921,a),rewrite([12,11,13,10])]. given #6927 (W,wt=55): 6785 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,312,a,b,921,a),rewrite([12,11,13,10])]. given #6928 (W,wt=55): 6786 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,311,a,b,921,a),rewrite([12,11,13,10])]. given #6929 (W,wt=55): 6787 P([1,1,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,310,a,b,921,a),rewrite([12,11,13,10])]. given #6930 (W,wt=55): 6788 P([1,0,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,309,a,b,921,a),rewrite([12,13,11,10])]. given #6931 (W,wt=55): 6789 P([1,0,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,307,a,b,921,a),rewrite([12,13,11,10])]. given #6932 (W,wt=55): 6790 P([1,0,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,306,a,b,921,a),rewrite([12,13,11,10])]. given #6933 (W,wt=55): 6791 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,921,a),rewrite([12,13,11,10])]. given #6934 (W,wt=55): 6792 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,921,a),rewrite([12,13,11,10])]. given #6935 (W,wt=55): 6793 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,921,a),rewrite([12,13,11,10])]. given #6936 (W,wt=55): 6794 P([1,0,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,921,a),rewrite([12,13,11,10])]. given #6937 (W,wt=55): 6795 P([1,0,0,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,921,a),rewrite([12,13,11,10])]. given #6938 (W,wt=55): 6796 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,667,a,b,921,a),rewrite([7,8,6,5])]. given #6939 (W,wt=55): 6797 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,304,a,b,921,a),rewrite([6,7,8,5])]. given #6940 (W,wt=55): 6798 P([1,0,1,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,667,a,b,922,a),rewrite([12,13,11,10])]. given #6941 (W,wt=55): 6799 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,666,a,b,922,a),rewrite([12,13,11,10])]. given #6942 (W,wt=55): 6800 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,665,a,b,922,a),rewrite([12,11,13,10])]. given #6943 (W,wt=0): 17397 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,83,a,b,6800,a),rewrite([6,7,8,5])]. given #6944 (W,wt=55): 6801 P([1,0,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,662,a,b,922,a),rewrite([12,13,11,10])]. given #6945 (W,wt=55): 6802 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,651,a,b,922,a),rewrite([12,13,11,10])]. given #6946 (W,wt=55): 6803 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,649,a,b,922,a),rewrite([12,13,11,10])]. given #6947 (W,wt=55): 6804 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,648,a,b,922,a),rewrite([12,11,13,10])]. given #6948 (W,wt=55): 6805 P([1,0,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,315,a,b,922,a),rewrite([12,13,11,10])]. given #6949 (W,wt=55): 6806 P([1,0,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,314,a,b,922,a),rewrite([12,13,11,10])]. given #6950 (W,wt=55): 6807 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,313,a,b,922,a),rewrite([12,11,13,10])]. given #6951 (W,wt=55): 6808 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,312,a,b,922,a),rewrite([12,11,13,10])]. given #6952 (W,wt=55): 6809 P([1,0,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,309,a,b,922,a),rewrite([12,13,11,10])]. given #6953 (W,wt=55): 6810 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,922,a),rewrite([12,13,11,10])]. given #6954 (W,wt=55): 6811 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,922,a),rewrite([12,13,11,10])]. given #6955 (W,wt=55): 6812 P([1,0,1,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,922,a),rewrite([12,13,11,10])]. given #6956 (W,wt=55): 6813 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,667,a,b,922,a),rewrite([7,8,6,5])]. given #6957 (W,wt=55): 6814 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,666,a,b,922,a),rewrite([7,8,6,5])]. given #6958 (W,wt=55): 6815 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,658,a,b,922,a),rewrite([7,8,6,5])]. given #6959 (W,wt=55): 6816 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,304,a,b,922,a),rewrite([6,7,8,5])]. given #6960 (W,wt=55): 6817 P([1,0,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,667,a,b,923,a),rewrite([12,13,11,10])]. given #6961 (W,wt=55): 6818 P([1,0,1,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,666,a,b,923,a),rewrite([12,13,11,10])]. given #6962 (W,wt=55): 6819 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,664,a,b,923,a),rewrite([12,11,13,10])]. given #6963 (W,wt=55): 6820 P([1,0,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,661,a,b,923,a),rewrite([12,13,11,10])]. given #6964 (W,wt=55): 6821 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,651,a,b,923,a),rewrite([12,13,11,10])]. given #6965 (W,wt=55): 6822 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,649,a,b,923,a),rewrite([12,13,11,10])]. given #6966 (W,wt=55): 6823 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,647,a,b,923,a),rewrite([12,11,13,10])]. given #6967 (W,wt=55): 6824 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,644,a,b,923,a),rewrite([12,13,11,10])]. given #6968 (W,wt=55): 6825 P([1,0,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,314,a,b,923,a),rewrite([12,13,11,10])]. given #6969 (W,wt=55): 6826 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,313,a,b,923,a),rewrite([12,11,13,10])]. given #6970 (W,wt=55): 6827 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,312,a,b,923,a),rewrite([12,11,13,10])]. given #6971 (W,wt=55): 6828 P([1,0,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,307,a,b,923,a),rewrite([12,13,11,10])]. given #6972 (W,wt=55): 6829 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,667,a,b,923,a),rewrite([7,8,6,5])]. given #6973 (W,wt=55): 6830 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,665,a,b,923,a),rewrite([7,6,8,5])]. given #6974 (W,wt=55): 6831 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,304,a,b,923,a),rewrite([6,7,8,5])]. given #6975 (W,wt=55): 6832 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,667,a,b,924,a),rewrite([12,13,11,10])]. given #6976 (W,wt=55): 6833 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,665,a,b,924,a),rewrite([12,11,13,10])]. given #6977 (W,wt=0): 17445 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,83,a,b,6833,a),rewrite([6,7,8,5])]. given #6978 (W,wt=55): 6834 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,664,a,b,924,a),rewrite([12,11,13,10])]. given #6979 (W,wt=55): 6835 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,651,a,b,924,a),rewrite([12,13,11,10])]. given #6980 (W,wt=55): 6836 P([1,1,0,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,650,a,b,924,a),rewrite([12,11,13,10])]. given #6981 (W,wt=55): 6837 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,648,a,b,924,a),rewrite([12,11,13,10])]. given #6982 (W,wt=55): 6838 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,647,a,b,924,a),rewrite([12,11,13,10])]. given #6983 (W,wt=55): 6839 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,645,a,b,924,a),rewrite([12,11,13,10])]. given #6984 (W,wt=55): 6841 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,314,a,b,924,a),rewrite([12,11,13,10])]. given #6985 (W,wt=55): 6842 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,313,a,b,924,a),rewrite([12,11,13,10])]. given #6986 (W,wt=55): 6843 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,312,a,b,924,a),rewrite([12,11,13,10])]. given #6987 (W,wt=55): 6844 P([1,1,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,310,a,b,924,a),rewrite([12,11,13,10])]. given #6988 (W,wt=55): 6845 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,924,a),rewrite([12,13,11,10])]. given #6989 (W,wt=55): 6846 P([1,1,0,0,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,924,a),rewrite([12,13,11,10])]. given #6990 (W,wt=55): 6847 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,667,a,b,924,a),rewrite([7,8,6,5])]. given #6991 (W,wt=55): 6848 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,665,a,b,924,a),rewrite([7,6,8,5])]. given #6992 (W,wt=55): 6849 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,657,a,b,924,a),rewrite([7,6,8,5])]. given #6993 (W,wt=55): 6850 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,304,a,b,924,a),rewrite([6,7,8,5])]. given #6994 (W,wt=55): 6851 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,667,a,b,6840,a),rewrite([7,8,6,5])]. given #6995 (W,wt=55): 6852 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,664,a,b,6840,a),rewrite([7,6,8,5])]. given #6996 (W,wt=55): 6853 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,656,a,b,6840,a),rewrite([7,6,8,5])]. given #6997 (W,wt=55): 6854 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,304,a,b,6840,a),rewrite([6,7,8,5])]. given #6998 (W,wt=55): 6855 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,667,a,b,925,a),rewrite([12,13,11,10])]. given #6999 (W,wt=55): 6856 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,666,a,b,925,a),rewrite([12,13,11,10])]. given #7000 (W,wt=55): 6857 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,314,a,b,925,a),rewrite([12,13,11,10])]. given #7001 (W,wt=55): 6858 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,313,a,b,925,a),rewrite([12,11,13,10])]. given #7002 (W,wt=55): 6859 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,667,a,b,925,a),rewrite([7,8,6,5])]. given #7003 (W,wt=55): 6860 P([0,0,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,666,a,b,925,a),rewrite([7,8,6,5])]. given #7004 (W,wt=55): 6861 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,665,a,b,925,a),rewrite([7,6,5])]. given #7005 (W,wt=55): 6862 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,658,a,b,925,a),rewrite([7,8,6,5])]. given #7006 (W,wt=55): 6863 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,657,a,b,925,a),rewrite([7,6,5])]. given #7007 (W,wt=55): 6864 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,651,a,b,925,a),rewrite([7,8,6,5])]. given #7008 (W,wt=55): 6865 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,649,a,b,925,a),rewrite([7,8,6,5])]. given #7009 (W,wt=55): 6866 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,648,a,b,925,a),rewrite([7,6,5])]. given #7010 (W,wt=55): 6867 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,645,a,b,925,a),rewrite([7,6,5])]. given #7011 (W,wt=55): 6868 P([1,0,1,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,305,a,b,925,a),rewrite([6,7,5])]. given #7012 (W,wt=55): 6869 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,304,a,b,925,a),rewrite([6,7,5])]. given #7013 (W,wt=55): 6871 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,925,a),rewrite([7,8,6,5])]. given #7014 (W,wt=55): 6872 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,925,a),rewrite([7,8,6,5])]. given #7015 (W,wt=55): 6873 P([0,0,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,63,a,b,925,a),rewrite([7,8,6,5])]. given #7016 (W,wt=55): 6874 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,55,a,b,925,a),rewrite([7,8,6,5])]. given #7017 (W,wt=55): 6875 P([0,0,1,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,925,a),rewrite([7,6,5])]. given #7018 (W,wt=55): 6876 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,659,a,b,6870,a),rewrite([12,13,11,10])]. given #7019 (W,wt=55): 6877 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,658,a,b,6870,a),rewrite([12,13,11,10])]. given #7020 (W,wt=55): 6878 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,314,a,b,6870,a),rewrite([12,13,11,10])]. given #7021 (W,wt=55): 6879 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,313,a,b,6870,a),rewrite([12,11,13,10])]. given #7022 (W,wt=55): 6880 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,665,a,b,926,a),rewrite([12,11,13,10])]. given #7023 (W,wt=55): 6881 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,648,a,b,926,a),rewrite([12,11,13,10])]. given #7024 (W,wt=55): 6882 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,315,a,b,926,a),rewrite([12,11,13,10])]. given #7025 (W,wt=55): 6883 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,667,a,b,926,a),rewrite([7,6,8,5])]. given #7026 (W,wt=55): 6884 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,666,a,b,926,a),rewrite([7,6,8,5])]. given #7027 (W,wt=55): 6885 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,665,a,b,926,a),rewrite([7,6,8,5])]. given #7028 (W,wt=55): 6886 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,664,a,b,926,a),rewrite([7,6,8,5])]. given #7029 (W,wt=55): 6887 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,661,a,b,926,a),rewrite([7,6,8,5])]. given #7030 (W,wt=55): 6889 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,657,a,b,6888,a),rewrite([12,11,13,10])]. given #7031 (W,wt=55): 6890 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,648,a,b,6888,a),rewrite([12,11,13,10])]. given #7032 (W,wt=55): 6891 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,667,a,b,927,a),rewrite([12,13,11,10])]. given #7033 (W,wt=55): 6892 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,665,a,b,927,a),rewrite([12,11,13,10])]. given #7034 (W,wt=0): 17546 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,83,a,b,6892,a),rewrite([6,7,5])]. given #7035 (W,wt=55): 6893 P([1,1,1,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,315,a,b,927,a),rewrite([12,13,11,10])]. given #7036 (W,wt=55): 6894 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,314,a,b,927,a),rewrite([12,11,13,10])]. given #7037 (W,wt=55): 6895 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,313,a,b,927,a),rewrite([12,11,13,10])]. given #7038 (W,wt=55): 6896 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,927,a),rewrite([12,13,11,10])]. given #7039 (W,wt=55): 6897 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,667,a,b,927,a),rewrite([7,8,6,5])]. given #7040 (W,wt=55): 6898 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,666,a,b,927,a),rewrite([7,6,5])]. given #7041 (W,wt=55): 6899 P([0,1,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,665,a,b,927,a),rewrite([7,6,8,5])]. given #7042 (W,wt=55): 6900 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,664,a,b,927,a),rewrite([7,6,5])]. given #7043 (W,wt=55): 6901 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,658,a,b,927,a),rewrite([7,6,5])]. given #7044 (W,wt=55): 6902 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,657,a,b,927,a),rewrite([7,6,8,5])]. given #7045 (W,wt=55): 6903 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,656,a,b,927,a),rewrite([7,6,5])]. given #7046 (W,wt=55): 6904 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,651,a,b,927,a),rewrite([7,8,6,5])]. given #7047 (W,wt=55): 6905 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,649,a,b,927,a),rewrite([7,6,5])]. given #7048 (W,wt=55): 6906 P([0,1,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,648,a,b,927,a),rewrite([7,6,8,5])]. given #7049 (W,wt=55): 6907 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,647,a,b,927,a),rewrite([7,6,5])]. given #7050 (W,wt=55): 6908 P([1,1,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,305,a,b,927,a),rewrite([6,7,5])]. given #7051 (W,wt=55): 6909 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,304,a,b,927,a),rewrite([6,7,5])]. given #7052 (W,wt=55): 6910 P([1,1,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,303,a,b,927,a),rewrite([6,7,5])]. given #7053 (W,wt=55): 6911 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,927,a),rewrite([7,6,8,5])]. given #7054 (W,wt=55): 6912 P([0,0,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,63,a,b,927,a),rewrite([7,6,8,5])]. given #7055 (W,wt=55): 6913 P([0,1,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,58,a,b,927,a),rewrite([7,6,8,5])]. given #7056 (W,wt=55): 6914 P([0,1,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,0,0,1]:x]). [hyper(2,a,53,a,b,927,a),rewrite([7,6,5])]. given #7057 (W,wt=55): 6915 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,667,a,b,928,a),rewrite([12,13,11,10])]. given #7058 (W,wt=55): 6916 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,664,a,b,928,a),rewrite([12,11,13,10])]. given #7059 (W,wt=55): 6917 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,314,a,b,928,a),rewrite([12,11,13,10])]. given #7060 (W,wt=55): 6918 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,312,a,b,928,a),rewrite([12,11,13,10])]. given #7061 (W,wt=55): 6919 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,667,a,b,928,a),rewrite([7,8,6,5])]. given #7062 (W,wt=55): 6920 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,665,a,b,928,a),rewrite([7,6,5])]. given #7063 (W,wt=55): 6921 P([0,1,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,664,a,b,928,a),rewrite([7,6,8,5])]. given #7064 (W,wt=55): 6922 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,662,a,b,928,a),rewrite([7,6,5])]. given #7065 (W,wt=55): 6923 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,657,a,b,928,a),rewrite([7,6,5])]. given #7066 (W,wt=55): 6924 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,656,a,b,928,a),rewrite([7,6,8,5])]. given #7067 (W,wt=55): 6925 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,651,a,b,928,a),rewrite([7,8,6,5])]. given #7068 (W,wt=55): 6926 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,648,a,b,928,a),rewrite([7,6,5])]. given #7069 (W,wt=55): 6927 P([0,1,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,647,a,b,928,a),rewrite([7,6,8,5])]. given #7070 (W,wt=55): 6929 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,304,a,b,928,a),rewrite([6,7,5])]. given #7071 (W,wt=55): 6930 P([1,1,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,303,a,b,928,a),rewrite([6,7,5])]. given #7072 (W,wt=55): 6931 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,928,a),rewrite([7,8,6,5])]. given #7073 (W,wt=55): 6932 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,70,a,b,928,a),rewrite([7,8,6,5])]. given #7074 (W,wt=55): 6933 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,928,a),rewrite([7,8,6,5])]. given #7075 (W,wt=55): 6934 P([0,1,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,58,a,b,928,a),rewrite([7,6,8,5])]. given #7076 (W,wt=55): 6935 P([0,1,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,53,a,b,928,a),rewrite([7,6,5])]. given #7077 (W,wt=55): 6936 P([1,1,0,0,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,667,a,b,6928,a),rewrite([12,13,11,10])]. given #7078 (W,wt=55): 6937 P([1,1,0,1,1,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,664,a,b,6928,a),rewrite([12,11,13,10])]. given #7079 (W,wt=55): 6938 P([1,1,1,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,314,a,b,6928,a),rewrite([12,11,13,10])]. given #7080 (W,wt=55): 6939 P([1,1,0,1,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,312,a,b,6928,a),rewrite([12,11,13,10])]. given #7081 (W,wt=55): 6940 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,667,a,b,929,a),rewrite([12,13,11,10])]. given #7082 (W,wt=55): 6941 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,666,a,b,929,a),rewrite([12,13,11,10])]. given #7083 (W,wt=55): 6942 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,665,a,b,929,a),rewrite([12,11,13,10])]. given #7084 (W,wt=0): 17642 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,83,a,b,6942,a),rewrite([6,7,5])]. given #7085 (W,wt=55): 6943 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,664,a,b,929,a),rewrite([12,11,13,10])]. given #7086 (W,wt=55): 6944 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,662,a,b,929,a),rewrite([12,13,11,10])]. given #7087 (W,wt=55): 6945 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,661,a,b,929,a),rewrite([12,13,11,10])]. given #7088 (W,wt=55): 6946 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,650,a,b,929,a),rewrite([12,11,13,10])]. given #7089 (W,wt=55): 6947 P([1,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,315,a,b,929,a),rewrite([12,13,11,10])]. given #7090 (W,wt=55): 6948 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,314,a,b,929,a),rewrite([12,13,11,10])]. given #7091 (W,wt=55): 6949 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,313,a,b,929,a),rewrite([12,11,13,10])]. given #7092 (W,wt=55): 6950 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,312,a,b,929,a),rewrite([12,11,13,10])]. given #7093 (W,wt=55): 6951 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,311,a,b,929,a),rewrite([12,11,13,10])]. given #7094 (W,wt=55): 6952 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,310,a,b,929,a),rewrite([12,11,13,10])]. given #7095 (W,wt=55): 6953 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,309,a,b,929,a),rewrite([12,13,11,10])]. given #7096 (W,wt=55): 6954 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,307,a,b,929,a),rewrite([12,13,11,10])]. given #7097 (W,wt=55): 6955 P([1,0,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,306,a,b,929,a),rewrite([12,13,11,10])]. given #7098 (W,wt=55): 6956 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,79,a,b,929,a),rewrite([12,13,11,10])]. given #7099 (W,wt=55): 6957 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,929,a),rewrite([12,13,11,10])]. given #7100 (W,wt=55): 6958 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,667,a,b,929,a),rewrite([7,8,6,5])]. given #7101 (W,wt=55): 6959 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,651,a,b,929,a),rewrite([7,8,6,5])]. given #7102 (W,wt=55): 6960 P([1,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,305,a,b,929,a),rewrite([6,7,5])]. given #7103 (W,wt=55): 6961 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,304,a,b,929,a),rewrite([6,7,5])]. given #7104 (W,wt=55): 6962 P([1,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,303,a,b,929,a),rewrite([6,7,5])]. given #7105 (W,wt=55): 6963 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,929,a),rewrite([7,8,6,5])]. given #7106 (W,wt=55): 6964 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,667,a,b,930,a),rewrite([12,13,11,10])]. given #7107 (W,wt=55): 6965 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,666,a,b,930,a),rewrite([12,13,11,10])]. given #7108 (W,wt=55): 6966 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,665,a,b,930,a),rewrite([12,11,13,10])]. given #7109 (W,wt=0): 17731 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,83,a,b,6966,a),rewrite([6,7,5])]. given #7110 (W,wt=55): 6967 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,662,a,b,930,a),rewrite([12,13,11,10])]. given #7111 (W,wt=55): 6968 P([1,0,1,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,315,a,b,930,a),rewrite([12,13,11,10])]. given #7112 (W,wt=0): 17741 P([1,0,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,303,a,b,6968,a),rewrite([6,7,5])]. given #7113 (W,wt=55): 6969 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,314,a,b,930,a),rewrite([12,13,11,10])]. given #7114 (W,wt=55): 6970 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,313,a,b,930,a),rewrite([12,11,13,10])]. given #7115 (W,wt=55): 6971 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,312,a,b,930,a),rewrite([12,11,13,10])]. given #7116 (W,wt=55): 6972 P([1,0,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,309,a,b,930,a),rewrite([12,13,11,10])]. given #7117 (W,wt=55): 6973 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,930,a),rewrite([12,13,11,10])]. given #7118 (W,wt=55): 6974 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,667,a,b,930,a),rewrite([7,8,6,5])]. given #7119 (W,wt=55): 6975 P([0,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,666,a,b,930,a),rewrite([7,8,6,5])]. given #7120 (W,wt=55): 6976 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,658,a,b,930,a),rewrite([7,8,6,5])]. given #7121 (W,wt=55): 6977 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,651,a,b,930,a),rewrite([7,8,6,5])]. given #7122 (W,wt=55): 6978 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,649,a,b,930,a),rewrite([7,8,6,5])]. given #7123 (W,wt=55): 6979 P([1,0,1,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,305,a,b,930,a),rewrite([6,7,5])]. given #7124 (W,wt=55): 6980 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,304,a,b,930,a),rewrite([6,7,5])]. given #7125 (W,wt=55): 6981 P([1,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,303,a,b,930,a),rewrite([6,7,5])]. given #7126 (W,wt=55): 6982 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,930,a),rewrite([7,8,6,5])]. given #7127 (W,wt=55): 6983 P([0,0,1,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,0,0,1]:x]). [hyper(2,a,63,a,b,930,a),rewrite([7,8,6,5])]. given #7128 (W,wt=55): 6984 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,667,a,b,931,a),rewrite([12,13,11,10])]. given #7129 (W,wt=55): 6985 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,666,a,b,931,a),rewrite([12,13,11,10])]. given #7130 (W,wt=55): 6986 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,664,a,b,931,a),rewrite([12,11,13,10])]. given #7131 (W,wt=55): 6987 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,661,a,b,931,a),rewrite([12,13,11,10])]. given #7132 (W,wt=55): 6988 P([1,0,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,314,a,b,931,a),rewrite([12,13,11,10])]. given #7133 (W,wt=55): 6989 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,313,a,b,931,a),rewrite([12,11,13,10])]. given #7134 (W,wt=55): 6990 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,312,a,b,931,a),rewrite([12,11,13,10])]. given #7135 (W,wt=55): 6991 P([1,0,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,307,a,b,931,a),rewrite([12,13,11,10])]. given #7136 (W,wt=55): 6992 P([0,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,667,a,b,931,a),rewrite([7,8,6,5])]. given #7137 (W,wt=55): 6993 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,665,a,b,931,a),rewrite([7,6,5])]. given #7138 (W,wt=55): 6994 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,651,a,b,931,a),rewrite([7,8,6,5])]. given #7139 (W,wt=55): 6995 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,648,a,b,931,a),rewrite([7,6,5])]. given #7140 (W,wt=55): 6996 P([1,0,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,305,a,b,931,a),rewrite([6,7,5])]. given #7141 (W,wt=55): 6997 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,304,a,b,931,a),rewrite([6,7,5])]. given #7142 (W,wt=55): 6998 P([1,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,303,a,b,931,a),rewrite([6,7,5])]. given #7143 (W,wt=55): 6999 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,79,a,b,931,a),rewrite([7,8,6,5])]. given #7144 (W,wt=55): 7000 P([0,0,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,68,a,b,931,a),rewrite([7,8,6,5])]. given #7145 (W,wt=55): 7001 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,667,a,b,932,a),rewrite([12,13,11,10])]. given #7146 (W,wt=55): 7002 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,665,a,b,932,a),rewrite([12,11,13,10])]. given #7147 (W,wt=0): 17842 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,83,a,b,7002,a),rewrite([6,7,5])]. given #7148 (W,wt=55): 7003 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,664,a,b,932,a),rewrite([12,11,13,10])]. given #7149 (W,wt=55): 7004 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,650,a,b,932,a),rewrite([12,11,13,10])]. given #7150 (W,wt=55): 7005 P([1,1,0,0,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,315,a,b,932,a),rewrite([12,13,11,10])]. given #7151 (W,wt=0): 17855 P([1,1,0,0,1,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,305,a,b,7005,a),rewrite([6,7,5])]. given #7152 (W,wt=55): 7006 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,314,a,b,932,a),rewrite([12,11,13,10])]. given #7153 (W,wt=55): 7007 P([1,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,313,a,b,932,a),rewrite([12,11,13,10])]. given #7154 (W,wt=55): 7008 P([1,1,0,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,312,a,b,932,a),rewrite([12,11,13,10])]. given #7155 (W,wt=55): 7009 P([1,1,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,310,a,b,932,a),rewrite([12,11,13,10])]. given #7156 (W,wt=55): 7010 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(3,a,65,a,b,932,a),rewrite([12,13,11,10])]. given #7157 (W,wt=55): 7011 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,667,a,b,932,a),rewrite([7,8,6,5])]. given #7158 (W,wt=55): 7012 P([0,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,665,a,b,932,a),rewrite([7,6,8,5])]. given #7159 (W,wt=55): 7013 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,657,a,b,932,a),rewrite([7,6,8,5])]. given #7160 (W,wt=55): 7014 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,651,a,b,932,a),rewrite([7,8,6,5])]. given #7161 (W,wt=55): 7015 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,648,a,b,932,a),rewrite([7,6,8,5])]. given #7162 (W,wt=55): 7016 P([1,1,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,305,a,b,932,a),rewrite([6,7,5])]. given #7163 (W,wt=55): 7017 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,304,a,b,932,a),rewrite([6,7,5])]. given #7164 (W,wt=55): 7018 P([1,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,303,a,b,932,a),rewrite([6,7,5])]. given #7165 (W,wt=55): 7019 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,79,a,b,932,a),rewrite([7,8,6,5])]. given #7166 (W,wt=55): 7020 P([0,1,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,0,0,1]:x]). [hyper(2,a,58,a,b,932,a),rewrite([7,6,8,5])]. given #7167 (W,wt=55): 7021 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,665,a,b,933,a),rewrite([12,11,13,10])]. given #7168 (W,wt=55): 7022 P([1,1,1,1,1,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,315,a,b,933,a),rewrite([12,11,13,10])]. given #7169 (W,wt=55): 7023 P([0,0,0,0,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,667,a,b,933,a),rewrite([7,6,5])]. given #7170 (W,wt=55): 7024 P([0,0,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,666,a,b,933,a),rewrite([7,6,5])]. given #7171 (W,wt=55): 7025 P([0,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,665,a,b,933,a),rewrite([7,6,8,5])]. given #7172 (W,wt=55): 7026 P([0,1,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,664,a,b,933,a),rewrite([7,6,5])]. given #7173 (W,wt=55): 7027 P([0,0,0,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,661,a,b,933,a),rewrite([7,6,5])]. given #7174 (W,wt=55): 7028 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,651,a,b,933,a),rewrite([7,6,5])]. given #7175 (W,wt=55): 7029 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,649,a,b,933,a),rewrite([7,6,5])]. given #7176 (W,wt=55): 7030 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,648,a,b,933,a),rewrite([7,6,8,5])]. given #7177 (W,wt=55): 7031 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,647,a,b,933,a),rewrite([7,6,5])]. given #7178 (W,wt=55): 7032 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,644,a,b,933,a),rewrite([7,6,5])]. given #7179 (W,wt=55): 7033 P([1,1,1,1,0,1,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,305,a,b,933,a),rewrite([6,7,5])]. given #7180 (W,wt=55): 7035 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,303,a,b,933,a),rewrite([6,7,5])]. given #7181 (W,wt=55): 7036 P([0,0,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,933,a),rewrite([7,6,8,5])]. given #7182 (W,wt=55): 7037 P([0,0,0,0,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,65,a,b,933,a),rewrite([7,8,6,5])]. given #7183 (W,wt=55): 7038 P([0,0,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,933,a),rewrite([7,6,8,5])]. given #7184 (W,wt=55): 7039 P([0,1,0,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,933,a),rewrite([7,6,8,5])]. given #7185 (W,wt=55): 7040 P([0,1,1,1,0,1,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,53,a,b,933,a),rewrite([7,6,5])]. given #7186 (W,wt=55): 7041 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,665,a,b,7034,a),rewrite([12,11,13,10])]. given #7187 (W,wt=55): 7042 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,657,a,b,7034,a),rewrite([12,11,13,10])]. given #7188 (W,wt=55): 7043 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,648,a,b,7034,a),rewrite([12,11,13,10])]. given #7189 (W,wt=55): 7044 P([1,1,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,667,a,b,934,a),rewrite([12,13,11,10])]. given #7190 (W,wt=55): 7045 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,665,a,b,934,a),rewrite([12,11,13,10])]. given #7191 (W,wt=0): 17943 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,83,a,b,7045,a),rewrite([6,7,5])]. given #7192 (W,wt=55): 7046 P([1,1,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,659,a,b,934,a),rewrite([12,13,11,10])]. given #7193 (W,wt=55): 7047 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,657,a,b,934,a),rewrite([12,11,13,10])]. given #7194 (W,wt=55): 7048 P([1,1,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,315,a,b,934,a),rewrite([12,13,11,10])]. given #7195 (W,wt=55): 7049 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,314,a,b,934,a),rewrite([12,11,13,10])]. given #7196 (W,wt=55): 7050 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,313,a,b,934,a),rewrite([12,11,13,10])]. given #7197 (W,wt=55): 7051 P([1,1,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,934,a),rewrite([12,13,11,10])]. given #7198 (W,wt=55): 7052 P([1,1,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,934,a),rewrite([12,13,11,10])]. given #7199 (W,wt=55): 7053 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,666,a,b,934,a),rewrite([7,6,5])]. given #7200 (W,wt=55): 7054 P([0,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,665,a,b,934,a),rewrite([7,6,8,5])]. given #7201 (W,wt=55): 7055 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,664,a,b,934,a),rewrite([7,6,5])]. given #7202 (W,wt=55): 7056 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,651,a,b,934,a),rewrite([7,8,6,5])]. given #7203 (W,wt=55): 7057 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,649,a,b,934,a),rewrite([7,6,8,5])]. given #7204 (W,wt=55): 7058 P([0,1,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,648,a,b,934,a),rewrite([7,6,8,5])]. given #7205 (W,wt=55): 7059 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,647,a,b,934,a),rewrite([7,6,8,5])]. given #7206 (W,wt=55): 7060 P([1,1,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,305,a,b,934,a),rewrite([6,7,5])]. given #7207 (W,wt=55): 7061 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,667,a,b,935,a),rewrite([12,13,11,10])]. given #7208 (W,wt=55): 7062 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,664,a,b,935,a),rewrite([12,11,13,10])]. given #7209 (W,wt=55): 7063 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,659,a,b,935,a),rewrite([12,13,11,10])]. given #7210 (W,wt=55): 7064 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,656,a,b,935,a),rewrite([12,11,13,10])]. given #7211 (W,wt=55): 7065 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,314,a,b,935,a),rewrite([12,11,13,10])]. given #7212 (W,wt=55): 7066 P([1,1,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,312,a,b,935,a),rewrite([12,11,13,10])]. given #7213 (W,wt=55): 7067 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,665,a,b,935,a),rewrite([7,6,5])]. given #7214 (W,wt=55): 7068 P([0,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,664,a,b,935,a),rewrite([7,6,8,5])]. given #7215 (W,wt=55): 7069 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,651,a,b,935,a),rewrite([7,8,6,5])]. given #7216 (W,wt=55): 7070 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,648,a,b,935,a),rewrite([7,6,8,5])]. given #7217 (W,wt=55): 7071 P([0,1,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,647,a,b,935,a),rewrite([7,6,8,5])]. given #7218 (W,wt=55): 7072 P([1,1,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,305,a,b,935,a),rewrite([6,7,5])]. given #7219 (W,wt=55): 7073 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,79,a,b,935,a),rewrite([7,8,6,5])]. given #7220 (W,wt=55): 7074 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,667,a,b,936,a),rewrite([12,13,11,10])]. given #7221 (W,wt=55): 7075 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,666,a,b,936,a),rewrite([12,13,11,10])]. given #7222 (W,wt=55): 7076 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,665,a,b,936,a),rewrite([12,11,13,10])]. given #7223 (W,wt=0): 17987 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,83,a,b,7076,a),rewrite([6,7,5])]. given #7224 (W,wt=55): 7077 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,664,a,b,936,a),rewrite([12,11,13,10])]. given #7225 (W,wt=55): 7078 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,662,a,b,936,a),rewrite([12,13,11,10])]. given #7226 (W,wt=55): 7079 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,661,a,b,936,a),rewrite([12,13,11,10])]. given #7227 (W,wt=55): 7080 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,659,a,b,936,a),rewrite([12,13,11,10])]. given #7228 (W,wt=55): 7081 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,658,a,b,936,a),rewrite([12,13,11,10])]. given #7229 (W,wt=55): 7082 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,657,a,b,936,a),rewrite([12,11,13,10])]. given #7230 (W,wt=55): 7083 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,656,a,b,936,a),rewrite([12,11,13,10])]. given #7231 (W,wt=55): 7084 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,654,a,b,936,a),rewrite([12,13,11,10])]. given #7232 (W,wt=55): 7085 P([1,0,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,653,a,b,936,a),rewrite([12,13,11,10])]. given #7233 (W,wt=55): 7086 P([1,1,0,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,650,a,b,936,a),rewrite([12,11,13,10])]. given #7234 (W,wt=55): 7087 P([1,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,315,a,b,936,a),rewrite([12,13,11,10])]. given #7235 (W,wt=55): 7088 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,314,a,b,936,a),rewrite([12,13,11,10])]. given #7236 (W,wt=55): 7089 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,313,a,b,936,a),rewrite([12,11,13,10])]. given #7237 (W,wt=55): 7090 P([1,1,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,312,a,b,936,a),rewrite([12,11,13,10])]. given #7238 (W,wt=55): 7091 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,311,a,b,936,a),rewrite([12,11,13,10])]. given #7239 (W,wt=55): 7092 P([1,1,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,310,a,b,936,a),rewrite([12,11,13,10])]. given #7240 (W,wt=55): 7093 P([1,0,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,309,a,b,936,a),rewrite([12,13,11,10])]. given #7241 (W,wt=55): 7094 P([1,0,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,307,a,b,936,a),rewrite([12,13,11,10])]. given #7242 (W,wt=55): 7095 P([1,0,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,306,a,b,936,a),rewrite([12,13,11,10])]. given #7243 (W,wt=55): 7096 P([1,0,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,936,a),rewrite([12,13,11,10])]. given #7244 (W,wt=55): 7097 P([1,0,0,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,936,a),rewrite([12,13,11,10])]. given #7245 (W,wt=55): 7098 P([1,0,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,936,a),rewrite([12,13,11,10])]. given #7246 (W,wt=55): 7099 P([1,0,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,936,a),rewrite([12,13,11,10])]. given #7247 (W,wt=55): 7100 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,936,a),rewrite([12,11,13,10])]. given #7248 (W,wt=55): 7101 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,651,a,b,936,a),rewrite([7,8,6,5])]. given #7249 (W,wt=55): 7102 P([1,0,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,305,a,b,936,a),rewrite([6,7,5])]. given #7250 (W,wt=55): 7103 P([1,0,1,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,667,a,b,937,a),rewrite([12,13,11,10])]. given #7251 (W,wt=55): 7104 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,666,a,b,937,a),rewrite([12,13,11,10])]. given #7252 (W,wt=55): 7105 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,665,a,b,937,a),rewrite([12,11,13,10])]. given #7253 (W,wt=0): 18029 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,83,a,b,7105,a),rewrite([6,7,5])]. given #7254 (W,wt=55): 7106 P([1,0,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,662,a,b,937,a),rewrite([12,13,11,10])]. given #7255 (W,wt=55): 7107 P([1,0,1,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,659,a,b,937,a),rewrite([12,13,11,10])]. given #7256 (W,wt=55): 7108 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,658,a,b,937,a),rewrite([12,13,11,10])]. given #7257 (W,wt=55): 7109 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,657,a,b,937,a),rewrite([12,11,13,10])]. given #7258 (W,wt=55): 7110 P([1,0,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,654,a,b,937,a),rewrite([12,13,11,10])]. given #7259 (W,wt=55): 7112 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,314,a,b,937,a),rewrite([12,13,11,10])]. given #7260 (W,wt=55): 7113 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,313,a,b,937,a),rewrite([12,11,13,10])]. given #7261 (W,wt=55): 7114 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,312,a,b,937,a),rewrite([12,11,13,10])]. given #7262 (W,wt=55): 7115 P([1,0,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,309,a,b,937,a),rewrite([12,13,11,10])]. given #7263 (W,wt=55): 7116 P([1,0,1,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,937,a),rewrite([12,13,11,10])]. given #7264 (W,wt=55): 7117 P([1,0,1,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,937,a),rewrite([12,13,11,10])]. given #7265 (W,wt=55): 7118 P([0,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,666,a,b,937,a),rewrite([7,8,6,5])]. given #7266 (W,wt=55): 7119 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,651,a,b,937,a),rewrite([7,8,6,5])]. given #7267 (W,wt=55): 7120 P([0,0,1,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,649,a,b,937,a),rewrite([7,8,6,5])]. given #7268 (W,wt=55): 7121 P([1,0,1,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,305,a,b,937,a),rewrite([6,7,5])]. given #7269 (W,wt=55): 7122 P([0,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,666,a,b,7111,a),rewrite([7,8,6,5])]. given #7270 (W,wt=55): 7123 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,651,a,b,7111,a),rewrite([7,8,6,5])]. given #7271 (W,wt=55): 7124 P([0,0,1,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,649,a,b,7111,a),rewrite([7,8,6,5])]. given #7272 (W,wt=55): 7125 P([1,0,1,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,305,a,b,7111,a),rewrite([6,7,5])]. given #7273 (W,wt=55): 7126 P([1,0,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,667,a,b,938,a),rewrite([12,13,11,10])]. given #7274 (W,wt=55): 7127 P([1,0,1,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,666,a,b,938,a),rewrite([12,13,11,10])]. given #7275 (W,wt=55): 7128 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,664,a,b,938,a),rewrite([12,11,13,10])]. given #7276 (W,wt=55): 7129 P([1,0,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,661,a,b,938,a),rewrite([12,13,11,10])]. given #7277 (W,wt=55): 7130 P([1,0,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,659,a,b,938,a),rewrite([12,13,11,10])]. given #7278 (W,wt=55): 7131 P([1,0,1,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,658,a,b,938,a),rewrite([12,13,11,10])]. given #7279 (W,wt=55): 7132 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,656,a,b,938,a),rewrite([12,11,13,10])]. given #7280 (W,wt=55): 7133 P([1,0,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,653,a,b,938,a),rewrite([12,13,11,10])]. given #7281 (W,wt=55): 7134 P([1,0,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,314,a,b,938,a),rewrite([12,13,11,10])]. given #7282 (W,wt=55): 7135 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,313,a,b,938,a),rewrite([12,11,13,10])]. given #7283 (W,wt=55): 7136 P([1,1,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,312,a,b,938,a),rewrite([12,11,13,10])]. given #7284 (W,wt=55): 7137 P([1,0,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,307,a,b,938,a),rewrite([12,13,11,10])]. given #7285 (W,wt=55): 7138 P([0,0,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,651,a,b,938,a),rewrite([7,8,6,5])]. given #7286 (W,wt=55): 7139 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,648,a,b,938,a),rewrite([7,6,8,5])]. given #7287 (W,wt=55): 7140 P([1,0,0,0,1,0,0,0],[[0,0,0,0,0,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,305,a,b,938,a),rewrite([6,7,5])]. given #7288 (W,wt=55): 7141 P([1,1,0,0,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,667,a,b,939,a),rewrite([12,13,11,10])]. given #7289 (W,wt=55): 7142 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,665,a,b,939,a),rewrite([12,11,13,10])]. given #7290 (W,wt=0): 18076 P([1,1,1,1,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,83,a,b,7142,a),rewrite([6,7,5])]. given #7291 (W,wt=55): 7143 P([1,1,0,1,1,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,664,a,b,939,a),rewrite([12,11,13,10])]. given #7292 (W,wt=55): 7144 P([1,1,0,0,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,659,a,b,939,a),rewrite([12,13,11,10])]. given #7293 (W,wt=55): 7145 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,657,a,b,939,a),rewrite([12,11,13,10])]. given #7294 (W,wt=55): 7146 P([1,1,0,1,1,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,656,a,b,939,a),rewrite([12,11,13,10])]. given #7295 (W,wt=55): 7147 P([1,1,0,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,650,a,b,939,a),rewrite([12,11,13,10])]. given #7296 (W,wt=55): 7148 P([1,1,0,0,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,315,a,b,939,a),rewrite([12,13,11,10])]. given #7297 (W,wt=55): 7149 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,314,a,b,939,a),rewrite([12,11,13,10])]. given #7298 (W,wt=55): 7150 P([1,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,313,a,b,939,a),rewrite([12,11,13,10])]. given #7299 (W,wt=55): 7151 P([1,1,0,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,312,a,b,939,a),rewrite([12,11,13,10])]. given #7300 (W,wt=55): 7152 P([1,1,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,310,a,b,939,a),rewrite([12,11,13,10])]. given #7301 (W,wt=55): 7153 P([1,1,0,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,939,a),rewrite([12,13,11,10])]. given #7302 (W,wt=55): 7154 P([1,1,0,0,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,939,a),rewrite([12,13,11,10])]. given #7303 (W,wt=55): 7155 P([1,1,0,0,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,939,a),rewrite([12,13,11,10])]. given #7304 (W,wt=55): 7156 P([0,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,665,a,b,939,a),rewrite([7,6,8,5])]. given #7305 (W,wt=55): 7157 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,651,a,b,939,a),rewrite([7,8,6,5])]. given #7306 (W,wt=55): 7158 P([0,1,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,648,a,b,939,a),rewrite([7,6,8,5])]. given #7307 (W,wt=55): 7159 P([1,1,0,0,0,0,0,0],[[0,0,0,0,0,1,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,305,a,b,939,a),rewrite([6,7,5])]. given #7308 (W,wt=55): 7160 P([1,1,1,1,0,1,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,665,a,b,940,a),rewrite([12,11,13,10])]. given #7309 (W,wt=55): 7161 P([1,1,1,1,0,0,1,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,657,a,b,940,a),rewrite([12,11,13,10])]. given #7310 (W,wt=55): 7162 P([1,1,1,1,1,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,315,a,b,940,a),rewrite([12,11,13,10])]. given #7311 (W,wt=55): 7163 P([0,0,0,0,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,651,a,b,940,a),rewrite([7,6,8,5])]. given #7312 (W,wt=55): 7164 P([0,0,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,649,a,b,940,a),rewrite([7,6,8,5])]. given #7313 (W,wt=55): 7165 P([0,1,1,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,648,a,b,940,a),rewrite([7,6,8,5])]. given #7314 (W,wt=55): 7166 P([0,1,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,647,a,b,940,a),rewrite([7,6,8,5])]. given #7315 (W,wt=55): 7167 P([0,0,0,1,0,0,1,0],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,644,a,b,940,a),rewrite([7,6,8,5])]. given #7316 (W,wt=55): 7169 P([1,1,1,1,0,1,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,665,a,b,7168,a),rewrite([12,11,13,10])]. given #7317 (W,wt=55): 7170 P([1,1,1,1,0,0,0,1],[[0,0,0,0,0,1,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,657,a,b,7168,a),rewrite([12,11,13,10])]. given #7318 (W,wt=55): 7171 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,707,a,b,941,a),rewrite([12,13,11,10])]. given #7319 (W,wt=55): 7172 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,700,a,b,941,a),rewrite([12,11,13,10])]. given #7320 (W,wt=55): 7173 P([1,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,698,a,b,941,a),rewrite([12,11,13,10])]. given #7321 (W,wt=55): 7174 P([1,0,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,697,a,b,941,a),rewrite([12,13,11,10])]. given #7322 (W,wt=55): 7175 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,695,a,b,941,a),rewrite([12,13,11,10])]. given #7323 (W,wt=55): 7176 P([1,1,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,329,a,b,941,a),rewrite([12,11,13,10])]. given #7324 (W,wt=55): 7177 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,941,a),rewrite([12,13,11,10])]. given #7325 (W,wt=55): 7178 P([0,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,707,a,b,941,a),rewrite([7,8,6,5])]. given #7326 (W,wt=55): 7179 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,706,a,b,941,a),rewrite([7,6,8,5])]. given #7327 (W,wt=55): 7180 P([0,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,698,a,b,941,a),rewrite([7,6,8,5])]. given #7328 (W,wt=55): 7181 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,686,a,b,941,a),rewrite([7,6,8,5])]. given #7329 (W,wt=55): 7182 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,324,a,b,941,a),rewrite([6,8,7,5])]. given #7330 (W,wt=55): 7183 P([1,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,322,a,b,941,a),rewrite([6,8,7,5])]. given #7331 (W,wt=55): 7184 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,707,a,b,942,a),rewrite([12,13,11,10])]. given #7332 (W,wt=55): 7185 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,706,a,b,942,a),rewrite([12,11,13,10])]. given #7333 (W,wt=55): 7186 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,700,a,b,942,a),rewrite([12,11,13,10])]. given #7334 (W,wt=55): 7187 P([1,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,698,a,b,942,a),rewrite([12,11,13,10])]. given #7335 (W,wt=55): 7188 P([1,0,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,697,a,b,942,a),rewrite([12,13,11,10])]. given #7336 (W,wt=55): 7189 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,695,a,b,942,a),rewrite([12,13,11,10])]. given #7337 (W,wt=55): 7190 P([1,1,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,690,a,b,942,a),rewrite([12,11,13,10])]. given #7338 (W,wt=55): 7191 P([1,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,681,a,b,942,a),rewrite([12,11,13,10])]. given #7339 (W,wt=55): 7192 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,679,a,b,942,a),rewrite([12,11,13,10])]. given #7340 (W,wt=55): 7193 P([1,1,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,329,a,b,942,a),rewrite([12,11,13,10])]. given #7341 (W,wt=55): 7195 P([1,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,327,a,b,942,a),rewrite([12,13,11,10])]. given #7342 (W,wt=55): 7196 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,79,a,b,942,a),rewrite([12,13,11,10])]. given #7343 (W,wt=55): 7197 P([1,0,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,65,a,b,942,a),rewrite([12,13,11,10])]. given #7344 (W,wt=55): 7198 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,63,a,b,942,a),rewrite([12,13,11,10])]. given #7345 (W,wt=55): 7199 P([1,0,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,60,a,b,942,a),rewrite([12,13,11,10])]. given #7346 (W,wt=55): 7200 P([1,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,55,a,b,942,a),rewrite([12,13,11,10])]. given #7347 (W,wt=55): 7201 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,707,a,b,942,a),rewrite([7,8,6,5])]. given #7348 (W,wt=55): 7202 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,698,a,b,942,a),rewrite([7,6,8,5])]. given #7349 (W,wt=55): 7203 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,324,a,b,942,a),rewrite([6,8,7,5])]. given #7350 (W,wt=55): 7204 P([1,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,322,a,b,942,a),rewrite([6,8,7,5])]. given #7351 (W,wt=55): 7205 P([0,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,706,a,b,7194,a),rewrite([7,6,8,5])]. given #7352 (W,wt=55): 7206 P([0,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,698,a,b,7194,a),rewrite([7,6,8,5])]. given #7353 (W,wt=55): 7207 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,324,a,b,7194,a),rewrite([6,8,7,5])]. given #7354 (W,wt=55): 7208 P([1,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,322,a,b,7194,a),rewrite([6,8,7,5])]. given #7355 (W,wt=55): 7209 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,707,a,b,943,a),rewrite([12,13,11,10])]. given #7356 (W,wt=55): 7210 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,695,a,b,943,a),rewrite([12,13,11,10])]. given #7357 (W,wt=55): 7211 P([1,1,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,329,a,b,943,a),rewrite([12,11,13,10])]. given #7358 (W,wt=55): 7212 P([0,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,707,a,b,943,a),rewrite([7,8,6,5])]. given #7359 (W,wt=55): 7213 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,706,a,b,943,a),rewrite([7,6,8,5])]. given #7360 (W,wt=55): 7214 P([0,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,703,a,b,943,a),rewrite([7,6,8,5])]. given #7361 (W,wt=55): 7215 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,702,a,b,943,a),rewrite([7,6,8,5])]. given #7362 (W,wt=55): 7216 P([0,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,698,a,b,943,a),rewrite([7,6,8,5])]. given #7363 (W,wt=55): 7217 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,686,a,b,943,a),rewrite([7,6,8,5])]. given #7364 (W,wt=55): 7218 P([0,0,1,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,685,a,b,943,a),rewrite([7,6,8,5])]. given #7365 (W,wt=55): 7219 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,684,a,b,943,a),rewrite([7,6,8,5])]. given #7366 (W,wt=55): 7220 P([1,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,324,a,b,943,a),rewrite([6,8,7,5])]. given #7367 (W,wt=55): 7221 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,323,a,b,943,a),rewrite([6,7,5])]. given #7368 (W,wt=55): 7222 P([1,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,322,a,b,943,a),rewrite([6,8,7,5])]. given #7369 (W,wt=55): 7223 P([1,0,1,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,319,a,b,943,a),rewrite([6,8,7,5])]. given #7370 (W,wt=55): 7224 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,706,a,b,944,a),rewrite([12,11,13,10])]. given #7371 (W,wt=55): 7225 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,703,a,b,944,a),rewrite([12,11,13,10])]. given #7372 (W,wt=55): 7226 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,702,a,b,944,a),rewrite([12,11,13,10])]. given #7373 (W,wt=55): 7227 P([1,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,700,a,b,944,a),rewrite([12,11,13,10])]. given #7374 (W,wt=55): 7228 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,698,a,b,944,a),rewrite([12,11,13,10])]. given #7375 (W,wt=55): 7229 P([1,1,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,690,a,b,944,a),rewrite([12,11,13,10])]. given #7376 (W,wt=55): 7230 P([1,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,686,a,b,944,a),rewrite([12,11,13,10])]. given #7377 (W,wt=55): 7231 P([1,1,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,329,a,b,944,a),rewrite([12,11,13,10])]. given #7378 (W,wt=0): 18223 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,7231,a),rewrite([6,7,8,5])]. given #7379 (W,wt=55): 7232 P([0,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,707,a,b,944,a),rewrite([7,6,5])]. given #7380 (W,wt=55): 7233 P([0,1,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,706,a,b,944,a),rewrite([7,6,8,5])]. given #7381 (W,wt=55): 7234 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,700,a,b,944,a),rewrite([7,6,8,5])]. given #7382 (W,wt=55): 7235 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,695,a,b,944,a),rewrite([7,6,8,5])]. given #7383 (W,wt=55): 7236 P([1,1,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,325,a,b,944,a),rewrite([6,7,5])]. given #7384 (W,wt=55): 7237 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,324,a,b,944,a),rewrite([6,7,8,5])]. given #7385 (W,wt=55): 7238 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,944,a),rewrite([6,7,8,5])]. given #7386 (W,wt=55): 7239 P([0,0,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,944,a),rewrite([7,8,6,5])]. given #7387 (W,wt=55): 7240 P([0,1,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,944,a),rewrite([7,6,5])]. given #7388 (W,wt=55): 7241 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,707,a,b,945,a),rewrite([12,13,11,10])]. given #7389 (W,wt=55): 7242 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,703,a,b,945,a),rewrite([12,11,13,10])]. given #7390 (W,wt=55): 7243 P([1,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,700,a,b,945,a),rewrite([12,11,13,10])]. given #7391 (W,wt=55): 7244 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,698,a,b,945,a),rewrite([12,11,13,10])]. given #7392 (W,wt=55): 7245 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,697,a,b,945,a),rewrite([12,13,11,10])]. given #7393 (W,wt=55): 7246 P([1,0,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,695,a,b,945,a),rewrite([12,13,11,10])]. given #7394 (W,wt=55): 7247 P([1,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,687,a,b,945,a),rewrite([12,13,11,10])]. given #7395 (W,wt=55): 7248 P([1,1,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,329,a,b,945,a),rewrite([12,11,13,10])]. given #7396 (W,wt=0): 18270 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,7248,a),rewrite([6,7,8,5])]. given #7397 (W,wt=55): 7249 P([0,0,1,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,707,a,b,945,a),rewrite([7,8,6,5])]. given #7398 (W,wt=55): 7250 P([0,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,706,a,b,945,a),rewrite([7,6,5])]. given #7399 (W,wt=55): 7251 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,700,a,b,945,a),rewrite([7,6,8,5])]. given #7400 (W,wt=55): 7252 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,681,a,b,945,a),rewrite([7,6,8,5])]. given #7401 (W,wt=55): 7253 P([1,0,1,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,325,a,b,945,a),rewrite([6,7,5])]. given #7402 (W,wt=55): 7254 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,324,a,b,945,a),rewrite([6,7,8,5])]. given #7403 (W,wt=55): 7255 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,945,a),rewrite([6,7,8,5])]. given #7404 (W,wt=55): 7256 P([0,0,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,945,a),rewrite([7,8,6,5])]. given #7405 (W,wt=55): 7257 P([0,0,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,53,a,b,945,a),rewrite([7,6,5])]. given #7406 (W,wt=55): 7258 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,707,a,b,946,a),rewrite([12,13,11,10])]. given #7407 (W,wt=55): 7259 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,706,a,b,946,a),rewrite([12,11,13,10])]. given #7408 (W,wt=55): 7260 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,703,a,b,946,a),rewrite([12,11,13,10])]. given #7409 (W,wt=55): 7261 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,702,a,b,946,a),rewrite([12,11,13,10])]. given #7410 (W,wt=55): 7262 P([1,1,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,700,a,b,946,a),rewrite([12,11,13,10])]. given #7411 (W,wt=55): 7263 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,698,a,b,946,a),rewrite([12,11,13,10])]. given #7412 (W,wt=55): 7264 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,697,a,b,946,a),rewrite([12,13,11,10])]. given #7413 (W,wt=55): 7265 P([1,0,1,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,695,a,b,946,a),rewrite([12,13,11,10])]. given #7414 (W,wt=55): 7266 P([1,1,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,690,a,b,946,a),rewrite([12,11,13,10])]. given #7415 (W,wt=55): 7267 P([1,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,687,a,b,946,a),rewrite([12,13,11,10])]. given #7416 (W,wt=55): 7268 P([1,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,686,a,b,946,a),rewrite([12,11,13,10])]. given #7417 (W,wt=55): 7269 P([1,1,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,329,a,b,946,a),rewrite([12,11,13,10])]. given #7418 (W,wt=0): 18333 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,7269,a),rewrite([6,7,8,5])]. given #7419 (W,wt=55): 7270 P([1,1,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,328,a,b,946,a),rewrite([12,11,13,10])]. given #7420 (W,wt=55): 7271 P([1,0,1,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,327,a,b,946,a),rewrite([12,13,11,10])]. given #7421 (W,wt=55): 7272 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,946,a),rewrite([12,13,11,10])]. given #7422 (W,wt=55): 7273 P([1,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,946,a),rewrite([12,13,11,10])]. given #7423 (W,wt=55): 7274 P([1,0,0,1,1,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,946,a),rewrite([12,13,11,10])]. given #7424 (W,wt=55): 7275 P([1,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,55,a,b,946,a),rewrite([12,13,11,10])]. given #7425 (W,wt=55): 7276 P([0,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,707,a,b,946,a),rewrite([7,8,6,5])]. given #7426 (W,wt=55): 7277 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,700,a,b,946,a),rewrite([7,6,8,5])]. given #7427 (W,wt=55): 7278 P([1,0,0,0,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,325,a,b,946,a),rewrite([6,7,5])]. given #7428 (W,wt=55): 7279 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,324,a,b,946,a),rewrite([6,7,8,5])]. given #7429 (W,wt=55): 7280 P([1,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,323,a,b,946,a),rewrite([6,7,8,5])]. given #7430 (W,wt=55): 7281 P([0,0,0,1,1,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,68,a,b,946,a),rewrite([7,8,6,5])]. given #7431 (W,wt=55): 7282 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,707,a,b,947,a),rewrite([12,13,11,10])]. given #7432 (W,wt=55): 7283 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,703,a,b,947,a),rewrite([12,11,13,10])]. given #7433 (W,wt=55): 7284 P([1,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,695,a,b,947,a),rewrite([12,13,11,10])]. given #7434 (W,wt=55): 7285 P([1,1,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,329,a,b,947,a),rewrite([12,11,13,10])]. given #7435 (W,wt=0): 18378 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,7285,a),rewrite([6,7,8,5])]. given #7436 (W,wt=55): 7286 P([0,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,707,a,b,947,a),rewrite([7,8,6,5])]. given #7437 (W,wt=55): 7287 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,706,a,b,947,a),rewrite([7,6,5])]. given #7438 (W,wt=55): 7288 P([0,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,703,a,b,947,a),rewrite([7,6,8,5])]. given #7439 (W,wt=55): 7289 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,702,a,b,947,a),rewrite([7,6,8,5])]. given #7440 (W,wt=55): 7290 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,700,a,b,947,a),rewrite([7,6,8,5])]. given #7441 (W,wt=55): 7291 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,681,a,b,947,a),rewrite([7,6,8,5])]. given #7442 (W,wt=55): 7292 P([0,0,1,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,680,a,b,947,a),rewrite([7,6,8,5])]. given #7443 (W,wt=55): 7293 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,679,a,b,947,a),rewrite([7,6,8,5])]. given #7444 (W,wt=55): 7295 P([1,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,324,a,b,947,a),rewrite([6,7,8,5])]. given #7445 (W,wt=55): 7296 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,947,a),rewrite([6,7,8,5])]. given #7446 (W,wt=55): 7297 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,322,a,b,947,a),rewrite([6,7,5])]. given #7447 (W,wt=55): 7298 P([1,0,1,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,317,a,b,947,a),rewrite([6,7,8,5])]. given #7448 (W,wt=55): 7299 P([0,0,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,947,a),rewrite([7,8,6,5])]. given #7449 (W,wt=55): 7300 P([0,0,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,947,a),rewrite([7,6,5])]. given #7450 (W,wt=55): 7301 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,707,a,b,7294,a),rewrite([12,13,11,10])]. given #7451 (W,wt=55): 7302 P([1,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,703,a,b,7294,a),rewrite([12,11,13,10])]. given #7452 (W,wt=55): 7303 P([1,0,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,689,a,b,7294,a),rewrite([12,13,11,10])]. given #7453 (W,wt=55): 7304 P([1,1,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,329,a,b,7294,a),rewrite([12,11,13,10])]. given #7454 (W,wt=55): 7305 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,706,a,b,948,a),rewrite([12,11,13,10])]. given #7455 (W,wt=55): 7306 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,700,a,b,948,a),rewrite([12,11,13,10])]. given #7456 (W,wt=55): 7307 P([1,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,690,a,b,948,a),rewrite([12,11,13,10])]. given #7457 (W,wt=55): 7308 P([1,1,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,329,a,b,948,a),rewrite([12,11,13,10])]. given #7458 (W,wt=0): 18406 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,7308,a),rewrite([6,7,8,5])]. given #7459 (W,wt=55): 7309 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,707,a,b,948,a),rewrite([7,6,5])]. given #7460 (W,wt=55): 7310 P([0,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,706,a,b,948,a),rewrite([7,6,8,5])]. given #7461 (W,wt=55): 7311 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,700,a,b,948,a),rewrite([7,6,8,5])]. given #7462 (W,wt=55): 7312 P([0,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,698,a,b,948,a),rewrite([7,6,8,5])]. given #7463 (W,wt=55): 7313 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,697,a,b,948,a),rewrite([7,6,8,5])]. given #7464 (W,wt=55): 7314 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,695,a,b,948,a),rewrite([7,6,8,5])]. given #7465 (W,wt=55): 7315 P([0,1,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,694,a,b,948,a),rewrite([7,6,8,5])]. given #7466 (W,wt=55): 7316 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,693,a,b,948,a),rewrite([7,6,8,5])]. given #7467 (W,wt=55): 7318 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,324,a,b,948,a),rewrite([6,7,5])]. given #7468 (W,wt=55): 7319 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,948,a),rewrite([6,7,8,5])]. given #7469 (W,wt=55): 7320 P([1,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,322,a,b,948,a),rewrite([6,7,8,5])]. given #7470 (W,wt=55): 7321 P([1,1,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,321,a,b,948,a),rewrite([6,7,8,5])]. given #7471 (W,wt=55): 7322 P([0,0,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,948,a),rewrite([7,8,6,5])]. given #7472 (W,wt=55): 7323 P([0,1,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,948,a),rewrite([7,6,5])]. given #7473 (W,wt=55): 7324 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,706,a,b,7317,a),rewrite([12,11,13,10])]. given #7474 (W,wt=55): 7325 P([1,1,1,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,698,a,b,7317,a),rewrite([12,11,13,10])]. given #7475 (W,wt=55): 7326 P([1,1,0,0,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,690,a,b,7317,a),rewrite([12,11,13,10])]. given #7476 (W,wt=55): 7327 P([1,1,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,329,a,b,7317,a),rewrite([12,11,13,10])]. given #7477 (W,wt=55): 7328 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,706,a,b,949,a),rewrite([12,11,13,10])]. given #7478 (W,wt=55): 7329 P([1,1,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,329,a,b,949,a),rewrite([12,11,13,10])]. given #7479 (W,wt=0): 18435 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,7329,a),rewrite([6,7,5])]. given #7480 (W,wt=55): 7330 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,707,a,b,949,a),rewrite([7,6,5])]. given #7481 (W,wt=55): 7331 P([0,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,706,a,b,949,a),rewrite([7,6,8,5])]. given #7482 (W,wt=55): 7332 P([0,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,703,a,b,949,a),rewrite([7,6,5])]. given #7483 (W,wt=55): 7333 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,700,a,b,949,a),rewrite([7,6,5])]. given #7484 (W,wt=55): 7334 P([0,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,698,a,b,949,a),rewrite([7,6,5])]. given #7485 (W,wt=55): 7335 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,697,a,b,949,a),rewrite([7,6,5])]. given #7486 (W,wt=55): 7336 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,695,a,b,949,a),rewrite([7,6,5])]. given #7487 (W,wt=55): 7337 P([0,1,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,694,a,b,949,a),rewrite([7,6,5])]. given #7488 (W,wt=55): 7338 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,693,a,b,949,a),rewrite([7,6,5])]. given #7489 (W,wt=55): 7339 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,687,a,b,949,a),rewrite([7,6,5])]. given #7490 (W,wt=55): 7340 P([0,1,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,685,a,b,949,a),rewrite([7,6,5])]. given #7491 (W,wt=55): 7341 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,683,a,b,949,a),rewrite([7,6,5])]. given #7492 (W,wt=55): 7342 P([0,1,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,680,a,b,949,a),rewrite([7,6,5])]. given #7493 (W,wt=55): 7343 P([1,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,325,a,b,949,a),rewrite([6,7,5])]. given #7494 (W,wt=55): 7344 P([1,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,324,a,b,949,a),rewrite([6,7,5])]. given #7495 (W,wt=55): 7345 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,949,a),rewrite([6,7,5])]. given #7496 (W,wt=55): 7346 P([1,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,322,a,b,949,a),rewrite([6,7,5])]. given #7497 (W,wt=55): 7347 P([1,1,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,321,a,b,949,a),rewrite([6,7,5])]. given #7498 (W,wt=55): 7348 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,320,a,b,949,a),rewrite([6,7,5])]. given #7499 (W,wt=55): 7349 P([1,1,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,319,a,b,949,a),rewrite([6,7,5])]. given #7500 (W,wt=55): 7350 P([1,1,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,317,a,b,949,a),rewrite([6,7,5])]. given #7501 (W,wt=55): 7351 P([1,1,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,316,a,b,949,a),rewrite([6,7,5])]. given #7502 (W,wt=55): 7352 P([0,0,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,949,a),rewrite([7,8,6,5])]. given #7503 (W,wt=55): 7353 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,949,a),rewrite([7,8,6,5])]. given #7504 (W,wt=55): 7354 P([0,0,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,949,a),rewrite([7,8,6,5])]. given #7505 (W,wt=55): 7355 P([0,1,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,949,a),rewrite([7,6,8,5])]. given #7506 (W,wt=55): 7356 P([0,1,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,949,a),rewrite([7,6,5])]. given #7507 (W,wt=55): 7357 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,707,a,b,950,a),rewrite([12,13,11,10])]. given #7508 (W,wt=55): 7358 P([1,1,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,329,a,b,950,a),rewrite([12,11,13,10])]. given #7509 (W,wt=0): 18470 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,7358,a),rewrite([6,7,5])]. given #7510 (W,wt=55): 7359 P([0,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,707,a,b,950,a),rewrite([7,8,6,5])]. given #7511 (W,wt=55): 7360 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,706,a,b,950,a),rewrite([7,6,5])]. given #7512 (W,wt=55): 7361 P([0,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,703,a,b,950,a),rewrite([7,6,5])]. given #7513 (W,wt=55): 7362 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,702,a,b,950,a),rewrite([7,6,5])]. given #7514 (W,wt=55): 7363 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,700,a,b,950,a),rewrite([7,6,5])]. given #7515 (W,wt=55): 7364 P([0,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,698,a,b,950,a),rewrite([7,6,5])]. given #7516 (W,wt=55): 7365 P([0,0,1,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,694,a,b,950,a),rewrite([7,6,5])]. given #7517 (W,wt=55): 7366 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,686,a,b,950,a),rewrite([7,6,5])]. given #7518 (W,wt=55): 7367 P([0,0,1,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,685,a,b,950,a),rewrite([7,6,5])]. given #7519 (W,wt=55): 7368 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,684,a,b,950,a),rewrite([7,6,5])]. given #7520 (W,wt=55): 7369 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,681,a,b,950,a),rewrite([7,6,5])]. given #7521 (W,wt=55): 7370 P([0,0,1,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,680,a,b,950,a),rewrite([7,6,5])]. given #7522 (W,wt=55): 7371 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,679,a,b,950,a),rewrite([7,6,5])]. given #7523 (W,wt=55): 7372 P([1,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,325,a,b,950,a),rewrite([6,7,5])]. given #7524 (W,wt=55): 7373 P([1,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,324,a,b,950,a),rewrite([6,7,5])]. given #7525 (W,wt=55): 7374 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,950,a),rewrite([6,7,5])]. given #7526 (W,wt=55): 7375 P([1,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,322,a,b,950,a),rewrite([6,7,5])]. given #7527 (W,wt=55): 7376 P([1,0,1,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,321,a,b,950,a),rewrite([6,7,5])]. given #7528 (W,wt=55): 7377 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,320,a,b,950,a),rewrite([6,7,5])]. given #7529 (W,wt=55): 7378 P([1,0,1,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,319,a,b,950,a),rewrite([6,7,5])]. given #7530 (W,wt=55): 7379 P([1,0,1,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,317,a,b,950,a),rewrite([6,7,5])]. given #7531 (W,wt=55): 7380 P([1,0,1,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,316,a,b,950,a),rewrite([6,7,5])]. given #7532 (W,wt=55): 7381 P([0,0,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,950,a),rewrite([7,8,6,5])]. given #7533 (W,wt=55): 7382 P([0,0,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,950,a),rewrite([7,8,6,5])]. given #7534 (W,wt=55): 7383 P([0,0,1,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,950,a),rewrite([7,8,6,5])]. given #7535 (W,wt=55): 7384 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,950,a),rewrite([7,8,6,5])]. given #7536 (W,wt=55): 7385 P([0,0,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,950,a),rewrite([7,6,5])]. given #7537 (W,wt=55): 7386 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,707,a,b,951,a),rewrite([12,13,11,10])]. given #7538 (W,wt=55): 7387 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,706,a,b,951,a),rewrite([12,11,13,10])]. given #7539 (W,wt=55): 7388 P([1,1,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,329,a,b,951,a),rewrite([12,11,13,10])]. given #7540 (W,wt=0): 18522 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,7388,a),rewrite([6,7,5])]. given #7541 (W,wt=55): 7389 P([1,1,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,328,a,b,951,a),rewrite([12,11,13,10])]. given #7542 (W,wt=55): 7390 P([1,0,1,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,327,a,b,951,a),rewrite([12,13,11,10])]. given #7543 (W,wt=55): 7391 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(3,a,79,a,b,951,a),rewrite([12,13,11,10])]. given #7544 (W,wt=55): 7392 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,707,a,b,951,a),rewrite([7,8,6,5])]. given #7545 (W,wt=55): 7393 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,703,a,b,951,a),rewrite([7,6,5])]. given #7546 (W,wt=55): 7394 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,700,a,b,951,a),rewrite([7,6,5])]. given #7547 (W,wt=55): 7395 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,698,a,b,951,a),rewrite([7,6,5])]. given #7548 (W,wt=55): 7396 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,694,a,b,951,a),rewrite([7,6,5])]. given #7549 (W,wt=55): 7397 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,685,a,b,951,a),rewrite([7,6,5])]. given #7550 (W,wt=55): 7398 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,680,a,b,951,a),rewrite([7,6,5])]. given #7551 (W,wt=55): 7399 P([1,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,325,a,b,951,a),rewrite([6,7,5])]. given #7552 (W,wt=55): 7400 P([1,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,324,a,b,951,a),rewrite([6,7,5])]. given #7553 (W,wt=55): 7401 P([1,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,323,a,b,951,a),rewrite([6,7,5])]. given #7554 (W,wt=55): 7402 P([1,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,322,a,b,951,a),rewrite([6,7,5])]. given #7555 (W,wt=55): 7403 P([1,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,321,a,b,951,a),rewrite([6,7,5])]. given #7556 (W,wt=55): 7404 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,320,a,b,951,a),rewrite([6,7,5])]. given #7557 (W,wt=55): 7405 P([1,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,319,a,b,951,a),rewrite([6,7,5])]. given #7558 (W,wt=55): 7406 P([1,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,317,a,b,951,a),rewrite([6,7,5])]. given #7559 (W,wt=55): 7407 P([1,0,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,316,a,b,951,a),rewrite([6,7,5])]. given #7560 (W,wt=55): 7408 P([0,0,0,1,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,951,a),rewrite([7,8,6,5])]. given #7561 (W,wt=55): 7409 P([0,0,0,1,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,951,a),rewrite([7,8,6,5])]. given #7562 (W,wt=55): 7410 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,706,a,b,952,a),rewrite([12,11,13,10])]. given #7563 (W,wt=55): 7411 P([1,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,703,a,b,952,a),rewrite([12,11,13,10])]. given #7564 (W,wt=55): 7412 P([1,1,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,702,a,b,952,a),rewrite([12,11,13,10])]. given #7565 (W,wt=55): 7413 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,700,a,b,952,a),rewrite([12,11,13,10])]. given #7566 (W,wt=55): 7414 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,681,a,b,952,a),rewrite([12,11,13,10])]. given #7567 (W,wt=55): 7415 P([1,1,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,329,a,b,952,a),rewrite([12,11,13,10])]. given #7568 (W,wt=55): 7416 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,952,a),rewrite([12,13,11,10])]. given #7569 (W,wt=55): 7417 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,707,a,b,952,a),rewrite([7,6,8,5])]. given #7570 (W,wt=55): 7418 P([0,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,706,a,b,952,a),rewrite([7,6,8,5])]. given #7571 (W,wt=55): 7419 P([0,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,703,a,b,952,a),rewrite([7,6,8,5])]. given #7572 (W,wt=55): 7420 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,687,a,b,952,a),rewrite([7,6,8,5])]. given #7573 (W,wt=55): 7421 P([1,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,324,a,b,952,a),rewrite([6,8,7,5])]. given #7574 (W,wt=55): 7422 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,323,a,b,952,a),rewrite([6,7,8,5])]. given #7575 (W,wt=55): 7423 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,707,a,b,953,a),rewrite([12,13,11,10])]. given #7576 (W,wt=55): 7424 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,706,a,b,953,a),rewrite([12,11,13,10])]. given #7577 (W,wt=55): 7425 P([1,1,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,703,a,b,953,a),rewrite([12,11,13,10])]. given #7578 (W,wt=55): 7426 P([1,1,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,702,a,b,953,a),rewrite([12,11,13,10])]. given #7579 (W,wt=55): 7427 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,700,a,b,953,a),rewrite([12,11,13,10])]. given #7580 (W,wt=55): 7428 P([1,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,695,a,b,953,a),rewrite([12,13,11,10])]. given #7581 (W,wt=55): 7429 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,693,a,b,953,a),rewrite([12,13,11,10])]. given #7582 (W,wt=55): 7430 P([1,0,1,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,689,a,b,953,a),rewrite([12,13,11,10])]. given #7583 (W,wt=55): 7431 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,681,a,b,953,a),rewrite([12,11,13,10])]. given #7584 (W,wt=55): 7432 P([1,1,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,329,a,b,953,a),rewrite([12,11,13,10])]. given #7585 (W,wt=55): 7433 P([1,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,328,a,b,953,a),rewrite([12,11,13,10])]. given #7586 (W,wt=55): 7435 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,79,a,b,953,a),rewrite([12,13,11,10])]. given #7587 (W,wt=55): 7436 P([1,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,953,a),rewrite([12,13,11,10])]. given #7588 (W,wt=55): 7437 P([1,0,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,65,a,b,953,a),rewrite([12,13,11,10])]. given #7589 (W,wt=55): 7438 P([1,0,0,0,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,953,a),rewrite([12,13,11,10])]. given #7590 (W,wt=55): 7439 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,58,a,b,953,a),rewrite([12,11,13,10])]. given #7591 (W,wt=55): 7440 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,707,a,b,953,a),rewrite([7,8,6,5])]. given #7592 (W,wt=55): 7441 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,703,a,b,953,a),rewrite([7,6,8,5])]. given #7593 (W,wt=55): 7442 P([1,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,324,a,b,953,a),rewrite([6,8,7,5])]. given #7594 (W,wt=55): 7443 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,323,a,b,953,a),rewrite([6,7,8,5])]. given #7595 (W,wt=55): 7444 P([0,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,707,a,b,7434,a),rewrite([7,8,6,5])]. given #7596 (W,wt=55): 7445 P([0,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,703,a,b,7434,a),rewrite([7,6,8,5])]. given #7597 (W,wt=55): 7446 P([1,0,1,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,324,a,b,7434,a),rewrite([6,8,7,5])]. given #7598 (W,wt=55): 7447 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,323,a,b,7434,a),rewrite([6,7,8,5])]. given #7599 (W,wt=55): 7448 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,706,a,b,954,a),rewrite([12,11,13,10])]. given #7600 (W,wt=55): 7449 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,681,a,b,954,a),rewrite([12,11,13,10])]. given #7601 (W,wt=55): 7450 P([1,1,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,329,a,b,954,a),rewrite([12,11,13,10])]. given #7602 (W,wt=55): 7451 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,707,a,b,954,a),rewrite([7,6,8,5])]. given #7603 (W,wt=55): 7452 P([0,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,706,a,b,954,a),rewrite([7,6,8,5])]. given #7604 (W,wt=55): 7453 P([0,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,703,a,b,954,a),rewrite([7,6,8,5])]. given #7605 (W,wt=55): 7454 P([0,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,698,a,b,954,a),rewrite([7,6,8,5])]. given #7606 (W,wt=55): 7455 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,697,a,b,954,a),rewrite([7,6,8,5])]. given #7607 (W,wt=55): 7456 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,687,a,b,954,a),rewrite([7,6,8,5])]. given #7608 (W,wt=55): 7457 P([0,1,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,685,a,b,954,a),rewrite([7,6,8,5])]. given #7609 (W,wt=55): 7458 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,683,a,b,954,a),rewrite([7,6,8,5])]. given #7610 (W,wt=55): 7459 P([1,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,324,a,b,954,a),rewrite([6,8,7,5])]. given #7611 (W,wt=55): 7460 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,323,a,b,954,a),rewrite([6,7,5])]. given #7612 (W,wt=55): 7461 P([1,1,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,322,a,b,954,a),rewrite([6,8,7,5])]. given #7613 (W,wt=55): 7462 P([1,1,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,319,a,b,954,a),rewrite([6,8,7,5])]. given #7614 (W,wt=55): 7463 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,706,a,b,955,a),rewrite([12,11,13,10])]. given #7615 (W,wt=55): 7464 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,703,a,b,955,a),rewrite([12,11,13,10])]. given #7616 (W,wt=55): 7465 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,702,a,b,955,a),rewrite([12,11,13,10])]. given #7617 (W,wt=55): 7466 P([1,1,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,329,a,b,955,a),rewrite([12,11,13,10])]. given #7618 (W,wt=0): 18668 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,7466,a),rewrite([6,7,8,5])]. given #7619 (W,wt=55): 7467 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,707,a,b,955,a),rewrite([7,6,5])]. given #7620 (W,wt=55): 7468 P([0,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,706,a,b,955,a),rewrite([7,6,8,5])]. given #7621 (W,wt=55): 7469 P([0,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,703,a,b,955,a),rewrite([7,6,8,5])]. given #7622 (W,wt=55): 7470 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,700,a,b,955,a),rewrite([7,6,8,5])]. given #7623 (W,wt=55): 7471 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,695,a,b,955,a),rewrite([7,6,8,5])]. given #7624 (W,wt=55): 7472 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,687,a,b,955,a),rewrite([7,6,8,5])]. given #7625 (W,wt=55): 7473 P([0,1,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,680,a,b,955,a),rewrite([7,6,8,5])]. given #7626 (W,wt=55): 7474 P([1,1,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,325,a,b,955,a),rewrite([6,7,5])]. given #7627 (W,wt=55): 7475 P([1,1,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,324,a,b,955,a),rewrite([6,7,8,5])]. given #7628 (W,wt=55): 7476 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,955,a),rewrite([6,7,8,5])]. given #7629 (W,wt=55): 7477 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,322,a,b,955,a),rewrite([6,7,5])]. given #7630 (W,wt=55): 7478 P([1,1,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,317,a,b,955,a),rewrite([6,7,8,5])]. given #7631 (W,wt=55): 7479 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,955,a),rewrite([7,8,6,5])]. given #7632 (W,wt=55): 7480 P([0,0,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,955,a),rewrite([7,8,6,5])]. given #7633 (W,wt=55): 7481 P([0,1,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,955,a),rewrite([7,6,5])]. given #7634 (W,wt=55): 7482 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,707,a,b,956,a),rewrite([12,13,11,10])]. given #7635 (W,wt=55): 7483 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,706,a,b,956,a),rewrite([12,11,13,10])]. given #7636 (W,wt=55): 7484 P([1,1,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,703,a,b,956,a),rewrite([12,11,13,10])]. given #7637 (W,wt=55): 7485 P([1,1,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,702,a,b,956,a),rewrite([12,11,13,10])]. given #7638 (W,wt=55): 7486 P([1,0,1,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,695,a,b,956,a),rewrite([12,13,11,10])]. given #7639 (W,wt=55): 7487 P([1,1,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,329,a,b,956,a),rewrite([12,11,13,10])]. given #7640 (W,wt=0): 18717 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,7487,a),rewrite([6,7,8,5])]. given #7641 (W,wt=55): 7488 P([1,1,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,328,a,b,956,a),rewrite([12,11,13,10])]. given #7642 (W,wt=55): 7489 P([1,0,1,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,327,a,b,956,a),rewrite([12,13,11,10])]. given #7643 (W,wt=0): 18728 P([1,0,1,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,325,a,b,7489,a),rewrite([6,7,5])]. given #7644 (W,wt=55): 7490 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,79,a,b,956,a),rewrite([12,13,11,10])]. given #7645 (W,wt=55): 7491 P([1,0,0,1,1,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,956,a),rewrite([12,13,11,10])]. given #7646 (W,wt=55): 7492 P([0,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,707,a,b,956,a),rewrite([7,8,6,5])]. given #7647 (W,wt=55): 7493 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,703,a,b,956,a),rewrite([7,6,8,5])]. given #7648 (W,wt=55): 7494 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,700,a,b,956,a),rewrite([7,6,8,5])]. given #7649 (W,wt=55): 7495 P([0,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,680,a,b,956,a),rewrite([7,6,8,5])]. given #7650 (W,wt=55): 7496 P([1,0,0,0,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,325,a,b,956,a),rewrite([6,7,5])]. given #7651 (W,wt=55): 7497 P([1,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,324,a,b,956,a),rewrite([6,7,8,5])]. given #7652 (W,wt=55): 7498 P([1,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,323,a,b,956,a),rewrite([6,7,8,5])]. given #7653 (W,wt=55): 7499 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,322,a,b,956,a),rewrite([6,7,5])]. given #7654 (W,wt=55): 7500 P([1,0,0,1,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,317,a,b,956,a),rewrite([6,7,8,5])]. given #7655 (W,wt=55): 7501 P([0,0,0,1,1,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,956,a),rewrite([7,8,6,5])]. given #7656 (W,wt=55): 7502 P([1,0,1,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,707,a,b,957,a),rewrite([12,13,11,10])]. given #7657 (W,wt=55): 7503 P([1,1,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,706,a,b,957,a),rewrite([12,11,13,10])]. given #7658 (W,wt=55): 7504 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,695,a,b,957,a),rewrite([12,13,11,10])]. given #7659 (W,wt=55): 7505 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,681,a,b,957,a),rewrite([12,11,13,10])]. given #7660 (W,wt=55): 7506 P([1,1,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,329,a,b,957,a),rewrite([12,11,13,10])]. given #7661 (W,wt=55): 7507 P([1,1,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,328,a,b,957,a),rewrite([12,11,13,10])]. given #7662 (W,wt=55): 7508 P([1,0,1,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,327,a,b,957,a),rewrite([12,13,11,10])]. given #7663 (W,wt=55): 7509 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,79,a,b,957,a),rewrite([12,13,11,10])]. given #7664 (W,wt=55): 7510 P([1,0,0,0,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(3,a,65,a,b,957,a),rewrite([12,13,11,10])]. given #7665 (W,wt=55): 7511 P([0,0,0,0,1,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,707,a,b,957,a),rewrite([7,8,6,5])]. given #7666 (W,wt=55): 7512 P([0,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,703,a,b,957,a),rewrite([7,6,8,5])]. given #7667 (W,wt=55): 7513 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,698,a,b,957,a),rewrite([7,6,8,5])]. given #7668 (W,wt=55): 7514 P([0,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,685,a,b,957,a),rewrite([7,6,8,5])]. given #7669 (W,wt=55): 7515 P([1,0,0,0,0,0,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,324,a,b,957,a),rewrite([6,8,7,5])]. given #7670 (W,wt=55): 7516 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,323,a,b,957,a),rewrite([6,7,5])]. given #7671 (W,wt=55): 7517 P([1,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,322,a,b,957,a),rewrite([6,8,7,5])]. given #7672 (W,wt=55): 7518 P([1,0,0,0,0,1,1,0],[[0,0,0,1,1,1,1,1],[0,1,1,1,0,0,0,1]:x]). [hyper(2,a,319,a,b,957,a),rewrite([6,8,7,5])]. given #7673 (W,wt=55): 7519 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,707,a,b,958,a),rewrite([12,13,11,10])]. given #7674 (W,wt=55): 7520 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,700,a,b,958,a),rewrite([12,11,13,10])]. given #7675 (W,wt=55): 7521 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,697,a,b,958,a),rewrite([12,13,11,10])]. given #7676 (W,wt=55): 7522 P([1,1,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(3,a,329,a,b,958,a),rewrite([12,11,13,10])]. given #7677 (W,wt=0): 18815 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,7522,a),rewrite([6,7,8,5])]. given #7678 (W,wt=55): 7523 P([0,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,707,a,b,958,a),rewrite([7,8,6,5])]. given #7679 (W,wt=55): 7524 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,706,a,b,958,a),rewrite([7,6,5])]. given #7680 (W,wt=55): 7525 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,700,a,b,958,a),rewrite([7,6,8,5])]. given #7681 (W,wt=55): 7526 P([0,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,698,a,b,958,a),rewrite([7,6,8,5])]. given #7682 (W,wt=55): 7527 P([0,0,1,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,694,a,b,958,a),rewrite([7,6,8,5])]. given #7683 (W,wt=55): 7528 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,686,a,b,958,a),rewrite([7,6,8,5])]. given #7684 (W,wt=55): 7529 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,681,a,b,958,a),rewrite([7,6,8,5])]. given #7685 (W,wt=55): 7530 P([1,0,1,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,325,a,b,958,a),rewrite([6,7,5])]. given #7686 (W,wt=55): 7531 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,324,a,b,958,a),rewrite([6,7,5])]. given #7687 (W,wt=55): 7532 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,958,a),rewrite([6,7,8,5])]. given #7688 (W,wt=55): 7533 P([1,0,1,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,322,a,b,958,a),rewrite([6,7,8,5])]. given #7689 (W,wt=55): 7534 P([1,0,1,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,321,a,b,958,a),rewrite([6,7,8,5])]. given #7690 (W,wt=55): 7535 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,79,a,b,958,a),rewrite([7,8,6,5])]. given #7691 (W,wt=55): 7536 P([0,0,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,958,a),rewrite([7,8,6,5])]. given #7692 (W,wt=55): 7537 P([0,0,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,0,0,1,1]:x]). [hyper(2,a,53,a,b,958,a),rewrite([7,6,5])]. given #7693 (W,wt=55): 7538 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,707,a,b,959,a),rewrite([12,13,11,10])]. given #7694 (W,wt=55): 7539 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,706,a,b,959,a),rewrite([12,11,13,10])]. given #7695 (W,wt=55): 7540 P([1,1,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,700,a,b,959,a),rewrite([12,11,13,10])]. given #7696 (W,wt=55): 7541 P([1,0,1,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,697,a,b,959,a),rewrite([12,13,11,10])]. given #7697 (W,wt=55): 7542 P([1,1,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,690,a,b,959,a),rewrite([12,11,13,10])]. given #7698 (W,wt=55): 7543 P([1,1,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,329,a,b,959,a),rewrite([12,11,13,10])]. given #7699 (W,wt=0): 18864 P([1,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,7543,a),rewrite([6,7,8,5])]. given #7700 (W,wt=55): 7544 P([1,1,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,328,a,b,959,a),rewrite([12,11,13,10])]. given #7701 (W,wt=0): 18873 P([1,1,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,325,a,b,7544,a),rewrite([6,7,5])]. given #7702 (W,wt=55): 7545 P([1,0,1,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,327,a,b,959,a),rewrite([12,13,11,10])]. given #7703 (W,wt=55): 7546 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,79,a,b,959,a),rewrite([12,13,11,10])]. given #7704 (W,wt=55): 7547 P([1,0,0,1,1,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(3,a,60,a,b,959,a),rewrite([12,13,11,10])]. given #7705 (W,wt=55): 7548 P([0,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,707,a,b,959,a),rewrite([7,8,6,5])]. given #7706 (W,wt=55): 7549 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,700,a,b,959,a),rewrite([7,6,8,5])]. given #7707 (W,wt=55): 7550 P([0,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,698,a,b,959,a),rewrite([7,6,8,5])]. given #7708 (W,wt=55): 7551 P([0,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,694,a,b,959,a),rewrite([7,6,8,5])]. given #7709 (W,wt=55): 7552 P([1,0,0,0,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,325,a,b,959,a),rewrite([6,7,5])]. given #7710 (W,wt=55): 7553 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,324,a,b,959,a),rewrite([6,7,5])]. given #7711 (W,wt=55): 7554 P([1,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,323,a,b,959,a),rewrite([6,7,8,5])]. given #7712 (W,wt=55): 7555 P([1,0,0,0,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,322,a,b,959,a),rewrite([6,7,8,5])]. given #7713 (W,wt=55): 7556 P([1,0,0,1,0,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,321,a,b,959,a),rewrite([6,7,8,5])]. given #7714 (W,wt=55): 7557 P([0,0,0,1,1,1,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,0,0,1,1]:x]). [hyper(2,a,68,a,b,959,a),rewrite([7,8,6,5])]. given #7715 (W,wt=55): 7558 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,707,a,b,960,a),rewrite([12,13,11,10])]. given #7716 (W,wt=55): 7559 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,706,a,b,960,a),rewrite([12,11,13,10])]. given #7717 (W,wt=55): 7560 P([1,1,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,702,a,b,960,a),rewrite([12,11,13,10])]. given #7718 (W,wt=55): 7561 P([1,0,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,697,a,b,960,a),rewrite([12,13,11,10])]. given #7719 (W,wt=55): 7562 P([1,0,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,695,a,b,960,a),rewrite([12,13,11,10])]. given #7720 (W,wt=55): 7563 P([1,1,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,690,a,b,960,a),rewrite([12,11,13,10])]. given #7721 (W,wt=55): 7564 P([1,0,1,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,687,a,b,960,a),rewrite([12,13,11,10])]. given #7722 (W,wt=55): 7565 P([1,1,0,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,686,a,b,960,a),rewrite([12,11,13,10])]. given #7723 (W,wt=55): 7566 P([1,1,0,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,684,a,b,960,a),rewrite([12,11,13,10])]. given #7724 (W,wt=55): 7567 P([1,0,1,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,683,a,b,960,a),rewrite([12,13,11,10])]. given #7725 (W,wt=55): 7569 P([1,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,328,a,b,960,a),rewrite([12,11,13,10])]. given #7726 (W,wt=55): 7570 P([1,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,327,a,b,960,a),rewrite([12,13,11,10])]. given #7727 (W,wt=55): 7571 P([1,0,0,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,960,a),rewrite([12,13,11,10])]. given #7728 (W,wt=55): 7572 P([1,0,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,960,a),rewrite([12,13,11,10])]. given #7729 (W,wt=55): 7573 P([1,0,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,960,a),rewrite([12,13,11,10])]. given #7730 (W,wt=55): 7574 P([1,0,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,960,a),rewrite([12,13,11,10])]. given #7731 (W,wt=55): 7575 P([1,0,0,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,960,a),rewrite([12,13,11,10])]. given #7732 (W,wt=55): 7576 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,960,a),rewrite([7,6,8,5])]. given #7733 (W,wt=55): 7577 P([1,0,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,325,a,b,960,a),rewrite([6,7,5])]. given #7734 (W,wt=55): 7578 P([0,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,7568,a),rewrite([7,6,8,5])]. given #7735 (W,wt=55): 7579 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,695,a,b,7568,a),rewrite([7,6,8,5])]. given #7736 (W,wt=55): 7580 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,681,a,b,7568,a),rewrite([7,6,8,5])]. given #7737 (W,wt=55): 7581 P([1,0,1,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,707,a,b,961,a),rewrite([12,13,11,10])]. given #7738 (W,wt=55): 7582 P([1,0,1,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,697,a,b,961,a),rewrite([12,13,11,10])]. given #7739 (W,wt=55): 7583 P([1,0,1,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,695,a,b,961,a),rewrite([12,13,11,10])]. given #7740 (W,wt=55): 7584 P([1,0,1,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,687,a,b,961,a),rewrite([12,13,11,10])]. given #7741 (W,wt=55): 7585 P([1,0,1,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,683,a,b,961,a),rewrite([12,13,11,10])]. given #7742 (W,wt=55): 7587 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,961,a),rewrite([7,6,8,5])]. given #7743 (W,wt=55): 7588 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,681,a,b,961,a),rewrite([7,6,8,5])]. given #7744 (W,wt=55): 7589 P([1,0,1,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,325,a,b,961,a),rewrite([6,7,5])]. given #7745 (W,wt=55): 7590 P([0,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,7586,a),rewrite([7,6,8,5])]. given #7746 (W,wt=55): 7591 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,681,a,b,7586,a),rewrite([7,6,8,5])]. given #7747 (W,wt=55): 7592 P([1,1,0,1,1,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,706,a,b,962,a),rewrite([12,11,13,10])]. given #7748 (W,wt=55): 7593 P([1,1,0,1,0,0,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,702,a,b,962,a),rewrite([12,11,13,10])]. given #7749 (W,wt=55): 7594 P([1,1,0,1,0,0,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,690,a,b,962,a),rewrite([12,11,13,10])]. given #7750 (W,wt=55): 7595 P([1,1,0,1,0,1,0,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,686,a,b,962,a),rewrite([12,11,13,10])]. given #7751 (W,wt=55): 7596 P([1,1,0,1,0,1,1,1],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,684,a,b,962,a),rewrite([12,11,13,10])]. given #7752 (W,wt=55): 7598 P([0,1,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,962,a),rewrite([7,6,8,5])]. given #7753 (W,wt=55): 7599 P([0,0,0,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,695,a,b,962,a),rewrite([7,6,8,5])]. given #7754 (W,wt=55): 7600 P([1,1,0,0,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,325,a,b,962,a),rewrite([6,7,5])]. given #7755 (W,wt=55): 7601 P([0,1,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,700,a,b,7597,a),rewrite([7,6,8,5])]. given #7756 (W,wt=55): 7602 P([0,0,1,1,0,0,0,0],[[0,0,0,1,1,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,695,a,b,7597,a),rewrite([7,6,8,5])]. given #7757 (W,wt=55): 7603 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,735,a,b,963,a),rewrite([12,11,13,10])]. given #7758 (W,wt=55): 7604 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,732,a,b,963,a),rewrite([12,11,13,10])]. given #7759 (W,wt=0): 18934 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,85,a,b,7604,a),rewrite([6,7,8,5])]. given #7760 (W,wt=55): 7605 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,719,a,b,963,a),rewrite([12,11,13,10])]. given #7761 (W,wt=55): 7606 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,715,a,b,963,a),rewrite([12,11,13,10])]. given #7762 (W,wt=55): 7607 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,343,a,b,963,a),rewrite([12,11,13,10])]. given #7763 (W,wt=55): 7608 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,342,a,b,963,a),rewrite([12,11,13,10])]. given #7764 (W,wt=55): 7609 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,340,a,b,963,a),rewrite([12,11,13,10])]. given #7765 (W,wt=55): 7610 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,963,a),rewrite([12,13,11,10])]. given #7766 (W,wt=55): 7611 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,963,a),rewrite([12,13,11,10])]. given #7767 (W,wt=55): 7612 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,735,a,b,963,a),rewrite([7,6,8,5])]. given #7768 (W,wt=55): 7613 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,734,a,b,963,a),rewrite([7,6,8,5])]. given #7769 (W,wt=55): 7614 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,733,a,b,963,a),rewrite([7,6,8,5])]. given #7770 (W,wt=55): 7615 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,732,a,b,963,a),rewrite([7,6,8,5])]. given #7771 (W,wt=55): 7616 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,726,a,b,963,a),rewrite([7,6,8,5])]. given #7772 (W,wt=55): 7617 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,725,a,b,963,a),rewrite([7,6,8,5])]. given #7773 (W,wt=55): 7618 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,724,a,b,963,a),rewrite([7,6,8,5])]. given #7774 (W,wt=55): 7619 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,332,a,b,963,a),rewrite([6,7,8,5])]. given #7775 (W,wt=55): 7620 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,735,a,b,964,a),rewrite([12,13,11,10])]. given #7776 (W,wt=55): 7621 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,734,a,b,964,a),rewrite([12,13,11,10])]. given #7777 (W,wt=55): 7622 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,719,a,b,964,a),rewrite([12,13,11,10])]. given #7778 (W,wt=55): 7623 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,717,a,b,964,a),rewrite([12,13,11,10])]. given #7779 (W,wt=55): 7624 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,342,a,b,964,a),rewrite([12,13,11,10])]. given #7780 (W,wt=55): 7625 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,341,a,b,964,a),rewrite([12,11,13,10])]. given #7781 (W,wt=55): 7626 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,735,a,b,964,a),rewrite([7,8,6,5])]. given #7782 (W,wt=55): 7627 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,734,a,b,964,a),rewrite([7,8,6,5])]. given #7783 (W,wt=55): 7628 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,732,a,b,964,a),rewrite([7,6,8,5])]. given #7784 (W,wt=55): 7629 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,726,a,b,964,a),rewrite([7,8,6,5])]. given #7785 (W,wt=55): 7630 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,724,a,b,964,a),rewrite([7,6,8,5])]. given #7786 (W,wt=55): 7631 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,332,a,b,964,a),rewrite([6,7,8,5])]. given #7787 (W,wt=55): 7632 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,79,a,b,964,a),rewrite([7,8,6,5])]. given #7788 (W,wt=55): 7633 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,735,a,b,965,a),rewrite([12,13,11,10])]. given #7789 (W,wt=55): 7634 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,734,a,b,965,a),rewrite([12,13,11,10])]. given #7790 (W,wt=55): 7635 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,733,a,b,965,a),rewrite([12,11,13,10])]. given #7791 (W,wt=55): 7636 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,732,a,b,965,a),rewrite([12,11,13,10])]. given #7792 (W,wt=0): 18991 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,85,a,b,7636,a),rewrite([6,7,8,5])]. given #7793 (W,wt=55): 7637 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,730,a,b,965,a),rewrite([12,13,11,10])]. given #7794 (W,wt=55): 7638 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,729,a,b,965,a),rewrite([12,13,11,10])]. given #7795 (W,wt=55): 7639 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,719,a,b,965,a),rewrite([12,13,11,10])]. given #7796 (W,wt=55): 7640 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,718,a,b,965,a),rewrite([12,11,13,10])]. given #7797 (W,wt=55): 7641 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,717,a,b,965,a),rewrite([12,13,11,10])]. given #7798 (W,wt=55): 7642 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,716,a,b,965,a),rewrite([12,11,13,10])]. given #7799 (W,wt=55): 7643 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,715,a,b,965,a),rewrite([12,11,13,10])]. given #7800 (W,wt=55): 7644 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,713,a,b,965,a),rewrite([12,11,13,10])]. given #7801 (W,wt=55): 7645 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,712,a,b,965,a),rewrite([12,13,11,10])]. given #7802 (W,wt=55): 7646 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,343,a,b,965,a),rewrite([12,13,11,10])]. given #7803 (W,wt=55): 7647 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,342,a,b,965,a),rewrite([12,13,11,10])]. given #7804 (W,wt=55): 7648 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,341,a,b,965,a),rewrite([12,11,13,10])]. given #7805 (W,wt=55): 7649 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,340,a,b,965,a),rewrite([12,11,13,10])]. given #7806 (W,wt=55): 7650 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,339,a,b,965,a),rewrite([12,11,13,10])]. given #7807 (W,wt=55): 7651 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,338,a,b,965,a),rewrite([12,11,13,10])]. given #7808 (W,wt=55): 7652 P([1,0,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,337,a,b,965,a),rewrite([12,13,11,10])]. given #7809 (W,wt=55): 7653 P([1,0,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,336,a,b,965,a),rewrite([12,13,11,10])]. given #7810 (W,wt=55): 7654 P([1,0,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,334,a,b,965,a),rewrite([12,13,11,10])]. given #7811 (W,wt=55): 7655 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,965,a),rewrite([12,13,11,10])]. given #7812 (W,wt=55): 7656 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,965,a),rewrite([12,13,11,10])]. given #7813 (W,wt=55): 7657 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,965,a),rewrite([12,13,11,10])]. given #7814 (W,wt=55): 7658 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,965,a),rewrite([12,13,11,10])]. given #7815 (W,wt=55): 7659 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,965,a),rewrite([12,13,11,10])]. given #7816 (W,wt=55): 7660 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,735,a,b,965,a),rewrite([7,8,6,5])]. given #7817 (W,wt=55): 7661 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,332,a,b,965,a),rewrite([6,7,8,5])]. given #7818 (W,wt=55): 7662 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,735,a,b,966,a),rewrite([12,13,11,10])]. given #7819 (W,wt=55): 7663 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,734,a,b,966,a),rewrite([12,13,11,10])]. given #7820 (W,wt=55): 7664 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,733,a,b,966,a),rewrite([12,11,13,10])]. given #7821 (W,wt=55): 7665 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,730,a,b,966,a),rewrite([12,13,11,10])]. given #7822 (W,wt=55): 7666 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,719,a,b,966,a),rewrite([12,13,11,10])]. given #7823 (W,wt=55): 7667 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,717,a,b,966,a),rewrite([12,13,11,10])]. given #7824 (W,wt=55): 7668 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,716,a,b,966,a),rewrite([12,11,13,10])]. given #7825 (W,wt=55): 7669 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,712,a,b,966,a),rewrite([12,13,11,10])]. given #7826 (W,wt=55): 7670 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,342,a,b,966,a),rewrite([12,13,11,10])]. given #7827 (W,wt=55): 7671 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,341,a,b,966,a),rewrite([12,11,13,10])]. given #7828 (W,wt=55): 7672 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,340,a,b,966,a),rewrite([12,11,13,10])]. given #7829 (W,wt=55): 7673 P([1,0,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,337,a,b,966,a),rewrite([12,13,11,10])]. given #7830 (W,wt=55): 7674 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,735,a,b,966,a),rewrite([7,8,6,5])]. given #7831 (W,wt=55): 7675 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,732,a,b,966,a),rewrite([7,6,8,5])]. given #7832 (W,wt=55): 7676 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,332,a,b,966,a),rewrite([6,7,8,5])]. given #7833 (W,wt=55): 7677 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,735,a,b,967,a),rewrite([12,13,11,10])]. given #7834 (W,wt=55): 7678 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,734,a,b,967,a),rewrite([12,13,11,10])]. given #7835 (W,wt=55): 7679 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,732,a,b,967,a),rewrite([12,11,13,10])]. given #7836 (W,wt=0): 19048 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,85,a,b,7679,a),rewrite([6,7,8,5])]. given #7837 (W,wt=55): 7680 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,729,a,b,967,a),rewrite([12,13,11,10])]. given #7838 (W,wt=55): 7681 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,719,a,b,967,a),rewrite([12,13,11,10])]. given #7839 (W,wt=55): 7682 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,717,a,b,967,a),rewrite([12,13,11,10])]. given #7840 (W,wt=55): 7683 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,715,a,b,967,a),rewrite([12,11,13,10])]. given #7841 (W,wt=55): 7684 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,343,a,b,967,a),rewrite([12,13,11,10])]. given #7842 (W,wt=55): 7685 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,342,a,b,967,a),rewrite([12,13,11,10])]. given #7843 (W,wt=55): 7686 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,341,a,b,967,a),rewrite([12,11,13,10])]. given #7844 (W,wt=55): 7687 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,340,a,b,967,a),rewrite([12,11,13,10])]. given #7845 (W,wt=55): 7688 P([1,0,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,336,a,b,967,a),rewrite([12,13,11,10])]. given #7846 (W,wt=55): 7689 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,967,a),rewrite([12,13,11,10])]. given #7847 (W,wt=55): 7690 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,70,a,b,967,a),rewrite([12,13,11,10])]. given #7848 (W,wt=55): 7691 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,60,a,b,967,a),rewrite([12,13,11,10])]. given #7849 (W,wt=55): 7692 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,735,a,b,967,a),rewrite([7,8,6,5])]. given #7850 (W,wt=55): 7693 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,734,a,b,967,a),rewrite([7,8,6,5])]. given #7851 (W,wt=55): 7694 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,726,a,b,967,a),rewrite([7,8,6,5])]. given #7852 (W,wt=55): 7695 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,332,a,b,967,a),rewrite([6,7,8,5])]. given #7853 (W,wt=55): 7696 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,735,a,b,968,a),rewrite([12,11,13,10])]. given #7854 (W,wt=55): 7697 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,733,a,b,968,a),rewrite([12,11,13,10])]. given #7855 (W,wt=55): 7698 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,732,a,b,968,a),rewrite([12,11,13,10])]. given #7856 (W,wt=0): 19079 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,85,a,b,7698,a),rewrite([6,7,8,5])]. given #7857 (W,wt=55): 7699 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,719,a,b,968,a),rewrite([12,11,13,10])]. given #7858 (W,wt=55): 7700 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,718,a,b,968,a),rewrite([12,11,13,10])]. given #7859 (W,wt=55): 7701 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,716,a,b,968,a),rewrite([12,11,13,10])]. given #7860 (W,wt=55): 7702 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,715,a,b,968,a),rewrite([12,11,13,10])]. given #7861 (W,wt=55): 7703 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,713,a,b,968,a),rewrite([12,11,13,10])]. given #7862 (W,wt=55): 7705 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,342,a,b,968,a),rewrite([12,11,13,10])]. given #7863 (W,wt=55): 7706 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,341,a,b,968,a),rewrite([12,11,13,10])]. given #7864 (W,wt=55): 7707 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,340,a,b,968,a),rewrite([12,11,13,10])]. given #7865 (W,wt=55): 7708 P([1,1,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,338,a,b,968,a),rewrite([12,11,13,10])]. given #7866 (W,wt=55): 7709 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,968,a),rewrite([12,13,11,10])]. given #7867 (W,wt=55): 7710 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,968,a),rewrite([12,13,11,10])]. given #7868 (W,wt=55): 7711 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,735,a,b,968,a),rewrite([7,6,8,5])]. given #7869 (W,wt=55): 7712 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,733,a,b,968,a),rewrite([7,6,8,5])]. given #7870 (W,wt=55): 7713 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,725,a,b,968,a),rewrite([7,6,8,5])]. given #7871 (W,wt=55): 7714 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,332,a,b,968,a),rewrite([6,7,8,5])]. given #7872 (W,wt=55): 7715 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,735,a,b,7704,a),rewrite([7,6,8,5])]. given #7873 (W,wt=55): 7716 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,733,a,b,7704,a),rewrite([7,6,8,5])]. given #7874 (W,wt=55): 7717 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,725,a,b,7704,a),rewrite([7,6,8,5])]. given #7875 (W,wt=55): 7718 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,332,a,b,7704,a),rewrite([6,7,8,5])]. given #7876 (W,wt=55): 7719 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,735,a,b,969,a),rewrite([12,13,11,10])]. given #7877 (W,wt=55): 7720 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,734,a,b,969,a),rewrite([12,13,11,10])]. given #7878 (W,wt=55): 7721 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,342,a,b,969,a),rewrite([12,13,11,10])]. given #7879 (W,wt=55): 7722 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,341,a,b,969,a),rewrite([12,11,13,10])]. given #7880 (W,wt=55): 7723 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,735,a,b,969,a),rewrite([7,8,6,5])]. given #7881 (W,wt=55): 7724 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,734,a,b,969,a),rewrite([7,8,6,5])]. given #7882 (W,wt=55): 7725 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,732,a,b,969,a),rewrite([7,6,5])]. given #7883 (W,wt=55): 7726 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,726,a,b,969,a),rewrite([7,8,6,5])]. given #7884 (W,wt=55): 7727 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,724,a,b,969,a),rewrite([7,6,5])]. given #7885 (W,wt=55): 7728 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,719,a,b,969,a),rewrite([7,8,6,5])]. given #7886 (W,wt=55): 7729 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,717,a,b,969,a),rewrite([7,8,6,5])]. given #7887 (W,wt=55): 7730 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,715,a,b,969,a),rewrite([7,6,5])]. given #7888 (W,wt=55): 7731 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,713,a,b,969,a),rewrite([7,6,5])]. given #7889 (W,wt=55): 7732 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,333,a,b,969,a),rewrite([6,7,5])]. given #7890 (W,wt=55): 7733 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,332,a,b,969,a),rewrite([6,7,5])]. given #7891 (W,wt=55): 7735 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,969,a),rewrite([7,8,6,5])]. given #7892 (W,wt=55): 7736 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,969,a),rewrite([7,8,6,5])]. given #7893 (W,wt=55): 7737 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,63,a,b,969,a),rewrite([7,8,6,5])]. given #7894 (W,wt=55): 7738 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,55,a,b,969,a),rewrite([7,8,6,5])]. given #7895 (W,wt=55): 7739 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,969,a),rewrite([7,6,5])]. given #7896 (W,wt=55): 7740 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,727,a,b,7734,a),rewrite([12,13,11,10])]. given #7897 (W,wt=55): 7741 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,726,a,b,7734,a),rewrite([12,13,11,10])]. given #7898 (W,wt=55): 7742 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,342,a,b,7734,a),rewrite([12,13,11,10])]. given #7899 (W,wt=55): 7743 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,341,a,b,7734,a),rewrite([12,11,13,10])]. given #7900 (W,wt=55): 7744 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,732,a,b,970,a),rewrite([12,11,13,10])]. given #7901 (W,wt=55): 7745 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,715,a,b,970,a),rewrite([12,11,13,10])]. given #7902 (W,wt=55): 7746 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,343,a,b,970,a),rewrite([12,11,13,10])]. given #7903 (W,wt=55): 7747 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,735,a,b,970,a),rewrite([7,6,8,5])]. given #7904 (W,wt=55): 7748 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,734,a,b,970,a),rewrite([7,6,8,5])]. given #7905 (W,wt=55): 7749 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,733,a,b,970,a),rewrite([7,6,8,5])]. given #7906 (W,wt=55): 7750 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,732,a,b,970,a),rewrite([7,6,8,5])]. given #7907 (W,wt=55): 7751 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,730,a,b,970,a),rewrite([7,6,8,5])]. given #7908 (W,wt=55): 7753 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,724,a,b,7752,a),rewrite([12,11,13,10])]. given #7909 (W,wt=55): 7754 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,715,a,b,7752,a),rewrite([12,11,13,10])]. given #7910 (W,wt=55): 7755 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,735,a,b,971,a),rewrite([12,11,13,10])]. given #7911 (W,wt=55): 7756 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,733,a,b,971,a),rewrite([12,11,13,10])]. given #7912 (W,wt=55): 7757 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,971,a),rewrite([12,11,13,10])]. given #7913 (W,wt=55): 7758 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,971,a),rewrite([12,11,13,10])]. given #7914 (W,wt=55): 7759 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,735,a,b,971,a),rewrite([7,6,8,5])]. given #7915 (W,wt=55): 7760 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,733,a,b,971,a),rewrite([7,6,8,5])]. given #7916 (W,wt=55): 7761 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,732,a,b,971,a),rewrite([7,6,5])]. given #7917 (W,wt=55): 7762 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,729,a,b,971,a),rewrite([7,6,5])]. given #7918 (W,wt=55): 7763 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,725,a,b,971,a),rewrite([7,6,8,5])]. given #7919 (W,wt=55): 7764 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,724,a,b,971,a),rewrite([7,6,5])]. given #7920 (W,wt=55): 7765 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,719,a,b,971,a),rewrite([7,6,8,5])]. given #7921 (W,wt=55): 7766 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,716,a,b,971,a),rewrite([7,6,8,5])]. given #7922 (W,wt=55): 7767 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,715,a,b,971,a),rewrite([7,6,5])]. given #7923 (W,wt=55): 7769 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,332,a,b,971,a),rewrite([6,7,5])]. given #7924 (W,wt=55): 7770 P([1,1,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,331,a,b,971,a),rewrite([6,7,5])]. given #7925 (W,wt=55): 7771 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,971,a),rewrite([7,6,8,5])]. given #7926 (W,wt=55): 7772 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,65,a,b,971,a),rewrite([7,8,6,5])]. given #7927 (W,wt=55): 7773 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,63,a,b,971,a),rewrite([7,6,8,5])]. given #7928 (W,wt=55): 7774 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,971,a),rewrite([7,6,8,5])]. given #7929 (W,wt=55): 7775 P([0,1,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(2,a,53,a,b,971,a),rewrite([7,6,5])]. given #7930 (W,wt=55): 7776 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,735,a,b,7768,a),rewrite([12,11,13,10])]. given #7931 (W,wt=55): 7777 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,733,a,b,7768,a),rewrite([12,11,13,10])]. given #7932 (W,wt=55): 7778 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,7768,a),rewrite([12,11,13,10])]. given #7933 (W,wt=55): 7779 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,7768,a),rewrite([12,11,13,10])]. given #7934 (W,wt=55): 7780 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,735,a,b,972,a),rewrite([12,11,13,10])]. given #7935 (W,wt=55): 7781 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,732,a,b,972,a),rewrite([12,11,13,10])]. given #7936 (W,wt=0): 19217 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,85,a,b,7781,a),rewrite([6,7,5])]. given #7937 (W,wt=55): 7782 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,343,a,b,972,a),rewrite([12,11,13,10])]. given #7938 (W,wt=55): 7783 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,342,a,b,972,a),rewrite([12,11,13,10])]. given #7939 (W,wt=55): 7784 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,340,a,b,972,a),rewrite([12,11,13,10])]. given #7940 (W,wt=55): 7785 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,972,a),rewrite([12,13,11,10])]. given #7941 (W,wt=55): 7786 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,735,a,b,972,a),rewrite([7,6,8,5])]. given #7942 (W,wt=55): 7787 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,734,a,b,972,a),rewrite([7,6,5])]. given #7943 (W,wt=55): 7788 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,733,a,b,972,a),rewrite([7,6,5])]. given #7944 (W,wt=55): 7789 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,732,a,b,972,a),rewrite([7,6,8,5])]. given #7945 (W,wt=55): 7790 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,726,a,b,972,a),rewrite([7,6,5])]. given #7946 (W,wt=55): 7791 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,725,a,b,972,a),rewrite([7,6,5])]. given #7947 (W,wt=55): 7792 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,724,a,b,972,a),rewrite([7,6,8,5])]. given #7948 (W,wt=55): 7793 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,719,a,b,972,a),rewrite([7,6,8,5])]. given #7949 (W,wt=55): 7794 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,717,a,b,972,a),rewrite([7,6,5])]. given #7950 (W,wt=55): 7795 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,716,a,b,972,a),rewrite([7,6,5])]. given #7951 (W,wt=55): 7796 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,715,a,b,972,a),rewrite([7,6,8,5])]. given #7952 (W,wt=55): 7797 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,333,a,b,972,a),rewrite([6,7,5])]. given #7953 (W,wt=55): 7798 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,332,a,b,972,a),rewrite([6,7,5])]. given #7954 (W,wt=55): 7799 P([1,1,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,331,a,b,972,a),rewrite([6,7,5])]. given #7955 (W,wt=55): 7800 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,972,a),rewrite([7,8,6,5])]. given #7956 (W,wt=55): 7801 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,972,a),rewrite([7,8,6,5])]. given #7957 (W,wt=55): 7802 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,58,a,b,972,a),rewrite([7,6,8,5])]. given #7958 (W,wt=55): 7803 P([0,1,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,1,0,1]:x]). [hyper(2,a,53,a,b,972,a),rewrite([7,6,5])]. given #7959 (W,wt=55): 7804 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,735,a,b,973,a),rewrite([12,13,11,10])]. given #7960 (W,wt=55): 7805 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,734,a,b,973,a),rewrite([12,13,11,10])]. given #7961 (W,wt=55): 7806 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,733,a,b,973,a),rewrite([12,11,13,10])]. given #7962 (W,wt=55): 7807 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,732,a,b,973,a),rewrite([12,11,13,10])]. given #7963 (W,wt=0): 19278 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,85,a,b,7807,a),rewrite([6,7,5])]. given #7964 (W,wt=55): 7808 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,730,a,b,973,a),rewrite([12,13,11,10])]. given #7965 (W,wt=55): 7809 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,729,a,b,973,a),rewrite([12,13,11,10])]. given #7966 (W,wt=55): 7810 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,718,a,b,973,a),rewrite([12,11,13,10])]. given #7967 (W,wt=55): 7811 P([1,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,343,a,b,973,a),rewrite([12,13,11,10])]. given #7968 (W,wt=55): 7812 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,973,a),rewrite([12,13,11,10])]. given #7969 (W,wt=55): 7813 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,973,a),rewrite([12,11,13,10])]. given #7970 (W,wt=55): 7814 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,340,a,b,973,a),rewrite([12,11,13,10])]. given #7971 (W,wt=55): 7815 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,339,a,b,973,a),rewrite([12,11,13,10])]. given #7972 (W,wt=55): 7816 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,338,a,b,973,a),rewrite([12,11,13,10])]. given #7973 (W,wt=55): 7817 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,337,a,b,973,a),rewrite([12,13,11,10])]. given #7974 (W,wt=55): 7818 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,336,a,b,973,a),rewrite([12,13,11,10])]. given #7975 (W,wt=55): 7819 P([1,0,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,334,a,b,973,a),rewrite([12,13,11,10])]. given #7976 (W,wt=55): 7820 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,79,a,b,973,a),rewrite([12,13,11,10])]. given #7977 (W,wt=55): 7821 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,973,a),rewrite([12,13,11,10])]. given #7978 (W,wt=55): 7822 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,735,a,b,973,a),rewrite([7,8,6,5])]. given #7979 (W,wt=55): 7823 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,719,a,b,973,a),rewrite([7,8,6,5])]. given #7980 (W,wt=55): 7824 P([1,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,333,a,b,973,a),rewrite([6,7,5])]. given #7981 (W,wt=55): 7825 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,332,a,b,973,a),rewrite([6,7,5])]. given #7982 (W,wt=55): 7826 P([1,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,331,a,b,973,a),rewrite([6,7,5])]. given #7983 (W,wt=55): 7827 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,973,a),rewrite([7,8,6,5])]. given #7984 (W,wt=55): 7828 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,735,a,b,974,a),rewrite([12,13,11,10])]. given #7985 (W,wt=55): 7829 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,734,a,b,974,a),rewrite([12,13,11,10])]. given #7986 (W,wt=55): 7830 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,733,a,b,974,a),rewrite([12,11,13,10])]. given #7987 (W,wt=55): 7831 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,730,a,b,974,a),rewrite([12,13,11,10])]. given #7988 (W,wt=55): 7832 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,974,a),rewrite([12,13,11,10])]. given #7989 (W,wt=55): 7833 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,974,a),rewrite([12,11,13,10])]. given #7990 (W,wt=55): 7834 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,340,a,b,974,a),rewrite([12,11,13,10])]. given #7991 (W,wt=55): 7835 P([1,0,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(3,a,337,a,b,974,a),rewrite([12,13,11,10])]. given #7992 (W,wt=55): 7836 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,735,a,b,974,a),rewrite([7,8,6,5])]. given #7993 (W,wt=55): 7837 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,732,a,b,974,a),rewrite([7,6,5])]. given #7994 (W,wt=55): 7838 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,719,a,b,974,a),rewrite([7,8,6,5])]. given #7995 (W,wt=55): 7839 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,715,a,b,974,a),rewrite([7,6,5])]. given #7996 (W,wt=55): 7840 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,333,a,b,974,a),rewrite([6,7,5])]. given #7997 (W,wt=55): 7841 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,332,a,b,974,a),rewrite([6,7,5])]. given #7998 (W,wt=55): 7842 P([1,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,331,a,b,974,a),rewrite([6,7,5])]. given #7999 (W,wt=55): 7843 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,974,a),rewrite([7,8,6,5])]. given #8000 (W,wt=55): 7844 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,0,1,1,0,1]:x]). [hyper(2,a,63,a,b,974,a),rewrite([7,8,6,5])]. given #8001 (W,wt=55): 7845 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,735,a,b,975,a),rewrite([12,13,11,10])]. given #8002 (W,wt=55): 7846 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,734,a,b,975,a),rewrite([12,13,11,10])]. given #8003 (W,wt=55): 7847 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,732,a,b,975,a),rewrite([12,11,13,10])]. given #8004 (W,wt=0): 19410 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,85,a,b,7847,a),rewrite([6,7,5])]. given #8005 (W,wt=55): 7848 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,729,a,b,975,a),rewrite([12,13,11,10])]. given #8006 (W,wt=55): 7849 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,343,a,b,975,a),rewrite([12,13,11,10])]. given #8007 (W,wt=0): 19420 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,331,a,b,7849,a),rewrite([6,7,5])]. given #8008 (W,wt=55): 7850 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,342,a,b,975,a),rewrite([12,13,11,10])]. given #8009 (W,wt=55): 7851 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,341,a,b,975,a),rewrite([12,11,13,10])]. given #8010 (W,wt=55): 7852 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,340,a,b,975,a),rewrite([12,11,13,10])]. given #8011 (W,wt=55): 7853 P([1,0,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,336,a,b,975,a),rewrite([12,13,11,10])]. given #8012 (W,wt=55): 7854 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(3,a,70,a,b,975,a),rewrite([12,13,11,10])]. given #8013 (W,wt=55): 7855 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,735,a,b,975,a),rewrite([7,8,6,5])]. given #8014 (W,wt=55): 7856 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,734,a,b,975,a),rewrite([7,8,6,5])]. given #8015 (W,wt=55): 7857 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,726,a,b,975,a),rewrite([7,8,6,5])]. given #8016 (W,wt=55): 7858 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,719,a,b,975,a),rewrite([7,8,6,5])]. given #8017 (W,wt=55): 7859 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,717,a,b,975,a),rewrite([7,8,6,5])]. given #8018 (W,wt=55): 7860 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,333,a,b,975,a),rewrite([6,7,5])]. given #8019 (W,wt=55): 7861 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,332,a,b,975,a),rewrite([6,7,5])]. given #8020 (W,wt=55): 7862 P([1,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,331,a,b,975,a),rewrite([6,7,5])]. given #8021 (W,wt=55): 7863 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,79,a,b,975,a),rewrite([7,8,6,5])]. given #8022 (W,wt=55): 7864 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,0,0,1,0,1]:x]). [hyper(2,a,68,a,b,975,a),rewrite([7,8,6,5])]. given #8023 (W,wt=55): 7865 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,735,a,b,976,a),rewrite([12,11,13,10])]. given #8024 (W,wt=55): 7866 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,733,a,b,976,a),rewrite([12,11,13,10])]. given #8025 (W,wt=55): 7867 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,732,a,b,976,a),rewrite([12,11,13,10])]. given #8026 (W,wt=0): 19478 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,85,a,b,7867,a),rewrite([6,7,5])]. given #8027 (W,wt=55): 7868 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,718,a,b,976,a),rewrite([12,11,13,10])]. given #8028 (W,wt=55): 7869 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,343,a,b,976,a),rewrite([12,11,13,10])]. given #8029 (W,wt=0): 19487 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,333,a,b,7869,a),rewrite([6,7,5])]. given #8030 (W,wt=55): 7870 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,342,a,b,976,a),rewrite([12,11,13,10])]. given #8031 (W,wt=55): 7871 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,341,a,b,976,a),rewrite([12,11,13,10])]. given #8032 (W,wt=55): 7872 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,340,a,b,976,a),rewrite([12,11,13,10])]. given #8033 (W,wt=55): 7873 P([1,1,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,338,a,b,976,a),rewrite([12,11,13,10])]. given #8034 (W,wt=55): 7874 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(3,a,70,a,b,976,a),rewrite([12,13,11,10])]. given #8035 (W,wt=55): 7875 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,735,a,b,976,a),rewrite([7,6,8,5])]. given #8036 (W,wt=55): 7876 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,733,a,b,976,a),rewrite([7,6,8,5])]. given #8037 (W,wt=55): 7877 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,725,a,b,976,a),rewrite([7,6,8,5])]. given #8038 (W,wt=55): 7878 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,719,a,b,976,a),rewrite([7,6,8,5])]. given #8039 (W,wt=55): 7879 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,716,a,b,976,a),rewrite([7,6,8,5])]. given #8040 (W,wt=55): 7880 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,333,a,b,976,a),rewrite([6,7,5])]. given #8041 (W,wt=55): 7881 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,332,a,b,976,a),rewrite([6,7,5])]. given #8042 (W,wt=55): 7882 P([1,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,331,a,b,976,a),rewrite([6,7,5])]. given #8043 (W,wt=55): 7883 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,79,a,b,976,a),rewrite([7,8,6,5])]. given #8044 (W,wt=55): 7884 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,1,1,0,1]:x]). [hyper(2,a,58,a,b,976,a),rewrite([7,6,8,5])]. given #8045 (W,wt=55): 7885 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,732,a,b,977,a),rewrite([12,11,13,10])]. given #8046 (W,wt=55): 7886 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,343,a,b,977,a),rewrite([12,11,13,10])]. given #8047 (W,wt=55): 7887 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,735,a,b,977,a),rewrite([7,6,5])]. given #8048 (W,wt=55): 7888 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,734,a,b,977,a),rewrite([7,6,5])]. given #8049 (W,wt=55): 7889 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,733,a,b,977,a),rewrite([7,6,5])]. given #8050 (W,wt=55): 7890 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,732,a,b,977,a),rewrite([7,6,8,5])]. given #8051 (W,wt=55): 7891 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,730,a,b,977,a),rewrite([7,6,5])]. given #8052 (W,wt=55): 7892 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,719,a,b,977,a),rewrite([7,6,5])]. given #8053 (W,wt=55): 7893 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,717,a,b,977,a),rewrite([7,6,5])]. given #8054 (W,wt=55): 7894 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,716,a,b,977,a),rewrite([7,6,5])]. given #8055 (W,wt=55): 7895 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,715,a,b,977,a),rewrite([7,6,8,5])]. given #8056 (W,wt=55): 7896 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,712,a,b,977,a),rewrite([7,6,5])]. given #8057 (W,wt=55): 7897 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,333,a,b,977,a),rewrite([6,7,5])]. given #8058 (W,wt=55): 7899 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,331,a,b,977,a),rewrite([6,7,5])]. given #8059 (W,wt=55): 7900 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,977,a),rewrite([7,8,6,5])]. given #8060 (W,wt=55): 7901 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,977,a),rewrite([7,8,6,5])]. given #8061 (W,wt=55): 7902 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,977,a),rewrite([7,8,6,5])]. given #8062 (W,wt=55): 7903 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,977,a),rewrite([7,6,8,5])]. given #8063 (W,wt=55): 7904 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,977,a),rewrite([7,6,5])]. given #8064 (W,wt=55): 7905 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,732,a,b,7898,a),rewrite([12,11,13,10])]. given #8065 (W,wt=55): 7906 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,724,a,b,7898,a),rewrite([12,11,13,10])]. given #8066 (W,wt=55): 7907 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,715,a,b,7898,a),rewrite([12,11,13,10])]. given #8067 (W,wt=55): 7908 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,735,a,b,978,a),rewrite([12,11,13,10])]. given #8068 (W,wt=55): 7909 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,733,a,b,978,a),rewrite([12,11,13,10])]. given #8069 (W,wt=55): 7910 P([1,1,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,727,a,b,978,a),rewrite([12,11,13,10])]. given #8070 (W,wt=55): 7911 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,725,a,b,978,a),rewrite([12,11,13,10])]. given #8071 (W,wt=55): 7912 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,342,a,b,978,a),rewrite([12,11,13,10])]. given #8072 (W,wt=55): 7913 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(3,a,341,a,b,978,a),rewrite([12,11,13,10])]. given #8073 (W,wt=55): 7914 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,733,a,b,978,a),rewrite([7,6,8,5])]. given #8074 (W,wt=55): 7915 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,732,a,b,978,a),rewrite([7,6,5])]. given #8075 (W,wt=55): 7916 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,719,a,b,978,a),rewrite([7,6,8,5])]. given #8076 (W,wt=55): 7917 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,716,a,b,978,a),rewrite([7,6,8,5])]. given #8077 (W,wt=55): 7918 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,715,a,b,978,a),rewrite([7,6,8,5])]. given #8078 (W,wt=55): 7919 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,333,a,b,978,a),rewrite([6,7,5])]. given #8079 (W,wt=55): 7920 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,0,1,1,1,0,1]:x]). [hyper(2,a,79,a,b,978,a),rewrite([7,6,8,5])]. given #8080 (W,wt=55): 7921 P([1,1,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,735,a,b,979,a),rewrite([12,11,13,10])]. given #8081 (W,wt=55): 7922 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,732,a,b,979,a),rewrite([12,11,13,10])]. given #8082 (W,wt=0): 19596 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,85,a,b,7922,a),rewrite([6,7,5])]. given #8083 (W,wt=55): 7923 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,727,a,b,979,a),rewrite([12,11,13,10])]. given #8084 (W,wt=55): 7924 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,724,a,b,979,a),rewrite([12,11,13,10])]. given #8085 (W,wt=55): 7925 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,343,a,b,979,a),rewrite([12,11,13,10])]. given #8086 (W,wt=55): 7926 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,342,a,b,979,a),rewrite([12,11,13,10])]. given #8087 (W,wt=55): 7927 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,340,a,b,979,a),rewrite([12,11,13,10])]. given #8088 (W,wt=55): 7928 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,979,a),rewrite([12,13,11,10])]. given #8089 (W,wt=55): 7929 P([1,1,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,979,a),rewrite([12,13,11,10])]. given #8090 (W,wt=55): 7930 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,734,a,b,979,a),rewrite([7,6,5])]. given #8091 (W,wt=55): 7931 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,733,a,b,979,a),rewrite([7,6,5])]. given #8092 (W,wt=55): 7932 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,732,a,b,979,a),rewrite([7,6,8,5])]. given #8093 (W,wt=55): 7933 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,719,a,b,979,a),rewrite([7,6,8,5])]. given #8094 (W,wt=55): 7934 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,717,a,b,979,a),rewrite([7,6,8,5])]. given #8095 (W,wt=55): 7935 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,716,a,b,979,a),rewrite([7,6,8,5])]. given #8096 (W,wt=55): 7936 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,715,a,b,979,a),rewrite([7,6,8,5])]. given #8097 (W,wt=55): 7937 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,1,0,1]:x]). [hyper(2,a,333,a,b,979,a),rewrite([6,7,5])]. given #8098 (W,wt=55): 7938 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,735,a,b,980,a),rewrite([12,13,11,10])]. given #8099 (W,wt=55): 7939 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,734,a,b,980,a),rewrite([12,13,11,10])]. given #8100 (W,wt=55): 7940 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,733,a,b,980,a),rewrite([12,11,13,10])]. given #8101 (W,wt=55): 7941 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,732,a,b,980,a),rewrite([12,11,13,10])]. given #8102 (W,wt=0): 19622 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,85,a,b,7941,a),rewrite([6,7,5])]. given #8103 (W,wt=55): 7942 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,730,a,b,980,a),rewrite([12,13,11,10])]. given #8104 (W,wt=55): 7943 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,729,a,b,980,a),rewrite([12,13,11,10])]. given #8105 (W,wt=55): 7944 P([1,0,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,727,a,b,980,a),rewrite([12,13,11,10])]. given #8106 (W,wt=55): 7945 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,726,a,b,980,a),rewrite([12,13,11,10])]. given #8107 (W,wt=55): 7946 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,725,a,b,980,a),rewrite([12,11,13,10])]. given #8108 (W,wt=55): 7947 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,724,a,b,980,a),rewrite([12,11,13,10])]. given #8109 (W,wt=55): 7948 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,722,a,b,980,a),rewrite([12,13,11,10])]. given #8110 (W,wt=55): 7949 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,721,a,b,980,a),rewrite([12,13,11,10])]. given #8111 (W,wt=55): 7950 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,718,a,b,980,a),rewrite([12,11,13,10])]. given #8112 (W,wt=55): 7951 P([1,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,343,a,b,980,a),rewrite([12,13,11,10])]. given #8113 (W,wt=55): 7952 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,342,a,b,980,a),rewrite([12,13,11,10])]. given #8114 (W,wt=55): 7953 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,341,a,b,980,a),rewrite([12,11,13,10])]. given #8115 (W,wt=55): 7954 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,340,a,b,980,a),rewrite([12,11,13,10])]. given #8116 (W,wt=55): 7955 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,339,a,b,980,a),rewrite([12,11,13,10])]. given #8117 (W,wt=55): 7956 P([1,1,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,338,a,b,980,a),rewrite([12,11,13,10])]. given #8118 (W,wt=55): 7957 P([1,0,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,337,a,b,980,a),rewrite([12,13,11,10])]. given #8119 (W,wt=55): 7958 P([1,0,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,336,a,b,980,a),rewrite([12,13,11,10])]. given #8120 (W,wt=55): 7959 P([1,0,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,334,a,b,980,a),rewrite([12,13,11,10])]. given #8121 (W,wt=55): 7960 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,980,a),rewrite([12,13,11,10])]. given #8122 (W,wt=55): 7961 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,980,a),rewrite([12,13,11,10])]. given #8123 (W,wt=55): 7962 P([1,0,0,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,65,a,b,980,a),rewrite([12,13,11,10])]. given #8124 (W,wt=55): 7963 P([1,0,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,980,a),rewrite([12,13,11,10])]. given #8125 (W,wt=55): 7964 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(3,a,58,a,b,980,a),rewrite([12,11,13,10])]. given #8126 (W,wt=55): 7965 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,719,a,b,980,a),rewrite([7,8,6,5])]. given #8127 (W,wt=55): 7966 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,1,1,0,1]:x]). [hyper(2,a,333,a,b,980,a),rewrite([6,7,5])]. given #8128 (W,wt=55): 7967 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,735,a,b,981,a),rewrite([12,13,11,10])]. given #8129 (W,wt=55): 7968 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,734,a,b,981,a),rewrite([12,13,11,10])]. given #8130 (W,wt=55): 7969 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,733,a,b,981,a),rewrite([12,11,13,10])]. given #8131 (W,wt=55): 7970 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,730,a,b,981,a),rewrite([12,13,11,10])]. given #8132 (W,wt=55): 7971 P([1,0,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,727,a,b,981,a),rewrite([12,13,11,10])]. given #8133 (W,wt=55): 7972 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,726,a,b,981,a),rewrite([12,13,11,10])]. given #8134 (W,wt=55): 7973 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,725,a,b,981,a),rewrite([12,11,13,10])]. given #8135 (W,wt=55): 7974 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,722,a,b,981,a),rewrite([12,13,11,10])]. given #8136 (W,wt=55): 7975 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,342,a,b,981,a),rewrite([12,13,11,10])]. given #8137 (W,wt=55): 7976 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,341,a,b,981,a),rewrite([12,11,13,10])]. given #8138 (W,wt=55): 7977 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,340,a,b,981,a),rewrite([12,11,13,10])]. given #8139 (W,wt=55): 7978 P([1,0,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(3,a,337,a,b,981,a),rewrite([12,13,11,10])]. given #8140 (W,wt=55): 7979 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,719,a,b,981,a),rewrite([7,8,6,5])]. given #8141 (W,wt=55): 7980 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,715,a,b,981,a),rewrite([7,6,8,5])]. given #8142 (W,wt=55): 7981 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,0,1,1,1,0,1]:x]). [hyper(2,a,333,a,b,981,a),rewrite([6,7,5])]. given #8143 (W,wt=55): 7982 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,735,a,b,982,a),rewrite([12,13,11,10])]. given #8144 (W,wt=55): 7983 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,734,a,b,982,a),rewrite([12,13,11,10])]. given #8145 (W,wt=55): 7984 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,732,a,b,982,a),rewrite([12,11,13,10])]. given #8146 (W,wt=0): 19680 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,85,a,b,7984,a),rewrite([6,7,5])]. given #8147 (W,wt=55): 7985 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,729,a,b,982,a),rewrite([12,13,11,10])]. given #8148 (W,wt=55): 7986 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,727,a,b,982,a),rewrite([12,13,11,10])]. given #8149 (W,wt=55): 7987 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,726,a,b,982,a),rewrite([12,13,11,10])]. given #8150 (W,wt=55): 7988 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,724,a,b,982,a),rewrite([12,11,13,10])]. given #8151 (W,wt=55): 7989 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,721,a,b,982,a),rewrite([12,13,11,10])]. given #8152 (W,wt=55): 7991 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,342,a,b,982,a),rewrite([12,13,11,10])]. given #8153 (W,wt=55): 7992 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,341,a,b,982,a),rewrite([12,11,13,10])]. given #8154 (W,wt=55): 7993 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,340,a,b,982,a),rewrite([12,11,13,10])]. given #8155 (W,wt=55): 7994 P([1,0,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,336,a,b,982,a),rewrite([12,13,11,10])]. given #8156 (W,wt=55): 7995 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,70,a,b,982,a),rewrite([12,13,11,10])]. given #8157 (W,wt=55): 7996 P([1,0,0,0,1,0,1,1],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(3,a,60,a,b,982,a),rewrite([12,13,11,10])]. given #8158 (W,wt=55): 7997 P([0,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,734,a,b,982,a),rewrite([7,8,6,5])]. given #8159 (W,wt=55): 7998 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,719,a,b,982,a),rewrite([7,8,6,5])]. given #8160 (W,wt=55): 7999 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,717,a,b,982,a),rewrite([7,8,6,5])]. given #8161 (W,wt=55): 8000 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,333,a,b,982,a),rewrite([6,7,5])]. given #8162 (W,wt=55): 8001 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,734,a,b,7990,a),rewrite([7,8,6,5])]. given #8163 (W,wt=55): 8002 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,719,a,b,7990,a),rewrite([7,8,6,5])]. given #8164 (W,wt=55): 8003 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,717,a,b,7990,a),rewrite([7,8,6,5])]. given #8165 (W,wt=55): 8004 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,0,1,1],[0,1,1,1,0,1,0,1]:x]). [hyper(2,a,333,a,b,7990,a),rewrite([6,7,5])]. given #8166 (W,wt=55): 8005 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,735,a,b,983,a),rewrite([12,11,13,10])]. given #8167 (W,wt=55): 8006 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,733,a,b,983,a),rewrite([12,11,13,10])]. given #8168 (W,wt=55): 8007 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,732,a,b,983,a),rewrite([12,11,13,10])]. given #8169 (W,wt=0): 19711 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,85,a,b,8007,a),rewrite([6,7,5])]. given #8170 (W,wt=55): 8008 P([1,1,1,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,727,a,b,983,a),rewrite([12,11,13,10])]. given #8171 (W,wt=55): 8009 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,725,a,b,983,a),rewrite([12,11,13,10])]. given #8172 (W,wt=55): 8010 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,724,a,b,983,a),rewrite([12,11,13,10])]. given #8173 (W,wt=55): 8011 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,718,a,b,983,a),rewrite([12,11,13,10])]. given #8174 (W,wt=55): 8012 P([1,1,1,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,343,a,b,983,a),rewrite([12,11,13,10])]. given #8175 (W,wt=55): 8013 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,342,a,b,983,a),rewrite([12,11,13,10])]. given #8176 (W,wt=55): 8014 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,341,a,b,983,a),rewrite([12,11,13,10])]. given #8177 (W,wt=55): 8015 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,340,a,b,983,a),rewrite([12,11,13,10])]. given #8178 (W,wt=55): 8016 P([1,1,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,338,a,b,983,a),rewrite([12,11,13,10])]. given #8179 (W,wt=55): 8017 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,79,a,b,983,a),rewrite([12,13,11,10])]. given #8180 (W,wt=55): 8018 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,70,a,b,983,a),rewrite([12,13,11,10])]. given #8181 (W,wt=55): 8019 P([1,1,0,0,0,0,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(3,a,60,a,b,983,a),rewrite([12,13,11,10])]. given #8182 (W,wt=55): 8020 P([0,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,733,a,b,983,a),rewrite([7,6,8,5])]. given #8183 (W,wt=55): 8021 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,719,a,b,983,a),rewrite([7,6,8,5])]. given #8184 (W,wt=55): 8022 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,716,a,b,983,a),rewrite([7,6,8,5])]. given #8185 (W,wt=55): 8023 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,1,1,0,1]:x]). [hyper(2,a,333,a,b,983,a),rewrite([6,7,5])]. given #8186 (W,wt=55): 8024 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,732,a,b,984,a),rewrite([12,11,13,10])]. given #8187 (W,wt=55): 8025 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,724,a,b,984,a),rewrite([12,11,13,10])]. given #8188 (W,wt=55): 8026 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,343,a,b,984,a),rewrite([12,11,13,10])]. given #8189 (W,wt=55): 8027 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,719,a,b,984,a),rewrite([7,6,8,5])]. given #8190 (W,wt=55): 8028 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,717,a,b,984,a),rewrite([7,6,8,5])]. given #8191 (W,wt=55): 8029 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,716,a,b,984,a),rewrite([7,6,8,5])]. given #8192 (W,wt=55): 8030 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,715,a,b,984,a),rewrite([7,6,8,5])]. given #8193 (W,wt=55): 8031 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(2,a,712,a,b,984,a),rewrite([7,6,8,5])]. given #8194 (W,wt=55): 8033 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,732,a,b,8032,a),rewrite([12,11,13,10])]. given #8195 (W,wt=55): 8034 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,0,1,1],[0,0,1,1,0,0,0,1]:x]). [hyper(3,a,724,a,b,8032,a),rewrite([12,11,13,10])]. given #8196 (W,wt=55): 8035 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,796,a,b,985,a),rewrite([12,11,13,10])]. given #8197 (W,wt=55): 8036 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,790,a,b,985,a),rewrite([12,11,13,10])]. given #8198 (W,wt=55): 8037 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,784,a,b,985,a),rewrite([12,11,13,10])]. given #8199 (W,wt=55): 8038 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,750,a,b,985,a),rewrite([12,11,13,10])]. given #8200 (W,wt=55): 8039 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(3,a,359,a,b,985,a),rewrite([12,11,13,10])]. given #8201 (W,wt=55): 8040 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,985,a),rewrite([7,6,8,5])]. given #8202 (W,wt=55): 8041 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,784,a,b,985,a),rewrite([7,6,8,5])]. given #8203 (W,wt=55): 8042 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,783,a,b,985,a),rewrite([7,6,8,5])]. given #8204 (W,wt=55): 8043 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,779,a,b,985,a),rewrite([7,8,6,5])]. given #8205 (W,wt=55): 8044 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,985,a),rewrite([6,8,7,5])]. given #8206 (W,wt=55): 8045 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,797,a,b,986,a),rewrite([12,13,11,10])]. given #8207 (W,wt=55): 8046 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,791,a,b,986,a),rewrite([12,13,11,10])]. given #8208 (W,wt=55): 8047 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,785,a,b,986,a),rewrite([12,13,11,10])]. given #8209 (W,wt=55): 8048 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,751,a,b,986,a),rewrite([12,13,11,10])]. given #8210 (W,wt=55): 8049 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(3,a,358,a,b,986,a),rewrite([12,11,13,10])]. given #8211 (W,wt=55): 8050 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,785,a,b,986,a),rewrite([7,8,6,5])]. given #8212 (W,wt=55): 8051 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,784,a,b,986,a),rewrite([7,6,8,5])]. given #8213 (W,wt=55): 8052 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,783,a,b,986,a),rewrite([7,6,8,5])]. given #8214 (W,wt=55): 8053 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,761,a,b,986,a),rewrite([7,6,8,5])]. given #8215 (W,wt=55): 8054 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,1,1]:x]). [hyper(2,a,351,a,b,986,a),rewrite([6,8,7,5])]. given #8216 (W,wt=55): 8055 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,797,a,b,987,a),rewrite([12,13,11,10])]. given #8217 (W,wt=55): 8056 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,796,a,b,987,a),rewrite([12,11,13,10])]. given #8218 (W,wt=55): 8057 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,795,a,b,987,a),rewrite([12,11,13,10])]. given #8219 (W,wt=55): 8058 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,793,a,b,987,a),rewrite([12,11,13,10])]. given #8220 (W,wt=55): 8059 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,791,a,b,987,a),rewrite([12,13,11,10])]. given #8221 (W,wt=55): 8060 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,790,a,b,987,a),rewrite([12,11,13,10])]. given #8222 (W,wt=55): 8061 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,789,a,b,987,a),rewrite([12,11,13,10])]. given #8223 (W,wt=55): 8062 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,787,a,b,987,a),rewrite([12,13,11,10])]. given #8224 (W,wt=55): 8063 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,785,a,b,987,a),rewrite([12,13,11,10])]. given #8225 (W,wt=55): 8064 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,784,a,b,987,a),rewrite([12,11,13,10])]. given #8226 (W,wt=55): 8065 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,783,a,b,987,a),rewrite([12,11,13,10])]. given #8227 (W,wt=55): 8066 P([1,0,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,781,a,b,987,a),rewrite([12,13,11,10])]. given #8228 (W,wt=55): 8067 P([1,0,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,779,a,b,987,a),rewrite([12,13,11,10])]. given #8229 (W,wt=55): 8068 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,778,a,b,987,a),rewrite([12,13,11,10])]. given #8230 (W,wt=55): 8069 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,766,a,b,987,a),rewrite([12,11,13,10])]. given #8231 (W,wt=55): 8070 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,762,a,b,987,a),rewrite([12,13,11,10])]. given #8232 (W,wt=55): 8071 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,753,a,b,987,a),rewrite([12,13,11,10])]. given #8233 (W,wt=55): 8072 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,752,a,b,987,a),rewrite([12,11,13,10])]. given #8234 (W,wt=55): 8073 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,751,a,b,987,a),rewrite([12,13,11,10])]. given #8235 (W,wt=55): 8074 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,750,a,b,987,a),rewrite([12,11,13,10])]. given #8236 (W,wt=55): 8075 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,749,a,b,987,a),rewrite([12,11,13,10])]. given #8237 (W,wt=55): 8076 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,747,a,b,987,a),rewrite([12,11,13,10])]. given #8238 (W,wt=55): 8077 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,746,a,b,987,a),rewrite([12,13,11,10])]. given #8239 (W,wt=55): 8078 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,359,a,b,987,a),rewrite([12,13,11,10])]. given #8240 (W,wt=55): 8079 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,358,a,b,987,a),rewrite([12,11,13,10])]. given #8241 (W,wt=55): 8081 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,356,a,b,987,a),rewrite([12,11,13,10])]. given #8242 (W,wt=55): 8082 P([1,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,355,a,b,987,a),rewrite([12,11,13,10])]. given #8243 (W,wt=55): 8083 P([1,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,354,a,b,987,a),rewrite([12,13,11,10])]. given #8244 (W,wt=55): 8084 P([1,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,353,a,b,987,a),rewrite([12,13,11,10])]. given #8245 (W,wt=55): 8085 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,987,a),rewrite([12,13,11,10])]. given #8246 (W,wt=55): 8086 P([1,0,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,65,a,b,987,a),rewrite([12,13,11,10])]. given #8247 (W,wt=55): 8087 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,63,a,b,987,a),rewrite([12,13,11,10])]. given #8248 (W,wt=55): 8088 P([1,0,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,60,a,b,987,a),rewrite([12,13,11,10])]. given #8249 (W,wt=55): 8089 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(3,a,55,a,b,987,a),rewrite([12,13,11,10])]. given #8250 (W,wt=55): 8090 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,987,a),rewrite([7,8,6,5])]. given #8251 (W,wt=55): 8091 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,987,a),rewrite([6,8,7,5])]. given #8252 (W,wt=55): 8092 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,8080,a),rewrite([7,6,8,5])]. given #8253 (W,wt=55): 8093 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,784,a,b,8080,a),rewrite([7,6,8,5])]. given #8254 (W,wt=55): 8094 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,783,a,b,8080,a),rewrite([7,6,8,5])]. given #8255 (W,wt=55): 8095 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,8080,a),rewrite([6,8,7,5])]. given #8256 (W,wt=55): 8096 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,797,a,b,988,a),rewrite([12,13,11,10])]. given #8257 (W,wt=55): 8097 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,796,a,b,988,a),rewrite([12,11,13,10])]. given #8258 (W,wt=55): 8098 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,791,a,b,988,a),rewrite([12,13,11,10])]. given #8259 (W,wt=55): 8099 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,790,a,b,988,a),rewrite([12,11,13,10])]. given #8260 (W,wt=55): 8100 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,785,a,b,988,a),rewrite([12,13,11,10])]. given #8261 (W,wt=55): 8101 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,784,a,b,988,a),rewrite([12,11,13,10])]. given #8262 (W,wt=55): 8102 P([1,0,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,781,a,b,988,a),rewrite([12,13,11,10])]. given #8263 (W,wt=55): 8103 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,778,a,b,988,a),rewrite([12,13,11,10])]. given #8264 (W,wt=55): 8104 P([1,0,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,762,a,b,988,a),rewrite([12,13,11,10])]. given #8265 (W,wt=55): 8105 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,751,a,b,988,a),rewrite([12,13,11,10])]. given #8266 (W,wt=55): 8106 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,750,a,b,988,a),rewrite([12,11,13,10])]. given #8267 (W,wt=55): 8107 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,359,a,b,988,a),rewrite([12,13,11,10])]. given #8268 (W,wt=55): 8108 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,358,a,b,988,a),rewrite([12,11,13,10])]. given #8269 (W,wt=55): 8109 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,357,a,b,988,a),rewrite([12,11,13,10])]. given #8270 (W,wt=55): 8110 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(3,a,79,a,b,988,a),rewrite([12,13,11,10])]. given #8271 (W,wt=55): 8111 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,988,a),rewrite([7,8,6,5])]. given #8272 (W,wt=55): 8112 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,783,a,b,988,a),rewrite([7,6,8,5])]. given #8273 (W,wt=55): 8113 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,988,a),rewrite([6,8,7,5])]. given #8274 (W,wt=55): 8114 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,797,a,b,989,a),rewrite([12,13,11,10])]. given #8275 (W,wt=55): 8115 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,795,a,b,989,a),rewrite([12,11,13,10])]. given #8276 (W,wt=55): 8116 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,791,a,b,989,a),rewrite([12,13,11,10])]. given #8277 (W,wt=55): 8117 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,789,a,b,989,a),rewrite([12,11,13,10])]. given #8278 (W,wt=55): 8118 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,787,a,b,989,a),rewrite([12,13,11,10])]. given #8279 (W,wt=55): 8119 P([1,0,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,785,a,b,989,a),rewrite([12,13,11,10])]. given #8280 (W,wt=55): 8120 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,783,a,b,989,a),rewrite([12,11,13,10])]. given #8281 (W,wt=55): 8121 P([1,0,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,779,a,b,989,a),rewrite([12,13,11,10])]. given #8282 (W,wt=55): 8122 P([1,0,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,753,a,b,989,a),rewrite([12,13,11,10])]. given #8283 (W,wt=55): 8123 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,751,a,b,989,a),rewrite([12,13,11,10])]. given #8284 (W,wt=55): 8124 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,749,a,b,989,a),rewrite([12,11,13,10])]. given #8285 (W,wt=55): 8125 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,746,a,b,989,a),rewrite([12,13,11,10])]. given #8286 (W,wt=55): 8126 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,359,a,b,989,a),rewrite([12,13,11,10])]. given #8287 (W,wt=55): 8127 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(3,a,358,a,b,989,a),rewrite([12,11,13,10])]. given #8288 (W,wt=55): 8129 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,785,a,b,989,a),rewrite([7,8,6,5])]. given #8289 (W,wt=55): 8130 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,784,a,b,989,a),rewrite([7,6,8,5])]. given #8290 (W,wt=55): 8131 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,351,a,b,989,a),rewrite([6,8,7,5])]. given #8291 (W,wt=55): 8132 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,784,a,b,8128,a),rewrite([7,6,8,5])]. given #8292 (W,wt=55): 8133 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,783,a,b,8128,a),rewrite([7,6,8,5])]. given #8293 (W,wt=55): 8134 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,1,0,0,1,1]:x]). [hyper(2,a,351,a,b,8128,a),rewrite([6,8,7,5])]. given #8294 (W,wt=55): 8135 P([1,1,1,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,796,a,b,990,a),rewrite([12,11,13,10])]. given #8295 (W,wt=55): 8136 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,795,a,b,990,a),rewrite([12,11,13,10])]. given #8296 (W,wt=55): 8137 P([1,1,0,0,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,793,a,b,990,a),rewrite([12,11,13,10])]. given #8297 (W,wt=55): 8138 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,790,a,b,990,a),rewrite([12,11,13,10])]. given #8298 (W,wt=55): 8139 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,789,a,b,990,a),rewrite([12,11,13,10])]. given #8299 (W,wt=55): 8140 P([1,1,1,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,784,a,b,990,a),rewrite([12,11,13,10])]. given #8300 (W,wt=55): 8141 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,783,a,b,990,a),rewrite([12,11,13,10])]. given #8301 (W,wt=55): 8142 P([1,1,0,0,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,766,a,b,990,a),rewrite([12,11,13,10])]. given #8302 (W,wt=55): 8143 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,752,a,b,990,a),rewrite([12,11,13,10])]. given #8303 (W,wt=55): 8144 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,750,a,b,990,a),rewrite([12,11,13,10])]. given #8304 (W,wt=55): 8145 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,749,a,b,990,a),rewrite([12,11,13,10])]. given #8305 (W,wt=55): 8146 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,747,a,b,990,a),rewrite([12,11,13,10])]. given #8306 (W,wt=55): 8147 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,359,a,b,990,a),rewrite([12,11,13,10])]. given #8307 (W,wt=55): 8148 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(3,a,358,a,b,990,a),rewrite([12,11,13,10])]. given #8308 (W,wt=55): 8150 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,990,a),rewrite([7,6,8,5])]. given #8309 (W,wt=55): 8151 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,784,a,b,990,a),rewrite([7,6,8,5])]. given #8310 (W,wt=55): 8152 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,990,a),rewrite([6,8,7,5])]. given #8311 (W,wt=55): 8153 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,785,a,b,8149,a),rewrite([7,6,8,5])]. given #8312 (W,wt=55): 8154 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,783,a,b,8149,a),rewrite([7,6,8,5])]. given #8313 (W,wt=55): 8155 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,1,1,0,1,1]:x]). [hyper(2,a,351,a,b,8149,a),rewrite([6,8,7,5])]. given #8314 (W,wt=55): 8156 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,797,a,b,991,a),rewrite([12,13,11,10])]. given #8315 (W,wt=55): 8157 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,791,a,b,991,a),rewrite([12,13,11,10])]. given #8316 (W,wt=55): 8158 P([1,1,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,358,a,b,991,a),rewrite([12,11,13,10])]. given #8317 (W,wt=55): 8159 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,797,a,b,991,a),rewrite([7,8,6,5])]. given #8318 (W,wt=55): 8160 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,796,a,b,991,a),rewrite([7,6,8,5])]. given #8319 (W,wt=55): 8161 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,795,a,b,991,a),rewrite([7,6,8,5])]. given #8320 (W,wt=55): 8162 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,793,a,b,991,a),rewrite([7,6,8,5])]. given #8321 (W,wt=55): 8163 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,785,a,b,991,a),rewrite([7,8,6,5])]. given #8322 (W,wt=55): 8164 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,784,a,b,991,a),rewrite([7,6,8,5])]. given #8323 (W,wt=55): 8165 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,783,a,b,991,a),rewrite([7,6,8,5])]. given #8324 (W,wt=55): 8166 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,761,a,b,991,a),rewrite([7,6,8,5])]. given #8325 (W,wt=55): 8167 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,760,a,b,991,a),rewrite([7,8,6,5])]. given #8326 (W,wt=55): 8168 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,759,a,b,991,a),rewrite([7,6,8,5])]. given #8327 (W,wt=55): 8169 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,758,a,b,991,a),rewrite([7,6,8,5])]. given #8328 (W,wt=55): 8170 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,756,a,b,991,a),rewrite([7,6,8,5])]. given #8329 (W,wt=55): 8172 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,350,a,b,991,a),rewrite([6,7,5])]. given #8330 (W,wt=55): 8173 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(2,a,349,a,b,991,a),rewrite([6,8,7,5])]. given #8331 (W,wt=55): 8174 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,797,a,b,8171,a),rewrite([12,13,11,10])]. given #8332 (W,wt=55): 8175 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,791,a,b,8171,a),rewrite([12,13,11,10])]. given #8333 (W,wt=55): 8176 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,1,0,0,0,1]:x]). [hyper(3,a,358,a,b,8171,a),rewrite([12,11,13,10])]. given #8334 (W,wt=55): 8177 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,796,a,b,992,a),rewrite([12,11,13,10])]. given #8335 (W,wt=55): 8178 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,790,a,b,992,a),rewrite([12,11,13,10])]. given #8336 (W,wt=55): 8179 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,359,a,b,992,a),rewrite([12,11,13,10])]. given #8337 (W,wt=55): 8180 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,791,a,b,992,a),rewrite([7,6,8,5])]. given #8338 (W,wt=55): 8181 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,790,a,b,992,a),rewrite([7,6,8,5])]. given #8339 (W,wt=55): 8182 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,789,a,b,992,a),rewrite([7,6,8,5])]. given #8340 (W,wt=55): 8183 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,787,a,b,992,a),rewrite([7,6,8,5])]. given #8341 (W,wt=55): 8184 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,785,a,b,992,a),rewrite([7,6,8,5])]. given #8342 (W,wt=55): 8185 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,784,a,b,992,a),rewrite([7,6,8,5])]. given #8343 (W,wt=55): 8186 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,783,a,b,992,a),rewrite([7,6,8,5])]. given #8344 (W,wt=55): 8187 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,779,a,b,992,a),rewrite([7,6,8,5])]. given #8345 (W,wt=55): 8188 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,777,a,b,992,a),rewrite([7,6,8,5])]. given #8346 (W,wt=55): 8189 P([0,1,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,776,a,b,992,a),rewrite([7,6,8,5])]. given #8347 (W,wt=55): 8190 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,775,a,b,992,a),rewrite([7,6,8,5])]. given #8348 (W,wt=55): 8191 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,772,a,b,992,a),rewrite([7,6,8,5])]. given #8349 (W,wt=55): 8192 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,351,a,b,992,a),rewrite([6,7,5])]. given #8350 (W,wt=55): 8194 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(2,a,349,a,b,992,a),rewrite([6,7,8,5])]. given #8351 (W,wt=55): 8195 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,796,a,b,8193,a),rewrite([12,11,13,10])]. given #8352 (W,wt=55): 8196 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,790,a,b,8193,a),rewrite([12,11,13,10])]. given #8353 (W,wt=55): 8197 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,1,1]:x]). [hyper(3,a,359,a,b,8193,a),rewrite([12,11,13,10])]. given #8354 (W,wt=55): 8198 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,795,a,b,993,a),rewrite([12,11,13,10])]. given #8355 (W,wt=55): 8199 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,789,a,b,993,a),rewrite([12,11,13,10])]. given #8356 (W,wt=55): 8200 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,783,a,b,993,a),rewrite([12,11,13,10])]. given #8357 (W,wt=55): 8201 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,758,a,b,993,a),rewrite([12,11,13,10])]. given #8358 (W,wt=55): 8202 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(3,a,359,a,b,993,a),rewrite([12,11,13,10])]. given #8359 (W,wt=55): 8203 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,791,a,b,993,a),rewrite([7,6,8,5])]. given #8360 (W,wt=55): 8204 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,790,a,b,993,a),rewrite([7,6,8,5])]. given #8361 (W,wt=55): 8205 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,789,a,b,993,a),rewrite([7,6,8,5])]. given #8362 (W,wt=55): 8206 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,778,a,b,993,a),rewrite([7,6,8,5])]. given #8363 (W,wt=55): 8207 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,1,1,1]:x]). [hyper(2,a,351,a,b,993,a),rewrite([6,7,8,5])]. given #8364 (W,wt=55): 8208 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,797,a,b,994,a),rewrite([12,13,11,10])]. given #8365 (W,wt=55): 8209 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,791,a,b,994,a),rewrite([12,13,11,10])]. given #8366 (W,wt=55): 8210 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,785,a,b,994,a),rewrite([12,13,11,10])]. given #8367 (W,wt=55): 8211 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,760,a,b,994,a),rewrite([12,13,11,10])]. given #8368 (W,wt=55): 8212 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(3,a,358,a,b,994,a),rewrite([12,11,13,10])]. given #8369 (W,wt=55): 8213 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,791,a,b,994,a),rewrite([7,8,6,5])]. given #8370 (W,wt=55): 8214 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,790,a,b,994,a),rewrite([7,6,8,5])]. given #8371 (W,wt=55): 8215 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,789,a,b,994,a),rewrite([7,6,8,5])]. given #8372 (W,wt=55): 8216 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,752,a,b,994,a),rewrite([7,6,8,5])]. given #8373 (W,wt=55): 8217 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,1,1]:x]). [hyper(2,a,351,a,b,994,a),rewrite([6,7,8,5])]. given #8374 (W,wt=55): 8218 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,797,a,b,995,a),rewrite([12,13,11,10])]. given #8375 (W,wt=55): 8219 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,796,a,b,995,a),rewrite([12,11,13,10])]. given #8376 (W,wt=55): 8220 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,795,a,b,995,a),rewrite([12,11,13,10])]. given #8377 (W,wt=55): 8221 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,793,a,b,995,a),rewrite([12,11,13,10])]. given #8378 (W,wt=55): 8222 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,791,a,b,995,a),rewrite([12,13,11,10])]. given #8379 (W,wt=55): 8223 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,790,a,b,995,a),rewrite([12,11,13,10])]. given #8380 (W,wt=55): 8224 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,789,a,b,995,a),rewrite([12,11,13,10])]. given #8381 (W,wt=55): 8225 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,787,a,b,995,a),rewrite([12,13,11,10])]. given #8382 (W,wt=55): 8226 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,785,a,b,995,a),rewrite([12,13,11,10])]. given #8383 (W,wt=55): 8227 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,784,a,b,995,a),rewrite([12,11,13,10])]. given #8384 (W,wt=55): 8228 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,783,a,b,995,a),rewrite([12,11,13,10])]. given #8385 (W,wt=55): 8229 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,781,a,b,995,a),rewrite([12,13,11,10])]. given #8386 (W,wt=55): 8230 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,779,a,b,995,a),rewrite([12,13,11,10])]. given #8387 (W,wt=55): 8231 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,778,a,b,995,a),rewrite([12,13,11,10])]. given #8388 (W,wt=55): 8232 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,766,a,b,995,a),rewrite([12,11,13,10])]. given #8389 (W,wt=55): 8233 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,762,a,b,995,a),rewrite([12,13,11,10])]. given #8390 (W,wt=55): 8234 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,761,a,b,995,a),rewrite([12,11,13,10])]. given #8391 (W,wt=55): 8235 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,760,a,b,995,a),rewrite([12,13,11,10])]. given #8392 (W,wt=55): 8236 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,759,a,b,995,a),rewrite([12,11,13,10])]. given #8393 (W,wt=55): 8237 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,758,a,b,995,a),rewrite([12,11,13,10])]. given #8394 (W,wt=55): 8238 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,756,a,b,995,a),rewrite([12,11,13,10])]. given #8395 (W,wt=55): 8239 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,755,a,b,995,a),rewrite([12,13,11,10])]. given #8396 (W,wt=55): 8240 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,753,a,b,995,a),rewrite([12,13,11,10])]. given #8397 (W,wt=55): 8241 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,359,a,b,995,a),rewrite([12,13,11,10])]. given #8398 (W,wt=55): 8243 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,357,a,b,995,a),rewrite([12,11,13,10])]. given #8399 (W,wt=55): 8244 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,356,a,b,995,a),rewrite([12,11,13,10])]. given #8400 (W,wt=55): 8245 P([1,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,355,a,b,995,a),rewrite([12,11,13,10])]. given #8401 (W,wt=55): 8246 P([1,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,354,a,b,995,a),rewrite([12,13,11,10])]. given #8402 (W,wt=55): 8247 P([1,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,353,a,b,995,a),rewrite([12,13,11,10])]. given #8403 (W,wt=55): 8248 P([1,0,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,79,a,b,995,a),rewrite([12,13,11,10])]. given #8404 (W,wt=55): 8249 P([1,0,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,70,a,b,995,a),rewrite([12,13,11,10])]. given #8405 (W,wt=55): 8250 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,68,a,b,995,a),rewrite([12,13,11,10])]. given #8406 (W,wt=55): 8251 P([1,0,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,60,a,b,995,a),rewrite([12,13,11,10])]. given #8407 (W,wt=55): 8252 P([1,0,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(3,a,55,a,b,995,a),rewrite([12,13,11,10])]. given #8408 (W,wt=55): 8253 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,791,a,b,995,a),rewrite([7,8,6,5])]. given #8409 (W,wt=55): 8254 P([1,0,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,995,a),rewrite([6,7,8,5])]. given #8410 (W,wt=55): 8255 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,791,a,b,8242,a),rewrite([7,6,8,5])]. given #8411 (W,wt=55): 8256 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,790,a,b,8242,a),rewrite([7,6,8,5])]. given #8412 (W,wt=55): 8257 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,789,a,b,8242,a),rewrite([7,6,8,5])]. given #8413 (W,wt=55): 8258 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,8242,a),rewrite([6,7,8,5])]. given #8414 (W,wt=55): 8259 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,797,a,b,996,a),rewrite([12,13,11,10])]. given #8415 (W,wt=55): 8260 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,796,a,b,996,a),rewrite([12,11,13,10])]. given #8416 (W,wt=55): 8261 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,791,a,b,996,a),rewrite([12,13,11,10])]. given #8417 (W,wt=55): 8262 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,790,a,b,996,a),rewrite([12,11,13,10])]. given #8418 (W,wt=55): 8263 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,785,a,b,996,a),rewrite([12,13,11,10])]. given #8419 (W,wt=55): 8264 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,784,a,b,996,a),rewrite([12,11,13,10])]. given #8420 (W,wt=55): 8265 P([1,0,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,781,a,b,996,a),rewrite([12,13,11,10])]. given #8421 (W,wt=55): 8266 P([1,0,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,778,a,b,996,a),rewrite([12,13,11,10])]. given #8422 (W,wt=55): 8267 P([1,0,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,762,a,b,996,a),rewrite([12,13,11,10])]. given #8423 (W,wt=55): 8268 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,760,a,b,996,a),rewrite([12,13,11,10])]. given #8424 (W,wt=55): 8269 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,759,a,b,996,a),rewrite([12,11,13,10])]. given #8425 (W,wt=55): 8270 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,755,a,b,996,a),rewrite([12,13,11,10])]. given #8426 (W,wt=55): 8271 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,359,a,b,996,a),rewrite([12,13,11,10])]. given #8427 (W,wt=55): 8273 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(3,a,357,a,b,996,a),rewrite([12,11,13,10])]. given #8428 (W,wt=55): 8274 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,791,a,b,996,a),rewrite([7,8,6,5])]. given #8429 (W,wt=55): 8275 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,789,a,b,996,a),rewrite([7,6,8,5])]. given #8430 (W,wt=55): 8276 P([1,0,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,996,a),rewrite([6,7,8,5])]. given #8431 (W,wt=55): 8277 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,790,a,b,8272,a),rewrite([7,6,8,5])]. given #8432 (W,wt=55): 8278 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,789,a,b,8272,a),rewrite([7,6,8,5])]. given #8433 (W,wt=55): 8279 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,8272,a),rewrite([6,7,8,5])]. given #8434 (W,wt=55): 8280 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,797,a,b,997,a),rewrite([12,13,11,10])]. given #8435 (W,wt=55): 8281 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,795,a,b,997,a),rewrite([12,11,13,10])]. given #8436 (W,wt=55): 8282 P([1,0,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,791,a,b,997,a),rewrite([12,13,11,10])]. given #8437 (W,wt=55): 8283 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,789,a,b,997,a),rewrite([12,11,13,10])]. given #8438 (W,wt=55): 8284 P([1,0,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,787,a,b,997,a),rewrite([12,13,11,10])]. given #8439 (W,wt=55): 8285 P([1,0,1,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,785,a,b,997,a),rewrite([12,13,11,10])]. given #8440 (W,wt=55): 8286 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,783,a,b,997,a),rewrite([12,11,13,10])]. given #8441 (W,wt=55): 8287 P([1,0,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,779,a,b,997,a),rewrite([12,13,11,10])]. given #8442 (W,wt=55): 8288 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,760,a,b,997,a),rewrite([12,13,11,10])]. given #8443 (W,wt=55): 8289 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,758,a,b,997,a),rewrite([12,11,13,10])]. given #8444 (W,wt=55): 8290 P([1,0,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,753,a,b,997,a),rewrite([12,13,11,10])]. given #8445 (W,wt=55): 8291 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,359,a,b,997,a),rewrite([12,13,11,10])]. given #8446 (W,wt=55): 8292 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,358,a,b,997,a),rewrite([12,11,13,10])]. given #8447 (W,wt=55): 8293 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,357,a,b,997,a),rewrite([12,11,13,10])]. given #8448 (W,wt=55): 8294 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(3,a,79,a,b,997,a),rewrite([12,13,11,10])]. given #8449 (W,wt=55): 8295 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,791,a,b,997,a),rewrite([7,8,6,5])]. given #8450 (W,wt=55): 8296 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,790,a,b,997,a),rewrite([7,6,8,5])]. given #8451 (W,wt=55): 8297 P([1,0,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,0,1,1,1]:x]). [hyper(2,a,351,a,b,997,a),rewrite([6,7,8,5])]. given #8452 (W,wt=55): 8298 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,796,a,b,998,a),rewrite([12,11,13,10])]. given #8453 (W,wt=55): 8299 P([1,1,0,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,795,a,b,998,a),rewrite([12,11,13,10])]. given #8454 (W,wt=55): 8300 P([1,1,0,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,793,a,b,998,a),rewrite([12,11,13,10])]. given #8455 (W,wt=55): 8301 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,790,a,b,998,a),rewrite([12,11,13,10])]. given #8456 (W,wt=55): 8302 P([1,1,0,1,1,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,789,a,b,998,a),rewrite([12,11,13,10])]. given #8457 (W,wt=55): 8303 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,784,a,b,998,a),rewrite([12,11,13,10])]. given #8458 (W,wt=55): 8304 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,783,a,b,998,a),rewrite([12,11,13,10])]. given #8459 (W,wt=55): 8305 P([1,1,0,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,766,a,b,998,a),rewrite([12,11,13,10])]. given #8460 (W,wt=55): 8306 P([1,1,0,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,761,a,b,998,a),rewrite([12,11,13,10])]. given #8461 (W,wt=55): 8307 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,759,a,b,998,a),rewrite([12,11,13,10])]. given #8462 (W,wt=55): 8308 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,758,a,b,998,a),rewrite([12,11,13,10])]. given #8463 (W,wt=55): 8309 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,756,a,b,998,a),rewrite([12,11,13,10])]. given #8464 (W,wt=55): 8310 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,359,a,b,998,a),rewrite([12,11,13,10])]. given #8465 (W,wt=55): 8312 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(3,a,357,a,b,998,a),rewrite([12,11,13,10])]. given #8466 (W,wt=55): 8313 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,791,a,b,998,a),rewrite([7,6,8,5])]. given #8467 (W,wt=55): 8314 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,790,a,b,998,a),rewrite([7,6,8,5])]. given #8468 (W,wt=55): 8315 P([1,1,0,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,998,a),rewrite([6,7,8,5])]. given #8469 (W,wt=55): 8316 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,791,a,b,8311,a),rewrite([7,6,8,5])]. given #8470 (W,wt=55): 8317 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,790,a,b,8311,a),rewrite([7,6,8,5])]. given #8471 (W,wt=55): 8318 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,1,1,1,1]:x]). [hyper(2,a,351,a,b,8311,a),rewrite([6,7,8,5])]. given #8472 (W,wt=55): 8319 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,797,a,b,999,a),rewrite([12,13,11,10])]. given #8473 (W,wt=55): 8320 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,785,a,b,999,a),rewrite([12,13,11,10])]. given #8474 (W,wt=55): 8321 P([1,1,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,358,a,b,999,a),rewrite([12,11,13,10])]. given #8475 (W,wt=55): 8322 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,797,a,b,999,a),rewrite([7,8,6,5])]. given #8476 (W,wt=55): 8323 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,796,a,b,999,a),rewrite([7,6,8,5])]. given #8477 (W,wt=55): 8324 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,795,a,b,999,a),rewrite([7,6,8,5])]. given #8478 (W,wt=55): 8325 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,793,a,b,999,a),rewrite([7,6,8,5])]. given #8479 (W,wt=55): 8326 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,791,a,b,999,a),rewrite([7,8,6,5])]. given #8480 (W,wt=55): 8327 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,790,a,b,999,a),rewrite([7,6,8,5])]. given #8481 (W,wt=55): 8328 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,789,a,b,999,a),rewrite([7,6,8,5])]. given #8482 (W,wt=55): 8329 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,752,a,b,999,a),rewrite([7,6,8,5])]. given #8483 (W,wt=55): 8330 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,751,a,b,999,a),rewrite([7,8,6,5])]. given #8484 (W,wt=55): 8331 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,750,a,b,999,a),rewrite([7,6,8,5])]. given #8485 (W,wt=55): 8332 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,749,a,b,999,a),rewrite([7,6,8,5])]. given #8486 (W,wt=55): 8333 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,747,a,b,999,a),rewrite([7,6,8,5])]. given #8487 (W,wt=55): 8335 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,350,a,b,999,a),rewrite([6,8,7,5])]. given #8488 (W,wt=55): 8336 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(2,a,349,a,b,999,a),rewrite([6,7,5])]. given #8489 (W,wt=55): 8337 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,797,a,b,8334,a),rewrite([12,13,11,10])]. given #8490 (W,wt=55): 8338 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,785,a,b,8334,a),rewrite([12,13,11,10])]. given #8491 (W,wt=55): 8339 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,1,0,1]:x]). [hyper(3,a,358,a,b,8334,a),rewrite([12,11,13,10])]. given #8492 (W,wt=55): 8340 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,795,a,b,1000,a),rewrite([12,11,13,10])]. given #8493 (W,wt=55): 8341 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,789,a,b,1000,a),rewrite([12,11,13,10])]. given #8494 (W,wt=55): 8342 P([1,1,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,359,a,b,1000,a),rewrite([12,11,13,10])]. given #8495 (W,wt=55): 8343 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,791,a,b,1000,a),rewrite([7,6,8,5])]. given #8496 (W,wt=55): 8344 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,790,a,b,1000,a),rewrite([7,6,8,5])]. given #8497 (W,wt=55): 8345 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,789,a,b,1000,a),rewrite([7,6,8,5])]. given #8498 (W,wt=55): 8346 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,785,a,b,1000,a),rewrite([7,6,8,5])]. given #8499 (W,wt=55): 8347 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,784,a,b,1000,a),rewrite([7,6,8,5])]. given #8500 (W,wt=55): 8348 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,783,a,b,1000,a),rewrite([7,6,8,5])]. given #8501 (W,wt=55): 8349 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,781,a,b,1000,a),rewrite([7,6,8,5])]. given #8502 (W,wt=55): 8350 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,778,a,b,1000,a),rewrite([7,6,8,5])]. given #8503 (W,wt=55): 8351 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,777,a,b,1000,a),rewrite([7,6,8,5])]. given #8504 (W,wt=55): 8352 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,776,a,b,1000,a),rewrite([7,6,8,5])]. given #8505 (W,wt=55): 8353 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,775,a,b,1000,a),rewrite([7,6,8,5])]. given #8506 (W,wt=55): 8354 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,773,a,b,1000,a),rewrite([7,6,8,5])]. given #8507 (W,wt=55): 8355 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,351,a,b,1000,a),rewrite([6,7,5])]. given #8508 (W,wt=55): 8356 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(2,a,350,a,b,1000,a),rewrite([6,7,8,5])]. given #8509 (W,wt=55): 8358 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,795,a,b,8357,a),rewrite([12,11,13,10])]. given #8510 (W,wt=55): 8359 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,783,a,b,8357,a),rewrite([12,11,13,10])]. given #8511 (W,wt=55): 8360 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,1,1]:x]). [hyper(3,a,359,a,b,8357,a),rewrite([12,11,13,10])]. given #8512 (W,wt=55): 8361 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,796,a,b,1001,a),rewrite([12,11,13,10])]. given #8513 (W,wt=55): 8362 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,359,a,b,1001,a),rewrite([12,11,13,10])]. given #8514 (W,wt=55): 8363 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,797,a,b,1001,a),rewrite([7,6,5])]. given #8515 (W,wt=55): 8364 P([0,1,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,796,a,b,1001,a),rewrite([7,6,8,5])]. given #8516 (W,wt=55): 8365 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,795,a,b,1001,a),rewrite([7,6,5])]. given #8517 (W,wt=55): 8366 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,791,a,b,1001,a),rewrite([7,6,5])]. given #8518 (W,wt=55): 8367 P([0,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,790,a,b,1001,a),rewrite([7,6,8,5])]. given #8519 (W,wt=55): 8368 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,789,a,b,1001,a),rewrite([7,6,5])]. given #8520 (W,wt=55): 8369 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,787,a,b,1001,a),rewrite([7,6,5])]. given #8521 (W,wt=55): 8370 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,785,a,b,1001,a),rewrite([7,6,5])]. given #8522 (W,wt=55): 8371 P([0,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,784,a,b,1001,a),rewrite([7,6,8,5])]. given #8523 (W,wt=55): 8372 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,783,a,b,1001,a),rewrite([7,6,5])]. given #8524 (W,wt=55): 8373 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,779,a,b,1001,a),rewrite([7,6,5])]. given #8525 (W,wt=55): 8374 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,777,a,b,1001,a),rewrite([7,6,5])]. given #8526 (W,wt=55): 8375 P([0,1,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,776,a,b,1001,a),rewrite([7,6,8,5])]. given #8527 (W,wt=55): 8376 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,775,a,b,1001,a),rewrite([7,6,5])]. given #8528 (W,wt=55): 8377 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,772,a,b,1001,a),rewrite([7,6,5])]. given #8529 (W,wt=55): 8378 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,760,a,b,1001,a),rewrite([7,6,5])]. given #8530 (W,wt=55): 8379 P([0,1,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,759,a,b,1001,a),rewrite([7,6,8,5])]. given #8531 (W,wt=55): 8380 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,758,a,b,1001,a),rewrite([7,6,5])]. given #8532 (W,wt=55): 8381 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,753,a,b,1001,a),rewrite([7,6,5])]. given #8533 (W,wt=55): 8382 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,751,a,b,1001,a),rewrite([7,6,5])]. given #8534 (W,wt=55): 8383 P([0,1,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,750,a,b,1001,a),rewrite([7,6,8,5])]. given #8535 (W,wt=55): 8384 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,749,a,b,1001,a),rewrite([7,6,5])]. given #8536 (W,wt=55): 8385 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,746,a,b,1001,a),rewrite([7,6,5])]. given #8537 (W,wt=55): 8386 P([1,1,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,351,a,b,1001,a),rewrite([6,7,5])]. given #8538 (W,wt=55): 8388 P([1,1,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,349,a,b,1001,a),rewrite([6,7,5])]. given #8539 (W,wt=55): 8389 P([1,1,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,348,a,b,1001,a),rewrite([6,7,5])]. given #8540 (W,wt=55): 8390 P([1,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,347,a,b,1001,a),rewrite([6,7,5])]. given #8541 (W,wt=55): 8391 P([1,1,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,346,a,b,1001,a),rewrite([6,7,5])]. given #8542 (W,wt=55): 8392 P([1,1,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,345,a,b,1001,a),rewrite([6,7,5])]. given #8543 (W,wt=55): 8393 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,79,a,b,1001,a),rewrite([7,6,8,5])]. given #8544 (W,wt=55): 8394 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,65,a,b,1001,a),rewrite([7,8,6,5])]. given #8545 (W,wt=55): 8395 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,63,a,b,1001,a),rewrite([7,6,8,5])]. given #8546 (W,wt=55): 8396 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,58,a,b,1001,a),rewrite([7,6,8,5])]. given #8547 (W,wt=55): 8397 P([0,1,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(2,a,53,a,b,1001,a),rewrite([7,6,5])]. given #8548 (W,wt=55): 8398 P([1,1,1,1,0,0,1,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,796,a,b,8387,a),rewrite([12,11,13,10])]. given #8549 (W,wt=55): 8399 P([1,1,1,1,0,0,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,790,a,b,8387,a),rewrite([12,11,13,10])]. given #8550 (W,wt=55): 8400 P([1,1,1,1,0,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,784,a,b,8387,a),rewrite([12,11,13,10])]. given #8551 (W,wt=55): 8401 P([1,1,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,0,0,1,0,0,1]:x]). [hyper(3,a,359,a,b,8387,a),rewrite([12,11,13,10])]. given #8552 (W,wt=55): 8402 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,795,a,b,1002,a),rewrite([12,11,13,10])]. given #8553 (W,wt=55): 8403 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,359,a,b,1002,a),rewrite([12,11,13,10])]. given #8554 (W,wt=55): 8404 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,797,a,b,1002,a),rewrite([7,6,5])]. given #8555 (W,wt=55): 8405 P([0,1,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,796,a,b,1002,a),rewrite([7,6,5])]. given #8556 (W,wt=55): 8406 P([0,1,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,795,a,b,1002,a),rewrite([7,6,8,5])]. given #8557 (W,wt=55): 8407 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,791,a,b,1002,a),rewrite([7,6,5])]. given #8558 (W,wt=55): 8408 P([0,1,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,790,a,b,1002,a),rewrite([7,6,5])]. given #8559 (W,wt=55): 8409 P([0,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,789,a,b,1002,a),rewrite([7,6,8,5])]. given #8560 (W,wt=55): 8410 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,785,a,b,1002,a),rewrite([7,6,5])]. given #8561 (W,wt=55): 8411 P([0,1,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,784,a,b,1002,a),rewrite([7,6,5])]. given #8562 (W,wt=55): 8412 P([0,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,783,a,b,1002,a),rewrite([7,6,8,5])]. given #8563 (W,wt=55): 8413 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,781,a,b,1002,a),rewrite([7,6,5])]. given #8564 (W,wt=55): 8414 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,778,a,b,1002,a),rewrite([7,6,5])]. given #8565 (W,wt=55): 8415 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,777,a,b,1002,a),rewrite([7,6,5])]. given #8566 (W,wt=55): 8416 P([0,1,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,776,a,b,1002,a),rewrite([7,6,5])]. given #8567 (W,wt=55): 8417 P([0,1,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,775,a,b,1002,a),rewrite([7,6,8,5])]. given #8568 (W,wt=55): 8418 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,773,a,b,1002,a),rewrite([7,6,5])]. given #8569 (W,wt=55): 8419 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,762,a,b,1002,a),rewrite([7,6,5])]. given #8570 (W,wt=55): 8420 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,760,a,b,1002,a),rewrite([7,6,5])]. given #8571 (W,wt=55): 8421 P([0,1,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,759,a,b,1002,a),rewrite([7,6,5])]. given #8572 (W,wt=55): 8422 P([0,1,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,758,a,b,1002,a),rewrite([7,6,8,5])]. given #8573 (W,wt=55): 8423 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,755,a,b,1002,a),rewrite([7,6,5])]. given #8574 (W,wt=55): 8424 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,751,a,b,1002,a),rewrite([7,6,5])]. given #8575 (W,wt=55): 8425 P([0,1,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,750,a,b,1002,a),rewrite([7,6,5])]. given #8576 (W,wt=55): 8426 P([0,1,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,749,a,b,1002,a),rewrite([7,6,8,5])]. given #8577 (W,wt=55): 8427 P([1,1,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,351,a,b,1002,a),rewrite([6,7,5])]. given #8578 (W,wt=55): 8428 P([1,1,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,350,a,b,1002,a),rewrite([6,7,5])]. given #8579 (W,wt=55): 8430 P([1,1,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,348,a,b,1002,a),rewrite([6,7,5])]. given #8580 (W,wt=55): 8431 P([1,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,347,a,b,1002,a),rewrite([6,7,5])]. given #8581 (W,wt=55): 8432 P([1,1,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,346,a,b,1002,a),rewrite([6,7,5])]. given #8582 (W,wt=55): 8433 P([1,1,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,345,a,b,1002,a),rewrite([6,7,5])]. given #8583 (W,wt=55): 8434 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,1002,a),rewrite([7,8,6,5])]. given #8584 (W,wt=55): 8435 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,70,a,b,1002,a),rewrite([7,8,6,5])]. given #8585 (W,wt=55): 8436 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,1002,a),rewrite([7,8,6,5])]. given #8586 (W,wt=55): 8437 P([0,1,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,58,a,b,1002,a),rewrite([7,6,8,5])]. given #8587 (W,wt=55): 8438 P([0,1,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,1002,a),rewrite([7,6,5])]. given #8588 (W,wt=55): 8439 P([1,1,0,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,795,a,b,8429,a),rewrite([12,11,13,10])]. given #8589 (W,wt=55): 8440 P([1,1,0,1,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,789,a,b,8429,a),rewrite([12,11,13,10])]. given #8590 (W,wt=55): 8441 P([1,1,0,0,1,1,0,1],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,783,a,b,8429,a),rewrite([12,11,13,10])]. given #8591 (W,wt=55): 8442 P([1,1,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,0,1,0,0,0,0,1]:x]). [hyper(3,a,359,a,b,8429,a),rewrite([12,11,13,10])]. given #8592 (W,wt=55): 8443 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,797,a,b,1003,a),rewrite([12,13,11,10])]. given #8593 (W,wt=55): 8444 P([1,1,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,358,a,b,1003,a),rewrite([12,11,13,10])]. given #8594 (W,wt=55): 8445 P([0,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,797,a,b,1003,a),rewrite([7,8,6,5])]. given #8595 (W,wt=55): 8446 P([0,0,1,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,796,a,b,1003,a),rewrite([7,6,5])]. given #8596 (W,wt=55): 8447 P([0,0,0,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,795,a,b,1003,a),rewrite([7,6,5])]. given #8597 (W,wt=55): 8448 P([0,0,0,0,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,793,a,b,1003,a),rewrite([7,6,5])]. given #8598 (W,wt=55): 8449 P([0,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,791,a,b,1003,a),rewrite([7,8,6,5])]. given #8599 (W,wt=55): 8450 P([0,0,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,790,a,b,1003,a),rewrite([7,6,5])]. given #8600 (W,wt=55): 8451 P([0,0,0,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,789,a,b,1003,a),rewrite([7,6,5])]. given #8601 (W,wt=55): 8452 P([0,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,785,a,b,1003,a),rewrite([7,8,6,5])]. given #8602 (W,wt=55): 8453 P([0,0,1,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,784,a,b,1003,a),rewrite([7,6,5])]. given #8603 (W,wt=55): 8454 P([0,0,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,783,a,b,1003,a),rewrite([7,6,5])]. given #8604 (W,wt=55): 8455 P([0,0,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,777,a,b,1003,a),rewrite([7,8,6,5])]. given #8605 (W,wt=55): 8456 P([0,0,1,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,776,a,b,1003,a),rewrite([7,6,5])]. given #8606 (W,wt=55): 8457 P([0,0,0,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,775,a,b,1003,a),rewrite([7,6,5])]. given #8607 (W,wt=55): 8458 P([0,0,0,0,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,761,a,b,1003,a),rewrite([7,6,5])]. given #8608 (W,wt=55): 8459 P([0,0,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,760,a,b,1003,a),rewrite([7,8,6,5])]. given #8609 (W,wt=55): 8460 P([0,0,1,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,759,a,b,1003,a),rewrite([7,6,5])]. given #8610 (W,wt=55): 8461 P([0,0,0,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,758,a,b,1003,a),rewrite([7,6,5])]. given #8611 (W,wt=55): 8462 P([0,0,0,0,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,756,a,b,1003,a),rewrite([7,6,5])]. given #8612 (W,wt=55): 8463 P([0,0,0,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,752,a,b,1003,a),rewrite([7,6,5])]. given #8613 (W,wt=55): 8464 P([0,0,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,751,a,b,1003,a),rewrite([7,8,6,5])]. given #8614 (W,wt=55): 8465 P([0,0,1,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,750,a,b,1003,a),rewrite([7,6,5])]. given #8615 (W,wt=55): 8466 P([0,0,0,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,749,a,b,1003,a),rewrite([7,6,5])]. given #8616 (W,wt=55): 8467 P([0,0,0,1,0,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,747,a,b,1003,a),rewrite([7,6,5])]. given #8617 (W,wt=55): 8469 P([1,0,1,1,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,350,a,b,1003,a),rewrite([6,7,5])]. given #8618 (W,wt=55): 8470 P([1,0,1,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,349,a,b,1003,a),rewrite([6,7,5])]. given #8619 (W,wt=55): 8471 P([1,0,1,1,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,348,a,b,1003,a),rewrite([6,7,5])]. given #8620 (W,wt=55): 8472 P([1,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,347,a,b,1003,a),rewrite([6,7,5])]. given #8621 (W,wt=55): 8473 P([1,0,1,0,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,346,a,b,1003,a),rewrite([6,7,5])]. given #8622 (W,wt=55): 8474 P([1,0,1,1,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,345,a,b,1003,a),rewrite([6,7,5])]. given #8623 (W,wt=55): 8475 P([0,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,79,a,b,1003,a),rewrite([7,8,6,5])]. given #8624 (W,wt=55): 8476 P([0,0,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,68,a,b,1003,a),rewrite([7,8,6,5])]. given #8625 (W,wt=55): 8477 P([0,0,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,63,a,b,1003,a),rewrite([7,8,6,5])]. given #8626 (W,wt=55): 8478 P([0,0,0,1,0,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,55,a,b,1003,a),rewrite([7,8,6,5])]. given #8627 (W,wt=55): 8479 P([0,0,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(2,a,53,a,b,1003,a),rewrite([7,6,5])]. given #8628 (W,wt=55): 8480 P([1,0,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,797,a,b,8468,a),rewrite([12,13,11,10])]. given #8629 (W,wt=55): 8481 P([1,0,1,1,1,0,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,791,a,b,8468,a),rewrite([12,13,11,10])]. given #8630 (W,wt=55): 8482 P([1,0,1,0,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,785,a,b,8468,a),rewrite([12,13,11,10])]. given #8631 (W,wt=55): 8483 P([1,1,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,0,0,0,0,0,1]:x]). [hyper(3,a,358,a,b,8468,a),rewrite([12,11,13,10])]. given #8632 (W,wt=55): 8484 P([1,0,1,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,797,a,b,1004,a),rewrite([12,13,11,10])]. given #8633 (W,wt=55): 8485 P([1,1,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,796,a,b,1004,a),rewrite([12,11,13,10])]. given #8634 (W,wt=55): 8486 P([1,1,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,795,a,b,1004,a),rewrite([12,11,13,10])]. given #8635 (W,wt=55): 8487 P([1,1,0,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,793,a,b,1004,a),rewrite([12,11,13,10])]. given #8636 (W,wt=55): 8488 P([1,0,0,1,1,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,787,a,b,1004,a),rewrite([12,13,11,10])]. given #8637 (W,wt=55): 8489 P([1,0,1,1,0,1,1,1],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,781,a,b,1004,a),rewrite([12,13,11,10])]. given #8638 (W,wt=55): 8490 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,359,a,b,1004,a),rewrite([12,13,11,10])]. given #8639 (W,wt=0): 20191 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,351,a,b,8490,a),rewrite([6,7,5])]. given #8640 (W,wt=55): 8491 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,358,a,b,1004,a),rewrite([12,11,13,10])]. given #8641 (W,wt=0): 20216 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,350,a,b,8491,a),rewrite([6,7,5])]. given #8642 (W,wt=55): 8492 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,357,a,b,1004,a),rewrite([12,11,13,10])]. given #8643 (W,wt=0): 20235 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,349,a,b,8492,a),rewrite([6,7,5])]. ============================== PROOF ================================= % Proof 1 at 116.91 (+ 0.67) seconds. % Length of proof is 48. % Level of proof is 10. % Maximum clause weight is 55. % Given clauses 8643. 1 (exists v (P([1,1,1,1,0,0,0,0],v) & P([1,1,0,0,1,1,0,0],v) & P([1,0,1,0,1,0,1,0],v))) # label(non_clause) # label(goal). [goal]. 2 -P(x,y) | -P(z,y) | P(bit_and(x,z),y). [assumption]. 3 -P(x,y) | -P(z,y) | P(bit_or(x,z),y). [assumption]. 4 -P(x,y) | P(bit_not(x),append_inversion(y,x)). [assumption]. 5 bit_and([],[]) = []. [assumption]. 6 bit_and([1:x],[y:z]) = [y:bit_and(x,z)]. [assumption]. 7 bit_and([x:y],[1:z]) = [x:bit_and(y,z)]. [assumption]. 8 bit_and([0:x],[y:z]) = [0:bit_and(x,z)]. [assumption]. 10 bit_or([],[]) = []. [assumption]. 11 bit_or([1:x],[y:z]) = [1:bit_or(x,z)]. [assumption]. 12 bit_or([x:y],[1:z]) = [1:bit_or(y,z)]. [assumption]. 13 bit_or([0:x],[y:z]) = [y:bit_or(x,z)]. [assumption]. 15 bit_not([]) = []. [assumption]. 16 bit_not([0:x]) = [1:bit_not(x)]. [assumption]. 17 bit_not([1:x]) = [0:bit_not(x)]. [assumption]. 18 append_inversion([x:y],z) = [x:append_inversion(y,z)]. [assumption]. 19 variable(x) -> append_inversion(x,y) = [y:x]. [assumption]. 20 P([0,0,0,0,1,1,1,1],x). [assumption]. 21 P([0,0,1,1,0,0,1,1],x). [assumption]. 22 P([0,1,0,1,0,1,0,1],x). [assumption]. 23 -P([1,1,1,1,0,0,0,0],x) | -P([1,1,0,0,1,1,0,0],x) | -P([1,0,1,0,1,0,1,0],x). [deny(1)]. 26 P([0,0,1,1,1,1,1,1],x). [hyper(3,a,20,a,b,21,a),rewrite([13,12,11,10])]. 27 P([0,0,0,0,0,0,1,1],x). [hyper(2,a,20,a,b,21,a),rewrite([8,7,6,5])]. 29 P([0,1,1,1,0,1,1,1],x). [hyper(3,a,21,a,b,22,a),rewrite([13,12,11,10])]. 30 P([0,1,0,1,1,1,1,1],x). [hyper(3,a,20,a,b,22,a),rewrite([13,12,11,10])]. 31 P([0,0,0,1,0,0,0,1],x). [hyper(2,a,21,a,b,22,a),rewrite([8,7,6,5])]. 32 P([0,0,0,0,0,1,0,1],x). [hyper(2,a,20,a,b,22,a),rewrite([8,7,6,5])]. 53 P([0,1,1,1,1,1,1,1],x). [hyper(3,a,22,a,b,26,a),rewrite([13,11,12,10])]. 55 P([0,0,0,1,0,1,0,1],x). [hyper(2,a,22,a,b,26,a),rewrite([8,6,7,5])]. 60 P([0,0,0,0,0,0,0,1],x). [hyper(2,a,22,a,b,27,a),rewrite([8,6,7,5])]. 79 P([0,0,0,1,0,1,1,1],x). [hyper(3,a,27,a,b,55,a),rewrite([13,12,11,10])]. 86 P([1,1,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(4,a,79,a),rewrite([16,17,15,19]),eval(1)]. 347 P([1,1,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,60,a,b,86,a),rewrite([12,13,11,10])]. 349 P([1,1,1,0,1,1,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,32,a,b,86,a),rewrite([12,13,11,10])]. 350 P([1,1,1,1,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,31,a,b,86,a),rewrite([12,11,13,10])]. 351 P([1,1,1,0,1,0,1,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(3,a,27,a,b,86,a),rewrite([12,13,11,10])]. 357 P([0,1,0,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,30,a,b,86,a),rewrite([7,6,5])]. 358 P([0,1,1,0,0,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,29,a,b,86,a),rewrite([7,6,5])]. 359 P([0,0,1,0,1,0,0,0],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,26,a,b,86,a),rewrite([7,6,5])]. 767 P([0,1,1,0,1,0,0,1],[[0,0,0,1,0,1,1,1]:x]). [hyper(2,a,53,a,b,347,a),rewrite([7,6,5])]. 1004 P([1,0,0,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(4,a,767,a),rewrite([16,17,15,18,19]),eval(1)]. 8490 P([1,0,1,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,359,a,b,1004,a),rewrite([12,13,11,10])]. 8491 P([1,1,1,1,0,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,358,a,b,1004,a),rewrite([12,11,13,10])]. 8492 P([1,1,0,1,1,1,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(3,a,357,a,b,1004,a),rewrite([12,11,13,10])]. 20191 P([1,0,1,0,1,0,1,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,351,a,b,8490,a),rewrite([6,7,5])]. 20216 P([1,1,1,1,0,0,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,350,a,b,8491,a),rewrite([6,7,5])]. 20235 P([1,1,0,0,1,1,0,0],[[0,0,0,1,0,1,1,1],[0,1,1,0,1,0,0,1]:x]). [hyper(2,a,349,a,b,8492,a),rewrite([6,7,5])]. 20240 $F. [hyper(23,a,20216,a,b,20235,a,c,20191,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=8643. Generated=2069338. Kept=20220. proofs=1. Usable=8646. Sos=11577. Demods=15. Limbo=0, Disabled=4. Hints=0. Kept_by_rule=0, Deleted_by_rule=8100. Forward_subsumed=2041017. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0. Megabytes=38.95. User_CPU=116.91, System_CPU=0.67, Wall_clock=118. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 15903 exit (max_proofs) Wed Feb 25 12:28:31 2009 prover9-manual-2009-02A/production.html0000644000175000017500000003222311151021064017222 0ustar mccunemccune Prover9 Manual: Production Mode
    Prover9 Manual Version 2009-02A

    Production Mode

    Prover9's production mode allows for state-space searches. That is, it starts with
    • one or more initial states,
    • a set of production rules that lead from one state to the next, and
    • one or more goal states.

    The production mode is implemented by using Prover9's hyperreolution inference rule. Also, an enhanced form of rewriting (demodulation) is used, including

    • evaluable functions and relations (implicit rules), such as integer arithmetic and Boolean operations;
    • conditional rewrite rules which can apply to atomic formulas as well as to terms.
    The rewriting is applied to the (instantiated) antecedents of the production rules as well as to the consequents.

    The production mode is enabled by setting the following flag.

    set(production).
    clear(production).  % default clear
    
    The only direct effect of setting this flag is that it changes several options as follows.
      set(production) -> set(raw).
      set(produtcion) -> set(hyper_resolution).
      set(produtcion) -> set(eval_rewrite).
      set(produtcion) -> clear(back_subsume).
    

    The raw option, which cancels many of the default Prover9 settings, is used because the production mode is quite different and more limited in nature from the ordinary mode of Prover9.

    Here is a simple example which uses evaluable arithmetic operations (but no explicit rewrite rules).

    prover9 -f jugs.in > jugs.out
    
    And here are two simple examples that use explicit rewrite rules.
    prover9 -f cabbages.in > cabbages.out
    
    prover9 -f queens3.in > queens3.out
    
    Here is a more complex example.
    prover9 -f 2inverter.in > 2inverter.out
    
    The following job shows examples of several list-processing functions.
    prover9 -f list.in > list.out
    

    Evaluable Operations

    See the page Clauses and Formulas for the built-in parsing/printing declarations for these operations.

    Functions on Integers
    Operation Comment
    + integer sum
    - integer negation (unary only) (used also for Boolean negation)
    / integer division
    mod modulus
    abs integer absolute value
    min integer minimum (binary)
    max integer maximum (binary)

    Relations on Integers
    Operation Comment
    < less than
    <= less or equal
    > greater than
    >= greater or equal
    == equal (used also for non-integers)
    !== not equal (used also for non-integers)

    Properties and Relations on Terms
    Operation Comment
    variable is the term a variable?
    constant is the term a constant (includes integers)?
    ground is the term variable-free?
    @< lexically less than
    @<= lexically less or equal
    @> lexically greater than
    @>= lexically greater or equal
    == identical (used also for integers)
    !== not identical (used also for integers)

    Logic Operations
    Operation Comment
    & conjunction
    && conjunction* (see below)
    | disjunction
    || disjunction* (see below)
    - negation (used also for integers)

    Conditional Expressions
    Operation Comment
    if if(condition, then_part, else_part)
    (see Section Conditional Expressions)

    *The double forms of the conjunction and disjunction operations (&& and ||) are logically the same as the single forms (& and |); the double forms are used to prevent expansion of production rules. For example, if a production rule is written as

    P & (Q1 | Q2) -> R.
    
    it will be expanded to the pair of clauses
    P & Q1 -> R.
    P & Q2 -> R.
    
    by the clausification process. If Q1 and Q2 are evaluable, it is usually more efficient use the original form of the rule; using the double form of the disjunction operator prevents expansion:
    P & (Q1 || Q2) -> R.
    
    The double forms never have to be used in rewrite rules.

    Enhanced Rewrite Rules for Production Mode

    Ordinary Prover9 rewrite rules (demodulators) are always equations, which are used to rewrite terms. When in production mode, Prover9 can use enhanced rewrite rules, which can be conditional and which can rewrite atomic formulas as well as terms.

    Equational rules rewrite terms, and equivalence rules rewrite atomic formulas. Either kind of rule can have conditions.

    Many of the following examples use terms that are lists. Recall that lists are built from a binary constructor function $cons and well-formed lists are terminated with $nil. The term [a:b] abbreviates $cons(a,b), and the term [a,b,c] abbreviates $cons(a,$cons(b,$cons(c,$nil))).

    Equational Rules

    Equational rules have one of the following forms.
    alpha = beta.    % unconditional
    condition -> alpha = beta.
    alpha = beta <- condition.
    
    In each case, an instance of alpha is rewritten to the corresponding instance of beta if the corresponding instance of the condition (if present) rewrites to $T (true).

    For example, the following three rewrite rules constitute a function that takes a term z and a list of terms, and returns the sublist of terms that are lexically greater than z.

    gt_list(z,[]) = [].
    x @>  z -> gt_list(z,[x:y]) = [x:gt_list(z,y)].
    x @<= z -> gt_list(z,[x:y]) = gt_list(z,y).
    
    (These rewrite rules can be used to build a quicksort function, see list.in.)

    Equivalence Rules

    Equivalence rules rewrite atomic formulas. The forms are similar to equational rules, but they have <-> instead of = .
    alpha <-> beta.    % unconditional
    condition -> (alpha <-> beta).
    (alpha <-> beta) <- condition.
    

    For example, the following three rules constitues a membership relation for lists.

    member(x,[]) <-> $F.
    x  == y  -> (member(x,[y:z]) <-> $T).
    x !== y  -> (member(x,[y:z]) <-> member(x,z)).
    
    In equivalence rules the alpha expression must be an atomic formula, but the beta expression can be a non-atomic formula involving disjunction, conjunction, and negation. For example, the following pair of rules implements a subset relation on lists.
    subset([], x) <-> $T.
    subset([x:y], z) <-> member(x,z) & subset(y,z).
    
    If the beta expression of an equivalence rule is $T or $F, the rule can be abbreviated in the obvious way. For example, the membership relation shown above can be abbreviated as follows.
    -member(x,[]).
    x  == y  -> member(x,[y:z]).
    x !== y  -> (member(x,[y:z]) <-> member(x,z)).
    

    Beware of the Distinction between Function and Relation Symbols (Terms and Atomic Formulas)

    Conditional Expressions (If-expressions)

    Many rewrite rules can be written more conveniently with conditional expressions than with conditional rules. A conditional expression has the following form.
    if(condition, then_part, else_part)
    
    When evaluating a conditional expression,
    • if the condition evaluates to $T, the value of the expression is then_part;
    • if the condition evaluates to $F, the value of the expression is else_part;
    • if the condition evaluates to neither $T nor $F, the "if" expression is not evaluated (but the then_part and the else_part are evaluated); in this case, the result will contain an if-expression, indicating that something is probably wrong with it.
    The condition of an if-expression must be an evaluable formula (Boolean-valued object). If the if-expression occurs in the context of a term, the then_part and the else_part must also be terms. If the if-expression occurs in the context of a formula, the then_part and the else_part must also be formulas.

    Here are two examples of rules containing if-expressions. The membership relation has the if-expression in the context of a formula, and the intersection function has it in the context of a term.

    -member(x,[]).
    member(x,[y:z]) <-> if(x == y, $T, member(x,z)).
    
    intersect([], x) = [].
    intersect([x:y],z) = if(member(x,z),[x:intersect(y,z)],intersect(y,z)).
    

    Hyperresolution in Production Mode

    The hyperresolution inference rule is used when Prover9 is in production mode. Recall that in hyperresolution all of the negative literals of the nucleus (antecedents of the production rule) must be operated on so that the result is a positive clause. In production mode, the negative literals (antecedents) are partitioned into resolvable literals and evaluable literals. Consider the production rule in one of the examples given above.
    J(x, y) & (x+y <= 4) -> J(0, y+x).           % empty the small jug into the big jug
    
    The first antecedent is resolvable, because it is headed by the state predicate J, and the second is evalable, because it is headed by a built-in evaluable operation.

    An antecedent can also be evaluable if it is headed by a defined evaluable operation; that is, there is an equivalence rewrite rule to evaluate it. Consider the production rule from 8-Queens example above (assume set(prolog_style_variables)).

    board(B) & pick(New_col) & ok(B, 1, New_col) -> board([New_col:B]).
    
    The first two antecedents are resolvable: the first takes a state, and the second picks a column to try to fill in. The third antecedent is evaluable, because there are equivalence rule to evaluate it (in this case, it checks whether a state transition can take place).
    formulas(demodulators).
    
    ok([], X, Y) <-> $T.
    
    ok([H:T], Rows_back, New_col) <->
    	-(H == New_col) &
    	-(H + -Rows_back == New_col) &
    	-(H + Rows_back == New_col) &
    	ok(T, Rows_back+1, New_col).
    
    end_of_list.
    

    Justifications in Production Mode

    When Prover9 is in production mode, clause justifications for hyperresolution are similar to those in ordinary mode, but justifications for rewriting (demodulation) is different, and there is a new kind of justfication for evaluation.

    In ordinary mode, Prover9 shows the sequence of rewrite steps, with data on where the rewrite occurred and the direction of the rewrite. In production mode, Prover9 simply shows the set of rules that were applied. This difference is because in production mode, there can be extremely long sequences of rewrites.

    When evaluation of a built-in evaluable operation occurs, Prover9 simply reports the number of evaluation steps. Consider a clause from the 8-Queens example above:

    board([6,3,1,4,8]).  [hyper(2,a,226,a,b,8,a),rewrite([13,12]),eval(40)].
    
    The justification shows the two resolution steps, rewriting with two rules, and 40 evaluations with built-in operations.
    Next Section: Advanced Features prover9-manual-2009-02A/go-part0000755000175000017500000000050711150627104015453 0ustar mccunemccune#!/bin/csh if ($#argv != 1) then echo "need 1 arg: bin-directory" exit(1) endif set d=$1 $d/tptp_to_ladr < PUZ031-1.tptp > PUZ031-1.in $d/prover9 -f PUZ031-1.in > PUZ031-1.out $d/tptp_to_ladr < PUZ031-1.tptp | $d/prover9 > PUZ031-1.out2 $d/ladr_to_tptp < RBA-2.in > RBA-2.tptp $d/ladr_to_tptp -q < RBA-2.in > RBA-2q.tptp prover9-manual-2009-02A/2inverter.in0000644000175000017500000000605611146570041016433 0ustar mccunemccune% The 2-inverter puzzle. % % The problem is to build a combinational circuit with 3 inputs % and 3 outputs, such that the outputs negate the inputs; we can % use as many AND and OR gates as we wish, but at most 2 NOT gates. % % The clause P(function, inversion_list) represents a wire, whose % state is a function of the inputs, and which depends on negated % wires listed in inversion_list. % % The initial clauses are % % P([0,0,0,0,1,1,1,1], v). % input 1 % P([0,0,1,1,0,0,1,1], v). % input 2 % P([0,1,0,1,0,1,0,1], v). % input 3 % % which represent the three input wires. The goal formula is % % exists v (P([1,1,1,1,0,0,0,0], v) & % P([1,1,0,0,1,1,0,0], v) & % P([1,0,1,0,1,0,1,0], v)). % % That is, the three output functions with unifiable (consistent) inversion lists. % % The inversion lists are tricky: each has a variable as its tail, which % means that two lists unify iff on is an initial sublist of the other. % Two wires can be input to an OR or AND gate if their inversion lists % are unifiable. (Note this means that the second NOT gate must depend % on the first.) % % For example, P(01000110,[11111000,11001110|x]) means that we % can acheive the function 01000110 with a circuit in which 11111000 and % 11001110 are inverted. % % If a proof is found, the corresponding circuit can be constructed by % going through the proof; each step represents a gate, and the parent % lists show how to connect the wires. % % The inversion lists are due to Steve Winker and is documented in % "Automated Reasoning: Introduction and Applications" by Wos et al. % This formulation does not use the "reversion" heuristic of Winker's % formulation. % set(production). assign(max_weight, 55). % to eliminate functions with more than 2 inversions formulas(usable). % Rules for building circuits. -P(x, v) | -P(y, v) | P(bit_and(x,y), v). -P(x, v) | -P(y, v) | P(bit_or(x,y), v). -P(x, v) | P(bit_not(x), append_inversion(v,x)). end_of_list. formulas(assumptions). P([0,0,0,0,1,1,1,1], v). % input 1 P([0,0,1,1,0,0,1,1], v). % input 2 P([0,1,0,1,0,1,0,1], v). % input 3 end_of_list. formulas(goals). exists v (P([1,1,1,1,0,0,0,0], v) & P([1,1,0,0,1,1,0,0], v) & P([1,0,1,0,1,0,1,0], v)). end_of_list. formulas(demodulators). bit_and([],[]) = []. bit_and([1:y1],[x:y2]) = [x:bit_and(y1,y2)]. bit_and([x:y1],[1:y2]) = [x:bit_and(y1,y2)]. bit_and([0:y1],[x:y2]) = [0:bit_and(y1,y2)]. bit_and([x:y1],[0:y2]) = [0:bit_and(y1,y2)]. bit_or([],[]) = []. bit_or([1:y1],[x:y2]) = [1:bit_or(y1,y2)]. bit_or([x:y1],[1:y2]) = [1:bit_or(y1,y2)]. bit_or([0:y1],[x:y2]) = [x:bit_or(y1,y2)]. bit_or([x:y1],[0:y2]) = [x:bit_or(y1,y2)]. bit_not([]) = []. bit_not([0:y]) = [1:bit_not(y)]. bit_not([1:y]) = [0:bit_not(y)]. append_inversion([x1:x2],y) = [x1:append_inversion(x2,y)]. variable(x) -> append_inversion(x,y) = [y:x]. end_of_list. % The following causes components of potential solutions to be used immediately. list(weights). weight(P([1,1,1,1,0,0,0,0], v)) = 0. weight(P([1,1,0,0,1,1,0,0], v)) = 0. weight(P([1,0,1,0,1,0,1,0], v)) = 0. end_of_list. prover9-manual-2009-02A/sed.glossary-color0000644000175000017500000000006310632030213017616 0ustar mccunemccune/
    //g prover9-manual-2009-02A/white-black.html0000644000175000017500000000573111151021064017232 0ustar mccunemccune Prover9 Manual: Keep and Delete Rules
    Prover9 Manual Version 2009-02A

    Keep and Delete Rules (Advanced)

    This page describes a mechanism that allows the user to have more control over which clauses are kept or deleted than by using the parameters max_weight, max_vars, max_literals, and max_depth.

    The mechanism uses the Clause Properties language for specifying clauses that are to be kept or deleted.

    Two lists can be given in the input: a "keep" list and a "delete" list. Here are examples of each.

    list(keep).
        -horn & literals=3 & variables=0 & level<4.
        horn & variables<3.
    end_of_list.
    
    list(delete).
        weight > 30.
        weight > 20 & (-horn | variables > 4).
    end_of_list.
    

    Given a newly derived clause, the following procedure is applied.

    If the clause satisfies any rule in the "keep" list, then
        the clause is kept;
    else if the clause satisfies any rule in the "delete" list, then
        the clause is deleted;
    else
        the clause is kept;
    
    Note that if the clause satisfies rules in both lists, it is kept.

    The ordinary parameters max_weight, max_vars, max_literals, and max_depth are can be thought of as shorthand for simple rules in the "delete" list. For example the pair of commands

    assign(max_literals, 3).
    assign(max_vars, 0).
    
    are operationally equivalent to the "delete" list
    list(delete).
        literals > 3.
        variables > 4.
    end_of_list.
    
    In fact, the parameters max_weight, max_vars, max_literals, and max_depth are implemented in Prover9 by constructing an internal "delete" list, and any "delete" list given by the user is simply appended to the internal list.

    The rules in the "delete" list are not applied to initial clauses; that is, clauses that are input or derived before the selection of the first given clause.