pax_global_header00006660000000000000000000000064130332017560014512gustar00rootroot0000000000000052 comment=07de0d8627101be53986e841cd4e21ee38c2498a pybind11-2.0.1/000077500000000000000000000000001303320175600131415ustar00rootroot00000000000000pybind11-2.0.1/.appveyor.yml000066400000000000000000000024401303320175600156070ustar00rootroot00000000000000version: 1.0.{build} os: Visual Studio 2015 test: off platform: - x86 - x64 environment: matrix: - CONDA: 27 - CONDA: 35 install: - ps: | if ($env:PLATFORM -eq "x64") { $env:CMAKE_ARCH = "x64" } if ($env:PYTHON) { if ($env:PLATFORM -eq "x64") { $env:PYTHON = "$env:PYTHON-x64" } $env:PATH = "C:\Python$env:PYTHON\;C:\Python$env:PYTHON\Scripts\;$env:PATH" pip install --disable-pip-version-check --user --upgrade pip wheel pip install pytest numpy scipy } elseif ($env:CONDA) { if ($env:CONDA -eq "27") { $env:CONDA = "" } if ($env:PLATFORM -eq "x64") { $env:CONDA = "$env:CONDA-x64" } $env:PATH = "C:\Miniconda$env:CONDA\;C:\Miniconda$env:CONDA\Scripts\;$env:PATH" conda install -y -q pytest numpy scipy } - ps: | Start-FileDownload 'http://bitbucket.org/eigen/eigen/get/3.3.0.zip' 7z x 3.3.0.zip -y > $null $env:CMAKE_INCLUDE_PATH = "eigen-eigen-26667be4f70b" build_script: - cmake -A "%CMAKE_ARCH%" -DPYBIND11_WERROR=ON - set MSBuildLogger="C:\Program Files\AppVeyor\BuildAgent\Appveyor.MSBuildLogger.dll" - cmake --build . --config Release --target pytest -- /v:m /logger:%MSBuildLogger% - cmake --build . --config Release --target test_cmake_build -- /v:m /logger:%MSBuildLogger% on_failure: type tests\test_cmake_build\*.log pybind11-2.0.1/.gitignore000066400000000000000000000005501303320175600151310ustar00rootroot00000000000000CMakeCache.txt CMakeFiles Makefile cmake_install.cmake .DS_Store *.so *.pyd *.dll *.sln *.sdf *.opensdf *.vcxproj *.filters example.dir Win32 x64 Release Debug .vs CTestTestfile.cmake Testing autogen MANIFEST /.ninja_* /*.ninja /docs/.build *.py[co] *.egg-info *~ .DS_Store /dist /build /cmake/ .cache/ sosize-*.txt pybind11Config*.cmake pybind11Targets.cmake pybind11-2.0.1/.gitmodules000066400000000000000000000001441303320175600153150ustar00rootroot00000000000000[submodule "tools/clang"] path = tools/clang url = https://github.com/wjakob/clang-cindex-python3 pybind11-2.0.1/.travis.yml000066400000000000000000000111311303320175600152470ustar00rootroot00000000000000language: cpp sudo: false matrix: include: - os: linux env: PYTHON=2.7 CPP=11 GCC=4.8 addons: apt: sources: [ubuntu-toolchain-r-test, kubuntu-backports] packages: [g++-4.8, cmake] - os: linux env: PYTHON=3.5 CPP=11 GCC=4.8 addons: apt: sources: [ubuntu-toolchain-r-test, kubuntu-backports, deadsnakes] packages: [g++-4.8, cmake, python3.5-dev] - sudo: true services: docker env: PYTHON=2.7 CPP=14 GCC=6 - sudo: true services: docker env: PYTHON=3.5 CPP=14 GCC=6 DEBUG=1 - sudo: true services: docker env: PYTHON=3.5 CPP=17 GCC=7 - os: osx osx_image: xcode7.3 env: PYTHON=2.7 CPP=14 CLANG - os: osx osx_image: xcode7.3 env: PYTHON=3.6 CPP=14 CLANG # Test a PyPy 2.7 nightly build - os: linux env: PYPY=1 PYTHON=2.7 CPP=11 GCC=4.8 addons: apt: sources: [ubuntu-toolchain-r-test, kubuntu-backports] packages: [g++-4.8, cmake] # A barebones build makes sure everything still works without optional deps (numpy/scipy/eigen) # and also tests the automatic discovery functions in CMake (Python version, C++ standard). - os: linux env: BAREBONES addons: apt: sources: [ubuntu-toolchain-r-test, kubuntu-backports] packages: [g++-4.8, cmake] install: pip install pytest # Documentation build: - os: linux language: docs env: DOCS STYLE LINT install: - pip install --upgrade sphinx sphinx_rtd_theme flake8 pep8-naming - pip install docutils==0.12 script: - make -C docs html SPHINX_OPTIONS=-W - tools/check-style.sh - flake8 allow_failures: - env: PYTHON=3.5 CPP=17 GCC=7 cache: directories: - $HOME/.cache/pip - $HOME/Library/Caches/pip before_install: - | # Configure build variables if [ "$TRAVIS_OS_NAME" = "linux" ]; then if [ -z "$GCC" ]; then export GCC=4.8; fi export CXX=g++-$GCC CC=gcc-$GCC; if [ "$GCC" = "6" ]; then export DOCKER=debian:testing elif [ "$GCC" = "7" ]; then export DOCKER=debian:experimental APT_GET_EXTRA="-t experimental" fi elif [ "$TRAVIS_OS_NAME" = "osx" ]; then export CXX=clang++ CC=clang; fi if [ -n "$CPP" ]; then export CPP=-std=c++$CPP; fi if [ "${PYTHON:0:1}" = "3" ]; then export PY=3; fi if [ -n "$PYPY" ]; then curl http://buildbot.pypy.org/nightly/trunk/pypy-c-jit-latest-linux64.tar.bz2 | tar -xj export PYPY_BINARY=$(echo `pwd`/pypy-c-jit*/bin/pypy) export CMAKE_EXTRA_ARGS="-DPYTHON_EXECUTABLE:FILEPATH=$PYPY_BINARY" fi if [ -n "$DEBUG" ]; then export CMAKE_EXTRA_ARGS="-DCMAKE_BUILD_TYPE=Debug"; fi - | # Initialize environment if [ -n "$PYPY" ]; then $PYPY_BINARY -m ensurepip $PYPY_BINARY -m pip install pytest fi if [ -n "$DOCKER" ]; then docker pull $DOCKER export containerid=$(docker run --detach --tty \ --volume="$PWD":/pybind11 --workdir=/pybind11 \ --env="CC=$CC" --env="CXX=$CXX" --env="DEBIAN_FRONTEND=$DEBIAN_FRONTEND" \ --env=GCC_COLORS=\ \ $DOCKER) docker exec --tty "$containerid" sh -c 'for s in 0 15; do sleep $s; apt-get update && apt-get -qy dist-upgrade && break; done' export SCRIPT_RUN_PREFIX="docker exec --tty $containerid" else if [ "$TRAVIS_OS_NAME" = "linux" ]; then pip install --user --upgrade pip virtualenv virtualenv -p python$PYTHON venv elif [ "$TRAVIS_OS_NAME" = "osx" ]; then if [ "$PY" = "3" ]; then brew update; brew install python$PY; else curl -fsSL -O https://bootstrap.pypa.io/get-pip.py sudo -H python get-pip.py fi pip$PY install --user --upgrade pip virtualenv python$PY -m virtualenv venv fi source venv/bin/activate fi install: - | # Install dependencies if [ -n "$DOCKER" ]; then docker exec --tty "$containerid" sh -c "for s in 0 15; do sleep \$s; \ apt-get -qy --no-install-recommends $APT_GET_EXTRA install \ python$PY-dev python$PY-pytest python$PY-scipy \ libeigen3-dev cmake make g++-$GCC && break; done" else pip install numpy scipy pytest wget -q -O eigen.tar.gz https://bitbucket.org/eigen/eigen/get/3.3.0.tar.gz tar xzf eigen.tar.gz export CMAKE_EXTRA_ARGS="${CMAKE_EXTRA_ARGS} -DCMAKE_INCLUDE_PATH=$PWD/eigen-eigen-26667be4f70b" fi script: - $SCRIPT_RUN_PREFIX cmake ${CMAKE_EXTRA_ARGS} -DPYBIND11_PYTHON_VERSION=$PYTHON -DPYBIND11_CPP_STANDARD=$CPP -DPYBIND11_WERROR=ON - $SCRIPT_RUN_PREFIX make pytest -j 2 - $SCRIPT_RUN_PREFIX make test_cmake_build after_failure: cat tests/test_cmake_build/*.log after_script: - if [ -n "$DOCKER" ]; then docker stop "$containerid"; docker rm "$containerid"; fi pybind11-2.0.1/CMakeLists.txt000066400000000000000000000122471303320175600157070ustar00rootroot00000000000000# CMakeLists.txt -- Build system for the pybind11 modules # # Copyright (c) 2015 Wenzel Jakob # # All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. cmake_minimum_required(VERSION 2.8.12) if (POLICY CMP0048) # cmake warns if loaded from a min-3.0-required parent dir, so silence the warning: cmake_policy(SET CMP0048 NEW) endif() project(pybind11) # Check if pybind11 is being used directly or via add_subdirectory set(PYBIND11_MASTER_PROJECT OFF) if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR) set(PYBIND11_MASTER_PROJECT ON) endif() option(PYBIND11_INSTALL "Install pybind11 header files?" ${PYBIND11_MASTER_PROJECT}) option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT}) option(PYBIND11_WERROR "Report all warnings as errors" OFF) list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/tools") include(pybind11Tools) # Cache variables so pybind11_add_module can be used in parent projects set(PYBIND11_INCLUDE_DIR "${CMAKE_CURRENT_LIST_DIR}/include" CACHE INTERNAL "") set(PYTHON_INCLUDE_DIRS ${PYTHON_INCLUDE_DIRS} CACHE INTERNAL "") set(PYTHON_LIBRARIES ${PYTHON_LIBRARIES} CACHE INTERNAL "") set(PYTHON_MODULE_PREFIX ${PYTHON_MODULE_PREFIX} CACHE INTERNAL "") set(PYTHON_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION} CACHE INTERNAL "") # Compile with compiler warnings turned on function(pybind11_enable_warnings target_name) if(MSVC) target_compile_options(${target_name} PRIVATE /W4) else() target_compile_options(${target_name} PRIVATE -Wall -Wextra -Wconversion) endif() if(PYBIND11_WERROR) if(MSVC) target_compile_options(${target_name} PRIVATE /WX) else() target_compile_options(${target_name} PRIVATE -Werror) endif() endif() endfunction() set(PYBIND11_HEADERS include/pybind11/attr.h include/pybind11/cast.h include/pybind11/chrono.h include/pybind11/common.h include/pybind11/complex.h include/pybind11/descr.h include/pybind11/options.h include/pybind11/eigen.h include/pybind11/eval.h include/pybind11/functional.h include/pybind11/numpy.h include/pybind11/operators.h include/pybind11/pybind11.h include/pybind11/pytypes.h include/pybind11/stl.h include/pybind11/stl_bind.h include/pybind11/typeid.h ) string(REPLACE "include/" "${CMAKE_CURRENT_SOURCE_DIR}/include/" PYBIND11_HEADERS "${PYBIND11_HEADERS}") if (PYBIND11_TEST) add_subdirectory(tests) endif() include(GNUInstallDirs) include(CMakePackageConfigHelpers) # extract project version from source file(STRINGS "${PYBIND11_INCLUDE_DIR}/pybind11/common.h" pybind11_version_defines REGEX "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) ") foreach(ver ${pybind11_version_defines}) if (ver MATCHES "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) +([^ ]+)$") set(PYBIND11_VERSION_${CMAKE_MATCH_1} "${CMAKE_MATCH_2}" CACHE INTERNAL "") endif() endforeach() set(${PROJECT_NAME}_VERSION ${PYBIND11_VERSION_MAJOR}.${PYBIND11_VERSION_MINOR}.${PYBIND11_VERSION_PATCH}) message(STATUS "pybind11 v${${PROJECT_NAME}_VERSION}") if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) # CMake >= 3.0 # Build an interface library target: add_library(module INTERFACE) target_include_directories(module INTERFACE $ $ $) if(WIN32 OR CYGWIN) target_link_libraries(module INTERFACE $) elseif(APPLE) target_link_libraries(module INTERFACE "-undefined dynamic_lookup") endif() target_compile_options(module INTERFACE $) add_library(pybind11::module ALIAS module) # to match exported target endif() if (PYBIND11_INSTALL) install(FILES ${PYBIND11_HEADERS} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/pybind11) # GNUInstallDirs "DATADIR" wrong here; CMake search path wants "share". set(PYBIND11_CMAKECONFIG_INSTALL_DIR "share/cmake/${PROJECT_NAME}" CACHE STRING "install path for pybind11Config.cmake") configure_package_config_file(tools/${PROJECT_NAME}Config.cmake.in "${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake" INSTALL_DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR}) write_basic_package_version_file(${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake VERSION ${${PROJECT_NAME}_VERSION} COMPATIBILITY AnyNewerVersion) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake tools/FindPythonLibsNew.cmake tools/pybind11Tools.cmake DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR}) if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) install(TARGETS module EXPORT "${PROJECT_NAME}Targets") install(EXPORT "${PROJECT_NAME}Targets" NAMESPACE "${PROJECT_NAME}::" DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR}) endif() endif() pybind11-2.0.1/CONTRIBUTING.md000066400000000000000000000035501303320175600153750ustar00rootroot00000000000000Thank you for your interest in this project! Please refer to the following sections on how to contribute code and bug reports. ### Reporting bugs At the moment, this project is run in the spare time of a single person ([Wenzel Jakob](http://rgl.epfl.ch/people/wjakob)) with very limited resources for issue tracker tickets. Thus, before submitting a question or bug report, please take a moment of your time and ensure that your issue isn't already discussed in the project documentation provided at [http://pybind11.readthedocs.org/en/latest](http://pybind11.readthedocs.org/en/latest). Assuming that you have identified a previously unknown problem or an important question, it's essential that you submit a self-contained and minimal piece of code that reproduces the problem. In other words: no external dependencies, isolate the function(s) that cause breakage, submit matched and complete C++ and Python snippets that can be easily compiled and run on my end. ## Pull requests Contributions are submitted, reviewed, and accepted using Github pull requests. Please refer to [this article](https://help.github.com/articles/using-pull-requests) for details and adhere to the following rules to make the process as smooth as possible: * Make a new branch for every feature you're working on. * Make small and clean pull requests that are easy to review but make sure they do add value by themselves. * Add tests for any new functionality and run the test suite (``make pytest``) to ensure that no existing features break. * This project has a strong focus on providing general solutions using a minimal amount of code, thus small pull requests are greatly preferred. ### License pybind11 is provided under a BSD-style license that can be found in the ``LICENSE`` file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license. pybind11-2.0.1/LICENSE000066400000000000000000000042161303320175600141510ustar00rootroot00000000000000Copyright (c) 2016 Wenzel Jakob , All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code ("Enhancements") to anyone; however, if you choose to make your Enhancements available either publicly, or directly to the author of this software, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form. pybind11-2.0.1/MANIFEST.in000066400000000000000000000001071303320175600146750ustar00rootroot00000000000000include include/pybind11/*.h include LICENSE README.md CONTRIBUTING.md pybind11-2.0.1/README.md000066400000000000000000000133341303320175600144240ustar00rootroot00000000000000![pybind11 logo](https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png) # pybind11 — Seamless operability between C++11 and Python [![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=master)](http://pybind11.readthedocs.org/en/master/?badge=master) [![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=stable)](http://pybind11.readthedocs.org/en/stable/?badge=stable) [![Gitter chat](https://img.shields.io/gitter/room/gitterHQ/gitter.svg)](https://gitter.im/pybind/Lobby) [![Build Status](https://travis-ci.org/pybind/pybind11.svg?branch=master)](https://travis-ci.org/pybind/pybind11) [![Build status](https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true)](https://ci.appveyor.com/project/wjakob/pybind11) **pybind11** is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent [Boost.Python](http://www.boost.org/doc/libs/1_58_0/libs/python/doc/) library by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection. The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency. Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn't relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This compact implementation was possible thanks to some of the new C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations. Tutorial and reference documentation is provided at [http://pybind11.readthedocs.org/en/master](http://pybind11.readthedocs.org/en/master). A PDF version of the manual is available [here](https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf). ## Core features pybind11 can map the following core C++ features to Python - Functions accepting and returning custom data structures per value, reference, or pointer - Instance methods and static methods - Overloaded functions - Instance attributes and static attributes - Arbitrary exception types - Enumerations - Callbacks - Iterators and ranges - Custom operators - Single and multiple inheritance - STL data structures - Iterators and ranges - Smart pointers with reference counting like ``std::shared_ptr`` - Internal references with correct reference counting - C++ classes with virtual (and pure virtual) methods can be extended in Python ## Goodies In addition to the core functionality, pybind11 provides some extra goodies: - Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an implementation-agnostic interface. - It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside the resulting Python function object. - pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer custom data types. - It's easy to expose the internal storage of custom data types through Pythons' buffer protocols. This is handy e.g. for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations. - pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more NumPy array arguments. - Python's slice-based access and assignment operations can be supported with just a few lines of code. - Everything is contained in just a few header files; there is no need to link against any additional libraries. - Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python. A recent pybind11 conversion of PyRosetta, an enormous Boost.Python binding project, [reported](http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf) a binary size reduction of **5.4x** and compile time reduction by **5.8x**. - When supported by the compiler, two new C++14 features (relaxed constexpr and return value deduction) are used to precompute function signatures at compile time, leading to smaller binaries. - With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects. ## Supported compilers 1. Clang/LLVM (any non-ancient version with C++11 support) 2. GCC 4.8 or newer 3. Microsoft Visual Studio 2015 or newer 4. Intel C++ compiler 16 or newer (15 with a [workaround](https://github.com/pybind/pybind11/issues/276)) 5. Cygwin/GCC (tested on 2.5.1) ## About This project was created by [Wenzel Jakob](http://rgl.epfl.ch/people/wjakob). Significant features and/or improvements to the code were contributed by Jonas Adler, Sylvain Corlay, Trent Houliston, Axel Huebl, @hulucc, Sergey Lyskov Johan Mabille, Tomasz Miąsko, Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim Schellart, and Ivan Smirnov. ### License pybind11 is provided under a BSD-style license that can be found in the ``LICENSE`` file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license. pybind11-2.0.1/docs/000077500000000000000000000000001303320175600140715ustar00rootroot00000000000000pybind11-2.0.1/docs/Makefile000066400000000000000000000163711303320175600155410ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = .build # User-friendly check for sphinx-build ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) $(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) endif # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . # the i18n builder cannot share the environment and doctrees with the others I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . .PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest coverage gettext help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " dirhtml to make HTML files named index.html in directories" @echo " singlehtml to make a single large HTML file" @echo " pickle to make pickle files" @echo " json to make JSON files" @echo " htmlhelp to make HTML files and a HTML help project" @echo " qthelp to make HTML files and a qthelp project" @echo " applehelp to make an Apple Help Book" @echo " devhelp to make HTML files and a Devhelp project" @echo " epub to make an epub" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " latexpdf to make LaTeX files and run them through pdflatex" @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" @echo " text to make text files" @echo " man to make manual pages" @echo " texinfo to make Texinfo files" @echo " info to make Texinfo files and run them through makeinfo" @echo " gettext to make PO message catalogs" @echo " changes to make an overview of all changed/added/deprecated items" @echo " xml to make Docutils-native XML files" @echo " pseudoxml to make pseudoxml-XML files for display purposes" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" @echo " coverage to run coverage check of the documentation (if enabled)" clean: rm -rf $(BUILDDIR)/* html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." dirhtml: $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." singlehtml: $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml @echo @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." pickle: $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle @echo @echo "Build finished; now you can process the pickle files." json: $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json @echo @echo "Build finished; now you can process the JSON files." htmlhelp: $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDDIR)/htmlhelp." qthelp: $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pybind11.qhcp" @echo "To view the help file:" @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pybind11.qhc" applehelp: $(SPHINXBUILD) -b applehelp $(ALLSPHINXOPTS) $(BUILDDIR)/applehelp @echo @echo "Build finished. The help book is in $(BUILDDIR)/applehelp." @echo "N.B. You won't be able to view it unless you put it in" \ "~/Library/Documentation/Help or install it in your application" \ "bundle." devhelp: $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp @echo @echo "Build finished." @echo "To view the help file:" @echo "# mkdir -p $$HOME/.local/share/devhelp/pybind11" @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/pybind11" @echo "# devhelp" epub: $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub @echo @echo "Build finished. The epub file is in $(BUILDDIR)/epub." latex: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." @echo "Run \`make' in that directory to run these through (pdf)latex" \ "(use \`make latexpdf' here to do that automatically)." latexpdf: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through pdflatex..." $(MAKE) -C $(BUILDDIR)/latex all-pdf @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." latexpdfja: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through platex and dvipdfmx..." $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." text: $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text @echo @echo "Build finished. The text files are in $(BUILDDIR)/text." man: $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man @echo @echo "Build finished. The manual pages are in $(BUILDDIR)/man." texinfo: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." @echo "Run \`make' in that directory to run these through makeinfo" \ "(use \`make info' here to do that automatically)." info: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo "Running Texinfo files through makeinfo..." make -C $(BUILDDIR)/texinfo info @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." gettext: $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale @echo @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." changes: $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes @echo @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." doctest: $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest @echo "Testing of doctests in the sources finished, look at the " \ "results in $(BUILDDIR)/doctest/output.txt." coverage: $(SPHINXBUILD) -b coverage $(ALLSPHINXOPTS) $(BUILDDIR)/coverage @echo "Testing of coverage in the sources finished, look at the " \ "results in $(BUILDDIR)/coverage/python.txt." xml: $(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml @echo @echo "Build finished. The XML files are in $(BUILDDIR)/xml." pseudoxml: $(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml @echo @echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml." pybind11-2.0.1/docs/_static/000077500000000000000000000000001303320175600155175ustar00rootroot00000000000000pybind11-2.0.1/docs/_static/theme_overrides.css000066400000000000000000000003761303320175600214230ustar00rootroot00000000000000.wy-table-responsive table td, .wy-table-responsive table th { white-space: initial !important; } .rst-content table.docutils td { vertical-align: top !important; } div[class^='highlight'] pre { white-space: pre; white-space: pre-wrap; } pybind11-2.0.1/docs/advanced/000077500000000000000000000000001303320175600156365ustar00rootroot00000000000000pybind11-2.0.1/docs/advanced/cast/000077500000000000000000000000001303320175600165705ustar00rootroot00000000000000pybind11-2.0.1/docs/advanced/cast/chrono.rst000066400000000000000000000074611303320175600206220ustar00rootroot00000000000000Chrono ====== When including the additional header file :file:`pybind11/chrono.h` conversions from C++11 chrono datatypes to python datetime objects are automatically enabled. This header also enables conversions of python floats (often from sources such as `time.monotonic()`, `time.perf_counter()` and `time.process_time()`) into durations. An overview of clocks in C++11 ------------------------------ A point of confusion when using these conversions is the differences between clocks provided in C++11. There are three clock types defined by the C++11 standard and users can define their own if needed. Each of these clocks have different properties and when converting to and from python will give different results. The first clock defined by the standard is ``std::chrono::system_clock``. This clock measures the current date and time. However, this clock changes with to updates to the operating system time. For example, if your time is synchronised with a time server this clock will change. This makes this clock a poor choice for timing purposes but good for measuring the wall time. The second clock defined in the standard is ``std::chrono::steady_clock``. This clock ticks at a steady rate and is never adjusted. This makes it excellent for timing purposes, however the value in this clock does not correspond to the current date and time. Often this clock will be the amount of time your system has been on, although it does not have to be. This clock will never be the same clock as the system clock as the system clock can change but steady clocks cannot. The third clock defined in the standard is ``std::chrono::high_resolution_clock``. This clock is the clock that has the highest resolution out of the clocks in the system. It is normally a typedef to either the system clock or the steady clock but can be its own independent clock. This is important as when using these conversions as the types you get in python for this clock might be different depending on the system. If it is a typedef of the system clock, python will get datetime objects, but if it is a different clock they will be timedelta objects. Provided conversions -------------------- .. rubric:: C++ to Python - ``std::chrono::system_clock::time_point`` → ``datetime.datetime`` System clock times are converted to python datetime instances. They are in the local timezone, but do not have any timezone information attached to them (they are naive datetime objects). - ``std::chrono::duration`` → ``datetime.timedelta`` Durations are converted to timedeltas, any precision in the duration greater than microseconds is lost by rounding towards zero. - ``std::chrono::[other_clocks]::time_point`` → ``datetime.timedelta`` Any clock time that is not the system clock is converted to a time delta. This timedelta measures the time from the clocks epoch to now. .. rubric:: Python to C++ - ``datetime.datetime`` → ``std::chrono::system_clock::time_point`` Date/time objects are converted into system clock timepoints. Any timezone information is ignored and the type is treated as a naive object. - ``datetime.timedelta`` → ``std::chrono::duration`` Time delta are converted into durations with microsecond precision. - ``datetime.timedelta`` → ``std::chrono::[other_clocks]::time_point`` Time deltas that are converted into clock timepoints are treated as the amount of time from the start of the clocks epoch. - ``float`` → ``std::chrono::duration`` Floats that are passed to C++ as durations be interpreted as a number of seconds. These will be converted to the duration using ``duration_cast`` from the float. - ``float`` → ``std::chrono::[other_clocks]::time_point`` Floats that are passed to C++ as time points will be interpreted as the number of seconds from the start of the clocks epoch. pybind11-2.0.1/docs/advanced/cast/custom.rst000066400000000000000000000061651303320175600206440ustar00rootroot00000000000000Custom type casters =================== In very rare cases, applications may require custom type casters that cannot be expressed using the abstractions provided by pybind11, thus requiring raw Python C API calls. This is fairly advanced usage and should only be pursued by experts who are familiar with the intricacies of Python reference counting. The following snippets demonstrate how this works for a very simple ``inty`` type that that should be convertible from Python types that provide a ``__int__(self)`` method. .. code-block:: cpp struct inty { long long_value; }; void print(inty s) { std::cout << s.long_value << std::endl; } The following Python snippet demonstrates the intended usage from the Python side: .. code-block:: python class A: def __int__(self): return 123 from example import print print(A()) To register the necessary conversion routines, it is necessary to add a partial overload to the ``pybind11::detail::type_caster`` template. Although this is an implementation detail, adding partial overloads to this type is explicitly allowed. .. code-block:: cpp namespace pybind11 { namespace detail { template <> struct type_caster { public: /** * This macro establishes the name 'inty' in * function signatures and declares a local variable * 'value' of type inty */ PYBIND11_TYPE_CASTER(inty, _("inty")); /** * Conversion part 1 (Python->C++): convert a PyObject into a inty * instance or return false upon failure. The second argument * indicates whether implicit conversions should be applied. */ bool load(handle src, bool) { /* Extract PyObject from handle */ PyObject *source = src.ptr(); /* Try converting into a Python integer value */ PyObject *tmp = PyNumber_Long(source); if (!tmp) return false; /* Now try to convert into a C++ int */ value.long_value = PyLong_AsLong(tmp); Py_DECREF(tmp); /* Ensure return code was OK (to avoid out-of-range errors etc) */ return !(value.long_value == -1 && !PyErr_Occurred()); } /** * Conversion part 2 (C++ -> Python): convert an inty instance into * a Python object. The second and third arguments are used to * indicate the return value policy and parent object (for * ``return_value_policy::reference_internal``) and are generally * ignored by implicit casters. */ static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) { return PyLong_FromLong(src.long_value); } }; }} // namespace pybind11::detail .. warning:: When using custom type casters, it's important to declare them consistently in every compilation unit of the Python extension module. Otherwise, undefined behavior can ensue. pybind11-2.0.1/docs/advanced/cast/eigen.rst000066400000000000000000000037231303320175600204160ustar00rootroot00000000000000Eigen ===== `Eigen `_ is C++ header-based library for dense and sparse linear algebra. Due to its popularity and widespread adoption, pybind11 provides transparent conversion support between Eigen and Scientific Python linear algebra data types. Specifically, when including the optional header file :file:`pybind11/eigen.h`, pybind11 will automatically and transparently convert 1. Static and dynamic Eigen dense vectors and matrices to instances of ``numpy.ndarray`` (and vice versa). 2. Returned matrix expressions such as blocks (including columns or rows) and diagonals will be converted to ``numpy.ndarray`` of the expression values. 3. Returned matrix-like objects such as Eigen::DiagonalMatrix or Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the expressed value. 4. Eigen sparse vectors and matrices to instances of ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa). This makes it possible to bind most kinds of functions that rely on these types. One major caveat are functions that take Eigen matrices *by reference* and modify them somehow, in which case the information won't be propagated to the caller. .. code-block:: cpp /* The Python bindings of these functions won't replicate the intended effect of modifying the function arguments */ void scale_by_2(Eigen::Vector3f &v) { v *= 2; } void scale_by_2(Eigen::Ref &v) { v *= 2; } To see why this is, refer to the section on :ref:`opaque` (although that section specifically covers STL data types, the underlying issue is the same). The :ref:`numpy` sections discuss an efficient alternative for exposing the underlying native Eigen types as opaque objects in a way that still integrates with NumPy and SciPy. .. seealso:: The file :file:`tests/test_eigen.cpp` contains a complete example that shows how to pass Eigen sparse and dense data types in more detail. pybind11-2.0.1/docs/advanced/cast/functional.rst000066400000000000000000000076041303320175600214730ustar00rootroot00000000000000Functional ########## The following features must be enabled by including :file:`pybind11/functional.h`. Callbacks and passing anonymous functions ========================================= The C++11 standard brought lambda functions and the generic polymorphic function wrapper ``std::function<>`` to the C++ programming language, which enable powerful new ways of working with functions. Lambda functions come in two flavors: stateless lambda function resemble classic function pointers that link to an anonymous piece of code, while stateful lambda functions additionally depend on captured variables that are stored in an anonymous *lambda closure object*. Here is a simple example of a C++ function that takes an arbitrary function (stateful or stateless) with signature ``int -> int`` as an argument and runs it with the value 10. .. code-block:: cpp int func_arg(const std::function &f) { return f(10); } The example below is more involved: it takes a function of signature ``int -> int`` and returns another function of the same kind. The return value is a stateful lambda function, which stores the value ``f`` in the capture object and adds 1 to its return value upon execution. .. code-block:: cpp std::function func_ret(const std::function &f) { return [f](int i) { return f(i) + 1; }; } This example demonstrates using python named parameters in C++ callbacks which requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining methods of classes: .. code-block:: cpp py::cpp_function func_cpp() { return py::cpp_function([](int i) { return i+1; }, py::arg("number")); } After including the extra header file :file:`pybind11/functional.h`, it is almost trivial to generate binding code for all of these functions. .. code-block:: cpp #include PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); m.def("func_arg", &func_arg); m.def("func_ret", &func_ret); m.def("func_cpp", &func_cpp); return m.ptr(); } The following interactive session shows how to call them from Python. .. code-block:: pycon $ python >>> import example >>> def square(i): ... return i * i ... >>> example.func_arg(square) 100L >>> square_plus_1 = example.func_ret(square) >>> square_plus_1(4) 17L >>> plus_1 = func_cpp() >>> plus_1(number=43) 44L .. warning:: Keep in mind that passing a function from C++ to Python (or vice versa) will instantiate a piece of wrapper code that translates function invocations between the two languages. Naturally, this translation increases the computational cost of each function call somewhat. A problematic situation can arise when a function is copied back and forth between Python and C++ many times in a row, in which case the underlying wrappers will accumulate correspondingly. The resulting long sequence of C++ -> Python -> C++ -> ... roundtrips can significantly decrease performance. There is one exception: pybind11 detects case where a stateless function (i.e. a function pointer or a lambda function without captured variables) is passed as an argument to another C++ function exposed in Python. In this case, there is no overhead. Pybind11 will extract the underlying C++ function pointer from the wrapped function to sidestep a potential C++ -> Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`. .. note:: This functionality is very useful when generating bindings for callbacks in C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.). The file :file:`tests/test_callbacks.cpp` contains a complete example that demonstrates how to work with callbacks and anonymous functions in more detail. pybind11-2.0.1/docs/advanced/cast/index.rst000066400000000000000000000027631303320175600204410ustar00rootroot00000000000000Type conversions ################ Apart from enabling cross-language function calls, a fundamental problem that a binding tool like pybind11 must address is to provide access to native Python types in C++ and vice versa. There are three fundamentally different ways to do this—which approach is preferable for a particular type depends on the situation at hand. 1. Use a native C++ type everywhere. In this case, the type must be wrapped using pybind11-generated bindings so that Python can interact with it. 2. Use a native Python type everywhere. It will need to be wrapped so that C++ functions can interact with it. 3. Use a native C++ type on the C++ side and a native Python type on the Python side. pybind11 refers to this as a *type conversion*. Type conversions are the most "natural" option in the sense that native (non-wrapped) types are used everywhere. The main downside is that a copy of the data must be made on every Python ↔ C++ transition: this is needed since the C++ and Python versions of the same type generally won't have the same memory layout. pybind11 can perform many kinds of conversions automatically. An overview is provided in the table ":ref:`conversion_table`". The following subsections discuss the differences between these options in more detail. The main focus in this section is on type conversions, which represent the last case of the above list. .. toctree:: :maxdepth: 1 overview stl functional chrono eigen custom pybind11-2.0.1/docs/advanced/cast/overview.rst000066400000000000000000000231071303320175600211730ustar00rootroot00000000000000Overview ######## .. rubric:: 1. Native type in C++, wrapper in Python Exposing a custom C++ type using :class:`py::class_` was covered in detail in the :doc:`/classes` section. There, the underlying data structure is always the original C++ class while the :class:`py::class_` wrapper provides a Python interface. Internally, when an object like this is sent from C++ to Python, pybind11 will just add the outer wrapper layer over the native C++ object. Getting it back from Python is just a matter of peeling off the wrapper. .. rubric:: 2. Wrapper in C++, native type in Python This is the exact opposite situation. Now, we have a type which is native to Python, like a ``tuple`` or a ``list``. One way to get this data into C++ is with the :class:`py::object` family of wrappers. These are explained in more detail in the :doc:`/advanced/pycpp/object` section. We'll just give a quick example here: .. code-block:: cpp void print_list(py::list my_list) { for (auto item : my_list) std::cout << item << " "; } .. code-block:: pycon >>> print_list([1, 2, 3]) 1 2 3 The Python ``list`` is not converted in any way -- it's just wrapped in a C++ :class:`py::list` class. At its core it's still a Python object. Copying a :class:`py::list` will do the usual reference-counting like in Python. Returning the object to Python will just remove the thin wrapper. .. rubric:: 3. Converting between native C++ and Python types In the previous two cases we had a native type in one language and a wrapper in the other. Now, we have native types on both sides and we convert between them. .. code-block:: cpp void print_vector(const std::vector &v) { for (auto item : v) std::cout << item << "\n"; } .. code-block:: pycon >>> print_vector([1, 2, 3]) 1 2 3 In this case, pybind11 will construct a new ``std::vector`` and copy each element from the Python ``list``. The newly constructed object will be passed to ``print_vector``. The same thing happens in the other direction: a new ``list`` is made to match the value returned from C++. Lots of these conversions are supported out of the box, as shown in the table below. They are very convenient, but keep in mind that these conversions are fundamentally based on copying data. This is perfectly fine for small immutable types but it may become quite expensive for large data structures. This can be avoided by overriding the automatic conversion with a custom wrapper (i.e. the above-mentioned approach 1). This requires some manual effort and more details are available in the :ref:`opaque` section. .. _conversion_table: List of all builtin conversions ------------------------------- The following basic data types are supported out of the box (some may require an additional extension header to be included). To pass other data structures as arguments and return values, refer to the section on binding :ref:`classes`. +------------------------------------+---------------------------+-------------------------------+ | Data type | Description | Header file | +====================================+===========================+===============================+ | ``int8_t``, ``uint8_t`` | 8-bit integers | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``int16_t``, ``uint16_t`` | 16-bit integers | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``int32_t``, ``uint32_t`` | 32-bit integers | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``int64_t``, ``uint64_t`` | 64-bit integers | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``ssize_t``, ``size_t`` | Platform-dependent size | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``float``, ``double`` | Floating point types | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``bool`` | Two-state Boolean type | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``char`` | Character literal | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``wchar_t`` | Wide character literal | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``const char *`` | UTF-8 string literal | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``const wchar_t *`` | Wide string literal | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::string`` | STL dynamic UTF-8 string | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::wstring`` | STL dynamic wide string | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::pair`` | Pair of two custom types | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::tuple<...>`` | Arbitrary tuple of types | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::reference_wrapper<...>`` | Reference type wrapper | :file:`pybind11/pybind11.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::complex`` | Complex numbers | :file:`pybind11/complex.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::array`` | STL static array | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::vector`` | STL dynamic array | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::valarray`` | STL value array | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::list`` | STL linked list | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::map`` | STL ordered map | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::unordered_map`` | STL unordered map | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::set`` | STL ordered set | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::unordered_set`` | STL unordered set | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::optional`` | STL optional type (C++17) | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::experimental::optional`` | STL optional type (exp.) | :file:`pybind11/stl.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::function<...>`` | STL polymorphic function | :file:`pybind11/functional.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::chrono::duration<...>`` | STL time duration | :file:`pybind11/chrono.h` | +------------------------------------+---------------------------+-------------------------------+ | ``std::chrono::time_point<...>`` | STL date/time | :file:`pybind11/chrono.h` | +------------------------------------+---------------------------+-------------------------------+ | ``Eigen::Matrix<...>`` | Eigen: dense matrix | :file:`pybind11/eigen.h` | +------------------------------------+---------------------------+-------------------------------+ | ``Eigen::Map<...>`` | Eigen: mapped memory | :file:`pybind11/eigen.h` | +------------------------------------+---------------------------+-------------------------------+ | ``Eigen::SparseMatrix<...>`` | Eigen: sparse matrix | :file:`pybind11/eigen.h` | +------------------------------------+---------------------------+-------------------------------+ pybind11-2.0.1/docs/advanced/cast/stl.rst000066400000000000000000000122641303320175600201310ustar00rootroot00000000000000STL containers ############## Automatic conversion ==================== When including the additional header file :file:`pybind11/stl.h`, conversions between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>`` and the Python ``list``, ``set`` and ``dict`` data structures are automatically enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported out of the box with just the core :file:`pybind11/pybind11.h` header. The major downside of these implicit conversions is that containers must be converted (i.e. copied) on every Python->C++ and C++->Python transition, which can have implications on the program semantics and performance. Please read the next sections for more details and alternative approaches that avoid this. .. note:: Arbitrary nesting of any of these types is possible. .. seealso:: The file :file:`tests/test_python_types.cpp` contains a complete example that demonstrates how to pass STL data types in more detail. .. _opaque: Making opaque types =================== pybind11 heavily relies on a template matching mechanism to convert parameters and return values that are constructed from STL data types such as vectors, linked lists, hash tables, etc. This even works in a recursive manner, for instance to deal with lists of hash maps of pairs of elementary and custom types, etc. However, a fundamental limitation of this approach is that internal conversions between Python and C++ types involve a copy operation that prevents pass-by-reference semantics. What does this mean? Suppose we bind the following function .. code-block:: cpp void append_1(std::vector &v) { v.push_back(1); } and call it from Python, the following happens: .. code-block:: pycon >>> v = [5, 6] >>> append_1(v) >>> print(v) [5, 6] As you can see, when passing STL data structures by reference, modifications are not propagated back the Python side. A similar situation arises when exposing STL data structures using the ``def_readwrite`` or ``def_readonly`` functions: .. code-block:: cpp /* ... definition ... */ class MyClass { std::vector contents; }; /* ... binding code ... */ py::class_(m, "MyClass") .def(py::init<>) .def_readwrite("contents", &MyClass::contents); In this case, properties can be read and written in their entirety. However, an ``append`` operation involving such a list type has no effect: .. code-block:: pycon >>> m = MyClass() >>> m.contents = [5, 6] >>> print(m.contents) [5, 6] >>> m.contents.append(7) >>> print(m.contents) [5, 6] Finally, the involved copy operations can be costly when dealing with very large lists. To deal with all of the above situations, pybind11 provides a macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion machinery of types, thus rendering them *opaque*. The contents of opaque objects are never inspected or extracted, hence they *can* be passed by reference. For instance, to turn ``std::vector`` into an opaque type, add the declaration .. code-block:: cpp PYBIND11_MAKE_OPAQUE(std::vector); before any binding code (e.g. invocations to ``class_::def()``, etc.). This macro must be specified at the top level (and outside of any namespaces), since it instantiates a partial template overload. If your binding code consists of multiple compilation units, it must be present in every file preceding any usage of ``std::vector``. Opaque types must also have a corresponding ``class_`` declaration to associate them with a name in Python, and to define a set of available operations, e.g.: .. code-block:: cpp py::class_>(m, "IntVector") .def(py::init<>()) .def("clear", &std::vector::clear) .def("pop_back", &std::vector::pop_back) .def("__len__", [](const std::vector &v) { return v.size(); }) .def("__iter__", [](std::vector &v) { return py::make_iterator(v.begin(), v.end()); }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */ // .... The ability to expose STL containers as native Python objects is a fairly common request, hence pybind11 also provides an optional header file named :file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try to match the behavior of their native Python counterparts as much as possible. The following example showcases usage of :file:`pybind11/stl_bind.h`: .. code-block:: cpp // Don't forget this #include PYBIND11_MAKE_OPAQUE(std::vector); PYBIND11_MAKE_OPAQUE(std::map); // ... // later in binding code: py::bind_vector>(m, "VectorInt"); py::bind_map>(m, "MapStringDouble"); Please take a look at the :ref:`macro_notes` before using the ``PYBIND11_MAKE_OPAQUE`` macro. .. seealso:: The file :file:`tests/test_opaque_types.cpp` contains a complete example that demonstrates how to create and expose opaque types using pybind11 in more detail. The file :file:`tests/test_stl_binders.cpp` shows how to use the convenience STL container wrappers. pybind11-2.0.1/docs/advanced/classes.rst000066400000000000000000000553751303320175600200440ustar00rootroot00000000000000Classes ####### This section presents advanced binding code for classes and it is assumed that you are already familiar with the basics from :doc:`/classes`. .. _overriding_virtuals: Overriding virtual functions in Python ====================================== Suppose that a C++ class or interface has a virtual function that we'd like to to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is given as a specific example of how one would do this with traditional C++ code). .. code-block:: cpp class Animal { public: virtual ~Animal() { } virtual std::string go(int n_times) = 0; }; class Dog : public Animal { public: std::string go(int n_times) override { std::string result; for (int i=0; igo(3); } Normally, the binding code for these classes would look as follows: .. code-block:: cpp PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_ animal(m, "Animal"); animal .def("go", &Animal::go); py::class_(m, "Dog", animal) .def(py::init<>()); m.def("call_go", &call_go); return m.ptr(); } However, these bindings are impossible to extend: ``Animal`` is not constructible, and we clearly require some kind of "trampoline" that redirects virtual calls back to Python. Defining a new type of ``Animal`` from within Python is possible but requires a helper class that is defined as follows: .. code-block:: cpp class PyAnimal : public Animal { public: /* Inherit the constructors */ using Animal::Animal; /* Trampoline (need one for each virtual function) */ std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE( std::string, /* Return type */ Animal, /* Parent class */ go, /* Name of function */ n_times /* Argument(s) */ ); } }; The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have a default implementation. There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument between the *Parent class* and *Name of the function* slots. This is useful when the C++ and Python versions of the function have different names, e.g. ``operator()`` vs ``__call__``. The binding code also needs a few minor adaptations (highlighted): .. code-block:: cpp :emphasize-lines: 4,6,7 PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_ animal(m, "Animal"); animal .def(py::init<>()) .def("go", &Animal::go); py::class_(m, "Dog", animal) .def(py::init<>()); m.def("call_go", &call_go); return m.ptr(); } Importantly, pybind11 is made aware of the trampoline helper class by specifying it as an extra template argument to :class:`class_`. (This can also be combined with other template arguments such as a custom holder type; the order of template types does not matter). Following this, we are able to define a constructor as usual. Note, however, that the above is sufficient for allowing python classes to extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the necessary steps required to providing proper overload support for inherited classes. The Python session below shows how to override ``Animal::go`` and invoke it via a virtual method call. .. code-block:: pycon >>> from example import * >>> d = Dog() >>> call_go(d) u'woof! woof! woof! ' >>> class Cat(Animal): ... def go(self, n_times): ... return "meow! " * n_times ... >>> c = Cat() >>> call_go(c) u'meow! meow! meow! ' Please take a look at the :ref:`macro_notes` before using this feature. .. note:: When the overridden type returns a reference or pointer to a type that pybind11 converts from Python (for example, numeric values, std::string, and other built-in value-converting types), there are some limitations to be aware of: - because in these cases there is no C++ variable to reference (the value is stored in the referenced Python variable), pybind11 provides one in the PYBIND11_OVERLOAD macros (when needed) with static storage duration. Note that this means that invoking the overloaded method on *any* instance will change the referenced value stored in *all* instances of that type. - Attempts to modify a non-const reference will not have the desired effect: it will change only the static cache variable, but this change will not propagate to underlying Python instance, and the change will be replaced the next time the overload is invoked. .. seealso:: The file :file:`tests/test_virtual_functions.cpp` contains a complete example that demonstrates how to override virtual functions using pybind11 in more detail. .. _virtual_and_inheritance: Combining virtual functions and inheritance =========================================== When combining virtual methods with inheritance, you need to be sure to provide an override for each method for which you want to allow overrides from derived python classes. For example, suppose we extend the above ``Animal``/``Dog`` example as follows: .. code-block:: cpp class Animal { public: virtual std::string go(int n_times) = 0; virtual std::string name() { return "unknown"; } }; class Dog : public class Animal { public: std::string go(int n_times) override { std::string result; for (int i=0; i class PyAnimal : public AnimalBase { using AnimalBase::AnimalBase; // Inherit constructors std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); } std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); } }; template class PyDog : public PyAnimal { using PyAnimal::PyAnimal; // Inherit constructors // Override PyAnimal's pure virtual go() with a non-pure one: std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); } std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); } }; This technique has the advantage of requiring just one trampoline method to be declared per virtual method and pure virtual method override. It does, however, require the compiler to generate at least as many methods (and possibly more, if both pure virtual and overridden pure virtual methods are exposed, as above). The classes are then registered with pybind11 using: .. code-block:: cpp py::class_> animal(m, "Animal"); py::class_> dog(m, "Dog"); py::class_> husky(m, "Husky"); // ... add animal, dog, husky definitions Note that ``Husky`` did not require a dedicated trampoline template class at all, since it neither declares any new virtual methods nor provides any pure virtual method implementations. With either the repeated-virtuals or templated trampoline methods in place, you can now create a python class that inherits from ``Dog``: .. code-block:: python class ShihTzu(Dog): def bark(self): return "yip!" .. seealso:: See the file :file:`tests/test_virtual_functions.cpp` for complete examples using both the duplication and templated trampoline approaches. Extended trampoline class functionality ======================================= The trampoline classes described in the previous sections are, by default, only initialized when needed. More specifically, they are initialized when a python class actually inherits from a registered type (instead of merely creating an instance of the registered type), or when a registered constructor is only valid for the trampoline class but not the registered class. This is primarily for performance reasons: when the trampoline class is not needed for anything except virtual method dispatching, not initializing the trampoline class improves performance by avoiding needing to do a run-time check to see if the inheriting python instance has an overloaded method. Sometimes, however, it is useful to always initialize a trampoline class as an intermediate class that does more than just handle virtual method dispatching. For example, such a class might perform extra class initialization, extra destruction operations, and might define new members and methods to enable a more python-like interface to a class. In order to tell pybind11 that it should *always* initialize the trampoline class when creating new instances of a type, the class constructors should be declared using ``py::init_alias()`` instead of the usual ``py::init()``. This forces construction via the trampoline class, ensuring member initialization and (eventual) destruction. .. seealso:: See the file :file:`tests/test_alias_initialization.cpp` for complete examples showing both normal and forced trampoline instantiation. .. _custom_constructors: Custom constructors =================== The syntax for binding constructors was previously introduced, but it only works when a constructor with the given parameters actually exists on the C++ side. To extend this to more general cases, let's take a look at what actually happens under the hood: the following statement .. code-block:: cpp py::class_(m, "Example") .def(py::init()); is short hand notation for .. code-block:: cpp py::class_(m, "Example") .def("__init__", [](Example &instance, int arg) { new (&instance) Example(arg); } ); In other words, :func:`init` creates an anonymous function that invokes an in-place constructor. Memory allocation etc. is already take care of beforehand within pybind11. .. _classes_with_non_public_destructors: Non-public destructors ====================== If a class has a private or protected destructor (as might e.g. be the case in a singleton pattern), a compile error will occur when creating bindings via pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that is responsible for managing the lifetime of instances will reference the destructor even if no deallocations ever take place. In order to expose classes with private or protected destructors, it is possible to override the holder type via a holder type argument to ``class_``. Pybind11 provides a helper class ``py::nodelete`` that disables any destructor invocations. In this case, it is crucial that instances are deallocated on the C++ side to avoid memory leaks. .. code-block:: cpp /* ... definition ... */ class MyClass { private: ~MyClass() { } }; /* ... binding code ... */ py::class_>(m, "MyClass") .def(py::init<>) Implicit conversions ==================== Suppose that instances of two types ``A`` and ``B`` are used in a project, and that an ``A`` can easily be converted into an instance of type ``B`` (examples of this could be a fixed and an arbitrary precision number type). .. code-block:: cpp py::class_(m, "A") /// ... members ... py::class_(m, "B") .def(py::init()) /// ... members ... m.def("func", [](const B &) { /* .... */ } ); To invoke the function ``func`` using a variable ``a`` containing an ``A`` instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++ will automatically apply an implicit type conversion, which makes it possible to directly write ``func(a)``. In this situation (i.e. where ``B`` has a constructor that converts from ``A``), the following statement enables similar implicit conversions on the Python side: .. code-block:: cpp py::implicitly_convertible(); .. note:: Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom data type that is exposed to Python via pybind11. .. _static_properties: Static properties ================= The section on :ref:`properties` discussed the creation of instance properties that are implemented in terms of C++ getters and setters. Static properties can also be created in a similar way to expose getters and setters of static class attributes. Two things are important to note: 1. Static properties are implemented by instrumenting the *metaclass* of the class in question -- however, this requires the class to have a modifiable metaclass in the first place. pybind11 provides a ``py::metaclass()`` annotation that must be specified in the ``class_`` constructor, or any later method calls to ``def_{property_,∅}_{readwrite,readonly}_static`` will fail (see the example below). 2. For static properties defined in terms of setter and getter functions, note that the implicit ``self`` argument also exists in this case and is used to pass the Python ``type`` subclass instance. This parameter will often not be needed by the C++ side, and the following example illustrates how to instantiate a lambda getter function that ignores it: .. code-block:: cpp py::class_(m, "Foo", py::metaclass()) .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); }); Operator overloading ==================== Suppose that we're given the following ``Vector2`` class with a vector addition and scalar multiplication operation, all implemented using overloaded operators in C++. .. code-block:: cpp class Vector2 { public: Vector2(float x, float y) : x(x), y(y) { } Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } Vector2 operator*(float value) const { return Vector2(x * value, y * value); } Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } Vector2& operator*=(float v) { x *= v; y *= v; return *this; } friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); } std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; } private: float x, y; }; The following snippet shows how the above operators can be conveniently exposed to Python. .. code-block:: cpp #include PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_(m, "Vector2") .def(py::init()) .def(py::self + py::self) .def(py::self += py::self) .def(py::self *= float()) .def(float() * py::self) .def("__repr__", &Vector2::toString); return m.ptr(); } Note that a line like .. code-block:: cpp .def(py::self * float()) is really just short hand notation for .. code-block:: cpp .def("__mul__", [](const Vector2 &a, float b) { return a * b; }, py::is_operator()) This can be useful for exposing additional operators that don't exist on the C++ side, or to perform other types of customization. The ``py::is_operator`` flag marker is needed to inform pybind11 that this is an operator, which returns ``NotImplemented`` when invoked with incompatible arguments rather than throwing a type error. .. note:: To use the more convenient ``py::self`` notation, the additional header file :file:`pybind11/operators.h` must be included. .. seealso:: The file :file:`tests/test_operator_overloading.cpp` contains a complete example that demonstrates how to work with overloaded operators in more detail. Pickling support ================ Python's ``pickle`` module provides a powerful facility to serialize and de-serialize a Python object graph into a binary data stream. To pickle and unpickle C++ classes using pybind11, two additional functions must be provided. Suppose the class in question has the following signature: .. code-block:: cpp class Pickleable { public: Pickleable(const std::string &value) : m_value(value) { } const std::string &value() const { return m_value; } void setExtra(int extra) { m_extra = extra; } int extra() const { return m_extra; } private: std::string m_value; int m_extra = 0; }; The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_ looks as follows: .. code-block:: cpp py::class_(m, "Pickleable") .def(py::init()) .def("value", &Pickleable::value) .def("extra", &Pickleable::extra) .def("setExtra", &Pickleable::setExtra) .def("__getstate__", [](const Pickleable &p) { /* Return a tuple that fully encodes the state of the object */ return py::make_tuple(p.value(), p.extra()); }) .def("__setstate__", [](Pickleable &p, py::tuple t) { if (t.size() != 2) throw std::runtime_error("Invalid state!"); /* Invoke the in-place constructor. Note that this is needed even when the object just has a trivial default constructor */ new (&p) Pickleable(t[0].cast()); /* Assign any additional state */ p.setExtra(t[1].cast()); }); An instance can now be pickled as follows: .. code-block:: python try: import cPickle as pickle # Use cPickle on Python 2.7 except ImportError: import pickle p = Pickleable("test_value") p.setExtra(15) data = pickle.dumps(p, 2) Note that only the cPickle module is supported on Python 2.7. The second argument to ``dumps`` is also crucial: it selects the pickle protocol version 2, since the older version 1 is not supported. Newer versions are also fine—for instance, specify ``-1`` to always use the latest available version. Beware: failure to follow these instructions will cause important pybind11 memory allocation routines to be skipped during unpickling, which will likely lead to memory corruption and/or segmentation faults. .. seealso:: The file :file:`tests/test_pickling.cpp` contains a complete example that demonstrates how to pickle and unpickle types using pybind11 in more detail. .. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances Multiple Inheritance ==================== pybind11 can create bindings for types that derive from multiple base types (aka. *multiple inheritance*). To do so, specify all bases in the template arguments of the ``class_`` declaration: .. code-block:: cpp py::class_(m, "MyType") ... The base types can be specified in arbitrary order, and they can even be interspersed with alias types and holder types (discussed earlier in this document)---pybind11 will automatically find out which is which. The only requirement is that the first template argument is the type to be declared. There are two caveats regarding the implementation of this feature: 1. When only one base type is specified for a C++ type that actually has multiple bases, pybind11 will assume that it does not participate in multiple inheritance, which can lead to undefined behavior. In such cases, add the tag ``multiple_inheritance``: .. code-block:: cpp py::class_(m, "MyType", py::multiple_inheritance()); The tag is redundant and does not need to be specified when multiple base types are listed. 2. As was previously discussed in the section on :ref:`overriding_virtuals`, it is easy to create Python types that derive from C++ classes. It is even possible to make use of multiple inheritance to declare a Python class which has e.g. a C++ and a Python class as bases. However, any attempt to create a type that has *two or more* C++ classes in its hierarchy of base types will fail with a fatal error message: ``TypeError: multiple bases have instance lay-out conflict``. Core Python types that are implemented in C (e.g. ``dict``, ``list``, ``Exception``, etc.) also fall under this combination and cannot be combined with C++ types bound using pybind11 via multiple inheritance. pybind11-2.0.1/docs/advanced/exceptions.rst000066400000000000000000000156631303320175600205640ustar00rootroot00000000000000Exceptions ########## Built-in exception translation ============================== When C++ code invoked from Python throws an ``std::exception``, it is automatically converted into a Python ``Exception``. pybind11 defines multiple special exception classes that will map to different types of Python exceptions: .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| +--------------------------------------+------------------------------+ | C++ exception type | Python exception type | +======================================+==============================+ | :class:`std::exception` | ``RuntimeError`` | +--------------------------------------+------------------------------+ | :class:`std::bad_alloc` | ``MemoryError`` | +--------------------------------------+------------------------------+ | :class:`std::domain_error` | ``ValueError`` | +--------------------------------------+------------------------------+ | :class:`std::invalid_argument` | ``ValueError`` | +--------------------------------------+------------------------------+ | :class:`std::length_error` | ``ValueError`` | +--------------------------------------+------------------------------+ | :class:`std::out_of_range` | ``ValueError`` | +--------------------------------------+------------------------------+ | :class:`std::range_error` | ``ValueError`` | +--------------------------------------+------------------------------+ | :class:`pybind11::stop_iteration` | ``StopIteration`` (used to | | | implement custom iterators) | +--------------------------------------+------------------------------+ | :class:`pybind11::index_error` | ``IndexError`` (used to | | | indicate out of bounds | | | accesses in ``__getitem__``, | | | ``__setitem__``, etc.) | +--------------------------------------+------------------------------+ | :class:`pybind11::value_error` | ``ValueError`` (used to | | | indicate wrong value passed | | | in ``container.remove(...)`` | +--------------------------------------+------------------------------+ | :class:`pybind11::key_error` | ``KeyError`` (used to | | | indicate out of bounds | | | accesses in ``__getitem__``, | | | ``__setitem__`` in dict-like | | | objects, etc.) | +--------------------------------------+------------------------------+ | :class:`pybind11::error_already_set` | Indicates that the Python | | | exception flag has already | | | been initialized | +--------------------------------------+------------------------------+ When a Python function invoked from C++ throws an exception, it is converted into a C++ exception of type :class:`error_already_set` whose string payload contains a textual summary. There is also a special exception :class:`cast_error` that is thrown by :func:`handle::call` when the input arguments cannot be converted to Python objects. Registering custom translators ============================== If the default exception conversion policy described above is insufficient, pybind11 also provides support for registering custom exception translators. To register a simple exception conversion that translates a C++ exception into a new Python exception using the C++ exception's ``what()`` method, a helper function is available: .. code-block:: cpp py::register_exception(module, "PyExp"); This call creates a Python exception class with the name ``PyExp`` in the given module and automatically converts any encountered exceptions of type ``CppExp`` into Python exceptions of type ``PyExp``. When more advanced exception translation is needed, the function ``py::register_exception_translator(translator)`` can be used to register functions that can translate arbitrary exception types (and which may include additional logic to do so). The function takes a stateless callable (e.g. a function pointer or a lambda function without captured variables) with the call signature ``void(std::exception_ptr)``. When a C++ exception is thrown, the registered exception translators are tried in reverse order of registration (i.e. the last registered translator gets the first shot at handling the exception). Inside the translator, ``std::rethrow_exception`` should be used within a try block to re-throw the exception. One or more catch clauses to catch the appropriate exceptions should then be used with each clause using ``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set the python exception to a custom exception type (see below). To declare a custom Python exception type, declare a ``py::exception`` variable and use this in the associated exception translator (note: it is often useful to make this a static declaration when using it inside a lambda expression without requiring capturing). The following example demonstrates this for a hypothetical exception classes ``MyCustomException`` and ``OtherException``: the first is translated to a custom python exception ``MyCustomError``, while the second is translated to a standard python RuntimeError: .. code-block:: cpp static py::exception exc(m, "MyCustomError"); py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const MyCustomException &e) { exc(e.what()); } catch (const OtherException &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); } }); Multiple exceptions can be handled by a single translator, as shown in the example above. If the exception is not caught by the current translator, the previously registered one gets a chance. If none of the registered exception translators is able to handle the exception, it is handled by the default converter as described in the previous section. .. seealso:: The file :file:`tests/test_exceptions.cpp` contains examples of various custom exception translators and custom exception types. .. note:: You must call either ``PyErr_SetString`` or a custom exception's call operator (``exc(string)``) for every exception caught in a custom exception translator. Failure to do so will cause Python to crash with ``SystemError: error return without exception set``. Exceptions that you do not plan to handle should simply not be caught, or may be explicity (re-)thrown to delegate it to the other, previously-declared existing exception translators. pybind11-2.0.1/docs/advanced/functions.rst000066400000000000000000000364651303320175600204160ustar00rootroot00000000000000Functions ######### Before proceeding with this section, make sure that you are already familiar with the basics of binding functions and classes, as explained in :doc:`/basics` and :doc:`/classes`. The following guide is applicable to both free and member functions, i.e. *methods* in Python. Return value policies ===================== Python and C++ use fundamentally different ways of managing the memory and lifetime of objects managed by them. This can lead to issues when creating bindings for functions that return a non-trivial type. Just by looking at the type information, it is not clear whether Python should take charge of the returned value and eventually free its resources, or if this is handled on the C++ side. For this reason, pybind11 provides a several `return value policy` annotations that can be passed to the :func:`module::def` and :func:`class_::def` functions. The default policy is :enum:`return_value_policy::automatic`. Return value policies are tricky, and it's very important to get them right. Just to illustrate what can go wrong, consider the following simple example: .. code-block:: cpp /* Function declaration */ Data *get_data() { return _data; /* (pointer to a static data structure) */ } ... /* Binding code */ m.def("get_data", &get_data); // <-- KABOOM, will cause crash when called from Python What's going on here? When ``get_data()`` is called from Python, the return value (a native C++ type) must be wrapped to turn it into a usable Python type. In this case, the default return value policy (:enum:`return_value_policy::automatic`) causes pybind11 to assume ownership of the static ``_data`` instance. When Python's garbage collector eventually deletes the Python wrapper, pybind11 will also attempt to delete the C++ instance (via ``operator delete()``) due to the implied ownership. At this point, the entire application will come crashing down, though errors could also be more subtle and involve silent data corruption. In the above example, the policy :enum:`return_value_policy::reference` should have been specified so that the global data instance is only *referenced* without any implied transfer of ownership, i.e.: .. code-block:: cpp m.def("get_data", &get_data, return_value_policy::reference); On the other hand, this is not the right policy for many other situations, where ignoring ownership could lead to resource leaks. As a developer using pybind11, it's important to be familiar with the different return value policies, including which situation calls for which one of them. The following table provides an overview of available policies: .. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}| +--------------------------------------------------+----------------------------------------------------------------------------+ | Return value policy | Description | +==================================================+============================================================================+ | :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take | | | ownership. Python will call the destructor and delete operator when the | | | object's reference count reaches zero. Undefined behavior ensues when the | | | C++ side does the same, or when the data was not dynamically allocated. | +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. | | | This policy is comparably safe because the lifetimes of the two instances | | | are decoupled. | +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance | | | that will be owned by Python. This policy is comparably safe because the | | | lifetimes of the two instances (move source and destination) are decoupled.| +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is | | | responsible for managing the object's lifetime and deallocating it when | | | it is no longer used. Warning: undefined behavior will ensue when the C++ | | | side deletes an object that is still referenced and used by Python. | +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime | | | of a parent object, namely the implicit ``this``, or ``self`` argument of | | | the called method or property. Internally, this policy works just like | | | :enum:`return_value_policy::reference` but additionally applies a | | | ``keep_alive<0, 1>`` *call policy* (described in the next section) that | | | prevents the parent object from being garbage collected as long as the | | | return value is referenced by Python. This is the default policy for | | | property getters created via ``def_property``, ``def_readwrite``, etc. | +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy | | | :enum:`return_value_policy::take_ownership` when the return value is a | | | pointer. Otherwise, it uses :enum:`return_value::move` or | | | :enum:`return_value::copy` for rvalue and lvalue references, respectively. | | | See above for a description of what all of these different policies do. | +--------------------------------------------------+----------------------------------------------------------------------------+ | :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the | | | return value is a pointer. This is the default conversion policy for | | | function arguments when calling Python functions manually from C++ code | | | (i.e. via handle::operator()). You probably won't need to use this. | +--------------------------------------------------+----------------------------------------------------------------------------+ Return value policies can also be applied to properties: .. code-block:: cpp class_(m, "MyClass") .def_property("data", &MyClass::getData, &MyClass::setData, py::return_value_policy::copy); Technically, the code above applies the policy to both the getter and the setter function, however, the setter doesn't really care about *return* value policies which makes this a convenient terse syntax. Alternatively, targeted arguments can be passed through the :class:`cpp_function` constructor: .. code-block:: cpp class_(m, "MyClass") .def_property("data" py::cpp_function(&MyClass::getData, py::return_value_policy::copy), py::cpp_function(&MyClass::setData) ); .. warning:: Code with invalid return value policies might access unitialized memory or free data structures multiple times, which can lead to hard-to-debug non-determinism and segmentation faults, hence it is worth spending the time to understand all the different options in the table above. .. note:: One important aspect of the above policies is that they only apply to instances which pybind11 has *not* seen before, in which case the policy clarifies essential questions about the return value's lifetime and ownership. When pybind11 knows the instance already (as identified by its type and address in memory), it will return the existing Python object wrapper rather than creating a new copy. .. note:: The next section on :ref:`call_policies` discusses *call policies* that can be specified *in addition* to a return value policy from the list above. Call policies indicate reference relationships that can involve both return values and parameters of functions. .. note:: As an alternative to elaborate call policies and lifetime management logic, consider using smart pointers (see the section on :ref:`smart_pointers` for details). Smart pointers can tell whether an object is still referenced from C++ or Python, which generally eliminates the kinds of inconsistencies that can lead to crashes or undefined behavior. For functions returning smart pointers, it is not necessary to specify a return value policy. .. _call_policies: Additional call policies ======================== In addition to the above return value policies, further `call policies` can be specified to indicate dependencies between parameters. There is currently just one policy named ``keep_alive``, which indicates that the argument with index ``Patient`` should be kept alive at least until the argument with index ``Nurse`` is freed by the garbage collector. Argument indices start at one, while zero refers to the return value. For methods, index ``1`` refers to the implicit ``this`` pointer, while regular arguments begin at index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse`` with value ``None`` is detected at runtime, the call policy does nothing. This feature internally relies on the ability to create a *weak reference* to the nurse object, which is permitted by all classes exposed via pybind11. When the nurse object does not support weak references, an exception will be thrown. Consider the following example: here, the binding code for a list append operation ties the lifetime of the newly added element to the underlying container: .. code-block:: cpp py::class_(m, "List") .def("append", &List::append, py::keep_alive<1, 2>()); .. note:: ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse, Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient == 0) policies from Boost.Python. .. seealso:: The file :file:`tests/test_keep_alive.cpp` contains a complete example that demonstrates using :class:`keep_alive` in more detail. .. _python_objects_as_args: Python objects as arguments =========================== pybind11 exposes all major Python types using thin C++ wrapper classes. These wrapper classes can also be used as parameters of functions in bindings, which makes it possible to directly work with native Python types on the C++ side. For instance, the following statement iterates over a Python ``dict``: .. code-block:: cpp void print_dict(py::dict dict) { /* Easily interact with Python types */ for (auto item : dict) std::cout << "key=" << item.first << ", " << "value=" << item.second << std::endl; } It can be exported: .. code-block:: cpp m.def("print_dict", &print_dict); And used in Python as usual: .. code-block:: pycon >>> print_dict({'foo': 123, 'bar': 'hello'}) key=foo, value=123 key=bar, value=hello For more information on using Python objects in C++, see :doc:`/advanced/pycpp/index`. Accepting \*args and \*\*kwargs =============================== Python provides a useful mechanism to define functions that accept arbitrary numbers of arguments and keyword arguments: .. code-block:: python def generic(*args, **kwargs): ... # do something with args and kwargs Such functions can also be created using pybind11: .. code-block:: cpp void generic(py::args args, py::kwargs kwargs) { /// .. do something with args if (kwargs) /// .. do something with kwargs } /// Binding code m.def("generic", &generic); The class ``py::args`` derives from ``py::tuple`` and ``py::kwargs`` derives from ``py::dict``. Note that the ``kwargs`` argument is invalid if no keyword arguments were actually provided. Please refer to the other examples for details on how to iterate over these, and on how to cast their entries into C++ objects. A demonstration is also available in ``tests/test_kwargs_and_defaults.cpp``. .. warning:: Unlike Python, pybind11 does not allow combining normal parameters with the ``args`` / ``kwargs`` special parameters. Default arguments revisited =========================== The section on :ref:`default_args` previously discussed basic usage of default arguments using pybind11. One noteworthy aspect of their implementation is that default arguments are converted to Python objects right at declaration time. Consider the following example: .. code-block:: cpp py::class_("MyClass") .def("myFunction", py::arg("arg") = SomeType(123)); In this case, pybind11 must already be set up to deal with values of the type ``SomeType`` (via a prior instantiation of ``py::class_``), or an exception will be thrown. Another aspect worth highlighting is that the "preview" of the default argument in the function signature is generated using the object's ``__repr__`` method. If not available, the signature may not be very helpful, e.g.: .. code-block:: pycon FUNCTIONS ... | myFunction(...) | Signature : (MyClass, arg : SomeType = ) -> NoneType ... The first way of addressing this is by defining ``SomeType.__repr__``. Alternatively, it is possible to specify the human-readable preview of the default argument manually using the ``arg_v`` notation: .. code-block:: cpp py::class_("MyClass") .def("myFunction", py::arg_v("arg", SomeType(123), "SomeType(123)")); Sometimes it may be necessary to pass a null pointer value as a default argument. In this case, remember to cast it to the underlying type in question, like so: .. code-block:: cpp py::class_("MyClass") .def("myFunction", py::arg("arg") = (SomeType *) nullptr); pybind11-2.0.1/docs/advanced/misc.rst000066400000000000000000000206171303320175600173310ustar00rootroot00000000000000Miscellaneous ############# .. _macro_notes: General notes regarding convenience macros ========================================== pybind11 provides a few convenience macros such as :func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and ``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated in the preprocessor (which has no concept of types), they *will* get confused by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue, myFunc)``. In this case, the preprocessor assumes that the comma indicates the beginning of the next parameter. Use a ``typedef`` to bind the template to another name and use it in the macro to avoid this problem. Global Interpreter Lock (GIL) ============================= The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be used to acquire and release the global interpreter lock in the body of a C++ function call. In this way, long-running C++ code can be parallelized using multiple Python threads. Taking :ref:`overriding_virtuals` as an example, this could be realized as follows (important changes highlighted): .. code-block:: cpp :emphasize-lines: 8,9,33,34 class PyAnimal : public Animal { public: /* Inherit the constructors */ using Animal::Animal; /* Trampoline (need one for each virtual function) */ std::string go(int n_times) { /* Acquire GIL before calling Python code */ py::gil_scoped_acquire acquire; PYBIND11_OVERLOAD_PURE( std::string, /* Return type */ Animal, /* Parent class */ go, /* Name of function */ n_times /* Argument(s) */ ); } }; PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_ animal(m, "Animal"); animal .def(py::init<>()) .def("go", &Animal::go); py::class_(m, "Dog", animal) .def(py::init<>()); m.def("call_go", [](Animal *animal) -> std::string { /* Release GIL before calling into (potentially long-running) C++ code */ py::gil_scoped_release release; return call_go(animal); }); return m.ptr(); } Binding sequence data types, iterators, the slicing protocol, etc. ================================================================== Please refer to the supplemental example for details. .. seealso:: The file :file:`tests/test_sequences_and_iterators.cpp` contains a complete example that shows how to bind a sequence data type, including length queries (``__len__``), iterators (``__iter__``), the slicing protocol and other kinds of useful operations. Partitioning code over multiple extension modules ================================================= It's straightforward to split binding code over multiple extension modules, while referencing types that are declared elsewhere. Everything "just" works without any special precautions. One exception to this rule occurs when extending a type declared in another extension module. Recall the basic example from Section :ref:`inheritance`. .. code-block:: cpp py::class_ pet(m, "Pet"); pet.def(py::init()) .def_readwrite("name", &Pet::name); py::class_(m, "Dog", pet /* <- specify parent */) .def(py::init()) .def("bark", &Dog::bark); Suppose now that ``Pet`` bindings are defined in a module named ``basic``, whereas the ``Dog`` bindings are defined somewhere else. The challenge is of course that the variable ``pet`` is not available anymore though it is needed to indicate the inheritance relationship to the constructor of ``class_``. However, it can be acquired as follows: .. code-block:: cpp py::object pet = (py::object) py::module::import("basic").attr("Pet"); py::class_(m, "Dog", pet) .def(py::init()) .def("bark", &Dog::bark); Alternatively, you can specify the base class as a template parameter option to ``class_``, which performs an automated lookup of the corresponding Python type. Like the above code, however, this also requires invoking the ``import`` function once to ensure that the pybind11 binding code of the module ``basic`` has been executed: .. code-block:: cpp py::module::import("basic"); py::class_(m, "Dog") .def(py::init()) .def("bark", &Dog::bark); Naturally, both methods will fail when there are cyclic dependencies. Note that compiling code which has its default symbol visibility set to *hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the ability to access types defined in another extension module. Workarounds include changing the global symbol visibility (not recommended, because it will lead unnecessarily large binaries) or manually exporting types that are accessed by multiple extension modules: .. code-block:: cpp #ifdef _WIN32 # define EXPORT_TYPE __declspec(dllexport) #else # define EXPORT_TYPE __attribute__ ((visibility("default"))) #endif class EXPORT_TYPE Dog : public Animal { ... }; Note also that it is possible (although would rarely be required) to share arbitrary C++ objects between extension modules at runtime. Internal library data is shared between modules using capsule machinery [#f6]_ which can be also utilized for storing, modifying and accessing user-defined data. Note that an extension module will "see" other extensions' data if and only if they were built with the same pybind11 version. Consider the following example: .. code-block:: cpp auto data = (MyData *) py::get_shared_data("mydata"); if (!data) data = (MyData *) py::set_shared_data("mydata", new MyData(42)); If the above snippet was used in several separately compiled extension modules, the first one to be imported would create a ``MyData`` instance and associate a ``"mydata"`` key with a pointer to it. Extensions that are imported later would be then able to access the data behind the same pointer. .. [#f6] https://docs.python.org/3/extending/extending.html#using-capsules Generating documentation using Sphinx ===================================== Sphinx [#f4]_ has the ability to inspect the signatures and documentation strings in pybind11-based extension modules to automatically generate beautiful documentation in a variety formats. The python_example repository [#f5]_ contains a simple example repository which uses this approach. There are two potential gotchas when using this approach: first, make sure that the resulting strings do not contain any :kbd:`TAB` characters, which break the docstring parsing routines. You may want to use C++11 raw string literals, which are convenient for multi-line comments. Conveniently, any excess indentation will be automatically be removed by Sphinx. However, for this to work, it is important that all lines are indented consistently, i.e.: .. code-block:: cpp // ok m.def("foo", &foo, R"mydelimiter( The foo function Parameters ---------- )mydelimiter"); // *not ok* m.def("foo", &foo, R"mydelimiter(The foo function Parameters ---------- )mydelimiter"); By default, pybind11 automatically generates and prepends a signature to the docstring of a function registered with ``module::def()`` and ``class_::def()``. Sometimes this behavior is not desirable, because you want to provide your own signature or remove the docstring completely to exclude the function from the Sphinx documentation. The class ``options`` allows you to selectively suppress auto-generated signatures: .. code-block:: cpp PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::options options; options.disable_function_signatures(); m.def("add", [](int a, int b) { return a + b; }, "A function which adds two numbers"); return m.ptr(); } Note that changes to the settings affect only function bindings created during the lifetime of the ``options`` instance. When it goes out of scope at the end of the module's init function, the default settings are restored to prevent unwanted side effects. .. [#f4] http://www.sphinx-doc.org .. [#f5] http://github.com/pybind/python_example pybind11-2.0.1/docs/advanced/pycpp/000077500000000000000000000000001303320175600167715ustar00rootroot00000000000000pybind11-2.0.1/docs/advanced/pycpp/index.rst000066400000000000000000000004261303320175600206340ustar00rootroot00000000000000Python C++ interface #################### pybind11 exposes Python types and functions using thin C++ wrappers, which makes it possible to conveniently call Python code from C++ without resorting to Python's C API. .. toctree:: :maxdepth: 2 object numpy utilities pybind11-2.0.1/docs/advanced/pycpp/numpy.rst000066400000000000000000000251601303320175600206770ustar00rootroot00000000000000.. _numpy: NumPy ##### Buffer protocol =============== Python supports an extremely general and convenient approach for exchanging data between plugin libraries. Types can expose a buffer view [#f2]_, which provides fast direct access to the raw internal data representation. Suppose we want to bind the following simplistic Matrix class: .. code-block:: cpp class Matrix { public: Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { m_data = new float[rows*cols]; } float *data() { return m_data; } size_t rows() const { return m_rows; } size_t cols() const { return m_cols; } private: size_t m_rows, m_cols; float *m_data; }; The following binding code exposes the ``Matrix`` contents as a buffer object, making it possible to cast Matrices into NumPy arrays. It is even possible to completely avoid copy operations with Python expressions like ``np.array(matrix_instance, copy = False)``. .. code-block:: cpp py::class_(m, "Matrix", py::buffer_protocol()) .def_buffer([](Matrix &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(float), /* Size of one scalar */ py::format_descriptor::format(), /* Python struct-style format descriptor */ 2, /* Number of dimensions */ { m.rows(), m.cols() }, /* Buffer dimensions */ { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ sizeof(float) } ); }); Supporting the buffer protocol in a new type involves specifying the special ``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the ``def_buffer()`` method with a lambda function that creates a ``py::buffer_info`` description record on demand describing a given matrix instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol specification. .. code-block:: cpp struct buffer_info { void *ptr; size_t itemsize; std::string format; int ndim; std::vector shape; std::vector strides; }; To create a C++ function that can take a Python buffer object as an argument, simply use the type ``py::buffer`` as one of its arguments. Buffers can exist in a great variety of configurations, hence some safety checks are usually necessary in the function body. Below, you can see an basic example on how to define a custom constructor for the Eigen double precision matrix (``Eigen::MatrixXd``) type, which supports initialization from compatible buffer objects (e.g. a NumPy matrix). .. code-block:: cpp /* Bind MatrixXd (or some other Eigen type) to Python */ typedef Eigen::MatrixXd Matrix; typedef Matrix::Scalar Scalar; constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; py::class_(m, "Matrix", py::buffer_protocol()) .def("__init__", [](Matrix &m, py::buffer b) { typedef Eigen::Stride Strides; /* Request a buffer descriptor from Python */ py::buffer_info info = b.request(); /* Some sanity checks ... */ if (info.format != py::format_descriptor::format()) throw std::runtime_error("Incompatible format: expected a double array!"); if (info.ndim != 2) throw std::runtime_error("Incompatible buffer dimension!"); auto strides = Strides( info.strides[rowMajor ? 0 : 1] / sizeof(Scalar), info.strides[rowMajor ? 1 : 0] / sizeof(Scalar)); auto map = Eigen::Map( static_cat(info.ptr), info.shape[0], info.shape[1], strides); new (&m) Matrix(map); }); For reference, the ``def_buffer()`` call for this Eigen data type should look as follows: .. code-block:: cpp .def_buffer([](Matrix &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(Scalar), /* Size of one scalar */ /* Python struct-style format descriptor */ py::format_descriptor::format(), /* Number of dimensions */ 2, /* Buffer dimensions */ { (size_t) m.rows(), (size_t) m.cols() }, /* Strides (in bytes) for each index */ { sizeof(Scalar) * (rowMajor ? m.cols() : 1), sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } ); }) For a much easier approach of binding Eigen types (although with some limitations), refer to the section on :doc:`/advanced/cast/eigen`. .. seealso:: The file :file:`tests/test_buffers.cpp` contains a complete example that demonstrates using the buffer protocol with pybind11 in more detail. .. [#f2] http://docs.python.org/3/c-api/buffer.html Arrays ====== By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can restrict the function so that it only accepts NumPy arrays (rather than any type of Python object satisfying the buffer protocol). In many situations, we want to define a function which only accepts a NumPy array of a certain data type. This is possible via the ``py::array_t`` template. For instance, the following function requires the argument to be a NumPy array containing double precision values. .. code-block:: cpp void f(py::array_t array); When it is invoked with a different type (e.g. an integer or a list of integers), the binding code will attempt to cast the input into a NumPy array of the requested type. Note that this feature requires the :file:``pybind11/numpy.h`` header to be included. Data in NumPy arrays is not guaranteed to packed in a dense manner; furthermore, entries can be separated by arbitrary column and row strides. Sometimes, it can be useful to require a function to only accept dense arrays using either the C (row-major) or Fortran (column-major) ordering. This can be accomplished via a second template argument with values ``py::array::c_style`` or ``py::array::f_style``. .. code-block:: cpp void f(py::array_t array); The ``py::array::forcecast`` argument is the default value of the second template parameter, and it ensures that non-conforming arguments are converted into an array satisfying the specified requirements instead of trying the next function overload. Structured types ================ In order for ``py::array_t`` to work with structured (record) types, we first need to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE`` macro which expects the type followed by field names: .. code-block:: cpp struct A { int x; double y; }; struct B { int z; A a; }; PYBIND11_NUMPY_DTYPE(A, x, y); PYBIND11_NUMPY_DTYPE(B, z, a); /* now both A and B can be used as template arguments to py::array_t */ Vectorizing functions ===================== Suppose we want to bind a function with the following signature to Python so that it can process arbitrary NumPy array arguments (vectors, matrices, general N-D arrays) in addition to its normal arguments: .. code-block:: cpp double my_func(int x, float y, double z); After including the ``pybind11/numpy.h`` header, this is extremely simple: .. code-block:: cpp m.def("vectorized_func", py::vectorize(my_func)); Invoking the function like below causes 4 calls to be made to ``my_func`` with each of the array elements. The significant advantage of this compared to solutions like ``numpy.vectorize()`` is that the loop over the elements runs entirely on the C++ side and can be crunched down into a tight, optimized loop by the compiler. The result is returned as a NumPy array of type ``numpy.dtype.float64``. .. code-block:: pycon >>> x = np.array([[1, 3],[5, 7]]) >>> y = np.array([[2, 4],[6, 8]]) >>> z = 3 >>> result = vectorized_func(x, y, z) The scalar argument ``z`` is transparently replicated 4 times. The input arrays ``x`` and ``y`` are automatically converted into the right types (they are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and ``numpy.dtype.float32``, respectively) Sometimes we might want to explicitly exclude an argument from the vectorization because it makes little sense to wrap it in a NumPy array. For instance, suppose the function signature was .. code-block:: cpp double my_func(int x, float y, my_custom_type *z); This can be done with a stateful Lambda closure: .. code-block:: cpp // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) m.def("vectorized_func", [](py::array_t x, py::array_t y, my_custom_type *z) { auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); }; return py::vectorize(stateful_closure)(x, y); } ); In cases where the computation is too complicated to be reduced to ``vectorize``, it will be necessary to create and access the buffer contents manually. The following snippet contains a complete example that shows how this works (the code is somewhat contrived, since it could have been done more simply using ``vectorize``). .. code-block:: cpp #include #include namespace py = pybind11; py::array_t add_arrays(py::array_t input1, py::array_t input2) { auto buf1 = input1.request(), buf2 = input2.request(); if (buf1.ndim != 1 || buf2.ndim != 1) throw std::runtime_error("Number of dimensions must be one"); if (buf1.size != buf2.size) throw std::runtime_error("Input shapes must match"); /* No pointer is passed, so NumPy will allocate the buffer */ auto result = py::array_t(buf1.size); auto buf3 = result.request(); double *ptr1 = (double *) buf1.ptr, *ptr2 = (double *) buf2.ptr, *ptr3 = (double *) buf3.ptr; for (size_t idx = 0; idx < buf1.shape[0]; idx++) ptr3[idx] = ptr1[idx] + ptr2[idx]; return result; } PYBIND11_PLUGIN(test) { py::module m("test"); m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); return m.ptr(); } .. seealso:: The file :file:`tests/test_numpy_vectorize.cpp` contains a complete example that demonstrates using :func:`vectorize` in more detail. pybind11-2.0.1/docs/advanced/pycpp/object.rst000066400000000000000000000055061303320175600207770ustar00rootroot00000000000000Python types ############ Available wrappers ================== All major Python types are available as thin C++ wrapper classes. These can also be used as function parameters -- see :ref:`python_objects_as_args`. Available types include :class:`handle`, :class:`object`, :class:`bool_`, :class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`, :class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`, :class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`, :class:`array`, and :class:`array_t`. Casting back and forth ====================== In this kind of mixed code, it is often necessary to convert arbitrary C++ types to Python, which can be done using :func:`py::cast`: .. code-block:: cpp MyClass *cls = ..; py::object obj = py::cast(cls); The reverse direction uses the following syntax: .. code-block:: cpp py::object obj = ...; MyClass *cls = obj.cast(); When conversion fails, both directions throw the exception :class:`cast_error`. Calling Python functions ======================== It is also possible to call python functions via ``operator()``. .. code-block:: cpp py::function f = <...>; py::object result_py = f(1234, "hello", some_instance); MyClass &result = result_py.cast(); Keyword arguments are also supported. In Python, there is the usual call syntax: .. code-block:: python def f(number, say, to): ... # function code f(1234, say="hello", to=some_instance) # keyword call in Python In C++, the same call can be made using: .. code-block:: cpp using pybind11::literals; // to bring in the `_a` literal f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++ Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with other arguments: .. code-block:: cpp // * unpacking py::tuple args = py::make_tuple(1234, "hello", some_instance); f(*args); // ** unpacking py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance); f(**kwargs); // mixed keywords, * and ** unpacking py::tuple args = py::make_tuple(1234); py::dict kwargs = py::dict("to"_a=some_instance); f(*args, "say"_a="hello", **kwargs); Generalized unpacking according to PEP448_ is also supported: .. code-block:: cpp py::dict kwargs1 = py::dict("number"_a=1234); py::dict kwargs2 = py::dict("to"_a=some_instance); f(**kwargs1, "say"_a="hello", **kwargs2); .. seealso:: The file :file:`tests/test_python_types.cpp` contains a complete example that demonstrates passing native Python types in more detail. The file :file:`tests/test_callbacks.cpp` presents a few examples of calling Python functions from C++, including keywords arguments and unpacking. .. _PEP448: https://www.python.org/dev/peps/pep-0448/ pybind11-2.0.1/docs/advanced/pycpp/utilities.rst000066400000000000000000000037201303320175600215400ustar00rootroot00000000000000Utilities ######### Using Python's print function in C++ ==================================== The usual way to write output in C++ is using ``std::cout`` while in Python one would use ``print``. Since these methods use different buffers, mixing them can lead to output order issues. To resolve this, pybind11 modules can use the :func:`py::print` function which writes to Python's ``sys.stdout`` for consistency. Python's ``print`` function is replicated in the C++ API including optional keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as expected in Python: .. code-block:: cpp py::print(1, 2.0, "three"); // 1 2.0 three py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three auto args = py::make_tuple("unpacked", true); py::print("->", *args, "end"_a="<-"); // -> unpacked True <- Evaluating Python expressions from strings and files ==================================================== pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate Python expressions and statements. The following example illustrates how they can be used. Both functions accept a template parameter that describes how the argument should be interpreted. Possible choices include ``eval_expr`` (isolated expression), ``eval_single_statement`` (a single statement, return value is always ``none``), and ``eval_statements`` (sequence of statements, return value is always ``none``). .. code-block:: cpp // At beginning of file #include ... // Evaluate in scope of main module py::object scope = py::module::import("__main__").attr("__dict__"); // Evaluate an isolated expression int result = py::eval("my_variable + 10", scope).cast(); // Evaluate a sequence of statements py::eval( "print('Hello')\n" "print('world!');", scope); // Evaluate the statements in an separate Python file on disk py::eval_file("script.py", scope); pybind11-2.0.1/docs/advanced/smart_ptrs.rst000066400000000000000000000127701303320175600205750ustar00rootroot00000000000000Smart pointers ############## std::unique_ptr =============== Given a class ``Example`` with Python bindings, it's possible to return instances wrapped in C++11 unique pointers, like so .. code-block:: cpp std::unique_ptr create_example() { return std::unique_ptr(new Example()); } .. code-block:: cpp m.def("create_example", &create_example); In other words, there is nothing special that needs to be done. While returning unique pointers in this way is allowed, it is *illegal* to use them as function arguments. For instance, the following function signature cannot be processed by pybind11. .. code-block:: cpp void do_something_with_example(std::unique_ptr ex) { ... } The above signature would imply that Python needs to give up ownership of an object that is passed to this function, which is generally not possible (for instance, the object might be referenced elsewhere). std::shared_ptr =============== The binding generator for classes, :class:`class_`, can be passed a template type that denotes a special *holder* type that is used to manage references to the object. If no such holder type template argument is given, the default for a type named ``Type`` is ``std::unique_ptr``, which means that the object is deallocated when Python's reference count goes to zero. It is possible to switch to other types of reference counting wrappers or smart pointers, which is useful in codebases that rely on them. For instance, the following snippet causes ``std::shared_ptr`` to be used instead. .. code-block:: cpp py::class_ /* <- holder type */> obj(m, "Example"); Note that any particular class can only be associated with a single holder type. One potential stumbling block when using holder types is that they need to be applied consistently. Can you guess what's broken about the following binding code? .. code-block:: cpp class Child { }; class Parent { public: Parent() : child(std::make_shared()) { } Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */ private: std::shared_ptr child; }; PYBIND11_PLUGIN(example) { py::module m("example"); py::class_>(m, "Child"); py::class_>(m, "Parent") .def(py::init<>()) .def("get_child", &Parent::get_child); return m.ptr(); } The following Python code will cause undefined behavior (and likely a segmentation fault). .. code-block:: python from example import Parent print(Parent().get_child()) The problem is that ``Parent::get_child()`` returns a pointer to an instance of ``Child``, but the fact that this instance is already managed by ``std::shared_ptr<...>`` is lost when passing raw pointers. In this case, pybind11 will create a second independent ``std::shared_ptr<...>`` that also claims ownership of the pointer. In the end, the object will be freed **twice** since these shared pointers have no way of knowing about each other. There are two ways to resolve this issue: 1. For types that are managed by a smart pointer class, never use raw pointers in function arguments or return values. In other words: always consistently wrap pointers into their designated holder types (such as ``std::shared_ptr<...>``). In this case, the signature of ``get_child()`` should be modified as follows: .. code-block:: cpp std::shared_ptr get_child() { return child; } 2. Adjust the definition of ``Child`` by specifying ``std::enable_shared_from_this`` (see cppreference_ for details) as a base class. This adds a small bit of information to ``Child`` that allows pybind11 to realize that there is already an existing ``std::shared_ptr<...>`` and communicate with it. In this case, the declaration of ``Child`` should look as follows: .. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this .. code-block:: cpp class Child : public std::enable_shared_from_this { }; .. _smart_pointers: Custom smart pointers ===================== pybind11 supports ``std::unique_ptr`` and ``std::shared_ptr`` right out of the box. For any other custom smart pointer, transparent conversions can be enabled using a macro invocation similar to the following. It must be declared at the top namespace level before any binding code: .. code-block:: cpp PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr); The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a placeholder name that is used as a template parameter of the second argument. Thus, feel free to use any identifier, but use it consistently on both sides; also, don't use the name of a type that already exists in your codebase. The macro also accepts a third optional boolean parameter that is set to false by default. Specify .. code-block:: cpp PYBIND11_DECLARE_HOLDER_TYPE(T, SmartPtr, true); if ``SmartPtr`` can always be initialized from a ``T*`` pointer without the risk of inconsistencies (such as multiple independent ``SmartPtr`` instances believing that they are the sole owner of the ``T*`` pointer). A common situation where ``true`` should be passed is when the ``T`` instances use *intrusive* reference counting. Please take a look at the :ref:`macro_notes` before using this feature. .. seealso:: The file :file:`tests/test_smart_ptr.cpp` contains a complete example that demonstrates how to work with custom reference-counting holder types in more detail. pybind11-2.0.1/docs/basics.rst000066400000000000000000000201271303320175600160710ustar00rootroot00000000000000.. _basics: First steps ########### This sections demonstrates the basic features of pybind11. Before getting started, make sure that development environment is set up to compile the included set of test cases. Compiling the test cases ======================== Linux/MacOS ----------- On Linux you'll need to install the **python-dev** or **python3-dev** packages as well as **cmake**. On Mac OS, the included python version works out of the box, but **cmake** must still be installed. After installing the prerequisites, run .. code-block:: bash mkdir build cd build cmake .. make check -j 4 The last line will both compile and run the tests. Windows ------- On Windows, only **Visual Studio 2015** and newer are supported since pybind11 relies on various C++11 language features that break older versions of Visual Studio. To compile and run the tests: .. code-block:: batch mkdir build cd build cmake .. cmake --build . --config Release --target check This will create a Visual Studio project, compile and run the target, all from the command line. .. Note:: If all tests fail, make sure that the Python binary and the testcases are compiled for the same processor type and bitness (i.e. either **i386** or **x86_64**). You can specify **x86_64** as the target architecture for the generated Visual Studio project using ``cmake -A x64 ..``. .. seealso:: Advanced users who are already familiar with Boost.Python may want to skip the tutorial and look at the test cases in the :file:`tests` directory, which exercise all features of pybind11. Header and namespace conventions ================================ For brevity, all code examples assume that the following two lines are present: .. code-block:: cpp #include namespace py = pybind11; Some features may require additional headers, but those will be specified as needed. Creating bindings for a simple function ======================================= Let's start by creating Python bindings for an extremely simple function, which adds two numbers and returns their result: .. code-block:: cpp int add(int i, int j) { return i + j; } For simplicity [#f1]_, we'll put both this function and the binding code into a file named :file:`example.cpp` with the following contents: .. code-block:: cpp #include int add(int i, int j) { return i + j; } namespace py = pybind11; PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); m.def("add", &add, "A function which adds two numbers"); return m.ptr(); } .. [#f1] In practice, implementation and binding code will generally be located in separate files. The :func:`PYBIND11_PLUGIN` macro creates a function that will be called when an ``import`` statement is issued from within Python. The next line creates a module named ``example`` (with the supplied docstring). The method :func:`module::def` generates binding code that exposes the ``add()`` function to Python. The last line returns the internal Python object associated with ``m`` to the Python interpreter. .. note:: Notice how little code was needed to expose our function to Python: all details regarding the function's parameters and return value were automatically inferred using template metaprogramming. This overall approach and the used syntax are borrowed from Boost.Python, though the underlying implementation is very different. pybind11 is a header-only-library, hence it is not necessary to link against any special libraries (other than Python itself). On Windows, use the CMake build file discussed in section :ref:`cmake`. On Linux and Mac OS, the above example can be compiled using the following command .. code-block:: bash $ c++ -O3 -shared -std=c++11 -I /include `python-config --cflags --ldflags` example.cpp -o example.so In general, it is advisable to include several additional build parameters that can considerably reduce the size of the created binary. Refer to section :ref:`cmake` for a detailed example of a suitable cross-platform CMake-based build system. Assuming that the created file :file:`example.so` (:file:`example.pyd` on Windows) is located in the current directory, the following interactive Python session shows how to load and execute the example. .. code-block:: pycon $ python Python 2.7.10 (default, Aug 22 2015, 20:33:39) [GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import example >>> example.add(1, 2) 3L >>> .. _keyword_args: Keyword arguments ================= With a simple modification code, it is possible to inform Python about the names of the arguments ("i" and "j" in this case). .. code-block:: cpp m.def("add", &add, "A function which adds two numbers", py::arg("i"), py::arg("j")); :class:`arg` is one of several special tag classes which can be used to pass metadata into :func:`module::def`. With this modified binding code, we can now call the function using keyword arguments, which is a more readable alternative particularly for functions taking many parameters: .. code-block:: pycon >>> import example >>> example.add(i=1, j=2) 3L The keyword names also appear in the function signatures within the documentation. .. code-block:: pycon >>> help(example) .... FUNCTIONS add(...) Signature : (i: int, j: int) -> int A function which adds two numbers A shorter notation for named arguments is also available: .. code-block:: cpp // regular notation m.def("add1", &add, py::arg("i"), py::arg("j")); // shorthand using namespace pybind11::literals; m.def("add2", &add, "i"_a, "j"_a); The :var:`_a` suffix forms a C++11 literal which is equivalent to :class:`arg`. Note that the literal operator must first be made visible with the directive ``using namespace pybind11::literals``. This does not bring in anything else from the ``pybind11`` namespace except for literals. .. _default_args: Default arguments ================= Suppose now that the function to be bound has default arguments, e.g.: .. code-block:: cpp int add(int i = 1, int j = 2) { return i + j; } Unfortunately, pybind11 cannot automatically extract these parameters, since they are not part of the function's type information. However, they are simple to specify using an extension of :class:`arg`: .. code-block:: cpp m.def("add", &add, "A function which adds two numbers", py::arg("i") = 1, py::arg("j") = 2); The default values also appear within the documentation. .. code-block:: pycon >>> help(example) .... FUNCTIONS add(...) Signature : (i: int = 1, j: int = 2) -> int A function which adds two numbers The shorthand notation is also available for default arguments: .. code-block:: cpp // regular notation m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2); // shorthand m.def("add2", &add, "i"_a=1, "j"_a=2); Exporting variables =================== To expose a value from C++, use the ``attr`` function to register it in a module as shown below. Built-in types and general objects (more on that later) are automatically converted when assigned as attributes, and can be explicitly converted using the function ``py::cast``. .. code-block:: cpp PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); m.attr("the_answer") = 42; py::object world = py::cast("World"); m.attr("what") = world; return m.ptr(); } These are then accessible from Python: .. code-block:: pycon >>> import example >>> example.the_answer 42 >>> example.what 'World' .. _supported_types: Supported data types ==================== A large number of data types are supported out of the box and can be used seamlessly as functions arguments, return values or with ``py::cast`` in general. For a full overview, see the :doc:`advanced/cast/index` section. pybind11-2.0.1/docs/benchmark.py000066400000000000000000000056701303320175600164050ustar00rootroot00000000000000import random import os import time import datetime as dt nfns = 4 # Functions per class nargs = 4 # Arguments per function def generate_dummy_code_pybind11(nclasses=10): decl = "" bindings = "" for cl in range(nclasses): decl += "class cl%03i;\n" % cl decl += '\n' for cl in range(nclasses): decl += "class cl%03i {\n" % cl decl += "public:\n" bindings += ' py::class_(m, "cl%03i")\n' % (cl, cl) for fn in range(nfns): ret = random.randint(0, nclasses - 1) params = [random.randint(0, nclasses - 1) for i in range(nargs)] decl += " cl%03i *fn_%03i(" % (ret, fn) decl += ", ".join("cl%03i *" % p for p in params) decl += ");\n" bindings += ' .def("fn_%03i", &cl%03i::fn_%03i)\n' % \ (fn, cl, fn) decl += "};\n\n" bindings += ' ;\n' result = "#include \n\n" result += "namespace py = pybind11;\n\n" result += decl + '\n' result += "PYBIND11_PLUGIN(example) {\n" result += " py::module m(\"example\");" result += bindings result += " return m.ptr();" result += "}" return result def generate_dummy_code_boost(nclasses=10): decl = "" bindings = "" for cl in range(nclasses): decl += "class cl%03i;\n" % cl decl += '\n' for cl in range(nclasses): decl += "class cl%03i {\n" % cl decl += "public:\n" bindings += ' py::class_("cl%03i")\n' % (cl, cl) for fn in range(nfns): ret = random.randint(0, nclasses - 1) params = [random.randint(0, nclasses - 1) for i in range(nargs)] decl += " cl%03i *fn_%03i(" % (ret, fn) decl += ", ".join("cl%03i *" % p for p in params) decl += ");\n" bindings += ' .def("fn_%03i", &cl%03i::fn_%03i, py::return_value_policy())\n' % \ (fn, cl, fn) decl += "};\n\n" bindings += ' ;\n' result = "#include \n\n" result += "namespace py = boost::python;\n\n" result += decl + '\n' result += "BOOST_PYTHON_MODULE(example) {\n" result += bindings result += "}" return result for codegen in [generate_dummy_code_pybind11, generate_dummy_code_boost]: print ("{") for i in range(0, 10): nclasses = 2 ** i with open("test.cpp", "w") as f: f.write(codegen(nclasses)) n1 = dt.datetime.now() os.system("g++ -Os -shared -rdynamic -undefined dynamic_lookup " "-fvisibility=hidden -std=c++14 test.cpp -I include " "-I /System/Library/Frameworks/Python.framework/Headers -o test.so") n2 = dt.datetime.now() elapsed = (n2 - n1).total_seconds() size = os.stat('test.so').st_size print(" {%i, %f, %i}," % (nclasses * nfns, elapsed, size)) print ("}") pybind11-2.0.1/docs/benchmark.rst000066400000000000000000000062301303320175600165560ustar00rootroot00000000000000Benchmark ========= The following is the result of a synthetic benchmark comparing both compilation time and module size of pybind11 against Boost.Python. A detailed report about a Boost.Python to pybind11 conversion of a real project is available here: [#f1]_. .. [#f1] http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf Setup ----- A python script (see the ``docs/benchmark.py`` file) was used to generate a set of files with dummy classes whose count increases for each successive benchmark (between 1 and 2048 classes in powers of two). Each class has four methods with a randomly generated signature with a return value and four arguments. (There was no particular reason for this setup other than the desire to generate many unique function signatures whose count could be controlled in a simple way.) Here is an example of the binding code for one class: .. code-block:: cpp ... class cl034 { public: cl279 *fn_000(cl084 *, cl057 *, cl065 *, cl042 *); cl025 *fn_001(cl098 *, cl262 *, cl414 *, cl121 *); cl085 *fn_002(cl445 *, cl297 *, cl145 *, cl421 *); cl470 *fn_003(cl200 *, cl323 *, cl332 *, cl492 *); }; ... PYBIND11_PLUGIN(example) { py::module m("example"); ... py::class_(m, "cl034") .def("fn_000", &cl034::fn_000) .def("fn_001", &cl034::fn_001) .def("fn_002", &cl034::fn_002) .def("fn_003", &cl034::fn_003) ... return m.ptr(); } The Boost.Python version looks almost identical except that a return value policy had to be specified as an argument to ``def()``. For both libraries, compilation was done with .. code-block:: bash Apple LLVM version 7.0.2 (clang-700.1.81) and the following compilation flags .. code-block:: bash g++ -Os -shared -rdynamic -undefined dynamic_lookup -fvisibility=hidden -std=c++14 Compilation time ---------------- The following log-log plot shows how the compilation time grows for an increasing number of class and function declarations. pybind11 includes many fewer headers, which initially leads to shorter compilation times, but the performance is ultimately fairly similar (pybind11 is 19.8 seconds faster for the largest largest file with 2048 classes and a total of 8192 methods -- a modest **1.2x** speedup relative to Boost.Python, which required 116.35 seconds). .. only:: not latex .. image:: pybind11_vs_boost_python1.svg .. only:: latex .. image:: pybind11_vs_boost_python1.png Module size ----------- Differences between the two libraries become much more pronounced when considering the file size of the generated Python plugin: for the largest file, the binary generated by Boost.Python required 16.8 MiB, which was **2.17 times** / **9.1 megabytes** larger than the output generated by pybind11. For very small inputs, Boost.Python has an edge in the plot below -- however, note that it stores many definitions in an external library, whose size was not included here, hence the comparison is slightly shifted in Boost.Python's favor. .. only:: not latex .. image:: pybind11_vs_boost_python2.svg .. only:: latex .. image:: pybind11_vs_boost_python2.png pybind11-2.0.1/docs/changelog.rst000066400000000000000000000543371303320175600165660ustar00rootroot00000000000000.. _changelog: Changelog ######### Starting with version 1.8.0, pybind11 releases use a `semantic versioning `_ policy. v2.0.1 (Jan 4, 2017) ----------------------------------------------------- * Fix pointer to reference error in type_caster on MSVC `#583 `_. * Fixed a segmentation in the test suite due to a typo `cd7eac `_. v2.0.0 (Jan 1, 2017) ----------------------------------------------------- * Fixed a reference counting regression affecting types with custom metaclasses (introduced in v2.0.0-rc1). `#571 `_. * Quenched a CMake policy warning. `#570 `_. v2.0.0-rc1 (Dec 23, 2016) ----------------------------------------------------- The pybind11 developers are excited to issue a release candidate of pybind11 with a subsequent v2.0.0 release planned in early January next year. An incredible amount of effort by went into pybind11 over the last ~5 months, leading to a release that is jam-packed with exciting new features and numerous usability improvements. The following list links PRs or individual commits whenever applicable. Happy Christmas! * Support for binding C++ class hierarchies that make use of multiple inheritance. `#410 `_. * PyPy support: pybind11 now supports nightly builds of PyPy and will interoperate with the future 5.7 release. No code changes are necessary, everything "just" works as usual. Note that we only target the Python 2.7 branch for now; support for 3.x will be added once its ``cpyext`` extension support catches up. A few minor features remain unsupported for the time being (notably dynamic attributes in custom types). `#527 `_. * Significant work on the documentation -- in particular, the monolitic ``advanced.rst`` file was restructured into a easier to read hierarchical organization. `#448 `_. * Many NumPy-related improvements: 1. Object-oriented API to access and modify NumPy ``ndarray`` instances, replicating much of the corresponding NumPy C API functionality. `#402 `_. 2. NumPy array ``dtype`` array descriptors are now first-class citizens and are exposed via a new class ``py::dtype``. 3. Structured dtypes can be registered using the ``PYBIND11_NUMPY_DTYPE()`` macro. Special ``array`` constructors accepting dtype objects were also added. One potential caveat involving this change: format descriptor strings should now be accessed via ``format_descriptor::format()`` (however, for compatibility purposes, the old syntax ``format_descriptor::value`` will still work for non-structured data types). `#308 `_. 4. Further improvements to support structured dtypes throughout the system. `#472 `_, `#474 `_, `#459 `_, `#453 `_, `#452 `_, and `#505 `_. 5. Fast access operators. `#497 `_. 6. Constructors for arrays whose storage is owned by another object. `#440 `_. 7. Added constructors for ``array`` and ``array_t`` explicitly accepting shape and strides; if strides are not provided, they are deduced assuming C-contiguity. Also added simplified constructors for 1-dimensional case. 8. Added buffer/NumPy support for ``char[N]`` and ``std::array`` types. 9. Added ``memoryview`` wrapper type which is constructible from ``buffer_info``. * Eigen: many additional conversions and support for non-contiguous arrays/slices. `#427 `_, `#315 `_, `#316 `_, `#312 `_, and `#267 `_ * Incompatible changes in ``class_<...>::class_()``: 1. Declarations of types that provide access via the buffer protocol must now include the ``py::buffer_protocol()`` annotation as an argument to the ``class_`` constructor. 2. Declarations of types that require a custom metaclass (i.e. all classes which include static properties via commands such as ``def_readwrite_static()``) must now include the ``py::metaclass()`` annotation as an argument to the ``class_`` constructor. These two changes were necessary to make type definitions in pybind11 future-proof, and to support PyPy via its cpyext mechanism. `#527 `_. 3. This version of pybind11 uses a redesigned mechnism for instantiating trempoline classes that are used to override virtual methods from within Python. This led to the following user-visible syntax change: instead of .. code-block:: cpp py::class_("MyClass") .alias() .... write .. code-block:: cpp py::class_("MyClass") .... Importantly, both the original and the trampoline class are now specified as an arguments (in arbitrary order) to the ``py::class_`` template, and the ``alias<..>()`` call is gone. The new scheme has zero overhead in cases when Python doesn't override any functions of the underlying C++ class. `rev. 86d825 `_. * Added ``eval`` and ``eval_file`` functions for evaluating expressions and statements from a string or file. `rev. 0d3fc3 `_. * pybind11 can now create types with a modifiable dictionary. `#437 `_ and `#444 `_. * Support for translation of arbitrary C++ exceptions to Python counterparts. `#296 `_ and `#273 `_. * Report full backtraces through mixed C++/Python code, better reporting for import errors, fixed GIL management in exception processing. `#537 `_, `#494 `_, `rev. e72d95 `_, and `rev. 099d6e `_. * Support for bit-level operations, comparisons, and serialization of C++ enumerations. `#503 `_, `#508 `_, `#380 `_, `#309 `_. `#311 `_. * The ``class_`` constructor now accepts its template arguments in any order. `#385 `_. * Attribute and item accessors now have a more complete interface which makes it possible to chain attributes as in ``obj.attr("a")[key].attr("b").attr("method")(1, 2, 3)``. `#425 `_. * Major redesign of the default and conversion constructors in ``pytypes.h``. `#464 `_. * Added built-in support for ``std::shared_ptr`` holder type. It is no longer necessary to to include a declaration of the form ``PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr)`` (though continuing to do so won't cause an error). `#454 `_. * New ``py::overload_cast`` casting operator to select among multiple possible overloads of a function. An example: .. code-block:: cpp py::class_(m, "Pet") .def("set", py::overload_cast(&Pet::set), "Set the pet's age") .def("set", py::overload_cast(&Pet::set), "Set the pet's name"); This feature only works on C++14-capable compilers. `#541 `_. * C++ types are automatically cast to Python types, e.g. when assigning them as an attribute. For instance, the following is now legal: .. code-block:: cpp py::module m = /* ... */ m.attr("constant") = 123; (Previously, a ``py::cast`` call was necessary to avoid a compilation error.) `#551 `_. * Redesigned ``pytest``-based test suite. `#321 `_. * Instance tracking to detect reference leaks in test suite. `#324 `_ * pybind11 can now distinguish between multiple different instances that are located at the same memory address, but which have different types. `#329 `_. * Improved logic in ``move`` return value policy. `#510 `_, `#297 `_. * Generalized unpacking API to permit calling Python functions from C++ using notation such as ``foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)``. `#372 `_. * ``py::print()`` function whose behavior matches that of the native Python ``print()`` function. `#372 `_. * Added ``py::dict`` keyword constructor:``auto d = dict("number"_a=42, "name"_a="World");``. `#372 `_. * Added ``py::str::format()`` method and ``_s`` literal: ``py::str s = "1 + 2 = {}"_s.format(3);``. `#372 `_. * Added ``py::repr()`` function which is equivalent to Python's builtin ``repr()``. `#333 `_. * Improved construction and destruction logic for holder types. It is now possible to reference instances with smart pointer holder types without constructing the holder if desired. The ``PYBIND11_DECLARE_HOLDER_TYPE`` macro now accepts an optional second parameter to indicate whether the holder type uses intrusive reference counting. `#533 `_ and `#561 `_. * Mapping a stateless C++ function to Python and back is now "for free" (i.e. no extra indirections or argument conversion overheads). `rev. 954b79 `_. * Bindings for ``std::valarray``. `#545 `_. * Improved support for C++17 capable compilers. `#562 `_. * Bindings for ``std::optional``. `#475 `_, `#476 `_, `#479 `_, `#499 `_, and `#501 `_. * ``stl_bind.h``: general improvements and support for ``std::map`` and ``std::unordered_map``. `#490 `_, `#282 `_, `#235 `_. * The ``std::tuple``, ``std::pair``, ``std::list``, and ``std::vector`` type casters now accept any Python sequence type as input. `rev. 107285 `_. * Improved CMake Python detection on multi-architecture Linux. `#532 `_. * Infrastructure to selectively disable or enable parts of the automatically generated docstrings. `#486 `_. * ``reference`` and ``reference_internal`` are now the default return value properties for static and non-static properties, respectively. `#473 `_. (the previous defaults were ``automatic``). `#473 `_. * Support for ``std::unique_ptr`` with non-default deleters or no deleter at all (``py::nodelete``). `#384 `_. * Deprecated ``handle::call()`` method. The new syntax to call Python functions is simply ``handle()``. It can also be invoked explicitly via ``handle::operator()``, where ``X`` is an optional return value policy. * Print more informative error messages when ``make_tuple()`` or ``cast()`` fail. `#262 `_. * Creation of holder types for classes deriving from ``std::enable_shared_from_this<>`` now also works for ``const`` values. `#260 `_. * ``make_iterator()`` improvements for better compatibility with various types (now uses prefix increment operator); it now also accepts iterators with different begin/end types as long as they are equality comparable. `#247 `_. * ``arg()`` now accepts a wider range of argument types for default values. `#244 `_. * Support ``keep_alive`` where the nurse object may be ``None``. `#341 `_. * Added constructors for ``str`` and ``bytes`` from zero-terminated char pointers, and from char pointers and length. Added constructors for ``str`` from ``bytes`` and for ``bytes`` from ``str``, which will perform UTF-8 decoding/encoding as required. * Many other improvements of library internals without user-visible changes 1.8.1 (July 12, 2016) ---------------------- * Fixed a rare but potentially very severe issue when the garbage collector ran during pybind11 type creation. 1.8.0 (June 14, 2016) ---------------------- * Redesigned CMake build system which exports a convenient ``pybind11_add_module`` function to parent projects. * ``std::vector<>`` type bindings analogous to Boost.Python's ``indexing_suite`` * Transparent conversion of sparse and dense Eigen matrices and vectors (``eigen.h``) * Added an ``ExtraFlags`` template argument to the NumPy ``array_t<>`` wrapper to disable an enforced cast that may lose precision, e.g. to create overloads for different precisions and complex vs real-valued matrices. * Prevent implicit conversion of floating point values to integral types in function arguments * Fixed incorrect default return value policy for functions returning a shared pointer * Don't allow registering a type via ``class_`` twice * Don't allow casting a ``None`` value into a C++ lvalue reference * Fixed a crash in ``enum_::operator==`` that was triggered by the ``help()`` command * Improved detection of whether or not custom C++ types can be copy/move-constructed * Extended ``str`` type to also work with ``bytes`` instances * Added a ``"name"_a`` user defined string literal that is equivalent to ``py::arg("name")``. * When specifying function arguments via ``py::arg``, the test that verifies the number of arguments now runs at compile time. * Added ``[[noreturn]]`` attribute to ``pybind11_fail()`` to quench some compiler warnings * List function arguments in exception text when the dispatch code cannot find a matching overload * Added ``PYBIND11_OVERLOAD_NAME`` and ``PYBIND11_OVERLOAD_PURE_NAME`` macros which can be used to override virtual methods whose name differs in C++ and Python (e.g. ``__call__`` and ``operator()``) * Various minor ``iterator`` and ``make_iterator()`` improvements * Transparently support ``__bool__`` on Python 2.x and Python 3.x * Fixed issue with destructor of unpickled object not being called * Minor CMake build system improvements on Windows * New ``pybind11::args`` and ``pybind11::kwargs`` types to create functions which take an arbitrary number of arguments and keyword arguments * New syntax to call a Python function from C++ using ``*args`` and ``*kwargs`` * The functions ``def_property_*`` now correctly process docstring arguments (these formerly caused a segmentation fault) * Many ``mkdoc.py`` improvements (enumerations, template arguments, ``DOC()`` macro accepts more arguments) * Cygwin support * Documentation improvements (pickling support, ``keep_alive``, macro usage) 1.7 (April 30, 2016) ---------------------- * Added a new ``move`` return value policy that triggers C++11 move semantics. The automatic return value policy falls back to this case whenever a rvalue reference is encountered * Significantly more general GIL state routines that are used instead of Python's troublesome ``PyGILState_Ensure`` and ``PyGILState_Release`` API * Redesign of opaque types that drastically simplifies their usage * Extended ability to pass values of type ``[const] void *`` * ``keep_alive`` fix: don't fail when there is no patient * ``functional.h``: acquire the GIL before calling a Python function * Added Python RAII type wrappers ``none`` and ``iterable`` * Added ``*args`` and ``*kwargs`` pass-through parameters to ``pybind11.get_include()`` function * Iterator improvements and fixes * Documentation on return value policies and opaque types improved 1.6 (April 30, 2016) ---------------------- * Skipped due to upload to PyPI gone wrong and inability to recover (https://github.com/pypa/packaging-problems/issues/74) 1.5 (April 21, 2016) ---------------------- * For polymorphic types, use RTTI to try to return the closest type registered with pybind11 * Pickling support for serializing and unserializing C++ instances to a byte stream in Python * Added a convenience routine ``make_iterator()`` which turns a range indicated by a pair of C++ iterators into a iterable Python object * Added ``len()`` and a variadic ``make_tuple()`` function * Addressed a rare issue that could confuse the current virtual function dispatcher and another that could lead to crashes in multi-threaded applications * Added a ``get_include()`` function to the Python module that returns the path of the directory containing the installed pybind11 header files * Documentation improvements: import issues, symbol visibility, pickling, limitations * Added casting support for ``std::reference_wrapper<>`` 1.4 (April 7, 2016) -------------------------- * Transparent type conversion for ``std::wstring`` and ``wchar_t`` * Allow passing ``nullptr``-valued strings * Transparent passing of ``void *`` pointers using capsules * Transparent support for returning values wrapped in ``std::unique_ptr<>`` * Improved docstring generation for compatibility with Sphinx * Nicer debug error message when default parameter construction fails * Support for "opaque" types that bypass the transparent conversion layer for STL containers * Redesigned type casting interface to avoid ambiguities that could occasionally cause compiler errors * Redesigned property implementation; fixes crashes due to an unfortunate default return value policy * Anaconda package generation support 1.3 (March 8, 2016) -------------------------- * Added support for the Intel C++ compiler (v15+) * Added support for the STL unordered set/map data structures * Added support for the STL linked list data structure * NumPy-style broadcasting support in ``pybind11::vectorize`` * pybind11 now displays more verbose error messages when ``arg::operator=()`` fails * pybind11 internal data structures now live in a version-dependent namespace to avoid ABI issues * Many, many bugfixes involving corner cases and advanced usage 1.2 (February 7, 2016) -------------------------- * Optional: efficient generation of function signatures at compile time using C++14 * Switched to a simpler and more general way of dealing with function default arguments. Unused keyword arguments in function calls are now detected and cause errors as expected * New ``keep_alive`` call policy analogous to Boost.Python's ``with_custodian_and_ward`` * New ``pybind11::base<>`` attribute to indicate a subclass relationship * Improved interface for RAII type wrappers in ``pytypes.h`` * Use RAII type wrappers consistently within pybind11 itself. This fixes various potential refcount leaks when exceptions occur * Added new ``bytes`` RAII type wrapper (maps to ``string`` in Python 2.7) * Made handle and related RAII classes const correct, using them more consistently everywhere now * Got rid of the ugly ``__pybind11__`` attributes on the Python side---they are now stored in a C++ hash table that is not visible in Python * Fixed refcount leaks involving NumPy arrays and bound functions * Vastly improved handling of shared/smart pointers * Removed an unnecessary copy operation in ``pybind11::vectorize`` * Fixed naming clashes when both pybind11 and NumPy headers are included * Added conversions for additional exception types * Documentation improvements (using multiple extension modules, smart pointers, other minor clarifications) * unified infrastructure for parsing variadic arguments in ``class_`` and cpp_function * Fixed license text (was: ZLIB, should have been: 3-clause BSD) * Python 3.2 compatibility * Fixed remaining issues when accessing types in another plugin module * Added enum comparison and casting methods * Improved SFINAE-based detection of whether types are copy-constructible * Eliminated many warnings about unused variables and the use of ``offsetof()`` * Support for ``std::array<>`` conversions 1.1 (December 7, 2015) -------------------------- * Documentation improvements (GIL, wrapping functions, casting, fixed many typos) * Generalized conversion of integer types * Improved support for casting function objects * Improved support for ``std::shared_ptr<>`` conversions * Initial support for ``std::set<>`` conversions * Fixed type resolution issue for types defined in a separate plugin module * Cmake build system improvements * Factored out generic functionality to non-templated code (smaller code size) * Added a code size / compile time benchmark vs Boost.Python * Added an appveyor CI script 1.0 (October 15, 2015) ------------------------ * Initial release pybind11-2.0.1/docs/classes.rst000066400000000000000000000311601303320175600162610ustar00rootroot00000000000000.. _classes: Object-oriented code #################### Creating bindings for a custom type =================================== Let's now look at a more complex example where we'll create bindings for a custom C++ data structure named ``Pet``. Its definition is given below: .. code-block:: cpp struct Pet { Pet(const std::string &name) : name(name) { } void setName(const std::string &name_) { name = name_; } const std::string &getName() const { return name; } std::string name; }; The binding code for ``Pet`` looks as follows: .. code-block:: cpp #include namespace py = pybind11; PYBIND11_PLUGIN(example) { py::module m("example", "pybind11 example plugin"); py::class_(m, "Pet") .def(py::init()) .def("setName", &Pet::setName) .def("getName", &Pet::getName); return m.ptr(); } :class:`class_` creates bindings for a C++ `class` or `struct`-style data structure. :func:`init` is a convenience function that takes the types of a constructor's parameters as template arguments and wraps the corresponding constructor (see the :ref:`custom_constructors` section for details). An interactive Python session demonstrating this example is shown below: .. code-block:: pycon % python >>> import example >>> p = example.Pet('Molly') >>> print(p) >>> p.getName() u'Molly' >>> p.setName('Charly') >>> p.getName() u'Charly' .. seealso:: Static member functions can be bound in the same way using :func:`class_::def_static`. Keyword and default arguments ============================= It is possible to specify keyword and default arguments using the syntax discussed in the previous chapter. Refer to the sections :ref:`keyword_args` and :ref:`default_args` for details. Binding lambda functions ======================== Note how ``print(p)`` produced a rather useless summary of our data structure in the example above: .. code-block:: pycon >>> print(p) To address this, we could bind an utility function that returns a human-readable summary to the special method slot named ``__repr__``. Unfortunately, there is no suitable functionality in the ``Pet`` data structure, and it would be nice if we did not have to change it. This can easily be accomplished by binding a Lambda function instead: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def("setName", &Pet::setName) .def("getName", &Pet::getName) .def("__repr__", [](const Pet &a) { return ""; } ); Both stateless [#f1]_ and stateful lambda closures are supported by pybind11. With the above change, the same Python code now produces the following output: .. code-block:: pycon >>> print(p) .. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object. .. _properties: Instance and static fields ========================== We can also directly expose the ``name`` field using the :func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly` method also exists for ``const`` fields. .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_readwrite("name", &Pet::name) // ... remainder ... This makes it possible to write .. code-block:: pycon >>> p = example.Pet('Molly') >>> p.name u'Molly' >>> p.name = 'Charly' >>> p.name u'Charly' Now suppose that ``Pet::name`` was a private internal variable that can only be accessed via setters and getters. .. code-block:: cpp class Pet { public: Pet(const std::string &name) : name(name) { } void setName(const std::string &name_) { name = name_; } const std::string &getName() const { return name; } private: std::string name; }; In this case, the method :func:`class_::def_property` (:func:`class_::def_property_readonly` for read-only data) can be used to provide a field-like interface within Python that will transparently call the setter and getter functions: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_property("name", &Pet::getName, &Pet::setName) // ... remainder ... .. seealso:: Similar functions :func:`class_::def_readwrite_static`, :func:`class_::def_readonly_static` :func:`class_::def_property_static`, and :func:`class_::def_property_readonly_static` are provided for binding static variables and properties. Please also see the section on :ref:`static_properties` in the advanced part of the documentation. Dynamic attributes ================== Native Python classes can pick up new attributes dynamically: .. code-block:: pycon >>> class Pet: ... name = 'Molly' ... >>> p = Pet() >>> p.name = 'Charly' # overwrite existing >>> p.age = 2 # dynamically add a new attribute By default, classes exported from C++ do not support this and the only writable attributes are the ones explicitly defined using :func:`class_::def_readwrite` or :func:`class_::def_property`. .. code-block:: cpp py::class_(m, "Pet") .def(py::init<>()) .def_readwrite("name", &Pet::name); Trying to set any other attribute results in an error: .. code-block:: pycon >>> p = example.Pet() >>> p.name = 'Charly' # OK, attribute defined in C++ >>> p.age = 2 # fail AttributeError: 'Pet' object has no attribute 'age' To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag must be added to the :class:`py::class_` constructor: .. code-block:: cpp py::class_(m, "Pet", py::dynamic_attr()) .def(py::init<>()) .def_readwrite("name", &Pet::name); Now everything works as expected: .. code-block:: pycon >>> p = example.Pet() >>> p.name = 'Charly' # OK, overwrite value in C++ >>> p.age = 2 # OK, dynamically add a new attribute >>> p.__dict__ # just like a native Python class {'age': 2} Note that there is a small runtime cost for a class with dynamic attributes. Not only because of the addition of a ``__dict__``, but also because of more expensive garbage collection tracking which must be activated to resolve possible circular references. Native Python classes incur this same cost by default, so this is not anything to worry about. By default, pybind11 classes are more efficient than native Python classes. Enabling dynamic attributes just brings them on par. .. _inheritance: Inheritance =========== Suppose now that the example consists of two data structures with an inheritance relationship: .. code-block:: cpp struct Pet { Pet(const std::string &name) : name(name) { } std::string name; }; struct Dog : Pet { Dog(const std::string &name) : Pet(name) { } std::string bark() const { return "woof!"; } }; There are two different ways of indicating a hierarchical relationship to pybind11: the first specifies the C++ base class as an extra template parameter of the :class:`class_`: .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def_readwrite("name", &Pet::name); // Method 1: template parameter: py::class_(m, "Dog") .def(py::init()) .def("bark", &Dog::bark); Alternatively, we can also assign a name to the previously bound ``Pet`` :class:`class_` object and reference it when binding the ``Dog`` class: .. code-block:: cpp py::class_ pet(m, "Pet"); pet.def(py::init()) .def_readwrite("name", &Pet::name); // Method 2: pass parent class_ object: py::class_(m, "Dog", pet /* <- specify Python parent type */) .def(py::init()) .def("bark", &Dog::bark); Functionality-wise, both approaches are equivalent. Afterwards, instances will expose fields and methods of both types: .. code-block:: pycon >>> p = example.Dog('Molly') >>> p.name u'Molly' >>> p.bark() u'woof!' Overloaded methods ================== Sometimes there are several overloaded C++ methods with the same name taking different kinds of input arguments: .. code-block:: cpp struct Pet { Pet(const std::string &name, int age) : name(name), age(age) { } void set(int age) { age = age; } void set(const std::string &name) { name = name; } std::string name; int age; }; Attempting to bind ``Pet::set`` will cause an error since the compiler does not know which method the user intended to select. We can disambiguate by casting them to function pointers. Binding multiple functions to the same Python name automatically creates a chain of function overloads that will be tried in sequence. .. code-block:: cpp py::class_(m, "Pet") .def(py::init()) .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age") .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name"); The overload signatures are also visible in the method's docstring: .. code-block:: pycon >>> help(example.Pet) class Pet(__builtin__.object) | Methods defined here: | | __init__(...) | Signature : (Pet, str, int) -> NoneType | | set(...) | 1. Signature : (Pet, int) -> NoneType | | Set the pet's age | | 2. Signature : (Pet, str) -> NoneType | | Set the pet's name If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative syntax to cast the overloaded function: .. code-block:: cpp py::class_(m, "Pet") .def("set", py::overload_cast(&Pet::set), "Set the pet's age") .def("set", py::overload_cast(&Pet::set), "Set the pet's name"); Here, ``py::overload_cast`` only requires the parameter types to be specified. The return type and class are deduced. This avoids the additional noise of ``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based on constness, the ``py::const_`` tag should be used: .. code-block:: cpp struct Widget { int foo(int x, float y); int foo(int x, float y) const; }; py::class_(m, "Widget") .def("foo_mutable", py::overload_cast(&Widget::foo)) .def("foo_const", py::overload_cast(&Widget::foo, py::const_)); .. [#cpp14] A compiler which supports the ``-std=c++14`` flag or Visual Studio 2015 Update 2 and newer. .. note:: To define multiple overloaded constructors, simply declare one after the other using the ``.def(py::init<...>())`` syntax. The existing machinery for specifying keyword and default arguments also works. Enumerations and internal types =============================== Let's now suppose that the example class contains an internal enumeration type, e.g.: .. code-block:: cpp struct Pet { enum Kind { Dog = 0, Cat }; Pet(const std::string &name, Kind type) : name(name), type(type) { } std::string name; Kind type; }; The binding code for this example looks as follows: .. code-block:: cpp py::class_ pet(m, "Pet"); pet.def(py::init()) .def_readwrite("name", &Pet::name) .def_readwrite("type", &Pet::type); py::enum_(pet, "Kind") .value("Dog", Pet::Kind::Dog) .value("Cat", Pet::Kind::Cat) .export_values(); To ensure that the ``Kind`` type is created within the scope of ``Pet``, the ``pet`` :class:`class_` instance must be supplied to the :class:`enum_`. constructor. The :func:`enum_::export_values` function exports the enum entries into the parent scope, which should be skipped for newer C++11-style strongly typed enums. .. code-block:: pycon >>> p = Pet('Lucy', Pet.Cat) >>> p.type Kind.Cat >>> int(p.type) 1L .. note:: When the special tag ``py::arithmetic()`` is specified to the ``enum_`` constructor, pybind11 creates an enumeration that also supports rudimentary arithmetic and bit-level operations like comparisons, and, or, xor, negation, etc. .. code-block:: cpp py::enum_(pet, "Kind", py::arithmetic()) ... By default, these are omitted to conserve space. pybind11-2.0.1/docs/compiling.rst000066400000000000000000000171151303320175600166110ustar00rootroot00000000000000Build systems ############# Building with setuptools ======================== For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay has kindly provided an example project which shows how to set up everything, including automatic generation of documentation using Sphinx. Please refer to the [python_example]_ repository. .. [python_example] https://github.com/pybind/python_example Building with cppimport ======================== cppimport is a small Python import hook that determines whether there is a C++ source file whose name matches the requested module. If there is, the file is compiled as a Python extension using pybind11 and placed in the same folder as the C++ source file. Python is then able to find the module and load it. .. [cppimport] https://github.com/tbenthompson/cppimport .. _cmake: Building with CMake =================== For C++ codebases that have an existing CMake-based build system, a Python extension module can be created with just a few lines of code: .. code-block:: cmake cmake_minimum_required(VERSION 2.8.12) project(example) add_subdirectory(pybind11) pybind11_add_module(example example.cpp) This assumes that the pybind11 repository is located in a subdirectory named :file:`pybind11` and that the code is located in a file named :file:`example.cpp`. The CMake command ``add_subdirectory`` will import the pybind11 project which provides the ``pybind11_add_module`` function. It will take care of all the details needed to build a Python extension module on any platform. A working sample project, including a way to invoke CMake from :file:`setup.py` for PyPI integration, can be found in the [cmake_example]_ repository. .. [cmake_example] https://github.com/pybind/cmake_example pybind11_add_module ------------------- To ease the creation of Python extension modules, pybind11 provides a CMake function with the following signature: .. code-block:: cmake pybind11_add_module( [MODULE | SHARED] [EXCLUDE_FROM_ALL] [NO_EXTRAS] [THIN_LTO] source1 [source2 ...]) This function behaves very much like CMake's builtin ``add_library`` (in fact, it's a wrapper function around that command). It will add a library target called ```` to be built from the listed source files. In addition, it will take care of all the Python-specific compiler and linker flags as well as the OS- and Python-version-specific file extension. The produced target ```` can be further manipulated with regular CMake commands. ``MODULE`` or ``SHARED`` may be given to specify the type of library. If no type is given, ``MODULE`` is used by default which ensures the creation of a Python-exclusive module. Specifying ``SHARED`` will create a more traditional dynamic library which can also be linked from elsewhere. ``EXCLUDE_FROM_ALL`` removes this target from the default build (see CMake docs for details). Since pybind11 is a template library, ``pybind11_add_module`` adds compiler flags to ensure high quality code generation without bloat arising from long symbol names and duplication of code in different translation units. The additional flags enable LTO (Link Time Optimization), set default visibility to *hidden* and strip unneeded symbols. See the :ref:`FAQ entry ` for a more detailed explanation. These optimizations are never applied in ``Debug`` mode. If ``NO_EXTRAS`` is given, they will always be disabled, even in ``Release`` mode. However, this will result in code bloat and is generally not recommended. As stated above, LTO is enabled by default. Some newer compilers also support different flavors of LTO such as `ThinLTO`_. Setting ``THIN_LTO`` will cause the function to prefer this flavor if available. The function falls back to regular LTO if ``-flto=thin`` is not available. .. _ThinLTO: http://clang.llvm.org/docs/ThinLTO.html Configuration variables ----------------------- By default, pybind11 will compile modules with the latest C++ standard available on the target compiler. To override this, the standard flag can be given explicitly in ``PYBIND11_CPP_STANDARD``: .. code-block:: cmake set(PYBIND11_CPP_STANDARD -std=c++11) add_subdirectory(pybind11) # or find_package(pybind11) Note that this and all other configuration variables must be set **before** the call to ``add_subdiretory`` or ``find_package``. The variables can also be set when calling CMake from the command line using the ``-D=`` flag. The target Python version can be selected by setting ``PYBIND11_PYTHON_VERSION`` or an exact Python installation can be specified with ``PYTHON_EXECUTABLE``. For example: .. code-block:: bash cmake -DPYBIND11_PYTHON_VERSION=3.6 .. # or cmake -DPYTHON_EXECUTABLE=path/to/python .. find_package vs. add_subdirectory --------------------------------- For CMake-based projects that don't include the pybind11 repository internally, an external installation can be detected through ``find_package(pybind11)``. See the `Config file`_ docstring for details of relevant CMake variables. .. code-block:: cmake cmake_minimum_required(VERSION 2.8.12) project(example) find_package(pybind11 REQUIRED) pybind11_add_module(example example.cpp) Once detected, the aforementioned ``pybind11_add_module`` can be employed as before. The function usage and configuration variables are identical no matter if pybind11 is added as a subdirectory or found as an installed package. You can refer to the same [cmake_example]_ repository for a full sample project -- just swap out ``add_subdirectory`` for ``find_package``. .. _Config file: https://github.com/pybind/pybind11/blob/master/tools/pybind11Config.cmake.in Advanced: interface library target ---------------------------------- When using a version of CMake greater than 3.0, pybind11 can additionally be used as a special *interface library* . The target ``pybind11::module`` is available with pybind11 headers, Python headers and libraries as needed, and C++ compile definitions attached. This target is suitable for linking to an independently constructed (through ``add_library``, not ``pybind11_add_module``) target in the consuming project. .. code-block:: cmake cmake_minimum_required(VERSION 3.0) project(example) find_package(pybind11 REQUIRED) # or add_subdirectory(pybind11) add_library(example MODULE main.cpp) target_link_libraries(example PRIVATE pybind11::module) set_target_properties(example PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}" SUFFIX "${PYTHON_MODULE_EXTENSION}") .. warning:: Since pybind11 is a metatemplate library, it is crucial that certain compiler flags are provided to ensure high quality code generation. In contrast to the ``pybind11_add_module()`` command, the CMake interface library only provides the *minimal* set of parameters to ensure that the code using pybind11 compiles, but it does **not** pass these extra compiler flags (i.e. this is up to you). These include Link Time Optimization (``-flto`` on GCC/Clang/ICPC, ``/GL`` and ``/LTCG`` on Visual Studio). Default-hidden symbols on GCC/Clang/ICPC (``-fvisibility=hidden``) and .OBJ files with many sections on Visual Studio (``/bigobj``). The :ref:`FAQ ` contains an explanation on why these are needed. Generating binding code automatically ===================================== The ``Binder`` project is a tool for automatic generation of pybind11 binding code by introspecting existing C++ codebases using LLVM/Clang. See the [binder]_ documentation for details. .. [binder] http://cppbinder.readthedocs.io/en/latest/about.html pybind11-2.0.1/docs/conf.py000066400000000000000000000232541303320175600153760ustar00rootroot00000000000000#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # pybind11 documentation build configuration file, created by # sphinx-quickstart on Sun Oct 11 19:23:48 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['.templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pybind11' copyright = '2016, Wenzel Jakob' author = 'Wenzel Jakob' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '2.0' # The full version, including alpha/beta/rc tags. release = '2.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['.build', 'release.rst'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. #pygments_style = 'monokai' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_context = { 'css_files': [ '_static/theme_overrides.css' ] } else: html_context = { 'css_files': [ '//media.readthedocs.org/css/sphinx_rtd_theme.css', '//media.readthedocs.org/css/readthedocs-doc-embed.css', '_static/theme_overrides.css' ] } # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pybind11doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. 'preamble': '\DeclareUnicodeCharacter{00A0}{}', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pybind11.tex', 'pybind11 Documentation', 'Wenzel Jakob', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = 'pybind11-logo.png' # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pybind11', 'pybind11 Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pybind11', 'pybind11 Documentation', author, 'pybind11', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False primary_domain = 'cpp' highlight_language = 'cpp' pybind11-2.0.1/docs/faq.rst000066400000000000000000000243431303320175600154000ustar00rootroot00000000000000Frequently asked questions ########################## "ImportError: dynamic module does not define init function" =========================================================== 1. Make sure that the name specified in ``pybind::module`` and ``PYBIND11_PLUGIN`` is consistent and identical to the filename of the extension library. The latter should not contain any extra prefixes (e.g. ``test.so`` instead of ``libtest.so``). 2. If the above did not fix your issue, then you are likely using an incompatible version of Python (for instance, the extension library was compiled against Python 2, while the interpreter is running on top of some version of Python 3, or vice versa) "Symbol not found: ``__Py_ZeroStruct`` / ``_PyInstanceMethod_Type``" ======================================================================== See item 2 of the first answer. "SystemError: dynamic module not initialized properly" ====================================================== See item 2 of the first answer. The Python interpreter immediately crashes when importing my module =================================================================== See item 2 of the first answer. CMake doesn't detect the right Python version ============================================= The CMake-based build system will try to automatically detect the installed version of Python and link against that. When this fails, or when there are multiple versions of Python and it finds the wrong one, delete ``CMakeCache.txt`` and then invoke CMake as follows: .. code-block:: bash cmake -DPYTHON_EXECUTABLE:FILEPATH= . Limitations involving reference arguments ========================================= In C++, it's fairly common to pass arguments using mutable references or mutable pointers, which allows both read and write access to the value supplied by the caller. This is sometimes done for efficiency reasons, or to realize functions that have multiple return values. Here are two very basic examples: .. code-block:: cpp void increment(int &i) { i++; } void increment_ptr(int *i) { (*i)++; } In Python, all arguments are passed by reference, so there is no general issue in binding such code from Python. However, certain basic Python types (like ``str``, ``int``, ``bool``, ``float``, etc.) are **immutable**. This means that the following attempt to port the function to Python doesn't have the same effect on the value provided by the caller -- in fact, it does nothing at all. .. code-block:: python def increment(i): i += 1 # nope.. pybind11 is also affected by such language-level conventions, which means that binding ``increment`` or ``increment_ptr`` will also create Python functions that don't modify their arguments. Although inconvenient, one workaround is to encapsulate the immutable types in a custom type that does allow modifications. An other alternative involves binding a small wrapper lambda function that returns a tuple with all output arguments (see the remainder of the documentation for examples on binding lambda functions). An example: .. code-block:: cpp int foo(int &i) { i++; return 123; } and the binding code .. code-block:: cpp m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); }); How can I reduce the build time? ================================ It's good practice to split binding code over multiple files, as in the following example: :file:`example.cpp`: .. code-block:: cpp void init_ex1(py::module &); void init_ex2(py::module &); /* ... */ PYBIND11_PLUGIN(example) { py::module m("example", "pybind example plugin"); init_ex1(m); init_ex2(m); /* ... */ return m.ptr(); } :file:`ex1.cpp`: .. code-block:: cpp void init_ex1(py::module &m) { m.def("add", [](int a, int b) { return a + b; }); } :file:`ex2.cpp`: .. code-block:: cpp void init_ex1(py::module &m) { m.def("sub", [](int a, int b) { return a - b; }); } :command:`python`: .. code-block:: pycon >>> import example >>> example.add(1, 2) 3 >>> example.sub(1, 1) 0 As shown above, the various ``init_ex`` functions should be contained in separate files that can be compiled independently from one another, and then linked together into the same final shared object. Following this approach will: 1. reduce memory requirements per compilation unit. 2. enable parallel builds (if desired). 3. allow for faster incremental builds. For instance, when a single class definition is changed, only a subset of the binding code will generally need to be recompiled. "recursive template instantiation exceeded maximum depth of 256" ================================================================ If you receive an error about excessive recursive template evaluation, try specifying a larger value, e.g. ``-ftemplate-depth=1024`` on GCC/Clang. The culprit is generally the generation of function signatures at compile time using C++14 template metaprogramming. .. _`faq:symhidden`: How can I create smaller binaries? ================================== To do its job, pybind11 extensively relies on a programming technique known as *template metaprogramming*, which is a way of performing computation at compile time using type information. Template metaprogamming usually instantiates code involving significant numbers of deeply nested types that are either completely removed or reduced to just a few instructions during the compiler's optimization phase. However, due to the nested nature of these types, the resulting symbol names in the compiled extension library can be extremely long. For instance, the included test suite contains the following symbol: .. only:: html .. code-block:: none _​_​Z​N​8​p​y​b​i​n​d​1​1​1​2​c​p​p​_​f​u​n​c​t​i​o​n​C​1​I​v​8​E​x​a​m​p​l​e​2​J​R​N​S​t​3​_​_​1​6​v​e​c​t​o​r​I​N​S​3​_​1​2​b​a​s​i​c​_​s​t​r​i​n​g​I​w​N​S​3​_​1​1​c​h​a​r​_​t​r​a​i​t​s​I​w​E​E​N​S​3​_​9​a​l​l​o​c​a​t​o​r​I​w​E​E​E​E​N​S​8​_​I​S​A​_​E​E​E​E​E​J​N​S​_​4​n​a​m​e​E​N​S​_​7​s​i​b​l​i​n​g​E​N​S​_​9​i​s​_​m​e​t​h​o​d​E​A​2​8​_​c​E​E​E​M​T​0​_​F​T​_​D​p​T​1​_​E​D​p​R​K​T​2​_ .. only:: not html .. code-block:: cpp __ZN8pybind1112cpp_functionC1Iv8Example2JRNSt3__16vectorINS3_12basic_stringIwNS3_11char_traitsIwEENS3_9allocatorIwEEEENS8_ISA_EEEEEJNS_4nameENS_7siblingENS_9is_methodEA28_cEEEMT0_FT_DpT1_EDpRKT2_ which is the mangled form of the following function type: .. code-block:: cpp pybind11::cpp_function::cpp_function, std::__1::allocator >, std::__1::allocator, std::__1::allocator > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector, std::__1::allocator >, std::__1::allocator, std::__1::allocator > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28]) The memory needed to store just the mangled name of this function (196 bytes) is larger than the actual piece of code (111 bytes) it represents! On the other hand, it's silly to even give this function a name -- after all, it's just a tiny cog in a bigger piece of machinery that is not exposed to the outside world. So we'll generally only want to export symbols for those functions which are actually called from the outside. This can be achieved by specifying the parameter ``-fvisibility=hidden`` to GCC and Clang, which sets the default symbol visibility to *hidden*. It's best to do this only for release builds, since the symbol names can be helpful in debugging sessions. On Visual Studio, symbols are already hidden by default, so nothing needs to be done there. Needless to say, this has a tremendous impact on the final binary size of the resulting extension library. Another aspect that can require a fair bit of code are function signature descriptions. pybind11 automatically generates human-readable function signatures for docstrings, e.g.: .. code-block:: none | __init__(...) | __init__(*args, **kwargs) | Overloaded function. | | 1. __init__(example.Example1) -> NoneType | | Docstring for overload #1 goes here | | 2. __init__(example.Example1, int) -> NoneType | | Docstring for overload #2 goes here | | 3. __init__(example.Example1, example.Example1) -> NoneType | | Docstring for overload #3 goes here In C++11 mode, these are generated at run time using string concatenation, which can amount to 10-20% of the size of the resulting binary. If you can, enable C++14 language features (using ``-std=c++14`` for GCC/Clang), in which case signatures are efficiently pre-generated at compile time. Unfortunately, Visual Studio's C++14 support (``constexpr``) is not good enough as of April 2016, so it always uses the more expensive run-time approach. Working with ancient Visual Studio 2009 builds on Windows ========================================================= The official Windows distributions of Python are compiled using truly ancient versions of Visual Studio that lack good C++11 support. Some users implicitly assume that it would be impossible to load a plugin built with Visual Studio 2015 into a Python distribution that was compiled using Visual Studio 2009. However, no such issue exists: it's perfectly legitimate to interface DLLs that are built with different compilers and/or C libraries. Common gotchas to watch out for involve not ``free()``-ing memory region that that were ``malloc()``-ed in another shared library, using data structures with incompatible ABIs, and so on. pybind11 is very careful not to make these types of mistakes. pybind11-2.0.1/docs/index.rst000066400000000000000000000012371303320175600157350ustar00rootroot00000000000000.. only: not latex .. image:: pybind11-logo.png pybind11 --- Seamless operability between C++11 and Python ========================================================== .. only: not latex Contents: .. toctree:: :maxdepth: 1 intro changelog .. toctree:: :caption: The Basics :maxdepth: 2 basics classes compiling .. toctree:: :caption: Advanced Topics :maxdepth: 2 advanced/functions advanced/classes advanced/exceptions advanced/smart_ptrs advanced/cast/index advanced/pycpp/index advanced/misc .. toctree:: :caption: Extra Information :maxdepth: 1 faq benchmark limitations reference pybind11-2.0.1/docs/intro.rst000066400000000000000000000102231303320175600157540ustar00rootroot00000000000000.. image:: pybind11-logo.png About this project ================== **pybind11** is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent `Boost.Python`_ library by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection. .. _Boost.Python: http://www.boost.org/doc/libs/release/libs/python/doc/index.html The main issue with Boost.Python—and the reason for creating such a similar project—is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency. Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn't relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This compact implementation was possible thanks to some of the new C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations. Core features ************* The following core C++ features can be mapped to Python - Functions accepting and returning custom data structures per value, reference, or pointer - Instance methods and static methods - Overloaded functions - Instance attributes and static attributes - Arbitrary exception types - Enumerations - Callbacks - Iterators and ranges - Custom operators - Single and multiple inheritance - STL data structures - Iterators and ranges - Smart pointers with reference counting like ``std::shared_ptr`` - Internal references with correct reference counting - C++ classes with virtual (and pure virtual) methods can be extended in Python Goodies ******* In addition to the core functionality, pybind11 provides some extra goodies: - Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an implementation-agnostic interface. - It is possible to bind C++11 lambda functions with captured variables. The lambda capture data is stored inside the resulting Python function object. - pybind11 uses C++11 move constructors and move assignment operators whenever possible to efficiently transfer custom data types. - It's easy to expose the internal storage of custom data types through Pythons' buffer protocols. This is handy e.g. for fast conversion between C++ matrix classes like Eigen and NumPy without expensive copy operations. - pybind11 can automatically vectorize functions so that they are transparently applied to all entries of one or more NumPy array arguments. - Python's slice-based access and assignment operations can be supported with just a few lines of code. - Everything is contained in just a few header files; there is no need to link against any additional libraries. - Binaries are generally smaller by a factor of at least 2 compared to equivalent bindings generated by Boost.Python. A recent pybind11 conversion of `PyRosetta`_, an enormous Boost.Python binding project, reported a binary size reduction of **5.4x** and compile time reduction by **5.8x**. - When supported by the compiler, two new C++14 features (relaxed constexpr and return value deduction) are used to precompute function signatures at compile time, leading to smaller binaries. - With little extra effort, C++ types can be pickled and unpickled similar to regular Python objects. .. _PyRosetta: http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf Supported compilers ******************* 1. Clang/LLVM (any non-ancient version with C++11 support) 2. GCC 4.8 or newer 3. Microsoft Visual Studio 2015 or newer 4. Intel C++ compiler v15 or newer pybind11-2.0.1/docs/limitations.rst000066400000000000000000000015571303320175600171670ustar00rootroot00000000000000Limitations ########### pybind11 strives to be a general solution to binding generation, but it also has certain limitations: - pybind11 casts away ``const``-ness in function arguments and return values. This is in line with the Python language, which has no concept of ``const`` values. This means that some additional care is needed to avoid bugs that would be caught by the type checker in a traditional C++ program. - The NumPy interface ``pybind11::array`` greatly simplifies accessing numerical data from C++ (and vice versa), but it's not a full-blown array class like ``Eigen::Array`` or ``boost.multi_array``. These features could be implemented but would lead to a significant increase in complexity. I've decided to draw the line here to keep this project simple and compact. Users who absolutely require these features are encouraged to fork pybind11. pybind11-2.0.1/docs/pybind11-logo.png000066400000000000000000001622161303320175600171740ustar00rootroot00000000000000PNG  IHDRkPT pHYs   OiCCPPhotoshop ICC profilexڝSgTS=BKKoR RB&*! J!QEEȠQ, !{kּ> H3Q5 B.@ $pd!s#~<<+"x M0B\t8K@zB@F&S`cbP-`'{[! eDh;VEX0fK9-0IWfH  0Q){`##xFW<+*x<$9E[-qWW.(I+6aa@.y24x6_-"bbϫp@t~,/;m%h^ uf@Wp~<5j>{-]cK'Xto(hw?G%fIq^D$.Tʳ?D*A, `6B$BB dr`)B(Ͱ*`/@4Qhp.U=pa( Aa!ڈbX#!H$ ɈQ"K5H1RT UH=r9\F;2G1Q= C7F dt1r=6Ыhڏ>C03l0.B8, c˱" VcϱwE 6wB aAHXLXNH $4 7 Q'"K&b21XH,#/{C7$C2'ITFnR#,4H#dk9, +ȅ3![ b@qS(RjJ4e2AURݨT5ZBRQ4u9̓IKhhitݕNWGw Ljg(gwLӋT071oUX**| J&*/Tު UUT^S}FU3S ԖUPSSg;goT?~YYLOCQ_ cx,!k u5&|v*=9C3J3WRf?qtN (~))4L1e\kXHQG6EYAJ'\'GgSSݧ M=:.kDwn^Loy}/TmG X $ <5qo</QC]@Caaᄑ.ȽJtq]zۯ6iܟ4)Y3sCQ? 0k߬~OCOg#/c/Wװwa>>r><72Y_7ȷOo_C#dz%gA[z|!?:eAAA!h쐭!ΑiP~aa~ 'W?pX15wCsDDDޛg1O9-J5*>.j<74?.fYXXIlK9.*6nl {/]py.,:@LN8A*%w% yg"/6шC\*NH*Mz쑼5y$3,幄'L Lݛ:v m2=:1qB!Mggfvˬen/kY- BTZ(*geWf͉9+̳ې7ᒶKW-X潬j9(xoʿܔĹdff-[n ڴ VE/(ۻCɾUUMfeI?m]Nmq#׹=TR+Gw- 6 U#pDy  :v{vg/jBFS[b[O>zG499?rCd&ˮ/~јѡ򗓿m|x31^VwwO| (hSЧc3- cHRMz%u0`:o_FٹIDATxy|y}0XIńeٲĎEt&i҈N1mi5|>KIzSm4mSq؉mmɋ,P mKHjw0 C@r0o>nm7{UUAAAAA8    9XCAAA H!   p$AAAA8k    5AAAA    Ab AAAA    AXCAAA H!   p$AAAA8k    5AAAA    Ab AAAA    AXCAAA H!   p$AAAA8k    5AAAA    Ab AAAA    AXCAAA H!   p$AAAA8k    5AAAA    Ab AAAA    AAA,7 ôhdv/SU8AAUwRUZ  d0L@+}74ѦZ  GXCAĒn.@;mKzI-KADH! b6 덍BBB"8""s.ƨ =5AA,zC0d{`۶mhkkCKKK+v~k@jq  *zoEb AALjёAS(X mmmؽ{[ AA" jfhT "رfutt CCC/`Ck\/k f*r\Eaj|I-}" YUUR/L[{  jVצ2v~zYhnnF$ߟuxD e)勓PC OM@QAhn^gWWizT;vuy&] @ A@(󠱱`pY_,O' .'hP_MEҞyԄ{rs3|I||i;0!Mr^;ږ-s0C865Qj~n 69'_Ѭ=&m8+ aZa*K1M۶eUWXkt$ 5A\ gh<رc-cJ86?f.#X,Vc9 nH!4;H,2 ǓE4P(dͮi!b 1.MMMbxs*$  _vD̅+̃m۶2bhB]C<(M2& *N2:::|` ̅ p$AT.d.L,̃vۍ5f@K2&ԐXCQ\S\tBϮB[[/Y5a P QjH!LpBU8ݻwVсz'( vq2R k *|Y{;X `w7Mttt,8dt Qj~ ̐XCQN!V̆{el:;; OhdOD! 2\6Չ^M8 6E裏Z~2AR`\,Ũ| (05Ջ.`lx 477[ED"B!</PCr< sa 5AGN;H#ƍ7ވVk܂D"{EWW[ !h絓ʇ X 0vd.L؅QaBЎޙ]k.466Yc3 !z,w+ JvF Bb ADo8 a'#&I# H&biIb A AePA %EUՈ!twp!jXN@d.Ls p6g0Qj$5tZ\\?*w"Fk' H! 碰D +ҩ#k'$ATDˆ! ve5bFt&< *f^Qf ADe\,3\  ¸v&Go[вiֆTUXвi;E+) 6EAA];̅@EM|{YvrPSQ$AT؆Cd.LAеkgՉ ,Ud&Bb> u;* 6WCAyQJshB[_9j2k *R G 2 >Cǥ0&Qa68τ*%+18_=)eAE9D´! Y sj(v m.\xvYFo$AІ`*HAеs6sa=6@3O뚏A 6%2QAt휛X,V5nB%T֝V8yYCQAN2& s(ڪ v;eA?d.LAc;̅JaZP>&UnGۓXCQWd.LAyb\;KWSq e1[?ʯiʠ hYd.LAеBor7:* ȯL5CxeATȆ sa ];+BMh# n0j*f^Yb)'}3K<{4N;ZN' 2.~@yVU?G<^a+R}Eb Qb3BjT=腦F3TURkĂ\(AQXd.\D5C;F ~Z6>WUն%X[e,nm34@g9!m%z-U>: dĨ }){Hkg{q>4i>V͘ˡyX(ef1f\~nd7c 1o%~(kؔJ, MK=9VUd~e!1`<2es 8D"$D <r;rnL\Ru( '|5ݞf_HR?_^3{1]|D؍eVccci[垑4}ln@ Hv -d #qGÚW֛g~μir5< A˳9,ˀe/8?) NTFs6_)^Fa@ ;"{; c C3Y{ˑR+cWtFTUS^ׄRmjS:QU5D4alz,gFՉ(*^*y܁1sU#5غ6Ʊne BMMmY$rknҗajjXO㖛o?}$.(py<ςHñ cW{NQ 'oM0.mN䩪cL!\^;L˨ʐ%CXp,į:C1gj{uŜ?{0+xk˛Hg/LL5FwV}MMM@ Yca|ǭ1oB;TU'Ysf%x/EY=%>/@1䲹yGch͞ݭNv%f@:&ଲx cSyèːfkld6!q +mk, x!J d:o-wTsa}AhiiA(BKK˒@ P(DىNknׯ={,h1󰩩 b{oQSS9۶| BK.f{|F@ggi.Ϲ>ۗmLdUd^s'i/ d.s\MhsQ1~'~Z5IJ[,]rk0 8VEPDz9O9VIpu+pu9sS)G裟Dʕx\.Hlpp7ٞ=OQPceZ"xLMAEa6nvW齌|nAljՏ*~&n]gLK |ǚQ/6]UU}l Oc2%@XD᥷?ȲE[7* |AGkk+Z[[m{f:;;сݻw ۠EPX@` ae 褠Oi¹6~ߘK-phooG{{;":::k.4;J6&N(B{{;(ۭ㦛tb, ϊ(/èmy%Aby4Uu  $pXy96M][W)h(| z=p!SC8xwGDa1Os1:1яw޿G//O3 RUac!6Ӧc7OÄ.<&H$(Y'RWqXEAf^Y50L +Mh&HLwbtbI$TU$pE< I 0n݉Qk̅B,w嚚ֆVLL@ގglaݏ5)mmkB>x{.fhmm-i0>_pGsѾ`p---4сxd  K>H<\f\$|'@:cӝk0L]Cٶmكh4(L0D{{;bv@$U!֔)9+b&Ycǎ8y$:;;%Ԙ ÈbرcGҹ`M߃d5jf}bhmmuP3xY X\x؈TPS~s2VB#5eP2Sj 0 SZrQ߱!?ĉ W}<)\e+j>PW X˙U!;V!VV`j \pkp|pfG&qU~$r8H1.#c8qS) KKgIdjr2[EЬgYi,K"7CkbNn,# Pd.Ù1)CL/qǶ Wo7{xDl{T@{{;8m۲L0݁-d5V3k2Ν;aRŎ8pMMM@bc4wO$755aϞ=e>[E'OZ76\8-2A w; A-?MssrJ G˨`8+̈Y[gD=\ t&''¡#CqiF<ǁyIry=xzp+ $Y ZI<ŊkpdX.޷o` +2X$ "s% ' ʒj\?*70 ʜ5f&,Z͜/UY<ز>Q̜@2j,x +I(Yvo L/u)̅ssܹpwiU(Dގo~FSC+ ijY/{dXerJNԲtrg|hoo/fFOXb N,e QG{{c ! t86F=0Lmj.t CDo UE5Y|nZf ̮da:}Bo=6] '>OL%(.|A:ԯE]]57dY=r:R*ԴVԵR!q Q*a!XPҪ;2H3%5ܒAfJ"s7cϹjS)|gdxJ?\2tESCsT6fjgPc ߟo|A-/:޶2B"ڴgagggY 5f0cOV\,rC+3lFS%ֆH$Ƭpck[*< 9T]hsaklUc5&ZJYJkjj9NZf~xǗ>> .&NJh55}x=eY/Ok ,HG4>;D9^UU,Qn4T8$ش[ y  6]]}kP\.(c9Kj|>/:\.. I 8[У&[6] UtS<3K0'D,!4mCz+`EB5ͷc͑U346D%%ͼY̔eĿ<|k &ql<86e\oj~ij }!*Es5;y,ll:߈ň;v VL)"F vc%@=jȲo@rk2wh6> H)3 66}lP_xnx \.(yŖ͛6bU8~MShIឣH h;E4p8<.AqfĚމ$rYפFJeJqA l0ք%8ܒY\MߤmͪILp{DH8]~$ =C155iS>sŶ\f:b_d.Q0kfJΦ)`.Wg$>ʍ\444v:a j_[TUm1!(z22 56o jӆUUV'9)e BeLwy+^6R$iu)N.n<IE2mpƬRmsTu~]}%7.欚S 4ymD'e2e2yo ya6cs&ԘNѩکy"sr~X|̅lΪ Ae.v8{BO?ރg~v5W3'=E1o.w1&*\&S1Y5#y5CWᱯ>V\~rAj|H&PմQxp1L&SCmyӀke+"I`JVw7Z é5א" H~E{!9[$lĉfͪE;2WGq0"\vK!ǥs?PX{3 $9ͅV ٙ41  /\evT;<QY;}AjymZĚ3{o2o{𵟂&DQT$ذj. #I;73ggNoز_y5ry2[cN"J9[1[ӣnL?ɂxp?FǧZ`-iGY"gpdʀe<XU…uސ-+t-A]yYƎ"p<.AS"Q(~, MKIJ]@(R00߹sKWP9T)Xڈ`s7ig v 5h}$CKKu.պ$QbՄ)RqZ7S~oT<-? 5NLim/|M\8&@*.7]v+z=G[> A0::< #$CE<#Xfk+(𸕙'YbNr[konEjf&k/<ρ4>݋g EJNc#xB |S)I 5.\okH0.X's,Y'+ \@:=ox*l3~Ǻnj44:SY" %w4,8lcu!Sٶm[Uc"pהey"s7v رJ档7x1iP0 hOBt{{;}Q4vڜq6 G6M)P~'vmOVށĚʠy1,\S!"Aq!v~cl|$ALN&@cZ4ע5?7dY|LsyqtAP#Y?<⾏u+5?bƩ=rϐuXB1CX\&r{L%uhT i/V:)XA|7a|obUE?03_B vx,)905HMMMV_B' Y"\)/<\/chh۷o'tNinƎ;*f.1?[`2ʥlhii1*/lu2&|oe(heO|o{saklX ͪ9;$Eσa3"ź$)\u OZPaHRp*㟰༟~w|+6@4# xWbEUUl%89X\xa.ַ4䧱`E5ȑUcf'? F2Lb_cXߐ5+H4k,;,A2hsA_SS 5yn>Q+E B+E ̅mx]߄)bMHӺ:QT T̓sh +Wj1es@s&x=( YN;8=lUU1<4#Gއ 8}qżZnTUchl8jkX '$R9½}(TX3_Vu\8{Z:͢xyYscö$f6 CJ0۱{̗Pwv2|FxH< hkkOq)JIɓ6Xa`nhKf7v *VXX >R ôSс`0H] ve"9sn+-wN_L 7뮇_?@veew.߬ >Wn؂3OaUpW^5.<39no nwhX ֔hx4lnnF @ pgBhjj2o[Qd..(g9i߀Et  bǎصky.XZ}1srYߋG:`.\ mmsLYAKj|o$֐Xa>§'(Cюz4Is`LlY\ρQ9ꂂC kCqHچ 9b8gK/[lZǿ;oyʳ`Dpë J_dZVc}C憛qY$_BǪZ=.O`hBTZš7_ Eqquwf fƦOھ>oVM{={LkY5\6_@\FYs0ekPf:Z[[ba)0?9է&SD777cȯfZ6M[$h}@h;ۼcZ̅IYp)??> #"gB(K7oXyםW[ bE+X{aC#*p)/pqRsXڋ W_p̰s=ŧ?u|+_ھ;fD^C!0I97apTUE#ŚP 1e]}_Q ߇x$QWW ePW5e [Q uQ ՜Uzn^nj(51}a Cs+1]07tIگ,x<tttXSËxꩧ҂p8숻---faEW5d.tvvՅ'xhmmE[[cP(FՂ2уN3{𝝝2Evc=fveGIf5Ky솖T݋i%Wh_U58CcSO'x{QSǣ@$_gKÊ:$ 8r93R^߷;Y&.kah D:g 5"aˇOc{wVNr5[3J{ id_ d!RUs,n]Ɗ 'eR5*v n(-;eXXK|>/[ .VqTkGIf`捥KC+4W]T*tc굃P#HXB&20øꪫrm{|S 5ڦjg%UUﵪ(fr044{bEhr۝QܜkإotVU5RH@jTUUU[xL<|GK:3c7M.25oǎ%j Zߟm~y}4P(4ˈ)8\xc @p{2;YExC̅I) 5W#߃o"P[4 +55~|(&-B1:a0==T:GzG=jܚtKOJ:14(H;nnneBo7KA7!]1]v,P hl̺!*ifR f!bfZJSzuA% K8p&f\b5/1X*8ZZZo~32}}W6JWc 5~BU2 O%{z6 \y$XSnik/~s-|F ^Y.Y}f'@ 4R$Դ#=Sz𦻘~?q/j+UCuI?x2nάZkȺT }cp 6F3V_]0==?IxP^yXRЧjD("MȎ \> ]V% 6T 9,AM7hkkýk1}_k)6m<2Bjzr;ѷ_]M};}at̚T o 'AX 5e02k67x֯Z7v̱ϜE:9i^GGq8LAl:::裏Z>L }32oz)tvvZ)yٗ-ض3_0p\ಸG>z~ Hcj+Jy,"`TUWĶ{nǧ>q~ ??GwɋDaPxIY5N;::F™t[lb]v$65e_nse̅\xnzX4G>Ό>, PhGC.}!jz{{Kjln;,Xp:UuؖaYWu$,ӀbtT:oӅ;}/2~aGN鍗¿3Ěyw羁ڍ!݈ذG. xyO<\ҌP# xl1rfON/v0L"J0-s.">8 I?ukW_?#,W&M6#$Dw\3BMiG l} c- k!; /PrJCyk-"ܽۚ@s1;(3yX,6؊:p\`:xĚ!_TAP=jsDӬka2m|?rIx2e+¯3"D=Μ9n)<8}ō[[/|¿O $&+pfp g/ct"tZ&%rpI<Il2B 2`uSu6nx`QG<f:=[lYY5_^OQ?ĆAHQnǚ >{=Ʌg;"HbhiZNz*Ԙ0v𝝝[Jp6v12`XG`N;::ɬ1yMMMkYV;Lv'sԙ-"(؟*ka2Cx{l%\e+LLI bK4g @,e=iԬXg! @y]]I`!d 5p3g/+겎muVSSVW[P;}w.  x GGnXY5_| ^OABfk: $xE;}6+'V ʟL&\qmd&[`CO}ʇRNN9ēe%GS+EkNd֮ ޛݛHʞ"[K5Kc.l "-[ɇ}=RG+FE\ϻZl kIK$1j`N]̆O;߷d$mv+-Oܯ ^~/Q1~;FV bbBu1%  +6ivm-6Mc̅ \ڬ>5LgwF !+ʒҒyhbS(ҺRﳢH QzU .'_U 5K<`10<wޖ(- >W9Ӄo_'_L'*镎Us³"H`z}^pH,g[ |@2)YwfWXc֝:\i$b- W@xs h5dgQ-+p,tz^,!pMu5;ɧ%>+5rI(\8ME>y?9&ǫ鲼mXde!]ϋoNU`UfNĠy}۸ #8poXj5jj Ymw+,hw\[nEnEރ{pid W\^ åKq$P[u(.x=ZF!  hG{ {`U-XsWj~z\a\W[@+;}N|VqSneu^w/`Z7IAmëF­7? kdìwߊC=}xQlr+ErAQnX$Bna}cϿ}nEˢq$I(j8)<^߷{o4AZߴydN.̧/>Sq12 Q n[Yç?qKAtt[]Y <82vKxx_V 2A*}~;q㱤 лֶ@NJ[YH; ?Mt ="Z2:*p,za ;x] N*&[~HY< s`T &#gĪ$)x=2~57~7C)復]͛6"Hu|LN3G_, D^Oc6.Y0? 8ݖy~=% $-9n ܳ=SQ xΔOY?y.KK1  wU5h`01a&s7vFYƯte_Rbz/Ƥkiim}7U^5%̅"'se;DۜĚ XBc$~k5\[_ Fzdxx{`qjٳQ23yj\xơqۃD@KPSRw#sۨDY5t}_]~H褹b?pɢ {/b|b ;u k`恿c3su#(>2ljP#/31x2<"A|nM3̃_=wn,o D"{0==t: ,ng?N9E/fB;f; 7f,85jkڡXm2I_(̅PO2^ NA-р\}K/L£3!X6w+~(өBNp(\.aq1NۏwsQ [˥@q<d~(Ňf<|SQ%z>i`x֘Mx&15|z l&Rc̅&+46be:=[6@YWECIľ@b\xxxtO .:"Cߍ 9t]I:e 5vzNy&rwۅDbgΜ(LcUYQ$x<2eIͯGbHY[[3?.]˗/at8f/I&D}o3?ic2_iY.^߷+VԂe90,o C`Y?e:<7DA;Y$=vI 687׬HK Z , O|ER^8SVM]޻bfeƭ[Áa4sSc go-ǹf~ o= ;rܥѐvcˠUJ\m95S,<kbIa{,"qEy2!2)]*7E:P>^l9{`e >nKNZ7ziLOа,@I,8+\SkVZ>I2+XqI@*ͅULQ݂Sb}iG*mQO^.A ;*nZԎlgtk<@-&҆:̅;QOǥNZ{15Kʝ>57~^ ,}>@sW@]] $I 9No癟h7_U+15DmMi5S,)Eet<}SSI,%BqiY5F+n4OÙu^|-,VTUN'AoVVt 1fv^c#sa 02ٯ"vV d.\' YéĚ%o+߶FjbM_ߧvi,挏Bҽo7-xSU¥YU 5cc ;n_߷]݇׬GK!hF?C`z̉؀!y5Q"NLʠ֜6S̃"WLq X[̚q yI;szDAlזd8Mcd.\pWs6upF,n[IW!_e,raӺW-W4^܋Yj+8-hW5}5&CMM~Ifwu}' ,SYj;Qwc:B:.dC܀Cw_\xL)X[JpG?NBDl`.9XFcWvQeN!d.\J~'S eqgd}cCXZp Tu~5lعl޴b@b`X ux<PuCeg`2ٙ5NYbOh:Ӈ&1?8ukjs,ƔG\Ù[7M?8Spի2? ,^|/h L'&of ҏ6akqGn8\ i̅+uls]sb_c ;3'seܟ5X 1M_Gc,D@ ^cg΁Cx{7&&[$p}^>>xnd˟29r*8Y0>؀_9իHU,Sf%,cfM@9Ӈd* AC9C=! fKGV}X6Q $I%Qr S^p#6:, ʠT1f-" 5Wl%8`JMf@:ĚjPOq]Edb {:n|j\ΛSahxC##cEG O2~tOIA2o$(c\<ԡܳKӍdTrs&__i g!sL)BA/06@bt,aA\MBK?8˲PYVAYjng9¥Q}& Et/NĪZ@b* c!DpHY(vp"3Ͻ5`S:oV ^֠Ư! $^ 𘜜T[A0:6Y-Mp%\:ޏdb*c 6>m.vUU5nLx0\V7fuƭ `eK$ pI$Y, $Yp<-W_i Hydռu[ rc׷nZ xdx.(.K,|}SK73thyI&up5 WXCBivpXC~'$  Ê:_V&'j ahxȣ"( q?^u m*9iO/v5.8q+3B 9+n _xiusq>" Ѿ!<#ΪyXY(h?p(W7Fv+\ϝo?/L;*9E>3zl7\m9h(d.\#8ͯG21cbk <>WL[' wv ƧQ$Mi"M`xdZ9ʧLMOkbM2 58\xVe˂яΕTDlP/ҳQD^]űEc d՜ `>eY> @8V%~hIi |63U.(,ۚmGYMK5\xahe[4GFW•:$_i@W:H)bY\8z~{Ll&9w> ~OHTBuڼ~1==d*t:]Pf͑! IyK8 a@3Sn43='o-f6U<@}ϲ?7~^.Rn8#հTo,,lw*UC9i%s(;5tX?F|'b8z|ޙn߄'dSeP A>'leH&SHzFMjlsa'/ {8E,؇Ěg.<6+}W=vKؼq NcY#ɺVbOy%N?7qf.qcW0<"A kv\lݴgLNN9< F??y}[-Y}pC s^wop$H0~&\tbel-ϺF&祿Ķ9Ӡ s `DZa}CQ 6ѱIP啱drAUgik~_/QF2Gcp"NOb?jի?ǚյ8ό8bɬ)x'iͪ{q"6#}B EqYF|0gՈ. MMoVM)6xi1.j.ePCU=N Lp+9 ٹ&(_M6YS͕+Ρ^^U쁏1$,TU.fa/}x}FB Oh.^*p+=~{z٘5Ƴ̚pW+91<xn)l3IoKvuuUÜ]> Nʝm΀Ěl|x/rH+MqXQ,(<-f1wv 땪 nwPu% H$qd?dQdz85ҌPSLP #9J, )/s_9WB4/\G?f~H){?ԀjgMpeou Z+ʮiȲυ_A߭ex]K=all. !'bHLM㑴_L#p A ^ =2.\Ĕ3efE!:8[0L+LwM;vn]?$-RjHĚj8 |<wOc̅).E:8^HJXzi'yLQ?ɩ*k 0 Hp¢̜=ϊ*][2uÂb[N(d.\j>w %BǏ%;'znMVC̃ل Ok-/ufմP@S ^Cvn-Mc|6_0TZ3Evǫ!1ծa2.x7̅2v$0`؉DCԏ^lĴ9`ǒ2ksoU5P\LY B\ SO{gul'z <EʹɞZM&̃n;bHRPӳ=r bʪqJw(e#C-J|Gyp : W˸ dQCTU plp.dI%xYy &V$#݀'~nQfNIJ mږ̃9O$:~Vd>.ypj@*=r Wl^:q |73d.<yj\X_\б#ޗ2.'%xTQ?R 76A~'$-ݝ]9ZиXx\%Pcc tFF'qU Fəe0QD N*3ϓ(?Xv7Luߧ@qbU,ews.̝֬s杷]W~Ӄn^ode k%]3'@)><56TQO7̚x-vlYw#:\?:aL<2/Vj-lJHl[kR_wcUpΪjZ2bM0ã񻱲qri%PTr65*E(ˇzа‡+ᶛCqy{:ةAJ8y0_VMcL!H9rp TQD'AE+}miiiM"o#sahSgt^s*u}K̚ Yé5y^vu XR(KD `aZ2$<4ݿ| 0, " YQ$x<2ylXRnɜR]o/rq"d֠svV] pHNx=LBekUw,>NU\ P58%%P12.82u98vdY_BV1 s",Bb Ϛ<]w"4T3 KR5Wb`p ׅڀGߧzLB z{x9oEd`Ax~Q,8uCmŭW&6j0ǟ gX[R4Դ.1G~׍хIU Ualj-۷o/E1F4Z"&b(aB"sa %g%xY &k6Հd 锪.7?Wr@ȃMK@8 ^ ߍ wO ;KlX,2n@9d<06wOsA8e8Ak}u5-s z?^BJLaLV*ЄX[2c\Uvn26"C2.t#ƝyhױݱXjMMMQ =6A~'$5y X0=D*F:zSfsOyq0@ ZpFDA˦+FF%Ay 565L9yocZȒI>?T3{oԺ gܿm¥>LOYg?Q݂vTbWFNu˯$P 9la#sa y2Ul.l|p8Zl\} ˻HlkVsa3~kC-^dB\EwAn2`YnE[" 5zԘvY@̃y }hCEdCq!,Y(elglOyCz=^ϫuPj=ۜUVj`&&C=}YZbm Ɠڦuݽ{#o2.LT si*7 cJ\ow{RlH^`g. h)+TTX܏^ "Vlf 0|j_/qR)`Q9w}g.GK5-Udlٙ S_3 ͅ ϚEӖy}vJ\,} ˻Hlk 07^7^0=pg](ph%xLͬ1.oۼ`T2 FE5z#tBO ʵuCf,5BV¢U8kd~ ^K;I2jx+$\GK,蔳֮2^/3e]<]&~VW; ku8u-%PN \0Q̅]\xF +1g_9m%̪!s]P6ݒJfP 5 ؅̅Ϝ3{`ev|0>1砸$x<2>5a둡$Z2kLr##N#]q'b0S(c0LHҎvIDkOŜe-O$ݷS^}(jnHV z)6"_G"1 x&11?͌]A+=ݻ]L124 ҮU鯴LMi~mmmETkMIym@b<v>s_:WΛ=އ/܃)H"Oh+dYACg glݴvA$F*.*ͱO]q$S8.gSV?̚nZ,"_7…a dI$uX'W+85^clv MY5xzdwg512O!cq!sabpY4˻Hl+ks 'bH$H f<ڌ&r܊¥K1Dl/w1^o:QGu{iD+P\fa6vxGGi7Fa.l j\8d.lKҦv 6ۏ>'!pql? Ě9l\p/u[A;z;쁹k_G4Sbfqs@aۼuZl޷~F98iw޺vϝ !\< Lřt(t!lT/W)4mR?Rg >؀lۂoQH]9+D,@Q4&$x˃##US 1| 7jvak[ZĚv'_őmTS2v~a0 j7%jr76e.mBbS_jn- u38͓=~S)|J_a:)0LHUUG_4@oE销

OKz<Q!K Ysgz.^A2F:63ٶt^bźO>|7o7H90iY_Tøp>jkXQW=]{fW%zō bSGyhX(FjGc w.Wh/u<+&1^dsښme|2|֠dYVá )*k̍e]}htjʟ2^q/L~iWO5j &{ Dnz@OM쁼e2kܚoݴ[7ut[LB}l׋8 ؀|\^q_HX\ߋ~<$xgo?!@@rʑƟ˶ <{,y#jRT*s/㖑Ja ˚qs}$V$#&۫f7rUƺյz晚5?:c ]aS_Ub{@xG-æH4TB 0t7X \8d.ls_U՘yFmϪ@(ʘgP"0m0$V5wRGb[Pfen޴❷ߌ,T);pܯ}G1xad^a~]g>yD1K_ 0Lx)h[LV[6wܺw=V2^|"л}Ɖ7]1pr#t+P[GmM@ϪqriGF{ռo5_U@5Fc cj: ,z6[_چ5W J+p+q߯ wp+B';eXl3Lg.?9N]?R҂;>h0VocϞ=%jrdՄE%P  K6oFvdƹ @2zaB DBO?&GE(,rdO~ymEB5{7g}c 1<USobPuSx=y]1`ll " $Qw܋_*F\q3 h!wz`$UƎ{u:k BMQ__ Ip\?^|i^{^{%Dc(v+xz=x\.jIAX{՘7^ мJ<^Y2%{pƭ|~?V_Iвjd,BxH_7-#J!PUdTXpq|Dj_[&Z9T<Ǯ]6{azԄN[y梌jJ-DDhVX'V*!v?c/580ڗ9+;؈N])(?k[L5oǿs32T*:70u^< cp-pbll .FF'qyL3frnv؁p8\lkp;9̅ \xyڕ9xb%[Z[[܌' )b}k{\md.ow{RlHHYfl.lFd$Hy&ŔB%w[ QVd>|+f2!D=(K^dY-x09٫y9db ?+֥zwuc=nZy?#Gp w!I7efdG/~2Ʊf*x=nd$By-#D/aP vI#p#eY3 #4wqi/tYsH{(632b1as eeh&b[. @yܵqHh)rcT2'!;ۨͅ혿Yjad9̃+33{{{Y43\s yܾ};}V5wRGb5K3`7[J2կIii(_WC]JOreRV&$ crA`KD_?̹hX W@y| 6a9v $y=|?~+8{[\Q! 8ß 5/*~=o驪45qd)3i>n a0\QV6̌% q)hooG[[aڨo/(kjBkk+Z[[ dL.[-ãH;s ܋򱛱ޟݺi^MV΄q|ww`UA|p']ĉ#KⓘVZUȲ[EC ǣ@$ 3|^<QDZ7;HhVx/8Mlflln+DQ?s8s<Ĩ=xÎq"L2 E(  K 4p8LMttt੧ž={윳1 )/#sakfe.|nq+~(Eq  pɚHDp QMqIP "btt.Δ%_Ys=T?\^'x"a of\j~H ]όikk,'`شik"\`_-(\AƉ0p?Pqaft\[ wYYY,>'@qhq>(L̚EZLVСi*9Ů []=4U*P,AƱ5%}4~g1F&D(g+qQUHRog>Oz~ 0u !WK[אc;Q0m f̃FGgI[*KuO _؅s98¼O5x!t,NE|1065jhkkCEE?P36Ί>8NX\x 0Xp;$Jfq2idy@Gnz?,)^IҞ+L]NE%cv4`s>1LW^?r,K,B8܁p#u\ cih<eGkuKĎp4R kCO,˪bs oCj P__ρ@OfMWOd "[Yx G:~TV΁y˖-ذaÔ>6'`:5-.w_byҦh*dY DG{RZDO]pykl9Cu6]Ɛ>^܋B={?˭1`&LXcO"cG:k+nJܵ/WT]o:=&vҺ} {P!(ٸlŻy pHxsh7ְ)&f@Yy@MU,NE܊ G5~lcld+9ӡ֮];e^(P]mk*/\Ξ5-Z[۰p^>x\E(J0xbμ%> Y `yҼirD`lk^lK'\z߽Q2RB|#,P™-VTIak5OV?<{DEU8/?n>Ư]=W^? (xzxty>t!+:0cV 4Ukp]xvŃmͅ]=,6pӸ-ڐplܸS6fÆ Xvm߻:Pé(CGe9X\xp?ށųdB!{S(@~~C!cZ:.(d8Ņkq͚5SnV ԴXS&r-qG,.<Ƿ6ʩ_SVVv^\U]]ǫq TV Y\xlM-kFdZ!O/C(wzxnEG'`&"Ņvd^f-\w՟ƚ0t _;?5 /Gq _h1- 3f# /D^(@gtEUDQ{mN7gܿž?oMド+yn?]נ*n_ 0 yy!䡰 Bɥ;)c6LɁ@Y߀DBe˖4NTaq;P6yRxR+ϟ,.` Dcq1"O{zk:F{P(.Àd}O7y\..CPO8VW;XWhuuu}/Ҷ[SAjLQWW 6˴ڊcƍ}"&2Qmw99MŲڴ㴿 +WC=sSWP^^w`[\w 13k&5'0XS>f QX A?|>\iqT/["HfŅS.z sf +8u/~VP/߆Nfg a:U4R<8q x9Bïnۉ; 75KnV2P3bۥo?u?K/ ۰rWUȒA_ yt by-=>[OͦMrUUU())/Pֲ©(cqxlcll6H˰LȊ akÆ (--;۱oZb svC 1X\P1 nvi!0/8?o)q{nMÙsDC|[~kE>}!/@(k}OEQF4)%pT= ʲ`>~>[oǯ:㱙s4tq洪uq~G~ЭLݾvkj~>\{ v`agHQptvQ$I$4s +B4 .>pӸk6Μ]vaʕ91-%%%XfMߴ]VZ!s̩(#gE 8E\6mڄҬ^)*u|^vmd&ƫM} 0XUn ]z)eYسq؝#;[f|cҕ7}y >,Cbev{s/-_ʯ?/ffqe_D%zR n_q'ks[.stMDW]qvLD[[{F!Q~4d8Ņ\^ղrww$+2iV^j"k-*v9`fq,.|q^_'WH˒իQ^^~޴)++\{e?ߓqr TV Y\xlM1'@U UU Icx,°3kɺx]2=-ށڌo~n'BdfX](قXx)q]X|nswd\l?]7|}KJ\_.^ǯ Po[=`VMggxa/Ű|5z=2%p9Dc1Ԍap x~}^.hY.\ކ7.j&b5#|iZQ^^q %@S]]SMiOT Dd>b@+'ݔbYAT!-iӦMشiVZ OxZTUUzjVq6Sia\q3X3&vt(.] Y쬚1zoj{uV߬Gފv[yݶMlf}>'#hS<Ownس`Th( CÜn,n=]ΊgNǗ P4鴾˖bs9ta˲ P;zlܸ7nĊ+P^^qvwM[r a VWPM2+sM%%%wP>uVlݺk֬-+^SS hR׻͞=/}؎`-вiKŧ**Q25OOnyM6ZU9V7uӍΠge|xCQ.82s4* }&uv/ Ok/ BP*CQhKaPU5U#^kh8];XSd8=mmmO]7A}=j}{Gtb5-/uMo@Ws@uȲ4~(.NpΗLrOn?/qٲKퟛEaa> CiPd;.&۝5vtZl)KaK`oJ09mɁXB@-3DD#:NK06Sv%ϵS9Ñh1"vu;g4MXF\h:*?TF#!ɏ߄eK-~},CdQr-Wt5B%`jKbW 5(H?<թ>јkOe2؞~\.kagMqP22H  XX@ZϚ1h gϵ HL1c} tnwl """""%NZH,X s#q2㍷ҟRFTdVCȪICß_~Xf„ݳws5s JӠJSc 'Gq%Ey=xܨ?N8HfTnaͭ|ÚT7UpU#+B,m}-ADDDDD4dɜu\`X/=p;fL ѣOeWaDrd׃?aP6d&O`90ehgp;ۢdrU"""""05ŅLj`/7aXdn}m8w y!xn>>xnX  Urz'~߰_d0d֠_!ad!ǖ """""S"X^\8?X( `6bQ-ATTπ TS3~/ K n^>/|>.TUžߢ]a}jcKp?:@MtY5jŘUCDDDDD4QJfMijГ\=T)X=ZnLs)f͙3.*4 rqvqet"c7ߦ]"Us[8P+@ ٽ?ɪQ4鴾˖ """""8S.XS38uE!x*nxtG2 ˀe0 AQ(N Jm\q?6WK.=*g 'ǟvn":hbMKSEiSNåː%$Bt ff2*`TP! v`(e7 i=}mEY˲DDDDDDkk+.ҍSg%ȒI`/%v;ӟt]d(B ԰Om\qW>궝xSl"""""d Ga@$wzU(Y!IDo VvFl=dI,ːe ʱE~?VnFCH *YQf8Ex?o˲ě 5B[<*4EHPe;&UdB m}Mͧ`fjpAѰ@ZVͧ?qdռm'.cz/xޠb l """""a*.Mmc'U*AS$fʌ/U៿/e (:AWedԳ0 A%΍zhV:p~AJAe 4jz:UCDDDDD4YL`MYjí CTE*.['ujXA;Zv14a%Exl {^h]L\7s#]XÖ """""<4jD)PiÈb0M ˲g/54,U*2>4M'fxwu4A,U,"pd<""""""\r:XZnO 25rjg1h3##H8 #+fC7t$LebWo}[ gkk.tGYA,ҍ%&\Ϭ)Mm  CkdjF6ߤ3܂h4i´,X $ Wnzpv>8TvMC <͈wW:K "QuiY50h2&CSD(5`:`M<˴ڶ[.FF2KS$tm1L H 5̚p?ho> U`}CۅA7\1y|#vlyؽM;y\^D=l_ckM^YS( 欒!CeɄkٽ(%9ɨ) PC_Ʈc…XhSW)nG8zq,BEhQYjIvp~EhU!"""""DFS%$L @.bٓu o? +R @O4O[ah-+N5xhC( D$@KfШL}Re1cjls'*DDDDDD[.kR~]< ѿA{o~/h>מP-ԕ\@%҂4D'Vdj:MH@웚*a|D 9ւX<UH"ELjDԻdgԤV:{&}4vtZ5l!"""""mJd,‰3ݘ?C9F5Ǜ:j p%Ƒײkedt?z~I=EiݿX \vF]LH \(!ץث=)vV, PA)=}"]`M~9[\0hL[igX/2|l7B [aje[67.+߭؁m dI$_\4ˏn4߭:4̦{ hG 7ΰU˦%"""""r54Q\HX$ (F>xS ]vرӭ=O8GHtkQ_X6/o[EȫAD? Bp0h#pWE!$Q$N!_}Y[Vj߱YCk C:ˈL˲WoJn+ME!YtKFŅ_Yj#,M`Y1FD `ʒ G߭0h0dV/ع[q0B^ΐQDbZf~zaCQ0 j7u`3%wŢDDDDDD"W5`(h8wӄ6FV捃giv1;;ҟRnJS~PևRյ0&CSDVPuq<*R۪lgֈ0~x c $Q@z~1mnÃ]w٤DDDDDDCv@۲,XFi[®$@i\_tvEmQeI&.*;Kn+roVPˆ*!e -N~Rwnfeˬh&GDر ܺ ;" !- FQ_mQmX+fx;cuمuUITVM2;C/~hØ?Kp]_ZYT(4Aq:sKN#pgoeY5VR: =1|MIDDDDDr1Xs`;M+Eqxat"V= XGw4Mk2I`]HQ7ww-T[(.:?3@}tM&ː$`Ϭ`tw B. DA5e^IE@$&!'$]׊}u-}w (;vfM2Xsd;4M"%"i!̀( $Q"Pљ)T}ӬW3ApHՌ#[סv OX"#pӏ$)I bO>O9yom8(Tfͭpk Y(@rM(YHɌ)95t)+즖iPRYoIQ0`KWbw_л-V1D ԼqѸiU$~""""""NY TSŅkPadX e!e`gC`g@HvpFbbrSj&X\8GϬ"wi߭Ł5{m;X@`Z.M,'!@?A$p  O7lF"""""얳nDb&|Db\,`KˆRrSjK*# >Y5,.K'd誜"I`eYp TE'8l#[Мf.a?\ ֔6B^ (va`U&Khٲ3ktU; ʈ,MYihHY…!-8ǐ3VpRd ;8Aap3,@k hh{d农ͬ9us.BSӖJN2-m)ogJr}",.3ҋ mLx2C%U`:cmAC mr]1M'9#2?$"""""9[\x4]_DWqRi+v0t NF 甲Ԇץ@DlT?I^Cf,jԤO}Jj鈈rK.e֔6tUv!Rav4fB<9N zd˶m :-=-xbk]Fc(w8yu:5ؑ!g֫aq?p2\C  O+ 86fԎ# M!)Km' 3mbː4s TYژPONFpf}*][gOnË;OdL*A|"""""ܖӠ.s9)#3r3f-R,q)xAm[ECS"DFڱ4^y)_*~Ӊňr[Nk\ILt! f9,{ɬaWj€M]}0憰ci,rfsx)O0s_~O$4(Jf3؞QRmt*Vҍ 1:Yeղ+F) %aeۇl"5QW,l_x%>X.f""""""r.XS2"h*8a 4ȪnR_X|yl2'||Ϳpf_\">O<d^NDDDDS3QWƢEu]7Wڦ%U!H;J9'I:տy_}1 SmΜ9p8|oqh x&`ƘϪap\jǎ7Ι3ǫ [<Ϟ1cIUuk[[[X8soڱcǦw\򤁁9UUU4\5۷o?Z;[DX Gz^՚+b mX:J8΍>*"IRW,cV#?U'Ustzݠu<DQh2 Dq68km!71nmm}&HܩK~ c\[)CDTd2y6b"okkrm<3/țc>Ҳi_gc"{"?^|ψFqx]wuyqV ̒&>H$~mzhrpq[WW;wTmH 3]UUEU]x-r7#O[Z'HXP(EU} J~z~^O""ћ( }}cp8ۭz #p8-0GD".=3 H\ Gp/_"_Ap1䋜ȍo6,Hݠ"cYH^UmUoZϗ?9ȟlGL#fXk?b CZqR]Q\.wFO6~(Q8&  ܍ x<kUxBc ΖH$E\[F< CU/}d2QO)q7@UƘbS`֬YZx{+UQQxM ~'?~8U5WUoDdYOOJnx)|XTA퉁bXm~/ o!>`5cijw3Gy-xrc/T<Dbc̃X윱hp6Q2Ԫ*z7=gx^oo)gy"r/bw!Zڶ?+ B0KUo𝪪tD"qucZ䋾Sn3gNrUmkjj:u:֞W:"]WW3gZW#+<˗/DUj)uuu!cwWՇBл[[[/nO$Tu':N:|t;05x<~v:H<{_"PU%9)d/ZkP|  `naC5ixr.b#XxUmQ3f|o+NѹsTZƓ%Hԫj kmVZp1&SWWwfbGcsd>.]~ .g Kǹ ⁞y晏{TX,v1^'ȭ^F?9 ۋljh/+V8VD *"龾KsctrPɉ3Q*ܚ ^ܻ*`.\׵t(1pO gXvU\.:T*u;!WaZ_Zxq===hD1n+- }XSvU4 7s)"3R[D䫅L0_*- a9egK_uujqo_$tp4 9?-ZXZg2C9dgXjqW ?*|Zg1!T5^,lg&@D6xk/444">7^@Ed2y.455U#Dyu,s=7^Wz}yܹ}hX<U(U-.gяSH,L}ȴq)N tݺu/MtW&}wإyڎ$""*MTD—ptK@U8Rk +Pvww7GHu28ߏx}.X8ȫj_(#-zĖ`Шna]3F>!|sBUs5Wcwg_hshT,\#AD.+?""C]Qwk2000}^2*t{vP;FZY_D*\1)BN,|{8¿< g ODWXqڵkmUV `ΠÃG0&"Gݒjp}s =RVOWU==#"V+EzX#>u8=ÍTxwMDs-W1rh ׶g_+y _B#_}ZryRد~}Td_3gΜWf߾$""*MT"ϐ_Ƙ1MVlvƘba4꺮)n֎zviMvO Bs_UUG;`k;B @D^*x>~讪#TOOOWD~?""g ܼ3HDU/Iw ¿KzBr$kmq[߂ h9vO/;] wvvyZ{dxn߾drAOkrg;Z2@ֹ\evc@;u[D(Ի:g@U,|h罈q#}sX>d2lptu]w1fom'"" G*K/_%">8 ؅U|P—?Z vƊ+N`Z.ds}gD~&cB{^c̞)t=D^P3Bmkk{j6{̓0R,~6iiiyTUM2\T\ ODMPr."k=PUU ̙s0 aW,g~\8 @.8qhRx&`t xL/vaGߦD" +VkoU6 Y >HL_U㍎㼽t{2\d~[|WbsJvx<)#M{./}455UG4!EH1k_$ٳgpo=9ǹAU_@GZ (MT-ZԸ}YZ{8[NCaj/E֯_B<FD?Fsǹ S"yޏ?I^V7DGDȯ5kzZU]ࣉDQըoߩj-#Edϵy "qIR ח뺹d2y'c@Dv btyc"Xk7!?>8yW*qN8N\y8-#n<7c9y^<?ODާq~`GxAD*qp.8 A>[}?Jw[1;U"?bmk,>8νlOO;SoȘD"q~MD.H$Zk}9, nFDD<U8usTjk>yBp~@;y^cD-z?Z+4!êzY:qjŠ `48FD7Hcǎ&_Яg|JU_;vxJ!?=Hkꫵ "w ?bޠAp~LUa]+[=eK( t] LbxQ㵟DDDDDDD`LDDDDDD4 NۦX{V"JDebCE"r:#SDvRCD{K& 'j6NW%?|@?]ξ?|ׁ&-M:B\EDEUl6UlYhh4+Ag!TOUƘAg)'_("f^-z-#"\5557kDDbƘf4}&*3x,LU7ۃCD<#T֬Y[WW<3Qܸq3gjYh?: QPX~5\P]]'8W<B]cuY2Iqg0zV + -}[op CKsPNIBDTȳ ,SUu'xkP7@.0cxp&""">#(XӢx.<.=8fGSڒPUUȎB~Ħ2T1jDe&cbMӼ |_/.AoMf&" UV 3Tu4RDnB~ v[</e6权e} TuD'"""'􏥥%Or "}flmTjyT*ab]]]K@p2&?95kflv5GOmmmg6]=00 : O_{FP3RӶ=`pR=̝;u~ `]k 0@D.#x<^NP!-\.­\`]XvDL4l<7 D}L]s=3Ǚσ} fϞ=`e[_("@ WV>e<ʴpPh(y 6x `˖-sPPDv>p L>[Z{KNUk1 ^ \DcȋϘ1cv>?scb`}>(>n'3܈@Άr~ׇF{tyՇ,d2yd5Ƽ`&(}H$Vշoir$Xk_U("gBc0x>eeEkk X%K5-_cD:K1AdSDvck}>`9 EO/DNI}a|:}gol9?2ɖl񆆆co1W >>Db;R{K544Ԅ ޾;H,Sկp=ϻ8PDNOR?q7JxҞMƪޫ6^LT^/_>? ]$"/;CDyNk[Gm,z+yS\r[sD&^Vv2\ n0SUX$ }3>Ql?BUH31,.N" 1Ag!W$R8ʿ?(8e_<{mG/zquW'E|ib}ssN1q{2~UͨjDCU3Ƙ{BDy^~̔\(he3lժURU"T*5T*ӕ+WZ{ɨ֭'@d2>6$@x ;z+"iڌ<uÝyЀ#QYpLٝJ:9mv3,>|23#T#XnߢcZ{nY(O }<ߋOb$"@x.GL$ Ƙ^CS _Vb˓((M!3D4,x4sD+pŊcwMi8")♈Ft쪭YoN@"}Q A$"l,hTe.QbL.4o޼cɠgTWW0ycN;HkӪ>rvuSK}3e``H$ : QPXfU2`| SƘsZ[[x`݇iU<;jk}i>;L.sg\.7:UཡPd2?۬WyG=}?_D۽{wƒ]NE!{~Μ9s<~H>`}Kv޽1L>Y|\U_+"Si8Q%6'k2|_no>gYy] _kk^b'@(ZkUuE4T5k}Rw[kdGSSS]RՅ"rt}}}t[x$Ny>>>i\yǯDZ󏃏EDiZLI& 0{:)7t:}m_p^NaDMR?@jjj85DX,Vkjx&ˊsy&trS׭[t޽U{=i)Rn!"* x|))ZڐbTE#=P83rQʣ Hr-^"&zX2'm&{|߯W^3$$-Xw{饗EċJ05\U}? <{衇QKYdI[KKˍ---7*q)>---7vttEDz۶m#---7n۶)XDDRӶ0ڭ}vhllܶbŊkkksoGQ7p%0Z;7oOh@ADHjjj {TD&O=Q"xcC?Zkmʸ"Ou=T'tzEr#_ ͛7H$ZKODDDDDRN IDATD&ODnzs6qoѢEemmmTVVުu"e$1e2;GD}vE$TJcDdBɳHd2y7+8DoDYږ[hN NؘChՙLTEvÖ-[iӦ@"E5uƘEDzf/^; <'7~cDQüN.D"#+8Do -=*RVZw""qpڶ1&<̝;w p&;YkYDDDDDDƥD"$`(z?I.ʀA+ aZъ`i˖-{1;Z{16(UnJL>}&@CC3q#"͟?RyyyEt:)x&c U<΋"*◕a[:~>xDD0hmjw[kS'XkJV8VVYYY0 A0Ͻd29= y e9xk~h,c͵ƚ%1?kNzd޵?;3x$ٹ{ED$.~EOjllEq#H\+"RZZZlII~NETiiiL{}p,_^|7_smk.q""wۃcT*ciAxϘ1BkN-8oKd}[6=vʕq""6|efkv6R@L"""R ;?b8% B$""2tKwuy7Yk<1zްyUMB$""2tK˷ڵkN6_6)kDEkAˁ=XDDDv5f߽rzWmm1hB,;/^\z@EEuڂETzWcmd2ߌ;`eX#t$ Nmm Ƙ Oe2 i-{O־Z{c3Lf=p1PDDDFaѺ3ܹ !nUey޶AڵcDFҒ%KڪnHu)2ׯqʔ),0 ?b5wil۶ ; <''٬Mpò쇀-P"#-DozY|s6}hp1{LT*uW=#=`cV5欛9GDDDryXb+A{֭sc^֮ )Z-*kkkVU). ,8 Hmy-w<C><40jYy.ώD"5J&xdx1h5*-<@f;mv1N9^_WWS 4y7֢}?!2$IYq!"}K$eͲֶDXwRܬS=ϛE I18xU_ ()%G ܩ kZ \dW_&}OX* )ylҾ6Dx|hƎ򉯮3p=6k YpM\"xX#OcH ;S$<_nG8on3nk35&y'~g=㦾MS~c?<[c=/Ȕ^>|wt.pYŗS 6o~;+ d%+`gA0.\'EQQoQ1c[د Șa q"9`o%xnp9h@__qs;nzs_ K~ܽ_,.=7/QC;1W\W qs& W@]_}^jziyݮƍ&9\ p3.Ο]?I֨_+ZY6_7R80@ ޹/'鸯$&\\!w]#뚛1ㆻEƤ-[ӦM[FELIIIkE1*NUh{JtnZLPlu2]0v1&nk,eW~}l[/q5Y\\">6Fq:P[hyޟ;pIQtyd>z}1.a(z3R9ߜ6Iņ>"AG. W?v>7&3q_YǍrP=(i鵸>~wZ4~jc̝7XkofrEƌvஸ544(--zj%ܪU6C}һ0v6喝{… kƘ1W~ڪJDDd,0ھlU 9lJx} k=J৸Z{2.7:ٟK& |݃+Lչ6vs=0wngnt\bhu(+ x'[q_;v,Xiһ~.w7.sߙ{{_}%Ͽ-yҔ c&r(%"""ID>]ZcJD&Wju&M@,}ƍ(~=[K ]kMm_:pksߎKts:0\p%>kpρ;V{hpkwG;gO4|j}J ު0.\yw͟?y?}Nd2IRaXtRZZZZ7"E4{5:1hf͆,gb-)-X˧w]vʌKh5P)] 9Tƀ~Gwft{=\lpEs.Zȯj_|:ndܨtӌ֘0kk]ͺP5R}@ 0$w}:[Jo} x_mm{3LM?O|/1,^m Wym}-++cuTt:ƘMR+TR|ww9})˖-{GGO y[7;2g}'Ʉ|p#e"d³wbw&9m%n$pjg?F~s?5jY꯸Q)=Ϲ'U`;q/H W]P@wV.Yᶅ:::ovg; x v߻'%ytzt:=w6\RWWF{sXkO7_[k홹sqx @Eqn.""RtYgۂs^Mu=i}N~Wcp˷7.9>* z܀"L}8X߂k3pI{[s! ;+f>^$[PWFӻ39:g+o>bgm皚pWb~N[A<`sKJJ~OO"x- Ë9ۃ l6\Ƙ笵c} ŽY;wT^D7bp>ުj_\{]ka7 w.:7\BLAk+)pžǭpn\1sm}*Wo|7zO\е*B?0=G!5F|}~}o_]{:%| -íDמ/F ۀs"x3L?VZ6|hOHn:P *sny%<0LP+5Fգ`3J-nw!#ڂK~+$Gm\良sm=eaǯmiW)cpIaUnT`NU1Xkd2Lx5]/;qS}7B6z.GztLčt:7=x.Y\ENn_+v;p[I^m uy.t^pRt}͞?j}g+n4r(\"Ym}.z{\UiSpGVkyOמ֝qwymlc>VK//  •wZ;)w9עE^t.:WnK/zӧO pW:~~I"+Lc(H$/dkC}؇vPcacui}6\ N X=1OX9~H2tʎF^/G,n(@'|O0y^l TS_]bӡ 0[ #Bz 1Ykk^1(Zskkk, y@ۆ NڊD"0 w}p? c̃-<0 g& 1},Ya 6V_P㸏9:::Ry]ס>Ǹ죵qcguO=~R6=3"Et\U{RA߬-X`q"X3{be! @eE1E1>5־k׮"H$vEQ6cv䶕"y^CcYE֎L<0c6+$RM3n:4ah4K.dZ" 7|v,Zd27~]]ݗc>JytzMcIM1A*Y@DDDDdD-r[>j+6W=n iHnUUk=J1ZZ7Ƃ[o[̿q("""""2m+ynU͞3 1y{ ktqe…{eGaokJ]Ƙ}߿WEfW, ߢE.UնE˂ H$gc^d2}?;ST*\܄#+6ax5;Z{SƘc;ooo?l"âEIF\\iO[k0ƜܐNohd2y7Yq""%sFܱHoک͊[8ֆ LIsۇ|a97J1|g+**7|8jΝ_*tvD"1;Ht:=Nyی1s***^H5?gRhyX{:G0לwO>@I!~#",y~&s#X\1H$X~}K!nOynv S3ﺵ?]7n-Hp씲IQ1b+]ǁC(:sz6}2ƘeT겂D9Adt:}?Z.RT&1;SC#[v\)4g's$(kmK&Ywk׮/^%K,R=PUU>}LgGD?0 tz?1b!~EƩeeeaؖN;8 Z0 ..q1(ঢ়UڵYuqc|ߟdqPYYY0 A0{EdrzeK쏀l읫Go(HνGw,E1b$ `p{:t*z xc'g=A+hx7YA$I\KKֶXk[EDz+--ޟGny-ؼ%qH+2^YkwYk[<w,A[[[E ԈNN$oz&tpqFT*5"ۥHqhll |38DoG=sS]sERdW^ss `x|g;-4EƈGs$ vEl7ל~ tt1/NLwW}lȘ1XGI_ +s1pl"""{) 7͙&t%`DmmȍV/ZlΝgcL(5쎦i;ݪ7cc:uڵ5cLIL…)g/^\z@EEuAD#"kmK&Q}"S[[{1kSL涸à[466n+++;xx(UD1*Nע5""""""2N : t]r"cΒ%KڪnHu)2ׯqʔ)+RmnkR  kHsOA$7mt3^ ;ABSSS[1HrK))RMMM!zD]]EΝ; 뛛[|_ YDDDDDdԔr#P<~?|n7:'wqk}XkO2eʿ7cMy>m}k'EƘ7otcDDDDDd29 AkI 0+w8fG,?|w`82y+y`91(^}hޗNˍ8s֭[{'Rԃq"#gѢEemmmTVV:N. ,8 Hmy-9Ͻ!5kF2a>|0MM?k$|ߟE)Dbk*Mu˗/dۀKH?~LۍsgέшT+]-S lf'Rtuky@Zt:}@:~=kԨG/2DdEL`:n+k7w 8+:\}3u˝wXt%Ϟl7 ϟ d;::2nNHQU ]w"ҷ,{>I& S#끅#տxظr*Z6~ro"cEe-JfkXqgBP Tᒷq#q#pkts6p:}?4t지;{;IO(mhӸdx_ 0ŋ/J/\.։E2kc vC8KH>rWw=~p7RޗDZ quz+p!(?zdo{ y.],)]D o>{ &Ady튼c[ϛ˞Op% AjDƾgX';@ለ3Gg1_RcG7<Ǹs2p*n Hyq$<[ks\〯IVP_v(nW]>}{op .7|&X =F+**`~mmm:ɬ_palv=7DrFHAlnn> N#~TD@uud2y1fg*?ƦL~Eƫ(:Zےd j$.gxQB(~K;k܇K>[{.7-\U}<#q=:ex@\2&{ggF{%7 r6\2}/' &ln?Ad1_6R7V l;) -WC65[Jbh v\`._M{nv B?}v^\[oܳpX+w[X@"ICAn`S_ǖ.]*B%""'Xq̬zc|m޳^2yh%"2<\4j`xm۽{< 5""d29 VfYosdOyO 9[\1Y_UߞkqAwwYIaBR[h}"J=8xS+ӧO LHwϟT^^^a6N9iw̨-#f˖eOdZVVv@mt52D˗/c{ {*j3ks#o?} UЕ;k&ahm 1k Y38OM+Q0wێΩkp ;**6Дm6T] <ǞZKkW̓p[`cDDvOKKֶ1"SZZͽ?XDFv t9lΖOp*bOsڬg^PWչߧ9ol? u>? S7 lS:w&ݧ0!K/tVV3W M&Ɲhe˖ޣ"E+7Aʄa c8tK{uГGV wpӥn:AWpn#nݹu\% Kr2} )|s<IW\ HwsE5i }ڴih3^c#6|18c9[p#!Skt8GR\,p4uoqipc$)o~7pSOx&<os9]!LT^^DdLwyKgݐx̻vͣ981(""2vgᶝn s5c_z>n۹1w."d\>8n7F% ƥ}DZGF`5kp)p ϟon ClonУwɳ1D`S*Zw,""anzˮf/od޵?~5}eC)o88=w5C8yoaϷd3U\__`E?;)./.omm Bնeܘ{횹1Xkd2E{Dd7ހиJ0|1/555yw ?P0O}kmn{,GUpGSS0GDn;*T@^ps=ϻ9.LROfɒ%mUUU7irqa[KtT [1~YvWeeeo2eЮȨڶm#)"cJxOo j\%:c>fN&3+|ܹr-]B_@SSS[1(fEQsn)ޣ"E)DQ)ߍs+y~7uKƹq<Zk3,KR/{o|Btô~""2}.;ffQldbWs:^+ޓMxtNKJn?P[[{^{^dI[*=[?-dc̻1{4|ՇPcwWIp$^|@mm:ԇPc"8| a"6ެ1Qx饗L5EQi'J&'EQ1(gƘhѢFQtL"xz>/۹{I%l0_L#ǡQX[[ۚd,Pc{>G\}ꫳkjjNL$[So눫`zE隷߯Ak ڷ>"R|Mp½ NdFv@cEl6UV#Xuuٳgw[SZZzW[[[k֒x{{:d2muII󭭭ikm_l6>Fd2ܹ:P#񲝛J{яRmlQ~yEC}G2<EQ8_G}_~ i2D8+]AxAqtx=1&HR*p2Lf}?kNx@,yӛ>3( ?Z{yA̟?ߒC(ڱbŊg<}[6=vʕq""73@]]Uڋ2/7[k?COUu퓒gk{*7/>E둵ܺɗ5g!<gcL8C<g(dD̛&J05aW]168Gs+fX  [~o^=fq8Jj-LFkELmm Ƙ Oe2GD$&""c"çxw~Fpτ8\Mc{-Ap&>yD'"""2>L.eb[dI[UUՍtZc# 7P;kfҺDM#?d`hoc-pT`!\hL"(3 !KJEd0>G\/F -.G,ظp).zή{fh&"""2hڶLA$OH,$"7y4O8ʱl6?MDqwH޴MYGGXc2Q3j}!zj2<3J=w<"]}}Qemd2Zb!"go^A(yV> qQLf<;wqDZ;<8+@ɳH ðsO "glN6mgSRRE:cq""eٗKKK/H\<˄w"ҷ)ZV >""EɳH (-7{wc1Wh]DDDDdڶH{>0Ly Z0WcX:k}s[׭y[1Ly *1} `.v'-f q'E>0ﺻyW('2ϟ?" l:w<"]uuԲ0lKH4,Beeei0AQϿ7YrI^ܯbʨ&R@drzH$fޣ;h乷1(k:n|{j=;`-<+u$k>5=9&ѧ[RR2RWHQha꽞%IJKK-cެvxPSSsL2 aQ_.&cT*C%mƚ{37clcpGb67Ł1|#wG֫~"2ڵ/J IDATv5QxDDDp|ߖf]resܱtk,ڲZc͵H,̻v1g峽(Ӽvlqܹ0g FDDDDDޠylo`9kfp`_OtFpO2k̝A~0q-2ywM(T#Cla  4b{e!)\V`kVXDDDDD d?f] 4q|q)21vX>-^* vF!_,0QXDFEoʽPJ iţ7|,.KNQ{x a+ JIHAr=7D=JUĂ-M"e4Mf~?24>{2~>|~f9YYUcbN&_ :4HU&ɻCD<灪2coF}T"ў1U0 ˭>?;i/!""""drMt:}K&Ijkk{"N֖ : QP}Vgu(X&)Nxѣ{9zk*tsޯ_~6Yafu 5QARkʌQRJ8znH /{5F~q3;1""""" 'ZLdV&o8ܝTQþ?` mύhggePYYygLTj-[6ײDdO2^y@m/},˲v%CD>0,Oa!*v s4;ֈS^|;+ cBcEDϲhn|.:  31 }?*,DDAsw}KoP×D6~ۊ5_P}U7>N_GO : QP8yf8W(UȎ]X rߜl4>pCD6ct"(}n : QPx6T* spU|ݏ%O{jhhhHc`mܸq'A " RNkjj*pL&Ag"QFvս0m""""RPtg۶,"U"H$϶h4kvFo{s3M+VXfH}V6}1}䧏իWuttܬ17''y>I/SU;ﭬ^vҟ6-չ#~7Ħydε,뽾?L&6}˿`A]D.Pխdz|1`]b,yTs׮]HUՈ[U/{kD\y״i}7ȻDdN/}gc>K[:mO>Q'L`:SD}^`Eهy~ۧywȿemQa*X,vyM>MdG\]}xH(//3";fUweY{Tu{3>֬YYSSƲ={a`ڇ|?R_L`XB?}ɔ<0d2dkƚp8KU/& :DZjLN9u?76l~TDD"OHDDDDmeS6l:|5.d2X +c8 h.ێb4׫m۾z]׽1OHUC*0Nq3?,[leYȞd2сl^YeJ$EDTf[ S(2ƘWQ,ˊcjzj"7UaY7|5Qq*3tD󪪦1WQe2p8ޠg* T%D48uc`577h :QiDDDDDDDg""""""am* Z[[> @DD}BD"Xy@uuuGXUdXQI30%8#A!cfXYAg!<ϫ@iAg!" W$xg LU翮?qFCN̂їD񳗽ψoh7Ⱦ@lvw$ 堳g* TAM'* s@ ||վmˎYܯMI41Ҙbclܸq'A " /&*@ۛ}Lw 0w#""""*Q<Q kFPQ7xl"""""*qlJBUU5gΜcṠzZ|ln _HDzZYYYyYu_:fF4y^/(\yPYYۃBDj1{BD^M%y?c8fmԇuNBZnKcT555=੠s+Dd-8DDDDD3QheDDDDD4z<E>mX~`oOn""""""=TV^]q TTT|q?LCYy8 L4_و&K,4T5L&y3Q=MD.Rխd+D8{L؜`~@ֲ;[KSBL@d"(Qjnnnt" ap3%@dc 3]GT,X &9ѐx6³dtڟ8ַ뺏q"*5553BЩ"?H<t":P]]/Vt2-DTL_FyĻk{{{KǑCD3 :  y^z>GO : QP8y`]ǝ4kݵx"YD6;Ug;Dd1/Ag!趠mS0i(uLݥRn`"t ip73DDA3B!I CDDDDD4 N)b(%"$!""""":(^M_w4-rggl49s ύ-"x*<˺By@5553\:]}1Ô axx󼥎B9-UՋBDY(7F: QPViW,nUyض?+pnWmo:{ wI̟ux'N5MH$d2iAg!T @7,DDAnmQqď'o ϵ? j^=?'ߩB7W}#""R`v[6=eÆ Ag!slhĴ}%CCt¿+t"""""xgȐ^ЯlO.DDDDDDD<ٴx1I DDDDDDD˶|5Tܞh-ώUl(,Juc@R)DT8y?Ojp~l=޶e<}Qab'Byo$"8ySէ&ckaGHE冉ꛈ KSSS_۶ɈN g3ٓX|BSQ__ *++Ӷ ˲eZuI& :ȶEeY֮D"pyD}B0qس+B!cYhYt"Ȳhn|.:  31 }?*,DDAs͏my-<˜qPTȟe :eqjii.//O? 1UUMcBDe2p8ޠT=sSB6>p6mA " /&""""""'DDDDDDDeT \}?RSS3# *"cA!bUM'IbAD%+TX8d `g<=((\y͞={38Ug;|,"BDeݑHd3BDN$RnА(QڸqN;AD$^MDDDDDD4 N˶$TUUYs9 :zZYYYyYu_:fF4y^/(\yPYYs渑fTՓTr<8Ll/\}ac${:Ck$M&e<˱sD3LE<``Nx9h>Fx섏QQy!SRU#";>2}'ddYkIhD2q}jsD"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""<M۶IDnK$OVrC=ϻSD$+"?K$MKTl۾HDޚH$;H\h;= V8NRoVՈl>}k֬霜3 *bM"D"q`8@;;;޴iS`+W<*\i9=e=PbƘ1曍/O'Ttr?\zn2Qx<~<{D<F/^vmW~S}W\=vOM [DD"qG˗϶,'N POXw6DSm"_SS3òD,Nf9q{x<~3Lp뺟[\,\Ğ-0A H5553Z[[¡j"٪zE:.BsT1oT,{?0sx<~|Ƙ\םoЦMxPNvwwg}#STx:DSض_8XQ(jMk3l"As=۶}U߶[[[?JeYs\ם RL]SS3c"OhpLE# p W5kr2'Jy֭{G_?,?ʕ+mƘ_8@vZU @UV2|=WGommmi~UA"yu9<7&l =Tˏp>5k֬LR^"@3{UYqDSS#|\mW.p59䐏444s) #C=s"33U!Tu6<ud|@ϝDEl,t.U}%xYU?jm=`xBOh3<` [},c̷}OKz7ywBu_QՇ,}۷Ls<Lm]"8y`_LfQ24Lp衇>=Ⱦg@DND%gDyPuh-DDd`䶝{ }DEDUor]S蹏yP"r3~9 IDAT30>яNp2u V3rh{Æ :pє :DH$x|G"BD*&4 QH&_ICP(T`)"JH$f@Ӻ('L^5|Ux_ D"sjs^͵YvnP,m&DD+TR >݃ETz$6XDpc̀[ Phx\vkY>`,A?GYz۪zбާ`qLhW߻S25M]{@38nơwfƣwlcƘu! N օW "r_PD%|ߟ5ޱhYVXܛs; Thl1fxm0dَܮA?Go<޾ۇ?>/y[ED"oKE?=+ᝪ?馦$"""e/!"BDAvPD}+"VȊUu=| K:E>`ǝ\#w3U5 2U=˗ώD"XOuz zz<O;ccOD/h0[Uomz m۾HDƯGτ^eDDSBWWmmzq4ڵknu]Vym)DJ@<?_U/GwަM:r.U+V|m{SEutlY""***{/^jխLǪZ[[[d2P߼"D"޼\] 1mll{p<oSOD=7"""*!\y&"Bdp6hc/r_JWyN\mWՏLfY1Tc߾}{߾[DYX˲+"\_}}&H$8q&""3 "gz1ؾ  }:wQGbkkgyH&ӗ^ziw2ޫ{s8~>[\}ɶmo^׉ֶ~ֶD}hÆ {FJ'DDS@$yf_U8~2 ߸q+i6=U}q7n|Ŷ,CˋUh7L>ߧRի:m۾@|m/&"*NA26;UVg;p81Gn.z~ɻ{}$]׽sTm@ z|FDDD4"\y&"*"Ƙٽp RUWEmшq噈;::tJׯ!"xZDWE1UMHgY!mڇ[U_H8i.p+ST6<YuLf#_8bc -"?uWB; =ڠ78DUc޼yWtм^ϛL&5AD/hWՋCCDDD4 _BDDSQ]]l6RYYqD8Ne~$ڨV^]ёu]73\uA=V5553Qv]wBNDDDDDDDDDDD}p;Z IENDB`pybind11-2.0.1/docs/pybind11_vs_boost_python1.svg000066400000000000000000002532341303320175600216520ustar00rootroot00000000000000 pybind11-2.0.1/docs/pybind11_vs_boost_python2.png000066400000000000000000001202411303320175600216270ustar00rootroot00000000000000PNG  IHDRwbKGD IDATx{|\u?s&I&MSP"o܅(Z%93V #xYtP$9p\(7-(ª@)M[=M&aȽ$ȣ993M:ys> """"""""""""""""""""""""""""""""""""""""""""v""V\Y1"YQQꫯ(f;XK$*"玠˷}ouosxƘ>踮8[D~yt:mo~y0EUf+Wf>oIH"""g"tDt|Ws$yrl ۶m[&"_e;T763l63C_/"""D4=nI |cOUOEM6DU>n;X,{l!"""3MfZZZ֏Dyն3%U)"ڊ(xlDqVTTl(̾bŊ(8γMMM/x<>q0TcFw'NǶmvL&?8<AG\c.pFsQƘ{w <@7Ng0<3HU?`x\yMdmk{RU?)TQ}_y:2%"uGQy0|Ú5k^ɟ7V;Z[[?OwDQt?{5u9LDKT\y-e'""%DDI~q)*u&Ώ܌\{Q,{pժUӇO<?+YD4-c8LSAeDds_@}kOy8_\Wpb\dDlc̯6)zo2|ZtUwٶ]o9cɟlqSOcnYzc2,8 0/^jժfF|e2g JEj }5L&jgbu!7"yz1$JwKK/Kh3Mfo3<8WWW1ݹ_ѷpkv_GcMv% >ۯq8sֵ^U} g}{Ex<>4jߣyM~0NQD+9U?5kּ""75Ξ= "}E>X~tΜ9~:7q {EQt!rBTz3U-nx> Ӿo"7@(b!""lX<dzzz'8Dd]mZ[[Enoqצ<yuL&n+}ͻF"U@OE On8 1G&rScƘAntzLއDEQBSUIϏ%cYd2O[jUU3M&MD.6\z>up@Dר2TU/u]wc~vG<_17D"q6sLnw$da^n0zJ<An `8NGsƘ n/H 'd˖-osu}>ߓG4]@hhGDDDX<NųaiiiB_pÑ+TEї;:::[[[ond2NU},P@hm[Hb d@ƬYj{zr 0 3z?0{[]0&;YMn{"""N&"93q}P}_صkב [zuDbX#x8U:(=1f0c[3P ypg(lVn58cLjGQYU}u*V'?Ez wuwUON 7e~Gqfڵku"""*g"QhsNI566ٷoVΓ˗Kmmm]ݢdͪs/ECZ|LceMvgsEP]+;_mfsW_ ډ[/(`Cac{"UvfƘ#Fp Eѣ ;E71pbEEd2yv8*PњkG"x?r@->3SsQ<>79U]?-@%"Ko&z,p?~ ={d}ِdL$ȏE+]׽OU-֣ɾ?s]\xw~ opK"X)"[[;ÈK'AT" UH~?boU"""*Oy&"t:ڵT^TE"|x8Ed L&,BnVU2O4eVcfG W?З8}`;,yHUxw1 >g\\peCkkk~Edy"_"/iUu~ @FQ!w{{{Y3_3?Z\Q<,%KUoP!"R/}㪪655bWDDDTusѨH<_H{ ֶ{4;Zjc0R6==rDZUbyec?dLu.űR)yIb-˖-H$d;`JoV.u?VRho}۞?7_yh9zK.H$Nmuw766LDTv>U-'cCh_^r` Uv߷1Ƅl6amќHgrkg##x;3oF)Gt:G?c#DG EQ-mg!*wTjVEBD@*:-E+WfRUUv"RcLT'lg ]r2 ELDeӶ♈hMT =3u(3}~{l!*gV8Swpݺu{m!*wUUU;whooc7=rivܳ;}7&8<d`oDT"27 kjjεq0YV] ^%k3QɊA mg!*wƘPDFQT#\D1u*Fe;+m}:(y3m na<TO(r'GF@XH♈h _i^,F"*DDDDD#% /E DD%k $sV3̳T*57 sTuG&vrn;}d;-L,ʷ^Tn;G^VDEvr"R8N,DjGQTi;m3fydM\X@DTt, mA===BTAglg!"@Dngf]CŇBE7?dh8m;mg .sQ#_k]>~ޥw.2 [8l/>vD46X</>!n%BDiDDDDDDDC3Qx8---;kյDD9ޞ%sV3̳T*57 sTuG&vrn;}d;Q)M+Wcnp1ffm"#"EĈTJER\=7):M"R/";Uzqjmg!"@UkE>JYJmB<{L8u6˖-b@OEd2D"RD~}X> ky@AeEBTc|U q@Dn{$ QJ py/]tڔ)SFQԽf͚}H$N 6<_2賯aN1 wN1xpzv<1YJ& {"&Ĵ۷ ;1[j+"yW?(1]?O!"rQWWYT/4;6m"``7V}> HCWW 1x 1x xqHU'`MgqAlΜ9tL&|٢7l:!.|)":ysx<6d8mE˟WLDT\&BT@D"rPDF:Ƙ1&Qemg!"ȼcn5hz`eEDDEǑg_g;477opDyލ3',-M u g|20I3( 7λF75At׼*ML,6pDT\晈hyH$0[Uod2ف&J Uݑdnܹ۠sDN73Q>D1&"TUUv.L rI1f{SSV˱hJ&E0/ k׮9<U=yz9h;+LSlR1SqP}Xn8("|<m}nd3  0%3U5i9/}njZlRѯpW:M.k׮i"DDDDʕ_zWKaLDDDDzm3 $wλ?kPa67F"FWv\srMgUDSE1 FDTL, $sV3̳T*57 sTuG&v**xt$=}2{_W@k~̼t6MIDTMz"R/";Uzqjmg25G%8|o?W ;7:Q)p䙨AeEBTc|Uʈ`F1/NV0ZsNI`"I3Qw@D9mmm]x*)>,CE3>|[`]ŌDDTjMDDDԇ]pDE3^|d$M,ׇZ[ҋY@mIUS8DDp6Qx/k J[jĴBG04Ut#Yy T*u c755mFODQ"4Dj.,KC50w;* .Qy84QӍ=u iD[aw"F|0 9h`<Tym砱aYQq0"ˌ1;0/"b]?pmMTnR@yzUɉ&D<{v"innWs}ӫ25ˆ3,ˎo|JDhP'OY b@A*zc(QIx&"""!M>=)ˀ>gSP౉EBm'6l}}t' CT\׭pf޽uCTkb;w<ޞ8LTa^BTDdnԜk; 4axa]] G HVDmg!*wƘ0Qqh0dGQaLTlg .r<ϻv""[8mh,ic@DRSiLDDDD4>%"Rar0h`<Tym砱H$0[Uod2CTR0 QL&yʝ :GD}<yzBDjWBTTBD1mg!"@UkE>JYJ3Q-(^uwwo5c; "r;#\x&*N( @DH"*g\h,iD"qfa>ɼd;Q9KRTT{<{vrJNSՙ<.P[ _m-M2oVXqbOOOMvCDTJy&* "clYʝ2,vg,b0 U@؋׿u Ap1fq,;v"RcLT-ͪi; Q6Y&=p;hê]U<ֵ޳%3g[2ug;oڲf[Z*vR3tDQsv"Rmm;崴lpu=j^y'sQr".T xߖ5~u.([=ϻv""[8LDDT#ESe<҂ί!zbו*♈ a #3la5VsǟUHDD4p6Q%KL>}~{l!*gV8Swpݺu{m癌'vw;I"Dz* HN@Y\X[UU۹sN#p]lq' !!|i;崵u .k#Z52fƹMuNQ=&|IDemųukFQ1ժ|ߞJN=[Nȱ#Rڋix[XqٓEPVTyrѱ;m$""e9NXJH&WUul2g.)vرݽ{#+Wɼd;Q9KRTT{<{P@Htү]:pKrskn򍏔$;T4U8ΣMMM/CDTJ.z>( 0 YQ}[0J t (0"r!Ed65M"@UH,DNUTu!c)OȎ>6vX5(U@4ax.fڠ}c@SS~ [xn@|T$LKX J|D7@Y]R-]h&{? NI&f2yer9|g2޳e mbmtfQ*`epRD"r fI<?Bkkk e̘1^"OG"k dYY~p;w_*+"SOw-?oo<-"՝۾}{%"'bcEª:ADݽx?f̘Guilchۨ=^E:%m|TDVVVc۸Svi_?*{w+XwH3ν㛧TՠڸC ?VֵW/Ŋvy m ORq:Bjc a8D99edD"{ @Qbؤv({m*!noUy8AlܼyCw~ wǏUuǗ@4U(//e ^,bR{u7`E\[UgE2(nPՃa &"[T c^^cǎX; 3U:lcH}MQ;kYmUH^kH_?ayëZOG@a5[F`F2m\#6v;1L.O%4ސ IDAT z0y0 9\2ࣰ?e:@>(Lâ(Do"rN<+뺯{ Aֹ>s:{GvɪyKS1F7'5V bSG1={ xFUgD(]57n8h'c<ݔu7'#,Y2{F/HO=f8RǾ]|^G5!̽/ƹG `G0l gQ=?t<־_DV{F`kss#1_e')[@DfL OmA%.CbѢEkv`ڂ_ 8x_^£"?v 4 ׅ$3k㒯07'+80~@ 6mS$a{05<744D֭[׬f~T3"rN]]MSL}$í@5lNۋc  Qi+~ ৫3f0y ^vlD4¨z; vDp< hs[=L6l5[[ L `uTBU} Wtݺu#efK/tTu-爈ȚZbM]8g"6w=[)9QxsݻoX1f\mmvU'p;Zg BQo؞g`bsi ֬s@U e"2661Wix͟?}y˔(D9SuVҥO'aVSSSUQQٰa(?hVUcO@~W;u^I]` IWT5.E?qY.΅]*ؤ3aiI=& `lbV} <}bo[f"\af|gV=!=ra6d?c]R%C3;˲7- ; BDxo=";͏ 1>E}nwjǢE\hѓL߸q}v,DNDc!"q/0aŒc)fx|YoG ?9,~XS4Mp%KS }${a1q؏]^AMlbXMĮPUzylV;=ѳP3fv{#ngۛCѳHۭ3sazb~x l{' v|3N{}l%7*Rmܚ*W}<w`O&3S5w~mcSOss68?%ɟHW.=kkk]ɓ'ꗌF/MDdE#p~F8_2Z1u Uwm&_a{I'.H?հI6D藺ǀ}:lRnggd\wm]:=8gJϥFDoۉZ {o[݄(F9=ϋ/~-@h ;%_|d2 -u6yd~Q4עMJv ѬBk\ KI^46EV6 =ҝ?E|PÙzBO⬰=]c C3`:l{ c{CϺ]`[ѓ2ٯ3-s~uU[UH-'Tmmm"u'uga""wy|?G< 7_~/~3Gy"""""ꗼۃ7P~Gu  pylw;pgX~eVdWʲv^tNf\mΉaEja vB.w_ H_zz}-FpgFozd R'>g "&Ϟp]=z̅{SxjG<28hT>ԩjL4ƄkAD)Z%" (4%/K?w]w%F9\y_}udo+џviՏf.u4i<|`g(rvݾnG`GfM?va&?K=.BV@ H< _㙫ګ|~S_3m9m߾A{8ϝ;ׁCrB4R=d^v,Dsu2 ;"Dd2%I*a]yUr rnAD+>L@k3is0GPI/J#TS®[v^u50-+r-&ErX}c<@(/㜽+[qwu\x:!>SۧNhSSӦm֞8?H$ A=#MRl㏇QbUuOqjll|=xd[f+a{OEu`_KMP[ͦ}0^빷)KϨVF+`vK=kh`6y roWS$b˵]?{K7avj؟Rm~?2>(󟜫mO:u <뽦6/I"bjjj`]7tӈNDS)"&D!R z~pQ|ߟ%"ӺUKpeݲeˀ^-CJC9<8/c! MyI5&J}^DNikk{~nSSKC(p=8crQ)s]wB3'ŽL&+ZZZZFo%:m E]뺟Fqgo.sy***/|}BD7Q}ÎPÎa Dd1f8' dr1fN$?X(4%8<744k3WO(SoD󞖖o馭uS|m_ރh1Ƭ}v9}Qaw;^ڹJC{ o 24"Jcưc!"~=X[乭JDRUX.":skccc tMs8)]}_uuâE-8ȊQX-AܒH$7mtfkkkאDXDu-›D4"̽n'/vM3|뼫|U<\,Yг9@9r7͈DTc*Srg"3ynll&ߋR]QQaCD+q~@s^í7|b} kK=[;SȬ[+Fsɫg~z +F"6&ɭYGMޫm־VHy(@lECU|oϟ_]]]! RiLl]-sr֭ҥKkn=l/;rO|-*D)555U 6l/Β!s7vuC9~TUnkDx|Q4=SU "K)f7nYOQ;v2}ڄ ~7첕T4=YUAT @D? 5r.?Xv[(˫Auac/"A I+yT9 ED1DTvy["pMqH]knni]uuuE۾p0NTv DC:οM&bm"_SSJ-|H$ š;Ž(,;<_|ŕ"^<_d[dK+tn޼u 3 LۼPA0 i!""Qg乫kԱ5Ǘ,Y^bܸq "F`_\2 䍼먼)"""<UާXl6L{WwN+wQap rECNJ<M[;󨢦@xz@ÎF?u7'#,Yv,DN=ϑHdOrhB"""^#?rnc!""myѢE|-XF$n/Eq}D"D4tb$U=x-"/WTTp%z"*9LgŽM;"ĿŽ(; vFo a\9jwʗ8 @uy8Yhp6QXz>x@P5 jSu  &DDDDDD2Ⱥp2bq6Q3,`@-VLb1f]cccY-Z ධ "+?v A4=DD&EѲ;fVKY_ ri]j؅np7 Sz pA</~3_h[(gMxKioE8,s>l ~ꤝ8%waIRLv'ÎFx<,uݢ\CzKwr';96ԣ8TDn5l9| 73=`,j/6~sa\ݶ&5>x߲v~YǏPcqM]=7aT prz׾ C>͈<EDDDDDXx'vMGv;.-`8Li*`G/u+R$S5?8΀MOlO:&>l1_]& ءR8)O_.M~MC~J,qLWWWW;o<;xJeTnݺ_tְ!*u555U 6lommTTޫ%j?@ 6<%=soHvwzyLީ IDATAC8v&Mkܘk|(뚿ݟ3{O_N=1l/zT`_' !<e7nY/TՃŽԉtVVVC@Dq/0aŒcм/3W;^/vi8;3ε;l:xع^7Ksuszk@#gbS`xD0oLHtv,DHG"1|$cLT"䲯FO9;ðs] ;7y ZmxnWǓ+g׳ vxo x !&y^_wh555DaQa@a6@fQ}/P0+svǓ]Q_SqXZ;w6[iIW'Xz;5\ l) <р#U>餸,bءݓ:6v^1m%ugdR%W1y&""""=áeT[prͥ6=/k9_ؽ{8nOa'+p9K._<рLh2|m`ej튇 Q9BOsoI}=v*k q=P^ߗR_Ds# !y&RWWw6}UD"JX,63Uu}"+xJsUuy^oS `^[<*7K@7N]=k/"=d`zoMOa 6q>vtφ9[c~fk<KO.~FC3ѮDd"vCEk|*>">şSO444;hTx:~L>f*8NPiXc닪Dc mZ%" g%a\uP`Dd&^Y`y0nݺ魌0}V$t>l}3}@=c}S>/b^] 2?˧ac(IL=d<BUincCDIS`% - 5%Fך9 {Q ^K̼/pу.zCUggjc_GD#"3fDWpE!t ga[av }ֶC8 @v\Y io(pw{% SO?u & C,%3Q6 yx2E= D;ϼ3B*1lށIG޽y[߶êez$3F?ɾ}Db]9v;`{96/p3RMݽ .57 sbLDƉ FLsͽ&T5л?WgP8MEah((l|}`a~άlkoN'lء~lyYτ|>inJrSF &CcL,{7tuud1,b'8O&7A#2GE^^0P`r4%|Gg|? &DY3a@ 81*T(#̃jB;\GF{Դ "$*YOn|{ =I7ђ?cADc0$BUO   yQ N2CvLhhԧm`/;~ga# Sy3VZo|8b""""䙈FKf~,j Mp1=v<4pA=pr]wB3'ŽL&+ZZZ6pb3Q93GU ;1 o|  L2q焰c!" L6̉D" pc3QcZ;@]p3_Oho%ϊ7~q^il$@(""Jc WG'1m'1Îh1y& ;|wgk`La]oVQYV`h(,Zh-ŽxBBDDDD g"Ɵ.3F hQW+:+DDDDDme?~uuu6Î/֟-/" NlxNJ20I`ncEg9wa u2q*n/]?/TUTTD6lذ+x{7,Aaǒc{MC f]*~|o`_=8ʛL}aeeaBD8s}_8a„aBD4LEDDv,d[.L4#u53NT#Cuc Ο^KaGg =\D#1 @H"B`L[Îa DЖo-s"ꀺkv4xMMM+\vDdq?Jm)_yVy+NYW`F9&DEjii 𫁖{3Q#N)tWz0DDDDD4*q3Q쫪%WŽ';8e?Hp R[7+ D#\,>Hvn]q OUÎ?#g,m;"ZZZvoFDH"*e\0LaDYjkkOpgL$oQ)bT8[aCTblUq_;"Ğg,"r#"ŽԩU=aaBDTaBD4J /DDbͰD3x(|xc{w9T %Wtѫ;Žhw455mDqH$v DDa)9w|]Dvڳ}~@PQXx[ ``GњѕŽ|l9ZUM< xZU\ @Nˆ#s^[|\wDDDDDTɳ L)p1=v"b{Aͽk8zJ͊q]wB3'ŽL&+ZZZ6p* /`gwUDc1Occ#$"NjUM_wt_܇=UPSРL26LBL&gcE"`LD%x sT#APL&.F)AƘATceGg'gE1wُgV2&&"kÎcL[+1Îhms]]'E䟞R,Asɒ%oe}qݞݐ>Z4H^Lxc3*啘BCT-Z ධ "+?v DDa)ʞ纺WDfvu2uZU1H$_,H$~ߛ8y_`= R ^d(OE<)iUFDnp Uu~7H;<D"{vDj5'ȷm_vecۿ_E? fsgH{lmjCDqǏ:-m83i{h4,1('"IUu_U)S,^nW,6ƨh#jUS#6;QUߣLjw$E\^^nFsN[>8 `voG,М("< q8#"/sg; 5ܸq{m;veH8;vd}7cDd}qyqUlc<:;_Ov} mm6mZ6FExآ}aw"?/ZD42坮h4 UVDΉwes]wj*=][[Nc3"p<?%E]83DdUm<ו0k"w@T_p4<ŠKT·[m""" 뺛K,i ;"ʭ(z4@;gPӲsr[M#˅ ~5 K_589ŽuP| /8F۪jT͝;>QVV'*Wl-B'6< ԢS<~a={ glDDDDD4ƞ 4i6f}@D"0U:=\{jN]]U+ X,63Uu}"DTHU"ry+Žh8ywwwOFVl9 (سC٠bǦXظz(O@CCY WO.Dd"zODKUDd1sFUAK1Fրq$(Ѩ4gyDU?JU||(TՎxjkkOpgL$o D44b$U=x<>UQblUq_;"T=T"}9uVT 3ǼNKێLjȄNPcv,D?KUv,DDí({GnU5<4v~ïO9b~`+V@2{{2~/uٖ`1<UOhv`+W%f>Xes=DDDDǗ  &d7=;LgoN>sΜpYY`q3Ήns9ݤCpt׿SlHJC\ fY'2p@a@3c RtF;f8{ۏ;m;χ-˧IRa[WW#ygT*of)0p=Js8O1~sZ}0<@#+'ifwZޘwqǛW$y <3URoyCE mA়ݛ̬5',$w_`fY530}V5gYdYFH!qf ɧ4W@f۲,I>w(Iyg0Oּs>@#yNNz%i2RdQpkϖ6?wN͸4 #i>VG.,lH8Ln8X,HҼIpm Gq/̲dI=yիO_;L%N$=tp9|qc4:3[B8'@j !S(; L5ir$߶:nmOUFBؒefwߝwљ|ܒwRakeCSӶt<Ӈ7½1Γ4g2]_aEye*`H6T*[yyNX.zڗ`˃@oyCNq 43ı.I;4"g`?#<2J$I48(sߙwѵ/hii)l߾}ƍS ̛74ݟwљىi^<@-MӋ.\,,08 bffGBl@Bie{,0 $1330J$umsRT>w a`f\mqF>>uvv.> 04χ,ZŒdfKږs$LS>s-Z[h`y><e[k:d&&GZ}pyYYr[>h+Βt$FjIl;!===}G+Wn,iJZ00Кwjy̼Gnz_)*O`ȺuvH^9 V?;ӶoBfm_ݵOU.hD4>x61IU5ɿIo.mOs='铒>7- D}9&AX|y!$y*<@#xae'K]V;V^}Z@OOOoy`*< xJ$31~y2%!sl$g gZ5! $<h(4χ-˧IRa[WW#ygąi/iwYFgf4BUYH!iB2JY$i(4RtF;f8{ۏ;.;(GydI hdq7EQ4Ν_3<@koo_Rؾ}7GQ͛i^; 4M/?yyg EQԖ .\wjyF13#); Bie{,0 $1330J$umsRT>w mp43wQ:::Γt\V;iݟV7htqf$I;L%g`o $-6ݛ$-hOYH@,˚S̾lf?w?򃁁; n#93 @;(Il7===}yg]OOOmw#46gyyCgێg5Vzn9g|'իW8+Wjժ'DxaNNt呏}m7NMg\r8yABs2Dv[[,OϲbxD2FYE!sd͏~ZwףhnnMMMs&Dx9r$˲KkǛg6G>֖dYv5kHh'-0ӕJ3%}8pdVYm8v<lmV{g!pIOd͏~Z]s~(DQ47˲l?7m>˲eֺ(f^ycyhlm+ݽ+{Ǜi6ry~Bg>M_kr8{H~,}{(Ltlwffi:HtyL !i4шyfsi~b^ycyhۍv Pnjii9Z30YqnI&IrX5r,^-iԥfRtfetwwzr|bgٱ 39I(ߓr3 fv[R$7PVzna_&y&3[ff;k7lpXcEQ?hw}5Imkk:7oـT* <3/_wvvmZI$ImjGTz$y5k2I-#ۺudڵkGI5%ufڵ-}}}4=qÆ )C_SI$ɥ8KF,~H9I9BuI/ݯm߸qc:w/Kqf5۶mxqEѲV3WHqJH/uoIj,w~G1O:]t#P/ ǙMΒI{3 RfjV^BEQ'ZHw?U>V*hd}EI.K%afP}%\2wD R3@SS읋-a~pL8٥!or$˲wIgǎoJq~~X|}Z) `q7IvJI:JR_tIRTZQ?JVZ}aEX|}:I/~oξ4]#IbsNI_ںu$=E֭Q"E>{ %R&w_$DW+W<3{ߚ5k.zz~pXp~XEIs%8T,z$&3(0[{N҃[cq|&ߒ$y`y}^Cۈq$IY]7>gEQt{'·$gf>}4F.VJqBIڲe˩kf_8K B$ȹfIs#k{zz$}^4MϜ)Acfifg'IVI;ƪ˲z]㩓EB;$eҥKszyO}j%޾`dCwIRSQE>S^XT>7Vڵk[$maIr Ͻ,{]]]H)ikw*Ӷp*~}$eY+ZZZhUTtygg=I5~%Bϖt'IMMM{j'C23)VwwMn:PbIc{1'OO?'I!ꓒNloo_pUWW$1j%9<c[X>zW\/iySƜwu{ %闿Q ` Z=w[<;RC^KӔ `Fy`fXHހ݇owy7<({l_͵SBھֻ{gofо2ЅEr*i$w?j8$-Tf3wU׼$jݒ’%KͲlq)8(|Gj*Y{^ m3@ctE ݷJu?B>!t5`f[OǺt$577Jy׷W}V^< M4t>=_M[Jr}& `Fyv$IWMS$wk/4vG\ NIhz3c)Iݒ~іI8\xEf3;%ic3WLk4($wo?~cʃX$?􀙽~ʕv*-[%Fλ[4z[O9YYIs8rapoeǎwK4t;s_ezF}iHRa>$ ٿw30umeI_uvvI*JoI~1όlKZ9嗘YU`E~SO$KҪb$~L镒l]GG%i͚5 MZ7gfWjU.ev655u E$=,JHR[[[Il E Gek$-[n}4IOpV$}__(q|ge?֭̊pƍSw?_vwq9%}Lҽ! szaÆ}g8Vmt߸t+Fϛ7%mqBWI-+{@wuu=e;$ quwIBpԽS%W" !l˲ۛ6mzpM6zk_{BM3>J"3^:={㎽ }~w|qŊ?vJI|ktM~W,vHJ^w,UU bŊA3cΜ9߽Gߴiӏ/_ ]>3G?o|mN:̙soaPCvrPRM6=|ꩧ^gf;5tqK..ot=zwqYIg>PT0Z{{*Oq}I$)0~~%͗Tϯi|\>P(,˲7ZuT;`}Uwwy8XYH񣗛ٹ <rWT~wye!Iu}/OOJzUKK6IK$mvz{{fƍqiY_钎􀤫ZZZ>{Wwtts%U*bf]~Kҗ$I~T6I\R$>IWKL$uR2w햖y$#iwyB{#i_}V߅Lw_}S%-vj6-b``I@w%$X3FP*ޚew5toKIV㒞ooNtW=+%zf&I/r~>)kq7x'IZk= Kk/袣C?Iw[qvtt~pf8>u_+{a9>gpp𔫯T,_B$$Hʕ+zIf#mmmQkk7mry&G%]_^T*&B]]]H\pܹsotItf-^~'$)J$)I^(ޡ#Iq_(V38 3]R~N9YO%=$5ytgIZ?7fAIMt`/]$3{p,I]wݮ,:$ j ]>8KR$wJEk֬9^3[ZZ>BxEKKƙ4<fv۾Vupwo23'eY@n3[Q_U*H^w$j[Z}<͒N)TG+-Nj $=GQ%g֭fIZ~!D 3$IoLQjYf/Z,If0"I7lVSIzyβljTL6lpX_Jz+/eYQ 9m@iDzC%)˲E2({$>5|ytqDV%Ir ~/i ("ٌ#vKRa>֝p(O^W*^_rkw}G,^$鎑+.䒹v:IR}y©;v6I$ UVEѝ5kxGDQ$OV %w(c?H$/#F+J:%El8}=ڢ+vu#+xbI݋-Ñw>dH%==qƑgh{[n}HoqwRhw_fqºӒ.;wJ',{\C|~o$w>*㹒$ɿcث$]h7KR"i+BIO$ufѱ,CIܽ]ɒy#:;;kYE$ٍiI?P?+/$=ݯ1[ݒ6J:^w[5tK}$`V;7kw?BILeJ'fVIO٥O ʁ5ny {{{vjzwtt̖ ikk/^|Ԟ={  ܽcyj8Z---%K<~GW\yٜ9s^eYsSS=W^y]&r4M#緶ګ$׮]g}}}/1088Bw/n߾}>R8[Tyc=vBV{X IDAT;]#٭>ׯ IENDB`pybind11-2.0.1/docs/pybind11_vs_boost_python2.svg000066400000000000000000002475351303320175600216620ustar00rootroot00000000000000 pybind11-2.0.1/docs/reference.rst000066400000000000000000000202221303320175600165570ustar00rootroot00000000000000.. _reference: .. warning:: Please be advised that the reference documentation discussing pybind11 internals is currently incomplete. Please refer to the previous sections and the pybind11 header files for the nitty gritty details. Reference ######### Macros ====== .. function:: PYBIND11_PLUGIN(const char *name) This macro creates the entry point that will be invoked when the Python interpreter imports a plugin library. Please create a :class:`module` in the function body and return the pointer to its underlying Python object at the end. .. code-block:: cpp PYBIND11_PLUGIN(example) { pybind11::module m("example", "pybind11 example plugin"); /// Set up bindings here return m.ptr(); } .. _core_types: Convenience classes for arbitrary Python types ============================================== Without reference counting -------------------------- .. class:: handle The :class:`handle` class is a thin wrapper around an arbitrary Python object (i.e. a ``PyObject *`` in Python's C API). It does not perform any automatic reference counting and merely provides a basic C++ interface to various Python API functions. .. seealso:: The :class:`object` class inherits from :class:`handle` and adds automatic reference counting features. .. function:: handle::handle() The default constructor creates a handle with a ``nullptr``-valued pointer. .. function:: handle::handle(const handle&) Copy constructor .. function:: handle::handle(PyObject *) Creates a :class:`handle` from the given raw Python object pointer. .. function:: PyObject * handle::ptr() const Return the ``PyObject *`` underlying a :class:`handle`. .. function:: const handle& handle::inc_ref() const Manually increase the reference count of the Python object. Usually, it is preferable to use the :class:`object` class which derives from :class:`handle` and calls this function automatically. Returns a reference to itself. .. function:: const handle& handle::dec_ref() const Manually decrease the reference count of the Python object. Usually, it is preferable to use the :class:`object` class which derives from :class:`handle` and calls this function automatically. Returns a reference to itself. .. function:: void handle::ref_count() const Return the object's current reference count .. function:: handle handle::get_type() const Return a handle to the Python type object underlying the instance .. function detail::accessor handle::operator[](handle key) const Return an internal functor to invoke the object's sequence protocol. Casting the returned ``detail::accessor`` instance to a :class:`handle` or :class:`object` subclass causes a corresponding call to ``__getitem__``. Assigning a :class:`handle` or :class:`object` subclass causes a call to ``__setitem__``. .. function detail::accessor handle::operator[](const char *key) const See the above function (the only difference is that they key is provided as a string literal). .. function detail::accessor handle::attr(handle key) const Return an internal functor to access the object's attributes. Casting the returned ``detail::accessor`` instance to a :class:`handle` or :class:`object` subclass causes a corresponding call to ``__getattr``. Assigning a :class:`handle` or :class:`object` subclass causes a call to ``__setattr``. .. function detail::accessor handle::attr(const char *key) const See the above function (the only difference is that they key is provided as a string literal). .. function operator handle::bool() const Return ``true`` when the :class:`handle` wraps a valid Python object. .. function str handle::str() const Return a string representation of the object. This is analogous to the ``str()`` function in Python. .. function:: template T handle::cast() const Attempt to cast the Python object into the given C++ type. A :class:`cast_error` will be throw upon failure. .. function:: template object handle::call(Args&&... args) const Assuming the Python object is a function or implements the ``__call__`` protocol, ``call()`` invokes the underlying function, passing an arbitrary set of parameters. The result is returned as a :class:`object` and may need to be converted back into a Python object using :func:`handle::cast`. When some of the arguments cannot be converted to Python objects, the function will throw a :class:`cast_error` exception. When the Python function call fails, a :class:`error_already_set` exception is thrown. With reference counting ----------------------- .. class:: object : public handle Like :class:`handle`, the object class is a thin wrapper around an arbitrary Python object (i.e. a ``PyObject *`` in Python's C API). In contrast to :class:`handle`, it optionally increases the object's reference count upon construction, and it *always* decreases the reference count when the :class:`object` instance goes out of scope and is destructed. When using :class:`object` instances consistently, it is much easier to get reference counting right at the first attempt. .. function:: object::object(const object &o) Copy constructor; always increases the reference count .. function:: object::object(const handle &h, bool borrowed) Creates a :class:`object` from the given :class:`handle`. The reference count is only increased if the ``borrowed`` parameter is set to ``true``. .. function:: object::object(PyObject *ptr, bool borrowed) Creates a :class:`object` from the given raw Python object pointer. The reference count is only increased if the ``borrowed`` parameter is set to ``true``. .. function:: object::object(object &&other) Move constructor; steals the object from ``other`` and preserves its reference count. .. function:: handle object::release() Resets the internal pointer to ``nullptr`` without without decreasing the object's reference count. The function returns a raw handle to the original Python object. .. function:: object::~object() Destructor, which automatically calls :func:`handle::dec_ref()`. Convenience classes for specific Python types ============================================= .. class:: module : public object .. function:: module::module(const char *name, const char *doc = nullptr) Create a new top-level Python module with the given name and docstring .. function:: module module::def_submodule(const char *name, const char *doc = nullptr) Create and return a new Python submodule with the given name and docstring. This also works recursively, i.e. .. code-block:: cpp pybind11::module m("example", "pybind11 example plugin"); pybind11::module m2 = m.def_submodule("sub", "A submodule of 'example'"); pybind11::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'"); .. cpp:function:: template module& module::def(const char *name, Func && f, Extra && ... extra) Create Python binding for a new function within the module scope. ``Func`` can be a plain C++ function, a function pointer, or a lambda function. For details on the ``Extra&& ... extra`` argument, see section :ref:`extras`. .. _extras: Passing extra arguments to the def function =========================================== .. class:: arg .. function:: arg::arg(const char *name) .. function:: template arg_v arg::operator=(T &&value) .. class:: arg_v : public arg Represents a named argument with a default value .. class:: sibling Used to specify a handle to an existing sibling function; used internally to implement function overloading in :func:`module::def` and :func:`class_::def`. .. function:: sibling::sibling(handle handle) .. class doc This is class is internally used by pybind11. .. function:: doc::doc(const char *value) Create a new docstring with the specified value .. class name This is class is internally used by pybind11. .. function:: name::name(const char *value) Used to specify the function name pybind11-2.0.1/docs/release.rst000066400000000000000000000021471303320175600162470ustar00rootroot00000000000000To release a new version of pybind11: - Update the version number and push to pypi - Update ``pybind11/_version.py`` (set release version, remove 'dev'). - Update ``PYBIND11_VERSION_MAJOR`` etc. in ``include/pybind11/common.h``. - Ensure that all the information in ``setup.py`` is up-to-date. - Update version in ``docs/conf.py``. - Tag release date in ``docs/changelog.rst``. - ``git add`` and ``git commit``. - if new minor version: ``git checkout -b vX.Y``, ``git push -u origin vX.Y`` - ``git tag -a vX.Y.Z -m 'vX.Y.Z release'``. - ``git push`` - ``git push --tags``. - ``python setup.py sdist upload``. - ``python setup.py bdist_wheel upload``. - Update conda-forge (https://github.com/conda-forge/pybind11-feedstock) via PR - change version number in ``recipe/meta.yml`` - update checksum to match the one computed by pypi - Get back to work - Update ``_version.py`` (add 'dev' and increment minor). - Update version in ``docs/conf.py`` - Update version macros in ``include/pybind11/common.h`` - ``git add`` and ``git commit``. ``git push`` pybind11-2.0.1/include/000077500000000000000000000000001303320175600145645ustar00rootroot00000000000000pybind11-2.0.1/include/pybind11/000077500000000000000000000000001303320175600162135ustar00rootroot00000000000000pybind11-2.0.1/include/pybind11/attr.h000066400000000000000000000350711303320175600173440ustar00rootroot00000000000000/* pybind11/pybind11.h: Infrastructure for processing custom type and function attributes Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "cast.h" NAMESPACE_BEGIN(pybind11) /// Annotation for methods struct is_method { handle class_; is_method(const handle &c) : class_(c) { } }; /// Annotation for operators struct is_operator { }; /// Annotation for parent scope struct scope { handle value; scope(const handle &s) : value(s) { } }; /// Annotation for documentation struct doc { const char *value; doc(const char *value) : value(value) { } }; /// Annotation for function names struct name { const char *value; name(const char *value) : value(value) { } }; /// Annotation indicating that a function is an overload associated with a given "sibling" struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } }; /// Annotation indicating that a class derives from another given type template struct base { PYBIND11_DEPRECATED("base() was deprecated in favor of specifying 'T' as a template argument to class_") base() { } }; /// Keep patient alive while nurse lives template struct keep_alive { }; /// Annotation indicating that a class is involved in a multiple inheritance relationship struct multiple_inheritance { }; /// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class struct dynamic_attr { }; /// Annotation which enables the buffer protocol for a type struct buffer_protocol { }; /// Annotation which requests that a special metaclass is created for a type struct metaclass { }; /// Annotation to mark enums as an arithmetic type struct arithmetic { }; NAMESPACE_BEGIN(detail) /* Forward declarations */ enum op_id : int; enum op_type : int; struct undefined_t; template struct op_; template struct init; template struct init_alias; inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret); /// Internal data structure which holds metadata about a keyword argument struct argument_record { const char *name; ///< Argument name const char *descr; ///< Human-readable version of the argument value handle value; ///< Associated Python object argument_record(const char *name, const char *descr, handle value) : name(name), descr(descr), value(value) { } }; /// Internal data structure which holds metadata about a bound function (signature, overloads, etc.) struct function_record { function_record() : is_constructor(false), is_stateless(false), is_operator(false), has_args(false), has_kwargs(false), is_method(false) { } /// Function name char *name = nullptr; /* why no C++ strings? They generate heavier code.. */ // User-specified documentation string char *doc = nullptr; /// Human-readable version of the function signature char *signature = nullptr; /// List of registered keyword arguments std::vector args; /// Pointer to lambda function which converts arguments and performs the actual call handle (*impl) (function_record *, handle, handle, handle) = nullptr; /// Storage for the wrapped function pointer and captured data, if any void *data[3] = { }; /// Pointer to custom destructor for 'data' (if needed) void (*free_data) (function_record *ptr) = nullptr; /// Return value policy associated with this function return_value_policy policy = return_value_policy::automatic; /// True if name == '__init__' bool is_constructor : 1; /// True if this is a stateless function pointer bool is_stateless : 1; /// True if this is an operator (__add__), etc. bool is_operator : 1; /// True if the function has a '*args' argument bool has_args : 1; /// True if the function has a '**kwargs' argument bool has_kwargs : 1; /// True if this is a method bool is_method : 1; /// Number of arguments uint16_t nargs; /// Python method object PyMethodDef *def = nullptr; /// Python handle to the parent scope (a class or a module) handle scope; /// Python handle to the sibling function representing an overload chain handle sibling; /// Pointer to next overload function_record *next = nullptr; }; /// Special data structure which (temporarily) holds metadata about a bound class struct type_record { PYBIND11_NOINLINE type_record() : multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false), metaclass(false) { } /// Handle to the parent scope handle scope; /// Name of the class const char *name = nullptr; // Pointer to RTTI type_info data structure const std::type_info *type = nullptr; /// How large is the underlying C++ type? size_t type_size = 0; /// How large is pybind11::instance? size_t instance_size = 0; /// Function pointer to class_<..>::init_holder void (*init_holder)(PyObject *, const void *) = nullptr; /// Function pointer to class_<..>::dealloc void (*dealloc)(PyObject *) = nullptr; /// List of base classes of the newly created type list bases; /// Optional docstring const char *doc = nullptr; /// Multiple inheritance marker bool multiple_inheritance : 1; /// Does the class manage a __dict__? bool dynamic_attr : 1; /// Does the class implement the buffer protocol? bool buffer_protocol : 1; /// Does the class require its own metaclass? bool metaclass : 1; PYBIND11_NOINLINE void add_base(const std::type_info *base, void *(*caster)(void *)) { auto base_info = detail::get_type_info(*base, false); if (!base_info) { std::string tname(base->name()); detail::clean_type_id(tname); pybind11_fail("generic_type: type \"" + std::string(name) + "\" referenced unknown base type \"" + tname + "\""); } bases.append((PyObject *) base_info->type); if (base_info->type->tp_dictoffset != 0) dynamic_attr = true; if (caster) base_info->implicit_casts.push_back(std::make_pair(type, caster)); } }; /** * Partial template specializations to process custom attributes provided to * cpp_function_ and class_. These are either used to initialize the respective * fields in the type_record and function_record data structures or executed at * runtime to deal with custom call policies (e.g. keep_alive). */ template struct process_attribute; template struct process_attribute_default { /// Default implementation: do nothing static void init(const T &, function_record *) { } static void init(const T &, type_record *) { } static void precall(handle) { } static void postcall(handle, handle) { } }; /// Process an attribute specifying the function's name template <> struct process_attribute : process_attribute_default { static void init(const name &n, function_record *r) { r->name = const_cast(n.value); } }; /// Process an attribute specifying the function's docstring template <> struct process_attribute : process_attribute_default { static void init(const doc &n, function_record *r) { r->doc = const_cast(n.value); } }; /// Process an attribute specifying the function's docstring (provided as a C-style string) template <> struct process_attribute : process_attribute_default { static void init(const char *d, function_record *r) { r->doc = const_cast(d); } static void init(const char *d, type_record *r) { r->doc = const_cast(d); } }; template <> struct process_attribute : process_attribute { }; /// Process an attribute indicating the function's return value policy template <> struct process_attribute : process_attribute_default { static void init(const return_value_policy &p, function_record *r) { r->policy = p; } }; /// Process an attribute which indicates that this is an overloaded function associated with a given sibling template <> struct process_attribute : process_attribute_default { static void init(const sibling &s, function_record *r) { r->sibling = s.value; } }; /// Process an attribute which indicates that this function is a method template <> struct process_attribute : process_attribute_default { static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; } }; /// Process an attribute which indicates the parent scope of a method template <> struct process_attribute : process_attribute_default { static void init(const scope &s, function_record *r) { r->scope = s.value; } }; /// Process an attribute which indicates that this function is an operator template <> struct process_attribute : process_attribute_default { static void init(const is_operator &, function_record *r) { r->is_operator = true; } }; /// Process a keyword argument attribute (*without* a default value) template <> struct process_attribute : process_attribute_default { static void init(const arg &a, function_record *r) { if (r->is_method && r->args.empty()) r->args.emplace_back("self", nullptr, handle()); r->args.emplace_back(a.name, nullptr, handle()); } }; /// Process a keyword argument attribute (*with* a default value) template <> struct process_attribute : process_attribute_default { static void init(const arg_v &a, function_record *r) { if (r->is_method && r->args.empty()) r->args.emplace_back("self", nullptr, handle()); if (!a.value) { #if !defined(NDEBUG) auto descr = "'" + std::string(a.name) + ": " + a.type + "'"; if (r->is_method) { if (r->name) descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'"; else descr += " in method of '" + (std::string) str(r->scope) + "'"; } else if (r->name) { descr += " in function named '" + (std::string) r->name + "'"; } pybind11_fail("arg(): could not convert default keyword argument " + descr + " into a Python object (type not registered yet?)"); #else pybind11_fail("arg(): could not convert default keyword argument " "into a Python object (type not registered yet?). " "Compile in debug mode for more information."); #endif } r->args.emplace_back(a.name, a.descr, a.value.inc_ref()); } }; /// Process a parent class attribute template struct process_attribute::value>> : process_attribute_default { static void init(const handle &h, type_record *r) { r->bases.append(h); } }; /// Process a parent class attribute (deprecated, does not support multiple inheritance) template struct process_attribute> : process_attribute_default> { static void init(const base &, type_record *r) { r->add_base(&typeid(T), nullptr); } }; /// Process a multiple inheritance attribute template <> struct process_attribute : process_attribute_default { static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; } }; template <> struct process_attribute : process_attribute_default { static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; } }; template <> struct process_attribute : process_attribute_default { static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; } }; template <> struct process_attribute : process_attribute_default { static void init(const metaclass &, type_record *r) { r->metaclass = true; } }; /// Process an 'arithmetic' attribute for enums (does nothing here) template <> struct process_attribute : process_attribute_default {}; /*** * Process a keep_alive call policy -- invokes keep_alive_impl during the * pre-call handler if both Nurse, Patient != 0 and use the post-call handler * otherwise */ template struct process_attribute> : public process_attribute_default> { template = 0> static void precall(handle args) { keep_alive_impl(Nurse, Patient, args, handle()); } template = 0> static void postcall(handle, handle) { } template = 0> static void precall(handle) { } template = 0> static void postcall(handle args, handle ret) { keep_alive_impl(Nurse, Patient, args, ret); } }; /// Recursively iterate over variadic template arguments template struct process_attributes { static void init(const Args&... args, function_record *r) { int unused[] = { 0, (process_attribute::type>::init(args, r), 0) ... }; ignore_unused(unused); } static void init(const Args&... args, type_record *r) { int unused[] = { 0, (process_attribute::type>::init(args, r), 0) ... }; ignore_unused(unused); } static void precall(handle fn_args) { int unused[] = { 0, (process_attribute::type>::precall(fn_args), 0) ... }; ignore_unused(unused); } static void postcall(handle fn_args, handle fn_ret) { int unused[] = { 0, (process_attribute::type>::postcall(fn_args, fn_ret), 0) ... }; ignore_unused(unused); } }; /// Check the number of named arguments at compile time template ::value...), size_t self = constexpr_sum(std::is_same::value...)> constexpr bool expected_num_args(size_t nargs) { return named == 0 || (self + named) == nargs; } NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/cast.h000066400000000000000000001616421303320175600173300ustar00rootroot00000000000000/* pybind11/cast.h: Partial template specializations to cast between C++ and Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pytypes.h" #include "typeid.h" #include "descr.h" #include #include NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) /// Additional type information which does not fit into the PyTypeObject struct type_info { PyTypeObject *type; size_t type_size; void (*init_holder)(PyObject *, const void *); std::vector implicit_conversions; std::vector> implicit_casts; std::vector *direct_conversions; buffer_info *(*get_buffer)(PyObject *, void *) = nullptr; void *get_buffer_data = nullptr; /** A simple type never occurs as a (direct or indirect) parent * of a class that makes use of multiple inheritance */ bool simple_type = true; }; PYBIND11_NOINLINE inline internals &get_internals() { static internals *internals_ptr = nullptr; if (internals_ptr) return *internals_ptr; handle builtins(PyEval_GetBuiltins()); const char *id = PYBIND11_INTERNALS_ID; if (builtins.contains(id) && isinstance(builtins[id])) { internals_ptr = capsule(builtins[id]); } else { internals_ptr = new internals(); #if defined(WITH_THREAD) PyEval_InitThreads(); PyThreadState *tstate = PyThreadState_Get(); internals_ptr->tstate = PyThread_create_key(); PyThread_set_key_value(internals_ptr->tstate, tstate); internals_ptr->istate = tstate->interp; #endif builtins[id] = capsule(internals_ptr); internals_ptr->registered_exception_translators.push_front( [](std::exception_ptr p) -> void { try { if (p) std::rethrow_exception(p); } catch (error_already_set &e) { e.restore(); return; } catch (const builtin_exception &e) { e.set_error(); return; } catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return; } catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return; } catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return; } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return; } catch (...) { PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); return; } } ); } return *internals_ptr; } PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { auto const &type_dict = get_internals().registered_types_py; do { auto it = type_dict.find(type); if (it != type_dict.end()) return (detail::type_info *) it->second; type = type->tp_base; if (!type) return nullptr; } while (true); } PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp, bool throw_if_missing = false) { auto &types = get_internals().registered_types_cpp; auto it = types.find(std::type_index(tp)); if (it != types.end()) return (detail::type_info *) it->second; if (throw_if_missing) { std::string tname = tp.name(); detail::clean_type_id(tname); pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); } return nullptr; } PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { detail::type_info *type_info = get_type_info(tp, throw_if_missing); return handle(type_info ? ((PyObject *) type_info->type) : nullptr); } PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { handle type = detail::get_type_handle(tp, false); if (!type) return false; return isinstance(obj, type); } PYBIND11_NOINLINE inline std::string error_string() { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); return "Unknown internal error occurred"; } error_scope scope; // Preserve error state std::string errorString; if (scope.type) { errorString += handle(scope.type).attr("__name__").cast(); errorString += ": "; } if (scope.value) errorString += (std::string) str(scope.value); PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace); #if PY_MAJOR_VERSION >= 3 if (scope.trace != nullptr) PyException_SetTraceback(scope.value, scope.trace); #endif #if !defined(PYPY_VERSION) if (scope.trace) { PyTracebackObject *trace = (PyTracebackObject *) scope.trace; /* Get the deepest trace possible */ while (trace->tb_next) trace = trace->tb_next; PyFrameObject *frame = trace->tb_frame; errorString += "\n\nAt:\n"; while (frame) { int lineno = PyFrame_GetLineNumber(frame); errorString += " " + handle(frame->f_code->co_filename).cast() + "(" + std::to_string(lineno) + "): " + handle(frame->f_code->co_name).cast() + "\n"; frame = frame->f_back; } trace = trace->tb_next; } #endif return errorString; } PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { auto &instances = get_internals().registered_instances; auto range = instances.equal_range(ptr); for (auto it = range.first; it != range.second; ++it) { auto instance_type = detail::get_type_info(Py_TYPE(it->second)); if (instance_type && instance_type == type) return handle((PyObject *) it->second); } return handle(); } inline PyThreadState *get_thread_state_unchecked() { #if defined(PYPY_VERSION) return PyThreadState_GET(); #elif PY_VERSION_HEX < 0x03000000 return _PyThreadState_Current; #elif PY_VERSION_HEX < 0x03050000 return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); #elif PY_VERSION_HEX < 0x03050200 return (PyThreadState*) _PyThreadState_Current.value; #else return _PyThreadState_UncheckedGet(); #endif } // Forward declaration inline void keep_alive_impl(handle nurse, handle patient); class type_caster_generic { public: PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) : typeinfo(get_type_info(type_info)) { } PYBIND11_NOINLINE bool load(handle src, bool convert) { if (!src) return false; return load(src, convert, Py_TYPE(src.ptr())); } bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; } if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) { value = reinterpret_cast *>(src.ptr())->value; return true; } } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) { value = reinterpret_cast *>(src.ptr())->value; return true; } /* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } } /* Try implicit casts */ for (auto &cast : typeinfo->implicit_casts) { type_caster_generic sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); return true; } } } /* Perform an implicit conversion */ if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } for (auto &converter : *typeinfo->direct_conversions) { if (converter(src.ptr(), value)) return true; } } return false; } PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, const std::type_info *type_info, const std::type_info *type_info_backup, void *(*copy_constructor)(const void *), void *(*move_constructor)(const void *), const void *existing_holder = nullptr) { void *src = const_cast(_src); if (src == nullptr) return none().inc_ref(); auto &internals = get_internals(); auto it = internals.registered_types_cpp.find(std::type_index(*type_info)); if (it == internals.registered_types_cpp.end()) { type_info = type_info_backup; it = internals.registered_types_cpp.find(std::type_index(*type_info)); } if (it == internals.registered_types_cpp.end()) { std::string tname = type_info->name(); detail::clean_type_id(tname); std::string msg = "Unregistered type : " + tname; PyErr_SetString(PyExc_TypeError, msg.c_str()); return handle(); } auto tinfo = (const detail::type_info *) it->second; auto it_instances = internals.registered_instances.equal_range(src); for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { auto instance_type = detail::get_type_info(Py_TYPE(it_i->second)); if (instance_type && instance_type == tinfo) return handle((PyObject *) it_i->second).inc_ref(); } auto inst = reinterpret_steal(PyType_GenericAlloc(tinfo->type, 0)); auto wrapper = (instance *) inst.ptr(); wrapper->value = nullptr; wrapper->owned = false; switch (policy) { case return_value_policy::automatic: case return_value_policy::take_ownership: wrapper->value = src; wrapper->owned = true; break; case return_value_policy::automatic_reference: case return_value_policy::reference: wrapper->value = src; wrapper->owned = false; break; case return_value_policy::copy: if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = copy, but the " "object is non-copyable!"); wrapper->owned = true; break; case return_value_policy::move: if (move_constructor) wrapper->value = move_constructor(src); else if (copy_constructor) wrapper->value = copy_constructor(src); else throw cast_error("return_value_policy = move, but the " "object is neither movable nor copyable!"); wrapper->owned = true; break; case return_value_policy::reference_internal: wrapper->value = src; wrapper->owned = false; detail::keep_alive_impl(inst, parent); break; default: throw cast_error("unhandled return_value_policy: should not happen!"); } tinfo->init_holder(inst.ptr(), existing_holder); internals.registered_instances.emplace(wrapper->value, inst.ptr()); return inst.release(); } protected: const type_info *typeinfo = nullptr; void *value = nullptr; object temp; }; /* Determine suitable casting operator */ template using cast_op_type = typename std::conditional::type>::value, typename std::add_pointer>::type, typename std::add_lvalue_reference>::type>::type; // std::is_copy_constructible isn't quite enough: it lets std::vector (and similar) through when // T is non-copyable, but code containing such a copy constructor fails to actually compile. template struct is_copy_constructible : std::is_copy_constructible {}; // Specialization for types that appear to be copy constructible but also look like stl containers // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if // so, copy constructability depends on whether the value_type is copy constructible. template struct is_copy_constructible::value && std::is_same::value >> : std::is_copy_constructible {}; /// Generic type caster for objects stored on the heap template class type_caster_base : public type_caster_generic { using itype = intrinsic_t; public: static PYBIND11_DESCR name() { return type_descr(_()); } type_caster_base() : type_caster_base(typeid(type)) { } explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { } static handle cast(const itype &src, return_value_policy policy, handle parent) { if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) policy = return_value_policy::copy; return cast(&src, policy, parent); } static handle cast(itype &&src, return_value_policy, handle parent) { return cast(&src, return_value_policy::move, parent); } static handle cast(const itype *src, return_value_policy policy, handle parent) { return type_caster_generic::cast( src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type), make_copy_constructor(src), make_move_constructor(src)); } template using cast_op_type = pybind11::detail::cast_op_type; operator itype*() { return (type *) value; } operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); } protected: typedef void *(*Constructor)(const void *stream); #if !defined(_MSC_VER) /* Only enabled when the types are {copy,move}-constructible *and* when the type does not have a private operator new implementaton. */ template ::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) { return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; } template static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) { return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *) arg))); }; } #else /* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations. Use a workaround that only tests for constructibility for now. */ template ::value>> static Constructor make_copy_constructor(const T *value) { return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; } template ::value>> static Constructor make_move_constructor(const T *value) { return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; } #endif static Constructor make_copy_constructor(...) { return nullptr; } static Constructor make_move_constructor(...) { return nullptr; } }; template class type_caster : public type_caster_base { }; template using make_caster = type_caster>; // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T template typename make_caster::template cast_op_type cast_op(make_caster &caster) { return caster.operator typename make_caster::template cast_op_type(); } template typename make_caster::template cast_op_type cast_op(make_caster &&caster) { return cast_op(caster); } template class type_caster> : public type_caster_base { public: static handle cast(const std::reference_wrapper &src, return_value_policy policy, handle parent) { return type_caster_base::cast(&src.get(), policy, parent); } template using cast_op_type = std::reference_wrapper; operator std::reference_wrapper() { return std::ref(*((type *) this->value)); } }; #define PYBIND11_TYPE_CASTER(type, py_name) \ protected: \ type value; \ public: \ static PYBIND11_DESCR name() { return type_descr(py_name); } \ static handle cast(const type *src, return_value_policy policy, handle parent) { \ return cast(*src, policy, parent); \ } \ operator type*() { return &value; } \ operator type&() { return value; } \ template using cast_op_type = pybind11::detail::cast_op_type<_T> template struct type_caster::value>> { typedef typename std::conditional::type _py_type_0; typedef typename std::conditional::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>::type _py_type_1; typedef typename std::conditional::value, double, _py_type_1>::type py_type; public: bool load(handle src, bool) { py_type py_value; if (!src) { return false; } if (std::is_floating_point::value) { py_value = (py_type) PyFloat_AsDouble(src.ptr()); } else if (sizeof(T) <= sizeof(long)) { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed::value) py_value = (py_type) PyLong_AsLong(src.ptr()); else py_value = (py_type) PyLong_AsUnsignedLong(src.ptr()); } else { if (PyFloat_Check(src.ptr())) return false; if (std::is_signed::value) py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); else py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr()); } if ((py_value == (py_type) -1 && PyErr_Occurred()) || (std::is_integral::value && sizeof(py_type) != sizeof(T) && (py_value < (py_type) std::numeric_limits::min() || py_value > (py_type) std::numeric_limits::max()))) { #if PY_VERSION_HEX < 0x03000000 bool type_error = PyErr_ExceptionMatches(PyExc_SystemError); #else bool type_error = PyErr_ExceptionMatches(PyExc_TypeError); #endif PyErr_Clear(); if (type_error && PyNumber_Check(src.ptr())) { auto tmp = reinterpret_borrow(std::is_floating_point::value ? PyNumber_Float(src.ptr()) : PyNumber_Long(src.ptr())); PyErr_Clear(); return load(tmp, false); } return false; } value = (T) py_value; return true; } static handle cast(T src, return_value_policy /* policy */, handle /* parent */) { if (std::is_floating_point::value) { return PyFloat_FromDouble((double) src); } else if (sizeof(T) <= sizeof(long)) { if (std::is_signed::value) return PyLong_FromLong((long) src); else return PyLong_FromUnsignedLong((unsigned long) src); } else { if (std::is_signed::value) return PyLong_FromLongLong((long long) src); else return PyLong_FromUnsignedLongLong((unsigned long long) src); } } PYBIND11_TYPE_CASTER(T, _::value>("int", "float")); }; template struct void_caster { public: bool load(handle, bool) { return false; } static handle cast(T, return_value_policy /* policy */, handle /* parent */) { return none().inc_ref(); } PYBIND11_TYPE_CASTER(T, _("None")); }; template <> class type_caster : public void_caster {}; template <> class type_caster : public type_caster { public: using type_caster::cast; bool load(handle h, bool) { if (!h) { return false; } else if (h.is_none()) { value = nullptr; return true; } /* Check if this is a capsule */ if (isinstance(h)) { value = reinterpret_borrow(h); return true; } /* Check if this is a C++ type */ if (get_type_info((PyTypeObject *) h.get_type().ptr())) { value = ((instance *) h.ptr())->value; return true; } /* Fail */ return false; } static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { if (ptr) return capsule(ptr).release(); else return none().inc_ref(); } template using cast_op_type = void*&; operator void *&() { return value; } static PYBIND11_DESCR name() { return type_descr(_("capsule")); } private: void *value = nullptr; }; template <> class type_caster : public type_caster { }; template <> class type_caster { public: bool load(handle src, bool) { if (!src) return false; else if (src.ptr() == Py_True) { value = true; return true; } else if (src.ptr() == Py_False) { value = false; return true; } else return false; } static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { return handle(src ? Py_True : Py_False).inc_ref(); } PYBIND11_TYPE_CASTER(bool, _("bool")); }; template <> class type_caster { public: bool load(handle src, bool) { object temp; handle load_src = src; if (!src) { return false; } else if (PyUnicode_Check(load_src.ptr())) { temp = reinterpret_steal(PyUnicode_AsUTF8String(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } // UnicodeEncodeError load_src = temp; } char *buffer; ssize_t length; int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(load_src.ptr(), &buffer, &length); if (err == -1) { PyErr_Clear(); return false; } // TypeError value = std::string(buffer, (size_t) length); success = true; return true; } static handle cast(const std::string &src, return_value_policy /* policy */, handle /* parent */) { return PyUnicode_FromStringAndSize(src.c_str(), (ssize_t) src.length()); } PYBIND11_TYPE_CASTER(std::string, _(PYBIND11_STRING_NAME)); protected: bool success = false; }; template class type_caster> { public: static handle cast(std::unique_ptr &&src, return_value_policy policy, handle parent) { handle result = type_caster_base::cast(src.get(), policy, parent); if (result) src.release(); return result; } static PYBIND11_DESCR name() { return type_caster_base::name(); } }; template <> class type_caster { public: bool load(handle src, bool) { object temp; handle load_src = src; if (!src) { return false; } else if (!PyUnicode_Check(load_src.ptr())) { temp = reinterpret_steal(PyUnicode_FromObject(load_src.ptr())); if (!temp) { PyErr_Clear(); return false; } load_src = temp; } wchar_t *buffer = nullptr; ssize_t length = -1; #if PY_MAJOR_VERSION >= 3 buffer = PyUnicode_AsWideCharString(load_src.ptr(), &length); #else temp = reinterpret_steal(PyUnicode_AsEncodedString( load_src.ptr(), sizeof(wchar_t) == sizeof(short) ? "utf16" : "utf32", nullptr)); if (temp) { int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), (char **) &buffer, &length); if (err == -1) { buffer = nullptr; } // TypeError length = length / (ssize_t) sizeof(wchar_t) - 1; ++buffer; // Skip BOM } #endif if (!buffer) { PyErr_Clear(); return false; } value = std::wstring(buffer, (size_t) length); success = true; return true; } static handle cast(const std::wstring &src, return_value_policy /* policy */, handle /* parent */) { return PyUnicode_FromWideChar(src.c_str(), (ssize_t) src.length()); } PYBIND11_TYPE_CASTER(std::wstring, _(PYBIND11_STRING_NAME)); protected: bool success = false; }; template <> class type_caster : public type_caster { public: bool load(handle src, bool convert) { if (src.is_none()) return true; return type_caster::load(src, convert); } static handle cast(const char *src, return_value_policy /* policy */, handle /* parent */) { if (src == nullptr) return none().inc_ref(); return PyUnicode_FromString(src); } static handle cast(char src, return_value_policy /* policy */, handle /* parent */) { char str[2] = { src, '\0' }; return PyUnicode_DecodeLatin1(str, 1, nullptr); } operator char*() { return success ? (char *) value.c_str() : nullptr; } operator char&() { return value[0]; } static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } }; template <> class type_caster : public type_caster { public: bool load(handle src, bool convert) { if (src.is_none()) return true; return type_caster::load(src, convert); } static handle cast(const wchar_t *src, return_value_policy /* policy */, handle /* parent */) { if (src == nullptr) return none().inc_ref(); return PyUnicode_FromWideChar(src, (ssize_t) wcslen(src)); } static handle cast(wchar_t src, return_value_policy /* policy */, handle /* parent */) { wchar_t wstr[2] = { src, L'\0' }; return PyUnicode_FromWideChar(wstr, 1); } operator wchar_t*() { return success ? (wchar_t *) value.c_str() : nullptr; } operator wchar_t&() { return value[0]; } static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } }; template class type_caster> { typedef std::pair type; public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; const auto seq = reinterpret_borrow(src); if (seq.size() != 2) return false; return first.load(seq[0], convert) && second.load(seq[1], convert); } static handle cast(const type &src, return_value_policy policy, handle parent) { auto o1 = reinterpret_steal(make_caster::cast(src.first, policy, parent)); auto o2 = reinterpret_steal(make_caster::cast(src.second, policy, parent)); if (!o1 || !o2) return handle(); tuple result(2); PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr()); PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr()); return result.release(); } static PYBIND11_DESCR name() { return type_descr( _("Tuple[") + make_caster::name() + _(", ") + make_caster::name() + _("]") ); } template using cast_op_type = type; operator type() { return type(cast_op(first), cast_op(second)); } protected: make_caster first; make_caster second; }; template class type_caster> { using type = std::tuple; using indices = make_index_sequence; static constexpr auto size = sizeof...(Tuple); public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; const auto seq = reinterpret_borrow(src); if (seq.size() != size) return false; return load_impl(seq, convert, indices{}); } static handle cast(const type &src, return_value_policy policy, handle parent) { return cast_impl(src, policy, parent, indices{}); } static PYBIND11_DESCR name() { return type_descr(_("Tuple[") + detail::concat(make_caster::name()...) + _("]")); } template using cast_op_type = type; operator type() { return implicit_cast(indices{}); } protected: template type implicit_cast(index_sequence) { return type(cast_op(std::get(value))...); } static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } template bool load_impl(const sequence &seq, bool convert, index_sequence) { for (bool r : {std::get(value).load(seq[Is], convert)...}) if (!r) return false; return true; } static handle cast_impl(const type &, return_value_policy, handle, index_sequence<>) { return tuple().release(); } /* Implementation: Convert a C++ tuple into a Python tuple */ template static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence) { std::array entries {{ reinterpret_steal(make_caster::cast(std::get(src), policy, parent))... }}; for (const auto &entry: entries) if (!entry) return handle(); tuple result(size); int counter = 0; for (auto & entry: entries) PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); return result.release(); } std::tuple...> value; }; /// Type caster for holder types like std::shared_ptr, etc. template class type_caster_holder : public type_caster_base { public: using base = type_caster_base; using base::base; using base::cast; using base::typeinfo; using base::value; using base::temp; PYBIND11_NOINLINE bool load(handle src, bool convert) { return load(src, convert, Py_TYPE(src.ptr())); } bool load(handle src, bool convert, PyTypeObject *tobj) { if (!src || !typeinfo) return false; if (src.is_none()) { value = nullptr; return true; } if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ /* Check if we can safely perform a reinterpret-style cast */ if (PyType_IsSubtype(tobj, typeinfo->type)) return load_value_and_holder(src); } else { /* Case 2: multiple inheritance */ /* Check if we can safely perform a reinterpret-style cast */ if (tobj == typeinfo->type) return load_value_and_holder(src); /* If this is a python class, also check the parents recursively */ auto const &type_dict = get_internals().registered_types_py; bool new_style_class = PyType_Check((PyObject *) tobj); if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { auto parents = reinterpret_borrow(tobj->tp_bases); for (handle parent : parents) { bool result = load(src, convert, (PyTypeObject *) parent.ptr()); if (result) return true; } } if (try_implicit_casts(src, convert)) return true; } if (convert) { for (auto &converter : typeinfo->implicit_conversions) { temp = reinterpret_steal(converter(src.ptr(), typeinfo->type)); if (load(temp, false)) return true; } } return false; } bool load_value_and_holder(handle src) { auto inst = (instance *) src.ptr(); value = (void *) inst->value; if (inst->holder_constructed) { holder = inst->holder; return true; } else { throw cast_error("Unable to cast from non-held to held instance (T& to Holder) " #if defined(NDEBUG) "(compile in debug mode for type information)"); #else "of type '" + type_id() + "''"); #endif } } template ::value, int> = 0> bool try_implicit_casts(handle, bool) { return false; } template ::value, int> = 0> bool try_implicit_casts(handle src, bool convert) { for (auto &cast : typeinfo->implicit_casts) { type_caster_holder sub_caster(*cast.first); if (sub_caster.load(src, convert)) { value = cast.second(sub_caster.value); holder = holder_type(sub_caster.holder, (type *) value); return true; } } return false; } explicit operator type*() { return this->value; } explicit operator type&() { return *(this->value); } explicit operator holder_type*() { return &holder; } // Workaround for Intel compiler bug // see pybind11 issue 94 #if defined(__ICC) || defined(__INTEL_COMPILER) operator holder_type&() { return holder; } #else explicit operator holder_type&() { return holder; } #endif static handle cast(const holder_type &src, return_value_policy, handle) { return type_caster_generic::cast( src.get(), return_value_policy::take_ownership, handle(), src.get() ? &typeid(*src.get()) : nullptr, &typeid(type), nullptr, nullptr, &src); } protected: holder_type holder; }; /// Specialize for the common std::shared_ptr, so users don't need to template class type_caster> : public type_caster_holder> { }; template struct always_construct_holder { static constexpr bool value = Value; }; /// Create a specialization for custom holder types (silently ignores std::shared_ptr) #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ namespace pybind11 { namespace detail { \ template \ struct always_construct_holder : always_construct_holder { }; \ template \ class type_caster::value>> \ : public type_caster_holder { }; \ }} // PYBIND11_DECLARE_HOLDER_TYPE holder types: template struct is_holder_type : std::is_base_of, detail::type_caster> {}; // Specialization for always-supported unique_ptr holders: template struct is_holder_type> : std::true_type {}; template struct handle_type_name { static PYBIND11_DESCR name() { return _(); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _("*args"); } }; template <> struct handle_type_name { static PYBIND11_DESCR name() { return _("**kwargs"); } }; template struct pyobject_caster { template ::value, int> = 0> bool load(handle src, bool /* convert */) { value = src; return static_cast(value); } template ::value, int> = 0> bool load(handle src, bool /* convert */) { if (!isinstance(src)) return false; value = reinterpret_borrow(src); return true; } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name()); }; template class type_caster::value>> : public pyobject_caster { }; // Our conditions for enabling moving are quite restrictive: // At compile time: // - T needs to be a non-const, non-pointer, non-reference type // - type_caster::operator T&() must exist // - the type must be move constructible (obviously) // At run-time: // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it // must have ref_count() == 1)h // If any of the above are not satisfied, we fall back to copying. template using move_is_plain_type = none_of< std::is_void, std::is_pointer, std::is_reference, std::is_const >; template struct move_always : std::false_type {}; template struct move_always, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template struct move_if_unreferenced : std::false_type {}; template struct move_if_unreferenced, negation>, std::is_move_constructible, std::is_same>().operator T&()), T&> >::value>> : std::true_type {}; template using move_never = none_of, move_if_unreferenced>; // Detect whether returning a `type` from a cast on type's type_caster is going to result in a // reference or pointer to a local variable of the type_caster. Basically, only // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; // everything else returns a reference/pointer to a local variable. template using cast_is_temporary_value_reference = bool_constant< (std::is_reference::value || std::is_pointer::value) && !std::is_base_of>::value >; // Basic python -> C++ casting; throws if casting fails template type_caster &load_type(type_caster &conv, const handle &handle) { if (!conv.load(handle, true)) { #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); #else throw cast_error("Unable to cast Python instance of type " + (std::string) str(handle.get_type()) + " to C++ type '" + type_id() + "''"); #endif } return conv; } // Wrapper around the above that also constructs and returns a type_caster template make_caster load_type(const handle &handle) { make_caster conv; load_type(conv, handle); return conv; } NAMESPACE_END(detail) // pytype -> C++ type template ::value, int> = 0> T cast(const handle &handle) { using namespace detail; static_assert(!cast_is_temporary_value_reference::value, "Unable to cast type to reference: value is local to type caster"); return cast_op(load_type(handle)); } // pytype -> pytype (calls converting constructor) template ::value, int> = 0> T cast(const handle &handle) { return T(reinterpret_borrow(handle)); } // C++ type -> py::object template ::value, int> = 0> object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, handle parent = handle()) { if (policy == return_value_policy::automatic) policy = std::is_pointer::value ? return_value_policy::take_ownership : return_value_policy::copy; else if (policy == return_value_policy::automatic_reference) policy = std::is_pointer::value ? return_value_policy::reference : return_value_policy::copy; return reinterpret_steal(detail::make_caster::cast(value, policy, parent)); } template T handle::cast() const { return pybind11::cast(*this); } template <> inline void handle::cast() const { return; } template detail::enable_if_t::value, T> move(object &&obj) { if (obj.ref_count() > 1) #if defined(NDEBUG) throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" " (compile in debug mode for details)"); #else throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + " instance to C++ " + type_id() + " instance: instance has multiple references"); #endif // Move into a temporary and return that, because the reference may be a local value of `conv` T ret = std::move(detail::load_type(obj).operator T&()); return ret; } // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does: // - If we have to move (because T has no copy constructor), do it. This will fail if the moved // object has multiple references, but trying to copy will fail to compile. // - If both movable and copyable, check ref count: if 1, move; otherwise copy // - Otherwise (not movable), copy. template detail::enable_if_t::value, T> cast(object &&object) { return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { if (object.ref_count() > 1) return cast(object); else return move(std::move(object)); } template detail::enable_if_t::value, T> cast(object &&object) { return cast(object); } template T object::cast() const & { return pybind11::cast(*this); } template T object::cast() && { return pybind11::cast(std::move(*this)); } template <> inline void object::cast() const & { return; } template <> inline void object::cast() && { return; } NAMESPACE_BEGIN(detail) // Declared in pytypes.h: template ::value, int>> object object_or_cast(T &&o) { return pybind11::cast(std::forward(o)); } struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro template using overload_caster_t = conditional_t< cast_is_temporary_value_reference::value, make_caster, overload_unused>; // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then // store the result in the given variable. For other types, this is a no-op. template enable_if_t::value, T> cast_ref(object &&o, make_caster &caster) { return cast_op(load_type(caster, o)); } template enable_if_t::value, T> cast_ref(object &&, overload_unused &) { pybind11_fail("Internal error: cast_ref fallback invoked"); } // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in // cases where pybind11::cast is valid. template enable_if_t::value, T> cast_safe(object &&o) { return pybind11::cast(std::move(o)); } template enable_if_t::value, T> cast_safe(object &&) { pybind11_fail("Internal error: cast_safe fallback invoked"); } template <> inline void cast_safe(object &&) {} NAMESPACE_END(detail) template tuple make_tuple(Args&&... args_) { const size_t size = sizeof...(Args); std::array args { { reinterpret_steal(detail::make_caster::cast( std::forward(args_), policy, nullptr))... } }; for (auto &arg_value : args) { if (!arg_value) { #if defined(NDEBUG) throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); #else throw cast_error("make_tuple(): unable to convert arguments of types '" + (std::string) type_id>() + "' to Python object"); #endif } } tuple result(size); int counter = 0; for (auto &arg_value : args) PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); return result; } /// Annotation for keyword arguments struct arg { constexpr explicit arg(const char *name) : name(name) { } template arg_v operator=(T &&value) const; const char *name; }; /// Annotation for keyword arguments with values struct arg_v : arg { template arg_v(const char *name, T &&x, const char *descr = nullptr) : arg(name), value(reinterpret_steal( detail::make_caster::cast(x, return_value_policy::automatic, {}) )), descr(descr) #if !defined(NDEBUG) , type(type_id()) #endif { } object value; const char *descr; #if !defined(NDEBUG) std::string type; #endif }; template arg_v arg::operator=(T &&value) const { return {name, std::forward(value)}; } /// Alias for backward compatibility -- to be removed in version 2.0 template using arg_t = arg_v; inline namespace literals { /// String literal version of arg constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } } NAMESPACE_BEGIN(detail) /// Helper class which loads arguments for C++ functions called from Python template class argument_loader { using itypes = type_list...>; using indices = make_index_sequence; public: argument_loader() : value() {} // Helps gcc-7 properly initialize value static constexpr auto has_kwargs = std::is_same>::value; static constexpr auto has_args = has_kwargs || std::is_same>::value; static PYBIND11_DESCR arg_names() { return detail::concat(make_caster::name()...); } bool load_args(handle args, handle kwargs) { return load_impl(args, kwargs, itypes{}); } template enable_if_t::value, Return> call(Func &&f) { return call_impl(std::forward(f), indices{}); } template enable_if_t::value, void_type> call(Func &&f) { call_impl(std::forward(f), indices{}); return void_type(); } private: bool load_impl(handle args_, handle, type_list) { std::get<0>(value).load(args_, true); return true; } bool load_impl(handle args_, handle kwargs_, type_list) { std::get<0>(value).load(args_, true); std::get<1>(value).load(kwargs_, true); return true; } bool load_impl(handle args, handle, ... /* anything else */) { return load_impl_sequence(args, indices{}); } static bool load_impl_sequence(handle, index_sequence<>) { return true; } template bool load_impl_sequence(handle src, index_sequence) { for (bool r : {std::get(value).load(PyTuple_GET_ITEM(src.ptr(), Is), true)...}) if (!r) return false; return true; } template Return call_impl(Func &&f, index_sequence) { return std::forward(f)(cast_op(std::get(value))...); } std::tuple...> value; }; NAMESPACE_BEGIN(constexpr_impl) /// Implementation details for constexpr functions constexpr int first(int i) { return i; } template constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); } constexpr int last(int /*i*/, int result) { return result; } template constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); } NAMESPACE_END(constexpr_impl) /// Return the index of the first type in Ts which satisfies Predicate template class Predicate, typename... Ts> constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate::value...); } /// Return the index of the last type in Ts which satisfies Predicate template class Predicate, typename... Ts> constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate::value...); } /// Helper class which collects only positional arguments for a Python function call. /// A fancier version below can collect any argument, but this one is optimal for simple calls. template class simple_collector { public: template explicit simple_collector(Ts &&...values) : m_args(pybind11::make_tuple(std::forward(values)...)) { } const tuple &args() const & { return m_args; } dict kwargs() const { return {}; } tuple args() && { return std::move(m_args); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: tuple m_args; }; /// Helper class which collects positional, keyword, * and ** arguments for a Python function call template class unpacking_collector { public: template explicit unpacking_collector(Ts &&...values) { // Tuples aren't (easily) resizable so a list is needed for collection, // but the actual function call strictly requires a tuple. auto args_list = list(); int _[] = { 0, (process(args_list, std::forward(values)), 0)... }; ignore_unused(_); m_args = std::move(args_list); } const tuple &args() const & { return m_args; } const dict &kwargs() const & { return m_kwargs; } tuple args() && { return std::move(m_args); } dict kwargs() && { return std::move(m_kwargs); } /// Call a Python function and pass the collected arguments object call(PyObject *ptr) const { PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } private: template void process(list &args_list, T &&x) { auto o = reinterpret_steal(detail::make_caster::cast(std::forward(x), policy, {})); if (!o) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(std::to_string(args_list.size()), type_id()); #endif } args_list.append(o); } void process(list &args_list, detail::args_proxy ap) { for (const auto &a : ap) args_list.append(a); } void process(list &/*args_list*/, arg_v a) { if (m_kwargs.contains(a.name)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(a.name); #endif } if (!a.value) { #if defined(NDEBUG) argument_cast_error(); #else argument_cast_error(a.name, a.type); #endif } m_kwargs[a.name] = a.value; } void process(list &/*args_list*/, detail::kwargs_proxy kp) { if (!kp) return; for (const auto &k : reinterpret_borrow(kp)) { if (m_kwargs.contains(k.first)) { #if defined(NDEBUG) multiple_values_error(); #else multiple_values_error(str(k.first)); #endif } m_kwargs[k.first] = k.second; } } [[noreturn]] static void multiple_values_error() { throw type_error("Got multiple values for keyword argument " "(compile in debug mode for details)"); } [[noreturn]] static void multiple_values_error(std::string name) { throw type_error("Got multiple values for keyword argument '" + name + "'"); } [[noreturn]] static void argument_cast_error() { throw cast_error("Unable to convert call argument to Python object " "(compile in debug mode for details)"); } [[noreturn]] static void argument_cast_error(std::string name, std::string type) { throw cast_error("Unable to convert call argument '" + name + "' of type '" + type + "' to Python object"); } private: tuple m_args; dict m_kwargs; }; /// Collect only positional arguments for a Python function call template ...>::value>> simple_collector collect_arguments(Args &&...args) { return simple_collector(std::forward(args)...); } /// Collect all arguments, including keywords and unpacking (only instantiated when needed) template ...>::value>> unpacking_collector collect_arguments(Args &&...args) { // Following argument order rules for generalized unpacking according to PEP 448 static_assert( constexpr_last() < constexpr_first() && constexpr_last() < constexpr_first(), "Invalid function call: positional args must precede keywords and ** unpacking; " "* unpacking must precede ** unpacking" ); return unpacking_collector(std::forward(args)...); } template template object object_api::operator()(Args &&...args) const { return detail::collect_arguments(std::forward(args)...).call(derived().ptr()); } template template object object_api::call(Args &&...args) const { return operator()(std::forward(args)...); } NAMESPACE_END(detail) #define PYBIND11_MAKE_OPAQUE(Type) \ namespace pybind11 { namespace detail { \ template<> class type_caster : public type_caster_base { }; \ }} NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/chrono.h000066400000000000000000000146601303320175600176630ustar00rootroot00000000000000/* pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime Copyright (c) 2016 Trent Houliston and Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include #include #include #include // Backport the PyDateTime_DELTA functions from Python3.3 if required #ifndef PyDateTime_DELTA_GET_DAYS #define PyDateTime_DELTA_GET_DAYS(o) (((PyDateTime_Delta*)o)->days) #endif #ifndef PyDateTime_DELTA_GET_SECONDS #define PyDateTime_DELTA_GET_SECONDS(o) (((PyDateTime_Delta*)o)->seconds) #endif #ifndef PyDateTime_DELTA_GET_MICROSECONDS #define PyDateTime_DELTA_GET_MICROSECONDS(o) (((PyDateTime_Delta*)o)->microseconds) #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) template class duration_caster { public: typedef typename type::rep rep; typedef typename type::period period; typedef std::chrono::duration> days; bool load(handle src, bool) { using namespace std::chrono; // Lazy initialise the PyDateTime import if (!PyDateTimeAPI) { PyDateTime_IMPORT; } if (!src) return false; // If invoked with datetime.delta object if (PyDelta_Check(src.ptr())) { value = type(duration_cast>( days(PyDateTime_DELTA_GET_DAYS(src.ptr())) + seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr())) + microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr())))); return true; } // If invoked with a float we assume it is seconds and convert else if (PyFloat_Check(src.ptr())) { value = type(duration_cast>(duration(PyFloat_AsDouble(src.ptr())))); return true; } else return false; } // If this is a duration just return it back static const std::chrono::duration& get_duration(const std::chrono::duration &src) { return src; } // If this is a time_point get the time_since_epoch template static std::chrono::duration get_duration(const std::chrono::time_point> &src) { return src.time_since_epoch(); } static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) { using namespace std::chrono; // Use overloaded function to get our duration from our source // Works out if it is a duration or time_point and get the duration auto d = get_duration(src); // Lazy initialise the PyDateTime import if (!PyDateTimeAPI) { PyDateTime_IMPORT; } // Declare these special duration types so the conversions happen with the correct primitive types (int) using dd_t = duration>; using ss_t = duration>; using us_t = duration; return PyDelta_FromDSU(duration_cast(d).count(), duration_cast(d % days(1)).count(), duration_cast(d % seconds(1)).count()); } PYBIND11_TYPE_CASTER(type, _("datetime.timedelta")); }; // This is for casting times on the system clock into datetime.datetime instances template class type_caster> { public: typedef std::chrono::time_point type; bool load(handle src, bool) { using namespace std::chrono; // Lazy initialise the PyDateTime import if (!PyDateTimeAPI) { PyDateTime_IMPORT; } if (!src) return false; if (PyDateTime_Check(src.ptr())) { std::tm cal; cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr()); cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr()); cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr()); cal.tm_mday = PyDateTime_GET_DAY(src.ptr()); cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1; cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900; cal.tm_isdst = -1; value = system_clock::from_time_t(std::mktime(&cal)) + microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr())); return true; } else return false; } static handle cast(const std::chrono::time_point &src, return_value_policy /* policy */, handle /* parent */) { using namespace std::chrono; // Lazy initialise the PyDateTime import if (!PyDateTimeAPI) { PyDateTime_IMPORT; } std::time_t tt = system_clock::to_time_t(src); // this function uses static memory so it's best to copy it out asap just in case // otherwise other code that is using localtime may break this (not just python code) std::tm localtime = *std::localtime(&tt); // Declare these special duration types so the conversions happen with the correct primitive types (int) using us_t = duration; return PyDateTime_FromDateAndTime(localtime.tm_year + 1900, localtime.tm_mon + 1, localtime.tm_mday, localtime.tm_hour, localtime.tm_min, localtime.tm_sec, (duration_cast(src.time_since_epoch() % seconds(1))).count()); } PYBIND11_TYPE_CASTER(type, _("datetime.datetime")); }; // Other clocks that are not the system clock are not measured as datetime.datetime objects // since they are not measured on calendar time. So instead we just make them timedeltas // Or if they have passed us a time as a float we convert that template class type_caster> : public duration_caster> { }; template class type_caster> : public duration_caster> { }; NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/common.h000066400000000000000000000644051303320175600176650ustar00rootroot00000000000000/* pybind11/common.h -- Basic macros Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if !defined(NAMESPACE_BEGIN) # define NAMESPACE_BEGIN(name) namespace name { #endif #if !defined(NAMESPACE_END) # define NAMESPACE_END(name) } #endif // Neither MSVC nor Intel support enough of C++14 yet (in particular, as of MSVC 2015 and ICC 17 // beta, neither support extended constexpr, which we rely on in descr.h), so don't enable pybind // CPP14 features for them. #if !defined(_MSC_VER) && !defined(__INTEL_COMPILER) # if __cplusplus >= 201402L # define PYBIND11_CPP14 # if __cplusplus > 201402L /* Temporary: should be updated to >= the final C++17 value once known */ # define PYBIND11_CPP17 # endif # endif #endif #if !defined(PYBIND11_EXPORT) # if defined(WIN32) || defined(_WIN32) # define PYBIND11_EXPORT __declspec(dllexport) # else # define PYBIND11_EXPORT __attribute__ ((visibility("default"))) # endif #endif #if defined(_MSC_VER) # define PYBIND11_NOINLINE __declspec(noinline) #else # define PYBIND11_NOINLINE __attribute__ ((noinline)) #endif #if defined(PYBIND11_CPP14) # define PYBIND11_DEPRECATED(reason) [[deprecated(reason)]] #elif defined(__clang__) # define PYBIND11_DEPRECATED(reason) __attribute__((deprecated(reason))) #elif defined(__GNUG__) # define PYBIND11_DEPRECATED(reason) __attribute__((deprecated)) #elif defined(_MSC_VER) # define PYBIND11_DEPRECATED(reason) __declspec(deprecated) #endif #define PYBIND11_VERSION_MAJOR 2 #define PYBIND11_VERSION_MINOR 0 #define PYBIND11_VERSION_PATCH 1 /// Include Python header, disable linking to pythonX_d.lib on Windows in debug mode #if defined(_MSC_VER) # define HAVE_ROUND # pragma warning(push) # pragma warning(disable: 4510 4610 4512 4005) # if _DEBUG # define PYBIND11_DEBUG_MARKER # undef _DEBUG # endif #endif #include #include #include #if defined(_WIN32) && (defined(min) || defined(max)) # error Macro clash with min and max -- define NOMINMAX when compiling your program on Windows #endif #if defined(isalnum) # undef isalnum # undef isalpha # undef islower # undef isspace # undef isupper # undef tolower # undef toupper #endif #if defined(_MSC_VER) # if defined(PYBIND11_DEBUG_MARKER) # define _DEBUG # undef PYBIND11_DEBUG_MARKER # endif # pragma warning(pop) #endif #include #include #include #include #include #include #include #include #include #include #if PY_MAJOR_VERSION >= 3 /// Compatibility macros for various Python versions #define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyInstanceMethod_New(ptr) #define PYBIND11_BYTES_CHECK PyBytes_Check #define PYBIND11_BYTES_FROM_STRING PyBytes_FromString #define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyBytes_FromStringAndSize #define PYBIND11_BYTES_AS_STRING_AND_SIZE PyBytes_AsStringAndSize #define PYBIND11_BYTES_AS_STRING PyBytes_AsString #define PYBIND11_LONG_CHECK(o) PyLong_Check(o) #define PYBIND11_LONG_AS_LONGLONG(o) PyLong_AsLongLong(o) #define PYBIND11_LONG_AS_UNSIGNED_LONGLONG(o) PyLong_AsUnsignedLongLong(o) #define PYBIND11_BYTES_NAME "bytes" #define PYBIND11_STRING_NAME "str" #define PYBIND11_SLICE_OBJECT PyObject #define PYBIND11_FROM_STRING PyUnicode_FromString #define PYBIND11_STR_TYPE ::pybind11::str #define PYBIND11_OB_TYPE(ht_type) (ht_type).ob_base.ob_base.ob_type #define PYBIND11_PLUGIN_IMPL(name) \ extern "C" PYBIND11_EXPORT PyObject *PyInit_##name() #else #define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyMethod_New(ptr, nullptr, class_) #define PYBIND11_BYTES_CHECK PyString_Check #define PYBIND11_BYTES_FROM_STRING PyString_FromString #define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyString_FromStringAndSize #define PYBIND11_BYTES_AS_STRING_AND_SIZE PyString_AsStringAndSize #define PYBIND11_BYTES_AS_STRING PyString_AsString #define PYBIND11_LONG_CHECK(o) (PyInt_Check(o) || PyLong_Check(o)) #define PYBIND11_LONG_AS_LONGLONG(o) (PyInt_Check(o) ? (long long) PyLong_AsLong(o) : PyLong_AsLongLong(o)) #define PYBIND11_LONG_AS_UNSIGNED_LONGLONG(o) (PyInt_Check(o) ? (unsigned long long) PyLong_AsUnsignedLong(o) : PyLong_AsUnsignedLongLong(o)) #define PYBIND11_BYTES_NAME "str" #define PYBIND11_STRING_NAME "unicode" #define PYBIND11_SLICE_OBJECT PySliceObject #define PYBIND11_FROM_STRING PyString_FromString #define PYBIND11_STR_TYPE ::pybind11::bytes #define PYBIND11_OB_TYPE(ht_type) (ht_type).ob_type #define PYBIND11_PLUGIN_IMPL(name) \ extern "C" PYBIND11_EXPORT PyObject *init##name() #endif #if PY_VERSION_HEX >= 0x03050000 && PY_VERSION_HEX < 0x03050200 extern "C" { struct _Py_atomic_address { void *value; }; PyAPI_DATA(_Py_atomic_address) _PyThreadState_Current; } #endif #define PYBIND11_TRY_NEXT_OVERLOAD ((PyObject *) 1) // special failure return code #define PYBIND11_STRINGIFY(x) #x #define PYBIND11_TOSTRING(x) PYBIND11_STRINGIFY(x) #define PYBIND11_INTERNALS_ID "__pybind11_" \ PYBIND11_TOSTRING(PYBIND11_VERSION_MAJOR) "_" PYBIND11_TOSTRING(PYBIND11_VERSION_MINOR) "__" #define PYBIND11_PLUGIN(name) \ static PyObject *pybind11_init(); \ PYBIND11_PLUGIN_IMPL(name) { \ int major, minor; \ if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) { \ PyErr_SetString(PyExc_ImportError, "Can't parse Python version."); \ return nullptr; \ } else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) { \ PyErr_Format(PyExc_ImportError, \ "Python version mismatch: module was compiled for " \ "version %i.%i, while the interpreter is running " \ "version %i.%i.", PY_MAJOR_VERSION, PY_MINOR_VERSION, \ major, minor); \ return nullptr; \ } \ try { \ return pybind11_init(); \ } catch (const std::exception &e) { \ PyErr_SetString(PyExc_ImportError, e.what()); \ return nullptr; \ } \ } \ PyObject *pybind11_init() // Function return value and argument type deduction support. When compiling under C++17 these // differ as C++17 makes the noexcept specifier part of the function type, while it is not part of // the type under earlier standards. #ifdef __cpp_noexcept_function_type # define PYBIND11_NOEXCEPT_TPL_ARG , bool NoExceptions # define PYBIND11_NOEXCEPT_SPECIFIER noexcept(NoExceptions) #else # define PYBIND11_NOEXCEPT_TPL_ARG # define PYBIND11_NOEXCEPT_SPECIFIER #endif NAMESPACE_BEGIN(pybind11) using ssize_t = Py_ssize_t; using size_t = std::size_t; /// Approach used to cast a previously unknown C++ instance into a Python object enum class return_value_policy : uint8_t { /** This is the default return value policy, which falls back to the policy return_value_policy::take_ownership when the return value is a pointer. Otherwise, it uses return_value::move or return_value::copy for rvalue and lvalue references, respectively. See below for a description of what all of these different policies do. */ automatic = 0, /** As above, but use policy return_value_policy::reference when the return value is a pointer. This is the default conversion policy for function arguments when calling Python functions manually from C++ code (i.e. via handle::operator()). You probably won't need to use this. */ automatic_reference, /** Reference an existing object (i.e. do not create a new copy) and take ownership. Python will call the destructor and delete operator when the object’s reference count reaches zero. Undefined behavior ensues when the C++ side does the same.. */ take_ownership, /** Create a new copy of the returned object, which will be owned by Python. This policy is comparably safe because the lifetimes of the two instances are decoupled. */ copy, /** Use std::move to move the return value contents into a new instance that will be owned by Python. This policy is comparably safe because the lifetimes of the two instances (move source and destination) are decoupled. */ move, /** Reference an existing object, but do not take ownership. The C++ side is responsible for managing the object’s lifetime and deallocating it when it is no longer used. Warning: undefined behavior will ensue when the C++ side deletes an object that is still referenced and used by Python. */ reference, /** This policy only applies to methods and properties. It references the object without taking ownership similar to the above return_value_policy::reference policy. In contrast to that policy, the function or property’s implicit this argument (called the parent) is considered to be the the owner of the return value (the child). pybind11 then couples the lifetime of the parent to the child via a reference relationship that ensures that the parent cannot be garbage collected while Python is still using the child. More advanced variations of this scheme are also possible using combinations of return_value_policy::reference and the keep_alive call policy */ reference_internal }; /// Information record describing a Python buffer object struct buffer_info { void *ptr = nullptr; // Pointer to the underlying storage size_t itemsize = 0; // Size of individual items in bytes size_t size = 0; // Total number of entries std::string format; // For homogeneous buffers, this should be set to format_descriptor::format() size_t ndim = 0; // Number of dimensions std::vector shape; // Shape of the tensor (1 entry per dimension) std::vector strides; // Number of entries between adjacent entries (for each per dimension) buffer_info() { } buffer_info(void *ptr, size_t itemsize, const std::string &format, size_t ndim, const std::vector &shape, const std::vector &strides) : ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim), shape(shape), strides(strides) { for (size_t i = 0; i < ndim; ++i) size *= shape[i]; } buffer_info(void *ptr, size_t itemsize, const std::string &format, size_t size) : buffer_info(ptr, itemsize, format, 1, std::vector { size }, std::vector { itemsize }) { } explicit buffer_info(Py_buffer *view, bool ownview = true) : ptr(view->buf), itemsize((size_t) view->itemsize), size(1), format(view->format), ndim((size_t) view->ndim), shape((size_t) view->ndim), strides((size_t) view->ndim), view(view), ownview(ownview) { for (size_t i = 0; i < (size_t) view->ndim; ++i) { shape[i] = (size_t) view->shape[i]; strides[i] = (size_t) view->strides[i]; size *= shape[i]; } } buffer_info(const buffer_info &) = delete; buffer_info& operator=(const buffer_info &) = delete; buffer_info(buffer_info &&other) { (*this) = std::move(other); } buffer_info& operator=(buffer_info &&rhs) { ptr = rhs.ptr; itemsize = rhs.itemsize; size = rhs.size; format = std::move(rhs.format); ndim = rhs.ndim; shape = std::move(rhs.shape); strides = std::move(rhs.strides); std::swap(view, rhs.view); std::swap(ownview, rhs.ownview); return *this; } ~buffer_info() { if (view && ownview) { PyBuffer_Release(view); delete view; } } private: Py_buffer *view = nullptr; bool ownview = false; }; NAMESPACE_BEGIN(detail) inline static constexpr int log2(size_t n, int k = 0) { return (n <= 1) ? k : log2(n >> 1, k + 1); } inline std::string error_string(); /// Core part of the 'instance' type which POD (needed to be able to use 'offsetof') template struct instance_essentials { PyObject_HEAD type *value; PyObject *weakrefs; bool owned : 1; bool holder_constructed : 1; }; /// PyObject wrapper around generic types, includes a special holder type that is responsible for lifetime management template > struct instance : instance_essentials { holder_type holder; }; struct overload_hash { inline size_t operator()(const std::pair& v) const { size_t value = std::hash()(v.first); value ^= std::hash()(v.second) + 0x9e3779b9 + (value<<6) + (value>>2); return value; } }; /// Internal data struture used to track registered instances and types struct internals { std::unordered_map registered_types_cpp; // std::type_index -> type_info std::unordered_map registered_types_py; // PyTypeObject* -> type_info std::unordered_multimap registered_instances; // void * -> PyObject* std::unordered_set, overload_hash> inactive_overload_cache; std::unordered_map> direct_conversions; std::forward_list registered_exception_translators; std::unordered_map shared_data; // Custom data to be shared across extensions #if defined(WITH_THREAD) decltype(PyThread_create_key()) tstate = 0; // Usually an int but a long on Cygwin64 with Python 3.x PyInterpreterState *istate = nullptr; #endif }; /// Return a reference to the current 'internals' information inline internals &get_internals(); /// from __cpp_future__ import (convenient aliases from C++14/17) #ifdef PYBIND11_CPP14 using std::enable_if_t; using std::conditional_t; #else template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; #endif /// Index sequences #if defined(PYBIND11_CPP14) || defined(_MSC_VER) using std::index_sequence; using std::make_index_sequence; #else template struct index_sequence { }; template struct make_index_sequence_impl : make_index_sequence_impl { }; template struct make_index_sequence_impl <0, S...> { typedef index_sequence type; }; template using make_index_sequence = typename make_index_sequence_impl::type; #endif #if defined(PYBIND11_CPP17) || defined(_MSC_VER) using std::bool_constant; using std::negation; #else template using bool_constant = std::integral_constant; template using negation = bool_constant; #endif /// Compile-time all/any/none of that check the ::value of all template types #ifdef PYBIND11_CPP17 template using all_of = bool_constant<(Ts::value && ...)>; template using any_of = bool_constant<(Ts::value || ...)>; #elif !defined(_MSC_VER) template struct bools {}; template using all_of = std::is_same< bools, bools>; template using any_of = negation...>>; #else // MSVC has trouble with the above, but supports std::conjunction, which we can use instead (albeit // at a slight loss of compilation efficiency). template using all_of = std::conjunction; template using any_of = std::disjunction; #endif template using none_of = negation>; /// Strip the class from a method type template struct remove_class { }; template struct remove_class { typedef R type(A...); }; template struct remove_class { typedef R type(A...); }; /// Helper template to strip away type modifiers template struct intrinsic_type { typedef T type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template struct intrinsic_type { typedef typename intrinsic_type::type type; }; template using intrinsic_t = typename intrinsic_type::type; /// Helper type to replace 'void' in some expressions struct void_type { }; /// Helper template which holds a list of types template struct type_list { }; /// Compile-time integer sum constexpr size_t constexpr_sum() { return 0; } template constexpr size_t constexpr_sum(T n, Ts... ns) { return size_t{n} + constexpr_sum(ns...); } // Extracts the first type from the template parameter pack matching the predicate, or Default if none match. template class Predicate, class Default, class... Ts> struct first_of; template class Predicate, class Default> struct first_of { using type = Default; }; template class Predicate, class Default, class T, class... Ts> struct first_of { using type = typename std::conditional< Predicate::value, T, typename first_of::type >::type; }; template class Predicate, class Default, class... T> using first_of_t = typename first_of::type; /// Defer the evaluation of type T until types Us are instantiated template struct deferred_type { using type = T; }; template using deferred_t = typename deferred_type::type; template class Base> struct is_template_base_of_impl { template static std::true_type check(Base *); static std::false_type check(...); }; /// Check if a template is the base of a type. For example: /// `is_template_base_of` is true if `struct T : Base {}` where U can be anything template class Base, typename T> #if !defined(_MSC_VER) using is_template_base_of = decltype(is_template_base_of_impl::check((T*)nullptr)); #else // MSVC2015 has trouble with decltype in template aliases struct is_template_base_of : decltype(is_template_base_of_impl::check((T*)nullptr)) { }; #endif /// Check if T is std::shared_ptr where U can be anything template struct is_shared_ptr : std::false_type { }; template struct is_shared_ptr> : std::true_type { }; /// Ignore that a variable is unused in compiler warnings inline void ignore_unused(const int *) { } NAMESPACE_END(detail) /// Returns a named pointer that is shared among all extension modules (using the same /// pybind11 version) running in the current interpreter. Names starting with underscores /// are reserved for internal usage. Returns `nullptr` if no matching entry was found. inline PYBIND11_NOINLINE void* get_shared_data(const std::string& name) { auto& internals = detail::get_internals(); auto it = internals.shared_data.find(name); return it != internals.shared_data.end() ? it->second : nullptr; } /// Set the shared data that can be later recovered by `get_shared_data()`. inline PYBIND11_NOINLINE void *set_shared_data(const std::string& name, void *data) { detail::get_internals().shared_data[name] = data; return data; } /// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if /// such entry exists. Otherwise, a new object of default-constructible type `T` is /// added to the shared data under the given name and a reference to it is returned. template T& get_or_create_shared_data(const std::string& name) { auto& internals = detail::get_internals(); auto it = internals.shared_data.find(name); T* ptr = (T*) (it != internals.shared_data.end() ? it->second : nullptr); if (!ptr) { ptr = new T(); internals.shared_data[name] = ptr; } return *ptr; } /// Fetch and hold an error which was already set in Python class error_already_set : public std::runtime_error { public: error_already_set() : std::runtime_error(detail::error_string()) { PyErr_Fetch(&type, &value, &trace); } error_already_set(const error_already_set &) = delete; error_already_set(error_already_set &&e) : std::runtime_error(e.what()), type(e.type), value(e.value), trace(e.trace) { e.type = e.value = e.trace = nullptr; } inline ~error_already_set(); // implementation in pybind11.h error_already_set& operator=(const error_already_set &) = delete; /// Give the error back to Python void restore() { PyErr_Restore(type, value, trace); type = value = trace = nullptr; } private: PyObject *type, *value, *trace; }; /// C++ bindings of builtin Python exceptions class builtin_exception : public std::runtime_error { public: using std::runtime_error::runtime_error; virtual void set_error() const = 0; /// Set the error using the Python C API }; #define PYBIND11_RUNTIME_EXCEPTION(name, type) \ class name : public builtin_exception { public: \ using builtin_exception::builtin_exception; \ name() : name("") { } \ void set_error() const override { PyErr_SetString(type, what()); } \ }; PYBIND11_RUNTIME_EXCEPTION(stop_iteration, PyExc_StopIteration) PYBIND11_RUNTIME_EXCEPTION(index_error, PyExc_IndexError) PYBIND11_RUNTIME_EXCEPTION(key_error, PyExc_KeyError) PYBIND11_RUNTIME_EXCEPTION(value_error, PyExc_ValueError) PYBIND11_RUNTIME_EXCEPTION(type_error, PyExc_TypeError) PYBIND11_RUNTIME_EXCEPTION(cast_error, PyExc_RuntimeError) /// Thrown when pybind11::cast or handle::call fail due to a type casting error PYBIND11_RUNTIME_EXCEPTION(reference_cast_error, PyExc_RuntimeError) /// Used internally [[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); } [[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); } /// Format strings for basic number types #define PYBIND11_DECL_FMT(t, v) template<> struct format_descriptor \ { static constexpr const char* value = v; /* for backwards compatibility */ \ static std::string format() { return value; } } template struct format_descriptor { }; template struct format_descriptor::value>> { static constexpr const char c = "bBhHiIqQ"[detail::log2(sizeof(T))*2 + std::is_unsigned::value]; static constexpr const char value[2] = { c, '\0' }; static std::string format() { return std::string(1, c); } }; template constexpr const char format_descriptor< T, detail::enable_if_t::value>>::value[2]; /// RAII wrapper that temporarily clears any Python error state struct error_scope { PyObject *type, *value, *trace; error_scope() { PyErr_Fetch(&type, &value, &trace); } ~error_scope() { PyErr_Restore(type, value, trace); } }; PYBIND11_DECL_FMT(float, "f"); PYBIND11_DECL_FMT(double, "d"); PYBIND11_DECL_FMT(bool, "?"); /// Dummy destructor wrapper that can be used to expose classes with a private destructor struct nodelete { template void operator()(T*) { } }; // overload_cast requires variable templates: C++14 or MSVC 2015 Update 2 #if defined(PYBIND11_CPP14) || _MSC_FULL_VER >= 190023918 #define PYBIND11_OVERLOAD_CAST 1 NAMESPACE_BEGIN(detail) template struct overload_cast_impl { template constexpr auto operator()(Return (*pf)(Args...) PYBIND11_NOEXCEPT_SPECIFIER) const noexcept -> decltype(pf) { return pf; } template constexpr auto operator()(Return (Class::*pmf)(Args...) PYBIND11_NOEXCEPT_SPECIFIER, std::false_type = {}) const noexcept -> decltype(pmf) { return pmf; } template constexpr auto operator()(Return (Class::*pmf)(Args...) const PYBIND11_NOEXCEPT_SPECIFIER, std::true_type) const noexcept -> decltype(pmf) { return pmf; } }; NAMESPACE_END(detail) /// Syntax sugar for resolving overloaded function pointers: /// - regular: static_cast(&Class::func) /// - sweet: overload_cast(&Class::func) template static constexpr detail::overload_cast_impl overload_cast = {}; // MSVC 2015 only accepts this particular initialization syntax for this variable template. /// Const member function selector for overload_cast /// - regular: static_cast(&Class::func) /// - sweet: overload_cast(&Class::func, const_) static constexpr auto const_ = std::true_type{}; #endif // overload_cast NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/complex.h000066400000000000000000000023661303320175600200420ustar00rootroot00000000000000/* pybind11/complex.h: Complex number support Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include /// glibc defines I as a macro which breaks things, e.g., boost template names #ifdef I # undef I #endif NAMESPACE_BEGIN(pybind11) PYBIND11_DECL_FMT(std::complex, "Zf"); PYBIND11_DECL_FMT(std::complex, "Zd"); NAMESPACE_BEGIN(detail) template class type_caster> { public: bool load(handle src, bool) { if (!src) return false; Py_complex result = PyComplex_AsCComplex(src.ptr()); if (result.real == -1.0 && PyErr_Occurred()) { PyErr_Clear(); return false; } value = std::complex((T) result.real, (T) result.imag); return true; } static handle cast(const std::complex &src, return_value_policy /* policy */, handle /* parent */) { return PyComplex_FromDoubles((double) src.real(), (double) src.imag()); } PYBIND11_TYPE_CASTER(std::complex, _("complex")); }; NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/descr.h000066400000000000000000000167621303320175600175000ustar00rootroot00000000000000/* pybind11/descr.h: Helper type for concatenating type signatures either at runtime (C++11) or compile time (C++14) Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "common.h" NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) #if defined(PYBIND11_CPP14) /* Concatenate type signatures at compile time using C++14 */ template class descr { template friend class descr; public: constexpr descr(char const (&text) [Size1+1], const std::type_info * const (&types)[Size2+1]) : descr(text, types, make_index_sequence(), make_index_sequence()) { } constexpr const char *text() const { return m_text; } constexpr const std::type_info * const * types() const { return m_types; } template constexpr descr operator+(const descr &other) const { return concat(other, make_index_sequence(), make_index_sequence(), make_index_sequence(), make_index_sequence()); } protected: template constexpr descr( char const (&text) [Size1+1], const std::type_info * const (&types) [Size2+1], index_sequence, index_sequence) : m_text{text[Indices1]..., '\0'}, m_types{types[Indices2]..., nullptr } {} template constexpr descr concat(const descr &other, index_sequence, index_sequence, index_sequence, index_sequence) const { return descr( { m_text[Indices1]..., other.m_text[OtherIndices1]..., '\0' }, { m_types[Indices2]..., other.m_types[OtherIndices2]..., nullptr } ); } protected: char m_text[Size1 + 1]; const std::type_info * m_types[Size2 + 1]; }; template constexpr descr _(char const(&text)[Size]) { return descr(text, { nullptr }); } template struct int_to_str : int_to_str { }; template struct int_to_str<0, Digits...> { static constexpr auto digits = descr({ ('0' + Digits)..., '\0' }, { nullptr }); }; // Ternary description (like std::conditional) template constexpr enable_if_t> _(char const(&text1)[Size1], char const(&)[Size2]) { return _(text1); } template constexpr enable_if_t> _(char const(&)[Size1], char const(&text2)[Size2]) { return _(text2); } template constexpr enable_if_t> _(descr d, descr) { return d; } template constexpr enable_if_t> _(descr, descr d) { return d; } template auto constexpr _() -> decltype(int_to_str::digits) { return int_to_str::digits; } template constexpr descr<1, 1> _() { return descr<1, 1>({ '%', '\0' }, { &typeid(Type), nullptr }); } inline constexpr descr<0, 0> concat() { return _(""); } template auto constexpr concat(descr descr) { return descr; } template auto constexpr concat(descr descr, Args&&... args) { return descr + _(", ") + concat(args...); } template auto constexpr type_descr(descr descr) { return _("{") + descr + _("}"); } #define PYBIND11_DESCR constexpr auto #else /* Simpler C++11 implementation based on run-time memory allocation and copying */ class descr { public: PYBIND11_NOINLINE descr(const char *text, const std::type_info * const * types) { size_t nChars = len(text), nTypes = len(types); m_text = new char[nChars]; m_types = new const std::type_info *[nTypes]; memcpy(m_text, text, nChars * sizeof(char)); memcpy(m_types, types, nTypes * sizeof(const std::type_info *)); } PYBIND11_NOINLINE descr friend operator+(descr &&d1, descr &&d2) { descr r; size_t nChars1 = len(d1.m_text), nTypes1 = len(d1.m_types); size_t nChars2 = len(d2.m_text), nTypes2 = len(d2.m_types); r.m_text = new char[nChars1 + nChars2 - 1]; r.m_types = new const std::type_info *[nTypes1 + nTypes2 - 1]; memcpy(r.m_text, d1.m_text, (nChars1-1) * sizeof(char)); memcpy(r.m_text + nChars1 - 1, d2.m_text, nChars2 * sizeof(char)); memcpy(r.m_types, d1.m_types, (nTypes1-1) * sizeof(std::type_info *)); memcpy(r.m_types + nTypes1 - 1, d2.m_types, nTypes2 * sizeof(std::type_info *)); delete[] d1.m_text; delete[] d1.m_types; delete[] d2.m_text; delete[] d2.m_types; return r; } char *text() { return m_text; } const std::type_info * * types() { return m_types; } protected: PYBIND11_NOINLINE descr() { } template static size_t len(const T *ptr) { // return length including null termination const T *it = ptr; while (*it++ != (T) 0) ; return static_cast(it - ptr); } const std::type_info **m_types = nullptr; char *m_text = nullptr; }; /* The 'PYBIND11_NOINLINE inline' combinations below are intentional to get the desired linkage while producing as little object code as possible */ PYBIND11_NOINLINE inline descr _(const char *text) { const std::type_info *types[1] = { nullptr }; return descr(text, types); } template PYBIND11_NOINLINE enable_if_t _(const char *text1, const char *) { return _(text1); } template PYBIND11_NOINLINE enable_if_t _(char const *, const char *text2) { return _(text2); } template PYBIND11_NOINLINE enable_if_t _(descr d, descr) { return d; } template PYBIND11_NOINLINE enable_if_t _(descr, descr d) { return d; } template PYBIND11_NOINLINE descr _() { const std::type_info *types[2] = { &typeid(Type), nullptr }; return descr("%", types); } template PYBIND11_NOINLINE descr _() { const std::type_info *types[1] = { nullptr }; return descr(std::to_string(Size).c_str(), types); } PYBIND11_NOINLINE inline descr concat() { return _(""); } PYBIND11_NOINLINE inline descr concat(descr &&d) { return d; } template PYBIND11_NOINLINE descr concat(descr &&d, Args&&... args) { return std::move(d) + _(", ") + concat(std::forward(args)...); } PYBIND11_NOINLINE inline descr type_descr(descr&& d) { return _("{") + std::move(d) + _("}"); } #define PYBIND11_DESCR ::pybind11::detail::descr #endif NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/eigen.h000066400000000000000000000246151303320175600174630ustar00rootroot00000000000000/* pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "numpy.h" #if defined(__INTEL_COMPILER) # pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) #elif defined(__GNUG__) || defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wconversion" # pragma GCC diagnostic ignored "-Wdeprecated-declarations" # if __GNUC__ >= 7 # pragma GCC diagnostic ignored "-Wint-in-bool-context" # endif #endif #include #include #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) template using is_eigen_dense = is_template_base_of; template using is_eigen_sparse = is_template_base_of; template using is_eigen_ref = is_template_base_of; // Test for objects inheriting from EigenBase that aren't captured by the above. This // basically covers anything that can be assigned to a dense matrix but that don't have a typical // matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and // SelfAdjointView fall into this category. template using is_eigen_base = all_of< is_template_base_of, negation>, negation> >; template struct type_caster::value && !is_eigen_ref::value>> { typedef typename Type::Scalar Scalar; static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit; static constexpr bool isVector = Type::IsVectorAtCompileTime; bool load(handle src, bool) { auto buf = array_t::ensure(src); if (!buf) return false; if (buf.ndim() == 1) { typedef Eigen::InnerStride<> Strides; if (!isVector && !(Type::RowsAtCompileTime == Eigen::Dynamic && Type::ColsAtCompileTime == Eigen::Dynamic)) return false; if (Type::SizeAtCompileTime != Eigen::Dynamic && buf.shape(0) != (size_t) Type::SizeAtCompileTime) return false; Strides::Index n_elts = (Strides::Index) buf.shape(0); Strides::Index unity = 1; value = Eigen::Map( buf.mutable_data(), rowMajor ? unity : n_elts, rowMajor ? n_elts : unity, Strides(buf.strides(0) / sizeof(Scalar)) ); } else if (buf.ndim() == 2) { typedef Eigen::Stride Strides; if ((Type::RowsAtCompileTime != Eigen::Dynamic && buf.shape(0) != (size_t) Type::RowsAtCompileTime) || (Type::ColsAtCompileTime != Eigen::Dynamic && buf.shape(1) != (size_t) Type::ColsAtCompileTime)) return false; value = Eigen::Map( buf.mutable_data(), typename Strides::Index(buf.shape(0)), typename Strides::Index(buf.shape(1)), Strides(buf.strides(rowMajor ? 0 : 1) / sizeof(Scalar), buf.strides(rowMajor ? 1 : 0) / sizeof(Scalar)) ); } else { return false; } return true; } static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { if (isVector) { return array( { (size_t) src.size() }, // shape { sizeof(Scalar) * static_cast(src.innerStride()) }, // strides src.data() // data ).release(); } else { return array( { (size_t) src.rows(), // shape (size_t) src.cols() }, { sizeof(Scalar) * static_cast(src.rowStride()), // strides sizeof(Scalar) * static_cast(src.colStride()) }, src.data() // data ).release(); } } PYBIND11_TYPE_CASTER(Type, _("numpy.ndarray[") + npy_format_descriptor::name() + _("[") + rows() + _(", ") + cols() + _("]]")); protected: template = 0> static PYBIND11_DESCR rows() { return _("m"); } template = 0> static PYBIND11_DESCR rows() { return _(); } template = 0> static PYBIND11_DESCR cols() { return _("n"); } template = 0> static PYBIND11_DESCR cols() { return _(); } }; // Eigen::Ref satisfies is_eigen_dense, but isn't constructable, so it needs a special // type_caster to handle argument copying/forwarding. template struct type_caster> { protected: using Type = Eigen::Ref; using Derived = typename std::remove_const::type; using DerivedCaster = make_caster; DerivedCaster derived_caster; std::unique_ptr value; public: bool load(handle src, bool convert) { if (derived_caster.load(src, convert)) { value.reset(new Type(derived_caster.operator Derived&())); return true; } return false; } static handle cast(const Type &src, return_value_policy policy, handle parent) { return DerivedCaster::cast(src, policy, parent); } static handle cast(const Type *src, return_value_policy policy, handle parent) { return DerivedCaster::cast(*src, policy, parent); } static PYBIND11_DESCR name() { return DerivedCaster::name(); } operator Type*() { return value.get(); } operator Type&() { if (!value) pybind11_fail("Eigen::Ref<...> value not loaded"); return *value; } template using cast_op_type = pybind11::detail::cast_op_type<_T>; }; // type_caster for special matrix types (e.g. DiagonalMatrix): load() is not supported, but we can // cast them into the python domain by first copying to a regular Eigen::Matrix, then casting that. template struct type_caster::value && !is_eigen_ref::value>> { protected: using Matrix = Eigen::Matrix; using MatrixCaster = make_caster; public: [[noreturn]] bool load(handle, bool) { pybind11_fail("Unable to load() into specialized EigenBase object"); } static handle cast(const Type &src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(src), policy, parent); } static handle cast(const Type *src, return_value_policy policy, handle parent) { return MatrixCaster::cast(Matrix(*src), policy, parent); } static PYBIND11_DESCR name() { return MatrixCaster::name(); } [[noreturn]] operator Type*() { pybind11_fail("Loading not supported for specialized EigenBase object"); } [[noreturn]] operator Type&() { pybind11_fail("Loading not supported for specialized EigenBase object"); } template using cast_op_type = pybind11::detail::cast_op_type<_T>; }; template struct type_caster::value>> { typedef typename Type::Scalar Scalar; typedef typename std::remove_reference().outerIndexPtr())>::type StorageIndex; typedef typename Type::Index Index; static constexpr bool rowMajor = Type::Flags & Eigen::RowMajorBit; bool load(handle src, bool) { if (!src) return false; auto obj = reinterpret_borrow(src); object sparse_module = module::import("scipy.sparse"); object matrix_type = sparse_module.attr( rowMajor ? "csr_matrix" : "csc_matrix"); if (obj.get_type() != matrix_type.ptr()) { try { obj = matrix_type(obj); } catch (const error_already_set &) { return false; } } auto values = array_t((object) obj.attr("data")); auto innerIndices = array_t((object) obj.attr("indices")); auto outerIndices = array_t((object) obj.attr("indptr")); auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); auto nnz = obj.attr("nnz").cast(); if (!values || !innerIndices || !outerIndices) return false; value = Eigen::MappedSparseMatrix( shape[0].cast(), shape[1].cast(), nnz, outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); return true; } static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { const_cast(src).makeCompressed(); object matrix_type = module::import("scipy.sparse").attr( rowMajor ? "csr_matrix" : "csc_matrix"); array data((size_t) src.nonZeros(), src.valuePtr()); array outerIndices((size_t) (rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); array innerIndices((size_t) src.nonZeros(), src.innerIndexPtr()); return matrix_type( std::make_tuple(data, innerIndices, outerIndices), std::make_pair(src.rows(), src.cols()) ).release(); } PYBIND11_TYPE_CASTER(Type, _<(Type::Flags & Eigen::RowMajorBit) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") + npy_format_descriptor::name() + _("]")); }; NAMESPACE_END(detail) NAMESPACE_END(pybind11) #if defined(__GNUG__) || defined(__clang__) # pragma GCC diagnostic pop #elif defined(_MSC_VER) # pragma warning(pop) #endif pybind11-2.0.1/include/pybind11/eval.h000066400000000000000000000066221303320175600173210ustar00rootroot00000000000000/* pybind11/exec.h: Support for evaluating Python expressions and statements from strings and files Copyright (c) 2016 Klemens Morgenstern and Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #pragma once #include "pybind11.h" NAMESPACE_BEGIN(pybind11) enum eval_mode { /// Evaluate a string containing an isolated expression eval_expr, /// Evaluate a string containing a single statement. Returns \c none eval_single_statement, /// Evaluate a string containing a sequence of statement. Returns \c none eval_statements }; template object eval(str expr, object global = object(), object local = object()) { if (!global) { global = reinterpret_borrow(PyEval_GetGlobals()); if (!global) global = dict(); } if (!local) local = global; /* PyRun_String does not accept a PyObject / encoding specifier, this seems to be the only alternative */ std::string buffer = "# -*- coding: utf-8 -*-\n" + (std::string) expr; int start; switch (mode) { case eval_expr: start = Py_eval_input; break; case eval_single_statement: start = Py_single_input; break; case eval_statements: start = Py_file_input; break; default: pybind11_fail("invalid evaluation mode"); } PyObject *result = PyRun_String(buffer.c_str(), start, global.ptr(), local.ptr()); if (!result) throw error_already_set(); return reinterpret_steal(result); } template object eval_file(str fname, object global = object(), object local = object()) { if (!global) { global = reinterpret_borrow(PyEval_GetGlobals()); if (!global) global = dict(); } if (!local) local = global; int start; switch (mode) { case eval_expr: start = Py_eval_input; break; case eval_single_statement: start = Py_single_input; break; case eval_statements: start = Py_file_input; break; default: pybind11_fail("invalid evaluation mode"); } int closeFile = 1; std::string fname_str = (std::string) fname; #if PY_VERSION_HEX >= 0x03040000 FILE *f = _Py_fopen_obj(fname.ptr(), "r"); #elif PY_VERSION_HEX >= 0x03000000 FILE *f = _Py_fopen(fname.ptr(), "r"); #else /* No unicode support in open() :( */ auto fobj = reinterpret_steal(PyFile_FromString( const_cast(fname_str.c_str()), const_cast("r"))); FILE *f = nullptr; if (fobj) f = PyFile_AsFile(fobj.ptr()); closeFile = 0; #endif if (!f) { PyErr_Clear(); pybind11_fail("File \"" + fname_str + "\" could not be opened!"); } #if PY_VERSION_HEX < 0x03000000 && defined(PYPY_VERSION) PyObject *result = PyRun_File(f, fname_str.c_str(), start, global.ptr(), local.ptr()); (void) closeFile; #else PyObject *result = PyRun_FileEx(f, fname_str.c_str(), start, global.ptr(), local.ptr(), closeFile); #endif if (!result) throw error_already_set(); return reinterpret_steal(result); } NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/functional.h000066400000000000000000000054671303320175600205420ustar00rootroot00000000000000/* pybind11/functional.h: std::function<> support Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) template struct type_caster> { using type = std::function; using retval_type = conditional_t::value, void_type, Return>; using function_type = Return (*) (Args...) PYBIND11_NOEXCEPT_SPECIFIER; public: bool load(handle src_, bool) { if (src_.is_none()) return true; src_ = detail::get_function(src_); if (!src_ || !PyCallable_Check(src_.ptr())) return false; /* When passing a C++ function as an argument to another C++ function via Python, every function call would normally involve a full C++ -> Python -> C++ roundtrip, which can be prohibitive. Here, we try to at least detect the case where the function is stateless (i.e. function pointer or lambda function without captured variables), in which case the roundtrip can be avoided. */ if (PyCFunction_Check(src_.ptr())) { auto c = reinterpret_borrow(PyCFunction_GET_SELF(src_.ptr())); auto rec = (function_record *) c; if (rec && rec->is_stateless && rec->data[1] == &typeid(function_type)) { struct capture { function_type f; }; value = ((capture *) &rec->data)->f; return true; } } auto src = reinterpret_borrow(src_); value = [src](Args... args) -> Return { gil_scoped_acquire acq; object retval(src(std::move(args)...)); /* Visual studio 2015 parser issue: need parentheses around this expression */ return (retval.template cast()); }; return true; } template static handle cast(Func &&f_, return_value_policy policy, handle /* parent */) { if (!f_) return none().inc_ref(); auto result = f_.template target(); if (result) return cpp_function(*result, policy).release(); else return cpp_function(std::forward(f_), policy).release(); } PYBIND11_TYPE_CASTER(type, _("Callable[[") + argument_loader::arg_names() + _("], ") + make_caster::name() + _("]")); }; NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/numpy.h000066400000000000000000001262301303320175600175400ustar00rootroot00000000000000/* pybind11/numpy.h: Basic NumPy support, vectorize() wrapper Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include "complex.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif /* This will be true on all flat address space platforms and allows us to reduce the whole npy_intp / size_t / Py_intptr_t business down to just size_t for all size and dimension types (e.g. shape, strides, indexing), instead of inflicting this upon the library user. */ static_assert(sizeof(size_t) == sizeof(Py_intptr_t), "size_t != Py_intptr_t"); NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) template struct npy_format_descriptor { }; template struct is_pod_struct; struct PyArrayDescr_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char flags; int type_num; int elsize; int alignment; char *subarray; PyObject *fields; PyObject *names; }; struct PyArray_Proxy { PyObject_HEAD char *data; int nd; ssize_t *dimensions; ssize_t *strides; PyObject *base; PyObject *descr; int flags; }; struct PyVoidScalarObject_Proxy { PyObject_VAR_HEAD char *obval; PyArrayDescr_Proxy *descr; int flags; PyObject *base; }; struct numpy_type_info { PyObject* dtype_ptr; std::string format_str; }; struct numpy_internals { std::unordered_map registered_dtypes; numpy_type_info *get_type_info(const std::type_info& tinfo, bool throw_if_missing = true) { auto it = registered_dtypes.find(std::type_index(tinfo)); if (it != registered_dtypes.end()) return &(it->second); if (throw_if_missing) pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name()); return nullptr; } template numpy_type_info *get_type_info(bool throw_if_missing = true) { return get_type_info(typeid(typename std::remove_cv::type), throw_if_missing); } }; inline PYBIND11_NOINLINE void load_numpy_internals(numpy_internals* &ptr) { ptr = &get_or_create_shared_data("_numpy_internals"); } inline numpy_internals& get_numpy_internals() { static numpy_internals* ptr = nullptr; if (!ptr) load_numpy_internals(ptr); return *ptr; } struct npy_api { enum constants { NPY_C_CONTIGUOUS_ = 0x0001, NPY_F_CONTIGUOUS_ = 0x0002, NPY_ARRAY_OWNDATA_ = 0x0004, NPY_ARRAY_FORCECAST_ = 0x0010, NPY_ENSURE_ARRAY_ = 0x0040, NPY_ARRAY_ALIGNED_ = 0x0100, NPY_ARRAY_WRITEABLE_ = 0x0400, NPY_BOOL_ = 0, NPY_BYTE_, NPY_UBYTE_, NPY_SHORT_, NPY_USHORT_, NPY_INT_, NPY_UINT_, NPY_LONG_, NPY_ULONG_, NPY_LONGLONG_, NPY_ULONGLONG_, NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_, NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_, NPY_OBJECT_ = 17, NPY_STRING_, NPY_UNICODE_, NPY_VOID_ }; static npy_api& get() { static npy_api api = lookup(); return api; } bool PyArray_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArray_Type_); } bool PyArrayDescr_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArrayDescr_Type_); } PyObject *(*PyArray_DescrFromType_)(int); PyObject *(*PyArray_NewFromDescr_) (PyTypeObject *, PyObject *, int, Py_intptr_t *, Py_intptr_t *, void *, int, PyObject *); PyObject *(*PyArray_DescrNewFromType_)(int); PyObject *(*PyArray_NewCopy_)(PyObject *, int); PyTypeObject *PyArray_Type_; PyTypeObject *PyVoidArrType_Type_; PyTypeObject *PyArrayDescr_Type_; PyObject *(*PyArray_DescrFromScalar_)(PyObject *); PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *); int (*PyArray_DescrConverter_) (PyObject *, PyObject **); bool (*PyArray_EquivTypes_) (PyObject *, PyObject *); int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, char, PyObject **, int *, Py_ssize_t *, PyObject **, PyObject *); PyObject *(*PyArray_Squeeze_)(PyObject *); private: enum functions { API_PyArray_Type = 2, API_PyArrayDescr_Type = 3, API_PyVoidArrType_Type = 39, API_PyArray_DescrFromType = 45, API_PyArray_DescrFromScalar = 57, API_PyArray_FromAny = 69, API_PyArray_NewCopy = 85, API_PyArray_NewFromDescr = 94, API_PyArray_DescrNewFromType = 9, API_PyArray_DescrConverter = 174, API_PyArray_EquivTypes = 182, API_PyArray_GetArrayParamsFromObject = 278, API_PyArray_Squeeze = 136 }; static npy_api lookup() { module m = module::import("numpy.core.multiarray"); auto c = m.attr("_ARRAY_API"); #if PY_MAJOR_VERSION >= 3 void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL); #else void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr()); #endif npy_api api; #define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func]; DECL_NPY_API(PyArray_Type); DECL_NPY_API(PyVoidArrType_Type); DECL_NPY_API(PyArrayDescr_Type); DECL_NPY_API(PyArray_DescrFromType); DECL_NPY_API(PyArray_DescrFromScalar); DECL_NPY_API(PyArray_FromAny); DECL_NPY_API(PyArray_NewCopy); DECL_NPY_API(PyArray_NewFromDescr); DECL_NPY_API(PyArray_DescrNewFromType); DECL_NPY_API(PyArray_DescrConverter); DECL_NPY_API(PyArray_EquivTypes); DECL_NPY_API(PyArray_GetArrayParamsFromObject); DECL_NPY_API(PyArray_Squeeze); #undef DECL_NPY_API return api; } }; inline PyArray_Proxy* array_proxy(void* ptr) { return reinterpret_cast(ptr); } inline const PyArray_Proxy* array_proxy(const void* ptr) { return reinterpret_cast(ptr); } inline PyArrayDescr_Proxy* array_descriptor_proxy(PyObject* ptr) { return reinterpret_cast(ptr); } inline const PyArrayDescr_Proxy* array_descriptor_proxy(const PyObject* ptr) { return reinterpret_cast(ptr); } inline bool check_flags(const void* ptr, int flag) { return (flag == (array_proxy(ptr)->flags & flag)); } NAMESPACE_END(detail) class dtype : public object { public: PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_); explicit dtype(const buffer_info &info) { dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format))); // If info.itemsize == 0, use the value calculated from the format string m_ptr = descr.strip_padding(info.itemsize ? info.itemsize : descr.itemsize()).release().ptr(); } explicit dtype(const std::string &format) { m_ptr = from_args(pybind11::str(format)).release().ptr(); } dtype(const char *format) : dtype(std::string(format)) { } dtype(list names, list formats, list offsets, size_t itemsize) { dict args; args["names"] = names; args["formats"] = formats; args["offsets"] = offsets; args["itemsize"] = pybind11::int_(itemsize); m_ptr = from_args(args).release().ptr(); } /// This is essentially the same as calling numpy.dtype(args) in Python. static dtype from_args(object args) { PyObject *ptr = nullptr; if (!detail::npy_api::get().PyArray_DescrConverter_(args.release().ptr(), &ptr) || !ptr) throw error_already_set(); return reinterpret_steal(ptr); } /// Return dtype associated with a C++ type. template static dtype of() { return detail::npy_format_descriptor::type>::dtype(); } /// Size of the data type in bytes. size_t itemsize() const { return (size_t) detail::array_descriptor_proxy(m_ptr)->elsize; } /// Returns true for structured data types. bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; } /// Single-character type code. char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; } private: static object _dtype_from_pep3118() { static PyObject *obj = module::import("numpy.core._internal") .attr("_dtype_from_pep3118").cast().release().ptr(); return reinterpret_borrow(obj); } dtype strip_padding(size_t itemsize) { // Recursively strip all void fields with empty names that are generated for // padding fields (as of NumPy v1.11). if (!has_fields()) return *this; struct field_descr { PYBIND11_STR_TYPE name; object format; pybind11::int_ offset; }; std::vector field_descriptors; for (auto field : attr("fields").attr("items")()) { auto spec = field.cast(); auto name = spec[0].cast(); auto format = spec[1].cast()[0].cast(); auto offset = spec[1].cast()[1].cast(); if (!len(name) && format.kind() == 'V') continue; field_descriptors.push_back({(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset}); } std::sort(field_descriptors.begin(), field_descriptors.end(), [](const field_descr& a, const field_descr& b) { return a.offset.cast() < b.offset.cast(); }); list names, formats, offsets; for (auto& descr : field_descriptors) { names.append(descr.name); formats.append(descr.format); offsets.append(descr.offset); } return dtype(names, formats, offsets, itemsize); } }; class array : public buffer { public: PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array) enum { c_style = detail::npy_api::NPY_C_CONTIGUOUS_, f_style = detail::npy_api::NPY_F_CONTIGUOUS_, forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_ }; array() : array(0, static_cast(nullptr)) {} array(const pybind11::dtype &dt, const std::vector &shape, const std::vector &strides, const void *ptr = nullptr, handle base = handle()) { auto& api = detail::npy_api::get(); auto ndim = shape.size(); if (shape.size() != strides.size()) pybind11_fail("NumPy: shape ndim doesn't match strides ndim"); auto descr = dt; int flags = 0; if (base && ptr) { if (isinstance(base)) /* Copy flags from base (except baseship bit) */ flags = reinterpret_borrow(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_; else /* Writable by default, easy to downgrade later on if needed */ flags = detail::npy_api::NPY_ARRAY_WRITEABLE_; } auto tmp = reinterpret_steal(api.PyArray_NewFromDescr_( api.PyArray_Type_, descr.release().ptr(), (int) ndim, (Py_intptr_t *) shape.data(), (Py_intptr_t *) strides.data(), const_cast(ptr), flags, nullptr)); if (!tmp) pybind11_fail("NumPy: unable to create array!"); if (ptr) { if (base) { detail::array_proxy(tmp.ptr())->base = base.inc_ref().ptr(); } else { tmp = reinterpret_steal(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */)); } } m_ptr = tmp.release().ptr(); } array(const pybind11::dtype &dt, const std::vector &shape, const void *ptr = nullptr, handle base = handle()) : array(dt, shape, default_strides(shape, dt.itemsize()), ptr, base) { } array(const pybind11::dtype &dt, size_t count, const void *ptr = nullptr, handle base = handle()) : array(dt, std::vector{ count }, ptr, base) { } template array(const std::vector& shape, const std::vector& strides, const T* ptr, handle base = handle()) : array(pybind11::dtype::of(), shape, strides, (void *) ptr, base) { } template array(const std::vector &shape, const T *ptr, handle base = handle()) : array(shape, default_strides(shape, sizeof(T)), ptr, base) { } template array(size_t count, const T *ptr, handle base = handle()) : array(std::vector{ count }, ptr, base) { } explicit array(const buffer_info &info) : array(pybind11::dtype(info), info.shape, info.strides, info.ptr) { } /// Array descriptor (dtype) pybind11::dtype dtype() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->descr); } /// Total number of elements size_t size() const { return std::accumulate(shape(), shape() + ndim(), (size_t) 1, std::multiplies()); } /// Byte size of a single element size_t itemsize() const { return (size_t) detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize; } /// Total number of bytes size_t nbytes() const { return size() * itemsize(); } /// Number of dimensions size_t ndim() const { return (size_t) detail::array_proxy(m_ptr)->nd; } /// Base object object base() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->base); } /// Dimensions of the array const size_t* shape() const { return reinterpret_cast(detail::array_proxy(m_ptr)->dimensions); } /// Dimension along a given axis size_t shape(size_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return shape()[dim]; } /// Strides of the array const size_t* strides() const { return reinterpret_cast(detail::array_proxy(m_ptr)->strides); } /// Stride along a given axis size_t strides(size_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return strides()[dim]; } /// Return the NumPy array flags int flags() const { return detail::array_proxy(m_ptr)->flags; } /// If set, the array is writeable (otherwise the buffer is read-only) bool writeable() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_); } /// If set, the array owns the data (will be freed when the array is deleted) bool owndata() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_); } /// Pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. template const void* data(Ix... index) const { return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Mutable pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. /// May throw if the array is not writeable. template void* mutable_data(Ix... index) { check_writeable(); return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Byte offset from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template size_t offset_at(Ix... index) const { if (sizeof...(index) > ndim()) fail_dim_check(sizeof...(index), "too many indices for an array"); return byte_offset(size_t(index)...); } size_t offset_at() const { return 0; } /// Item count from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template size_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } /// Return a new view with all of the dimensions of length 1 removed array squeeze() { auto& api = detail::npy_api::get(); return reinterpret_steal(api.PyArray_Squeeze_(m_ptr)); } /// Ensure that the argument is a NumPy array /// In case of an error, nullptr is returned and the Python error is cleared. static array ensure(handle h, int ExtraFlags = 0) { auto result = reinterpret_steal(raw_array(h.ptr(), ExtraFlags)); if (!result) PyErr_Clear(); return result; } protected: template friend struct detail::npy_format_descriptor; void fail_dim_check(size_t dim, const std::string& msg) const { throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim()) + ")"); } template size_t byte_offset(Ix... index) const { check_dimensions(index...); return byte_offset_unsafe(index...); } template size_t byte_offset_unsafe(size_t i, Ix... index) const { return i * strides()[dim] + byte_offset_unsafe(index...); } template size_t byte_offset_unsafe() const { return 0; } void check_writeable() const { if (!writeable()) throw std::runtime_error("array is not writeable"); } static std::vector default_strides(const std::vector& shape, size_t itemsize) { auto ndim = shape.size(); std::vector strides(ndim); if (ndim) { std::fill(strides.begin(), strides.end(), itemsize); for (size_t i = 0; i < ndim - 1; i++) for (size_t j = 0; j < ndim - 1 - i; j++) strides[j] *= shape[ndim - 1 - i]; } return strides; } template void check_dimensions(Ix... index) const { check_dimensions_impl(size_t(0), shape(), size_t(index)...); } void check_dimensions_impl(size_t, const size_t*) const { } template void check_dimensions_impl(size_t axis, const size_t* shape, size_t i, Ix... index) const { if (i >= *shape) { throw index_error(std::string("index ") + std::to_string(i) + " is out of bounds for axis " + std::to_string(axis) + " with size " + std::to_string(*shape)); } check_dimensions_impl(axis + 1, shape + 1, index...); } /// Create array from any object -- always returns a new reference static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) { if (ptr == nullptr) return nullptr; return detail::npy_api::get().PyArray_FromAny_( ptr, nullptr, 0, 0, detail::npy_api::NPY_ENSURE_ARRAY_ | ExtraFlags, nullptr); } }; template class array_t : public array { public: array_t() : array(0, static_cast(nullptr)) {} array_t(handle h, borrowed_t) : array(h, borrowed) { } array_t(handle h, stolen_t) : array(h, stolen) { } PYBIND11_DEPRECATED("Use array_t::ensure() instead") array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen) { if (!m_ptr) PyErr_Clear(); if (!is_borrowed) Py_XDECREF(h.ptr()); } array_t(const object &o) : array(raw_array_t(o.ptr()), stolen) { if (!m_ptr) throw error_already_set(); } explicit array_t(const buffer_info& info) : array(info) { } array_t(const std::vector &shape, const std::vector &strides, const T *ptr = nullptr, handle base = handle()) : array(shape, strides, ptr, base) { } explicit array_t(const std::vector &shape, const T *ptr = nullptr, handle base = handle()) : array(shape, ptr, base) { } explicit array_t(size_t count, const T *ptr = nullptr, handle base = handle()) : array(count, ptr, base) { } constexpr size_t itemsize() const { return sizeof(T); } template size_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } template const T* data(Ix... index) const { return static_cast(array::data(index...)); } template T* mutable_data(Ix... index) { return static_cast(array::mutable_data(index...)); } // Reference to element at a given index template const T& at(Ix... index) const { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast(array::data()) + byte_offset(size_t(index)...) / itemsize()); } // Mutable reference to element at a given index template T& mutable_at(Ix... index) { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast(array::mutable_data()) + byte_offset(size_t(index)...) / itemsize()); } /// Ensure that the argument is a NumPy array of the correct dtype. /// In case of an error, nullptr is returned and the Python error is cleared. static array_t ensure(handle h) { auto result = reinterpret_steal(raw_array_t(h.ptr())); if (!result) PyErr_Clear(); return result; } static bool _check(handle h) { const auto &api = detail::npy_api::get(); return api.PyArray_Check_(h.ptr()) && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of().ptr()); } protected: /// Create array from any object -- always returns a new reference static PyObject *raw_array_t(PyObject *ptr) { if (ptr == nullptr) return nullptr; return detail::npy_api::get().PyArray_FromAny_( ptr, dtype::of().release().ptr(), 0, 0, detail::npy_api::NPY_ENSURE_ARRAY_ | ExtraFlags, nullptr); } }; template struct format_descriptor::value>> { static std::string format() { return detail::npy_format_descriptor::type>::format(); } }; template struct format_descriptor { static std::string format() { return std::to_string(N) + "s"; } }; template struct format_descriptor> { static std::string format() { return std::to_string(N) + "s"; } }; template struct format_descriptor::value>> { static std::string format() { return format_descriptor< typename std::remove_cv::type>::type>::format(); } }; NAMESPACE_BEGIN(detail) template struct pyobject_caster> { using type = array_t; bool load(handle src, bool /* convert */) { value = type::ensure(src); return static_cast(value); } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name()); }; template struct is_std_array : std::false_type { }; template struct is_std_array> : std::true_type { }; template struct is_pod_struct { enum { value = std::is_pod::value && // offsetof only works correctly for POD types !std::is_reference::value && !std::is_array::value && !is_std_array::value && !std::is_integral::value && !std::is_enum::value && !std::is_same::type, float>::value && !std::is_same::type, double>::value && !std::is_same::type, bool>::value && !std::is_same::type, std::complex>::value && !std::is_same::type, std::complex>::value }; }; template struct npy_format_descriptor::value>> { private: constexpr static const int values[8] = { npy_api::NPY_BYTE_, npy_api::NPY_UBYTE_, npy_api::NPY_SHORT_, npy_api::NPY_USHORT_, npy_api::NPY_INT_, npy_api::NPY_UINT_, npy_api::NPY_LONGLONG_, npy_api::NPY_ULONGLONG_ }; public: enum { value = values[detail::log2(sizeof(T)) * 2 + (std::is_unsigned::value ? 1 : 0)] }; static pybind11::dtype dtype() { if (auto ptr = npy_api::get().PyArray_DescrFromType_(value)) return reinterpret_borrow(ptr); pybind11_fail("Unsupported buffer format!"); } template ::value, int> = 0> static PYBIND11_DESCR name() { return _("int") + _(); } template ::value, int> = 0> static PYBIND11_DESCR name() { return _("uint") + _(); } }; template constexpr const int npy_format_descriptor< T, enable_if_t::value>>::values[8]; #define DECL_FMT(Type, NumPyName, Name) template<> struct npy_format_descriptor { \ enum { value = npy_api::NumPyName }; \ static pybind11::dtype dtype() { \ if (auto ptr = npy_api::get().PyArray_DescrFromType_(value)) \ return reinterpret_borrow(ptr); \ pybind11_fail("Unsupported buffer format!"); \ } \ static PYBIND11_DESCR name() { return _(Name); } } DECL_FMT(float, NPY_FLOAT_, "float32"); DECL_FMT(double, NPY_DOUBLE_, "float64"); DECL_FMT(bool, NPY_BOOL_, "bool"); DECL_FMT(std::complex, NPY_CFLOAT_, "complex64"); DECL_FMT(std::complex, NPY_CDOUBLE_, "complex128"); #undef DECL_FMT #define DECL_CHAR_FMT \ static PYBIND11_DESCR name() { return _("S") + _(); } \ static pybind11::dtype dtype() { return pybind11::dtype(std::string("S") + std::to_string(N)); } template struct npy_format_descriptor { DECL_CHAR_FMT }; template struct npy_format_descriptor> { DECL_CHAR_FMT }; #undef DECL_CHAR_FMT template struct npy_format_descriptor::value>> { private: using base_descr = npy_format_descriptor::type>; public: static PYBIND11_DESCR name() { return base_descr::name(); } static pybind11::dtype dtype() { return base_descr::dtype(); } }; struct field_descriptor { const char *name; size_t offset; size_t size; size_t alignment; std::string format; dtype descr; }; inline PYBIND11_NOINLINE void register_structured_dtype( const std::initializer_list& fields, const std::type_info& tinfo, size_t itemsize, bool (*direct_converter)(PyObject *, void *&)) { auto& numpy_internals = get_numpy_internals(); if (numpy_internals.get_type_info(tinfo, false)) pybind11_fail("NumPy: dtype is already registered"); list names, formats, offsets; for (auto field : fields) { if (!field.descr) pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ " + tinfo.name()); names.append(PYBIND11_STR_TYPE(field.name)); formats.append(field.descr); offsets.append(pybind11::int_(field.offset)); } auto dtype_ptr = pybind11::dtype(names, formats, offsets, itemsize).release().ptr(); // There is an existing bug in NumPy (as of v1.11): trailing bytes are // not encoded explicitly into the format string. This will supposedly // get fixed in v1.12; for further details, see these: // - https://github.com/numpy/numpy/issues/7797 // - https://github.com/numpy/numpy/pull/7798 // Because of this, we won't use numpy's logic to generate buffer format // strings and will just do it ourselves. std::vector ordered_fields(fields); std::sort(ordered_fields.begin(), ordered_fields.end(), [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; }); size_t offset = 0; std::ostringstream oss; oss << "T{"; for (auto& field : ordered_fields) { if (field.offset > offset) oss << (field.offset - offset) << 'x'; // mark unaligned fields with '=' if (field.offset % field.alignment) oss << '='; oss << field.format << ':' << field.name << ':'; offset = field.offset + field.size; } if (itemsize > offset) oss << (itemsize - offset) << 'x'; oss << '}'; auto format_str = oss.str(); // Sanity check: verify that NumPy properly parses our buffer format string auto& api = npy_api::get(); auto arr = array(buffer_info(nullptr, itemsize, format_str, 1)); if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) pybind11_fail("NumPy: invalid buffer descriptor!"); auto tindex = std::type_index(tinfo); numpy_internals.registered_dtypes[tindex] = { dtype_ptr, format_str }; get_internals().direct_conversions[tindex].push_back(direct_converter); } template struct npy_format_descriptor::value>> { static PYBIND11_DESCR name() { return _("struct"); } static pybind11::dtype dtype() { return reinterpret_borrow(dtype_ptr()); } static std::string format() { static auto format_str = get_numpy_internals().get_type_info(true)->format_str; return format_str; } static void register_dtype(const std::initializer_list& fields) { register_structured_dtype(fields, typeid(typename std::remove_cv::type), sizeof(T), &direct_converter); } private: static PyObject* dtype_ptr() { static PyObject* ptr = get_numpy_internals().get_type_info(true)->dtype_ptr; return ptr; } static bool direct_converter(PyObject *obj, void*& value) { auto& api = npy_api::get(); if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) return false; if (auto descr = reinterpret_steal(api.PyArray_DescrFromScalar_(obj))) { if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) { value = ((PyVoidScalarObject_Proxy *) obj)->obval; return true; } } return false; } }; #define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \ ::pybind11::detail::field_descriptor { \ Name, offsetof(T, Field), sizeof(decltype(std::declval().Field)), \ alignof(decltype(std::declval().Field)), \ ::pybind11::format_descriptor().Field)>::format(), \ ::pybind11::detail::npy_format_descriptor().Field)>::dtype() \ } // Extract name, offset and format descriptor for a struct field #define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field) // The main idea of this macro is borrowed from https://github.com/swansontec/map-macro // (C) William Swanson, Paul Fultz #define PYBIND11_EVAL0(...) __VA_ARGS__ #define PYBIND11_EVAL1(...) PYBIND11_EVAL0 (PYBIND11_EVAL0 (PYBIND11_EVAL0 (__VA_ARGS__))) #define PYBIND11_EVAL2(...) PYBIND11_EVAL1 (PYBIND11_EVAL1 (PYBIND11_EVAL1 (__VA_ARGS__))) #define PYBIND11_EVAL3(...) PYBIND11_EVAL2 (PYBIND11_EVAL2 (PYBIND11_EVAL2 (__VA_ARGS__))) #define PYBIND11_EVAL4(...) PYBIND11_EVAL3 (PYBIND11_EVAL3 (PYBIND11_EVAL3 (__VA_ARGS__))) #define PYBIND11_EVAL(...) PYBIND11_EVAL4 (PYBIND11_EVAL4 (PYBIND11_EVAL4 (__VA_ARGS__))) #define PYBIND11_MAP_END(...) #define PYBIND11_MAP_OUT #define PYBIND11_MAP_COMMA , #define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END #define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT #define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0 (test, next, 0) #define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1 (PYBIND11_MAP_GET_END test, next) #ifdef _MSC_VER // MSVC is not as eager to expand macros, hence this workaround #define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else #define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif #define PYBIND11_MAP_LIST_NEXT(test, next) \ PYBIND11_MAP_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ... #define PYBIND11_MAP_LIST(f, t, ...) \ PYBIND11_EVAL (PYBIND11_MAP_LIST1 (f, t, __VA_ARGS__, (), 0)) #define PYBIND11_NUMPY_DTYPE(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype \ ({PYBIND11_MAP_LIST (PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)}) #ifdef _MSC_VER #define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else #define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif #define PYBIND11_MAP2_LIST_NEXT(test, next) \ PYBIND11_MAP2_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ... #define PYBIND11_MAP2_LIST(f, t, ...) \ PYBIND11_EVAL (PYBIND11_MAP2_LIST1 (f, t, __VA_ARGS__, (), 0)) #define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype \ ({PYBIND11_MAP2_LIST (PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)}) template using array_iterator = typename std::add_pointer::type; template array_iterator array_begin(const buffer_info& buffer) { return array_iterator(reinterpret_cast(buffer.ptr)); } template array_iterator array_end(const buffer_info& buffer) { return array_iterator(reinterpret_cast(buffer.ptr) + buffer.size); } class common_iterator { public: using container_type = std::vector; using value_type = container_type::value_type; using size_type = container_type::size_type; common_iterator() : p_ptr(0), m_strides() {} common_iterator(void* ptr, const container_type& strides, const std::vector& shape) : p_ptr(reinterpret_cast(ptr)), m_strides(strides.size()) { m_strides.back() = static_cast(strides.back()); for (size_type i = m_strides.size() - 1; i != 0; --i) { size_type j = i - 1; value_type s = static_cast(shape[i]); m_strides[j] = strides[j] + m_strides[i] - strides[i] * s; } } void increment(size_type dim) { p_ptr += m_strides[dim]; } void* data() const { return p_ptr; } private: char* p_ptr; container_type m_strides; }; template class multi_array_iterator { public: using container_type = std::vector; multi_array_iterator(const std::array &buffers, const std::vector &shape) : m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() { // Manual copy to avoid conversion warning if using std::copy for (size_t i = 0; i < shape.size(); ++i) m_shape[i] = static_cast(shape[i]); container_type strides(shape.size()); for (size_t i = 0; i < N; ++i) init_common_iterator(buffers[i], shape, m_common_iterator[i], strides); } multi_array_iterator& operator++() { for (size_t j = m_index.size(); j != 0; --j) { size_t i = j - 1; if (++m_index[i] != m_shape[i]) { increment_common_iterator(i); break; } else { m_index[i] = 0; } } return *this; } template const T& data() const { return *reinterpret_cast(m_common_iterator[K].data()); } private: using common_iter = common_iterator; void init_common_iterator(const buffer_info &buffer, const std::vector &shape, common_iter &iterator, container_type &strides) { auto buffer_shape_iter = buffer.shape.rbegin(); auto buffer_strides_iter = buffer.strides.rbegin(); auto shape_iter = shape.rbegin(); auto strides_iter = strides.rbegin(); while (buffer_shape_iter != buffer.shape.rend()) { if (*shape_iter == *buffer_shape_iter) *strides_iter = static_cast(*buffer_strides_iter); else *strides_iter = 0; ++buffer_shape_iter; ++buffer_strides_iter; ++shape_iter; ++strides_iter; } std::fill(strides_iter, strides.rend(), 0); iterator = common_iter(buffer.ptr, strides, shape); } void increment_common_iterator(size_t dim) { for (auto &iter : m_common_iterator) iter.increment(dim); } container_type m_shape; container_type m_index; std::array m_common_iterator; }; template bool broadcast(const std::array& buffers, size_t& ndim, std::vector& shape) { ndim = std::accumulate(buffers.begin(), buffers.end(), size_t(0), [](size_t res, const buffer_info& buf) { return std::max(res, buf.ndim); }); shape = std::vector(ndim, 1); bool trivial_broadcast = true; for (size_t i = 0; i < N; ++i) { auto res_iter = shape.rbegin(); bool i_trivial_broadcast = (buffers[i].size == 1) || (buffers[i].ndim == ndim); for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != buffers[i].shape.rend(); ++shape_iter, ++res_iter) { if (*res_iter == 1) *res_iter = *shape_iter; else if ((*shape_iter != 1) && (*res_iter != *shape_iter)) pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); i_trivial_broadcast = i_trivial_broadcast && (*res_iter == *shape_iter); } trivial_broadcast = trivial_broadcast && i_trivial_broadcast; } return trivial_broadcast; } template struct vectorize_helper { typename std::remove_reference::type f; template explicit vectorize_helper(T&&f) : f(std::forward(f)) { } object operator()(array_t... args) { return run(args..., make_index_sequence()); } template object run(array_t&... args, index_sequence index) { /* Request buffers from all parameters */ const size_t N = sizeof...(Args); std::array buffers {{ args.request()... }}; /* Determine dimensions parameters of output array */ size_t ndim = 0; std::vector shape(0); bool trivial_broadcast = broadcast(buffers, ndim, shape); size_t size = 1; std::vector strides(ndim); if (ndim > 0) { strides[ndim-1] = sizeof(Return); for (size_t i = ndim - 1; i > 0; --i) { strides[i - 1] = strides[i] * shape[i]; size *= shape[i]; } size *= shape[0]; } if (size == 1) return cast(f(*((Args *) buffers[Index].ptr)...)); array_t result(shape, strides); auto buf = result.request(); auto output = (Return *) buf.ptr; if (trivial_broadcast) { /* Call the function */ for (size_t i = 0; i < size; ++i) { output[i] = f((buffers[Index].size == 1 ? *((Args *) buffers[Index].ptr) : ((Args *) buffers[Index].ptr)[i])...); } } else { apply_broadcast(buffers, buf, index); } return result; } template void apply_broadcast(const std::array &buffers, buffer_info &output, index_sequence) { using input_iterator = multi_array_iterator; using output_iterator = array_iterator; input_iterator input_iter(buffers, output.shape); output_iterator output_end = array_end(output); for (output_iterator iter = array_begin(output); iter != output_end; ++iter, ++input_iter) { *iter = f((input_iter.template data())...); } } }; template struct handle_type_name> { static PYBIND11_DESCR name() { return _("numpy.ndarray[") + make_caster::name() + _("]"); } }; NAMESPACE_END(detail) template detail::vectorize_helper vectorize(const Func &f, Return (*) (Args ...) PYBIND11_NOEXCEPT_SPECIFIER) { return detail::vectorize_helper(f); } template detail::vectorize_helper vectorize(Return (*f) (Args ...) PYBIND11_NOEXCEPT_SPECIFIER) { return vectorize(f, f); } template auto vectorize(Func &&f) -> decltype( vectorize(std::forward(f), (typename detail::remove_class::type::operator())>::type *) nullptr)) { return vectorize(std::forward(f), (typename detail::remove_class::type::operator())>::type *) nullptr); } NAMESPACE_END(pybind11) #if defined(_MSC_VER) #pragma warning(pop) #endif pybind11-2.0.1/include/pybind11/operators.h000066400000000000000000000177171303320175600204170ustar00rootroot00000000000000/* pybind11/operator.h: Metatemplates for operator overloading Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #if defined(__clang__) && !defined(__INTEL_COMPILER) # pragma clang diagnostic ignored "-Wunsequenced" // multiple unsequenced modifications to 'self' (when using def(py::self OP Type())) #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) /// Enumeration with all supported operator types enum op_id : int { op_add, op_sub, op_mul, op_div, op_mod, op_divmod, op_pow, op_lshift, op_rshift, op_and, op_xor, op_or, op_neg, op_pos, op_abs, op_invert, op_int, op_long, op_float, op_str, op_cmp, op_gt, op_ge, op_lt, op_le, op_eq, op_ne, op_iadd, op_isub, op_imul, op_idiv, op_imod, op_ilshift, op_irshift, op_iand, op_ixor, op_ior, op_complex, op_bool, op_nonzero, op_repr, op_truediv }; enum op_type : int { op_l, /* base type on left */ op_r, /* base type on right */ op_u /* unary operator */ }; struct self_t { }; static const self_t self = self_t(); /// Type for an unused type slot struct undefined_t { }; /// Don't warn about an unused variable inline self_t __self() { return self; } /// base template of operator implementations template struct op_impl { }; /// Operator implementation generator template struct op_ { template void execute(Class &cl, const Extra&... extra) const { typedef typename Class::type Base; typedef typename std::conditional::value, Base, L>::type L_type; typedef typename std::conditional::value, Base, R>::type R_type; typedef op_impl op; cl.def(op::name(), &op::execute, is_operator(), extra...); } template void execute_cast(Class &cl, const Extra&... extra) const { typedef typename Class::type Base; typedef typename std::conditional::value, Base, L>::type L_type; typedef typename std::conditional::value, Base, R>::type R_type; typedef op_impl op; cl.def(op::name(), &op::execute_cast, is_operator(), extra...); } }; #define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \ template struct op_impl { \ static char const* name() { return "__" #id "__"; } \ static auto execute(const L &l, const R &r) -> decltype(expr) { return (expr); } \ static B execute_cast(const L &l, const R &r) { return B(expr); } \ }; \ template struct op_impl { \ static char const* name() { return "__" #rid "__"; } \ static auto execute(const R &r, const L &l) -> decltype(expr) { return (expr); } \ static B execute_cast(const R &r, const L &l) { return B(expr); } \ }; \ inline op_ op(const self_t &, const self_t &) { \ return op_(); \ } \ template op_ op(const self_t &, const T &) { \ return op_(); \ } \ template op_ op(const T &, const self_t &) { \ return op_(); \ } #define PYBIND11_INPLACE_OPERATOR(id, op, expr) \ template struct op_impl { \ static char const* name() { return "__" #id "__"; } \ static auto execute(L &l, const R &r) -> decltype(expr) { return expr; } \ static B execute_cast(L &l, const R &r) { return B(expr); } \ }; \ template op_ op(const self_t &, const T &) { \ return op_(); \ } #define PYBIND11_UNARY_OPERATOR(id, op, expr) \ template struct op_impl { \ static char const* name() { return "__" #id "__"; } \ static auto execute(const L &l) -> decltype(expr) { return expr; } \ static B execute_cast(const L &l) { return B(expr); } \ }; \ inline op_ op(const self_t &) { \ return op_(); \ } PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r) PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r) PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l * r) #if PY_MAJOR_VERSION >= 3 PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r) #else PYBIND11_BINARY_OPERATOR(div, rdiv, operator/, l / r) #endif PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r) PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r) PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r) PYBIND11_BINARY_OPERATOR(and, rand, operator&, l & r) PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r) PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r) PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r) PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r) PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r) PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r) PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r) PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r) //PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r)) PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r) PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r) PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r) PYBIND11_INPLACE_OPERATOR(idiv, operator/=, l /= r) PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r) PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r) PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r) PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r) PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r) PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r) PYBIND11_UNARY_OPERATOR(neg, operator-, -l) PYBIND11_UNARY_OPERATOR(pos, operator+, +l) PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l)) PYBIND11_UNARY_OPERATOR(invert, operator~, (~l)) PYBIND11_UNARY_OPERATOR(bool, operator!, !!l) PYBIND11_UNARY_OPERATOR(int, int_, (int) l) PYBIND11_UNARY_OPERATOR(float, float_, (double) l) #undef PYBIND11_BINARY_OPERATOR #undef PYBIND11_INPLACE_OPERATOR #undef PYBIND11_UNARY_OPERATOR NAMESPACE_END(detail) using detail::self; NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/options.h000066400000000000000000000037241303320175600200650ustar00rootroot00000000000000/* pybind11/options.h: global settings that are configurable at runtime. Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "common.h" NAMESPACE_BEGIN(pybind11) class options { public: // Default RAII constructor, which leaves settings as they currently are. options() : previous_state(global_state()) {} // Class is non-copyable. options(const options&) = delete; options& operator=(const options&) = delete; // Destructor, which restores settings that were in effect before. ~options() { global_state() = previous_state; } // Setter methods (affect the global state): options& disable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = false; return *this; } options& enable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = true; return *this; } options& disable_function_signatures() & { global_state().show_function_signatures = false; return *this; } options& enable_function_signatures() & { global_state().show_function_signatures = true; return *this; } // Getter methods (return the global state): static bool show_user_defined_docstrings() { return global_state().show_user_defined_docstrings; } static bool show_function_signatures() { return global_state().show_function_signatures; } // This type is not meant to be allocated on the heap. void* operator new(size_t) = delete; private: struct state { bool show_user_defined_docstrings = true; //< Include user-supplied texts in docstrings. bool show_function_signatures = true; //< Include auto-generated function signatures in docstrings. }; static state &global_state() { static state instance; return instance; } state previous_state; }; NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/pybind11.h000066400000000000000000002320301303320175600200130ustar00rootroot00000000000000/* pybind11/pybind11.h: Main header file of the C++11 python binding generator library Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant # pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted # pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning) # pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name # pragma warning(disable: 4702) // warning C4702: unreachable code # pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified #elif defined(__INTEL_COMPILER) # pragma warning(push) # pragma warning(disable: 186) // pointless comparison of unsigned integer with zero # pragma warning(disable: 1334) // the "template" keyword used for syntactic disambiguation may only be used within a template # pragma warning(disable: 2196) // warning #2196: routine is both "inline" and "noinline" #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-but-set-parameter" # pragma GCC diagnostic ignored "-Wunused-but-set-variable" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" # pragma GCC diagnostic ignored "-Wstrict-aliasing" # pragma GCC diagnostic ignored "-Wattributes" #endif #include "attr.h" #include "options.h" NAMESPACE_BEGIN(pybind11) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { public: cpp_function() { } /// Construct a cpp_function from a vanilla function pointer template cpp_function(Return (*f)(Args...) PYBIND11_NOEXCEPT_SPECIFIER, const Extra&... extra) { initialize(f, f, extra...); } /// Construct a cpp_function from a lambda function (possibly with internal state) template cpp_function(Func &&f, const Extra&... extra) { initialize(std::forward(f), (typename detail::remove_class::type::operator())>::type *) nullptr, extra...); } /// Construct a cpp_function from a class method (non-const) template cpp_function(Return (Class::*f)(Arg...) PYBIND11_NOEXCEPT_SPECIFIER, const Extra&... extra) { initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*) (Class *, Arg...) PYBIND11_NOEXCEPT_SPECIFIER) nullptr, extra...); } /// Construct a cpp_function from a class method (const) template cpp_function(Return (Class::*f)(Arg...) const PYBIND11_NOEXCEPT_SPECIFIER, const Extra&... extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, (Return (*)(const Class *, Arg ...) PYBIND11_NOEXCEPT_SPECIFIER) nullptr, extra...); } /// Return the function name object name() const { return attr("__name__"); } protected: /// Space optimization: don't inline this frequently instantiated fragment PYBIND11_NOINLINE detail::function_record *make_function_record() { return new detail::function_record(); } /// Special internal constructor for functors, lambda functions, etc. template void initialize(Func &&f, Return (*)(Args...) PYBIND11_NOEXCEPT_SPECIFIER, const Extra&... extra) { static_assert(detail::expected_num_args(sizeof...(Args)), "The number of named arguments does not match the function signature"); struct capture { typename std::remove_reference::type f; }; /* Store the function including any extra state it might have (e.g. a lambda capture object) */ auto rec = make_function_record(); /* Store the capture object directly in the function record if there is enough space */ if (sizeof(capture) <= sizeof(rec->data)) { /* Without these pragmas, GCC warns that there might not be enough space to use the placement new operator. However, the 'if' statement above ensures that this is the case. */ #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wplacement-new" #endif new ((capture *) &rec->data) capture { std::forward(f) }; #if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6 # pragma GCC diagnostic pop #endif if (!std::is_trivially_destructible::value) rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); }; } else { rec->data[0] = new capture { std::forward(f) }; rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); }; } /* Type casters for the function arguments and return value */ using cast_in = detail::argument_loader; using cast_out = detail::make_caster< detail::conditional_t::value, detail::void_type, Return> >; /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](detail::function_record *rec, handle args, handle kwargs, handle parent) -> handle { cast_in args_converter; /* Try to cast the function arguments into the C++ domain */ if (!args_converter.load_args(args, kwargs)) return PYBIND11_TRY_NEXT_OVERLOAD; /* Invoke call policy pre-call hook */ detail::process_attributes::precall(args); /* Get a pointer to the capture object */ capture *cap = (capture *) (sizeof(capture) <= sizeof(rec->data) ? &rec->data : rec->data[0]); /* Override policy for rvalues -- always move */ constexpr auto is_rvalue = !std::is_pointer::value && !std::is_lvalue_reference::value; const auto policy = is_rvalue ? return_value_policy::move : rec->policy; /* Perform the function call */ handle result = cast_out::cast(args_converter.template call(cap->f), policy, parent); /* Invoke call policy post-call hook */ detail::process_attributes::postcall(args, result); return result; }; /* Process any user-provided function attributes */ detail::process_attributes::init(extra..., rec); /* Generate a readable signature describing the function's arguments and return value types */ using detail::descr; using detail::_; PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name(); /* Register the function with Python from generic (non-templated) code */ initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args)); if (cast_in::has_args) rec->has_args = true; if (cast_in::has_kwargs) rec->has_kwargs = true; /* Stash some additional information used by an important optimization in 'functional.h' */ using FunctionType = Return (*)(Args...) PYBIND11_NOEXCEPT_SPECIFIER; constexpr bool is_function_ptr = std::is_convertible::value && sizeof(capture) == sizeof(void *); if (is_function_ptr) { rec->is_stateless = true; rec->data[1] = (void *) &typeid(FunctionType); } } /// Register a function call with Python (generic non-templated code goes here) void initialize_generic(detail::function_record *rec, const char *text, const std::type_info *const *types, size_t args) { /* Create copies of all referenced C-style strings */ rec->name = strdup(rec->name ? rec->name : ""); if (rec->doc) rec->doc = strdup(rec->doc); for (auto &a: rec->args) { if (a.name) a.name = strdup(a.name); if (a.descr) a.descr = strdup(a.descr); else if (a.value) a.descr = strdup(a.value.attr("__repr__")().cast().c_str()); } /* Generate a proper function signature */ std::string signature; size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0; while (true) { char c = text[char_index++]; if (c == '\0') break; if (c == '{') { // Write arg name for everything except *args, **kwargs and return type. if (type_depth == 0 && text[char_index] != '*' && arg_index < args) { if (!rec->args.empty()) { signature += rec->args[arg_index].name; } else if (arg_index == 0 && rec->is_method) { signature += "self"; } else { signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); } signature += ": "; } ++type_depth; } else if (c == '}') { --type_depth; if (type_depth == 0) { if (arg_index < rec->args.size() && rec->args[arg_index].descr) { signature += "="; signature += rec->args[arg_index].descr; } arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) pybind11_fail("Internal error while parsing type signature (1)"); if (auto tinfo = detail::get_type_info(*t)) { #if defined(PYPY_VERSION) signature += handle((PyObject *) tinfo->type) .attr("__module__") .cast() + "."; #endif signature += tinfo->type->tp_name; } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (type_depth != 0 || types[type_index] != nullptr) pybind11_fail("Internal error while parsing type signature (2)"); #if !defined(PYBIND11_CPP14) delete[] types; delete[] text; #endif #if PY_MAJOR_VERSION < 3 if (strcmp(rec->name, "__next__") == 0) { std::free(rec->name); rec->name = strdup("next"); } else if (strcmp(rec->name, "__bool__") == 0) { std::free(rec->name); rec->name = strdup("__nonzero__"); } #endif rec->signature = strdup(signature.c_str()); rec->args.shrink_to_fit(); rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__"); rec->nargs = (uint16_t) args; #if PY_MAJOR_VERSION < 3 if (rec->sibling && PyMethod_Check(rec->sibling.ptr())) rec->sibling = PyMethod_GET_FUNCTION(rec->sibling.ptr()); #endif detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling) { if (PyCFunction_Check(rec->sibling.ptr())) { auto rec_capsule = reinterpret_borrow(PyCFunction_GET_SELF(rec->sibling.ptr())); chain = (detail::function_record *) rec_capsule; /* Never append a method to an overload chain of a parent class; instead, hide the parent's overloads in this case */ if (chain->scope != rec->scope) chain = nullptr; } // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing else if (!rec->sibling.is_none() && rec->name[0] != '_') pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + "\" with a function of the same name"); } if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast(*dispatcher); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule rec_capsule(rec, [](PyObject *o) { destruct((detail::function_record *) PyCapsule_GetPointer(o, nullptr)); }); object scope_module; if (rec->scope) { if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } else { /* Append at the end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); chain_start = chain; while (chain->next) chain = chain->next; chain->next = rec; } std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and docstrings of the functions in the overload chain */ if (chain && options::show_function_signatures()) { // First a generic signature signatures += rec->name; signatures += "(*args, **kwargs)\n"; signatures += "Overloaded function.\n\n"; } // Then specific overload signatures for (auto it = chain_start; it != nullptr; it = it->next) { if (options::show_function_signatures()) { if (chain) signatures += std::to_string(++index) + ". "; signatures += rec->name; signatures += it->signature; signatures += "\n"; } if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) { if (options::show_function_signatures()) signatures += "\n"; signatures += it->doc; if (options::show_function_signatures()) signatures += "\n"; } if (it->next) signatures += "\n"; } /* Install docstring */ PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free((char *) func->m_ml->ml_doc); func->m_ml->ml_doc = strdup(signatures.c_str()); if (rec->is_method) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); if (!m_ptr) pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } } /// When a cpp_function is GCed, release any memory allocated by pybind11 static void destruct(detail::function_record *rec) { while (rec) { detail::function_record *next = rec->next; if (rec->free_data) rec->free_data(rec); std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg: rec->args) { std::free((char *) arg.name); std::free((char *) arg.descr); arg.value.dec_ref(); } if (rec->def) { std::free((char *) rec->def->ml_doc); delete rec->def; } delete rec; rec = next; } } /// Main dispatch logic for calls to functions bound using pybind11 static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject *kwargs) { /* Iterator over the list of potentially admissible overloads */ detail::function_record *overloads = (detail::function_record *) PyCapsule_GetPointer(self, nullptr), *it = overloads; /* Need to know how many arguments + keyword arguments there are to pick the right overload */ size_t nargs = (size_t) PyTuple_GET_SIZE(args), nkwargs = kwargs ? (size_t) PyDict_Size(kwargs) : 0; handle parent = nargs > 0 ? PyTuple_GET_ITEM(args, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD; try { for (; it != nullptr; it = it->next) { auto args_ = reinterpret_borrow(args); size_t kwargs_consumed = 0; /* For each overload: 1. If the required list of arguments is longer than the actually provided amount, create a copy of the argument list and fill in any available keyword/default arguments. 2. Ensure that all keyword arguments were "consumed" 3. Call the function call dispatcher (function_record::impl) */ size_t nargs_ = nargs; if (nargs < it->args.size()) { nargs_ = it->args.size(); args_ = tuple(nargs_); for (size_t i = 0; i < nargs; ++i) { handle item = PyTuple_GET_ITEM(args, i); PyTuple_SET_ITEM(args_.ptr(), i, item.inc_ref().ptr()); } int arg_ctr = 0; for (auto const &it2 : it->args) { int index = arg_ctr++; if (PyTuple_GET_ITEM(args_.ptr(), index)) continue; handle value; if (kwargs) value = PyDict_GetItemString(kwargs, it2.name); if (value) kwargs_consumed++; else if (it2.value) value = it2.value; if (value) { PyTuple_SET_ITEM(args_.ptr(), index, value.inc_ref().ptr()); } else { kwargs_consumed = (size_t) -1; /* definite failure */ break; } } } try { if ((kwargs_consumed == nkwargs || it->has_kwargs) && (nargs_ == it->nargs || it->has_args)) result = it->impl(it, args_, kwargs, parent); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) break; } } catch (error_already_set &e) { e.restore(); return nullptr; } catch (...) { /* When an exception is caught, give each registered exception translator a chance to translate it to a Python exception in reverse order of registration. A translator may choose to do one of the following: - catch the exception and call PyErr_SetString or PyErr_SetObject to set a standard (or custom) Python exception, or - do nothing and let the exception fall through to the next translator, or - delegate translation to the next translator by throwing a new type of exception. */ auto last_exception = std::current_exception(); auto ®istered_exception_translators = pybind11::detail::get_internals().registered_exception_translators; for (auto& translator : registered_exception_translators) { try { translator(last_exception); } catch (...) { last_exception = std::current_exception(); continue; } return nullptr; } PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); return nullptr; } if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { if (overloads->is_operator) return handle(Py_NotImplemented).inc_ref().ptr(); std::string msg = std::string(overloads->name) + "(): incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") + " arguments. The following argument types are supported:\n"; int ctr = 0; for (detail::function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " "+ std::to_string(++ctr) + ". "; bool wrote_sig = false; if (overloads->is_constructor) { // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)` std::string sig = it2->signature; size_t start = sig.find('(') + 7; // skip "(self: " if (start < sig.size()) { // End at the , for the next argument size_t end = sig.find(", "), next = end + 2; size_t ret = sig.rfind(" -> "); // Or the ), if there is no comma: if (end >= sig.size()) next = end = sig.find(')'); if (start < end && next < sig.size()) { msg.append(sig, start, end - start); msg += '('; msg.append(sig, next, ret - next); wrote_sig = true; } } } if (!wrote_sig) msg += it2->signature; msg += "\n"; } msg += "\nInvoked with: "; auto args_ = reinterpret_borrow(args); for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { msg += pybind11::repr(args_[ti]); if ((ti + 1) != args_.size() ) msg += ", "; } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } else { if (overloads->is_constructor) { /* When a constructor ran successfully, the corresponding holder type (e.g. std::unique_ptr) must still be initialized. */ PyObject *inst = PyTuple_GET_ITEM(args, 0); auto tinfo = detail::get_type_info(Py_TYPE(inst)); tinfo->init_holder(inst, nullptr); } return result.ptr(); } } }; /// Wrapper for Python extension modules class module : public object { public: PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check) explicit module(const char *name, const char *doc = nullptr) { if (!options::show_user_defined_docstrings()) doc = nullptr; #if PY_MAJOR_VERSION >= 3 PyModuleDef *def = new PyModuleDef(); memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); #else m_ptr = Py_InitModule3(name, nullptr, doc); #endif if (m_ptr == nullptr) pybind11_fail("Internal error in module::module()"); inc_ref(); } template module &def(const char *name_, Func &&f, const Extra& ... extra) { cpp_function func(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); // NB: allow overwriting here because cpp_function sets up a chain with the intention of // overwriting (and has already checked internally that it isn't overwriting non-functions). add_object(name_, func, true /* overwrite */); return *this; } module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); auto result = reinterpret_borrow(PyImport_AddModule(full_name.c_str())); if (doc && options::show_user_defined_docstrings()) result.attr("__doc__") = pybind11::str(doc); attr(name) = result; return result; } static module import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) throw error_already_set(); return reinterpret_steal(obj); } // Adds an object to the module using the given name. Throws if an object with the given name // already exists. // // overwrite should almost always be false: attempting to overwrite objects that pybind11 has // established will, in most cases, break things. PYBIND11_NOINLINE void add_object(const char *name, object &obj, bool overwrite = false) { if (!overwrite && hasattr(*this, name)) pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" + std::string(name) + "\""); obj.inc_ref(); // PyModule_AddObject() steals a reference PyModule_AddObject(ptr(), name, obj.ptr()); } }; NAMESPACE_BEGIN(detail) extern "C" inline PyObject *get_dict(PyObject *op, void *) { PyObject *&dict = *_PyObject_GetDictPtr(op); if (!dict) dict = PyDict_New(); Py_XINCREF(dict); return dict; } extern "C" inline int set_dict(PyObject *op, PyObject *new_dict, void *) { if (!PyDict_Check(new_dict)) { PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, not a '%.200s'", Py_TYPE(new_dict)->tp_name); return -1; } PyObject *&dict = *_PyObject_GetDictPtr(op); Py_INCREF(new_dict); Py_CLEAR(dict); dict = new_dict; return 0; } static PyGetSetDef generic_getset[] = { {const_cast("__dict__"), get_dict, set_dict, nullptr, nullptr}, {nullptr, nullptr, nullptr, nullptr, nullptr} }; /// Generic support for creating new Python heap types class generic_type : public object { template friend class class_; public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(type_record *rec) { auto &internals = get_internals(); auto tindex = std::type_index(*(rec->type)); if (get_type_info(*(rec->type))) pybind11_fail("generic_type: type \"" + std::string(rec->name) + "\" is already registered!"); auto name = reinterpret_steal(PYBIND11_FROM_STRING(rec->name)); object scope_module; if (rec->scope) { if (hasattr(rec->scope, rec->name)) pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec->name) + "\": an object with that name is already defined"); if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ object scope_qualname; if (rec->scope && hasattr(rec->scope, "__qualname__")) scope_qualname = rec->scope.attr("__qualname__"); object ht_qualname, ht_qualname_meta; if (scope_qualname) ht_qualname = reinterpret_steal(PyUnicode_FromFormat( "%U.%U", scope_qualname.ptr(), name.ptr())); else ht_qualname = name; if (rec->metaclass) ht_qualname_meta = reinterpret_steal( PyUnicode_FromFormat("%U__Meta", ht_qualname.ptr())); #endif #if !defined(PYPY_VERSION) std::string full_name = (scope_module ? ((std::string) pybind11::str(scope_module) + "." + rec->name) : std::string(rec->name)); #else std::string full_name = std::string(rec->name); #endif /* Create a custom metaclass if requested (used for static properties) */ object metaclass; if (rec->metaclass) { std::string meta_name_ = full_name + "__Meta"; object meta_name = reinterpret_steal(PYBIND11_FROM_STRING(meta_name_.c_str())); metaclass = reinterpret_steal(PyType_Type.tp_alloc(&PyType_Type, 0)); if (!metaclass || !name) pybind11_fail("generic_type::generic_type(): unable to create metaclass!"); /* Danger zone: from now (and until PyType_Ready), make sure to issue no Python C API calls which could potentially invoke the garbage collector (the GC will call type_traverse(), which will in turn find the newly constructed type in an invalid state) */ auto type = (PyHeapTypeObject*) metaclass.ptr(); type->ht_name = meta_name.release().ptr(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 /* Qualified names for Python >= 3.3 */ type->ht_qualname = ht_qualname_meta.release().ptr(); #endif type->ht_type.tp_name = strdup(meta_name_.c_str()); type->ht_type.tp_base = &PyType_Type; type->ht_type.tp_flags |= (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE) & ~Py_TPFLAGS_HAVE_GC; if (PyType_Ready(&type->ht_type) < 0) pybind11_fail("generic_type::generic_type(): failure in PyType_Ready() for metaclass!"); } size_t num_bases = rec->bases.size(); auto bases = tuple(rec->bases); char *tp_doc = nullptr; if (rec->doc && options::show_user_defined_docstrings()) { /* Allocate memory for docstring (using PyObject_MALLOC, since Python will free this later on) */ size_t size = strlen(rec->doc) + 1; tp_doc = (char *) PyObject_MALLOC(size); memcpy((void *) tp_doc, rec->doc, size); } /* Danger zone: from now (and until PyType_Ready), make sure to issue no Python C API calls which could potentially invoke the garbage collector (the GC will call type_traverse(), which will in turn find the newly constructed type in an invalid state) */ auto type_holder = reinterpret_steal(PyType_Type.tp_alloc(&PyType_Type, 0)); auto type = (PyHeapTypeObject*) type_holder.ptr(); if (!type_holder || !name) pybind11_fail(std::string(rec->name) + ": Unable to create type object!"); /* Register supplemental type information in C++ dict */ detail::type_info *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) type; tinfo->type_size = rec->type_size; tinfo->init_holder = rec->init_holder; tinfo->direct_conversions = &internals.direct_conversions[tindex]; internals.registered_types_cpp[tindex] = tinfo; internals.registered_types_py[type] = tinfo; /* Basic type attributes */ type->ht_type.tp_name = strdup(full_name.c_str()); type->ht_type.tp_basicsize = (ssize_t) rec->instance_size; if (num_bases > 0) { type->ht_type.tp_base = (PyTypeObject *) ((object) bases[0]).inc_ref().ptr(); type->ht_type.tp_bases = bases.release().ptr(); rec->multiple_inheritance |= num_bases > 1; } type->ht_name = name.release().ptr(); #if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 3 type->ht_qualname = ht_qualname.release().ptr(); #endif /* Metaclass */ PYBIND11_OB_TYPE(type->ht_type) = (PyTypeObject *) metaclass.release().ptr(); /* Supported protocols */ type->ht_type.tp_as_number = &type->as_number; type->ht_type.tp_as_sequence = &type->as_sequence; type->ht_type.tp_as_mapping = &type->as_mapping; /* Supported elementary operations */ type->ht_type.tp_init = (initproc) init; type->ht_type.tp_new = (newfunc) new_instance; type->ht_type.tp_dealloc = rec->dealloc; /* Support weak references (needed for the keep_alive feature) */ type->ht_type.tp_weaklistoffset = offsetof(instance_essentials, weakrefs); /* Flags */ type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_CHECKTYPES; #endif type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC; /* Support dynamic attributes */ if (rec->dynamic_attr) { #if defined(PYPY_VERSION) pybind11_fail(std::string(rec->name) + ": dynamic attributes are " "currently not supported in " "conunction with PyPy!"); #endif type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_GC; type->ht_type.tp_dictoffset = type->ht_type.tp_basicsize; // place the dict at the end type->ht_type.tp_basicsize += sizeof(PyObject *); // and allocate enough space for it type->ht_type.tp_getset = generic_getset; type->ht_type.tp_traverse = traverse; type->ht_type.tp_clear = clear; } if (rec->buffer_protocol) { type->ht_type.tp_as_buffer = &type->as_buffer; #if PY_MAJOR_VERSION < 3 type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER; #endif type->as_buffer.bf_getbuffer = getbuffer; type->as_buffer.bf_releasebuffer = releasebuffer; } type->ht_type.tp_doc = tp_doc; m_ptr = type_holder.ptr(); if (PyType_Ready(&type->ht_type) < 0) pybind11_fail(std::string(rec->name) + ": PyType_Ready failed (" + detail::error_string() + ")!"); if (scope_module) // Needed by pydoc attr("__module__") = scope_module; /* Register type with the parent scope */ if (rec->scope) rec->scope.attr(handle(type->ht_name)) = *this; if (rec->multiple_inheritance) mark_parents_nonsimple(&type->ht_type); type_holder.release(); } /// Helper function which tags all parents of a type using mult. inheritance void mark_parents_nonsimple(PyTypeObject *value) { auto t = reinterpret_borrow(value->tp_bases); for (handle h : t) { auto tinfo2 = get_type_info((PyTypeObject *) h.ptr()); if (tinfo2) tinfo2->simple_type = false; mark_parents_nonsimple((PyTypeObject *) h.ptr()); } } static int init(void *self, PyObject *, PyObject *) { PyTypeObject *type = Py_TYPE(self); std::string msg; #if defined(PYPY_VERSION) msg += handle((PyObject *) type).attr("__module__").cast() + "."; #endif msg += type->tp_name; msg += ": No constructor defined!"; PyErr_SetString(PyExc_TypeError, msg.c_str()); return -1; } static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) { instance *self = (instance *) PyType_GenericAlloc((PyTypeObject *) type, 0); auto tinfo = detail::get_type_info(type); self->value = ::operator new(tinfo->type_size); self->owned = true; self->holder_constructed = false; detail::get_internals().registered_instances.emplace(self->value, (PyObject *) self); return (PyObject *) self; } static void dealloc(instance *self) { if (self->value) { auto instance_type = Py_TYPE(self); auto ®istered_instances = detail::get_internals().registered_instances; auto range = registered_instances.equal_range(self->value); bool found = false; for (auto it = range.first; it != range.second; ++it) { if (instance_type == Py_TYPE(it->second)) { registered_instances.erase(it); found = true; break; } } if (!found) pybind11_fail("generic_type::dealloc(): Tried to deallocate unregistered instance!"); if (self->weakrefs) PyObject_ClearWeakRefs((PyObject *) self); PyObject **dict_ptr = _PyObject_GetDictPtr((PyObject *) self); if (dict_ptr) Py_CLEAR(*dict_ptr); } Py_TYPE(self)->tp_free((PyObject*) self); } static int traverse(PyObject *op, visitproc visit, void *arg) { PyObject *&dict = *_PyObject_GetDictPtr(op); Py_VISIT(dict); return 0; } static int clear(PyObject *op) { PyObject *&dict = *_PyObject_GetDictPtr(op); Py_CLEAR(dict); return 0; } void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; auto tinfo = detail::get_type_info(&type->ht_type); if (!type->ht_type.tp_as_buffer) pybind11_fail( "To be able to register buffer protocol support for the type '" + std::string(tinfo->type->tp_name) + "' the associated class<>(..) invocation must " "include the pybind11::buffer_protocol() annotation!"); tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; } static int getbuffer(PyObject *obj, Py_buffer *view, int flags) { auto tinfo = detail::get_type_info(Py_TYPE(obj)); if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) { if (view) view->obj = nullptr; PyErr_SetString(PyExc_BufferError, "generic_type::getbuffer(): Internal error"); return -1; } memset(view, 0, sizeof(Py_buffer)); buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data); view->obj = obj; view->ndim = 1; view->internal = info; view->buf = info->ptr; view->itemsize = (ssize_t) info->itemsize; view->len = view->itemsize; for (auto s : info->shape) view->len *= s; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = const_cast(info->format.c_str()); if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) { view->ndim = (int) info->ndim; view->strides = (ssize_t *) &info->strides[0]; view->shape = (ssize_t *) &info->shape[0]; } Py_INCREF(view->obj); return 0; } static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; } void def_property_static_impl(const char *name, handle fget, handle fset, detail::function_record *rec_fget) { pybind11::str doc_obj = pybind11::str( (rec_fget->doc && pybind11::options::show_user_defined_docstrings()) ? rec_fget->doc : ""); const auto property = reinterpret_steal( PyObject_CallFunctionObjArgs((PyObject *) &PyProperty_Type, fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc_obj.ptr(), nullptr)); if (rec_fget->is_method && rec_fget->scope) { attr(name) = property; } else { auto mclass = handle((PyObject *) PYBIND11_OB_TYPE(*((PyTypeObject *) m_ptr))); if ((PyTypeObject *) mclass.ptr() == &PyType_Type) pybind11_fail( "Adding static properties to the type '" + std::string(((PyTypeObject *) m_ptr)->tp_name) + "' requires the type to have a custom metaclass. Please " "ensure that one is created by supplying the pybind11::metaclass() " "annotation to the associated class_<>(..) invocation."); mclass.attr(name) = property; } } }; NAMESPACE_END(detail) template class class_ : public detail::generic_type { template using is_holder = detail::is_holder_type; template using is_subtype = detail::bool_constant::value && !std::is_same::value>; template using is_base = detail::bool_constant::value && !std::is_same::value>; // struct instead of using here to help MSVC: template struct is_valid_class_option : detail::any_of, is_subtype, is_base> {}; public: using type = type_; using type_alias = detail::first_of_t; constexpr static bool has_alias = !std::is_void::value; using holder_type = detail::first_of_t, options...>; using instance_type = detail::instance; static_assert(detail::all_of...>::value, "Unknown/invalid class_ template parameters provided"); PYBIND11_OBJECT(class_, generic_type, PyType_Check) template class_(handle scope, const char *name, const Extra &... extra) { detail::type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(detail::conditional_t); record.instance_size = sizeof(instance_type); record.init_holder = init_holder; record.dealloc = dealloc; /* Register base classes specified via template arguments to class_, if any */ bool unused[] = { (add_base(record), false)..., false }; (void) unused; /* Process optional arguments, if any */ detail::process_attributes::init(extra..., &record); detail::generic_type::initialize(&record); if (has_alias) { auto &instances = pybind11::detail::get_internals().registered_types_cpp; instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; } } template ::value, int> = 0> static void add_base(detail::type_record &rec) { rec.add_base(&typeid(Base), [](void *src) -> void * { return static_cast(reinterpret_cast(src)); }); } template ::value, int> = 0> static void add_base(detail::type_record &) { } template class_ &def(const char *name_, Func&& f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), is_method(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ & def_static(const char *name_, Func f, const Extra&... extra) { cpp_function cf(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); attr(cf.name()) = cf; return *this; } template class_ &def(const detail::op_ &op, const Extra&... extra) { op.execute(*this, extra...); return *this; } template class_ & def_cast(const detail::op_ &op, const Extra&... extra) { op.execute_cast(*this, extra...); return *this; } template class_ &def(const detail::init &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_ &def(const detail::init_alias &init, const Extra&... extra) { init.execute(*this, extra...); return *this; } template class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::make_caster caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; } template class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)), fset([pm](C &c, const D &value) { c.*pm = value; }, is_method(*this)); def_property(name, fget, fset, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { cpp_function fget([pm](const C &c) -> const D &{ return c.*pm; }, is_method(*this)); def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)), fset([pm](object, const D &value) { *pm = value; }, scope(*this)); def_property_static(name, fget, fset, return_value_policy::reference, extra...); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)); def_property_readonly_static(name, fget, return_value_policy::reference, extra...); return *this; } /// Uses return_value_policy::reference_internal by default template class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly(name, cpp_function(fget), return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) { return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) { return def_property_static(name, fget, cpp_function(), extra...); } /// Uses return_value_policy::reference_internal by default template class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property(name, cpp_function(fget), fset, return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, fget, fset, is_method(*this), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ detail::process_attributes::init(extra..., rec_fget); if (rec_fget->doc && rec_fget->doc != doc_prev) { free(doc_prev); rec_fget->doc = strdup(rec_fget->doc); } if (rec_fset) { doc_prev = rec_fset->doc; detail::process_attributes::init(extra..., rec_fset); if (rec_fset->doc && rec_fset->doc != doc_prev) { free(doc_prev); rec_fset->doc = strdup(rec_fset->doc); } } def_property_static_impl(name, fget, fset, rec_fget); return *this; } private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this template static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const std::enable_shared_from_this * /* dummy */) { try { new (&inst->holder) holder_type(std::static_pointer_cast(inst->value->shared_from_this())); inst->holder_constructed = true; } catch (const std::bad_weak_ptr &) { if (inst->owned) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } } /// Initialize holder object, variant 2: try to construct from existing holder object, if possible template ::value, int> = 0> static void init_holder_helper(instance_type *inst, const holder_type *holder_ptr, const void * /* dummy */) { if (holder_ptr) { new (&inst->holder) holder_type(*holder_ptr); inst->holder_constructed = true; } else if (inst->owned || detail::always_construct_holder::value) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } /// Initialize holder object, variant 3: holder is not copy constructible (e.g. unique_ptr), always initialize from raw pointer template ::value, int> = 0> static void init_holder_helper(instance_type *inst, const holder_type * /* unused */, const void * /* dummy */) { if (inst->owned || detail::always_construct_holder::value) { new (&inst->holder) holder_type(inst->value); inst->holder_constructed = true; } } /// Initialize holder object of an instance, possibly given a pointer to an existing holder static void init_holder(PyObject *inst_, const void *holder_ptr) { auto inst = (instance_type *) inst_; init_holder_helper(inst, (const holder_type *) holder_ptr, inst->value); } static void dealloc(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; if (inst->holder_constructed) inst->holder.~holder_type(); else if (inst->owned) ::operator delete(inst->value); generic_type::dealloc((detail::instance *) inst); } static detail::function_record *get_function_record(handle h) { h = detail::get_function(h); return h ? (detail::function_record *) reinterpret_borrow(PyCFunction_GET_SELF(h.ptr())) : nullptr; } }; /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: using class_::def; using Scalar = typename std::underlying_type::type; template using arithmetic_tag = std::is_same; template enum_(const handle &scope, const char *name, const Extra&... extra) : class_(scope, name, extra...), m_parent(scope) { constexpr bool is_arithmetic = !std::is_same, void>::value; auto entries = new std::unordered_map(); def("__repr__", [name, entries](Type value) -> std::string { auto it = entries->find((Scalar) value); return std::string(name) + "." + ((it == entries->end()) ? std::string("???") : std::string(it->second)); }); def("__init__", [](Type& value, Scalar i) { value = (Type)i; }); def("__init__", [](Type& value, Scalar i) { new (&value) Type((Type) i); }); def("__int__", [](Type value) { return (Scalar) value; }); def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; }); def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; }); def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; }); def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; }); def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; }); } if (std::is_convertible::value) { // Don't provide comparison with the underlying type if the enum isn't convertible, // i.e. if Type is a scoped enum, mirroring the C++ behaviour. (NB: we explicitly // convert Type to Scalar below anyway because this needs to compile). def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; }); def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; }); if (is_arithmetic) { def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; }); def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; }); def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; }); def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; }); def("__invert__", [](const Type &value) { return ~((Scalar) value); }); def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; }); def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; }); def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; }); def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; }); def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; }); def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; }); } } def("__hash__", [](const Type &value) { return (Scalar) value; }); // Pickling and unpickling -- needed for use with the 'multiprocessing' module def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); }); def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast()); }); m_entries = entries; } /// Export enumeration entries into the parent scope enum_ &export_values() { #if !defined(PYPY_VERSION) PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict; PyObject *key, *value; ssize_t pos = 0; while (PyDict_Next(dict, &pos, &key, &value)) { if (PyObject_IsInstance(value, this->m_ptr)) m_parent.attr(key) = value; } #else /* PyPy's cpyext still has difficulties with the above CPython API calls; emulate using Python code. */ dict d; d["t"] = *this; d["p"] = m_parent; PyObject *result = PyRun_String( "for k, v in t.__dict__.items():\n" " if isinstance(v, t):\n" " setattr(p, k, v)\n", Py_file_input, d.ptr(), d.ptr()); if (result == nullptr) throw error_already_set(); Py_DECREF(result); #endif return *this; } /// Add an enumeration entry enum_& value(char const* name, Type value) { this->attr(name) = pybind11::cast(value, return_value_policy::copy); (*m_entries)[(Scalar) value] = name; return *this; } private: std::unordered_map *m_entries; handle m_parent; }; NAMESPACE_BEGIN(detail) template struct init { template = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; /// Function which calls a specific C++ in-place constructor cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Base = typename Class::type; using Alias = typename Class::type_alias; handle cl_type = cl; cl.def("__init__", [cl_type](handle self_, Args... args) { if (self_.get_type() == cl_type) new (self_.cast()) Base(args...); else new (self_.cast()) Alias(args...); }, extra...); } template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { init_alias::execute(cl, extra...); } }; template struct init_alias { template ::value, int> = 0> static void execute(Class &cl, const Extra&... extra) { using Alias = typename Class::type_alias; cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...); } }; inline void keep_alive_impl(handle nurse, handle patient) { /* Clever approach based on weak references taken from Boost.Python */ if (!nurse || !patient) pybind11_fail("Could not activate keep_alive!"); if (patient.is_none() || nurse.is_none()) return; /* Nothing to keep alive or nothing to be kept alive by */ cpp_function disable_lifesupport( [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); weakref wr(nurse, disable_lifesupport); patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); } PYBIND11_NOINLINE inline void keep_alive_impl(int Nurse, int Patient, handle args, handle ret) { handle nurse (Nurse > 0 ? PyTuple_GetItem(args.ptr(), Nurse - 1) : ret.ptr()); handle patient(Patient > 0 ? PyTuple_GetItem(args.ptr(), Patient - 1) : ret.ptr()); keep_alive_impl(nurse, patient); } template struct iterator_state { Iterator it; Sentinel end; bool first; }; NAMESPACE_END(detail) template detail::init init() { return detail::init(); } template detail::init_alias init_alias() { return detail::init_alias(); } template ()), typename... Extra> iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> ValueType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return *s.it; }, std::forward(extra)..., Policy); } return (iterator) cast(state { first, last, true }); } template ()).first), typename... Extra> iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) { typedef detail::iterator_state state; if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator") .def("__iter__", [](state &s) -> state& { return s; }) .def("__next__", [](state &s) -> KeyType { if (!s.first) ++s.it; else s.first = false; if (s.it == s.end) throw stop_iteration(); return (*s.it).first; }, std::forward(extra)..., Policy); } return (iterator) cast(state { first, last, true }); } template iterator make_iterator(Type &value, Extra&&... extra) { return make_iterator(std::begin(value), std::end(value), extra...); } template iterator make_key_iterator(Type &value, Extra&&... extra) { return make_key_iterator(std::begin(value), std::end(value), extra...); } template void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { if (!detail::make_caster().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; }; if (auto tinfo = detail::get_type_info(typeid(OutputType))) tinfo->implicit_conversions.push_back(implicit_caster); else pybind11_fail("implicitly_convertible: Unable to find type " + type_id()); } template void register_exception_translator(ExceptionTranslator&& translator) { detail::get_internals().registered_exception_translators.push_front( std::forward(translator)); } /* Wrapper to generate a new Python exception type. * * This should only be used with PyErr_SetString for now. * It is not (yet) possible to use as a py::base. * Template type argument is reserved for future use. */ template class exception : public object { public: exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { std::string full_name = scope.attr("__name__").cast() + std::string(".") + name; m_ptr = PyErr_NewException((char *) full_name.c_str(), base, NULL); if (hasattr(scope, name)) pybind11_fail("Error during initialization: multiple incompatible " "definitions with name \"" + std::string(name) + "\""); scope.attr(name) = *this; } // Sets the current python exception to this exception object with the given message void operator()(const char *message) { PyErr_SetString(m_ptr, message); } }; /** Registers a Python exception in `m` of the given `name` and installs an exception translator to * translate the C++ exception to the created Python exception using the exceptions what() method. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template exception ®ister_exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { static exception ex(scope, name, base); register_exception_translator([](std::exception_ptr p) { if (!p) return; try { std::rethrow_exception(p); } catch (const CppException &e) { ex(e.what()); } }); return ex; } NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) { auto strings = tuple(args.size()); for (size_t i = 0; i < args.size(); ++i) { strings[i] = str(args[i]); } auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" "); auto line = sep.attr("join")(strings); object file; if (kwargs.contains("file")) { file = kwargs["file"].cast(); } else { try { file = module::import("sys").attr("stdout"); } catch (const error_already_set &) { /* If print() is called from code that is executed as part of garbage collection during interpreter shutdown, importing 'sys' can fail. Give up rather than crashing the interpreter in this case. */ return; } } auto write = file.attr("write"); write(line); write(kwargs.contains("end") ? kwargs["end"] : cast("\n")); if (kwargs.contains("flush") && kwargs["flush"].cast()) file.attr("flush")(); } NAMESPACE_END(detail) template void print(Args &&...args) { auto c = detail::collect_arguments(std::forward(args)...); detail::print(c.args(), c.kwargs()); } #if defined(WITH_THREAD) && !defined(PYPY_VERSION) /* The functions below essentially reproduce the PyGILState_* API using a RAII * pattern, but there are a few important differences: * * 1. When acquiring the GIL from an non-main thread during the finalization * phase, the GILState API blindly terminates the calling thread, which * is often not what is wanted. This API does not do this. * * 2. The gil_scoped_release function can optionally cut the relationship * of a PyThreadState and its associated thread, which allows moving it to * another thread (this is a fairly rare/advanced use case). * * 3. The reference count of an acquired thread state can be controlled. This * can be handy to prevent cases where callbacks issued from an external * thread would otherwise constantly construct and destroy thread state data * structures. * * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an * example which uses features 2 and 3 to migrate the Python thread of * execution to another thread (to run the event loop on the original thread, * in this case). */ class gil_scoped_acquire { public: PYBIND11_NOINLINE gil_scoped_acquire() { auto const &internals = detail::get_internals(); tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate); if (!tstate) { tstate = PyThreadState_New(internals.istate); #if !defined(NDEBUG) if (!tstate) pybind11_fail("scoped_acquire: could not create thread state!"); #endif tstate->gilstate_counter = 0; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(internals.tstate); #endif PyThread_set_key_value(internals.tstate, tstate); } else { release = detail::get_thread_state_unchecked() != tstate; } if (release) { /* Work around an annoying assertion in PyThreadState_Swap */ #if defined(Py_DEBUG) PyInterpreterState *interp = tstate->interp; tstate->interp = nullptr; #endif PyEval_AcquireThread(tstate); #if defined(Py_DEBUG) tstate->interp = interp; #endif } inc_ref(); } void inc_ref() { ++tstate->gilstate_counter; } PYBIND11_NOINLINE void dec_ref() { --tstate->gilstate_counter; #if !defined(NDEBUG) if (detail::get_thread_state_unchecked() != tstate) pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!"); if (tstate->gilstate_counter < 0) pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!"); #endif if (tstate->gilstate_counter == 0) { #if !defined(NDEBUG) if (!release) pybind11_fail("scoped_acquire::dec_ref(): internal error!"); #endif PyThreadState_Clear(tstate); PyThreadState_DeleteCurrent(); PyThread_delete_key_value(detail::get_internals().tstate); release = false; } } PYBIND11_NOINLINE ~gil_scoped_acquire() { dec_ref(); if (release) PyEval_SaveThread(); } private: PyThreadState *tstate = nullptr; bool release = true; }; class gil_scoped_release { public: explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) { tstate = PyEval_SaveThread(); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #else PyThread_set_key_value(key, nullptr); #endif } } ~gil_scoped_release() { if (!tstate) return; PyEval_RestoreThread(tstate); if (disassoc) { auto key = detail::get_internals().tstate; #if PY_MAJOR_VERSION < 3 PyThread_delete_key_value(key); #endif PyThread_set_key_value(key, tstate); } } private: PyThreadState *tstate; bool disassoc; }; #elif defined(PYPY_VERSION) class gil_scoped_acquire { PyGILState_STATE state; public: gil_scoped_acquire() { state = PyGILState_Ensure(); } ~gil_scoped_acquire() { PyGILState_Release(state); } }; class gil_scoped_release { PyThreadState *state; public: gil_scoped_release() { state = PyEval_SaveThread(); } ~gil_scoped_release() { PyEval_RestoreThread(state); } }; #else class gil_scoped_acquire { }; class gil_scoped_release { }; #endif error_already_set::~error_already_set() { if (value) { gil_scoped_acquire gil; PyErr_Restore(type, value, trace); PyErr_Clear(); } } inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { handle self = detail::get_object_handle(this_ptr, this_type); if (!self) return function(); handle type = self.get_type(); auto key = std::make_pair(type.ptr(), name); /* Cache functions that aren't overloaded in Python to avoid many costly Python dictionary lookups below */ auto &cache = detail::get_internals().inactive_overload_cache; if (cache.find(key) != cache.end()) return function(); function overload = getattr(self, name, function()); if (overload.is_cpp_function()) { cache.insert(key); return function(); } /* Don't call dispatch code if invoked from overridden function. Unfortunately this doesn't work on PyPy. */ #if !defined(PYPY_VERSION) PyFrameObject *frame = PyThreadState_Get()->frame; if (frame && (std::string) str(frame->f_code->co_name) == name && frame->f_code->co_argcount > 0) { PyFrame_FastToLocals(frame); PyObject *self_caller = PyDict_GetItem( frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); if (self_caller == self.ptr()) return function(); } #else /* PyPy currently doesn't provide a detailed cpyext emulation of frame objects, so we have to emulate this using Python. This is going to be slow..*/ dict d; d["self"] = self; d["name"] = pybind11::str(name); PyObject *result = PyRun_String( "import inspect\n" "frame = inspect.currentframe()\n" "if frame is not None:\n" " frame = frame.f_back\n" " if frame is not None and str(frame.f_code.co_name) == name and " "frame.f_code.co_argcount > 0:\n" " self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n" " if self_caller == self:\n" " self = None\n", Py_file_input, d.ptr(), d.ptr()); if (result == nullptr) throw error_already_set(); if ((handle) d["self"] == Py_None) return function(); Py_DECREF(result); #endif return overload; } template function get_overload(const T *this_ptr, const char *name) { auto tinfo = detail::get_type_info(typeid(T)); return tinfo ? get_type_overload(this_ptr, tinfo, name) : function(); } #define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \ pybind11::gil_scoped_acquire gil; \ pybind11::function overload = pybind11::get_overload(static_cast(this), name); \ if (overload) { \ auto o = overload(__VA_ARGS__); \ if (pybind11::detail::cast_is_temporary_value_reference::value) { \ static pybind11::detail::overload_caster_t caster; \ return pybind11::detail::cast_ref(std::move(o), caster); \ } \ else return pybind11::detail::cast_safe(std::move(o)); \ } \ } #define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ return cname::fn(__VA_ARGS__) #define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \ pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\""); #define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) #define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \ PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__) NAMESPACE_END(pybind11) #if defined(_MSC_VER) # pragma warning(pop) #elif defined(__INTEL_COMPILER) /* Leave ignored warnings on */ #elif defined(__GNUG__) && !defined(__clang__) # pragma GCC diagnostic pop #endif pybind11-2.0.1/include/pybind11/pytypes.h000066400000000000000000001032141303320175600201020ustar00rootroot00000000000000/* pybind11/typeid.h: Convenience wrapper classes for basic Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "common.h" #include #include NAMESPACE_BEGIN(pybind11) /* A few forward declarations */ class handle; class object; class str; class iterator; struct arg; struct arg_v; NAMESPACE_BEGIN(detail) class args_proxy; inline bool isinstance_generic(handle obj, const std::type_info &tp); // Accessor forward declarations template class accessor; namespace accessor_policies { struct obj_attr; struct str_attr; struct generic_item; struct sequence_item; struct list_item; struct tuple_item; } using obj_attr_accessor = accessor; using str_attr_accessor = accessor; using item_accessor = accessor; using sequence_accessor = accessor; using list_accessor = accessor; using tuple_accessor = accessor; /// Tag and check to identify a class which implements the Python object API class pyobject_tag { }; template using is_pyobject = std::is_base_of::type>; /// Mixin which adds common functions to handle, object and various accessors. /// The only requirement for `Derived` is to implement `PyObject *Derived::ptr() const`. template class object_api : public pyobject_tag { const Derived &derived() const { return static_cast(*this); } public: iterator begin() const; iterator end() const; item_accessor operator[](handle key) const; item_accessor operator[](const char *key) const; obj_attr_accessor attr(handle key) const; str_attr_accessor attr(const char *key) const; args_proxy operator*() const; template bool contains(T &&key) const; template object operator()(Args &&...args) const; template PYBIND11_DEPRECATED("call(...) was deprecated in favor of operator()(...)") object call(Args&&... args) const; bool is_none() const { return derived().ptr() == Py_None; } PYBIND11_DEPRECATED("Instead of obj.str(), use py::str(obj)") pybind11::str str() const; int ref_count() const { return static_cast(Py_REFCNT(derived().ptr())); } handle get_type() const; }; NAMESPACE_END(detail) /// Holds a reference to a Python object (no reference counting) class handle : public detail::object_api { public: handle() = default; handle(PyObject *ptr) : m_ptr(ptr) { } // Allow implicit conversion from PyObject* PyObject *ptr() const { return m_ptr; } PyObject *&ptr() { return m_ptr; } const handle& inc_ref() const { Py_XINCREF(m_ptr); return *this; } const handle& dec_ref() const { Py_XDECREF(m_ptr); return *this; } template T cast() const; explicit operator bool() const { return m_ptr != nullptr; } bool operator==(const handle &h) const { return m_ptr == h.m_ptr; } bool operator!=(const handle &h) const { return m_ptr != h.m_ptr; } PYBIND11_DEPRECATED("Use handle::operator bool() instead") bool check() const { return m_ptr != nullptr; } protected: PyObject *m_ptr = nullptr; }; /// Holds a reference to a Python object (with reference counting) class object : public handle { public: object() = default; PYBIND11_DEPRECATED("Use reinterpret_borrow() or reinterpret_steal()") object(handle h, bool is_borrowed) : handle(h) { if (is_borrowed) inc_ref(); } object(const object &o) : handle(o) { inc_ref(); } object(object &&other) noexcept { m_ptr = other.m_ptr; other.m_ptr = nullptr; } ~object() { dec_ref(); } handle release() { PyObject *tmp = m_ptr; m_ptr = nullptr; return handle(tmp); } object& operator=(const object &other) { other.inc_ref(); dec_ref(); m_ptr = other.m_ptr; return *this; } object& operator=(object &&other) noexcept { if (this != &other) { handle temp(m_ptr); m_ptr = other.m_ptr; other.m_ptr = nullptr; temp.dec_ref(); } return *this; } // Calling cast() on an object lvalue just copies (via handle::cast) template T cast() const &; // Calling on an object rvalue does a move, if needed and/or possible template T cast() &&; protected: // Tags for choosing constructors from raw PyObject * struct borrowed_t { }; static constexpr borrowed_t borrowed{}; struct stolen_t { }; static constexpr stolen_t stolen{}; template friend T reinterpret_borrow(handle); template friend T reinterpret_steal(handle); public: // Only accessible from derived classes and the reinterpret_* functions object(handle h, borrowed_t) : handle(h) { inc_ref(); } object(handle h, stolen_t) : handle(h) { } }; /** The following functions don't do any kind of conversion, they simply declare that a PyObject is a certain type and borrow or steal the reference. */ template T reinterpret_borrow(handle h) { return {h, object::borrowed}; } template T reinterpret_steal(handle h) { return {h, object::stolen}; } /// Check if `obj` is an instance of type `T` template ::value, int> = 0> bool isinstance(handle obj) { return T::_check(obj); } template ::value, int> = 0> bool isinstance(handle obj) { return detail::isinstance_generic(obj, typeid(T)); } template <> inline bool isinstance(handle obj) = delete; template <> inline bool isinstance(handle obj) { return obj.ptr() != nullptr; } inline bool isinstance(handle obj, handle type) { const auto result = PyObject_IsInstance(obj.ptr(), type.ptr()); if (result == -1) throw error_already_set(); return result != 0; } inline bool hasattr(handle obj, handle name) { return PyObject_HasAttr(obj.ptr(), name.ptr()) == 1; } inline bool hasattr(handle obj, const char *name) { return PyObject_HasAttrString(obj.ptr(), name) == 1; } inline object getattr(handle obj, handle name) { PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } inline object getattr(handle obj, const char *name) { PyObject *result = PyObject_GetAttrString(obj.ptr(), name); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } inline object getattr(handle obj, handle name, handle default_) { if (PyObject *result = PyObject_GetAttr(obj.ptr(), name.ptr())) { return reinterpret_steal(result); } else { PyErr_Clear(); return reinterpret_borrow(default_); } } inline object getattr(handle obj, const char *name, handle default_) { if (PyObject *result = PyObject_GetAttrString(obj.ptr(), name)) { return reinterpret_steal(result); } else { PyErr_Clear(); return reinterpret_borrow(default_); } } inline void setattr(handle obj, handle name, handle value) { if (PyObject_SetAttr(obj.ptr(), name.ptr(), value.ptr()) != 0) { throw error_already_set(); } } inline void setattr(handle obj, const char *name, handle value) { if (PyObject_SetAttrString(obj.ptr(), name, value.ptr()) != 0) { throw error_already_set(); } } NAMESPACE_BEGIN(detail) inline handle get_function(handle value) { if (value) { #if PY_MAJOR_VERSION >= 3 if (PyInstanceMethod_Check(value.ptr())) value = PyInstanceMethod_GET_FUNCTION(value.ptr()); #endif if (PyMethod_Check(value.ptr())) value = PyMethod_GET_FUNCTION(value.ptr()); } return value; } // Helper aliases/functions to support implicit casting of values given to python accessors/methods. // When given a pyobject, this simply returns the pyobject as-is; for other C++ type, the value goes // through pybind11::cast(obj) to convert it to an `object`. template ::value, int> = 0> auto object_or_cast(T &&o) -> decltype(std::forward(o)) { return std::forward(o); } // The following casting version is implemented in cast.h: template ::value, int> = 0> object object_or_cast(T &&o); // Match a PyObject*, which we want to convert directly to handle via its converting constructor inline handle object_or_cast(PyObject *ptr) { return ptr; } template class accessor : public object_api> { using key_type = typename Policy::key_type; public: accessor(handle obj, key_type key) : obj(obj), key(std::move(key)) { } // accessor overload required to override default assignment operator (templates are not allowed // to replace default compiler-generated assignments). void operator=(const accessor &a) && { std::move(*this).operator=(handle(a)); } void operator=(const accessor &a) & { operator=(handle(a)); } template void operator=(T &&value) && { Policy::set(obj, key, object_or_cast(std::forward(value))); } template void operator=(T &&value) & { get_cache() = reinterpret_borrow(object_or_cast(std::forward(value))); } template PYBIND11_DEPRECATED("Use of obj.attr(...) as bool is deprecated in favor of pybind11::hasattr(obj, ...)") explicit operator enable_if_t::value || std::is_same::value, bool>() const { return hasattr(obj, key); } template PYBIND11_DEPRECATED("Use of obj[key] as bool is deprecated in favor of obj.contains(key)") explicit operator enable_if_t::value, bool>() const { return obj.contains(key); } operator object() const { return get_cache(); } PyObject *ptr() const { return get_cache().ptr(); } template T cast() const { return get_cache().template cast(); } private: object &get_cache() const { if (!cache) { cache = Policy::get(obj, key); } return cache; } private: handle obj; key_type key; mutable object cache; }; NAMESPACE_BEGIN(accessor_policies) struct obj_attr { using key_type = object; static object get(handle obj, handle key) { return getattr(obj, key); } static void set(handle obj, handle key, handle val) { setattr(obj, key, val); } }; struct str_attr { using key_type = const char *; static object get(handle obj, const char *key) { return getattr(obj, key); } static void set(handle obj, const char *key, handle val) { setattr(obj, key, val); } }; struct generic_item { using key_type = object; static object get(handle obj, handle key) { PyObject *result = PyObject_GetItem(obj.ptr(), key.ptr()); if (!result) { throw error_already_set(); } return reinterpret_steal(result); } static void set(handle obj, handle key, handle val) { if (PyObject_SetItem(obj.ptr(), key.ptr(), val.ptr()) != 0) { throw error_already_set(); } } }; struct sequence_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PySequence_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_borrow(result); } static void set(handle obj, size_t index, handle val) { // PySequence_SetItem does not steal a reference to 'val' if (PySequence_SetItem(obj.ptr(), static_cast(index), val.ptr()) != 0) { throw error_already_set(); } } }; struct list_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PyList_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_borrow(result); } static void set(handle obj, size_t index, handle val) { // PyList_SetItem steals a reference to 'val' if (PyList_SetItem(obj.ptr(), static_cast(index), val.inc_ref().ptr()) != 0) { throw error_already_set(); } } }; struct tuple_item { using key_type = size_t; static object get(handle obj, size_t index) { PyObject *result = PyTuple_GetItem(obj.ptr(), static_cast(index)); if (!result) { throw error_already_set(); } return reinterpret_borrow(result); } static void set(handle obj, size_t index, handle val) { // PyTuple_SetItem steals a reference to 'val' if (PyTuple_SetItem(obj.ptr(), static_cast(index), val.inc_ref().ptr()) != 0) { throw error_already_set(); } } }; NAMESPACE_END(accessor_policies) struct dict_iterator { public: explicit dict_iterator(handle dict = handle(), ssize_t pos = -1) : dict(dict), pos(pos) { } dict_iterator& operator++() { if (!PyDict_Next(dict.ptr(), &pos, &key.ptr(), &value.ptr())) pos = -1; return *this; } std::pair operator*() const { return std::make_pair(key, value); } bool operator==(const dict_iterator &it) const { return it.pos == pos; } bool operator!=(const dict_iterator &it) const { return it.pos != pos; } private: handle dict, key, value; ssize_t pos = 0; }; inline bool PyIterable_Check(PyObject *obj) { PyObject *iter = PyObject_GetIter(obj); if (iter) { Py_DECREF(iter); return true; } else { PyErr_Clear(); return false; } } inline bool PyNone_Check(PyObject *o) { return o == Py_None; } inline bool PyUnicode_Check_Permissive(PyObject *o) { return PyUnicode_Check(o) || PYBIND11_BYTES_CHECK(o); } class kwargs_proxy : public handle { public: explicit kwargs_proxy(handle h) : handle(h) { } }; class args_proxy : public handle { public: explicit args_proxy(handle h) : handle(h) { } kwargs_proxy operator*() const { return kwargs_proxy(*this); } }; /// Python argument categories (using PEP 448 terms) template using is_keyword = std::is_base_of; template using is_s_unpacking = std::is_same; // * unpacking template using is_ds_unpacking = std::is_same; // ** unpacking template using is_positional = none_of< is_keyword, is_s_unpacking, is_ds_unpacking >; template using is_keyword_or_ds = any_of, is_ds_unpacking>; // Call argument collector forward declarations template class simple_collector; template class unpacking_collector; NAMESPACE_END(detail) // TODO: After the deprecated constructors are removed, this macro can be simplified by // inheriting ctors: `using Parent::Parent`. It's not an option right now because // the `using` statement triggers the parent deprecation warning even if the ctor // isn't even used. #define PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ public: \ PYBIND11_DEPRECATED("Use reinterpret_borrow<"#Name">() or reinterpret_steal<"#Name">()") \ Name(handle h, bool is_borrowed) : Parent(is_borrowed ? Parent(h, borrowed) : Parent(h, stolen)) { } \ Name(handle h, borrowed_t) : Parent(h, borrowed) { } \ Name(handle h, stolen_t) : Parent(h, stolen) { } \ PYBIND11_DEPRECATED("Use py::isinstance(obj) instead") \ bool check() const { return m_ptr != nullptr && (bool) CheckFun(m_ptr); } \ static bool _check(handle h) { return h.ptr() != nullptr && CheckFun(h.ptr()); } #define PYBIND11_OBJECT_CVT(Name, Parent, CheckFun, ConvertFun) \ PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \ Name(const object &o) : Parent(ConvertFun(o.ptr()), stolen) { if (!m_ptr) throw error_already_set(); } #define PYBIND11_OBJECT(Name, Parent, CheckFun) \ PYBIND11_OBJECT_COMMON(Name, Parent, CheckFun) \ /* This is deliberately not 'explicit' to allow implicit conversion from object: */ \ Name(const object &o) : Parent(o) { } \ Name(object &&o) : Parent(std::move(o)) { } #define PYBIND11_OBJECT_DEFAULT(Name, Parent, CheckFun) \ PYBIND11_OBJECT(Name, Parent, CheckFun) \ Name() : Parent() { } class iterator : public object { public: /** Caveat: copying an iterator does not (and cannot) clone the internal state of the Python iterable */ PYBIND11_OBJECT_DEFAULT(iterator, object, PyIter_Check) iterator& operator++() { if (m_ptr) advance(); return *this; } /** Caveat: this postincrement operator does not (and cannot) clone the internal state of the Python iterable. It should only be used to retrieve the current iterate using operator*() */ iterator operator++(int) { iterator rv(*this); rv.value = value; if (m_ptr) advance(); return rv; } bool operator==(const iterator &it) const { return *it == **this; } bool operator!=(const iterator &it) const { return *it != **this; } handle operator*() const { if (!ready && m_ptr) { auto& self = const_cast(*this); self.advance(); self.ready = true; } return value; } private: void advance() { value = reinterpret_steal(PyIter_Next(m_ptr)); } private: object value = {}; bool ready = false; }; class iterable : public object { public: PYBIND11_OBJECT_DEFAULT(iterable, object, detail::PyIterable_Check) }; class bytes; class str : public object { public: PYBIND11_OBJECT_CVT(str, object, detail::PyUnicode_Check_Permissive, raw_str) str(const char *c, size_t n) : object(PyUnicode_FromStringAndSize(c, (ssize_t) n), stolen) { if (!m_ptr) pybind11_fail("Could not allocate string object!"); } // 'explicit' is explicitly omitted from the following constructors to allow implicit conversion to py::str from C++ string-like objects str(const char *c = "") : object(PyUnicode_FromString(c), stolen) { if (!m_ptr) pybind11_fail("Could not allocate string object!"); } str(const std::string &s) : str(s.data(), s.size()) { } explicit str(const bytes &b); explicit str(handle h) : object(raw_str(h.ptr()), stolen) { } operator std::string() const { object temp = *this; if (PyUnicode_Check(m_ptr)) { temp = reinterpret_steal(PyUnicode_AsUTF8String(m_ptr)); if (!temp) pybind11_fail("Unable to extract string contents! (encoding issue)"); } char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length)) pybind11_fail("Unable to extract string contents! (invalid type)"); return std::string(buffer, (size_t) length); } template str format(Args &&...args) const { return attr("format")(std::forward(args)...); } private: /// Return string representation -- always returns a new reference, even if already a str static PyObject *raw_str(PyObject *op) { PyObject *str_value = PyObject_Str(op); #if PY_MAJOR_VERSION < 3 if (!str_value) throw error_already_set(); PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr); Py_XDECREF(str_value); str_value = unicode; #endif return str_value; } }; inline namespace literals { /// String literal version of str inline str operator"" _s(const char *s, size_t size) { return {s, size}; } } class bytes : public object { public: PYBIND11_OBJECT(bytes, object, PYBIND11_BYTES_CHECK) // Allow implicit conversion: bytes(const char *c = "") : object(PYBIND11_BYTES_FROM_STRING(c), stolen) { if (!m_ptr) pybind11_fail("Could not allocate bytes object!"); } bytes(const char *c, size_t n) : object(PYBIND11_BYTES_FROM_STRING_AND_SIZE(c, (ssize_t) n), stolen) { if (!m_ptr) pybind11_fail("Could not allocate bytes object!"); } // Allow implicit conversion: bytes(const std::string &s) : bytes(s.data(), s.size()) { } explicit bytes(const pybind11::str &s); operator std::string() const { char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(m_ptr, &buffer, &length)) pybind11_fail("Unable to extract bytes contents!"); return std::string(buffer, (size_t) length); } }; inline bytes::bytes(const pybind11::str &s) { object temp = s; if (PyUnicode_Check(s.ptr())) { temp = reinterpret_steal(PyUnicode_AsUTF8String(s.ptr())); if (!temp) pybind11_fail("Unable to extract string contents! (encoding issue)"); } char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), &buffer, &length)) pybind11_fail("Unable to extract string contents! (invalid type)"); auto obj = reinterpret_steal(PYBIND11_BYTES_FROM_STRING_AND_SIZE(buffer, length)); if (!obj) pybind11_fail("Could not allocate bytes object!"); m_ptr = obj.release().ptr(); } inline str::str(const bytes& b) { char *buffer; ssize_t length; if (PYBIND11_BYTES_AS_STRING_AND_SIZE(b.ptr(), &buffer, &length)) pybind11_fail("Unable to extract bytes contents!"); auto obj = reinterpret_steal(PyUnicode_FromStringAndSize(buffer, (ssize_t) length)); if (!obj) pybind11_fail("Could not allocate string object!"); m_ptr = obj.release().ptr(); } class none : public object { public: PYBIND11_OBJECT(none, object, detail::PyNone_Check) none() : object(Py_None, borrowed) { } }; class bool_ : public object { public: PYBIND11_OBJECT_CVT(bool_, object, PyBool_Check, raw_bool) bool_() : object(Py_False, borrowed) { } // Allow implicit conversion from and to `bool`: bool_(bool value) : object(value ? Py_True : Py_False, borrowed) { } operator bool() const { return m_ptr && PyLong_AsLong(m_ptr) != 0; } private: /// Return the truth value of an object -- always returns a new reference static PyObject *raw_bool(PyObject *op) { const auto value = PyObject_IsTrue(op); if (value == -1) return nullptr; return handle(value ? Py_True : Py_False).inc_ref().ptr(); } }; class int_ : public object { public: PYBIND11_OBJECT_CVT(int_, object, PYBIND11_LONG_CHECK, PyNumber_Long) int_() : object(PyLong_FromLong(0), stolen) { } // Allow implicit conversion from C++ integral types: template ::value, int> = 0> int_(T value) { if (sizeof(T) <= sizeof(long)) { if (std::is_signed::value) m_ptr = PyLong_FromLong((long) value); else m_ptr = PyLong_FromUnsignedLong((unsigned long) value); } else { if (std::is_signed::value) m_ptr = PyLong_FromLongLong((long long) value); else m_ptr = PyLong_FromUnsignedLongLong((unsigned long long) value); } if (!m_ptr) pybind11_fail("Could not allocate int object!"); } template ::value, int> = 0> operator T() const { if (sizeof(T) <= sizeof(long)) { if (std::is_signed::value) return (T) PyLong_AsLong(m_ptr); else return (T) PyLong_AsUnsignedLong(m_ptr); } else { if (std::is_signed::value) return (T) PYBIND11_LONG_AS_LONGLONG(m_ptr); else return (T) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(m_ptr); } } }; class float_ : public object { public: PYBIND11_OBJECT_CVT(float_, object, PyFloat_Check, PyNumber_Float) // Allow implicit conversion from float/double: float_(float value) : object(PyFloat_FromDouble((double) value), stolen) { if (!m_ptr) pybind11_fail("Could not allocate float object!"); } float_(double value = .0) : object(PyFloat_FromDouble((double) value), stolen) { if (!m_ptr) pybind11_fail("Could not allocate float object!"); } operator float() const { return (float) PyFloat_AsDouble(m_ptr); } operator double() const { return (double) PyFloat_AsDouble(m_ptr); } }; class weakref : public object { public: PYBIND11_OBJECT_DEFAULT(weakref, object, PyWeakref_Check) explicit weakref(handle obj, handle callback = {}) : object(PyWeakref_NewRef(obj.ptr(), callback.ptr()), stolen) { if (!m_ptr) pybind11_fail("Could not allocate weak reference!"); } }; class slice : public object { public: PYBIND11_OBJECT_DEFAULT(slice, object, PySlice_Check) slice(ssize_t start_, ssize_t stop_, ssize_t step_) { int_ start(start_), stop(stop_), step(step_); m_ptr = PySlice_New(start.ptr(), stop.ptr(), step.ptr()); if (!m_ptr) pybind11_fail("Could not allocate slice object!"); } bool compute(size_t length, size_t *start, size_t *stop, size_t *step, size_t *slicelength) const { return PySlice_GetIndicesEx((PYBIND11_SLICE_OBJECT *) m_ptr, (ssize_t) length, (ssize_t *) start, (ssize_t *) stop, (ssize_t *) step, (ssize_t *) slicelength) == 0; } }; class capsule : public object { public: PYBIND11_OBJECT_DEFAULT(capsule, object, PyCapsule_CheckExact) PYBIND11_DEPRECATED("Use reinterpret_borrow() or reinterpret_steal()") capsule(PyObject *ptr, bool is_borrowed) : object(is_borrowed ? object(ptr, borrowed) : object(ptr, stolen)) { } explicit capsule(const void *value, void (*destruct)(PyObject *) = nullptr) : object(PyCapsule_New(const_cast(value), nullptr, destruct), stolen) { if (!m_ptr) pybind11_fail("Could not allocate capsule object!"); } template operator T *() const { T * result = static_cast(PyCapsule_GetPointer(m_ptr, nullptr)); if (!result) pybind11_fail("Unable to extract capsule contents!"); return result; } }; class tuple : public object { public: PYBIND11_OBJECT_CVT(tuple, object, PyTuple_Check, PySequence_Tuple) explicit tuple(size_t size = 0) : object(PyTuple_New((ssize_t) size), stolen) { if (!m_ptr) pybind11_fail("Could not allocate tuple object!"); } size_t size() const { return (size_t) PyTuple_Size(m_ptr); } detail::tuple_accessor operator[](size_t index) const { return {*this, index}; } }; class dict : public object { public: PYBIND11_OBJECT_CVT(dict, object, PyDict_Check, raw_dict) dict() : object(PyDict_New(), stolen) { if (!m_ptr) pybind11_fail("Could not allocate dict object!"); } template ...>::value>, // MSVC workaround: it can't compile an out-of-line definition, so defer the collector typename collector = detail::deferred_t, Args...>> explicit dict(Args &&...args) : dict(collector(std::forward(args)...).kwargs()) { } size_t size() const { return (size_t) PyDict_Size(m_ptr); } detail::dict_iterator begin() const { return (++detail::dict_iterator(*this, 0)); } detail::dict_iterator end() const { return detail::dict_iterator(); } void clear() const { PyDict_Clear(ptr()); } bool contains(handle key) const { return PyDict_Contains(ptr(), key.ptr()) == 1; } bool contains(const char *key) const { return PyDict_Contains(ptr(), pybind11::str(key).ptr()) == 1; } private: /// Call the `dict` Python type -- always returns a new reference static PyObject *raw_dict(PyObject *op) { if (PyDict_Check(op)) return handle(op).inc_ref().ptr(); return PyObject_CallFunctionObjArgs((PyObject *) &PyDict_Type, op, nullptr); } }; class sequence : public object { public: PYBIND11_OBJECT(sequence, object, PySequence_Check) size_t size() const { return (size_t) PySequence_Size(m_ptr); } detail::sequence_accessor operator[](size_t index) const { return {*this, index}; } }; class list : public object { public: PYBIND11_OBJECT_CVT(list, object, PyList_Check, PySequence_List) explicit list(size_t size = 0) : object(PyList_New((ssize_t) size), stolen) { if (!m_ptr) pybind11_fail("Could not allocate list object!"); } size_t size() const { return (size_t) PyList_Size(m_ptr); } detail::list_accessor operator[](size_t index) const { return {*this, index}; } template void append(T &&val) const { PyList_Append(m_ptr, detail::object_or_cast(std::forward(val)).ptr()); } }; class args : public tuple { PYBIND11_OBJECT_DEFAULT(args, tuple, PyTuple_Check) }; class kwargs : public dict { PYBIND11_OBJECT_DEFAULT(kwargs, dict, PyDict_Check) }; class set : public object { public: PYBIND11_OBJECT_CVT(set, object, PySet_Check, PySet_New) set() : object(PySet_New(nullptr), stolen) { if (!m_ptr) pybind11_fail("Could not allocate set object!"); } size_t size() const { return (size_t) PySet_Size(m_ptr); } template bool add(T &&val) const { return PySet_Add(m_ptr, detail::object_or_cast(std::forward(val)).ptr()) == 0; } void clear() const { PySet_Clear(m_ptr); } }; class function : public object { public: PYBIND11_OBJECT_DEFAULT(function, object, PyCallable_Check) bool is_cpp_function() const { handle fun = detail::get_function(m_ptr); return fun && PyCFunction_Check(fun.ptr()); } }; class buffer : public object { public: PYBIND11_OBJECT_DEFAULT(buffer, object, PyObject_CheckBuffer) buffer_info request(bool writable = false) { int flags = PyBUF_STRIDES | PyBUF_FORMAT; if (writable) flags |= PyBUF_WRITABLE; Py_buffer *view = new Py_buffer(); if (PyObject_GetBuffer(m_ptr, view, flags) != 0) throw error_already_set(); return buffer_info(view); } }; class memoryview : public object { public: explicit memoryview(const buffer_info& info) { static Py_buffer buf { }; // Py_buffer uses signed sizes, strides and shape!.. static std::vector py_strides { }; static std::vector py_shape { }; buf.buf = info.ptr; buf.itemsize = (Py_ssize_t) info.itemsize; buf.format = const_cast(info.format.c_str()); buf.ndim = (int) info.ndim; buf.len = (Py_ssize_t) info.size; py_strides.clear(); py_shape.clear(); for (size_t i = 0; i < info.ndim; ++i) { py_strides.push_back((Py_ssize_t) info.strides[i]); py_shape.push_back((Py_ssize_t) info.shape[i]); } buf.strides = py_strides.data(); buf.shape = py_shape.data(); buf.suboffsets = nullptr; buf.readonly = false; buf.internal = nullptr; m_ptr = PyMemoryView_FromBuffer(&buf); if (!m_ptr) pybind11_fail("Unable to create memoryview from buffer descriptor"); } PYBIND11_OBJECT_CVT(memoryview, object, PyMemoryView_Check, PyMemoryView_FromObject) }; inline size_t len(handle h) { ssize_t result = PyObject_Length(h.ptr()); if (result < 0) pybind11_fail("Unable to compute length of object"); return (size_t) result; } inline str repr(handle h) { PyObject *str_value = PyObject_Repr(h.ptr()); if (!str_value) throw error_already_set(); #if PY_MAJOR_VERSION < 3 PyObject *unicode = PyUnicode_FromEncodedObject(str_value, "utf-8", nullptr); Py_XDECREF(str_value); str_value = unicode; if (!str_value) throw error_already_set(); #endif return reinterpret_steal(str_value); } NAMESPACE_BEGIN(detail) template iterator object_api::begin() const { return reinterpret_steal(PyObject_GetIter(derived().ptr())); } template iterator object_api::end() const { return {}; } template item_accessor object_api::operator[](handle key) const { return {derived(), reinterpret_borrow(key)}; } template item_accessor object_api::operator[](const char *key) const { return {derived(), pybind11::str(key)}; } template obj_attr_accessor object_api::attr(handle key) const { return {derived(), reinterpret_borrow(key)}; } template str_attr_accessor object_api::attr(const char *key) const { return {derived(), key}; } template args_proxy object_api::operator*() const { return args_proxy(derived().ptr()); } template template bool object_api::contains(T &&key) const { return attr("__contains__")(std::forward(key)).template cast(); } template pybind11::str object_api::str() const { return pybind11::str(derived()); } template handle object_api::get_type() const { return (PyObject *) Py_TYPE(derived().ptr()); } NAMESPACE_END(detail) NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/stl.h000066400000000000000000000217671303320175600172030ustar00rootroot00000000000000/* pybind11/stl.h: Transparent conversion for STL data types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif #ifdef __has_include // std::optional (but including it in c++14 mode isn't allowed) # if defined(PYBIND11_CPP17) && __has_include() # include # define PYBIND11_HAS_OPTIONAL 1 # endif // std::experimental::optional (but not allowed in c++11 mode) # if defined(PYBIND11_CPP14) && __has_include() # include # if __cpp_lib_experimental_optional // just in case # define PYBIND11_HAS_EXP_OPTIONAL 1 # endif # endif #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) template struct set_caster { using type = Type; using key_conv = make_caster; bool load(handle src, bool convert) { if (!isinstance(src)) return false; auto s = reinterpret_borrow(src); value.clear(); key_conv conv; for (auto entry : s) { if (!conv.load(entry, convert)) return false; value.insert(cast_op(conv)); } return true; } static handle cast(const type &src, return_value_policy policy, handle parent) { pybind11::set s; for (auto const &value: src) { auto value_ = reinterpret_steal(key_conv::cast(value, policy, parent)); if (!value_ || !s.add(value_)) return handle(); } return s.release(); } PYBIND11_TYPE_CASTER(type, _("Set[") + key_conv::name() + _("]")); }; template struct map_caster { using key_conv = make_caster; using value_conv = make_caster; bool load(handle src, bool convert) { if (!isinstance(src)) return false; auto d = reinterpret_borrow(src); key_conv kconv; value_conv vconv; value.clear(); for (auto it : d) { if (!kconv.load(it.first.ptr(), convert) || !vconv.load(it.second.ptr(), convert)) return false; value.emplace(cast_op(kconv), cast_op(vconv)); } return true; } static handle cast(const Type &src, return_value_policy policy, handle parent) { dict d; for (auto const &kv: src) { auto key = reinterpret_steal(key_conv::cast(kv.first, policy, parent)); auto value = reinterpret_steal(value_conv::cast(kv.second, policy, parent)); if (!key || !value) return handle(); d[key] = value; } return d.release(); } PYBIND11_TYPE_CASTER(Type, _("Dict[") + key_conv::name() + _(", ") + value_conv::name() + _("]")); }; template struct list_caster { using value_conv = make_caster; bool load(handle src, bool convert) { if (!isinstance(src)) return false; auto s = reinterpret_borrow(src); value_conv conv; value.clear(); reserve_maybe(s, &value); for (auto it : s) { if (!conv.load(it, convert)) return false; value.push_back(cast_op(conv)); } return true; } private: template ().reserve(0)), void>::value, int> = 0> void reserve_maybe(sequence s, Type *) { value.reserve(s.size()); } void reserve_maybe(sequence, void *) { } public: static handle cast(const Type &src, return_value_policy policy, handle parent) { list l(src.size()); size_t index = 0; for (auto const &value: src) { auto value_ = reinterpret_steal(value_conv::cast(value, policy, parent)); if (!value_) return handle(); PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference } return l.release(); } PYBIND11_TYPE_CASTER(Type, _("List[") + value_conv::name() + _("]")); }; template struct type_caster> : list_caster, Type> { }; template struct type_caster> : list_caster, Type> { }; template struct array_caster { using value_conv = make_caster; private: template bool require_size(enable_if_t size) { if (value.size() != size) value.resize(size); return true; } template bool require_size(enable_if_t size) { return size == Size; } public: bool load(handle src, bool convert) { if (!isinstance(src)) return false; auto l = reinterpret_borrow(src); if (!require_size(l.size())) return false; value_conv conv; size_t ctr = 0; for (auto it : l) { if (!conv.load(it, convert)) return false; value[ctr++] = cast_op(conv); } return true; } static handle cast(const ArrayType &src, return_value_policy policy, handle parent) { list l(src.size()); size_t index = 0; for (auto const &value: src) { auto value_ = reinterpret_steal(value_conv::cast(value, policy, parent)); if (!value_) return handle(); PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference } return l.release(); } PYBIND11_TYPE_CASTER(ArrayType, _("List[") + value_conv::name() + _(_(""), _("[") + _() + _("]")) + _("]")); }; template struct type_caster> : array_caster, Type, false, Size> { }; template struct type_caster> : array_caster, Type, true> { }; template struct type_caster> : set_caster, Key> { }; template struct type_caster> : set_caster, Key> { }; template struct type_caster> : map_caster, Key, Value> { }; template struct type_caster> : map_caster, Key, Value> { }; // This type caster is intended to be used for std::optional and std::experimental::optional template struct optional_caster { using value_conv = make_caster; static handle cast(const T& src, return_value_policy policy, handle parent) { if (!src) return none().inc_ref(); return value_conv::cast(*src, policy, parent); } bool load(handle src, bool convert) { if (!src) { return false; } else if (src.is_none()) { value = {}; // nullopt return true; } value_conv inner_caster; if (!inner_caster.load(src, convert)) return false; value.emplace(cast_op(inner_caster)); return true; } PYBIND11_TYPE_CASTER(T, _("Optional[") + value_conv::name() + _("]")); }; #if PYBIND11_HAS_OPTIONAL template struct type_caster> : public optional_caster> {}; template<> struct type_caster : public void_caster {}; #endif #if PYBIND11_HAS_EXP_OPTIONAL template struct type_caster> : public optional_caster> {}; template<> struct type_caster : public void_caster {}; #endif NAMESPACE_END(detail) inline std::ostream &operator<<(std::ostream &os, const handle &obj) { os << (std::string) str(obj); return os; } NAMESPACE_END(pybind11) #if defined(_MSC_VER) #pragma warning(pop) #endif pybind11-2.0.1/include/pybind11/stl_bind.h000066400000000000000000000443451303320175600201740ustar00rootroot00000000000000/* pybind11/std_bind.h: Binding generators for STL data types Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "common.h" #include "operators.h" #include #include NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) /* SFINAE helper class used by 'is_comparable */ template struct container_traits { template static std::true_type test_comparable(decltype(std::declval() == std::declval())*); template static std::false_type test_comparable(...); template static std::true_type test_value(typename T2::value_type *); template static std::false_type test_value(...); template static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *); template static std::false_type test_pair(...); static constexpr const bool is_comparable = std::is_same(nullptr))>::value; static constexpr const bool is_pair = std::is_same(nullptr, nullptr))>::value; static constexpr const bool is_vector = std::is_same(nullptr))>::value; static constexpr const bool is_element = !is_pair && !is_vector; }; /* Default: is_comparable -> std::false_type */ template struct is_comparable : std::false_type { }; /* For non-map data structures, check whether operator== can be instantiated */ template struct is_comparable< T, enable_if_t::is_element && container_traits::is_comparable>> : std::true_type { }; /* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */ template struct is_comparable::is_vector>> { static constexpr const bool value = is_comparable::value; }; /* For pairs, recursively check the two data types */ template struct is_comparable::is_pair>> { static constexpr const bool value = is_comparable::value && is_comparable::value; }; /* Fallback functions */ template void vector_if_copy_constructible(const Args &...) { } template void vector_if_equal_operator(const Args &...) { } template void vector_if_insertion_operator(const Args &...) { } template void vector_modifiers(const Args &...) { } template void vector_if_copy_constructible(enable_if_t< std::is_copy_constructible::value && std::is_copy_constructible::value, Class_> &cl) { cl.def(pybind11::init(), "Copy constructor"); } template void vector_if_equal_operator(enable_if_t::value, Class_> &cl) { using T = typename Vector::value_type; cl.def(self == self); cl.def(self != self); cl.def("count", [](const Vector &v, const T &x) { return std::count(v.begin(), v.end(), x); }, arg("x"), "Return the number of times ``x`` appears in the list" ); cl.def("remove", [](Vector &v, const T &x) { auto p = std::find(v.begin(), v.end(), x); if (p != v.end()) v.erase(p); else throw pybind11::value_error(); }, arg("x"), "Remove the first item from the list whose value is x. " "It is an error if there is no such item." ); cl.def("__contains__", [](const Vector &v, const T &x) { return std::find(v.begin(), v.end(), x) != v.end(); }, arg("x"), "Return true the container contains ``x``" ); } // Vector modifiers -- requires a copyable vector_type: // (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems // silly to allow deletion but not insertion, so include them here too.) template void vector_modifiers(enable_if_t::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using DiffType = typename Vector::difference_type; cl.def("append", [](Vector &v, const T &value) { v.push_back(value); }, arg("x"), "Add an item to the end of the list"); cl.def("__init__", [](Vector &v, iterable it) { new (&v) Vector(); try { v.reserve(len(it)); for (handle h : it) v.push_back(h.cast()); } catch (...) { v.~Vector(); throw; } }); cl.def("extend", [](Vector &v, const Vector &src) { v.reserve(v.size() + src.size()); v.insert(v.end(), src.begin(), src.end()); }, arg("L"), "Extend the list by appending all the items in the given list" ); cl.def("insert", [](Vector &v, SizeType i, const T &x) { v.insert(v.begin() + (DiffType) i, x); }, arg("i") , arg("x"), "Insert an item at a given position." ); cl.def("pop", [](Vector &v) { if (v.empty()) throw pybind11::index_error(); T t = v.back(); v.pop_back(); return t; }, "Remove and return the last item" ); cl.def("pop", [](Vector &v, SizeType i) { if (i >= v.size()) throw pybind11::index_error(); T t = v[i]; v.erase(v.begin() + (DiffType) i); return t; }, arg("i"), "Remove and return the item at index ``i``" ); cl.def("__setitem__", [](Vector &v, SizeType i, const T &t) { if (i >= v.size()) throw pybind11::index_error(); v[i] = t; } ); /// Slicing protocol cl.def("__getitem__", [](const Vector &v, slice slice) -> Vector * { size_t start, stop, step, slicelength; if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw pybind11::error_already_set(); Vector *seq = new Vector(); seq->reserve((size_t) slicelength); for (size_t i=0; ipush_back(v[start]); start += step; } return seq; }, arg("s"), "Retrieve list elements using a slice object" ); cl.def("__setitem__", [](Vector &v, slice slice, const Vector &value) { size_t start, stop, step, slicelength; if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw pybind11::error_already_set(); if (slicelength != value.size()) throw std::runtime_error("Left and right hand size of slice assignment have different sizes!"); for (size_t i=0; i= v.size()) throw pybind11::index_error(); v.erase(v.begin() + DiffType(i)); }, "Delete the list elements at index ``i``" ); cl.def("__delitem__", [](Vector &v, slice slice) { size_t start, stop, step, slicelength; if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) throw pybind11::error_already_set(); if (step == 1 && false) { v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength)); } else { for (size_t i = 0; i < slicelength; ++i) { v.erase(v.begin() + DiffType(start)); start += step - 1; } } }, "Delete list elements using a slice object" ); } // If the type has an operator[] that doesn't return a reference (most notably std::vector), // we have to access by copying; otherwise we return by reference. template using vector_needs_copy = negation< std::is_same()[typename Vector::size_type()]), typename Vector::value_type &>>; // The usual case: access and iterate by reference template void vector_accessor(enable_if_t::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using ItType = typename Vector::iterator; cl.def("__getitem__", [](Vector &v, SizeType i) -> T & { if (i >= v.size()) throw pybind11::index_error(); return v[i]; }, return_value_policy::reference_internal // ref + keepalive ); cl.def("__iter__", [](Vector &v) { return pybind11::make_iterator< return_value_policy::reference_internal, ItType, ItType, T&>( v.begin(), v.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); } // The case for special objects, like std::vector, that have to be returned-by-copy: template void vector_accessor(enable_if_t::value, Class_> &cl) { using T = typename Vector::value_type; using SizeType = typename Vector::size_type; using ItType = typename Vector::iterator; cl.def("__getitem__", [](const Vector &v, SizeType i) -> T { if (i >= v.size()) throw pybind11::index_error(); return v[i]; } ); cl.def("__iter__", [](Vector &v) { return pybind11::make_iterator< return_value_policy::copy, ItType, ItType, T>( v.begin(), v.end()); }, keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); } template auto vector_if_insertion_operator(Class_ &cl, std::string const &name) -> decltype(std::declval() << std::declval(), void()) { using size_type = typename Vector::size_type; cl.def("__repr__", [name](Vector &v) { std::ostringstream s; s << name << '['; for (size_type i=0; i < v.size(); ++i) { s << v[i]; if (i != v.size() - 1) s << ", "; } s << ']'; return s.str(); }, "Return the canonical string representation of this list." ); } NAMESPACE_END(detail) // // std::vector // template , typename... Args> pybind11::class_ bind_vector(pybind11::module &m, std::string const &name, Args&&... args) { using Class_ = pybind11::class_; Class_ cl(m, name.c_str(), std::forward(args)...); cl.def(pybind11::init<>()); // Register copy constructor (if possible) detail::vector_if_copy_constructible(cl); // Register comparison-related operators and functions (if possible) detail::vector_if_equal_operator(cl); // Register stream insertion operator (if possible) detail::vector_if_insertion_operator(cl, name); // Modifiers require copyable vector value type detail::vector_modifiers(cl); // Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive detail::vector_accessor(cl); cl.def("__bool__", [](const Vector &v) -> bool { return !v.empty(); }, "Check whether the list is nonempty" ); cl.def("__len__", &Vector::size); #if 0 // C++ style functions deprecated, leaving it here as an example cl.def(pybind11::init()); cl.def("resize", (void (Vector::*) (size_type count)) & Vector::resize, "changes the number of elements stored"); cl.def("erase", [](Vector &v, SizeType i) { if (i >= v.size()) throw pybind11::index_error(); v.erase(v.begin() + i); }, "erases element at index ``i``"); cl.def("empty", &Vector::empty, "checks whether the container is empty"); cl.def("size", &Vector::size, "returns the number of elements"); cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end"); cl.def("pop_back", &Vector::pop_back, "removes the last element"); cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements"); cl.def("reserve", &Vector::reserve, "reserves storage"); cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage"); cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory"); cl.def("clear", &Vector::clear, "clears the contents"); cl.def("swap", &Vector::swap, "swaps the contents"); cl.def("front", [](Vector &v) { if (v.size()) return v.front(); else throw pybind11::index_error(); }, "access the first element"); cl.def("back", [](Vector &v) { if (v.size()) return v.back(); else throw pybind11::index_error(); }, "access the last element "); #endif return cl; } // // std::map, std::unordered_map // NAMESPACE_BEGIN(detail) /* Fallback functions */ template void map_if_insertion_operator(const Args &...) { } template void map_assignment(const Args &...) { } // Map assignment when copy-assignable: just copy the value template void map_assignment(enable_if_t::value, Class_> &cl) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type; cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) { auto it = m.find(k); if (it != m.end()) it->second = v; else m.emplace(k, v); } ); } // Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting template void map_assignment(enable_if_t< !std::is_copy_assignable::value && std::is_copy_constructible::value, Class_> &cl) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type; cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) { // We can't use m[k] = v; because value type might not be default constructable auto r = m.emplace(k, v); if (!r.second) { // value type is not copy assignable so the only way to insert it is to erase it first... m.erase(r.first); m.emplace(k, v); } } ); } template auto map_if_insertion_operator(Class_ &cl, std::string const &name) -> decltype(std::declval() << std::declval() << std::declval(), void()) { cl.def("__repr__", [name](Map &m) { std::ostringstream s; s << name << '{'; bool f = false; for (auto const &kv : m) { if (f) s << ", "; s << kv.first << ": " << kv.second; f = true; } s << '}'; return s.str(); }, "Return the canonical string representation of this map." ); } NAMESPACE_END(detail) template , typename... Args> pybind11::class_ bind_map(module &m, const std::string &name, Args&&... args) { using KeyType = typename Map::key_type; using MappedType = typename Map::mapped_type; using Class_ = pybind11::class_; Class_ cl(m, name.c_str(), std::forward(args)...); cl.def(pybind11::init<>()); // Register stream insertion operator (if possible) detail::map_if_insertion_operator(cl, name); cl.def("__bool__", [](const Map &m) -> bool { return !m.empty(); }, "Check whether the map is nonempty" ); cl.def("__iter__", [](Map &m) { return pybind11::make_key_iterator(m.begin(), m.end()); }, pybind11::keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); cl.def("items", [](Map &m) { return pybind11::make_iterator(m.begin(), m.end()); }, pybind11::keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */ ); cl.def("__getitem__", [](Map &m, const KeyType &k) -> MappedType & { auto it = m.find(k); if (it == m.end()) throw pybind11::key_error(); return it->second; }, return_value_policy::reference_internal // ref + keepalive ); // Assignment provided only if the type is copyable detail::map_assignment(cl); cl.def("__delitem__", [](Map &m, const KeyType &k) { auto it = m.find(k); if (it == m.end()) throw pybind11::key_error(); return m.erase(it); } ); cl.def("__len__", &Map::size); return cl; } NAMESPACE_END(pybind11) pybind11-2.0.1/include/pybind11/typeid.h000066400000000000000000000025721303320175600176700ustar00rootroot00000000000000/* pybind11/typeid.h: Compiler-independent access to type identifiers Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include #include #if defined(__GNUG__) #include #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) /// Erase all occurrences of a substring inline void erase_all(std::string &string, const std::string &search) { for (size_t pos = 0;;) { pos = string.find(search, pos); if (pos == std::string::npos) break; string.erase(pos, search.length()); } } PYBIND11_NOINLINE inline void clean_type_id(std::string &name) { #if defined(__GNUG__) int status = 0; std::unique_ptr res { abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free }; if (status == 0) name = res.get(); #else detail::erase_all(name, "class "); detail::erase_all(name, "struct "); detail::erase_all(name, "enum "); #endif detail::erase_all(name, "pybind11::"); } NAMESPACE_END(detail) /// Return a string representation of a C++ type template static std::string type_id() { std::string name(typeid(T).name()); detail::clean_type_id(name); return name; } NAMESPACE_END(pybind11) pybind11-2.0.1/pybind11/000077500000000000000000000000001303320175600145705ustar00rootroot00000000000000pybind11-2.0.1/pybind11/__init__.py000066400000000000000000000005201303320175600166760ustar00rootroot00000000000000from ._version import version_info, __version__ # noqa: F401 imported but unused def get_include(*args, **kwargs): import os try: from pip import locations return os.path.dirname( locations.distutils_scheme('pybind11', *args, **kwargs)['headers']) except ImportError: return 'include' pybind11-2.0.1/pybind11/_version.py000066400000000000000000000001101303320175600167560ustar00rootroot00000000000000version_info = (2, 0, 1) __version__ = '.'.join(map(str, version_info)) pybind11-2.0.1/setup.cfg000066400000000000000000000003561303320175600147660ustar00rootroot00000000000000[bdist_wheel] universal=1 [flake8] max-line-length = 99 show_source = True exclude = .git, __pycache__, build, dist, docs, tools, venv ignore = # required for pretty matrix formating: multiple spaces after `,` and `[` E201, E241 pybind11-2.0.1/setup.py000066400000000000000000000064271303320175600146640ustar00rootroot00000000000000#!/usr/bin/env python # Setup script for PyPI; use CMakeFile.txt to build extension modules from setuptools import setup from pybind11 import __version__ setup( name='pybind11', version=__version__, description='Seamless operability between C++11 and Python', author='Wenzel Jakob', author_email='wenzel.jakob@epfl.ch', url='https://github.com/wjakob/pybind11', download_url='https://github.com/wjakob/pybind11/tarball/v' + __version__, packages=['pybind11'], license='BSD', headers=[ 'include/pybind11/attr.h', 'include/pybind11/cast.h', 'include/pybind11/chrono.h', 'include/pybind11/common.h', 'include/pybind11/complex.h', 'include/pybind11/descr.h', 'include/pybind11/eigen.h', 'include/pybind11/eval.h', 'include/pybind11/functional.h', 'include/pybind11/numpy.h', 'include/pybind11/operators.h', 'include/pybind11/options.h', 'include/pybind11/pybind11.h', 'include/pybind11/pytypes.h', 'include/pybind11/stl.h', 'include/pybind11/stl_bind.h', 'include/pybind11/typeid.h' ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', 'Programming Language :: C++', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: BSD License' ], keywords='C++11, Python bindings', long_description="""pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python by David Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile-time introspection. The main issue with Boost.Python-and the reason for creating such a similar project-is Boost. Boost is an enormously large and complex suite of utility libraries that works with almost every C++ compiler in existence. This compatibility has its cost: arcane template tricks and workarounds are necessary to support the oldest and buggiest of compiler specimens. Now that C++11-compatible compilers are widely available, this heavy machinery has become an excessively large and unnecessary dependency. Think of this library as a tiny self-contained version of Boost.Python with everything stripped away that isn't relevant for binding generation. Without comments, the core header files only require ~4K lines of code and depend on Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This compact implementation was possible thanks to some of the new C++11 language features (specifically: tuples, lambda functions and variadic templates). Since its creation, this library has grown beyond Boost.Python in many ways, leading to dramatically simpler binding code in many common situations.""") pybind11-2.0.1/tests/000077500000000000000000000000001303320175600143035ustar00rootroot00000000000000pybind11-2.0.1/tests/CMakeLists.txt000066400000000000000000000140311303320175600170420ustar00rootroot00000000000000if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES) message(STATUS "Setting tests build type to MinSizeRel as none was specified") set(CMAKE_BUILD_TYPE MinSizeRel CACHE STRING "Choose the type of build." FORCE) set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo") endif() # Full set of test files (you can override these; see below) set(PYBIND11_TEST_FILES test_alias_initialization.cpp test_buffers.cpp test_callbacks.cpp test_chrono.cpp test_class_args.cpp test_constants_and_functions.cpp test_copy_move_policies.cpp test_docstring_options.cpp test_eigen.cpp test_enum.cpp test_eval.cpp test_exceptions.cpp test_inheritance.cpp test_issues.cpp test_keep_alive.cpp test_kwargs_and_defaults.cpp test_methods_and_attributes.cpp test_modules.cpp test_multiple_inheritance.cpp test_numpy_array.cpp test_numpy_dtypes.cpp test_numpy_vectorize.cpp test_opaque_types.cpp test_operator_overloading.cpp test_pickling.cpp test_python_types.cpp test_sequences_and_iterators.cpp test_smart_ptr.cpp test_stl_binders.cpp test_virtual_functions.cpp ) # Invoking cmake with something like: # cmake -DPYBIND11_TEST_OVERRIDE="test_issues.cpp;test_picking.cpp" .. # lets you override the tests that get compiled and run. You can restore to all tests with: # cmake -DPYBIND11_TEST_OVERRIDE= .. if (PYBIND11_TEST_OVERRIDE) set(PYBIND11_TEST_FILES ${PYBIND11_TEST_OVERRIDE}) endif() string(REPLACE ".cpp" ".py" PYBIND11_PYTEST_FILES "${PYBIND11_TEST_FILES}") # Check if Eigen is available; if not, remove from PYBIND11_TEST_FILES (but # keep it in PYBIND11_PYTEST_FILES, so that we get the "eigen is not installed" # skip message). list(FIND PYBIND11_TEST_FILES test_eigen.cpp PYBIND11_TEST_FILES_EIGEN_I) if(PYBIND11_TEST_FILES_EIGEN_I GREATER -1) find_package(Eigen3 QUIET) if(EIGEN3_FOUND) message(STATUS "Building tests with Eigen v${EIGEN3_VERSION}") else() list(REMOVE_AT PYBIND11_TEST_FILES ${PYBIND11_TEST_FILES_EIGEN_I}) message(STATUS "Building tests WITHOUT Eigen") endif() endif() # Create the binding library pybind11_add_module(pybind11_tests pybind11_tests.cpp ${PYBIND11_TEST_FILES} ${PYBIND11_HEADERS}) pybind11_enable_warnings(pybind11_tests) if(EIGEN3_FOUND) target_include_directories(pybind11_tests PRIVATE ${EIGEN3_INCLUDE_DIR}) target_compile_definitions(pybind11_tests PRIVATE -DPYBIND11_TEST_EIGEN) endif() set(testdir ${PROJECT_SOURCE_DIR}/tests) # Always write the output file directly into the 'tests' directory (even on MSVC) if(NOT CMAKE_LIBRARY_OUTPUT_DIRECTORY) set_target_properties(pybind11_tests PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${testdir}) foreach(config ${CMAKE_CONFIGURATION_TYPES}) string(TOUPPER ${config} config) set_target_properties(pybind11_tests PROPERTIES LIBRARY_OUTPUT_DIRECTORY_${config} ${testdir}) endforeach() endif() # Make sure pytest is found or produce a fatal error if(NOT PYBIND11_PYTEST_FOUND) execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "import pytest" OUTPUT_QUIET ERROR_QUIET RESULT_VARIABLE PYBIND11_EXEC_PYTHON_ERR) if(PYBIND11_EXEC_PYTHON_ERR) message(FATAL_ERROR "Running the tests requires pytest. Please install it manually (try: ${PYTHON_EXECUTABLE} -m pip install pytest)") endif() set(PYBIND11_PYTEST_FOUND TRUE CACHE INTERNAL "") endif() # A single command to compile and run the tests add_custom_target(pytest COMMAND ${PYTHON_EXECUTABLE} -m pytest -rws ${PYBIND11_PYTEST_FILES} DEPENDS pybind11_tests WORKING_DIRECTORY ${testdir}) if(PYBIND11_TEST_OVERRIDE) add_custom_command(TARGET pytest POST_BUILD COMMAND ${CMAKE_COMMAND} -E echo "Note: not all tests run: -DPYBIND11_TEST_OVERRIDE is in effect") endif() # And another to show the .so size and, if a previous size, compare it: add_custom_command(TARGET pybind11_tests POST_BUILD COMMAND ${PYTHON_EXECUTABLE} ${CMAKE_SOURCE_DIR}/tools/libsize.py $ ${CMAKE_CURRENT_BINARY_DIR}/sosize-$.txt) # Test CMake build using functions and targets from subdirectory or installed location add_custom_target(test_cmake_build) if(NOT CMAKE_VERSION VERSION_LESS 3.1) # 3.0 needed for interface library for subdirectory_target/installed_target # 3.1 needed for cmake -E env for testing include(CMakeParseArguments) function(pybind11_add_build_test name) cmake_parse_arguments(ARG "INSTALL" "" "" ${ARGN}) set(build_options "-DCMAKE_PREFIX_PATH=${PROJECT_BINARY_DIR}/mock_install" "-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}" "-DPYTHON_EXECUTABLE=${PYTHON_EXECUTABLE}" "-DPYBIND11_CPP_STANDARD=${PYBIND11_CPP_STANDARD}") if(NOT ARG_INSTALL) list(APPEND build_options "-DPYBIND11_PROJECT_DIR=${PROJECT_SOURCE_DIR}") endif() add_custom_target(test_${name} ${CMAKE_CTEST_COMMAND} --quiet --output-log test_cmake_build/${name}.log --build-and-test "${CMAKE_CURRENT_SOURCE_DIR}/test_cmake_build/${name}" "${CMAKE_CURRENT_BINARY_DIR}/test_cmake_build/${name}" --build-config Release --build-noclean --build-generator ${CMAKE_GENERATOR} $<$:--build-generator-platform> ${CMAKE_GENERATOR_PLATFORM} --build-makeprogram ${CMAKE_MAKE_PROGRAM} --build-target check --build-options ${build_options} ) if(ARG_INSTALL) add_dependencies(test_${name} mock_install) endif() add_dependencies(test_cmake_build test_${name}) endfunction() pybind11_add_build_test(subdirectory_function) pybind11_add_build_test(subdirectory_target) if(PYBIND11_INSTALL) add_custom_target(mock_install ${CMAKE_COMMAND} "-DCMAKE_INSTALL_PREFIX=${PROJECT_BINARY_DIR}/mock_install" -P "${PROJECT_BINARY_DIR}/cmake_install.cmake" ) pybind11_add_build_test(installed_function INSTALL) pybind11_add_build_test(installed_target INSTALL) endif() endif() # Run all the tests add_custom_target(check DEPENDS pytest test_cmake_build) pybind11-2.0.1/tests/conftest.py000066400000000000000000000145731303320175600165140ustar00rootroot00000000000000"""pytest configuration Extends output capture as needed by pybind11: ignore constructors, optional unordered lines. Adds docstring and exceptions message sanitizers: ignore Python 2 vs 3 differences. """ import pytest import textwrap import difflib import re import sys import contextlib import platform import gc _unicode_marker = re.compile(r'u(\'[^\']*\')') _long_marker = re.compile(r'([0-9])L') _hexadecimal = re.compile(r'0x[0-9a-fA-F]+') def _strip_and_dedent(s): """For triple-quote strings""" return textwrap.dedent(s.lstrip('\n').rstrip()) def _split_and_sort(s): """For output which does not require specific line order""" return sorted(_strip_and_dedent(s).splitlines()) def _make_explanation(a, b): """Explanation for a failed assert -- the a and b arguments are List[str]""" return ["--- actual / +++ expected"] + [line.strip('\n') for line in difflib.ndiff(a, b)] class Output(object): """Basic output post-processing and comparison""" def __init__(self, string): self.string = string self.explanation = [] def __str__(self): return self.string def __eq__(self, other): # Ignore constructor/destructor output which is prefixed with "###" a = [line for line in self.string.strip().splitlines() if not line.startswith("###")] b = _strip_and_dedent(other).splitlines() if a == b: return True else: self.explanation = _make_explanation(a, b) return False class Unordered(Output): """Custom comparison for output without strict line ordering""" def __eq__(self, other): a = _split_and_sort(self.string) b = _split_and_sort(other) if a == b: return True else: self.explanation = _make_explanation(a, b) return False class Capture(object): def __init__(self, capfd): self.capfd = capfd self.out = "" self.err = "" def __enter__(self): self.capfd.readouterr() return self def __exit__(self, *_): self.out, self.err = self.capfd.readouterr() def __eq__(self, other): a = Output(self.out) b = other if a == b: return True else: self.explanation = a.explanation return False def __str__(self): return self.out def __contains__(self, item): return item in self.out @property def unordered(self): return Unordered(self.out) @property def stderr(self): return Output(self.err) @pytest.fixture def capture(capfd): """Extended `capfd` with context manager and custom equality operators""" return Capture(capfd) class SanitizedString(object): def __init__(self, sanitizer): self.sanitizer = sanitizer self.string = "" self.explanation = [] def __call__(self, thing): self.string = self.sanitizer(thing) return self def __eq__(self, other): a = self.string b = _strip_and_dedent(other) if a == b: return True else: self.explanation = _make_explanation(a.splitlines(), b.splitlines()) return False def _sanitize_general(s): s = s.strip() s = s.replace("pybind11_tests.", "m.") s = s.replace("unicode", "str") s = _long_marker.sub(r"\1", s) s = _unicode_marker.sub(r"\1", s) return s def _sanitize_docstring(thing): s = thing.__doc__ s = _sanitize_general(s) return s @pytest.fixture def doc(): """Sanitize docstrings and add custom failure explanation""" return SanitizedString(_sanitize_docstring) def _sanitize_message(thing): s = str(thing) s = _sanitize_general(s) s = _hexadecimal.sub("0", s) return s @pytest.fixture def msg(): """Sanitize messages and add custom failure explanation""" return SanitizedString(_sanitize_message) # noinspection PyUnusedLocal def pytest_assertrepr_compare(op, left, right): """Hook to insert custom failure explanation""" if hasattr(left, 'explanation'): return left.explanation @contextlib.contextmanager def suppress(exception): """Suppress the desired exception""" try: yield except exception: pass def gc_collect(): ''' Run the garbage collector twice (needed when running reference counting tests with PyPy) ''' gc.collect() gc.collect() def pytest_namespace(): """Add import suppression and test requirements to `pytest` namespace""" try: import numpy as np except ImportError: np = None try: import scipy except ImportError: scipy = None try: from pybind11_tests import have_eigen except ImportError: have_eigen = False pypy = platform.python_implementation() == "PyPy" skipif = pytest.mark.skipif return { 'suppress': suppress, 'requires_numpy': skipif(not np, reason="numpy is not installed"), 'requires_scipy': skipif(not np, reason="scipy is not installed"), 'requires_eigen_and_numpy': skipif(not have_eigen or not np, reason="eigen and/or numpy are not installed"), 'requires_eigen_and_scipy': skipif(not have_eigen or not scipy, reason="eigen and/or scipy are not installed"), 'unsupported_on_pypy': skipif(pypy, reason="unsupported on PyPy"), 'gc_collect': gc_collect } def _test_import_pybind11(): """Early diagnostic for test module initialization errors When there is an error during initialization, the first import will report the real error while all subsequent imports will report nonsense. This import test is done early (in the pytest configuration file, before any tests) in order to avoid the noise of having all tests fail with identical error messages. Any possible exception is caught here and reported manually *without* the stack trace. This further reduces noise since the trace would only show pytest internals which are not useful for debugging pybind11 module issues. """ # noinspection PyBroadException try: import pybind11_tests # noqa: F401 imported but unused except Exception as e: print("Failed to import pybind11_tests from pytest:") print(" {}: {}".format(type(e).__name__, e)) sys.exit(1) _test_import_pybind11() pybind11-2.0.1/tests/constructor_stats.h000066400000000000000000000255601303320175600202670ustar00rootroot00000000000000#pragma once /* tests/constructor_stats.h -- framework for printing and tracking object instance lifetimes in example/test code. Copyright (c) 2016 Jason Rhinelander All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. This header provides a few useful tools for writing examples or tests that want to check and/or display object instance lifetimes. It requires that you include this header and add the following function calls to constructors: class MyClass { MyClass() { ...; print_default_created(this); } ~MyClass() { ...; print_destroyed(this); } MyClass(const MyClass &c) { ...; print_copy_created(this); } MyClass(MyClass &&c) { ...; print_move_created(this); } MyClass(int a, int b) { ...; print_created(this, a, b); } MyClass &operator=(const MyClass &c) { ...; print_copy_assigned(this); } MyClass &operator=(MyClass &&c) { ...; print_move_assigned(this); } ... } You can find various examples of these in several of the existing example .cpp files. (Of course you don't need to add any of the above constructors/operators that you don't actually have, except for the destructor). Each of these will print an appropriate message such as: ### MyClass @ 0x2801910 created via default constructor ### MyClass @ 0x27fa780 created 100 200 ### MyClass @ 0x2801910 destroyed ### MyClass @ 0x27fa780 destroyed You can also include extra arguments (such as the 100, 200 in the output above, coming from the value constructor) for all of the above methods which will be included in the output. For testing, each of these also keeps track the created instances and allows you to check how many of the various constructors have been invoked from the Python side via code such as: from example import ConstructorStats cstats = ConstructorStats.get(MyClass) print(cstats.alive()) print(cstats.default_constructions) Note that `.alive()` should usually be the first thing you call as it invokes Python's garbage collector to actually destroy objects that aren't yet referenced. For everything except copy and move constructors and destructors, any extra values given to the print_...() function is stored in a class-specific values list which you can retrieve and inspect from the ConstructorStats instance `.values()` method. In some cases, when you need to track instances of a C++ class not registered with pybind11, you need to add a function returning the ConstructorStats for the C++ class; this can be done with: m.def("get_special_cstats", &ConstructorStats::get, py::return_value_policy::reference) Finally, you can suppress the output messages, but keep the constructor tracking (for inspection/testing in python) by using the functions with `print_` replaced with `track_` (e.g. `track_copy_created(this)`). */ #include "pybind11_tests.h" #include #include #include #include class ConstructorStats { protected: std::unordered_map _instances; // Need a map rather than set because members can shared address with parents std::list _values; // Used to track values (e.g. of value constructors) public: int default_constructions = 0; int copy_constructions = 0; int move_constructions = 0; int copy_assignments = 0; int move_assignments = 0; void copy_created(void *inst) { created(inst); copy_constructions++; } void move_created(void *inst) { created(inst); move_constructions++; } void default_created(void *inst) { created(inst); default_constructions++; } void created(void *inst) { ++_instances[inst]; } void destroyed(void *inst) { if (--_instances[inst] < 0) throw std::runtime_error("cstats.destroyed() called with unknown " "instance; potential double-destruction " "or a missing cstats.created()"); } static void gc() { // Force garbage collection to ensure any pending destructors are invoked: #if defined(PYPY_VERSION) PyObject *globals = PyEval_GetGlobals(); PyObject *result = PyRun_String( "import gc\n" "for i in range(2):" " gc.collect()\n", Py_file_input, globals, globals); if (result == nullptr) throw py::error_already_set(); Py_DECREF(result); #else py::module::import("gc").attr("collect")(); #endif } int alive() { gc(); int total = 0; for (const auto &p : _instances) if (p.second > 0) total += p.second; return total; } void value() {} // Recursion terminator // Takes one or more values, converts them to strings, then stores them. template void value(const T &v, Tmore &&...args) { std::ostringstream oss; oss << v; _values.push_back(oss.str()); value(std::forward(args)...); } // Move out stored values py::list values() { py::list l; for (const auto &v : _values) l.append(py::cast(v)); _values.clear(); return l; } // Gets constructor stats from a C++ type index static ConstructorStats& get(std::type_index type) { static std::unordered_map all_cstats; return all_cstats[type]; } // Gets constructor stats from a C++ type template static ConstructorStats& get() { #if defined(PYPY_VERSION) gc(); #endif return get(typeid(T)); } // Gets constructor stats from a Python class static ConstructorStats& get(py::object class_) { auto &internals = py::detail::get_internals(); const std::type_index *t1 = nullptr, *t2 = nullptr; try { auto *type_info = internals.registered_types_py.at(class_.ptr()); for (auto &p : internals.registered_types_cpp) { if (p.second == type_info) { if (t1) { t2 = &p.first; break; } t1 = &p.first; } } } catch (std::out_of_range) {} if (!t1) throw std::runtime_error("Unknown class passed to ConstructorStats::get()"); auto &cs1 = get(*t1); // If we have both a t1 and t2 match, one is probably the trampoline class; return whichever // has more constructions (typically one or the other will be 0) if (t2) { auto &cs2 = get(*t2); int cs1_total = cs1.default_constructions + cs1.copy_constructions + cs1.move_constructions + (int) cs1._values.size(); int cs2_total = cs2.default_constructions + cs2.copy_constructions + cs2.move_constructions + (int) cs2._values.size(); if (cs2_total > cs1_total) return cs2; } return cs1; } }; // To track construction/destruction, you need to call these methods from the various // constructors/operators. The ones that take extra values record the given values in the // constructor stats values for later inspection. template void track_copy_created(T *inst) { ConstructorStats::get().copy_created(inst); } template void track_move_created(T *inst) { ConstructorStats::get().move_created(inst); } template void track_copy_assigned(T *, Values &&...values) { auto &cst = ConstructorStats::get(); cst.copy_assignments++; cst.value(std::forward(values)...); } template void track_move_assigned(T *, Values &&...values) { auto &cst = ConstructorStats::get(); cst.move_assignments++; cst.value(std::forward(values)...); } template void track_default_created(T *inst, Values &&...values) { auto &cst = ConstructorStats::get(); cst.default_created(inst); cst.value(std::forward(values)...); } template void track_created(T *inst, Values &&...values) { auto &cst = ConstructorStats::get(); cst.created(inst); cst.value(std::forward(values)...); } template void track_destroyed(T *inst) { ConstructorStats::get().destroyed(inst); } template void track_values(T *, Values &&...values) { ConstructorStats::get().value(std::forward(values)...); } /// Don't cast pointers to Python, print them as strings inline const char *format_ptrs(const char *p) { return p; } template py::str format_ptrs(T *p) { return "{:#x}"_s.format(reinterpret_cast(p)); } template auto format_ptrs(T &&x) -> decltype(std::forward(x)) { return std::forward(x); } template void print_constr_details(T *inst, const std::string &action, Output &&...output) { py::print("###", py::type_id(), "@", format_ptrs(inst), action, format_ptrs(std::forward(output))...); } // Verbose versions of the above: template void print_copy_created(T *inst, Values &&...values) { // NB: this prints, but doesn't store, given values print_constr_details(inst, "created via copy constructor", values...); track_copy_created(inst); } template void print_move_created(T *inst, Values &&...values) { // NB: this prints, but doesn't store, given values print_constr_details(inst, "created via move constructor", values...); track_move_created(inst); } template void print_copy_assigned(T *inst, Values &&...values) { print_constr_details(inst, "assigned via copy assignment", values...); track_copy_assigned(inst, values...); } template void print_move_assigned(T *inst, Values &&...values) { print_constr_details(inst, "assigned via move assignment", values...); track_move_assigned(inst, values...); } template void print_default_created(T *inst, Values &&...values) { print_constr_details(inst, "created via default constructor", values...); track_default_created(inst, values...); } template void print_created(T *inst, Values &&...values) { print_constr_details(inst, "created", values...); track_created(inst, values...); } template void print_destroyed(T *inst, Values &&...values) { // Prints but doesn't store given values print_constr_details(inst, "destroyed", values...); track_destroyed(inst); } template void print_values(T *inst, Values &&...values) { print_constr_details(inst, ":", values...); track_values(inst, values...); } pybind11-2.0.1/tests/object.h000066400000000000000000000124051303320175600157240ustar00rootroot00000000000000#if !defined(__OBJECT_H) #define __OBJECT_H #include #include "constructor_stats.h" /// Reference counted object base class class Object { public: /// Default constructor Object() { print_default_created(this); } /// Copy constructor Object(const Object &) : m_refCount(0) { print_copy_created(this); } /// Return the current reference count int getRefCount() const { return m_refCount; }; /// Increase the object's reference count by one void incRef() const { ++m_refCount; } /** \brief Decrease the reference count of * the object and possibly deallocate it. * * The object will automatically be deallocated once * the reference count reaches zero. */ void decRef(bool dealloc = true) const { --m_refCount; if (m_refCount == 0 && dealloc) delete this; else if (m_refCount < 0) throw std::runtime_error("Internal error: reference count < 0!"); } virtual std::string toString() const = 0; protected: /** \brief Virtual protected deconstructor. * (Will only be called by \ref ref) */ virtual ~Object() { print_destroyed(this); } private: mutable std::atomic m_refCount { 0 }; }; // Tag class used to track constructions of ref objects. When we track constructors, below, we // track and print out the actual class (e.g. ref), and *also* add a fake tracker for // ref_tag. This lets us check that the total number of ref constructors/destructors is // correct without having to check each individual ref type individually. class ref_tag {}; /** * \brief Reference counting helper * * The \a ref refeference template is a simple wrapper to store a * pointer to an object. It takes care of increasing and decreasing * the reference count of the object. When the last reference goes * out of scope, the associated object will be deallocated. * * \ingroup libcore */ template class ref { public: /// Create a nullptr reference ref() : m_ptr(nullptr) { print_default_created(this); track_default_created((ref_tag*) this); } /// Construct a reference from a pointer ref(T *ptr) : m_ptr(ptr) { if (m_ptr) ((Object *) m_ptr)->incRef(); print_created(this, "from pointer", m_ptr); track_created((ref_tag*) this, "from pointer"); } /// Copy constructor ref(const ref &r) : m_ptr(r.m_ptr) { if (m_ptr) ((Object *) m_ptr)->incRef(); print_copy_created(this, "with pointer", m_ptr); track_copy_created((ref_tag*) this); } /// Move constructor ref(ref &&r) : m_ptr(r.m_ptr) { r.m_ptr = nullptr; print_move_created(this, "with pointer", m_ptr); track_move_created((ref_tag*) this); } /// Destroy this reference ~ref() { if (m_ptr) ((Object *) m_ptr)->decRef(); print_destroyed(this); track_destroyed((ref_tag*) this); } /// Move another reference into the current one ref& operator=(ref&& r) { print_move_assigned(this, "pointer", r.m_ptr); track_move_assigned((ref_tag*) this); if (*this == r) return *this; if (m_ptr) ((Object *) m_ptr)->decRef(); m_ptr = r.m_ptr; r.m_ptr = nullptr; return *this; } /// Overwrite this reference with another reference ref& operator=(const ref& r) { print_copy_assigned(this, "pointer", r.m_ptr); track_copy_assigned((ref_tag*) this); if (m_ptr == r.m_ptr) return *this; if (m_ptr) ((Object *) m_ptr)->decRef(); m_ptr = r.m_ptr; if (m_ptr) ((Object *) m_ptr)->incRef(); return *this; } /// Overwrite this reference with a pointer to another object ref& operator=(T *ptr) { print_values(this, "assigned pointer"); track_values((ref_tag*) this, "assigned pointer"); if (m_ptr == ptr) return *this; if (m_ptr) ((Object *) m_ptr)->decRef(); m_ptr = ptr; if (m_ptr) ((Object *) m_ptr)->incRef(); return *this; } /// Compare this reference with another reference bool operator==(const ref &r) const { return m_ptr == r.m_ptr; } /// Compare this reference with another reference bool operator!=(const ref &r) const { return m_ptr != r.m_ptr; } /// Compare this reference with a pointer bool operator==(const T* ptr) const { return m_ptr == ptr; } /// Compare this reference with a pointer bool operator!=(const T* ptr) const { return m_ptr != ptr; } /// Access the object referenced by this reference T* operator->() { return m_ptr; } /// Access the object referenced by this reference const T* operator->() const { return m_ptr; } /// Return a C++ reference to the referenced object T& operator*() { return *m_ptr; } /// Return a const C++ reference to the referenced object const T& operator*() const { return *m_ptr; } /// Return a pointer to the referenced object operator T* () { return m_ptr; } /// Return a const pointer to the referenced object T* get() { return m_ptr; } /// Return a pointer to the referenced object const T* get() const { return m_ptr; } private: T *m_ptr; }; #endif /* __OBJECT_H */ pybind11-2.0.1/tests/pybind11_tests.cpp000066400000000000000000000031541303320175600176630ustar00rootroot00000000000000/* tests/pybind11_tests.cpp -- pybind example plugin Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" std::list> &initializers() { static std::list> inits; return inits; } test_initializer::test_initializer(std::function initializer) { initializers().push_back(std::move(initializer)); } void bind_ConstructorStats(py::module &m) { py::class_(m, "ConstructorStats") .def("alive", &ConstructorStats::alive) .def("values", &ConstructorStats::values) .def_readwrite("default_constructions", &ConstructorStats::default_constructions) .def_readwrite("copy_assignments", &ConstructorStats::copy_assignments) .def_readwrite("move_assignments", &ConstructorStats::move_assignments) .def_readwrite("copy_constructions", &ConstructorStats::copy_constructions) .def_readwrite("move_constructions", &ConstructorStats::move_constructions) .def_static("get", (ConstructorStats &(*)(py::object)) &ConstructorStats::get, py::return_value_policy::reference_internal); } PYBIND11_PLUGIN(pybind11_tests) { py::module m("pybind11_tests", "pybind example plugin"); bind_ConstructorStats(m); for (const auto &initializer : initializers()) initializer(m); if (!py::hasattr(m, "have_eigen")) m.attr("have_eigen") = false; return m.ptr(); } pybind11-2.0.1/tests/pybind11_tests.h000066400000000000000000000003721303320175600173270ustar00rootroot00000000000000#pragma once #include #include #include namespace py = pybind11; using namespace pybind11::literals; class test_initializer { public: test_initializer(std::function initializer); }; pybind11-2.0.1/tests/test_alias_initialization.cpp000066400000000000000000000031061303320175600222460ustar00rootroot00000000000000/* tests/test_alias_initialization.cpp -- test cases and example of different trampoline initialization modes Copyright (c) 2016 Wenzel Jakob , Jason Rhinelander All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" test_initializer alias_initialization([](py::module &m) { // don't invoke Python dispatch classes by default when instantiating C++ classes that were not // extended on the Python side struct A { virtual ~A() {} virtual void f() { py::print("A.f()"); } }; struct PyA : A { PyA() { py::print("PyA.PyA()"); } ~PyA() { py::print("PyA.~PyA()"); } void f() override { py::print("PyA.f()"); PYBIND11_OVERLOAD(void, A, f); } }; auto call_f = [](A *a) { a->f(); }; py::class_(m, "A") .def(py::init<>()) .def("f", &A::f); m.def("call_f", call_f); // ... unless we explicitly request it, as in this example: struct A2 { virtual ~A2() {} virtual void f() { py::print("A2.f()"); } }; struct PyA2 : A2 { PyA2() { py::print("PyA2.PyA2()"); } ~PyA2() { py::print("PyA2.~PyA2()"); } void f() override { py::print("PyA2.f()"); PYBIND11_OVERLOAD(void, A2, f); } }; py::class_(m, "A2") .def(py::init_alias<>()) .def("f", &A2::f); m.def("call_f", [](A2 *a2) { a2->f(); }); }); pybind11-2.0.1/tests/test_alias_initialization.py000066400000000000000000000035741303320175600221250ustar00rootroot00000000000000import pytest def test_alias_delay_initialization1(capture): """ A only initializes its trampoline class when we inherit from it; if we just create and use an A instance directly, the trampoline initialization is bypassed and we only initialize an A() instead (for performance reasons). """ from pybind11_tests import A, call_f class B(A): def __init__(self): super(B, self).__init__() def f(self): print("In python f()") # C++ version with capture: a = A() call_f(a) del a pytest.gc_collect() assert capture == "A.f()" # Python version with capture: b = B() call_f(b) del b pytest.gc_collect() assert capture == """ PyA.PyA() PyA.f() In python f() PyA.~PyA() """ def test_alias_delay_initialization2(capture): """A2, unlike the above, is configured to always initialize the alias; while the extra initialization and extra class layer has small virtual dispatch performance penalty, it also allows us to do more things with the trampoline class such as defining local variables and performing construction/destruction. """ from pybind11_tests import A2, call_f class B2(A2): def __init__(self): super(B2, self).__init__() def f(self): print("In python B2.f()") # No python subclass version with capture: a2 = A2() call_f(a2) del a2 pytest.gc_collect() assert capture == """ PyA2.PyA2() PyA2.f() A2.f() PyA2.~PyA2() """ # Python subclass version with capture: b2 = B2() call_f(b2) del b2 pytest.gc_collect() assert capture == """ PyA2.PyA2() PyA2.f() In python B2.f() PyA2.~PyA2() """ pybind11-2.0.1/tests/test_buffers.cpp000066400000000000000000000101731303320175600175040ustar00rootroot00000000000000/* tests/test_buffers.cpp -- supporting Pythons' buffer protocol Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" class Matrix { public: Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { print_created(this, std::to_string(m_rows) + "x" + std::to_string(m_cols) + " matrix"); m_data = new float[rows*cols]; memset(m_data, 0, sizeof(float) * rows * cols); } Matrix(const Matrix &s) : m_rows(s.m_rows), m_cols(s.m_cols) { print_copy_created(this, std::to_string(m_rows) + "x" + std::to_string(m_cols) + " matrix"); m_data = new float[m_rows * m_cols]; memcpy(m_data, s.m_data, sizeof(float) * m_rows * m_cols); } Matrix(Matrix &&s) : m_rows(s.m_rows), m_cols(s.m_cols), m_data(s.m_data) { print_move_created(this); s.m_rows = 0; s.m_cols = 0; s.m_data = nullptr; } ~Matrix() { print_destroyed(this, std::to_string(m_rows) + "x" + std::to_string(m_cols) + " matrix"); delete[] m_data; } Matrix &operator=(const Matrix &s) { print_copy_assigned(this, std::to_string(m_rows) + "x" + std::to_string(m_cols) + " matrix"); delete[] m_data; m_rows = s.m_rows; m_cols = s.m_cols; m_data = new float[m_rows * m_cols]; memcpy(m_data, s.m_data, sizeof(float) * m_rows * m_cols); return *this; } Matrix &operator=(Matrix &&s) { print_move_assigned(this, std::to_string(m_rows) + "x" + std::to_string(m_cols) + " matrix"); if (&s != this) { delete[] m_data; m_rows = s.m_rows; m_cols = s.m_cols; m_data = s.m_data; s.m_rows = 0; s.m_cols = 0; s.m_data = nullptr; } return *this; } float operator()(size_t i, size_t j) const { return m_data[i*m_cols + j]; } float &operator()(size_t i, size_t j) { return m_data[i*m_cols + j]; } float *data() { return m_data; } size_t rows() const { return m_rows; } size_t cols() const { return m_cols; } private: size_t m_rows; size_t m_cols; float *m_data; }; test_initializer buffers([](py::module &m) { py::class_ mtx(m, "Matrix", py::buffer_protocol()); mtx.def(py::init()) /// Construct from a buffer .def("__init__", [](Matrix &v, py::buffer b) { py::buffer_info info = b.request(); if (info.format != py::format_descriptor::format() || info.ndim != 2) throw std::runtime_error("Incompatible buffer format!"); new (&v) Matrix(info.shape[0], info.shape[1]); memcpy(v.data(), info.ptr, sizeof(float) * v.rows() * v.cols()); }) .def("rows", &Matrix::rows) .def("cols", &Matrix::cols) /// Bare bones interface .def("__getitem__", [](const Matrix &m, std::pair i) { if (i.first >= m.rows() || i.second >= m.cols()) throw py::index_error(); return m(i.first, i.second); }) .def("__setitem__", [](Matrix &m, std::pair i, float v) { if (i.first >= m.rows() || i.second >= m.cols()) throw py::index_error(); m(i.first, i.second) = v; }) /// Provide buffer access .def_buffer([](Matrix &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(float), /* Size of one scalar */ py::format_descriptor::format(), /* Python struct-style format descriptor */ 2, /* Number of dimensions */ { m.rows(), m.cols() }, /* Buffer dimensions */ { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */ sizeof(float) } ); }) ; }); pybind11-2.0.1/tests/test_buffers.py000066400000000000000000000033631303320175600173550ustar00rootroot00000000000000import pytest from pybind11_tests import Matrix, ConstructorStats with pytest.suppress(ImportError): import numpy as np @pytest.requires_numpy def test_from_python(): with pytest.raises(RuntimeError) as excinfo: Matrix(np.array([1, 2, 3])) # trying to assign a 1D array assert str(excinfo.value) == "Incompatible buffer format!" m3 = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) m4 = Matrix(m3) for i in range(m4.rows()): for j in range(m4.cols()): assert m3[i, j] == m4[i, j] cstats = ConstructorStats.get(Matrix) assert cstats.alive() == 1 del m3, m4 assert cstats.alive() == 0 assert cstats.values() == ["2x3 matrix"] assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Don't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # PyPy: Memory leak in the "np.array(m, copy=False)" call # https://bitbucket.org/pypy/pypy/issues/2444 @pytest.unsupported_on_pypy @pytest.requires_numpy def test_to_python(): m = Matrix(5, 5) assert m[2, 3] == 0 m[2, 3] = 4 assert m[2, 3] == 4 m2 = np.array(m, copy=False) assert m2.shape == (5, 5) assert abs(m2).sum() == 4 assert m2[2, 3] == 4 m2[2, 3] = 5 assert m2[2, 3] == 5 cstats = ConstructorStats.get(Matrix) assert cstats.alive() == 1 del m pytest.gc_collect() assert cstats.alive() == 1 del m2 # holds an m reference pytest.gc_collect() assert cstats.alive() == 0 assert cstats.values() == ["5x5 matrix"] assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Don't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 pybind11-2.0.1/tests/test_callbacks.cpp000066400000000000000000000111311303320175600177620ustar00rootroot00000000000000/* tests/test_callbacks.cpp -- callbacks Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include py::object test_callback1(py::object func) { return func(); } py::tuple test_callback2(py::object func) { return func("Hello", 'x', true, 5); } std::string test_callback3(const std::function &func) { return "func(43) = " + std::to_string(func(43)); } std::function test_callback4() { return [](int i) { return i+1; }; } py::cpp_function test_callback5() { return py::cpp_function([](int i) { return i+1; }, py::arg("number")); } int dummy_function(int i) { return i + 1; } int dummy_function2(int i, int j) { return i + j; } std::function roundtrip(std::function f, bool expect_none = false) { if (expect_none && f) { throw std::runtime_error("Expected None to be converted to empty std::function"); } return f; } std::string test_dummy_function(const std::function &f) { using fn_type = int (*)(int); auto result = f.target(); if (!result) { auto r = f(1); return "can't convert to function pointer: eval(1) = " + std::to_string(r); } else if (*result == dummy_function) { auto r = (*result)(1); return "matches dummy_function: eval(1) = " + std::to_string(r); } else { return "argument does NOT match dummy_function. This should never happen!"; } } struct Payload { Payload() { print_default_created(this); } ~Payload() { print_destroyed(this); } Payload(const Payload &) { print_copy_created(this); } Payload(Payload &&) { print_move_created(this); } }; /// Something to trigger a conversion error struct Unregistered {}; test_initializer callbacks([](py::module &m) { m.def("test_callback1", &test_callback1); m.def("test_callback2", &test_callback2); m.def("test_callback3", &test_callback3); m.def("test_callback4", &test_callback4); m.def("test_callback5", &test_callback5); // Test keyword args and generalized unpacking m.def("test_tuple_unpacking", [](py::function f) { auto t1 = py::make_tuple(2, 3); auto t2 = py::make_tuple(5, 6); return f("positional", 1, *t1, 4, *t2); }); m.def("test_dict_unpacking", [](py::function f) { auto d1 = py::dict("key"_a="value", "a"_a=1); auto d2 = py::dict(); auto d3 = py::dict("b"_a=2); return f("positional", 1, **d1, **d2, **d3); }); m.def("test_keyword_args", [](py::function f) { return f("x"_a=10, "y"_a=20); }); m.def("test_unpacking_and_keywords1", [](py::function f) { auto args = py::make_tuple(2); auto kwargs = py::dict("d"_a=4); return f(1, *args, "c"_a=3, **kwargs); }); m.def("test_unpacking_and_keywords2", [](py::function f) { auto kwargs1 = py::dict("a"_a=1); auto kwargs2 = py::dict("c"_a=3, "d"_a=4); return f("positional", *py::make_tuple(1), 2, *py::make_tuple(3, 4), 5, "key"_a="value", **kwargs1, "b"_a=2, **kwargs2, "e"_a=5); }); m.def("test_unpacking_error1", [](py::function f) { auto kwargs = py::dict("x"_a=3); return f("x"_a=1, "y"_a=2, **kwargs); // duplicate ** after keyword }); m.def("test_unpacking_error2", [](py::function f) { auto kwargs = py::dict("x"_a=3); return f(**kwargs, "x"_a=1); // duplicate keyword after ** }); m.def("test_arg_conversion_error1", [](py::function f) { f(234, Unregistered(), "kw"_a=567); }); m.def("test_arg_conversion_error2", [](py::function f) { f(234, "expected_name"_a=Unregistered(), "kw"_a=567); }); /* Test cleanup of lambda closure */ m.def("test_cleanup", []() -> std::function { Payload p; return [p]() { /* p should be cleaned up when the returned function is garbage collected */ }; }); /* Test if passing a function pointer from C++ -> Python -> C++ yields the original pointer */ m.def("dummy_function", &dummy_function); m.def("dummy_function2", &dummy_function2); m.def("roundtrip", &roundtrip, py::arg("f"), py::arg("expect_none")=false); m.def("test_dummy_function", &test_dummy_function); // Export the payload constructor statistics for testing purposes: m.def("payload_cstats", &ConstructorStats::get); }); pybind11-2.0.1/tests/test_callbacks.py000066400000000000000000000074411303320175600176410ustar00rootroot00000000000000import pytest def test_callbacks(): from functools import partial from pybind11_tests import (test_callback1, test_callback2, test_callback3, test_callback4, test_callback5) def func1(): return "func1" def func2(a, b, c, d): return "func2", a, b, c, d def func3(a): return "func3({})".format(a) assert test_callback1(func1) == "func1" assert test_callback2(func2) == ("func2", "Hello", "x", True, 5) assert test_callback1(partial(func2, 1, 2, 3, 4)) == ("func2", 1, 2, 3, 4) assert test_callback1(partial(func3, "partial")) == "func3(partial)" assert test_callback3(lambda i: i + 1) == "func(43) = 44" f = test_callback4() assert f(43) == 44 f = test_callback5() assert f(number=43) == 44 def test_keyword_args_and_generalized_unpacking(): from pybind11_tests import (test_tuple_unpacking, test_dict_unpacking, test_keyword_args, test_unpacking_and_keywords1, test_unpacking_and_keywords2, test_unpacking_error1, test_unpacking_error2, test_arg_conversion_error1, test_arg_conversion_error2) def f(*args, **kwargs): return args, kwargs assert test_tuple_unpacking(f) == (("positional", 1, 2, 3, 4, 5, 6), {}) assert test_dict_unpacking(f) == (("positional", 1), {"key": "value", "a": 1, "b": 2}) assert test_keyword_args(f) == ((), {"x": 10, "y": 20}) assert test_unpacking_and_keywords1(f) == ((1, 2), {"c": 3, "d": 4}) assert test_unpacking_and_keywords2(f) == ( ("positional", 1, 2, 3, 4, 5), {"key": "value", "a": 1, "b": 2, "c": 3, "d": 4, "e": 5} ) with pytest.raises(TypeError) as excinfo: test_unpacking_error1(f) assert "Got multiple values for keyword argument" in str(excinfo.value) with pytest.raises(TypeError) as excinfo: test_unpacking_error2(f) assert "Got multiple values for keyword argument" in str(excinfo.value) with pytest.raises(RuntimeError) as excinfo: test_arg_conversion_error1(f) assert "Unable to convert call argument" in str(excinfo.value) with pytest.raises(RuntimeError) as excinfo: test_arg_conversion_error2(f) assert "Unable to convert call argument" in str(excinfo.value) def test_lambda_closure_cleanup(): from pybind11_tests import test_cleanup, payload_cstats test_cleanup() cstats = payload_cstats() assert cstats.alive() == 0 assert cstats.copy_constructions == 1 assert cstats.move_constructions >= 1 def test_cpp_function_roundtrip(): """Test if passing a function pointer from C++ -> Python -> C++ yields the original pointer""" from pybind11_tests import dummy_function, dummy_function2, test_dummy_function, roundtrip assert test_dummy_function(dummy_function) == "matches dummy_function: eval(1) = 2" assert test_dummy_function(roundtrip(dummy_function)) == "matches dummy_function: eval(1) = 2" assert roundtrip(None, expect_none=True) is None assert test_dummy_function(lambda x: x + 2) == "can't convert to function pointer: eval(1) = 3" with pytest.raises(TypeError) as excinfo: test_dummy_function(dummy_function2) assert "incompatible function arguments" in str(excinfo.value) with pytest.raises(TypeError) as excinfo: test_dummy_function(lambda x, y: x + y) assert any(s in str(excinfo.value) for s in ("missing 1 required positional argument", "takes exactly 2 arguments")) def test_function_signatures(doc): from pybind11_tests import test_callback3, test_callback4 assert doc(test_callback3) == "test_callback3(arg0: Callable[[int], int]) -> str" assert doc(test_callback4) == "test_callback4() -> Callable[[int], int]" pybind11-2.0.1/tests/test_chrono.cpp000066400000000000000000000035121303320175600173370ustar00rootroot00000000000000/* tests/test_chrono.cpp -- test conversions to/from std::chrono types Copyright (c) 2016 Trent Houliston and Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include // Return the current time off the wall clock std::chrono::system_clock::time_point test_chrono1() { return std::chrono::system_clock::now(); } // Round trip the passed in system clock time std::chrono::system_clock::time_point test_chrono2(std::chrono::system_clock::time_point t) { return t; } // Round trip the passed in duration std::chrono::system_clock::duration test_chrono3(std::chrono::system_clock::duration d) { return d; } // Difference between two passed in time_points std::chrono::system_clock::duration test_chrono4(std::chrono::system_clock::time_point a, std::chrono::system_clock::time_point b) { return a - b; } // Return the current time off the steady_clock std::chrono::steady_clock::time_point test_chrono5() { return std::chrono::steady_clock::now(); } // Round trip a steady clock timepoint std::chrono::steady_clock::time_point test_chrono6(std::chrono::steady_clock::time_point t) { return t; } // Roundtrip a duration in microseconds from a float argument std::chrono::microseconds test_chrono7(std::chrono::microseconds t) { return t; } test_initializer chrono([] (py::module &m) { m.def("test_chrono1", &test_chrono1); m.def("test_chrono2", &test_chrono2); m.def("test_chrono3", &test_chrono3); m.def("test_chrono4", &test_chrono4); m.def("test_chrono5", &test_chrono5); m.def("test_chrono6", &test_chrono6); m.def("test_chrono7", &test_chrono7); }); pybind11-2.0.1/tests/test_chrono.py000066400000000000000000000062531303320175600172120ustar00rootroot00000000000000 def test_chrono_system_clock(): from pybind11_tests import test_chrono1 import datetime # Get the time from both c++ and datetime date1 = test_chrono1() date2 = datetime.datetime.today() # The returned value should be a datetime assert isinstance(date1, datetime.datetime) # The numbers should vary by a very small amount (time it took to execute) diff = abs(date1 - date2) # There should never be a days/seconds difference assert diff.days == 0 assert diff.seconds == 0 # We test that no more than about 0.5 seconds passes here # This makes sure that the dates created are very close to the same # but if the testing system is incredibly overloaded this should still pass assert diff.microseconds < 500000 def test_chrono_system_clock_roundtrip(): from pybind11_tests import test_chrono2 import datetime date1 = datetime.datetime.today() # Roundtrip the time date2 = test_chrono2(date1) # The returned value should be a datetime assert isinstance(date2, datetime.datetime) # They should be identical (no information lost on roundtrip) diff = abs(date1 - date2) assert diff.days == 0 assert diff.seconds == 0 assert diff.microseconds == 0 def test_chrono_duration_roundtrip(): from pybind11_tests import test_chrono3 import datetime # Get the difference between two times (a timedelta) date1 = datetime.datetime.today() date2 = datetime.datetime.today() diff = date2 - date1 # Make sure this is a timedelta assert isinstance(diff, datetime.timedelta) cpp_diff = test_chrono3(diff) assert cpp_diff.days == diff.days assert cpp_diff.seconds == diff.seconds assert cpp_diff.microseconds == diff.microseconds def test_chrono_duration_subtraction_equivalence(): from pybind11_tests import test_chrono4 import datetime date1 = datetime.datetime.today() date2 = datetime.datetime.today() diff = date2 - date1 cpp_diff = test_chrono4(date2, date1) assert cpp_diff.days == diff.days assert cpp_diff.seconds == diff.seconds assert cpp_diff.microseconds == diff.microseconds def test_chrono_steady_clock(): from pybind11_tests import test_chrono5 import datetime time1 = test_chrono5() time2 = test_chrono5() assert isinstance(time1, datetime.timedelta) assert isinstance(time2, datetime.timedelta) def test_chrono_steady_clock_roundtrip(): from pybind11_tests import test_chrono6 import datetime time1 = datetime.timedelta(days=10, seconds=10, microseconds=100) time2 = test_chrono6(time1) assert isinstance(time2, datetime.timedelta) # They should be identical (no information lost on roundtrip) assert time1.days == time2.days assert time1.seconds == time2.seconds assert time1.microseconds == time2.microseconds def test_floating_point_duration(): from pybind11_tests import test_chrono7 import datetime # Test using 35.525123 seconds as an example floating point number in seconds time = test_chrono7(35.525123) assert isinstance(time, datetime.timedelta) assert time.seconds == 35 assert 525122 <= time.microseconds <= 525123 pybind11-2.0.1/tests/test_class_args.cpp000066400000000000000000000073521303320175600201760ustar00rootroot00000000000000/* tests/test_class_args.cpp -- tests that various way of defining a class work Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" template class BreaksBase {}; template class BreaksTramp : public BreaksBase {}; // These should all compile just fine: typedef py::class_, std::unique_ptr>, BreaksTramp<1>> DoesntBreak1; typedef py::class_, BreaksTramp<2>, std::unique_ptr>> DoesntBreak2; typedef py::class_, std::unique_ptr>> DoesntBreak3; typedef py::class_, BreaksTramp<4>> DoesntBreak4; typedef py::class_> DoesntBreak5; typedef py::class_, std::shared_ptr>, BreaksTramp<6>> DoesntBreak6; typedef py::class_, BreaksTramp<7>, std::shared_ptr>> DoesntBreak7; typedef py::class_, std::shared_ptr>> DoesntBreak8; #define CHECK_BASE(N) static_assert(std::is_same>::value, \ "DoesntBreak" #N " has wrong type!") CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8); #define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same>::value, \ "DoesntBreak" #N " has wrong type_alias!") #define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void::value, \ "DoesntBreak" #N " has type alias, but shouldn't!") CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8); #define CHECK_HOLDER(N, TYPE) static_assert(std::is_same>>::value, \ "DoesntBreak" #N " has wrong holder_type!") CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique); CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared); // There's no nice way to test that these fail because they fail to compile; leave them here, // though, so that they can be manually tested by uncommenting them (and seeing that compilation // failures occurs). // We have to actually look into the type: the typedef alone isn't enough to instantiate the type: #define CHECK_BROKEN(N) static_assert(std::is_same>::value, \ "Breaks1 has wrong type!"); //// Two holder classes: //typedef py::class_, std::unique_ptr>, std::unique_ptr>> Breaks1; //CHECK_BROKEN(1); //// Two aliases: //typedef py::class_, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2; //CHECK_BROKEN(2); //// Holder + 2 aliases //typedef py::class_, std::unique_ptr>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3; //CHECK_BROKEN(3); //// Alias + 2 holders //typedef py::class_, std::unique_ptr>, BreaksTramp<-4>, std::shared_ptr>> Breaks4; //CHECK_BROKEN(4); //// Invalid option (not a subclass or holder) //typedef py::class_, BreaksTramp<-4>> Breaks5; //CHECK_BROKEN(5); //// Invalid option: multiple inheritance not supported: //template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {}; //typedef py::class_, BreaksBase<-6>, BreaksBase<-7>> Breaks8; //CHECK_BROKEN(8); test_initializer class_args([](py::module &m) { // Just test that this compiled okay m.def("class_args_noop", []() {}); }); pybind11-2.0.1/tests/test_class_args.py000066400000000000000000000003261303320175600200360ustar00rootroot00000000000000 def test_class_args(): """There's basically nothing to test here; just make sure the code compiled and declared its definition """ from pybind11_tests import class_args_noop class_args_noop() pybind11-2.0.1/tests/test_cmake_build/000077500000000000000000000000001303320175600176015ustar00rootroot00000000000000pybind11-2.0.1/tests/test_cmake_build/installed_function/000077500000000000000000000000001303320175600234655ustar00rootroot00000000000000pybind11-2.0.1/tests/test_cmake_build/installed_function/CMakeLists.txt000066400000000000000000000007321303320175600262270ustar00rootroot00000000000000cmake_minimum_required(VERSION 2.8.12) project(test_installed_module CXX) set(CMAKE_MODULE_PATH "") find_package(pybind11 CONFIG REQUIRED) message(STATUS "Found pybind11 v${pybind11_VERSION}: ${pybind11_INCLUDE_DIRS}") pybind11_add_module(test_cmake_build SHARED NO_EXTRAS ../main.cpp) add_custom_target(check ${CMAKE_COMMAND} -E env PYTHONPATH=$ ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/../test.py ${PROJECT_NAME}) pybind11-2.0.1/tests/test_cmake_build/installed_target/000077500000000000000000000000001303320175600231265ustar00rootroot00000000000000pybind11-2.0.1/tests/test_cmake_build/installed_target/CMakeLists.txt000066400000000000000000000014231303320175600256660ustar00rootroot00000000000000cmake_minimum_required(VERSION 3.0) project(test_installed_target CXX) set(CMAKE_MODULE_PATH "") find_package(pybind11 CONFIG REQUIRED) message(STATUS "Found pybind11 v${pybind11_VERSION}: ${pybind11_INCLUDE_DIRS}") add_library(test_cmake_build MODULE ../main.cpp) target_link_libraries(test_cmake_build PRIVATE pybind11::module) # make sure result is, for example, test_installed_target.so, not libtest_installed_target.dylib set_target_properties(test_cmake_build PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}" SUFFIX "${PYTHON_MODULE_EXTENSION}") add_custom_target(check ${CMAKE_COMMAND} -E env PYTHONPATH=$ ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/../test.py ${PROJECT_NAME}) pybind11-2.0.1/tests/test_cmake_build/main.cpp000066400000000000000000000003211303320175600212250ustar00rootroot00000000000000#include namespace py = pybind11; PYBIND11_PLUGIN(test_cmake_build) { py::module m("test_cmake_build"); m.def("add", [](int i, int j) { return i + j; }); return m.ptr(); } pybind11-2.0.1/tests/test_cmake_build/subdirectory_function/000077500000000000000000000000001303320175600242245ustar00rootroot00000000000000pybind11-2.0.1/tests/test_cmake_build/subdirectory_function/CMakeLists.txt000066400000000000000000000005651303320175600267720ustar00rootroot00000000000000cmake_minimum_required(VERSION 2.8.12) project(test_subdirectory_module CXX) add_subdirectory(${PYBIND11_PROJECT_DIR} pybind11) pybind11_add_module(test_cmake_build THIN_LTO ../main.cpp) add_custom_target(check ${CMAKE_COMMAND} -E env PYTHONPATH=$ ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/../test.py ${PROJECT_NAME}) pybind11-2.0.1/tests/test_cmake_build/subdirectory_target/000077500000000000000000000000001303320175600236655ustar00rootroot00000000000000pybind11-2.0.1/tests/test_cmake_build/subdirectory_target/CMakeLists.txt000066400000000000000000000012671303320175600264330ustar00rootroot00000000000000cmake_minimum_required(VERSION 3.0) project(test_subdirectory_target CXX) add_subdirectory(${PYBIND11_PROJECT_DIR} pybind11) add_library(test_cmake_build MODULE ../main.cpp) target_link_libraries(test_cmake_build PRIVATE pybind11::module) # make sure result is, for example, test_installed_target.so, not libtest_installed_target.dylib set_target_properties(test_cmake_build PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}" SUFFIX "${PYTHON_MODULE_EXTENSION}") add_custom_target(check ${CMAKE_COMMAND} -E env PYTHONPATH=$ ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/../test.py ${PROJECT_NAME}) pybind11-2.0.1/tests/test_cmake_build/test.py000066400000000000000000000002161303320175600211310ustar00rootroot00000000000000import sys import test_cmake_build assert test_cmake_build.add(1, 2) == 3 print("{} imports, runs, and adds: 1 + 2 = 3".format(sys.argv[1])) pybind11-2.0.1/tests/test_constants_and_functions.cpp000066400000000000000000000064021303320175600227760ustar00rootroot00000000000000/* tests/test_constants_and_functions.cpp -- global constants and functions, enumerations, raw byte strings Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" enum MyEnum { EFirstEntry = 1, ESecondEntry }; std::string test_function1() { return "test_function()"; } std::string test_function2(MyEnum k) { return "test_function(enum=" + std::to_string(k) + ")"; } std::string test_function3(int i) { return "test_function(" + std::to_string(i) + ")"; } py::str test_function4(int, float) { return "test_function(int, float)"; } py::str test_function4(float, int) { return "test_function(float, int)"; } py::bytes return_bytes() { const char *data = "\x01\x00\x02\x00"; return std::string(data, 4); } std::string print_bytes(py::bytes bytes) { std::string ret = "bytes["; const auto value = static_cast(bytes); for (size_t i = 0; i < value.length(); ++i) { ret += std::to_string(static_cast(value[i])) + " "; } ret.back() = ']'; return ret; } // Test that we properly handle C++17 exception specifiers (which are part of the function signature // in C++17). These should all still work before C++17, but don't affect the function signature. namespace test_exc_sp { int f1(int x) noexcept { return x+1; } int f2(int x) noexcept(true) { return x+2; } int f3(int x) noexcept(false) { return x+3; } int f4(int x) throw() { return x+4; } // Deprecated equivalent to noexcept(true) struct C { int m1(int x) noexcept { return x-1; } int m2(int x) const noexcept { return x-2; } int m3(int x) noexcept(true) { return x-3; } int m4(int x) const noexcept(true) { return x-4; } int m5(int x) noexcept(false) { return x-5; } int m6(int x) const noexcept(false) { return x-6; } int m7(int x) throw() { return x-7; } int m8(int x) const throw() { return x-8; } }; } test_initializer constants_and_functions([](py::module &m) { m.attr("some_constant") = py::int_(14); m.def("test_function", &test_function1); m.def("test_function", &test_function2); m.def("test_function", &test_function3); #if defined(PYBIND11_OVERLOAD_CAST) m.def("test_function", py::overload_cast(&test_function4)); m.def("test_function", py::overload_cast(&test_function4)); #else m.def("test_function", static_cast(&test_function4)); m.def("test_function", static_cast(&test_function4)); #endif py::enum_(m, "MyEnum") .value("EFirstEntry", EFirstEntry) .value("ESecondEntry", ESecondEntry) .export_values(); m.def("return_bytes", &return_bytes); m.def("print_bytes", &print_bytes); using namespace test_exc_sp; py::module m2 = m.def_submodule("exc_sp"); py::class_(m2, "C") .def(py::init<>()) .def("m1", &C::m1) .def("m2", &C::m2) .def("m3", &C::m3) .def("m4", &C::m4) .def("m5", &C::m5) .def("m6", &C::m6) .def("m7", &C::m7) .def("m8", &C::m8) ; m2.def("f1", f1); m2.def("f2", f2); m2.def("f3", f3); m2.def("f4", f4); }); pybind11-2.0.1/tests/test_constants_and_functions.py000066400000000000000000000021141303320175600226400ustar00rootroot00000000000000 def test_constants(): from pybind11_tests import some_constant assert some_constant == 14 def test_function_overloading(): from pybind11_tests import MyEnum, test_function assert test_function() == "test_function()" assert test_function(7) == "test_function(7)" assert test_function(MyEnum.EFirstEntry) == "test_function(enum=1)" assert test_function(MyEnum.ESecondEntry) == "test_function(enum=2)" assert test_function(1, 1.0) == "test_function(int, float)" assert test_function(2.0, 2) == "test_function(float, int)" def test_bytes(): from pybind11_tests import return_bytes, print_bytes assert print_bytes(return_bytes()) == "bytes[1 0 2 0]" def test_exception_specifiers(): from pybind11_tests.exc_sp import C, f1, f2, f3, f4 c = C() assert c.m1(2) == 1 assert c.m2(3) == 1 assert c.m3(5) == 2 assert c.m4(7) == 3 assert c.m5(10) == 5 assert c.m6(14) == 8 assert c.m7(20) == 13 assert c.m8(29) == 21 assert f1(33) == 34 assert f2(53) == 55 assert f3(86) == 89 assert f4(140) == 144 pybind11-2.0.1/tests/test_copy_move_policies.cpp000066400000000000000000000025631303320175600217430ustar00rootroot00000000000000/* tests/test_copy_move_policies.cpp -- 'copy' and 'move' return value policies Copyright (c) 2016 Ben North All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" template struct empty { static const derived& get_one() { return instance_; } static derived instance_; }; struct lacking_copy_ctor : public empty { lacking_copy_ctor() {} lacking_copy_ctor(const lacking_copy_ctor& other) = delete; }; template <> lacking_copy_ctor empty::instance_ = {}; struct lacking_move_ctor : public empty { lacking_move_ctor() {} lacking_move_ctor(const lacking_move_ctor& other) = delete; lacking_move_ctor(lacking_move_ctor&& other) = delete; }; template <> lacking_move_ctor empty::instance_ = {}; test_initializer copy_move_policies([](py::module &m) { py::class_(m, "lacking_copy_ctor") .def_static("get_one", &lacking_copy_ctor::get_one, py::return_value_policy::copy); py::class_(m, "lacking_move_ctor") .def_static("get_one", &lacking_move_ctor::get_one, py::return_value_policy::move); }); pybind11-2.0.1/tests/test_copy_move_policies.py000066400000000000000000000007501303320175600216050ustar00rootroot00000000000000import pytest def test_lacking_copy_ctor(): from pybind11_tests import lacking_copy_ctor with pytest.raises(RuntimeError) as excinfo: lacking_copy_ctor.get_one() assert "the object is non-copyable!" in str(excinfo.value) def test_lacking_move_ctor(): from pybind11_tests import lacking_move_ctor with pytest.raises(RuntimeError) as excinfo: lacking_move_ctor.get_one() assert "the object is neither movable nor copyable!" in str(excinfo.value) pybind11-2.0.1/tests/test_docstring_options.cpp000066400000000000000000000034311303320175600216160ustar00rootroot00000000000000/* tests/test_docstring_options.cpp -- generation of docstrings and signatures Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" struct DocstringTestFoo { int value; void setValue(int v) { value = v; } int getValue() const { return value; } }; test_initializer docstring_generation([](py::module &m) { { py::options options; options.disable_function_signatures(); m.def("test_function1", [](int, int) {}, py::arg("a"), py::arg("b")); m.def("test_function2", [](int, int) {}, py::arg("a"), py::arg("b"), "A custom docstring"); options.enable_function_signatures(); m.def("test_function3", [](int, int) {}, py::arg("a"), py::arg("b")); m.def("test_function4", [](int, int) {}, py::arg("a"), py::arg("b"), "A custom docstring"); options.disable_function_signatures().disable_user_defined_docstrings(); m.def("test_function5", [](int, int) {}, py::arg("a"), py::arg("b"), "A custom docstring"); { py::options nested_options; nested_options.enable_user_defined_docstrings(); m.def("test_function6", [](int, int) {}, py::arg("a"), py::arg("b"), "A custom docstring"); } } m.def("test_function7", [](int, int) {}, py::arg("a"), py::arg("b"), "A custom docstring"); { py::options options; options.disable_user_defined_docstrings(); py::class_(m, "DocstringTestFoo", "This is a class docstring") .def_property("value_prop", &DocstringTestFoo::getValue, &DocstringTestFoo::setValue, "This is a property docstring") ; } }); pybind11-2.0.1/tests/test_docstring_options.py000066400000000000000000000023721303320175600214670ustar00rootroot00000000000000 def test_docstring_options(): from pybind11_tests import (test_function1, test_function2, test_function3, test_function4, test_function5, test_function6, test_function7, DocstringTestFoo) # options.disable_function_signatures() assert not test_function1.__doc__ assert test_function2.__doc__ == "A custom docstring" # options.enable_function_signatures() assert test_function3.__doc__ .startswith("test_function3(a: int, b: int) -> None") assert test_function4.__doc__ .startswith("test_function4(a: int, b: int) -> None") assert test_function4.__doc__ .endswith("A custom docstring\n") # options.disable_function_signatures() # options.disable_user_defined_docstrings() assert not test_function5.__doc__ # nested options.enable_user_defined_docstrings() assert test_function6.__doc__ == "A custom docstring" # RAII destructor assert test_function7.__doc__ .startswith("test_function7(a: int, b: int) -> None") assert test_function7.__doc__ .endswith("A custom docstring\n") # Suppression of user-defined docstrings for non-function objects assert not DocstringTestFoo.__doc__ assert not DocstringTestFoo.value_prop.__doc__ pybind11-2.0.1/tests/test_eigen.cpp000066400000000000000000000115531303320175600171420ustar00rootroot00000000000000/* tests/eigen.cpp -- automatic conversion of Eigen types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include #include Eigen::VectorXf double_col(const Eigen::VectorXf& x) { return 2.0f * x; } Eigen::RowVectorXf double_row(const Eigen::RowVectorXf& x) { return 2.0f * x; } Eigen::MatrixXf double_mat_cm(const Eigen::MatrixXf& x) { return 2.0f * x; } // Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended Eigen::MatrixXd cholesky1(Eigen::Ref &x) { return x.llt().matrixL(); } Eigen::MatrixXd cholesky2(const Eigen::Ref &x) { return x.llt().matrixL(); } Eigen::MatrixXd cholesky3(const Eigen::Ref &x) { return x.llt().matrixL(); } Eigen::MatrixXd cholesky4(Eigen::Ref &x) { return x.llt().matrixL(); } Eigen::MatrixXd cholesky5(Eigen::Ref x) { return x.llt().matrixL(); } Eigen::MatrixXd cholesky6(Eigen::Ref x) { return x.llt().matrixL(); } typedef Eigen::Matrix MatrixXfRowMajor; MatrixXfRowMajor double_mat_rm(const MatrixXfRowMajor& x) { return 2.0f * x; } test_initializer eigen([](py::module &m) { typedef Eigen::Matrix FixedMatrixR; typedef Eigen::Matrix FixedMatrixC; typedef Eigen::Matrix DenseMatrixR; typedef Eigen::Matrix DenseMatrixC; typedef Eigen::SparseMatrix SparseMatrixR; typedef Eigen::SparseMatrix SparseMatrixC; m.attr("have_eigen") = true; // Non-symmetric matrix with zero elements Eigen::MatrixXf mat(5, 6); mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14, 0, 8, 11; m.def("double_col", &double_col); m.def("double_row", &double_row); m.def("double_mat_cm", &double_mat_cm); m.def("double_mat_rm", &double_mat_rm); m.def("cholesky1", &cholesky1); m.def("cholesky2", &cholesky2); m.def("cholesky3", &cholesky3); m.def("cholesky4", &cholesky4); m.def("cholesky5", &cholesky5); m.def("cholesky6", &cholesky6); // Returns diagonals: a vector-like object with an inner stride != 1 m.def("diagonal", [](const Eigen::Ref &x) { return x.diagonal(); }); m.def("diagonal_1", [](const Eigen::Ref &x) { return x.diagonal<1>(); }); m.def("diagonal_n", [](const Eigen::Ref &x, int index) { return x.diagonal(index); }); // Return a block of a matrix (gives non-standard strides) m.def("block", [](const Eigen::Ref &x, int start_row, int start_col, int block_rows, int block_cols) { return x.block(start_row, start_col, block_rows, block_cols); }); // Returns a DiagonalMatrix with diagonal (1,2,3,...) m.def("incr_diag", [](int k) { Eigen::DiagonalMatrix m(k); for (int i = 0; i < k; i++) m.diagonal()[i] = i+1; return m; }); // Returns a SelfAdjointView referencing the lower triangle of m m.def("symmetric_lower", [](const Eigen::MatrixXi &m) { return m.selfadjointView(); }); // Returns a SelfAdjointView referencing the lower triangle of m m.def("symmetric_upper", [](const Eigen::MatrixXi &m) { return m.selfadjointView(); }); m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); }); m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); }); m.def("fixed_passthrough_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; }); m.def("fixed_passthrough_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; }); m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); }); m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); }); m.def("dense_passthrough_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; }); m.def("dense_passthrough_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; }); m.def("sparse_r", [mat]() -> SparseMatrixR { return Eigen::SparseView(mat); }); m.def("sparse_c", [mat]() -> SparseMatrixC { return Eigen::SparseView(mat); }); m.def("sparse_passthrough_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; }); m.def("sparse_passthrough_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; }); }); pybind11-2.0.1/tests/test_eigen.py000066400000000000000000000124631303320175600170110ustar00rootroot00000000000000import pytest with pytest.suppress(ImportError): import numpy as np ref = np.array([[ 0, 3, 0, 0, 0, 11], [22, 0, 0, 0, 17, 11], [ 7, 5, 0, 1, 0, 11], [ 0, 0, 0, 0, 0, 11], [ 0, 0, 14, 0, 8, 11]]) def assert_equal_ref(mat): np.testing.assert_array_equal(mat, ref) def assert_sparse_equal_ref(sparse_mat): assert_equal_ref(sparse_mat.todense()) @pytest.requires_eigen_and_numpy def test_fixed(): from pybind11_tests import fixed_r, fixed_c, fixed_passthrough_r, fixed_passthrough_c assert_equal_ref(fixed_c()) assert_equal_ref(fixed_r()) assert_equal_ref(fixed_passthrough_r(fixed_r())) assert_equal_ref(fixed_passthrough_c(fixed_c())) assert_equal_ref(fixed_passthrough_r(fixed_c())) assert_equal_ref(fixed_passthrough_c(fixed_r())) @pytest.requires_eigen_and_numpy def test_dense(): from pybind11_tests import dense_r, dense_c, dense_passthrough_r, dense_passthrough_c assert_equal_ref(dense_r()) assert_equal_ref(dense_c()) assert_equal_ref(dense_passthrough_r(dense_r())) assert_equal_ref(dense_passthrough_c(dense_c())) assert_equal_ref(dense_passthrough_r(dense_c())) assert_equal_ref(dense_passthrough_c(dense_r())) @pytest.requires_eigen_and_numpy def test_nonunit_stride_from_python(): from pybind11_tests import double_row, double_col, double_mat_cm, double_mat_rm counting_mat = np.arange(9.0, dtype=np.float32).reshape((3, 3)) first_row = counting_mat[0, :] first_col = counting_mat[:, 0] assert np.array_equal(double_row(first_row), 2.0 * first_row) assert np.array_equal(double_col(first_row), 2.0 * first_row) assert np.array_equal(double_row(first_col), 2.0 * first_col) assert np.array_equal(double_col(first_col), 2.0 * first_col) counting_3d = np.arange(27.0, dtype=np.float32).reshape((3, 3, 3)) slices = [counting_3d[0, :, :], counting_3d[:, 0, :], counting_3d[:, :, 0]] for slice_idx, ref_mat in enumerate(slices): assert np.array_equal(double_mat_cm(ref_mat), 2.0 * ref_mat) assert np.array_equal(double_mat_rm(ref_mat), 2.0 * ref_mat) @pytest.requires_eigen_and_numpy def test_nonunit_stride_to_python(): from pybind11_tests import diagonal, diagonal_1, diagonal_n, block assert np.all(diagonal(ref) == ref.diagonal()) assert np.all(diagonal_1(ref) == ref.diagonal(1)) for i in range(-5, 7): assert np.all(diagonal_n(ref, i) == ref.diagonal(i)), "diagonal_n({})".format(i) assert np.all(block(ref, 2, 1, 3, 3) == ref[2:5, 1:4]) assert np.all(block(ref, 1, 4, 4, 2) == ref[1:, 4:]) assert np.all(block(ref, 1, 4, 3, 2) == ref[1:4, 4:]) @pytest.requires_eigen_and_numpy def test_eigen_ref_to_python(): from pybind11_tests import cholesky1, cholesky2, cholesky3, cholesky4, cholesky5, cholesky6 chols = [cholesky1, cholesky2, cholesky3, cholesky4, cholesky5, cholesky6] for i, chol in enumerate(chols, start=1): mymat = chol(np.array([[1, 2, 4], [2, 13, 23], [4, 23, 77]])) assert np.all(mymat == np.array([[1, 0, 0], [2, 3, 0], [4, 5, 6]])), "cholesky{}".format(i) @pytest.requires_eigen_and_numpy def test_special_matrix_objects(): from pybind11_tests import incr_diag, symmetric_upper, symmetric_lower assert np.all(incr_diag(7) == np.diag([1, 2, 3, 4, 5, 6, 7])) asymm = np.array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12], [13, 14, 15, 16]]) symm_lower = np.array(asymm) symm_upper = np.array(asymm) for i in range(4): for j in range(i + 1, 4): symm_lower[i, j] = symm_lower[j, i] symm_upper[j, i] = symm_upper[i, j] assert np.all(symmetric_lower(asymm) == symm_lower) assert np.all(symmetric_upper(asymm) == symm_upper) @pytest.requires_eigen_and_numpy def test_dense_signature(doc): from pybind11_tests import double_col, double_row, double_mat_rm assert doc(double_col) == """ double_col(arg0: numpy.ndarray[float32[m, 1]]) -> numpy.ndarray[float32[m, 1]] """ assert doc(double_row) == """ double_row(arg0: numpy.ndarray[float32[1, n]]) -> numpy.ndarray[float32[1, n]] """ assert doc(double_mat_rm) == """ double_mat_rm(arg0: numpy.ndarray[float32[m, n]]) -> numpy.ndarray[float32[m, n]] """ @pytest.requires_eigen_and_scipy def test_sparse(): from pybind11_tests import sparse_r, sparse_c, sparse_passthrough_r, sparse_passthrough_c assert_sparse_equal_ref(sparse_r()) assert_sparse_equal_ref(sparse_c()) assert_sparse_equal_ref(sparse_passthrough_r(sparse_r())) assert_sparse_equal_ref(sparse_passthrough_c(sparse_c())) assert_sparse_equal_ref(sparse_passthrough_r(sparse_c())) assert_sparse_equal_ref(sparse_passthrough_c(sparse_r())) @pytest.requires_eigen_and_scipy def test_sparse_signature(doc): from pybind11_tests import sparse_passthrough_r, sparse_passthrough_c assert doc(sparse_passthrough_r) == """ sparse_passthrough_r(arg0: scipy.sparse.csr_matrix[float32]) -> scipy.sparse.csr_matrix[float32] """ # noqa: E501 line too long assert doc(sparse_passthrough_c) == """ sparse_passthrough_c(arg0: scipy.sparse.csc_matrix[float32]) -> scipy.sparse.csc_matrix[float32] """ # noqa: E501 line too long pybind11-2.0.1/tests/test_enum.cpp000066400000000000000000000032601303320175600170130ustar00rootroot00000000000000/* tests/test_enums.cpp -- enumerations Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" enum UnscopedEnum { EOne = 1, ETwo }; enum class ScopedEnum { Two = 2, Three }; enum Flags { Read = 4, Write = 2, Execute = 1 }; class ClassWithUnscopedEnum { public: enum EMode { EFirstMode = 1, ESecondMode }; static EMode test_function(EMode mode) { return mode; } }; std::string test_scoped_enum(ScopedEnum z) { return "ScopedEnum::" + std::string(z == ScopedEnum::Two ? "Two" : "Three"); } test_initializer enums([](py::module &m) { m.def("test_scoped_enum", &test_scoped_enum); py::enum_(m, "UnscopedEnum", py::arithmetic()) .value("EOne", EOne) .value("ETwo", ETwo) .export_values(); py::enum_(m, "ScopedEnum", py::arithmetic()) .value("Two", ScopedEnum::Two) .value("Three", ScopedEnum::Three); py::enum_(m, "Flags", py::arithmetic()) .value("Read", Flags::Read) .value("Write", Flags::Write) .value("Execute", Flags::Execute) .export_values(); py::class_ exenum_class(m, "ClassWithUnscopedEnum"); exenum_class.def_static("test_function", &ClassWithUnscopedEnum::test_function); py::enum_(exenum_class, "EMode") .value("EFirstMode", ClassWithUnscopedEnum::EFirstMode) .value("ESecondMode", ClassWithUnscopedEnum::ESecondMode) .export_values(); }); pybind11-2.0.1/tests/test_enum.py000066400000000000000000000062731303320175600166700ustar00rootroot00000000000000import pytest def test_unscoped_enum(): from pybind11_tests import UnscopedEnum, EOne assert str(UnscopedEnum.EOne) == "UnscopedEnum.EOne" assert str(UnscopedEnum.ETwo) == "UnscopedEnum.ETwo" assert str(EOne) == "UnscopedEnum.EOne" # no TypeError exception for unscoped enum ==/!= int comparisons y = UnscopedEnum.ETwo assert y == 2 assert y != 3 assert int(UnscopedEnum.ETwo) == 2 assert str(UnscopedEnum(2)) == "UnscopedEnum.ETwo" # order assert UnscopedEnum.EOne < UnscopedEnum.ETwo assert UnscopedEnum.EOne < 2 assert UnscopedEnum.ETwo > UnscopedEnum.EOne assert UnscopedEnum.ETwo > 1 assert UnscopedEnum.ETwo <= 2 assert UnscopedEnum.ETwo >= 2 assert UnscopedEnum.EOne <= UnscopedEnum.ETwo assert UnscopedEnum.EOne <= 2 assert UnscopedEnum.ETwo >= UnscopedEnum.EOne assert UnscopedEnum.ETwo >= 1 assert not (UnscopedEnum.ETwo < UnscopedEnum.EOne) assert not (2 < UnscopedEnum.EOne) def test_scoped_enum(): from pybind11_tests import ScopedEnum, test_scoped_enum assert test_scoped_enum(ScopedEnum.Three) == "ScopedEnum::Three" z = ScopedEnum.Two assert test_scoped_enum(z) == "ScopedEnum::Two" # expected TypeError exceptions for scoped enum ==/!= int comparisons with pytest.raises(TypeError): assert z == 2 with pytest.raises(TypeError): assert z != 3 # order assert ScopedEnum.Two < ScopedEnum.Three assert ScopedEnum.Three > ScopedEnum.Two assert ScopedEnum.Two <= ScopedEnum.Three assert ScopedEnum.Two <= ScopedEnum.Two assert ScopedEnum.Two >= ScopedEnum.Two assert ScopedEnum.Three >= ScopedEnum.Two def test_implicit_conversion(): from pybind11_tests import ClassWithUnscopedEnum assert str(ClassWithUnscopedEnum.EMode.EFirstMode) == "EMode.EFirstMode" assert str(ClassWithUnscopedEnum.EFirstMode) == "EMode.EFirstMode" f = ClassWithUnscopedEnum.test_function first = ClassWithUnscopedEnum.EFirstMode second = ClassWithUnscopedEnum.ESecondMode assert f(first) == 1 assert f(first) == f(first) assert not f(first) != f(first) assert f(first) != f(second) assert not f(first) == f(second) assert f(first) == int(f(first)) assert not f(first) != int(f(first)) assert f(first) != int(f(second)) assert not f(first) == int(f(second)) # noinspection PyDictCreation x = {f(first): 1, f(second): 2} x[f(first)] = 3 x[f(second)] = 4 # Hashing test assert str(x) == "{EMode.EFirstMode: 3, EMode.ESecondMode: 4}" def test_binary_operators(): from pybind11_tests import Flags assert int(Flags.Read) == 4 assert int(Flags.Write) == 2 assert int(Flags.Execute) == 1 assert int(Flags.Read | Flags.Write | Flags.Execute) == 7 assert int(Flags.Read | Flags.Write) == 6 assert int(Flags.Read | Flags.Execute) == 5 assert int(Flags.Write | Flags.Execute) == 3 assert int(Flags.Write | 1) == 3 state = Flags.Read | Flags.Write assert (state & Flags.Read) != 0 assert (state & Flags.Write) != 0 assert (state & Flags.Execute) == 0 assert (state & 1) == 0 state2 = ~state assert state2 == -7 assert int(state ^ state2) == -1 pybind11-2.0.1/tests/test_eval.cpp000066400000000000000000000042251303320175600170000ustar00rootroot00000000000000/* tests/test_eval.cpp -- Usage of eval() and eval_file() Copyright (c) 2016 Klemens D. Morgenstern All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include #include "pybind11_tests.h" test_initializer eval([](py::module &m) { auto global = py::dict(py::module::import("__main__").attr("__dict__")); m.def("test_eval_statements", [global]() { auto local = py::dict(); local["call_test"] = py::cpp_function([&]() -> int { return 42; }); auto result = py::eval( "print('Hello World!');\n" "x = call_test();", global, local ); auto x = local["x"].cast(); return result == py::none() && x == 42; }); m.def("test_eval", [global]() { auto local = py::dict(); local["x"] = py::int_(42); auto x = py::eval("x", global, local); return x.cast() == 42; }); m.def("test_eval_single_statement", []() { auto local = py::dict(); local["call_test"] = py::cpp_function([&]() -> int { return 42; }); auto result = py::eval("x = call_test()", py::dict(), local); auto x = local["x"].cast(); return result == py::none() && x == 42; }); m.def("test_eval_file", [global](py::str filename) { auto local = py::dict(); local["y"] = py::int_(43); int val_out; local["call_test2"] = py::cpp_function([&](int value) { val_out = value; }); auto result = py::eval_file(filename, global, local); return val_out == 43 && result == py::none(); }); m.def("test_eval_failure", []() { try { py::eval("nonsense code ..."); } catch (py::error_already_set &) { return true; } return false; }); m.def("test_eval_file_failure", []() { try { py::eval_file("non-existing file"); } catch (std::exception &) { return true; } return false; }); }); pybind11-2.0.1/tests/test_eval.py000066400000000000000000000010601303320175600166400ustar00rootroot00000000000000import os def test_evals(capture): from pybind11_tests import (test_eval_statements, test_eval, test_eval_single_statement, test_eval_file, test_eval_failure, test_eval_file_failure) with capture: assert test_eval_statements() assert capture == "Hello World!" assert test_eval() assert test_eval_single_statement() filename = os.path.join(os.path.dirname(__file__), "test_eval_call.py") assert test_eval_file(filename) assert test_eval_failure() assert test_eval_file_failure() pybind11-2.0.1/tests/test_eval_call.py000066400000000000000000000001671303320175600176420ustar00rootroot00000000000000# This file is called from 'test_eval.py' if 'call_test2' in locals(): call_test2(y) # noqa: F821 undefined name pybind11-2.0.1/tests/test_exceptions.cpp000066400000000000000000000125001303320175600202250ustar00rootroot00000000000000/* tests/test_custom-exceptions.cpp -- exception translation Copyright (c) 2016 Pim Schellart All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" // A type that should be raised as an exeption in Python class MyException : public std::exception { public: explicit MyException(const char * m) : message{m} {} virtual const char * what() const noexcept override {return message.c_str();} private: std::string message = ""; }; // A type that should be translated to a standard Python exception class MyException2 : public std::exception { public: explicit MyException2(const char * m) : message{m} {} virtual const char * what() const noexcept override {return message.c_str();} private: std::string message = ""; }; // A type that is not derived from std::exception (and is thus unknown) class MyException3 { public: explicit MyException3(const char * m) : message{m} {} virtual const char * what() const noexcept {return message.c_str();} private: std::string message = ""; }; // A type that should be translated to MyException // and delegated to its exception translator class MyException4 : public std::exception { public: explicit MyException4(const char * m) : message{m} {} virtual const char * what() const noexcept override {return message.c_str();} private: std::string message = ""; }; // Like the above, but declared via the helper function class MyException5 : public std::logic_error { public: explicit MyException5(const std::string &what) : std::logic_error(what) {} }; // Inherits from MyException5 class MyException5_1 : public MyException5 { using MyException5::MyException5; }; void throws1() { throw MyException("this error should go to a custom type"); } void throws2() { throw MyException2("this error should go to a standard Python exception"); } void throws3() { throw MyException3("this error cannot be translated"); } void throws4() { throw MyException4("this error is rethrown"); } void throws5() { throw MyException5("this is a helper-defined translated exception"); } void throws5_1() { throw MyException5_1("MyException5 subclass"); } void throws_logic_error() { throw std::logic_error("this error should fall through to the standard handler"); } struct PythonCallInDestructor { PythonCallInDestructor(const py::dict &d) : d(d) {} ~PythonCallInDestructor() { d["good"] = true; } py::dict d; }; test_initializer custom_exceptions([](py::module &m) { // make a new custom exception and use it as a translation target static py::exception ex(m, "MyException"); py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const MyException &e) { // Set MyException as the active python error ex(e.what()); } }); // register new translator for MyException2 // no need to store anything here because this type will // never by visible from Python py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const MyException2 &e) { // Translate this exception to a standard RuntimeError PyErr_SetString(PyExc_RuntimeError, e.what()); } }); // register new translator for MyException4 // which will catch it and delegate to the previously registered // translator for MyException by throwing a new exception py::register_exception_translator([](std::exception_ptr p) { try { if (p) std::rethrow_exception(p); } catch (const MyException4 &e) { throw MyException(e.what()); } }); // A simple exception translation: auto ex5 = py::register_exception(m, "MyException5"); // A slightly more complicated one that declares MyException5_1 as a subclass of MyException5 py::register_exception(m, "MyException5_1", ex5.ptr()); m.def("throws1", &throws1); m.def("throws2", &throws2); m.def("throws3", &throws3); m.def("throws4", &throws4); m.def("throws5", &throws5); m.def("throws5_1", &throws5_1); m.def("throws_logic_error", &throws_logic_error); m.def("throw_already_set", [](bool err) { if (err) PyErr_SetString(PyExc_ValueError, "foo"); try { throw py::error_already_set(); } catch (const std::runtime_error& e) { if ((err && e.what() != std::string("ValueError: foo")) || (!err && e.what() != std::string("Unknown internal error occurred"))) { PyErr_Clear(); throw std::runtime_error("error message mismatch"); } } PyErr_Clear(); if (err) PyErr_SetString(PyExc_ValueError, "foo"); throw py::error_already_set(); }); m.def("python_call_in_destructor", [](py::dict d) { try { PythonCallInDestructor set_dict_in_destructor(d); PyErr_SetString(PyExc_ValueError, "foo"); throw py::error_already_set(); } catch (const py::error_already_set&) { return true; } return false; }); }); pybind11-2.0.1/tests/test_exceptions.py000066400000000000000000000047721303320175600201070ustar00rootroot00000000000000import pytest def test_error_already_set(msg): from pybind11_tests import throw_already_set with pytest.raises(RuntimeError) as excinfo: throw_already_set(False) assert msg(excinfo.value) == "Unknown internal error occurred" with pytest.raises(ValueError) as excinfo: throw_already_set(True) assert msg(excinfo.value) == "foo" def test_python_call_in_catch(): from pybind11_tests import python_call_in_destructor d = {} assert python_call_in_destructor(d) is True assert d["good"] is True def test_custom(msg): from pybind11_tests import (MyException, MyException5, MyException5_1, throws1, throws2, throws3, throws4, throws5, throws5_1, throws_logic_error) # Can we catch a MyException?" with pytest.raises(MyException) as excinfo: throws1() assert msg(excinfo.value) == "this error should go to a custom type" # Can we translate to standard Python exceptions? with pytest.raises(RuntimeError) as excinfo: throws2() assert msg(excinfo.value) == "this error should go to a standard Python exception" # Can we handle unknown exceptions? with pytest.raises(RuntimeError) as excinfo: throws3() assert msg(excinfo.value) == "Caught an unknown exception!" # Can we delegate to another handler by rethrowing? with pytest.raises(MyException) as excinfo: throws4() assert msg(excinfo.value) == "this error is rethrown" # "Can we fall-through to the default handler?" with pytest.raises(RuntimeError) as excinfo: throws_logic_error() assert msg(excinfo.value) == "this error should fall through to the standard handler" # Can we handle a helper-declared exception? with pytest.raises(MyException5) as excinfo: throws5() assert msg(excinfo.value) == "this is a helper-defined translated exception" # Exception subclassing: with pytest.raises(MyException5) as excinfo: throws5_1() assert msg(excinfo.value) == "MyException5 subclass" assert isinstance(excinfo.value, MyException5_1) with pytest.raises(MyException5_1) as excinfo: throws5_1() assert msg(excinfo.value) == "MyException5 subclass" with pytest.raises(MyException5) as excinfo: try: throws5() except MyException5_1: raise RuntimeError("Exception error: caught child from parent") assert msg(excinfo.value) == "this is a helper-defined translated exception" pybind11-2.0.1/tests/test_inheritance.cpp000066400000000000000000000060631303320175600203440ustar00rootroot00000000000000/* tests/test_inheritance.cpp -- inheritance, automatic upcasting for polymorphic types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" class Pet { public: Pet(const std::string &name, const std::string &species) : m_name(name), m_species(species) {} std::string name() const { return m_name; } std::string species() const { return m_species; } private: std::string m_name; std::string m_species; }; class Dog : public Pet { public: Dog(const std::string &name) : Pet(name, "dog") {} std::string bark() const { return "Woof!"; } }; class Rabbit : public Pet { public: Rabbit(const std::string &name) : Pet(name, "parrot") {} }; class Hamster : public Pet { public: Hamster(const std::string &name) : Pet(name, "rodent") {} }; std::string pet_name_species(const Pet &pet) { return pet.name() + " is a " + pet.species(); } std::string dog_bark(const Dog &dog) { return dog.bark(); } struct BaseClass { virtual ~BaseClass() {} }; struct DerivedClass1 : BaseClass { }; struct DerivedClass2 : BaseClass { }; test_initializer inheritance([](py::module &m) { py::class_ pet_class(m, "Pet"); pet_class .def(py::init()) .def("name", &Pet::name) .def("species", &Pet::species); /* One way of declaring a subclass relationship: reference parent's class_ object */ py::class_(m, "Dog", pet_class) .def(py::init()); /* Another way of declaring a subclass relationship: reference parent's C++ type */ py::class_(m, "Rabbit") .def(py::init()); /* And another: list parent in class template arguments */ py::class_(m, "Hamster") .def(py::init()); m.def("pet_name_species", pet_name_species); m.def("dog_bark", dog_bark); py::class_(m, "BaseClass").def(py::init<>()); py::class_(m, "DerivedClass1").def(py::init<>()); py::class_(m, "DerivedClass2").def(py::init<>()); m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); }); m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); }); m.def("return_class_n", [](int n) -> BaseClass* { if (n == 1) return new DerivedClass1(); if (n == 2) return new DerivedClass2(); return new BaseClass(); }); m.def("return_none", []() -> BaseClass* { return nullptr; }); m.def("test_isinstance", [](py::list l) { struct Unregistered { }; // checks missing type_info code path return py::make_tuple( py::isinstance(l[0]), py::isinstance(l[1]), py::isinstance(l[2]), py::isinstance(l[3]), py::isinstance(l[4]), py::isinstance(l[5]), py::isinstance(l[6]) ); }); }); pybind11-2.0.1/tests/test_inheritance.py000066400000000000000000000041401303320175600202040ustar00rootroot00000000000000import pytest def test_inheritance(msg): from pybind11_tests import Pet, Dog, Rabbit, Hamster, dog_bark, pet_name_species roger = Rabbit('Rabbit') assert roger.name() + " is a " + roger.species() == "Rabbit is a parrot" assert pet_name_species(roger) == "Rabbit is a parrot" polly = Pet('Polly', 'parrot') assert polly.name() + " is a " + polly.species() == "Polly is a parrot" assert pet_name_species(polly) == "Polly is a parrot" molly = Dog('Molly') assert molly.name() + " is a " + molly.species() == "Molly is a dog" assert pet_name_species(molly) == "Molly is a dog" fred = Hamster('Fred') assert fred.name() + " is a " + fred.species() == "Fred is a rodent" assert dog_bark(molly) == "Woof!" with pytest.raises(TypeError) as excinfo: dog_bark(polly) assert msg(excinfo.value) == """ dog_bark(): incompatible function arguments. The following argument types are supported: 1. (arg0: m.Dog) -> str Invoked with: """ def test_automatic_upcasting(): from pybind11_tests import return_class_1, return_class_2, return_class_n, return_none assert type(return_class_1()).__name__ == "DerivedClass1" assert type(return_class_2()).__name__ == "DerivedClass2" assert type(return_none()).__name__ == "NoneType" # Repeat these a few times in a random order to ensure no invalid caching is applied assert type(return_class_n(1)).__name__ == "DerivedClass1" assert type(return_class_n(2)).__name__ == "DerivedClass2" assert type(return_class_n(0)).__name__ == "BaseClass" assert type(return_class_n(2)).__name__ == "DerivedClass2" assert type(return_class_n(2)).__name__ == "DerivedClass2" assert type(return_class_n(0)).__name__ == "BaseClass" assert type(return_class_n(1)).__name__ == "DerivedClass1" def test_isinstance(): from pybind11_tests import test_isinstance, Pet, Dog objects = [tuple(), dict(), Pet("Polly", "parrot")] + [Dog("Molly")] * 4 expected = (True, True, True, True, True, False, False) assert test_isinstance(objects) == expected pybind11-2.0.1/tests/test_issues.cpp000066400000000000000000000367671303320175600174040ustar00rootroot00000000000000/* tests/test_issues.cpp -- collection of testcases for miscellaneous issues Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include #include #include #define TRACKERS(CLASS) CLASS() { print_default_created(this); } ~CLASS() { print_destroyed(this); } struct NestABase { int value = -2; TRACKERS(NestABase) }; struct NestA : NestABase { int value = 3; NestA& operator+=(int i) { value += i; return *this; } TRACKERS(NestA) }; struct NestB { NestA a; int value = 4; NestB& operator-=(int i) { value -= i; return *this; } TRACKERS(NestB) }; struct NestC { NestB b; int value = 5; NestC& operator*=(int i) { value *= i; return *this; } TRACKERS(NestC) }; /// #393 class OpTest1 {}; class OpTest2 {}; OpTest1 operator+(const OpTest1 &, const OpTest1 &) { py::print("Add OpTest1 with OpTest1"); return OpTest1(); } OpTest2 operator+(const OpTest2 &, const OpTest2 &) { py::print("Add OpTest2 with OpTest2"); return OpTest2(); } OpTest2 operator+(const OpTest2 &, const OpTest1 &) { py::print("Add OpTest2 with OpTest1"); return OpTest2(); } // #461 class Dupe1 { public: Dupe1(int v) : v_{v} {} int get_value() const { return v_; } private: int v_; }; class Dupe2 {}; class Dupe3 {}; class DupeException : public std::runtime_error {}; // #478 template class custom_unique_ptr { public: custom_unique_ptr() { print_default_created(this); } custom_unique_ptr(T *ptr) : _ptr{ptr} { print_created(this, ptr); } custom_unique_ptr(custom_unique_ptr &&move) : _ptr{move._ptr} { move._ptr = nullptr; print_move_created(this); } custom_unique_ptr &operator=(custom_unique_ptr &&move) { print_move_assigned(this); if (_ptr) destruct_ptr(); _ptr = move._ptr; move._ptr = nullptr; return *this; } custom_unique_ptr(const custom_unique_ptr &) = delete; void operator=(const custom_unique_ptr ©) = delete; ~custom_unique_ptr() { print_destroyed(this); if (_ptr) destruct_ptr(); } private: T *_ptr = nullptr; void destruct_ptr() { delete _ptr; } }; PYBIND11_DECLARE_HOLDER_TYPE(T, custom_unique_ptr); /// Issue #528: templated constructor struct TplConstrClass { template TplConstrClass(const T &arg) : str{arg} {} std::string str; bool operator==(const TplConstrClass &t) const { return t.str == str; } }; namespace std { template <> struct hash { size_t operator()(const TplConstrClass &t) const { return std::hash()(t.str); } }; } void init_issues(py::module &m) { py::module m2 = m.def_submodule("issues"); #if !defined(_MSC_VER) // Visual Studio 2015 currently cannot compile this test // (see the comment in type_caster_base::make_copy_constructor) // #70 compilation issue if operator new is not public class NonConstructible { private: void *operator new(size_t bytes) throw(); }; py::class_(m, "Foo"); m2.def("getstmt", []() -> NonConstructible * { return nullptr; }, py::return_value_policy::reference); #endif // #137: const char* isn't handled properly m2.def("print_cchar", [](const char *s) { return std::string(s); }); // #150: char bindings broken m2.def("print_char", [](char c) { return std::string(1, c); }); // #159: virtual function dispatch has problems with similar-named functions struct Base { virtual std::string dispatch() const { /* for some reason MSVC2015 can't compile this if the function is pure virtual */ return {}; }; }; struct DispatchIssue : Base { virtual std::string dispatch() const { PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */); } }; py::class_(m2, "DispatchIssue") .def(py::init<>()) .def("dispatch", &Base::dispatch); m2.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); }); struct Placeholder { int i; Placeholder(int i) : i(i) { } }; py::class_(m2, "Placeholder") .def(py::init()) .def("__repr__", [](const Placeholder &p) { return "Placeholder[" + std::to_string(p.i) + "]"; }); // #171: Can't return reference wrappers (or STL datastructures containing them) m2.def("return_vec_of_reference_wrapper", [](std::reference_wrapper p4) { Placeholder *p1 = new Placeholder{1}; Placeholder *p2 = new Placeholder{2}; Placeholder *p3 = new Placeholder{3}; std::vector> v; v.push_back(std::ref(*p1)); v.push_back(std::ref(*p2)); v.push_back(std::ref(*p3)); v.push_back(p4); return v; }); // #181: iterator passthrough did not compile m2.def("iterator_passthrough", [](py::iterator s) -> py::iterator { return py::make_iterator(std::begin(s), std::end(s)); }); // #187: issue involving std::shared_ptr<> return value policy & garbage collection struct ElementBase { virtual void foo() { } /* Force creation of virtual table */ }; struct ElementA : ElementBase { ElementA(int v) : v(v) { } int value() { return v; } int v; }; struct ElementList { void add(std::shared_ptr e) { l.push_back(e); } std::vector> l; }; py::class_> (m2, "ElementBase"); py::class_>(m2, "ElementA") .def(py::init()) .def("value", &ElementA::value); py::class_>(m2, "ElementList") .def(py::init<>()) .def("add", &ElementList::add) .def("get", [](ElementList &el) { py::list list; for (auto &e : el.l) list.append(py::cast(e)); return list; }); // (no id): should not be able to pass 'None' to a reference argument m2.def("get_element", [](ElementA &el) { return el.value(); }); // (no id): don't cast doubles to ints m2.def("expect_float", [](float f) { return f; }); m2.def("expect_int", [](int i) { return i; }); try { py::class_(m2, "Placeholder"); throw std::logic_error("Expected an exception!"); } catch (std::runtime_error &) { /* All good */ } // Issue #283: __str__ called on uninitialized instance when constructor arguments invalid class StrIssue { public: StrIssue(int i) : val{i} {} StrIssue() : StrIssue(-1) {} int value() const { return val; } private: int val; }; py::class_ si(m2, "StrIssue"); si .def(py::init()) .def(py::init<>()) .def("__str__", [](const StrIssue &si) { return "StrIssue[" + std::to_string(si.value()) + "]"; }) ; // Issue #328: first member in a class can't be used in operators py::class_(m2, "NestABase").def(py::init<>()).def_readwrite("value", &NestABase::value); py::class_(m2, "NestA").def(py::init<>()).def(py::self += int()) .def("as_base", [](NestA &a) -> NestABase& { return (NestABase&) a; }, py::return_value_policy::reference_internal); py::class_(m2, "NestB").def(py::init<>()).def(py::self -= int()).def_readwrite("a", &NestB::a); py::class_(m2, "NestC").def(py::init<>()).def(py::self *= int()).def_readwrite("b", &NestC::b); m2.def("get_NestA", [](const NestA &a) { return a.value; }); m2.def("get_NestB", [](const NestB &b) { return b.value; }); m2.def("get_NestC", [](const NestC &c) { return c.value; }); // Issue 389: r_v_p::move should fall-through to copy on non-movable objects class MoveIssue1 { public: MoveIssue1(int v) : v{v} {} MoveIssue1(const MoveIssue1 &c) { v = c.v; } MoveIssue1(MoveIssue1 &&) = delete; int v; }; class MoveIssue2 { public: MoveIssue2(int v) : v{v} {} MoveIssue2(MoveIssue2 &&) = default; int v; }; py::class_(m2, "MoveIssue1").def(py::init()).def_readwrite("value", &MoveIssue1::v); py::class_(m2, "MoveIssue2").def(py::init()).def_readwrite("value", &MoveIssue2::v); m2.def("get_moveissue1", [](int i) -> MoveIssue1 * { return new MoveIssue1(i); }, py::return_value_policy::move); m2.def("get_moveissue2", [](int i) { return MoveIssue2(i); }, py::return_value_policy::move); // Issues 392/397: overridding reference-returning functions class OverrideTest { public: struct A { std::string value = "hi"; }; std::string v; A a; explicit OverrideTest(const std::string &v) : v{v} {} virtual std::string str_value() { return v; } virtual std::string &str_ref() { return v; } virtual A A_value() { return a; } virtual A &A_ref() { return a; } }; class PyOverrideTest : public OverrideTest { public: using OverrideTest::OverrideTest; std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); } // Not allowed (uncommenting should hit a static_assert failure): we can't get a reference // to a python numeric value, since we only copy values in the numeric type caster: // std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); } // But we can work around it like this: private: std::string _tmp; std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); } public: std::string &str_ref() override { return _tmp = str_ref_helper(); } A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); } A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); } }; py::class_(m2, "OverrideTest_A") .def_readwrite("value", &OverrideTest::A::value); py::class_(m2, "OverrideTest") .def(py::init()) .def("str_value", &OverrideTest::str_value) // .def("str_ref", &OverrideTest::str_ref) .def("A_value", &OverrideTest::A_value) .def("A_ref", &OverrideTest::A_ref); /// Issue 393: need to return NotSupported to ensure correct arithmetic operator behavior py::class_(m2, "OpTest1") .def(py::init<>()) .def(py::self + py::self); py::class_(m2, "OpTest2") .def(py::init<>()) .def(py::self + py::self) .def("__add__", [](const OpTest2& c2, const OpTest1& c1) { return c2 + c1; }) .def("__radd__", [](const OpTest2& c2, const OpTest1& c1) { return c2 + c1; }); // Issue 388: Can't make iterators via make_iterator() with different r/v policies static std::vector list = { 1, 2, 3 }; m2.def("make_iterator_1", []() { return py::make_iterator(list); }); m2.def("make_iterator_2", []() { return py::make_iterator(list); }); static std::vector nothrows; // Issue 461: registering two things with the same name: py::class_(m2, "Dupe1") .def("get_value", &Dupe1::get_value) ; m2.def("dupe1_factory", [](int v) { return new Dupe1(v); }); py::class_(m2, "Dupe2"); py::exception(m2, "DupeException"); try { m2.def("Dupe1", [](int v) { return new Dupe1(v); }); nothrows.emplace_back("Dupe1"); } catch (std::runtime_error &) {} try { py::class_(m2, "dupe1_factory"); nothrows.emplace_back("dupe1_factory"); } catch (std::runtime_error &) {} try { py::exception(m2, "Dupe2"); nothrows.emplace_back("Dupe2"); } catch (std::runtime_error &) {} try { m2.def("DupeException", []() { return 30; }); nothrows.emplace_back("DupeException1"); } catch (std::runtime_error &) {} try { py::class_(m2, "DupeException"); nothrows.emplace_back("DupeException2"); } catch (std::runtime_error &) {} m2.def("dupe_exception_failures", []() { py::list l; for (auto &e : nothrows) l.append(py::cast(e)); return l; }); /// Issue #471: shared pointer instance not dellocated class SharedChild : public std::enable_shared_from_this { public: SharedChild() { print_created(this); } ~SharedChild() { print_destroyed(this); } }; class SharedParent { public: SharedParent() : child(std::make_shared()) { } const SharedChild &get_child() const { return *child; } private: std::shared_ptr child; }; py::class_>(m, "SharedChild"); py::class_>(m, "SharedParent") .def(py::init<>()) .def("get_child", &SharedParent::get_child, py::return_value_policy::reference); /// Issue/PR #478: unique ptrs constructed and freed without destruction class SpecialHolderObj { public: int val = 0; SpecialHolderObj *ch = nullptr; SpecialHolderObj(int v, bool make_child = true) : val{v}, ch{make_child ? new SpecialHolderObj(val+1, false) : nullptr} { print_created(this, val); } ~SpecialHolderObj() { delete ch; print_destroyed(this); } SpecialHolderObj *child() { return ch; } }; py::class_>(m, "SpecialHolderObj") .def(py::init()) .def("child", &SpecialHolderObj::child, pybind11::return_value_policy::reference_internal) .def_readwrite("val", &SpecialHolderObj::val) .def_static("holder_cstats", &ConstructorStats::get>, py::return_value_policy::reference); /// Issue #484: number conversion generates unhandled exceptions m2.def("test_complex", [](float x) { py::print("{}"_s.format(x)); }); m2.def("test_complex", [](std::complex x) { py::print("({}, {})"_s.format(x.real(), x.imag())); }); /// Issue #511: problem with inheritance + overwritten def_static struct MyBase { static std::unique_ptr make() { return std::unique_ptr(new MyBase()); } }; struct MyDerived : MyBase { static std::unique_ptr make() { return std::unique_ptr(new MyDerived()); } }; py::class_(m2, "MyBase") .def_static("make", &MyBase::make); py::class_(m2, "MyDerived") .def_static("make", &MyDerived::make) .def_static("make2", &MyDerived::make); py::dict d; std::string bar = "bar"; d["str"] = bar; d["num"] = 3.7; /// Issue #528: templated constructor m2.def("tpl_constr_vector", [](std::vector &) {}); m2.def("tpl_constr_map", [](std::unordered_map &) {}); m2.def("tpl_constr_set", [](std::unordered_set &) {}); #if defined(PYBIND11_HAS_OPTIONAL) m2.def("tpl_constr_optional", [](std::optional &) {}); #elif defined(PYBIND11_HAS_EXP_OPTIONAL) m2.def("tpl_constr_optional", [](std::experimental::optional &) {}); #endif } // MSVC workaround: trying to use a lambda here crashes MSCV test_initializer issues(&init_issues); pybind11-2.0.1/tests/test_issues.py000066400000000000000000000156311303320175600172350ustar00rootroot00000000000000import pytest from pybind11_tests import ConstructorStats def test_regressions(): from pybind11_tests.issues import print_cchar, print_char # #137: const char* isn't handled properly assert print_cchar("const char *") == "const char *" # #150: char bindings broken assert print_char("c") == "c" def test_dispatch_issue(msg): """#159: virtual function dispatch has problems with similar-named functions""" from pybind11_tests.issues import DispatchIssue, dispatch_issue_go class PyClass1(DispatchIssue): def dispatch(self): return "Yay.." class PyClass2(DispatchIssue): def dispatch(self): with pytest.raises(RuntimeError) as excinfo: super(PyClass2, self).dispatch() assert msg(excinfo.value) == 'Tried to call pure virtual function "Base::dispatch"' p = PyClass1() return dispatch_issue_go(p) b = PyClass2() assert dispatch_issue_go(b) == "Yay.." def test_reference_wrapper(): """#171: Can't return reference wrappers (or STL data structures containing them)""" from pybind11_tests.issues import Placeholder, return_vec_of_reference_wrapper assert str(return_vec_of_reference_wrapper(Placeholder(4))) == \ "[Placeholder[1], Placeholder[2], Placeholder[3], Placeholder[4]]" def test_iterator_passthrough(): """#181: iterator passthrough did not compile""" from pybind11_tests.issues import iterator_passthrough assert list(iterator_passthrough(iter([3, 5, 7, 9, 11, 13, 15]))) == [3, 5, 7, 9, 11, 13, 15] def test_shared_ptr_gc(): """// #187: issue involving std::shared_ptr<> return value policy & garbage collection""" from pybind11_tests.issues import ElementList, ElementA el = ElementList() for i in range(10): el.add(ElementA(i)) pytest.gc_collect() for i, v in enumerate(el.get()): assert i == v.value() def test_no_id(msg): from pybind11_tests.issues import get_element, expect_float, expect_int with pytest.raises(TypeError) as excinfo: get_element(None) assert msg(excinfo.value) == """ get_element(): incompatible function arguments. The following argument types are supported: 1. (arg0: m.issues.ElementA) -> int Invoked with: None """ with pytest.raises(TypeError) as excinfo: expect_int(5.2) assert msg(excinfo.value) == """ expect_int(): incompatible function arguments. The following argument types are supported: 1. (arg0: int) -> int Invoked with: 5.2 """ assert expect_float(12) == 12 def test_str_issue(msg): """Issue #283: __str__ called on uninitialized instance when constructor arguments invalid""" from pybind11_tests.issues import StrIssue assert str(StrIssue(3)) == "StrIssue[3]" with pytest.raises(TypeError) as excinfo: str(StrIssue("no", "such", "constructor")) assert msg(excinfo.value) == """ __init__(): incompatible constructor arguments. The following argument types are supported: 1. m.issues.StrIssue(arg0: int) 2. m.issues.StrIssue() Invoked with: 'no', 'such', 'constructor' """ def test_nested(): """ #328: first member in a class can't be used in operators""" from pybind11_tests.issues import NestA, NestB, NestC, get_NestA, get_NestB, get_NestC a = NestA() b = NestB() c = NestC() a += 10 assert get_NestA(a) == 13 b.a += 100 assert get_NestA(b.a) == 103 c.b.a += 1000 assert get_NestA(c.b.a) == 1003 b -= 1 assert get_NestB(b) == 3 c.b -= 3 assert get_NestB(c.b) == 1 c *= 7 assert get_NestC(c) == 35 abase = a.as_base() assert abase.value == -2 a.as_base().value += 44 assert abase.value == 42 assert c.b.a.as_base().value == -2 c.b.a.as_base().value += 44 assert c.b.a.as_base().value == 42 del c pytest.gc_collect() del a # Should't delete while abase is still alive pytest.gc_collect() assert abase.value == 42 del abase, b pytest.gc_collect() def test_move_fallback(): from pybind11_tests.issues import get_moveissue1, get_moveissue2 m2 = get_moveissue2(2) assert m2.value == 2 m1 = get_moveissue1(1) assert m1.value == 1 def test_override_ref(): from pybind11_tests.issues import OverrideTest o = OverrideTest("asdf") # Not allowed (see associated .cpp comment) # i = o.str_ref() # assert o.str_ref() == "asdf" assert o.str_value() == "asdf" assert o.A_value().value == "hi" a = o.A_ref() assert a.value == "hi" a.value = "bye" assert a.value == "bye" def test_operators_notimplemented(capture): from pybind11_tests.issues import OpTest1, OpTest2 with capture: c1, c2 = OpTest1(), OpTest2() c1 + c1 c2 + c2 c2 + c1 c1 + c2 assert capture == """ Add OpTest1 with OpTest1 Add OpTest2 with OpTest2 Add OpTest2 with OpTest1 Add OpTest2 with OpTest1 """ def test_iterator_rvpolicy(): """ Issue 388: Can't make iterators via make_iterator() with different r/v policies """ from pybind11_tests.issues import make_iterator_1 from pybind11_tests.issues import make_iterator_2 assert list(make_iterator_1()) == [1, 2, 3] assert list(make_iterator_2()) == [1, 2, 3] assert not isinstance(make_iterator_1(), type(make_iterator_2())) def test_dupe_assignment(): """ Issue 461: overwriting a class with a function """ from pybind11_tests.issues import dupe_exception_failures assert dupe_exception_failures() == [] def test_enable_shared_from_this_with_reference_rvp(): """ Issue #471: shared pointer instance not dellocated """ from pybind11_tests import SharedParent, SharedChild parent = SharedParent() child = parent.get_child() cstats = ConstructorStats.get(SharedChild) assert cstats.alive() == 1 del child, parent assert cstats.alive() == 0 def test_non_destructed_holders(): """ Issue #478: unique ptrs constructed and freed without destruction """ from pybind11_tests import SpecialHolderObj a = SpecialHolderObj(123) b = a.child() assert a.val == 123 assert b.val == 124 cstats = SpecialHolderObj.holder_cstats() assert cstats.alive() == 1 del b assert cstats.alive() == 1 del a assert cstats.alive() == 0 def test_complex_cast(capture): """ Issue #484: number conversion generates unhandled exceptions """ from pybind11_tests.issues import test_complex with capture: test_complex(1) test_complex(2j) assert capture == """ 1.0 (0.0, 2.0) """ def test_inheritance_override_def_static(): from pybind11_tests.issues import MyBase, MyDerived b = MyBase.make() d1 = MyDerived.make2() d2 = MyDerived.make() assert isinstance(b, MyBase) assert isinstance(d1, MyDerived) assert isinstance(d2, MyDerived) pybind11-2.0.1/tests/test_keep_alive.cpp000066400000000000000000000025471303320175600201620ustar00rootroot00000000000000/* tests/test_keep_alive.cpp -- keep_alive modifier (pybind11's version of Boost.Python's with_custodian_and_ward / with_custodian_and_ward_postcall) Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" class Child { public: Child() { py::print("Allocating child."); } ~Child() { py::print("Releasing child."); } }; class Parent { public: Parent() { py::print("Allocating parent."); } ~Parent() { py::print("Releasing parent."); } void addChild(Child *) { } Child *returnChild() { return new Child(); } Child *returnNullChild() { return nullptr; } }; test_initializer keep_alive([](py::module &m) { py::class_(m, "Parent") .def(py::init<>()) .def("addChild", &Parent::addChild) .def("addChildKeepAlive", &Parent::addChild, py::keep_alive<1, 2>()) .def("returnChild", &Parent::returnChild) .def("returnChildKeepAlive", &Parent::returnChild, py::keep_alive<1, 0>()) .def("returnNullChildKeepAliveChild", &Parent::returnNullChild, py::keep_alive<1, 0>()) .def("returnNullChildKeepAliveParent", &Parent::returnNullChild, py::keep_alive<0, 1>()); py::class_(m, "Child") .def(py::init<>()); }); pybind11-2.0.1/tests/test_keep_alive.py000066400000000000000000000042751303320175600200300ustar00rootroot00000000000000import pytest def test_keep_alive_argument(capture): from pybind11_tests import Parent, Child with capture: p = Parent() assert capture == "Allocating parent." with capture: p.addChild(Child()) pytest.gc_collect() assert capture == """ Allocating child. Releasing child. """ with capture: del p pytest.gc_collect() assert capture == "Releasing parent." with capture: p = Parent() assert capture == "Allocating parent." with capture: p.addChildKeepAlive(Child()) pytest.gc_collect() assert capture == "Allocating child." with capture: del p pytest.gc_collect() assert capture == """ Releasing parent. Releasing child. """ def test_keep_alive_return_value(capture): from pybind11_tests import Parent with capture: p = Parent() assert capture == "Allocating parent." with capture: p.returnChild() pytest.gc_collect() assert capture == """ Allocating child. Releasing child. """ with capture: del p pytest.gc_collect() assert capture == "Releasing parent." with capture: p = Parent() assert capture == "Allocating parent." with capture: p.returnChildKeepAlive() pytest.gc_collect() assert capture == "Allocating child." with capture: del p pytest.gc_collect() assert capture == """ Releasing parent. Releasing child. """ def test_return_none(capture): from pybind11_tests import Parent with capture: p = Parent() assert capture == "Allocating parent." with capture: p.returnNullChildKeepAliveChild() pytest.gc_collect() assert capture == "" with capture: del p pytest.gc_collect() assert capture == "Releasing parent." with capture: p = Parent() assert capture == "Allocating parent." with capture: p.returnNullChildKeepAliveParent() pytest.gc_collect() assert capture == "" with capture: del p pytest.gc_collect() assert capture == "Releasing parent." pybind11-2.0.1/tests/test_kwargs_and_defaults.cpp000066400000000000000000000032161303320175600220570ustar00rootroot00000000000000/* tests/test_kwargs_and_defaults.cpp -- keyword arguments and default values Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include std::string kw_func(int x, int y) { return "x=" + std::to_string(x) + ", y=" + std::to_string(y); } std::string kw_func4(const std::vector &entries) { std::string ret = "{"; for (int i : entries) ret += std::to_string(i) + " "; ret.back() = '}'; return ret; } py::tuple args_function(py::args args) { return args; } py::tuple args_kwargs_function(py::args args, py::kwargs kwargs) { return py::make_tuple(args, kwargs); } struct KWClass { void foo(int, float) {} }; test_initializer arg_keywords_and_defaults([](py::module &m) { m.def("kw_func0", &kw_func); m.def("kw_func1", &kw_func, py::arg("x"), py::arg("y")); m.def("kw_func2", &kw_func, py::arg("x") = 100, py::arg("y") = 200); m.def("kw_func3", [](const char *) { }, py::arg("data") = std::string("Hello world!")); /* A fancier default argument */ std::vector list; list.push_back(13); list.push_back(17); m.def("kw_func4", &kw_func4, py::arg("myList") = list); m.def("args_function", &args_function); m.def("args_kwargs_function", &args_kwargs_function); m.def("kw_func_udl", &kw_func, "x"_a, "y"_a=300); m.def("kw_func_udl_z", &kw_func, "x"_a, "y"_a=0); py::class_(m, "KWClass") .def("foo0", &KWClass::foo) .def("foo1", &KWClass::foo, "x"_a, "y"_a); }); pybind11-2.0.1/tests/test_kwargs_and_defaults.py000066400000000000000000000043211303320175600217230ustar00rootroot00000000000000import pytest from pybind11_tests import (kw_func0, kw_func1, kw_func2, kw_func3, kw_func4, args_function, args_kwargs_function, kw_func_udl, kw_func_udl_z, KWClass) def test_function_signatures(doc): assert doc(kw_func0) == "kw_func0(arg0: int, arg1: int) -> str" assert doc(kw_func1) == "kw_func1(x: int, y: int) -> str" assert doc(kw_func2) == "kw_func2(x: int=100, y: int=200) -> str" assert doc(kw_func3) == "kw_func3(data: str='Hello world!') -> None" assert doc(kw_func4) == "kw_func4(myList: List[int]=[13, 17]) -> str" assert doc(kw_func_udl) == "kw_func_udl(x: int, y: int=300) -> str" assert doc(kw_func_udl_z) == "kw_func_udl_z(x: int, y: int=0) -> str" assert doc(args_function) == "args_function(*args) -> tuple" assert doc(args_kwargs_function) == "args_kwargs_function(*args, **kwargs) -> tuple" assert doc(KWClass.foo0) == "foo0(self: m.KWClass, arg0: int, arg1: float) -> None" assert doc(KWClass.foo1) == "foo1(self: m.KWClass, x: int, y: float) -> None" def test_named_arguments(msg): assert kw_func0(5, 10) == "x=5, y=10" assert kw_func1(5, 10) == "x=5, y=10" assert kw_func1(5, y=10) == "x=5, y=10" assert kw_func1(y=10, x=5) == "x=5, y=10" assert kw_func2() == "x=100, y=200" assert kw_func2(5) == "x=5, y=200" assert kw_func2(x=5) == "x=5, y=200" assert kw_func2(y=10) == "x=100, y=10" assert kw_func2(5, 10) == "x=5, y=10" assert kw_func2(x=5, y=10) == "x=5, y=10" with pytest.raises(TypeError) as excinfo: # noinspection PyArgumentList kw_func2(x=5, y=10, z=12) assert msg(excinfo.value) == """ kw_func2(): incompatible function arguments. The following argument types are supported: 1. (x: int=100, y: int=200) -> str Invoked with: """ assert kw_func4() == "{13 17}" assert kw_func4(myList=[1, 2, 3]) == "{1 2 3}" assert kw_func_udl(x=5, y=10) == "x=5, y=10" assert kw_func_udl_z(x=5) == "x=5, y=0" def test_arg_and_kwargs(): args = 'arg1_value', 'arg2_value', 3 assert args_function(*args) == args args = 'a1', 'a2' kwargs = dict(arg3='a3', arg4=4) assert args_kwargs_function(*args, **kwargs) == (args, kwargs) pybind11-2.0.1/tests/test_methods_and_attributes.cpp000066400000000000000000000216761303320175600226150ustar00rootroot00000000000000/* tests/test_methods_and_attributes.cpp -- constructors, deconstructors, attribute access, __str__, argument and return value conventions Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" class ExampleMandA { public: ExampleMandA() { print_default_created(this); } ExampleMandA(int value) : value(value) { print_created(this, value); } ExampleMandA(const ExampleMandA &e) : value(e.value) { print_copy_created(this); } ExampleMandA(ExampleMandA &&e) : value(e.value) { print_move_created(this); } ~ExampleMandA() { print_destroyed(this); } std::string toString() { return "ExampleMandA[value=" + std::to_string(value) + "]"; } void operator=(const ExampleMandA &e) { print_copy_assigned(this); value = e.value; } void operator=(ExampleMandA &&e) { print_move_assigned(this); value = e.value; } void add1(ExampleMandA other) { value += other.value; } // passing by value void add2(ExampleMandA &other) { value += other.value; } // passing by reference void add3(const ExampleMandA &other) { value += other.value; } // passing by const reference void add4(ExampleMandA *other) { value += other->value; } // passing by pointer void add5(const ExampleMandA *other) { value += other->value; } // passing by const pointer void add6(int other) { value += other; } // passing by value void add7(int &other) { value += other; } // passing by reference void add8(const int &other) { value += other; } // passing by const reference void add9(int *other) { value += *other; } // passing by pointer void add10(const int *other) { value += *other; } // passing by const pointer ExampleMandA self1() { return *this; } // return by value ExampleMandA &self2() { return *this; } // return by reference const ExampleMandA &self3() { return *this; } // return by const reference ExampleMandA *self4() { return this; } // return by pointer const ExampleMandA *self5() { return this; } // return by const pointer int internal1() { return value; } // return by value int &internal2() { return value; } // return by reference const int &internal3() { return value; } // return by const reference int *internal4() { return &value; } // return by pointer const int *internal5() { return &value; } // return by const pointer py::str overloaded(int, float) { return "(int, float)"; } py::str overloaded(float, int) { return "(float, int)"; } py::str overloaded(int, float) const { return "(int, float) const"; } py::str overloaded(float, int) const { return "(float, int) const"; } int value = 0; }; struct TestProperties { int value = 1; static int static_value; int get() const { return value; } void set(int v) { value = v; } static int static_get() { return static_value; } static void static_set(int v) { static_value = v; } }; int TestProperties::static_value = 1; struct SimpleValue { int value = 1; }; struct TestPropRVP { SimpleValue v1; SimpleValue v2; static SimpleValue sv1; static SimpleValue sv2; const SimpleValue &get1() const { return v1; } const SimpleValue &get2() const { return v2; } SimpleValue get_rvalue() const { return v2; } void set1(int v) { v1.value = v; } void set2(int v) { v2.value = v; } }; SimpleValue TestPropRVP::sv1{}; SimpleValue TestPropRVP::sv2{}; class DynamicClass { public: DynamicClass() { print_default_created(this); } ~DynamicClass() { print_destroyed(this); } }; class CppDerivedDynamicClass : public DynamicClass { }; test_initializer methods_and_attributes([](py::module &m) { py::class_(m, "ExampleMandA") .def(py::init<>()) .def(py::init()) .def(py::init()) .def("add1", &ExampleMandA::add1) .def("add2", &ExampleMandA::add2) .def("add3", &ExampleMandA::add3) .def("add4", &ExampleMandA::add4) .def("add5", &ExampleMandA::add5) .def("add6", &ExampleMandA::add6) .def("add7", &ExampleMandA::add7) .def("add8", &ExampleMandA::add8) .def("add9", &ExampleMandA::add9) .def("add10", &ExampleMandA::add10) .def("self1", &ExampleMandA::self1) .def("self2", &ExampleMandA::self2) .def("self3", &ExampleMandA::self3) .def("self4", &ExampleMandA::self4) .def("self5", &ExampleMandA::self5) .def("internal1", &ExampleMandA::internal1) .def("internal2", &ExampleMandA::internal2) .def("internal3", &ExampleMandA::internal3) .def("internal4", &ExampleMandA::internal4) .def("internal5", &ExampleMandA::internal5) #if defined(PYBIND11_OVERLOAD_CAST) .def("overloaded", py::overload_cast(&ExampleMandA::overloaded)) .def("overloaded", py::overload_cast(&ExampleMandA::overloaded)) .def("overloaded_const", py::overload_cast(&ExampleMandA::overloaded, py::const_)) .def("overloaded_const", py::overload_cast(&ExampleMandA::overloaded, py::const_)) #else .def("overloaded", static_cast(&ExampleMandA::overloaded)) .def("overloaded", static_cast(&ExampleMandA::overloaded)) .def("overloaded_const", static_cast(&ExampleMandA::overloaded)) .def("overloaded_const", static_cast(&ExampleMandA::overloaded)) #endif .def("__str__", &ExampleMandA::toString) .def_readwrite("value", &ExampleMandA::value); py::class_(m, "TestProperties", py::metaclass()) .def(py::init<>()) .def_readonly("def_readonly", &TestProperties::value) .def_readwrite("def_readwrite", &TestProperties::value) .def_property_readonly("def_property_readonly", &TestProperties::get) .def_property("def_property", &TestProperties::get, &TestProperties::set) .def_readonly_static("def_readonly_static", &TestProperties::static_value) .def_readwrite_static("def_readwrite_static", &TestProperties::static_value) .def_property_readonly_static("def_property_readonly_static", [](py::object) { return TestProperties::static_get(); }) .def_property_static("def_property_static", [](py::object) { return TestProperties::static_get(); }, [](py::object, int v) { return TestProperties::static_set(v); }); py::class_(m, "SimpleValue") .def_readwrite("value", &SimpleValue::value); auto static_get1 = [](py::object) -> const SimpleValue & { return TestPropRVP::sv1; }; auto static_get2 = [](py::object) -> const SimpleValue & { return TestPropRVP::sv2; }; auto static_set1 = [](py::object, int v) { TestPropRVP::sv1.value = v; }; auto static_set2 = [](py::object, int v) { TestPropRVP::sv2.value = v; }; auto rvp_copy = py::return_value_policy::copy; py::class_(m, "TestPropRVP", py::metaclass()) .def(py::init<>()) .def_property_readonly("ro_ref", &TestPropRVP::get1) .def_property_readonly("ro_copy", &TestPropRVP::get2, rvp_copy) .def_property_readonly("ro_func", py::cpp_function(&TestPropRVP::get2, rvp_copy)) .def_property("rw_ref", &TestPropRVP::get1, &TestPropRVP::set1) .def_property("rw_copy", &TestPropRVP::get2, &TestPropRVP::set2, rvp_copy) .def_property("rw_func", py::cpp_function(&TestPropRVP::get2, rvp_copy), &TestPropRVP::set2) .def_property_readonly_static("static_ro_ref", static_get1) .def_property_readonly_static("static_ro_copy", static_get2, rvp_copy) .def_property_readonly_static("static_ro_func", py::cpp_function(static_get2, rvp_copy)) .def_property_static("static_rw_ref", static_get1, static_set1) .def_property_static("static_rw_copy", static_get2, static_set2, rvp_copy) .def_property_static("static_rw_func", py::cpp_function(static_get2, rvp_copy), static_set2) .def_property_readonly("rvalue", &TestPropRVP::get_rvalue) .def_property_readonly_static("static_rvalue", [](py::object) { return SimpleValue(); }); #if !defined(PYPY_VERSION) py::class_(m, "DynamicClass", py::dynamic_attr()) .def(py::init()); py::class_(m, "CppDerivedDynamicClass") .def(py::init()); #endif }); pybind11-2.0.1/tests/test_methods_and_attributes.py000066400000000000000000000137101303320175600224510ustar00rootroot00000000000000import pytest from pybind11_tests import ExampleMandA, ConstructorStats def test_methods_and_attributes(): instance1 = ExampleMandA() instance2 = ExampleMandA(32) instance1.add1(instance2) instance1.add2(instance2) instance1.add3(instance2) instance1.add4(instance2) instance1.add5(instance2) instance1.add6(32) instance1.add7(32) instance1.add8(32) instance1.add9(32) instance1.add10(32) assert str(instance1) == "ExampleMandA[value=320]" assert str(instance2) == "ExampleMandA[value=32]" assert str(instance1.self1()) == "ExampleMandA[value=320]" assert str(instance1.self2()) == "ExampleMandA[value=320]" assert str(instance1.self3()) == "ExampleMandA[value=320]" assert str(instance1.self4()) == "ExampleMandA[value=320]" assert str(instance1.self5()) == "ExampleMandA[value=320]" assert instance1.internal1() == 320 assert instance1.internal2() == 320 assert instance1.internal3() == 320 assert instance1.internal4() == 320 assert instance1.internal5() == 320 assert instance1.overloaded(1, 1.0) == "(int, float)" assert instance1.overloaded(2.0, 2) == "(float, int)" assert instance1.overloaded_const(3, 3.0) == "(int, float) const" assert instance1.overloaded_const(4.0, 4) == "(float, int) const" assert instance1.value == 320 instance1.value = 100 assert str(instance1) == "ExampleMandA[value=100]" cstats = ConstructorStats.get(ExampleMandA) assert cstats.alive() == 2 del instance1, instance2 assert cstats.alive() == 0 assert cstats.values() == ["32"] assert cstats.default_constructions == 1 assert cstats.copy_constructions == 3 assert cstats.move_constructions >= 1 assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 def test_properties(): from pybind11_tests import TestProperties instance = TestProperties() assert instance.def_readonly == 1 with pytest.raises(AttributeError): instance.def_readonly = 2 instance.def_readwrite = 2 assert instance.def_readwrite == 2 assert instance.def_property_readonly == 2 with pytest.raises(AttributeError): instance.def_property_readonly = 3 instance.def_property = 3 assert instance.def_property == 3 def test_static_properties(): from pybind11_tests import TestProperties as Type assert Type.def_readonly_static == 1 with pytest.raises(AttributeError): Type.def_readonly_static = 2 Type.def_readwrite_static = 2 assert Type.def_readwrite_static == 2 assert Type.def_property_readonly_static == 2 with pytest.raises(AttributeError): Type.def_property_readonly_static = 3 Type.def_property_static = 3 assert Type.def_property_static == 3 @pytest.mark.parametrize("access", ["ro", "rw", "static_ro", "static_rw"]) def test_property_return_value_policies(access): from pybind11_tests import TestPropRVP if not access.startswith("static"): obj = TestPropRVP() else: obj = TestPropRVP ref = getattr(obj, access + "_ref") assert ref.value == 1 ref.value = 2 assert getattr(obj, access + "_ref").value == 2 ref.value = 1 # restore original value for static properties copy = getattr(obj, access + "_copy") assert copy.value == 1 copy.value = 2 assert getattr(obj, access + "_copy").value == 1 copy = getattr(obj, access + "_func") assert copy.value == 1 copy.value = 2 assert getattr(obj, access + "_func").value == 1 def test_property_rvalue_policy(): """When returning an rvalue, the return value policy is automatically changed from `reference(_internal)` to `move`. The following would not work otherwise. """ from pybind11_tests import TestPropRVP instance = TestPropRVP() o = instance.rvalue assert o.value == 1 def test_property_rvalue_policy_static(): """When returning an rvalue, the return value policy is automatically changed from `reference(_internal)` to `move`. The following would not work otherwise. """ from pybind11_tests import TestPropRVP o = TestPropRVP.static_rvalue assert o.value == 1 # https://bitbucket.org/pypy/pypy/issues/2447 @pytest.unsupported_on_pypy def test_dynamic_attributes(): from pybind11_tests import DynamicClass, CppDerivedDynamicClass instance = DynamicClass() assert not hasattr(instance, "foo") assert "foo" not in dir(instance) # Dynamically add attribute instance.foo = 42 assert hasattr(instance, "foo") assert instance.foo == 42 assert "foo" in dir(instance) # __dict__ should be accessible and replaceable assert "foo" in instance.__dict__ instance.__dict__ = {"bar": True} assert not hasattr(instance, "foo") assert hasattr(instance, "bar") with pytest.raises(TypeError) as excinfo: instance.__dict__ = [] assert str(excinfo.value) == "__dict__ must be set to a dictionary, not a 'list'" cstats = ConstructorStats.get(DynamicClass) assert cstats.alive() == 1 del instance assert cstats.alive() == 0 # Derived classes should work as well class PythonDerivedDynamicClass(DynamicClass): pass for cls in CppDerivedDynamicClass, PythonDerivedDynamicClass: derived = cls() derived.foobar = 100 assert derived.foobar == 100 assert cstats.alive() == 1 del derived assert cstats.alive() == 0 # https://bitbucket.org/pypy/pypy/issues/2447 @pytest.unsupported_on_pypy def test_cyclic_gc(): from pybind11_tests import DynamicClass # One object references itself instance = DynamicClass() instance.circular_reference = instance cstats = ConstructorStats.get(DynamicClass) assert cstats.alive() == 1 del instance assert cstats.alive() == 0 # Two object reference each other i1 = DynamicClass() i2 = DynamicClass() i1.cycle = i2 i2.cycle = i1 assert cstats.alive() == 2 del i1, i2 assert cstats.alive() == 0 pybind11-2.0.1/tests/test_modules.cpp000066400000000000000000000034731303320175600175250ustar00rootroot00000000000000/* tests/test_modules.cpp -- nested modules, importing modules, and internal references Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" std::string submodule_func() { return "submodule_func()"; } class A { public: A(int v) : v(v) { print_created(this, v); } ~A() { print_destroyed(this); } A(const A&) { print_copy_created(this); } A& operator=(const A ©) { print_copy_assigned(this); v = copy.v; return *this; } std::string toString() { return "A[" + std::to_string(v) + "]"; } private: int v; }; class B { public: B() { print_default_created(this); } ~B() { print_destroyed(this); } B(const B&) { print_copy_created(this); } B& operator=(const B ©) { print_copy_assigned(this); a1 = copy.a1; a2 = copy.a2; return *this; } A &get_a1() { return a1; } A &get_a2() { return a2; } A a1{1}; A a2{2}; }; test_initializer modules([](py::module &m) { py::module m_sub = m.def_submodule("submodule"); m_sub.def("submodule_func", &submodule_func); py::class_(m_sub, "A") .def(py::init()) .def("__repr__", &A::toString); py::class_(m_sub, "B") .def(py::init<>()) .def("get_a1", &B::get_a1, "Return the internal A 1", py::return_value_policy::reference_internal) .def("get_a2", &B::get_a2, "Return the internal A 2", py::return_value_policy::reference_internal) .def_readwrite("a1", &B::a1) // def_readonly uses an internal reference return policy by default .def_readwrite("a2", &B::a2); m.attr("OD") = py::module::import("collections").attr("OrderedDict"); }); pybind11-2.0.1/tests/test_modules.py000066400000000000000000000032501303320175600173640ustar00rootroot00000000000000 def test_nested_modules(): import pybind11_tests from pybind11_tests.submodule import submodule_func assert pybind11_tests.__name__ == "pybind11_tests" assert pybind11_tests.submodule.__name__ == "pybind11_tests.submodule" assert submodule_func() == "submodule_func()" def test_reference_internal(): from pybind11_tests import ConstructorStats from pybind11_tests.submodule import A, B b = B() assert str(b.get_a1()) == "A[1]" assert str(b.a1) == "A[1]" assert str(b.get_a2()) == "A[2]" assert str(b.a2) == "A[2]" b.a1 = A(42) b.a2 = A(43) assert str(b.get_a1()) == "A[42]" assert str(b.a1) == "A[42]" assert str(b.get_a2()) == "A[43]" assert str(b.a2) == "A[43]" astats, bstats = ConstructorStats.get(A), ConstructorStats.get(B) assert astats.alive() == 2 assert bstats.alive() == 1 del b assert astats.alive() == 0 assert bstats.alive() == 0 assert astats.values() == ['1', '2', '42', '43'] assert bstats.values() == [] assert astats.default_constructions == 0 assert bstats.default_constructions == 1 assert astats.copy_constructions == 0 assert bstats.copy_constructions == 0 # assert astats.move_constructions >= 0 # Don't invoke any # assert bstats.move_constructions >= 0 # Don't invoke any assert astats.copy_assignments == 2 assert bstats.copy_assignments == 0 assert astats.move_assignments == 0 assert bstats.move_assignments == 0 def test_importing(): from pybind11_tests import OD from collections import OrderedDict assert OD is OrderedDict assert str(OD([(1, 'a'), (2, 'b')])) == "OrderedDict([(1, 'a'), (2, 'b')])" pybind11-2.0.1/tests/test_multiple_inheritance.cpp000066400000000000000000000041101303320175600222460ustar00rootroot00000000000000/* tests/test_multiple_inheritance.cpp -- multiple inheritance, implicit MI casts Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" struct Base1 { Base1(int i) : i(i) { } int foo() { return i; } int i; }; struct Base2 { Base2(int i) : i(i) { } int bar() { return i; } int i; }; struct Base12 : Base1, Base2 { Base12(int i, int j) : Base1(i), Base2(j) { } }; struct MIType : Base12 { MIType(int i, int j) : Base12(i, j) { } }; test_initializer multiple_inheritance([](py::module &m) { py::class_(m, "Base1") .def(py::init()) .def("foo", &Base1::foo); py::class_(m, "Base2") .def(py::init()) .def("bar", &Base2::bar); py::class_(m, "Base12"); py::class_(m, "MIType") .def(py::init()); }); /* Test the case where not all base classes are specified, and where pybind11 requires the py::multiple_inheritance flag to perform proper casting between types */ struct Base1a { Base1a(int i) : i(i) { } int foo() { return i; } int i; }; struct Base2a { Base2a(int i) : i(i) { } int bar() { return i; } int i; }; struct Base12a : Base1a, Base2a { Base12a(int i, int j) : Base1a(i), Base2a(j) { } }; test_initializer multiple_inheritance_nonexplicit([](py::module &m) { py::class_>(m, "Base1a") .def(py::init()) .def("foo", &Base1a::foo); py::class_>(m, "Base2a") .def(py::init()) .def("bar", &Base2a::bar); py::class_>(m, "Base12a", py::multiple_inheritance()) .def(py::init()); m.def("bar_base2a", [](Base2a *b) { return b->bar(); }); m.def("bar_base2a_sharedptr", [](std::shared_ptr b) { return b->bar(); }); }); pybind11-2.0.1/tests/test_multiple_inheritance.py000066400000000000000000000024551303320175600221260ustar00rootroot00000000000000def test_multiple_inheritance_cpp(): from pybind11_tests import MIType mt = MIType(3, 4) assert mt.foo() == 3 assert mt.bar() == 4 def test_multiple_inheritance_mix1(): from pybind11_tests import Base2 class Base1: def __init__(self, i): self.i = i def foo(self): return self.i class MITypePy(Base1, Base2): def __init__(self, i, j): Base1.__init__(self, i) Base2.__init__(self, j) mt = MITypePy(3, 4) assert mt.foo() == 3 assert mt.bar() == 4 def test_multiple_inheritance_mix2(): from pybind11_tests import Base1 class Base2: def __init__(self, i): self.i = i def bar(self): return self.i class MITypePy(Base1, Base2): def __init__(self, i, j): Base1.__init__(self, i) Base2.__init__(self, j) mt = MITypePy(3, 4) assert mt.foo() == 3 assert mt.bar() == 4 def test_multiple_inheritance_virtbase(): from pybind11_tests import Base12a, bar_base2a, bar_base2a_sharedptr class MITypePy(Base12a): def __init__(self, i, j): Base12a.__init__(self, i, j) mt = MITypePy(3, 4) assert mt.bar() == 4 assert bar_base2a(mt) == 4 assert bar_base2a_sharedptr(mt) == 4 pybind11-2.0.1/tests/test_numpy_array.cpp000066400000000000000000000124321303320175600204160ustar00rootroot00000000000000/* tests/test_numpy_array.cpp -- test core array functionality Copyright (c) 2016 Ivan Smirnov All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include #include #include #include using arr = py::array; using arr_t = py::array_t; template arr data(const arr& a, Ix... index) { return arr(a.nbytes() - a.offset_at(index...), (const uint8_t *) a.data(index...)); } template arr data_t(const arr_t& a, Ix... index) { return arr(a.size() - a.index_at(index...), a.data(index...)); } arr& mutate_data(arr& a) { auto ptr = (uint8_t *) a.mutable_data(); for (size_t i = 0; i < a.nbytes(); i++) ptr[i] = (uint8_t) (ptr[i] * 2); return a; } arr_t& mutate_data_t(arr_t& a) { auto ptr = a.mutable_data(); for (size_t i = 0; i < a.size(); i++) ptr[i]++; return a; } template arr& mutate_data(arr& a, Ix... index) { auto ptr = (uint8_t *) a.mutable_data(index...); for (size_t i = 0; i < a.nbytes() - a.offset_at(index...); i++) ptr[i] = (uint8_t) (ptr[i] * 2); return a; } template arr_t& mutate_data_t(arr_t& a, Ix... index) { auto ptr = a.mutable_data(index...); for (size_t i = 0; i < a.size() - a.index_at(index...); i++) ptr[i]++; return a; } template size_t index_at(const arr& a, Ix... idx) { return a.index_at(idx...); } template size_t index_at_t(const arr_t& a, Ix... idx) { return a.index_at(idx...); } template size_t offset_at(const arr& a, Ix... idx) { return a.offset_at(idx...); } template size_t offset_at_t(const arr_t& a, Ix... idx) { return a.offset_at(idx...); } template size_t at_t(const arr_t& a, Ix... idx) { return a.at(idx...); } template arr_t& mutate_at_t(arr_t& a, Ix... idx) { a.mutable_at(idx...)++; return a; } #define def_index_fn(name, type) \ sm.def(#name, [](type a) { return name(a); }); \ sm.def(#name, [](type a, int i) { return name(a, i); }); \ sm.def(#name, [](type a, int i, int j) { return name(a, i, j); }); \ sm.def(#name, [](type a, int i, int j, int k) { return name(a, i, j, k); }); test_initializer numpy_array([](py::module &m) { auto sm = m.def_submodule("array"); sm.def("ndim", [](const arr& a) { return a.ndim(); }); sm.def("shape", [](const arr& a) { return arr(a.ndim(), a.shape()); }); sm.def("shape", [](const arr& a, size_t dim) { return a.shape(dim); }); sm.def("strides", [](const arr& a) { return arr(a.ndim(), a.strides()); }); sm.def("strides", [](const arr& a, size_t dim) { return a.strides(dim); }); sm.def("writeable", [](const arr& a) { return a.writeable(); }); sm.def("size", [](const arr& a) { return a.size(); }); sm.def("itemsize", [](const arr& a) { return a.itemsize(); }); sm.def("nbytes", [](const arr& a) { return a.nbytes(); }); sm.def("owndata", [](const arr& a) { return a.owndata(); }); def_index_fn(data, const arr&); def_index_fn(data_t, const arr_t&); def_index_fn(index_at, const arr&); def_index_fn(index_at_t, const arr_t&); def_index_fn(offset_at, const arr&); def_index_fn(offset_at_t, const arr_t&); def_index_fn(mutate_data, arr&); def_index_fn(mutate_data_t, arr_t&); def_index_fn(at_t, const arr_t&); def_index_fn(mutate_at_t, arr_t&); sm.def("make_f_array", [] { return py::array_t({ 2, 2 }, { 4, 8 }); }); sm.def("make_c_array", [] { return py::array_t({ 2, 2 }, { 8, 4 }); }); sm.def("wrap", [](py::array a) { return py::array( a.dtype(), std::vector(a.shape(), a.shape() + a.ndim()), std::vector(a.strides(), a.strides() + a.ndim()), a.data(), a ); }); struct ArrayClass { int data[2] = { 1, 2 }; ArrayClass() { py::print("ArrayClass()"); } ~ArrayClass() { py::print("~ArrayClass()"); } }; py::class_(sm, "ArrayClass") .def(py::init<>()) .def("numpy_view", [](py::object &obj) { py::print("ArrayClass::numpy_view()"); ArrayClass &a = obj.cast(); return py::array_t({2}, {4}, a.data, obj); } ); sm.def("function_taking_uint64", [](uint64_t) { }); sm.def("isinstance_untyped", [](py::object yes, py::object no) { return py::isinstance(yes) && !py::isinstance(no); }); sm.def("isinstance_typed", [](py::object o) { return py::isinstance>(o) && !py::isinstance>(o); }); sm.def("default_constructors", []() { return py::dict( "array"_a=py::array(), "array_t"_a=py::array_t(), "array_t"_a=py::array_t() ); }); sm.def("converting_constructors", [](py::object o) { return py::dict( "array"_a=py::array(o), "array_t"_a=py::array_t(o), "array_t"_a=py::array_t(o) ); }); }); pybind11-2.0.1/tests/test_numpy_array.py000066400000000000000000000217561303320175600202750ustar00rootroot00000000000000import pytest with pytest.suppress(ImportError): import numpy as np @pytest.fixture(scope='function') def arr(): return np.array([[1, 2, 3], [4, 5, 6]], '"].dtype == np.int32 assert defaults["array_t"].dtype == np.float64 results = converting_constructors([1, 2, 3]) for a in results.values(): np.testing.assert_array_equal(a, [1, 2, 3]) assert results["array"].dtype == np.int_ assert results["array_t"].dtype == np.int32 assert results["array_t"].dtype == np.float64 pybind11-2.0.1/tests/test_numpy_dtypes.cpp000066400000000000000000000272161303320175600206160ustar00rootroot00000000000000/* tests/test_numpy_dtypes.cpp -- Structured and compound NumPy dtypes Copyright (c) 2016 Ivan Smirnov All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include #ifdef __GNUC__ #define PYBIND11_PACKED(cls) cls __attribute__((__packed__)) #else #define PYBIND11_PACKED(cls) __pragma(pack(push, 1)) cls __pragma(pack(pop)) #endif namespace py = pybind11; struct SimpleStruct { bool x; uint32_t y; float z; }; std::ostream& operator<<(std::ostream& os, const SimpleStruct& v) { return os << "s:" << v.x << "," << v.y << "," << v.z; } PYBIND11_PACKED(struct PackedStruct { bool x; uint32_t y; float z; }); std::ostream& operator<<(std::ostream& os, const PackedStruct& v) { return os << "p:" << v.x << "," << v.y << "," << v.z; } PYBIND11_PACKED(struct NestedStruct { SimpleStruct a; PackedStruct b; }); std::ostream& operator<<(std::ostream& os, const NestedStruct& v) { return os << "n:a=" << v.a << ";b=" << v.b; } struct PartialStruct { bool x; uint32_t y; float z; uint64_t dummy2; }; struct PartialNestedStruct { uint64_t dummy1; PartialStruct a; uint64_t dummy2; }; struct UnboundStruct { }; struct StringStruct { char a[3]; std::array b; }; PYBIND11_PACKED(struct StructWithUglyNames { int8_t __x__; uint64_t __y__; }); enum class E1 : int64_t { A = -1, B = 1 }; enum E2 : uint8_t { X = 1, Y = 2 }; PYBIND11_PACKED(struct EnumStruct { E1 e1; E2 e2; }); std::ostream& operator<<(std::ostream& os, const StringStruct& v) { os << "a='"; for (size_t i = 0; i < 3 && v.a[i]; i++) os << v.a[i]; os << "',b='"; for (size_t i = 0; i < 3 && v.b[i]; i++) os << v.b[i]; return os << "'"; } std::ostream& operator<<(std::ostream& os, const EnumStruct& v) { return os << "e1=" << (v.e1 == E1::A ? "A" : "B") << ",e2=" << (v.e2 == E2::X ? "X" : "Y"); } template py::array mkarray_via_buffer(size_t n) { return py::array(py::buffer_info(nullptr, sizeof(T), py::format_descriptor::format(), 1, { n }, { sizeof(T) })); } template py::array_t create_recarray(size_t n) { auto arr = mkarray_via_buffer(n); auto req = arr.request(); auto ptr = static_cast(req.ptr); for (size_t i = 0; i < n; i++) { ptr[i].x = i % 2 != 0; ptr[i].y = (uint32_t) i; ptr[i].z = (float) i * 1.5f; } return arr; } std::string get_format_unbound() { return py::format_descriptor::format(); } py::array_t create_nested(size_t n) { auto arr = mkarray_via_buffer(n); auto req = arr.request(); auto ptr = static_cast(req.ptr); for (size_t i = 0; i < n; i++) { ptr[i].a.x = i % 2 != 0; ptr[i].a.y = (uint32_t) i; ptr[i].a.z = (float) i * 1.5f; ptr[i].b.x = (i + 1) % 2 != 0; ptr[i].b.y = (uint32_t) (i + 1); ptr[i].b.z = (float) (i + 1) * 1.5f; } return arr; } py::array_t create_partial_nested(size_t n) { auto arr = mkarray_via_buffer(n); auto req = arr.request(); auto ptr = static_cast(req.ptr); for (size_t i = 0; i < n; i++) { ptr[i].a.x = i % 2 != 0; ptr[i].a.y = (uint32_t) i; ptr[i].a.z = (float) i * 1.5f; } return arr; } py::array_t create_string_array(bool non_empty) { auto arr = mkarray_via_buffer(non_empty ? 4 : 0); if (non_empty) { auto req = arr.request(); auto ptr = static_cast(req.ptr); for (size_t i = 0; i < req.size * req.itemsize; i++) static_cast(req.ptr)[i] = 0; ptr[1].a[0] = 'a'; ptr[1].b[0] = 'a'; ptr[2].a[0] = 'a'; ptr[2].b[0] = 'a'; ptr[3].a[0] = 'a'; ptr[3].b[0] = 'a'; ptr[2].a[1] = 'b'; ptr[2].b[1] = 'b'; ptr[3].a[1] = 'b'; ptr[3].b[1] = 'b'; ptr[3].a[2] = 'c'; ptr[3].b[2] = 'c'; } return arr; } py::array_t create_enum_array(size_t n) { auto arr = mkarray_via_buffer(n); auto ptr = (EnumStruct *) arr.mutable_data(); for (size_t i = 0; i < n; i++) { ptr[i].e1 = static_cast(-1 + ((int) i % 2) * 2); ptr[i].e2 = static_cast(1 + (i % 2)); } return arr; } template py::list print_recarray(py::array_t arr) { const auto req = arr.request(); const auto ptr = static_cast(req.ptr); auto l = py::list(); for (size_t i = 0; i < req.size; i++) { std::stringstream ss; ss << ptr[i]; l.append(py::str(ss.str())); } return l; } py::list print_format_descriptors() { const auto fmts = { py::format_descriptor::format(), py::format_descriptor::format(), py::format_descriptor::format(), py::format_descriptor::format(), py::format_descriptor::format(), py::format_descriptor::format(), py::format_descriptor::format() }; auto l = py::list(); for (const auto &fmt : fmts) { l.append(py::cast(fmt)); } return l; } py::list print_dtypes() { const auto dtypes = { py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()), py::str(py::dtype::of()) }; auto l = py::list(); for (const auto &s : dtypes) { l.append(s); } return l; } py::array_t test_array_ctors(int i) { using arr_t = py::array_t; std::vector data { 1, 2, 3, 4, 5, 6 }; std::vector shape { 3, 2 }; std::vector strides { 8, 4 }; auto ptr = data.data(); auto vptr = (void *) ptr; auto dtype = py::dtype("int32"); py::buffer_info buf_ndim1(vptr, 4, "i", 6); py::buffer_info buf_ndim1_null(nullptr, 4, "i", 6); py::buffer_info buf_ndim2(vptr, 4, "i", 2, shape, strides); py::buffer_info buf_ndim2_null(nullptr, 4, "i", 2, shape, strides); auto fill = [](py::array arr) { auto req = arr.request(); for (int i = 0; i < 6; i++) ((int32_t *) req.ptr)[i] = i + 1; return arr; }; switch (i) { // shape: (3, 2) case 10: return arr_t(shape, strides, ptr); case 11: return py::array(shape, strides, ptr); case 12: return py::array(dtype, shape, strides, vptr); case 13: return arr_t(shape, ptr); case 14: return py::array(shape, ptr); case 15: return py::array(dtype, shape, vptr); case 16: return arr_t(buf_ndim2); case 17: return py::array(buf_ndim2); // shape: (3, 2) - post-fill case 20: return fill(arr_t(shape, strides)); case 21: return py::array(shape, strides, ptr); // can't have nullptr due to templated ctor case 22: return fill(py::array(dtype, shape, strides)); case 23: return fill(arr_t(shape)); case 24: return py::array(shape, ptr); // can't have nullptr due to templated ctor case 25: return fill(py::array(dtype, shape)); case 26: return fill(arr_t(buf_ndim2_null)); case 27: return fill(py::array(buf_ndim2_null)); // shape: (6, ) case 30: return arr_t(6, ptr); case 31: return py::array(6, ptr); case 32: return py::array(dtype, 6, vptr); case 33: return arr_t(buf_ndim1); case 34: return py::array(buf_ndim1); // shape: (6, ) case 40: return fill(arr_t(6)); case 41: return py::array(6, ptr); // can't have nullptr due to templated ctor case 42: return fill(py::array(dtype, 6)); case 43: return fill(arr_t(buf_ndim1_null)); case 44: return fill(py::array(buf_ndim1_null)); } return arr_t(); } py::list test_dtype_ctors() { py::list list; list.append(py::dtype("int32")); list.append(py::dtype(std::string("float64"))); list.append(py::dtype::from_args(py::str("bool"))); py::list names, offsets, formats; py::dict dict; names.append(py::str("a")); names.append(py::str("b")); dict["names"] = names; offsets.append(py::int_(1)); offsets.append(py::int_(10)); dict["offsets"] = offsets; formats.append(py::dtype("int32")); formats.append(py::dtype("float64")); dict["formats"] = formats; dict["itemsize"] = py::int_(20); list.append(py::dtype::from_args(dict)); list.append(py::dtype(names, formats, offsets, 20)); list.append(py::dtype(py::buffer_info((void *) 0, sizeof(unsigned int), "I", 1))); list.append(py::dtype(py::buffer_info((void *) 0, 0, "T{i:a:f:b:}", 1))); return list; } struct TrailingPaddingStruct { int32_t a; char b; }; py::dtype trailing_padding_dtype() { return py::dtype::of(); } py::dtype buffer_to_dtype(py::buffer& buf) { return py::dtype(buf.request()); } py::list test_dtype_methods() { py::list list; auto dt1 = py::dtype::of(); auto dt2 = py::dtype::of(); list.append(dt1); list.append(dt2); list.append(py::bool_(dt1.has_fields())); list.append(py::bool_(dt2.has_fields())); list.append(py::int_(dt1.itemsize())); list.append(py::int_(dt2.itemsize())); return list; } test_initializer numpy_dtypes([](py::module &m) { try { py::module::import("numpy"); } catch (...) { return; } // typeinfo may be registered before the dtype descriptor for scalar casts to work... py::class_(m, "SimpleStruct"); PYBIND11_NUMPY_DTYPE(SimpleStruct, x, y, z); PYBIND11_NUMPY_DTYPE(PackedStruct, x, y, z); PYBIND11_NUMPY_DTYPE(NestedStruct, a, b); PYBIND11_NUMPY_DTYPE(PartialStruct, x, y, z); PYBIND11_NUMPY_DTYPE(PartialNestedStruct, a); PYBIND11_NUMPY_DTYPE(StringStruct, a, b); PYBIND11_NUMPY_DTYPE(EnumStruct, e1, e2); PYBIND11_NUMPY_DTYPE(TrailingPaddingStruct, a, b); // ... or after py::class_(m, "PackedStruct"); PYBIND11_NUMPY_DTYPE_EX(StructWithUglyNames, __x__, "x", __y__, "y"); m.def("create_rec_simple", &create_recarray); m.def("create_rec_packed", &create_recarray); m.def("create_rec_nested", &create_nested); m.def("create_rec_partial", &create_recarray); m.def("create_rec_partial_nested", &create_partial_nested); m.def("print_format_descriptors", &print_format_descriptors); m.def("print_rec_simple", &print_recarray); m.def("print_rec_packed", &print_recarray); m.def("print_rec_nested", &print_recarray); m.def("print_dtypes", &print_dtypes); m.def("get_format_unbound", &get_format_unbound); m.def("create_string_array", &create_string_array); m.def("print_string_array", &print_recarray); m.def("create_enum_array", &create_enum_array); m.def("print_enum_array", &print_recarray); m.def("test_array_ctors", &test_array_ctors); m.def("test_dtype_ctors", &test_dtype_ctors); m.def("test_dtype_methods", &test_dtype_methods); m.def("trailing_padding_dtype", &trailing_padding_dtype); m.def("buffer_to_dtype", &buffer_to_dtype); m.def("f_simple", [](SimpleStruct s) { return s.y * 10; }); m.def("f_packed", [](PackedStruct s) { return s.y * 10; }); m.def("f_nested", [](NestedStruct s) { return s.a.y * 10; }); m.def("register_dtype", []() { PYBIND11_NUMPY_DTYPE(SimpleStruct, x, y, z); }); }); #undef PYBIND11_PACKED pybind11-2.0.1/tests/test_numpy_dtypes.py000066400000000000000000000175341303320175600204660ustar00rootroot00000000000000import re import pytest with pytest.suppress(ImportError): import numpy as np @pytest.fixture(scope='module') def simple_dtype(): return np.dtype({'names': ['x', 'y', 'z'], 'formats': ['?', 'u4', 'f4'], 'offsets': [0, 4, 8]}) @pytest.fixture(scope='module') def packed_dtype(): return np.dtype([('x', '?'), ('y', 'u4'), ('z', 'f4')]) def assert_equal(actual, expected_data, expected_dtype): np.testing.assert_equal(actual, np.array(expected_data, dtype=expected_dtype)) @pytest.requires_numpy def test_format_descriptors(): from pybind11_tests import get_format_unbound, print_format_descriptors with pytest.raises(RuntimeError) as excinfo: get_format_unbound() assert re.match('^NumPy type info missing for .*UnboundStruct.*$', str(excinfo.value)) assert print_format_descriptors() == [ "T{?:x:3xI:y:f:z:}", "T{?:x:=I:y:=f:z:}", "T{T{?:x:3xI:y:f:z:}:a:T{?:x:=I:y:=f:z:}:b:}", "T{?:x:3xI:y:f:z:12x}", "T{8xT{?:x:3xI:y:f:z:12x}:a:8x}", "T{3s:a:3s:b:}", 'T{q:e1:B:e2:}' ] @pytest.requires_numpy def test_dtype(simple_dtype): from pybind11_tests import (print_dtypes, test_dtype_ctors, test_dtype_methods, trailing_padding_dtype, buffer_to_dtype) assert print_dtypes() == [ "{'names':['x','y','z'], 'formats':['?',' simple_dtype.itemsize assert_equal(arr, elements, simple_dtype) assert_equal(arr, elements, packed_dtype) arr = create_rec_partial_nested(3) assert str(arr.dtype) == \ "{'names':['a'], 'formats':[{'names':['x','y','z'], 'formats':['?',' partial_dtype.itemsize np.testing.assert_equal(arr['a'], create_rec_partial(3)) @pytest.requires_numpy def test_array_constructors(): from pybind11_tests import test_array_ctors data = np.arange(1, 7, dtype='int32') for i in range(8): np.testing.assert_array_equal(test_array_ctors(10 + i), data.reshape((3, 2))) np.testing.assert_array_equal(test_array_ctors(20 + i), data.reshape((3, 2))) for i in range(5): np.testing.assert_array_equal(test_array_ctors(30 + i), data) np.testing.assert_array_equal(test_array_ctors(40 + i), data) @pytest.requires_numpy def test_string_array(): from pybind11_tests import create_string_array, print_string_array arr = create_string_array(True) assert str(arr.dtype) == "[('a', 'S3'), ('b', 'S3')]" assert print_string_array(arr) == [ "a='',b=''", "a='a',b='a'", "a='ab',b='ab'", "a='abc',b='abc'" ] dtype = arr.dtype assert arr['a'].tolist() == [b'', b'a', b'ab', b'abc'] assert arr['b'].tolist() == [b'', b'a', b'ab', b'abc'] arr = create_string_array(False) assert dtype == arr.dtype @pytest.requires_numpy def test_enum_array(): from pybind11_tests import create_enum_array, print_enum_array arr = create_enum_array(3) dtype = arr.dtype assert dtype == np.dtype([('e1', ' numpy.ndarray[NestedStruct]" @pytest.requires_numpy def test_scalar_conversion(): from pybind11_tests import (create_rec_simple, f_simple, create_rec_packed, f_packed, create_rec_nested, f_nested, create_enum_array) n = 3 arrays = [create_rec_simple(n), create_rec_packed(n), create_rec_nested(n), create_enum_array(n)] funcs = [f_simple, f_packed, f_nested] for i, func in enumerate(funcs): for j, arr in enumerate(arrays): if i == j and i < 2: assert [func(arr[k]) for k in range(n)] == [k * 10 for k in range(n)] else: with pytest.raises(TypeError) as excinfo: func(arr[0]) assert 'incompatible function arguments' in str(excinfo.value) @pytest.requires_numpy def test_register_dtype(): from pybind11_tests import register_dtype with pytest.raises(RuntimeError) as excinfo: register_dtype() assert 'dtype is already registered' in str(excinfo.value) pybind11-2.0.1/tests/test_numpy_vectorize.cpp000066400000000000000000000031311303320175600213060ustar00rootroot00000000000000/* tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array arguments Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include double my_func(int x, float y, double z) { py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); return (float) x*y*z; } std::complex my_func3(std::complex c) { return c * std::complex(2.f); } test_initializer numpy_vectorize([](py::module &m) { // Vectorize all arguments of a function (though non-vector arguments are also allowed) m.def("vectorized_func", py::vectorize(my_func)); // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) m.def("vectorized_func2", [](py::array_t x, py::array_t y, float z) { return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); } ); // Vectorize a complex-valued function m.def("vectorized_func3", py::vectorize(my_func3)); /// Numpy function which only accepts specific data types m.def("selective_func", [](py::array_t) { return "Int branch taken."; }); m.def("selective_func", [](py::array_t) { return "Float branch taken."; }); m.def("selective_func", [](py::array_t, py::array::c_style>) { return "Complex float branch taken."; }); }); pybind11-2.0.1/tests/test_numpy_vectorize.py000066400000000000000000000057421303320175600211660ustar00rootroot00000000000000import pytest with pytest.suppress(ImportError): import numpy as np @pytest.requires_numpy def test_vectorize(capture): from pybind11_tests import vectorized_func, vectorized_func2, vectorized_func3 assert np.isclose(vectorized_func3(np.array(3 + 7j)), [6 + 14j]) for f in [vectorized_func, vectorized_func2]: with capture: assert np.isclose(f(1, 2, 3), 6) assert capture == "my_func(x:int=1, y:float=2, z:float=3)" with capture: assert np.isclose(f(np.array(1), np.array(2), 3), 6) assert capture == "my_func(x:int=1, y:float=2, z:float=3)" with capture: assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36]) assert capture == """ my_func(x:int=1, y:float=2, z:float=3) my_func(x:int=3, y:float=4, z:float=3) """ with capture: a, b, c = np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3 assert np.allclose(f(a, b, c), a * b * c) assert capture == """ my_func(x:int=1, y:float=2, z:float=3) my_func(x:int=3, y:float=4, z:float=3) my_func(x:int=5, y:float=6, z:float=3) my_func(x:int=7, y:float=8, z:float=3) my_func(x:int=9, y:float=10, z:float=3) my_func(x:int=11, y:float=12, z:float=3) """ with capture: a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2 assert np.allclose(f(a, b, c), a * b * c) assert capture == """ my_func(x:int=1, y:float=2, z:float=2) my_func(x:int=2, y:float=3, z:float=2) my_func(x:int=3, y:float=4, z:float=2) my_func(x:int=4, y:float=2, z:float=2) my_func(x:int=5, y:float=3, z:float=2) my_func(x:int=6, y:float=4, z:float=2) """ with capture: a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2 assert np.allclose(f(a, b, c), a * b * c) assert capture == """ my_func(x:int=1, y:float=2, z:float=2) my_func(x:int=2, y:float=2, z:float=2) my_func(x:int=3, y:float=2, z:float=2) my_func(x:int=4, y:float=3, z:float=2) my_func(x:int=5, y:float=3, z:float=2) my_func(x:int=6, y:float=3, z:float=2) """ @pytest.requires_numpy def test_type_selection(): from pybind11_tests import selective_func assert selective_func(np.array([1], dtype=np.int32)) == "Int branch taken." assert selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken." assert selective_func(np.array([1.0j], dtype=np.complex64)) == "Complex float branch taken." @pytest.requires_numpy def test_docs(doc): from pybind11_tests import vectorized_func assert doc(vectorized_func) == """ vectorized_func(arg0: numpy.ndarray[int], arg1: numpy.ndarray[float], arg2: numpy.ndarray[float]) -> object """ # noqa: E501 line too long pybind11-2.0.1/tests/test_opaque_types.cpp000066400000000000000000000043011303320175600205620ustar00rootroot00000000000000/* tests/test_opaque_types.cpp -- opaque types, passing void pointers Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include #include typedef std::vector StringList; class ClassWithSTLVecProperty { public: StringList stringList; }; /* IMPORTANT: Disable internal pybind11 translation mechanisms for STL data structures */ PYBIND11_MAKE_OPAQUE(StringList); test_initializer opaque_types([](py::module &m) { py::class_(m, "StringList") .def(py::init<>()) .def("pop_back", &StringList::pop_back) /* There are multiple versions of push_back(), etc. Select the right ones. */ .def("push_back", (void (StringList::*)(const std::string &)) &StringList::push_back) .def("back", (std::string &(StringList::*)()) &StringList::back) .def("__len__", [](const StringList &v) { return v.size(); }) .def("__iter__", [](StringList &v) { return py::make_iterator(v.begin(), v.end()); }, py::keep_alive<0, 1>()); py::class_(m, "ClassWithSTLVecProperty") .def(py::init<>()) .def_readwrite("stringList", &ClassWithSTLVecProperty::stringList); m.def("print_opaque_list", [](const StringList &l) { std::string ret = "Opaque list: ["; bool first = true; for (auto entry : l) { if (!first) ret += ", "; ret += entry; first = false; } return ret + "]"; }); m.def("return_void_ptr", []() { return (void *) 0x1234; }); m.def("get_void_ptr_value", [](void *ptr) { return reinterpret_cast(ptr); }); m.def("return_null_str", []() { return (char *) nullptr; }); m.def("get_null_str_value", [](char *ptr) { return reinterpret_cast(ptr); }); m.def("return_unique_ptr", []() -> std::unique_ptr { StringList *result = new StringList(); result->push_back("some value"); return std::unique_ptr(result); }); }); pybind11-2.0.1/tests/test_opaque_types.py000066400000000000000000000034021303320175600204310ustar00rootroot00000000000000import pytest def test_string_list(): from pybind11_tests import StringList, ClassWithSTLVecProperty, print_opaque_list l = StringList() l.push_back("Element 1") l.push_back("Element 2") assert print_opaque_list(l) == "Opaque list: [Element 1, Element 2]" assert l.back() == "Element 2" for i, k in enumerate(l, start=1): assert k == "Element {}".format(i) l.pop_back() assert print_opaque_list(l) == "Opaque list: [Element 1]" cvp = ClassWithSTLVecProperty() assert print_opaque_list(cvp.stringList) == "Opaque list: []" cvp.stringList = l cvp.stringList.push_back("Element 3") assert print_opaque_list(cvp.stringList) == "Opaque list: [Element 1, Element 3]" def test_pointers(msg): from pybind11_tests import (return_void_ptr, get_void_ptr_value, ExampleMandA, print_opaque_list, return_null_str, get_null_str_value, return_unique_ptr, ConstructorStats) assert get_void_ptr_value(return_void_ptr()) == 0x1234 assert get_void_ptr_value(ExampleMandA()) # Should also work for other C++ types assert ConstructorStats.get(ExampleMandA).alive() == 0 with pytest.raises(TypeError) as excinfo: get_void_ptr_value([1, 2, 3]) # This should not work assert msg(excinfo.value) == """ get_void_ptr_value(): incompatible function arguments. The following argument types are supported: 1. (arg0: capsule) -> int Invoked with: [1, 2, 3] """ # noqa: E501 line too long assert return_null_str() is None assert get_null_str_value(return_null_str()) is not None ptr = return_unique_ptr() assert "StringList" in repr(ptr) assert print_opaque_list(ptr) == "Opaque list: [some value]" pybind11-2.0.1/tests/test_operator_overloading.cpp000066400000000000000000000055431303320175600223010ustar00rootroot00000000000000/* tests/test_operator_overloading.cpp -- operator overloading Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include class Vector2 { public: Vector2(float x, float y) : x(x), y(y) { print_created(this, toString()); } Vector2(const Vector2 &v) : x(v.x), y(v.y) { print_copy_created(this); } Vector2(Vector2 &&v) : x(v.x), y(v.y) { print_move_created(this); v.x = v.y = 0; } ~Vector2() { print_destroyed(this); } std::string toString() const { return "[" + std::to_string(x) + ", " + std::to_string(y) + "]"; } void operator=(const Vector2 &v) { print_copy_assigned(this); x = v.x; y = v.y; } void operator=(Vector2 &&v) { print_move_assigned(this); x = v.x; y = v.y; v.x = v.y = 0; } Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); } Vector2 operator-(const Vector2 &v) const { return Vector2(x - v.x, y - v.y); } Vector2 operator-(float value) const { return Vector2(x - value, y - value); } Vector2 operator+(float value) const { return Vector2(x + value, y + value); } Vector2 operator*(float value) const { return Vector2(x * value, y * value); } Vector2 operator/(float value) const { return Vector2(x / value, y / value); } Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; } Vector2& operator-=(const Vector2 &v) { x -= v.x; y -= v.y; return *this; } Vector2& operator*=(float v) { x *= v; y *= v; return *this; } Vector2& operator/=(float v) { x /= v; y /= v; return *this; } friend Vector2 operator+(float f, const Vector2 &v) { return Vector2(f + v.x, f + v.y); } friend Vector2 operator-(float f, const Vector2 &v) { return Vector2(f - v.x, f - v.y); } friend Vector2 operator*(float f, const Vector2 &v) { return Vector2(f * v.x, f * v.y); } friend Vector2 operator/(float f, const Vector2 &v) { return Vector2(f / v.x, f / v.y); } private: float x, y; }; test_initializer operator_overloading([](py::module &m) { py::class_(m, "Vector2") .def(py::init()) .def(py::self + py::self) .def(py::self + float()) .def(py::self - py::self) .def(py::self - float()) .def(py::self * float()) .def(py::self / float()) .def(py::self += py::self) .def(py::self -= py::self) .def(py::self *= float()) .def(py::self /= float()) .def(float() + py::self) .def(float() - py::self) .def(float() * py::self) .def(float() / py::self) .def("__str__", &Vector2::toString) ; m.attr("Vector") = m.attr("Vector2"); }); pybind11-2.0.1/tests/test_operator_overloading.py000066400000000000000000000031721303320175600221430ustar00rootroot00000000000000def test_operator_overloading(): from pybind11_tests import Vector2, Vector, ConstructorStats v1 = Vector2(1, 2) v2 = Vector(3, -1) assert str(v1) == "[1.000000, 2.000000]" assert str(v2) == "[3.000000, -1.000000]" assert str(v1 + v2) == "[4.000000, 1.000000]" assert str(v1 - v2) == "[-2.000000, 3.000000]" assert str(v1 - 8) == "[-7.000000, -6.000000]" assert str(v1 + 8) == "[9.000000, 10.000000]" assert str(v1 * 8) == "[8.000000, 16.000000]" assert str(v1 / 8) == "[0.125000, 0.250000]" assert str(8 - v1) == "[7.000000, 6.000000]" assert str(8 + v1) == "[9.000000, 10.000000]" assert str(8 * v1) == "[8.000000, 16.000000]" assert str(8 / v1) == "[8.000000, 4.000000]" v1 += v2 v1 *= 2 assert str(v1) == "[8.000000, 2.000000]" cstats = ConstructorStats.get(Vector2) assert cstats.alive() == 2 del v1 assert cstats.alive() == 1 del v2 assert cstats.alive() == 0 assert cstats.values() == ['[1.000000, 2.000000]', '[3.000000, -1.000000]', '[4.000000, 1.000000]', '[-2.000000, 3.000000]', '[-7.000000, -6.000000]', '[9.000000, 10.000000]', '[8.000000, 16.000000]', '[0.125000, 0.250000]', '[7.000000, 6.000000]', '[9.000000, 10.000000]', '[8.000000, 16.000000]', '[8.000000, 4.000000]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 assert cstats.move_constructions >= 10 assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 pybind11-2.0.1/tests/test_pickling.cpp000066400000000000000000000056011303320175600176500ustar00rootroot00000000000000/* tests/test_pickling.cpp -- pickle support Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" class Pickleable { public: Pickleable(const std::string &value) : m_value(value) { } const std::string &value() const { return m_value; } void setExtra1(int extra1) { m_extra1 = extra1; } void setExtra2(int extra2) { m_extra2 = extra2; } int extra1() const { return m_extra1; } int extra2() const { return m_extra2; } private: std::string m_value; int m_extra1 = 0; int m_extra2 = 0; }; class PickleableWithDict { public: PickleableWithDict(const std::string &value) : value(value) { } std::string value; int extra; }; test_initializer pickling([](py::module &m) { py::class_(m, "Pickleable") .def(py::init()) .def("value", &Pickleable::value) .def("extra1", &Pickleable::extra1) .def("extra2", &Pickleable::extra2) .def("setExtra1", &Pickleable::setExtra1) .def("setExtra2", &Pickleable::setExtra2) // For details on the methods below, refer to // http://docs.python.org/3/library/pickle.html#pickling-class-instances .def("__getstate__", [](const Pickleable &p) { /* Return a tuple that fully encodes the state of the object */ return py::make_tuple(p.value(), p.extra1(), p.extra2()); }) .def("__setstate__", [](Pickleable &p, py::tuple t) { if (t.size() != 3) throw std::runtime_error("Invalid state!"); /* Invoke the constructor (need to use in-place version) */ new (&p) Pickleable(t[0].cast()); /* Assign any additional state */ p.setExtra1(t[1].cast()); p.setExtra2(t[2].cast()); }); #if !defined(PYPY_VERSION) py::class_(m, "PickleableWithDict", py::dynamic_attr()) .def(py::init()) .def_readwrite("value", &PickleableWithDict::value) .def_readwrite("extra", &PickleableWithDict::extra) .def("__getstate__", [](py::object self) { /* Also include __dict__ in state */ return py::make_tuple(self.attr("value"), self.attr("extra"), self.attr("__dict__")); }) .def("__setstate__", [](py::object self, py::tuple t) { if (t.size() != 3) throw std::runtime_error("Invalid state!"); /* Cast and construct */ auto& p = self.cast(); new (&p) PickleableWithDict(t[0].cast()); /* Assign C++ state */ p.extra = t[1].cast(); /* Assign Python state */ self.attr("__dict__") = t[2]; }); #endif }); pybind11-2.0.1/tests/test_pickling.py000066400000000000000000000015021303320175600175120ustar00rootroot00000000000000import pytest try: import cPickle as pickle # Use cPickle on Python 2.7 except ImportError: import pickle def test_roundtrip(): from pybind11_tests import Pickleable p = Pickleable("test_value") p.setExtra1(15) p.setExtra2(48) data = pickle.dumps(p, 2) # Must use pickle protocol >= 2 p2 = pickle.loads(data) assert p2.value() == p.value() assert p2.extra1() == p.extra1() assert p2.extra2() == p.extra2() @pytest.unsupported_on_pypy def test_roundtrip_with_dict(): from pybind11_tests import PickleableWithDict p = PickleableWithDict("test_value") p.extra = 15 p.dynamic = "Attribute" data = pickle.dumps(p, pickle.HIGHEST_PROTOCOL) p2 = pickle.loads(data) assert p2.value == p.value assert p2.extra == p.extra assert p2.dynamic == p.dynamic pybind11-2.0.1/tests/test_python_types.cpp000066400000000000000000000351761303320175600206270ustar00rootroot00000000000000/* tests/test_python_types.cpp -- singleton design pattern, static functions and variables, passing and interacting with Python types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include #ifdef _WIN32 # include # include #endif class ExamplePythonTypes { public: static ExamplePythonTypes *new_instance() { auto *ptr = new ExamplePythonTypes(); print_created(ptr, "via new_instance"); return ptr; } ~ExamplePythonTypes() { print_destroyed(this); } /* Create and return a Python dictionary */ py::dict get_dict() { py::dict dict; dict[py::str("key")] = py::str("value"); return dict; } /* Create and return a Python set */ py::set get_set() { py::set set; set.add(py::str("key1")); set.add("key2"); set.add(std::string("key3")); return set; } /* Create and return a C++ dictionary */ std::map get_dict_2() { std::map result; result["key"] = "value"; return result; } /* Create and return a C++ set */ std::set get_set_2() { std::set result; result.insert("key1"); result.insert("key2"); return result; } /* Create, manipulate, and return a Python list */ py::list get_list() { py::list list; list.append("value"); py::print("Entry at position 0:", list[0]); list[0] = py::str("overwritten"); return list; } /* C++ STL data types are automatically casted */ std::vector get_list_2() { std::vector list; list.push_back(L"value"); return list; } /* C++ STL data types are automatically casted */ std::array get_array() { return std::array {{ "array entry 1" , "array entry 2"}}; } std::valarray get_valarray() { return std::valarray({ 1, 4, 9 }); } /* Easily iterate over a dictionary using a C++11 range-based for loop */ void print_dict(py::dict dict) { for (auto item : dict) py::print("key: {}, value={}"_s.format(item.first, item.second)); } /* Easily iterate over a set using a C++11 range-based for loop */ void print_set(py::set set) { for (auto item : set) py::print("key:", item); } /* Easily iterate over a list using a C++11 range-based for loop */ void print_list(py::list list) { int index = 0; for (auto item : list) py::print("list item {}: {}"_s.format(index++, item)); } /* STL data types (such as maps) are automatically casted from Python */ void print_dict_2(const std::map &dict) { for (auto item : dict) py::print("key: {}, value={}"_s.format(item.first, item.second)); } /* STL data types (such as sets) are automatically casted from Python */ void print_set_2(const std::set &set) { for (auto item : set) py::print("key:", item); } /* STL data types (such as vectors) are automatically casted from Python */ void print_list_2(std::vector &list) { int index = 0; for (auto item : list) py::print("list item {}: {}"_s.format(index++, item)); } /* pybind automatically translates between C++11 and Python tuples */ std::pair pair_passthrough(std::pair input) { return std::make_pair(input.second, input.first); } /* pybind automatically translates between C++11 and Python tuples */ std::tuple tuple_passthrough(std::tuple input) { return std::make_tuple(std::get<2>(input), std::get<1>(input), std::get<0>(input)); } /* STL data types (such as arrays) are automatically casted from Python */ void print_array(std::array &array) { int index = 0; for (auto item : array) py::print("array item {}: {}"_s.format(index++, item)); } void print_valarray(std::valarray &varray) { int index = 0; for (auto item : varray) py::print("valarray item {}: {}"_s.format(index++, item)); } void throw_exception() { throw std::runtime_error("This exception was intentionally thrown."); } py::bytes get_bytes_from_string() { return (py::bytes) std::string("foo"); } py::bytes get_bytes_from_str() { return (py::bytes) py::str("bar", 3); } py::str get_str_from_string() { return (py::str) std::string("baz"); } py::str get_str_from_bytes() { return (py::str) py::bytes("boo", 3); } void test_print(const py::object& obj) { py::print(py::str(obj)); py::print(py::repr(obj)); } static int value; static const int value2; }; int ExamplePythonTypes::value = 0; const int ExamplePythonTypes::value2 = 5; struct MoveOutContainer { struct Value { int value; }; std::list move_list() const { return {{0}, {1}, {2}}; } }; test_initializer python_types([](py::module &m) { /* No constructor is explicitly defined below. An exception is raised when trying to construct it directly from Python */ py::class_(m, "ExamplePythonTypes", "Example 2 documentation", py::metaclass()) .def("get_dict", &ExamplePythonTypes::get_dict, "Return a Python dictionary") .def("get_dict_2", &ExamplePythonTypes::get_dict_2, "Return a C++ dictionary") .def("get_list", &ExamplePythonTypes::get_list, "Return a Python list") .def("get_list_2", &ExamplePythonTypes::get_list_2, "Return a C++ list") .def("get_set", &ExamplePythonTypes::get_set, "Return a Python set") .def("get_set2", &ExamplePythonTypes::get_set_2, "Return a C++ set") .def("get_array", &ExamplePythonTypes::get_array, "Return a C++ array") .def("get_valarray", &ExamplePythonTypes::get_valarray, "Return a C++ valarray") .def("print_dict", &ExamplePythonTypes::print_dict, "Print entries of a Python dictionary") .def("print_dict_2", &ExamplePythonTypes::print_dict_2, "Print entries of a C++ dictionary") .def("print_set", &ExamplePythonTypes::print_set, "Print entries of a Python set") .def("print_set_2", &ExamplePythonTypes::print_set_2, "Print entries of a C++ set") .def("print_list", &ExamplePythonTypes::print_list, "Print entries of a Python list") .def("print_list_2", &ExamplePythonTypes::print_list_2, "Print entries of a C++ list") .def("print_array", &ExamplePythonTypes::print_array, "Print entries of a C++ array") .def("print_valarray", &ExamplePythonTypes::print_valarray, "Print entries of a C++ valarray") .def("pair_passthrough", &ExamplePythonTypes::pair_passthrough, "Return a pair in reversed order") .def("tuple_passthrough", &ExamplePythonTypes::tuple_passthrough, "Return a triple in reversed order") .def("throw_exception", &ExamplePythonTypes::throw_exception, "Throw an exception") .def("get_bytes_from_string", &ExamplePythonTypes::get_bytes_from_string, "py::bytes from std::string") .def("get_bytes_from_str", &ExamplePythonTypes::get_bytes_from_str, "py::bytes from py::str") .def("get_str_from_string", &ExamplePythonTypes::get_str_from_string, "py::str from std::string") .def("get_str_from_bytes", &ExamplePythonTypes::get_str_from_bytes, "py::str from py::bytes") .def("test_print", &ExamplePythonTypes::test_print, "test the print function") .def_static("new_instance", &ExamplePythonTypes::new_instance, "Return an instance") .def_readwrite_static("value", &ExamplePythonTypes::value, "Static value member") .def_readonly_static("value2", &ExamplePythonTypes::value2, "Static value member (readonly)"); m.def("test_print_function", []() { py::print("Hello, World!"); py::print(1, 2.0, "three", true, std::string("-- multiple args")); auto args = py::make_tuple("and", "a", "custom", "separator"); py::print("*args", *args, "sep"_a="-"); py::print("no new line here", "end"_a=" -- "); py::print("next print"); auto py_stderr = py::module::import("sys").attr("stderr"); py::print("this goes to stderr", "file"_a=py_stderr); py::print("flush", "flush"_a=true); py::print("{a} + {b} = {c}"_s.format("a"_a="py::print", "b"_a="str.format", "c"_a="this")); }); m.def("test_str_format", []() { auto s1 = "{} + {} = {}"_s.format(1, 2, 3); auto s2 = "{a} + {b} = {c}"_s.format("a"_a=1, "b"_a=2, "c"_a=3); return py::make_tuple(s1, s2); }); m.def("test_dict_keyword_constructor", []() { auto d1 = py::dict("x"_a=1, "y"_a=2); auto d2 = py::dict("z"_a=3, **d1); return d2; }); m.def("test_accessor_api", [](py::object o) { auto d = py::dict(); d["basic_attr"] = o.attr("basic_attr"); auto l = py::list(); for (const auto &item : o.attr("begin_end")) { l.append(item); } d["begin_end"] = l; d["operator[object]"] = o.attr("d")["operator[object]"_s]; d["operator[char *]"] = o.attr("d")["operator[char *]"]; d["attr(object)"] = o.attr("sub").attr("attr_obj"); d["attr(char *)"] = o.attr("sub").attr("attr_char"); try { o.attr("sub").attr("missing").ptr(); } catch (const py::error_already_set &) { d["missing_attr_ptr"] = "raised"_s; } try { o.attr("missing").attr("doesn't matter"); } catch (const py::error_already_set &) { d["missing_attr_chain"] = "raised"_s; } d["is_none"] = o.attr("basic_attr").is_none(); d["operator()"] = o.attr("func")(1); d["operator*"] = o.attr("func")(*o.attr("begin_end")); return d; }); m.def("test_tuple_accessor", [](py::tuple existing_t) { try { existing_t[0] = 1; } catch (const py::error_already_set &) { // --> Python system error // Only new tuples (refcount == 1) are mutable auto new_t = py::tuple(3); for (size_t i = 0; i < new_t.size(); ++i) { new_t[i] = i; } return new_t; } return py::tuple(); }); m.def("test_accessor_assignment", []() { auto l = py::list(1); l[0] = 0; auto d = py::dict(); d["get"] = l[0]; auto var = l[0]; d["deferred_get"] = var; l[0] = 1; d["set"] = l[0]; var = 99; // this assignment should not overwrite l[0] d["deferred_set"] = l[0]; d["var"] = var; return d; }); bool has_optional = false, has_exp_optional = false; #ifdef PYBIND11_HAS_OPTIONAL has_optional = true; using opt_int = std::optional; m.def("double_or_zero", [](const opt_int& x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none", [](int x) -> opt_int { return x ? opt_int(x / 2) : opt_int(); }); m.def("test_nullopt", [](opt_int x) { return x.value_or(42); }, py::arg_v("x", std::nullopt, "None")); #endif #ifdef PYBIND11_HAS_EXP_OPTIONAL has_exp_optional = true; using exp_opt_int = std::experimental::optional; m.def("double_or_zero_exp", [](const exp_opt_int& x) -> int { return x.value_or(0) * 2; }); m.def("half_or_none_exp", [](int x) -> exp_opt_int { return x ? exp_opt_int(x / 2) : exp_opt_int(); }); m.def("test_nullopt_exp", [](exp_opt_int x) { return x.value_or(42); }, py::arg_v("x", std::experimental::nullopt, "None")); #endif m.attr("has_optional") = has_optional; m.attr("has_exp_optional") = has_exp_optional; m.def("test_default_constructors", []() { return py::dict( "str"_a=py::str(), "bool"_a=py::bool_(), "int"_a=py::int_(), "float"_a=py::float_(), "tuple"_a=py::tuple(), "list"_a=py::list(), "dict"_a=py::dict(), "set"_a=py::set() ); }); m.def("test_converting_constructors", [](py::dict d) { return py::dict( "str"_a=py::str(d["str"]), "bool"_a=py::bool_(d["bool"]), "int"_a=py::int_(d["int"]), "float"_a=py::float_(d["float"]), "tuple"_a=py::tuple(d["tuple"]), "list"_a=py::list(d["list"]), "dict"_a=py::dict(d["dict"]), "set"_a=py::set(d["set"]), "memoryview"_a=py::memoryview(d["memoryview"]) ); }); m.def("test_cast_functions", [](py::dict d) { // When converting between Python types, obj.cast() should be the same as T(obj) return py::dict( "str"_a=d["str"].cast(), "bool"_a=d["bool"].cast(), "int"_a=d["int"].cast(), "float"_a=d["float"].cast(), "tuple"_a=d["tuple"].cast(), "list"_a=d["list"].cast(), "dict"_a=d["dict"].cast(), "set"_a=d["set"].cast(), "memoryview"_a=d["memoryview"].cast() ); }); py::class_(m, "MoveOutContainerValue") .def_readonly("value", &MoveOutContainer::Value::value); py::class_(m, "MoveOutContainer") .def(py::init<>()) .def_property_readonly("move_list", &MoveOutContainer::move_list); m.def("get_implicit_casting", []() { py::dict d; d["char*_i1"] = "abc"; const char *c2 = "abc"; d["char*_i2"] = c2; d["char*_e"] = py::cast(c2); d["char*_p"] = py::str(c2); d["int_i1"] = 42; int i = 42; d["int_i2"] = i; i++; d["int_e"] = py::cast(i); i++; d["int_p"] = py::int_(i); d["str_i1"] = std::string("str"); std::string s2("str1"); d["str_i2"] = s2; s2[3] = '2'; d["str_e"] = py::cast(s2); s2[3] = '3'; d["str_p"] = py::str(s2); py::list l(2); l[0] = 3; l[1] = py::cast(6); l.append(9); l.append(py::cast(12)); l.append(py::int_(15)); return py::dict( "d"_a=d, "l"_a=l ); }); }); pybind11-2.0.1/tests/test_python_types.py000066400000000000000000000314331303320175600204650ustar00rootroot00000000000000import pytest from pybind11_tests import ExamplePythonTypes, ConstructorStats, has_optional, has_exp_optional def test_repr(): # In Python 3.3+, repr() accesses __qualname__ assert "ExamplePythonTypes__Meta" in repr(type(ExamplePythonTypes)) assert "ExamplePythonTypes" in repr(ExamplePythonTypes) def test_static(): ExamplePythonTypes.value = 15 assert ExamplePythonTypes.value == 15 assert ExamplePythonTypes.value2 == 5 with pytest.raises(AttributeError) as excinfo: ExamplePythonTypes.value2 = 15 assert str(excinfo.value) == "can't set attribute" def test_instance(capture): with pytest.raises(TypeError) as excinfo: ExamplePythonTypes() assert str(excinfo.value) == "pybind11_tests.ExamplePythonTypes: No constructor defined!" instance = ExamplePythonTypes.new_instance() with capture: dict_result = instance.get_dict() dict_result['key2'] = 'value2' instance.print_dict(dict_result) assert capture.unordered == """ key: key, value=value key: key2, value=value2 """ with capture: dict_result = instance.get_dict_2() dict_result['key2'] = 'value2' instance.print_dict_2(dict_result) assert capture.unordered == """ key: key, value=value key: key2, value=value2 """ with capture: set_result = instance.get_set() set_result.add('key4') instance.print_set(set_result) assert capture.unordered == """ key: key1 key: key2 key: key3 key: key4 """ with capture: set_result = instance.get_set2() set_result.add('key3') instance.print_set_2(set_result) assert capture.unordered == """ key: key1 key: key2 key: key3 """ with capture: list_result = instance.get_list() list_result.append('value2') instance.print_list(list_result) assert capture.unordered == """ Entry at position 0: value list item 0: overwritten list item 1: value2 """ with capture: list_result = instance.get_list_2() list_result.append('value2') instance.print_list_2(list_result) assert capture.unordered == """ list item 0: value list item 1: value2 """ with capture: list_result = instance.get_list_2() list_result.append('value2') instance.print_list_2(tuple(list_result)) assert capture.unordered == """ list item 0: value list item 1: value2 """ array_result = instance.get_array() assert array_result == ['array entry 1', 'array entry 2'] with capture: instance.print_array(array_result) assert capture.unordered == """ array item 0: array entry 1 array item 1: array entry 2 """ varray_result = instance.get_valarray() assert varray_result == [1, 4, 9] with capture: instance.print_valarray(varray_result) assert capture.unordered == """ valarray item 0: 1 valarray item 1: 4 valarray item 2: 9 """ with pytest.raises(RuntimeError) as excinfo: instance.throw_exception() assert str(excinfo.value) == "This exception was intentionally thrown." assert instance.pair_passthrough((True, "test")) == ("test", True) assert instance.tuple_passthrough((True, "test", 5)) == (5, "test", True) # Any sequence can be cast to a std::pair or std::tuple assert instance.pair_passthrough([True, "test"]) == ("test", True) assert instance.tuple_passthrough([True, "test", 5]) == (5, "test", True) assert instance.get_bytes_from_string().decode() == "foo" assert instance.get_bytes_from_str().decode() == "bar" assert instance.get_str_from_string().encode().decode() == "baz" assert instance.get_str_from_bytes().encode().decode() == "boo" class A(object): def __str__(self): return "this is a str" def __repr__(self): return "this is a repr" with capture: instance.test_print(A()) assert capture == """ this is a str this is a repr """ cstats = ConstructorStats.get(ExamplePythonTypes) assert cstats.alive() == 1 del instance assert cstats.alive() == 0 # PyPy does not seem to propagate the tp_docs field at the moment def test_class_docs(doc): assert doc(ExamplePythonTypes) == "Example 2 documentation" def test_method_docs(doc): assert doc(ExamplePythonTypes.get_dict) == """ get_dict(self: m.ExamplePythonTypes) -> dict Return a Python dictionary """ assert doc(ExamplePythonTypes.get_dict_2) == """ get_dict_2(self: m.ExamplePythonTypes) -> Dict[str, str] Return a C++ dictionary """ assert doc(ExamplePythonTypes.get_list) == """ get_list(self: m.ExamplePythonTypes) -> list Return a Python list """ assert doc(ExamplePythonTypes.get_list_2) == """ get_list_2(self: m.ExamplePythonTypes) -> List[str] Return a C++ list """ assert doc(ExamplePythonTypes.get_dict) == """ get_dict(self: m.ExamplePythonTypes) -> dict Return a Python dictionary """ assert doc(ExamplePythonTypes.get_set) == """ get_set(self: m.ExamplePythonTypes) -> set Return a Python set """ assert doc(ExamplePythonTypes.get_set2) == """ get_set2(self: m.ExamplePythonTypes) -> Set[str] Return a C++ set """ assert doc(ExamplePythonTypes.get_array) == """ get_array(self: m.ExamplePythonTypes) -> List[str[2]] Return a C++ array """ assert doc(ExamplePythonTypes.get_valarray) == """ get_valarray(self: m.ExamplePythonTypes) -> List[int] Return a C++ valarray """ assert doc(ExamplePythonTypes.print_dict) == """ print_dict(self: m.ExamplePythonTypes, arg0: dict) -> None Print entries of a Python dictionary """ assert doc(ExamplePythonTypes.print_dict_2) == """ print_dict_2(self: m.ExamplePythonTypes, arg0: Dict[str, str]) -> None Print entries of a C++ dictionary """ assert doc(ExamplePythonTypes.print_set) == """ print_set(self: m.ExamplePythonTypes, arg0: set) -> None Print entries of a Python set """ assert doc(ExamplePythonTypes.print_set_2) == """ print_set_2(self: m.ExamplePythonTypes, arg0: Set[str]) -> None Print entries of a C++ set """ assert doc(ExamplePythonTypes.print_list) == """ print_list(self: m.ExamplePythonTypes, arg0: list) -> None Print entries of a Python list """ assert doc(ExamplePythonTypes.print_list_2) == """ print_list_2(self: m.ExamplePythonTypes, arg0: List[str]) -> None Print entries of a C++ list """ assert doc(ExamplePythonTypes.print_array) == """ print_array(self: m.ExamplePythonTypes, arg0: List[str[2]]) -> None Print entries of a C++ array """ assert doc(ExamplePythonTypes.pair_passthrough) == """ pair_passthrough(self: m.ExamplePythonTypes, arg0: Tuple[bool, str]) -> Tuple[str, bool] Return a pair in reversed order """ assert doc(ExamplePythonTypes.tuple_passthrough) == """ tuple_passthrough(self: m.ExamplePythonTypes, arg0: Tuple[bool, str, int]) -> Tuple[int, str, bool] Return a triple in reversed order """ # noqa: E501 line too long assert doc(ExamplePythonTypes.throw_exception) == """ throw_exception(self: m.ExamplePythonTypes) -> None Throw an exception """ assert doc(ExamplePythonTypes.new_instance) == """ new_instance() -> m.ExamplePythonTypes Return an instance """ def test_module(): import pybind11_tests assert pybind11_tests.__name__ == "pybind11_tests" assert ExamplePythonTypes.__name__ == "ExamplePythonTypes" assert ExamplePythonTypes.__module__ == "pybind11_tests" assert ExamplePythonTypes.get_set.__name__ == "get_set" assert ExamplePythonTypes.get_set.__module__ == "pybind11_tests" def test_print(capture): from pybind11_tests import test_print_function with capture: test_print_function() assert capture == """ Hello, World! 1 2.0 three True -- multiple args *args-and-a-custom-separator no new line here -- next print flush py::print + str.format = this """ assert capture.stderr == "this goes to stderr" def test_str_api(): from pybind11_tests import test_str_format s1, s2 = test_str_format() assert s1 == "1 + 2 = 3" assert s1 == s2 def test_dict_api(): from pybind11_tests import test_dict_keyword_constructor assert test_dict_keyword_constructor() == {"x": 1, "y": 2, "z": 3} def test_accessors(): from pybind11_tests import test_accessor_api, test_tuple_accessor, test_accessor_assignment class SubTestObject: attr_obj = 1 attr_char = 2 class TestObject: basic_attr = 1 begin_end = [1, 2, 3] d = {"operator[object]": 1, "operator[char *]": 2} sub = SubTestObject() def func(self, x, *args): return self.basic_attr + x + sum(args) d = test_accessor_api(TestObject()) assert d["basic_attr"] == 1 assert d["begin_end"] == [1, 2, 3] assert d["operator[object]"] == 1 assert d["operator[char *]"] == 2 assert d["attr(object)"] == 1 assert d["attr(char *)"] == 2 assert d["missing_attr_ptr"] == "raised" assert d["missing_attr_chain"] == "raised" assert d["is_none"] is False assert d["operator()"] == 2 assert d["operator*"] == 7 assert test_tuple_accessor(tuple()) == (0, 1, 2) d = test_accessor_assignment() assert d["get"] == 0 assert d["deferred_get"] == 0 assert d["set"] == 1 assert d["deferred_set"] == 1 assert d["var"] == 99 @pytest.mark.skipif(not has_optional, reason='no ') def test_optional(): from pybind11_tests import double_or_zero, half_or_none, test_nullopt assert double_or_zero(None) == 0 assert double_or_zero(42) == 84 pytest.raises(TypeError, double_or_zero, 'foo') assert half_or_none(0) is None assert half_or_none(42) == 21 pytest.raises(TypeError, half_or_none, 'foo') assert test_nullopt() == 42 assert test_nullopt(None) == 42 assert test_nullopt(42) == 42 assert test_nullopt(43) == 43 @pytest.mark.skipif(not has_exp_optional, reason='no ') def test_exp_optional(): from pybind11_tests import double_or_zero_exp, half_or_none_exp, test_nullopt_exp assert double_or_zero_exp(None) == 0 assert double_or_zero_exp(42) == 84 pytest.raises(TypeError, double_or_zero_exp, 'foo') assert half_or_none_exp(0) is None assert half_or_none_exp(42) == 21 pytest.raises(TypeError, half_or_none_exp, 'foo') assert test_nullopt_exp() == 42 assert test_nullopt_exp(None) == 42 assert test_nullopt_exp(42) == 42 assert test_nullopt_exp(43) == 43 def test_constructors(): """C++ default and converting constructors are equivalent to type calls in Python""" from pybind11_tests import (test_default_constructors, test_converting_constructors, test_cast_functions) types = [str, bool, int, float, tuple, list, dict, set] expected = {t.__name__: t() for t in types} assert test_default_constructors() == expected data = { str: 42, bool: "Not empty", int: "42", float: "+1e3", tuple: range(3), list: range(3), dict: [("two", 2), ("one", 1), ("three", 3)], set: [4, 4, 5, 6, 6, 6], memoryview: b'abc' } inputs = {k.__name__: v for k, v in data.items()} expected = {k.__name__: k(v) for k, v in data.items()} assert test_converting_constructors(inputs) == expected assert test_cast_functions(inputs) == expected def test_move_out_container(): """Properties use the `reference_internal` policy by default. If the underlying function returns an rvalue, the policy is automatically changed to `move` to avoid referencing a temporary. In case the return value is a container of user-defined types, the policy also needs to be applied to the elements, not just the container.""" from pybind11_tests import MoveOutContainer c = MoveOutContainer() moved_out_list = c.move_list assert [x.value for x in moved_out_list] == [0, 1, 2] def test_implicit_casting(): """Tests implicit casting when assigning or appending to dicts and lists.""" from pybind11_tests import get_implicit_casting z = get_implicit_casting() assert z['d'] == { 'char*_i1': 'abc', 'char*_i2': 'abc', 'char*_e': 'abc', 'char*_p': 'abc', 'str_i1': 'str', 'str_i2': 'str1', 'str_e': 'str2', 'str_p': 'str3', 'int_i1': 42, 'int_i2': 42, 'int_e': 43, 'int_p': 44 } assert z['l'] == [3, 6, 9, 12, 15] pybind11-2.0.1/tests/test_sequences_and_iterators.cpp000066400000000000000000000211761303320175600227660ustar00rootroot00000000000000/* tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators, etc. Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include #include class Sequence { public: Sequence(size_t size) : m_size(size) { print_created(this, "of size", m_size); m_data = new float[size]; memset(m_data, 0, sizeof(float) * size); } Sequence(const std::vector &value) : m_size(value.size()) { print_created(this, "of size", m_size, "from std::vector"); m_data = new float[m_size]; memcpy(m_data, &value[0], sizeof(float) * m_size); } Sequence(const Sequence &s) : m_size(s.m_size) { print_copy_created(this); m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); } Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) { print_move_created(this); s.m_size = 0; s.m_data = nullptr; } ~Sequence() { print_destroyed(this); delete[] m_data; } Sequence &operator=(const Sequence &s) { if (&s != this) { delete[] m_data; m_size = s.m_size; m_data = new float[m_size]; memcpy(m_data, s.m_data, sizeof(float)*m_size); } print_copy_assigned(this); return *this; } Sequence &operator=(Sequence &&s) { if (&s != this) { delete[] m_data; m_size = s.m_size; m_data = s.m_data; s.m_size = 0; s.m_data = nullptr; } print_move_assigned(this); return *this; } bool operator==(const Sequence &s) const { if (m_size != s.size()) return false; for (size_t i=0; i> data) : data_(std::move(data)) {} const std::pair* begin() const { return data_.data(); } private: std::vector> data_; }; // Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic // map-like functionality. class StringMap { public: StringMap() = default; StringMap(std::unordered_map init) : map(std::move(init)) {} void set(std::string key, std::string val) { map[key] = val; } std::string get(std::string key) const { return map.at(key); } size_t size() const { return map.size(); } private: std::unordered_map map; public: decltype(map.cbegin()) begin() const { return map.cbegin(); } decltype(map.cend()) end() const { return map.cend(); } }; template class NonZeroIterator { const T* ptr_; public: NonZeroIterator(const T* ptr) : ptr_(ptr) {} const T& operator*() const { return *ptr_; } NonZeroIterator& operator++() { ++ptr_; return *this; } }; class NonZeroSentinel {}; template bool operator==(const NonZeroIterator>& it, const NonZeroSentinel&) { return !(*it).first || !(*it).second; } test_initializer sequences_and_iterators([](py::module &m) { py::class_ seq(m, "Sequence"); seq.def(py::init()) .def(py::init&>()) /// Bare bones interface .def("__getitem__", [](const Sequence &s, size_t i) { if (i >= s.size()) throw py::index_error(); return s[i]; }) .def("__setitem__", [](Sequence &s, size_t i, float v) { if (i >= s.size()) throw py::index_error(); s[i] = v; }) .def("__len__", &Sequence::size) /// Optional sequence protocol operations .def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); }, py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */) .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); }) .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); }) /// Slicing protocol (optional) .def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* { size_t start, stop, step, slicelength; if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) throw py::error_already_set(); Sequence *seq = new Sequence(slicelength); for (size_t i=0; i map(m, "StringMap"); map .def(py::init<>()) .def(py::init>()) .def("__getitem__", [](const StringMap &map, std::string key) { try { return map.get(key); } catch (const std::out_of_range&) { throw py::key_error("key '" + key + "' does not exist"); } }) .def("__setitem__", &StringMap::set) .def("__len__", &StringMap::size) .def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); }, py::keep_alive<0, 1>()) .def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); }, py::keep_alive<0, 1>()) ; py::class_(m, "IntPairs") .def(py::init>>()) .def("nonzero", [](const IntPairs& s) { return py::make_iterator(NonZeroIterator>(s.begin()), NonZeroSentinel()); }, py::keep_alive<0, 1>()) .def("nonzero_keys", [](const IntPairs& s) { return py::make_key_iterator(NonZeroIterator>(s.begin()), NonZeroSentinel()); }, py::keep_alive<0, 1>()); #if 0 // Obsolete: special data structure for exposing custom iterator types to python // kept here for illustrative purposes because there might be some use cases which // are not covered by the much simpler py::make_iterator struct PySequenceIterator { PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { } float next() { if (index == seq.size()) throw py::stop_iteration(); return seq[index++]; } const Sequence &seq; py::object ref; // keep a reference size_t index = 0; }; py::class_(seq, "Iterator") .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; }) .def("__next__", &PySequenceIterator::next); On the actual Sequence object, the iterator would be constructed as follows: .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast(), s); }) #endif }); pybind11-2.0.1/tests/test_sequences_and_iterators.py000066400000000000000000000051121303320175600226240ustar00rootroot00000000000000import pytest def isclose(a, b, rel_tol=1e-05, abs_tol=0.0): """Like math.isclose() from Python 3.5""" return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) def allclose(a_list, b_list, rel_tol=1e-05, abs_tol=0.0): return all(isclose(a, b, rel_tol=rel_tol, abs_tol=abs_tol) for a, b in zip(a_list, b_list)) def test_generalized_iterators(): from pybind11_tests import IntPairs assert list(IntPairs([(1, 2), (3, 4), (0, 5)]).nonzero()) == [(1, 2), (3, 4)] assert list(IntPairs([(1, 2), (2, 0), (0, 3), (4, 5)]).nonzero()) == [(1, 2)] assert list(IntPairs([(0, 3), (1, 2), (3, 4)]).nonzero()) == [] assert list(IntPairs([(1, 2), (3, 4), (0, 5)]).nonzero_keys()) == [1, 3] assert list(IntPairs([(1, 2), (2, 0), (0, 3), (4, 5)]).nonzero_keys()) == [1] assert list(IntPairs([(0, 3), (1, 2), (3, 4)]).nonzero_keys()) == [] def test_sequence(): from pybind11_tests import Sequence, ConstructorStats cstats = ConstructorStats.get(Sequence) s = Sequence(5) assert cstats.values() == ['of size', '5'] assert "Sequence" in repr(s) assert len(s) == 5 assert s[0] == 0 and s[3] == 0 assert 12.34 not in s s[0], s[3] = 12.34, 56.78 assert 12.34 in s assert isclose(s[0], 12.34) and isclose(s[3], 56.78) rev = reversed(s) assert cstats.values() == ['of size', '5'] rev2 = s[::-1] assert cstats.values() == ['of size', '5'] expected = [0, 56.78, 0, 0, 12.34] assert allclose(rev, expected) assert allclose(rev2, expected) assert rev == rev2 rev[0::2] = Sequence([2.0, 2.0, 2.0]) assert cstats.values() == ['of size', '3', 'from std::vector'] assert allclose(rev, [2, 56.78, 2, 0, 2]) assert cstats.alive() == 3 del s assert cstats.alive() == 2 del rev assert cstats.alive() == 1 del rev2 assert cstats.alive() == 0 assert cstats.values() == [] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 assert cstats.move_constructions >= 1 assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 def test_map_iterator(): from pybind11_tests import StringMap m = StringMap({'hi': 'bye', 'black': 'white'}) assert m['hi'] == 'bye' assert len(m) == 2 assert m['black'] == 'white' with pytest.raises(KeyError): assert m['orange'] m['orange'] = 'banana' assert m['orange'] == 'banana' expected = {'hi': 'bye', 'black': 'white', 'orange': 'banana'} for k in m: assert m[k] == expected[k] for k, v in m.items(): assert v == expected[k] pybind11-2.0.1/tests/test_smart_ptr.cpp000066400000000000000000000215141303320175600200640ustar00rootroot00000000000000/* tests/test_smart_ptr.cpp -- binding classes with custom reference counting, implicit conversions between types Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "object.h" /// Custom object with builtin reference counting (see 'object.h' for the implementation) class MyObject1 : public Object { public: MyObject1(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject1[" + std::to_string(value) + "]"; } protected: virtual ~MyObject1() { print_destroyed(this); } private: int value; }; /// Object managed by a std::shared_ptr<> class MyObject2 { public: MyObject2(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject2[" + std::to_string(value) + "]"; } virtual ~MyObject2() { print_destroyed(this); } private: int value; }; /// Object managed by a std::shared_ptr<>, additionally derives from std::enable_shared_from_this<> class MyObject3 : public std::enable_shared_from_this { public: MyObject3(int value) : value(value) { print_created(this, toString()); } std::string toString() const { return "MyObject3[" + std::to_string(value) + "]"; } virtual ~MyObject3() { print_destroyed(this); } private: int value; }; class MyObject4 { public: MyObject4(int value) : value{value} { print_created(this); } int value; private: ~MyObject4() { print_destroyed(this); } }; /// Make pybind aware of the ref-counted wrapper type (s) // ref is a wrapper for 'Object' which uses intrusive reference counting // It is always possible to construct a ref from an Object* pointer without // possible incosistencies, hence the 'true' argument at the end. PYBIND11_DECLARE_HOLDER_TYPE(T, ref, true); PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr); // Not required any more for std::shared_ptr, // but it should compile without error Object *make_object_1() { return new MyObject1(1); } ref make_object_2() { return new MyObject1(2); } MyObject1 *make_myobject1_1() { return new MyObject1(4); } ref make_myobject1_2() { return new MyObject1(5); } MyObject2 *make_myobject2_1() { return new MyObject2(6); } std::shared_ptr make_myobject2_2() { return std::make_shared(7); } MyObject3 *make_myobject3_1() { return new MyObject3(8); } std::shared_ptr make_myobject3_2() { return std::make_shared(9); } void print_object_1(const Object *obj) { py::print(obj->toString()); } void print_object_2(ref obj) { py::print(obj->toString()); } void print_object_3(const ref &obj) { py::print(obj->toString()); } void print_object_4(const ref *obj) { py::print((*obj)->toString()); } void print_myobject1_1(const MyObject1 *obj) { py::print(obj->toString()); } void print_myobject1_2(ref obj) { py::print(obj->toString()); } void print_myobject1_3(const ref &obj) { py::print(obj->toString()); } void print_myobject1_4(const ref *obj) { py::print((*obj)->toString()); } void print_myobject2_1(const MyObject2 *obj) { py::print(obj->toString()); } void print_myobject2_2(std::shared_ptr obj) { py::print(obj->toString()); } void print_myobject2_3(const std::shared_ptr &obj) { py::print(obj->toString()); } void print_myobject2_4(const std::shared_ptr *obj) { py::print((*obj)->toString()); } void print_myobject3_1(const MyObject3 *obj) { py::print(obj->toString()); } void print_myobject3_2(std::shared_ptr obj) { py::print(obj->toString()); } void print_myobject3_3(const std::shared_ptr &obj) { py::print(obj->toString()); } void print_myobject3_4(const std::shared_ptr *obj) { py::print((*obj)->toString()); } test_initializer smart_ptr([](py::module &m) { py::class_> obj(m, "Object"); obj.def("getRefCount", &Object::getRefCount); py::class_>(m, "MyObject1", obj) .def(py::init()); m.def("test_object1_refcounting", []() -> bool { ref o = new MyObject1(0); bool good = o->getRefCount() == 1; py::object o2 = py::cast(o, py::return_value_policy::reference); // always request (partial) ownership for objects with intrusive // reference counting even when using the 'reference' RVP good &= o->getRefCount() == 2; return good; } ); m.def("make_object_1", &make_object_1); m.def("make_object_2", &make_object_2); m.def("make_myobject1_1", &make_myobject1_1); m.def("make_myobject1_2", &make_myobject1_2); m.def("print_object_1", &print_object_1); m.def("print_object_2", &print_object_2); m.def("print_object_3", &print_object_3); m.def("print_object_4", &print_object_4); m.def("print_myobject1_1", &print_myobject1_1); m.def("print_myobject1_2", &print_myobject1_2); m.def("print_myobject1_3", &print_myobject1_3); m.def("print_myobject1_4", &print_myobject1_4); py::class_>(m, "MyObject2") .def(py::init()); m.def("make_myobject2_1", &make_myobject2_1); m.def("make_myobject2_2", &make_myobject2_2); m.def("print_myobject2_1", &print_myobject2_1); m.def("print_myobject2_2", &print_myobject2_2); m.def("print_myobject2_3", &print_myobject2_3); m.def("print_myobject2_4", &print_myobject2_4); py::class_>(m, "MyObject3") .def(py::init()); m.def("make_myobject3_1", &make_myobject3_1); m.def("make_myobject3_2", &make_myobject3_2); m.def("print_myobject3_1", &print_myobject3_1); m.def("print_myobject3_2", &print_myobject3_2); m.def("print_myobject3_3", &print_myobject3_3); m.def("print_myobject3_4", &print_myobject3_4); py::class_>(m, "MyObject4") .def(py::init()) .def_readwrite("value", &MyObject4::value); py::implicitly_convertible(); // Expose constructor stats for the ref type m.def("cstats_ref", &ConstructorStats::get); }); struct SharedPtrRef { struct A { A() { print_created(this); } A(const A &) { print_copy_created(this); } A(A &&) { print_move_created(this); } ~A() { print_destroyed(this); } }; A value = {}; std::shared_ptr shared = std::make_shared(); }; struct SharedFromThisRef { struct B : std::enable_shared_from_this { B() { print_created(this); } B(const B &) : std::enable_shared_from_this() { print_copy_created(this); } B(B &&) : std::enable_shared_from_this() { print_move_created(this); } ~B() { print_destroyed(this); } }; B value = {}; std::shared_ptr shared = std::make_shared(); }; test_initializer smart_ptr_and_references([](py::module &pm) { auto m = pm.def_submodule("smart_ptr"); using A = SharedPtrRef::A; py::class_>(m, "A"); py::class_(m, "SharedPtrRef") .def(py::init<>()) .def_readonly("ref", &SharedPtrRef::value) .def_property_readonly("copy", [](const SharedPtrRef &s) { return s.value; }, py::return_value_policy::copy) .def_readonly("holder_ref", &SharedPtrRef::shared) .def_property_readonly("holder_copy", [](const SharedPtrRef &s) { return s.shared; }, py::return_value_policy::copy) .def("set_ref", [](SharedPtrRef &, const A &) { return true; }) .def("set_holder", [](SharedPtrRef &, std::shared_ptr) { return true; }); using B = SharedFromThisRef::B; py::class_>(m, "B"); py::class_(m, "SharedFromThisRef") .def(py::init<>()) .def_readonly("bad_wp", &SharedFromThisRef::value) .def_property_readonly("ref", [](const SharedFromThisRef &s) -> const B & { return *s.shared; }) .def_property_readonly("copy", [](const SharedFromThisRef &s) { return s.value; }, py::return_value_policy::copy) .def_readonly("holder_ref", &SharedFromThisRef::shared) .def_property_readonly("holder_copy", [](const SharedFromThisRef &s) { return s.shared; }, py::return_value_policy::copy) .def("set_ref", [](SharedFromThisRef &, const B &) { return true; }) .def("set_holder", [](SharedFromThisRef &, std::shared_ptr) { return true; }); }); pybind11-2.0.1/tests/test_smart_ptr.py000066400000000000000000000164341303320175600177370ustar00rootroot00000000000000import pytest from pybind11_tests import ConstructorStats def test_smart_ptr(capture): # Object1 from pybind11_tests import (MyObject1, make_object_1, make_object_2, print_object_1, print_object_2, print_object_3, print_object_4) for i, o in enumerate([make_object_1(), make_object_2(), MyObject1(3)], start=1): assert o.getRefCount() == 1 with capture: print_object_1(o) print_object_2(o) print_object_3(o) print_object_4(o) assert capture == "MyObject1[{i}]\n".format(i=i) * 4 from pybind11_tests import (make_myobject1_1, make_myobject1_2, print_myobject1_1, print_myobject1_2, print_myobject1_3, print_myobject1_4) for i, o in enumerate([make_myobject1_1(), make_myobject1_2(), MyObject1(6), 7], start=4): print(o) with capture: if not isinstance(o, int): print_object_1(o) print_object_2(o) print_object_3(o) print_object_4(o) print_myobject1_1(o) print_myobject1_2(o) print_myobject1_3(o) print_myobject1_4(o) assert capture == "MyObject1[{i}]\n".format(i=i) * (4 if isinstance(o, int) else 8) cstats = ConstructorStats.get(MyObject1) assert cstats.alive() == 0 expected_values = ['MyObject1[{}]'.format(i) for i in range(1, 7)] + ['MyObject1[7]'] * 4 assert cstats.values() == expected_values assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object2 from pybind11_tests import (MyObject2, make_myobject2_1, make_myobject2_2, make_myobject3_1, make_myobject3_2, print_myobject2_1, print_myobject2_2, print_myobject2_3, print_myobject2_4) for i, o in zip([8, 6, 7], [MyObject2(8), make_myobject2_1(), make_myobject2_2()]): print(o) with capture: print_myobject2_1(o) print_myobject2_2(o) print_myobject2_3(o) print_myobject2_4(o) assert capture == "MyObject2[{i}]\n".format(i=i) * 4 cstats = ConstructorStats.get(MyObject2) assert cstats.alive() == 1 o = None assert cstats.alive() == 0 assert cstats.values() == ['MyObject2[8]', 'MyObject2[6]', 'MyObject2[7]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object3 from pybind11_tests import (MyObject3, print_myobject3_1, print_myobject3_2, print_myobject3_3, print_myobject3_4) for i, o in zip([9, 8, 9], [MyObject3(9), make_myobject3_1(), make_myobject3_2()]): print(o) with capture: print_myobject3_1(o) print_myobject3_2(o) print_myobject3_3(o) print_myobject3_4(o) assert capture == "MyObject3[{i}]\n".format(i=i) * 4 cstats = ConstructorStats.get(MyObject3) assert cstats.alive() == 1 o = None assert cstats.alive() == 0 assert cstats.values() == ['MyObject3[9]', 'MyObject3[8]', 'MyObject3[9]'] assert cstats.default_constructions == 0 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 # Object and ref from pybind11_tests import Object, cstats_ref cstats = ConstructorStats.get(Object) assert cstats.alive() == 0 assert cstats.values() == [] assert cstats.default_constructions == 10 assert cstats.copy_constructions == 0 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 0 assert cstats.move_assignments == 0 cstats = cstats_ref() assert cstats.alive() == 0 assert cstats.values() == ['from pointer'] * 10 assert cstats.default_constructions == 30 assert cstats.copy_constructions == 12 # assert cstats.move_constructions >= 0 # Doesn't invoke any assert cstats.copy_assignments == 30 assert cstats.move_assignments == 0 def test_smart_ptr_refcounting(): from pybind11_tests import test_object1_refcounting assert test_object1_refcounting() def test_unique_nodelete(): from pybind11_tests import MyObject4 o = MyObject4(23) assert o.value == 23 cstats = ConstructorStats.get(MyObject4) assert cstats.alive() == 1 del o cstats = ConstructorStats.get(MyObject4) assert cstats.alive() == 1 # Leak, but that's intentional def test_shared_ptr_and_references(): from pybind11_tests.smart_ptr import SharedPtrRef, A s = SharedPtrRef() stats = ConstructorStats.get(A) assert stats.alive() == 2 ref = s.ref # init_holder_helper(holder_ptr=false, owned=false) assert stats.alive() == 2 assert s.set_ref(ref) with pytest.raises(RuntimeError) as excinfo: assert s.set_holder(ref) assert "Unable to cast from non-held to held instance" in str(excinfo.value) copy = s.copy # init_holder_helper(holder_ptr=false, owned=true) assert stats.alive() == 3 assert s.set_ref(copy) assert s.set_holder(copy) holder_ref = s.holder_ref # init_holder_helper(holder_ptr=true, owned=false) assert stats.alive() == 3 assert s.set_ref(holder_ref) assert s.set_holder(holder_ref) holder_copy = s.holder_copy # init_holder_helper(holder_ptr=true, owned=true) assert stats.alive() == 3 assert s.set_ref(holder_copy) assert s.set_holder(holder_copy) del ref, copy, holder_ref, holder_copy, s assert stats.alive() == 0 def test_shared_ptr_from_this_and_references(): from pybind11_tests.smart_ptr import SharedFromThisRef, B s = SharedFromThisRef() stats = ConstructorStats.get(B) assert stats.alive() == 2 ref = s.ref # init_holder_helper(holder_ptr=false, owned=false, bad_wp=false) assert stats.alive() == 2 assert s.set_ref(ref) assert s.set_holder(ref) # std::enable_shared_from_this can create a holder from a reference bad_wp = s.bad_wp # init_holder_helper(holder_ptr=false, owned=false, bad_wp=true) assert stats.alive() == 2 assert s.set_ref(bad_wp) with pytest.raises(RuntimeError) as excinfo: assert s.set_holder(bad_wp) assert "Unable to cast from non-held to held instance" in str(excinfo.value) copy = s.copy # init_holder_helper(holder_ptr=false, owned=true, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(copy) assert s.set_holder(copy) holder_ref = s.holder_ref # init_holder_helper(holder_ptr=true, owned=false, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(holder_ref) assert s.set_holder(holder_ref) holder_copy = s.holder_copy # init_holder_helper(holder_ptr=true, owned=true, bad_wp=false) assert stats.alive() == 3 assert s.set_ref(holder_copy) assert s.set_holder(holder_copy) del ref, bad_wp, copy, holder_ref, holder_copy, s assert stats.alive() == 0 pybind11-2.0.1/tests/test_stl_binders.cpp000066400000000000000000000055151303320175600203640ustar00rootroot00000000000000/* tests/test_stl_binders.cpp -- Usage of stl_binders functions Copyright (c) 2016 Sergey Lyskov All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include #include #include #include #ifdef _MSC_VER // We get some really long type names here which causes MSVC to emit warnings # pragma warning(disable: 4503) // warning C4503: decorated name length exceeded, name was truncated #endif class El { public: El() = delete; El(int v) : a(v) { } int a; }; std::ostream & operator<<(std::ostream &s, El const&v) { s << "El{" << v.a << '}'; return s; } /// Issue #487: binding std::vector with E non-copyable class E_nc { public: explicit E_nc(int i) : value{i} {} E_nc(const E_nc &) = delete; E_nc &operator=(const E_nc &) = delete; E_nc(E_nc &&) = default; E_nc &operator=(E_nc &&) = default; int value; }; template Container *one_to_n(int n) { auto v = new Container(); for (int i = 1; i <= n; i++) v->emplace_back(i); return v; } template Map *times_ten(int n) { auto m = new Map(); for (int i = 1; i <= n; i++) m->emplace(int(i), E_nc(10*i)); return m; } test_initializer stl_binder_vector([](py::module &m) { py::class_(m, "El") .def(py::init()); py::bind_vector>(m, "VectorInt"); py::bind_vector>(m, "VectorBool"); py::bind_vector>(m, "VectorEl"); py::bind_vector>>(m, "VectorVectorEl"); }); test_initializer stl_binder_map([](py::module &m) { py::bind_map>(m, "MapStringDouble"); py::bind_map>(m, "UnorderedMapStringDouble"); py::bind_map>(m, "MapStringDoubleConst"); py::bind_map>(m, "UnorderedMapStringDoubleConst"); }); test_initializer stl_binder_noncopyable([](py::module &m) { py::class_(m, "ENC") .def(py::init()) .def_readwrite("value", &E_nc::value); py::bind_vector>(m, "VectorENC"); m.def("get_vnc", &one_to_n>, py::return_value_policy::reference); py::bind_vector>(m, "DequeENC"); m.def("get_dnc", &one_to_n>, py::return_value_policy::reference); py::bind_map>(m, "MapENC"); m.def("get_mnc", ×_ten>, py::return_value_policy::reference); py::bind_map>(m, "UmapENC"); m.def("get_umnc", ×_ten>, py::return_value_policy::reference); }); pybind11-2.0.1/tests/test_stl_binders.py000066400000000000000000000061501303320175600202260ustar00rootroot00000000000000def test_vector_int(): from pybind11_tests import VectorInt v_int = VectorInt([0, 0]) assert len(v_int) == 2 assert bool(v_int) is True v_int2 = VectorInt([0, 0]) assert v_int == v_int2 v_int2[1] = 1 assert v_int != v_int2 v_int2.append(2) v_int2.append(3) v_int2.insert(0, 1) v_int2.insert(0, 2) v_int2.insert(0, 3) assert str(v_int2) == "VectorInt[3, 2, 1, 0, 1, 2, 3]" v_int.append(99) v_int2[2:-2] = v_int assert v_int2 == VectorInt([3, 2, 0, 0, 99, 2, 3]) del v_int2[1:3] assert v_int2 == VectorInt([3, 0, 99, 2, 3]) del v_int2[0] assert v_int2 == VectorInt([0, 99, 2, 3]) def test_vector_custom(): from pybind11_tests import El, VectorEl, VectorVectorEl v_a = VectorEl() v_a.append(El(1)) v_a.append(El(2)) assert str(v_a) == "VectorEl[El{1}, El{2}]" vv_a = VectorVectorEl() vv_a.append(v_a) vv_b = vv_a[0] assert str(vv_b) == "VectorEl[El{1}, El{2}]" def test_vector_bool(): from pybind11_tests import VectorBool vv_c = VectorBool() for i in range(10): vv_c.append(i % 2 == 0) for i in range(10): assert vv_c[i] == (i % 2 == 0) assert str(vv_c) == "VectorBool[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]" def test_map_string_double(): from pybind11_tests import MapStringDouble, UnorderedMapStringDouble m = MapStringDouble() m['a'] = 1 m['b'] = 2.5 assert list(m) == ['a', 'b'] assert list(m.items()) == [('a', 1), ('b', 2.5)] assert str(m) == "MapStringDouble{a: 1, b: 2.5}" um = UnorderedMapStringDouble() um['ua'] = 1.1 um['ub'] = 2.6 assert sorted(list(um)) == ['ua', 'ub'] assert sorted(list(um.items())) == [('ua', 1.1), ('ub', 2.6)] assert "UnorderedMapStringDouble" in str(um) def test_map_string_double_const(): from pybind11_tests import MapStringDoubleConst, UnorderedMapStringDoubleConst mc = MapStringDoubleConst() mc['a'] = 10 mc['b'] = 20.5 assert str(mc) == "MapStringDoubleConst{a: 10, b: 20.5}" umc = UnorderedMapStringDoubleConst() umc['a'] = 11 umc['b'] = 21.5 str(umc) def test_noncopyable_vector(): from pybind11_tests import get_vnc vnc = get_vnc(5) for i in range(0, 5): assert vnc[i].value == i + 1 for i, j in enumerate(vnc, start=1): assert j.value == i def test_noncopyable_deque(): from pybind11_tests import get_dnc dnc = get_dnc(5) for i in range(0, 5): assert dnc[i].value == i + 1 i = 1 for j in dnc: assert(j.value == i) i += 1 def test_noncopyable_map(): from pybind11_tests import get_mnc mnc = get_mnc(5) for i in range(1, 6): assert mnc[i].value == 10 * i vsum = 0 for k, v in mnc.items(): assert v.value == 10 * k vsum += v.value assert vsum == 150 def test_noncopyable_unordered_map(): from pybind11_tests import get_umnc mnc = get_umnc(5) for i in range(1, 6): assert mnc[i].value == 10 * i vsum = 0 for k, v in mnc.items(): assert v.value == 10 * k vsum += v.value assert vsum == 150 pybind11-2.0.1/tests/test_virtual_functions.cpp000066400000000000000000000317651303320175600216400ustar00rootroot00000000000000/* tests/test_virtual_functions.cpp -- overriding virtual functions from Python Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include /* This is an example class that we'll want to be able to extend from Python */ class ExampleVirt { public: ExampleVirt(int state) : state(state) { print_created(this, state); } ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } ~ExampleVirt() { print_destroyed(this); } virtual int run(int value) { py::print("Original implementation of " "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2())); return state + value; } virtual bool run_bool() = 0; virtual void pure_virtual() = 0; // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a // bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so // we have to handle it specially in the trampoline class (see below). virtual const std::string &get_string1() { return str1; } virtual const std::string *get_string2() { return &str2; } private: int state; const std::string str1{"default1"}, str2{"default2"}; }; /* This is a wrapper class that must be generated */ class PyExampleVirt : public ExampleVirt { public: using ExampleVirt::ExampleVirt; /* Inherit constructors */ int run(int value) override { /* Generate wrapping code that enables native function overloading */ PYBIND11_OVERLOAD( int, /* Return type */ ExampleVirt, /* Parent class */ run, /* Name of function */ value /* Argument(s) */ ); } bool run_bool() override { PYBIND11_OVERLOAD_PURE( bool, /* Return type */ ExampleVirt, /* Parent class */ run_bool, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } void pure_virtual() override { PYBIND11_OVERLOAD_PURE( void, /* Return type */ ExampleVirt, /* Parent class */ pure_virtual, /* Name of function */ /* This function has no arguments. The trailing comma in the previous line is needed for some compilers */ ); } // We can return reference types for compatibility with C++ virtual interfaces that do so, but // note they have some significant limitations (see the documentation). const std::string &get_string1() override { PYBIND11_OVERLOAD( const std::string &, /* Return type */ ExampleVirt, /* Parent class */ get_string1, /* Name of function */ /* (no arguments) */ ); } const std::string *get_string2() override { PYBIND11_OVERLOAD( const std::string *, /* Return type */ ExampleVirt, /* Parent class */ get_string2, /* Name of function */ /* (no arguments) */ ); } }; class NonCopyable { public: NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } NonCopyable(const NonCopyable &) = delete; NonCopyable() = delete; void operator=(const NonCopyable &) = delete; void operator=(NonCopyable &&) = delete; std::string get_value() const { if (value) return std::to_string(*value); else return "(null)"; } ~NonCopyable() { print_destroyed(this); } private: std::unique_ptr value; }; // This is like the above, but is both copy and movable. In effect this means it should get moved // when it is not referenced elsewhere, but copied if it is still referenced. class Movable { public: Movable(int a, int b) : value{a+b} { print_created(this, a, b); } Movable(const Movable &m) { value = m.value; print_copy_created(this); } Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } std::string get_value() const { return std::to_string(value); } ~Movable() { print_destroyed(this); } private: int value; }; class NCVirt { public: virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } virtual Movable get_movable(int a, int b) = 0; std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } }; class NCVirtTrampoline : public NCVirt { #if !defined(__INTEL_COMPILER) NonCopyable get_noncopyable(int a, int b) override { PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b); } #endif Movable get_movable(int a, int b) override { PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b); } }; int runExampleVirt(ExampleVirt *ex, int value) { return ex->run(value); } bool runExampleVirtBool(ExampleVirt* ex) { return ex->run_bool(); } void runExampleVirtVirtual(ExampleVirt *ex) { ex->pure_virtual(); } // Inheriting virtual methods. We do two versions here: the repeat-everything version and the // templated trampoline versions mentioned in docs/advanced.rst. // // These base classes are exactly the same, but we technically need distinct // classes for this example code because we need to be able to bind them // properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to // multiple python classes). class A_Repeat { #define A_METHODS \ public: \ virtual int unlucky_number() = 0; \ virtual std::string say_something(unsigned times) { \ std::string s = ""; \ for (unsigned i = 0; i < times; ++i) \ s += "hi"; \ return s; \ } \ std::string say_everything() { \ return say_something(1) + " " + std::to_string(unlucky_number()); \ } A_METHODS }; class B_Repeat : public A_Repeat { #define B_METHODS \ public: \ int unlucky_number() override { return 13; } \ std::string say_something(unsigned times) override { \ return "B says hi " + std::to_string(times) + " times"; \ } \ virtual double lucky_number() { return 7.0; } B_METHODS }; class C_Repeat : public B_Repeat { #define C_METHODS \ public: \ int unlucky_number() override { return 4444; } \ double lucky_number() override { return 888; } C_METHODS }; class D_Repeat : public C_Repeat { #define D_METHODS // Nothing overridden. D_METHODS }; // Base classes for templated inheritance trampolines. Identical to the repeat-everything version: class A_Tpl { A_METHODS }; class B_Tpl : public A_Tpl { B_METHODS }; class C_Tpl : public B_Tpl { C_METHODS }; class D_Tpl : public C_Tpl { D_METHODS }; // Inheritance approach 1: each trampoline gets every virtual method (11 in total) class PyA_Repeat : public A_Repeat { public: using A_Repeat::A_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); } }; class PyB_Repeat : public B_Repeat { public: using B_Repeat::B_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); } }; class PyC_Repeat : public C_Repeat { public: using C_Repeat::C_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); } }; class PyD_Repeat : public D_Repeat { public: using D_Repeat::D_Repeat; int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); } double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); } }; // Inheritance approach 2: templated trampoline classes. // // Advantages: // - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for // any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11 // methods (repeat). // - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can // properly inherit constructors. // // Disadvantage: // - the compiler must still generate and compile 14 different methods (more, even, than the 11 // required for the repeat approach) instead of the 6 required for MI. (If there was no pure // method (or no pure method override), the number would drop down to the same 11 as the repeat // approach). template class PyA_Tpl : public Base { public: using Base::Base; // Inherit constructors int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); } std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); } }; template class PyB_Tpl : public PyA_Tpl { public: using PyA_Tpl::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors) int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); } double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); } }; // Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can // use PyB_Tpl and PyB_Tpl for the trampoline classes instead): /* template class PyC_Tpl : public PyB_Tpl { public: using PyB_Tpl::PyB_Tpl; }; template class PyD_Tpl : public PyC_Tpl { public: using PyC_Tpl::PyC_Tpl; }; */ void initialize_inherited_virtuals(py::module &m) { // Method 1: repeat py::class_(m, "A_Repeat") .def(py::init<>()) .def("unlucky_number", &A_Repeat::unlucky_number) .def("say_something", &A_Repeat::say_something) .def("say_everything", &A_Repeat::say_everything); py::class_(m, "B_Repeat") .def(py::init<>()) .def("lucky_number", &B_Repeat::lucky_number); py::class_(m, "C_Repeat") .def(py::init<>()); py::class_(m, "D_Repeat") .def(py::init<>()); // Method 2: Templated trampolines py::class_>(m, "A_Tpl") .def(py::init<>()) .def("unlucky_number", &A_Tpl::unlucky_number) .def("say_something", &A_Tpl::say_something) .def("say_everything", &A_Tpl::say_everything); py::class_>(m, "B_Tpl") .def(py::init<>()) .def("lucky_number", &B_Tpl::lucky_number); py::class_>(m, "C_Tpl") .def(py::init<>()); py::class_>(m, "D_Tpl") .def(py::init<>()); }; test_initializer virtual_functions([](py::module &m) { /* Important: indicate the trampoline class PyExampleVirt using the third argument to py::class_. The second argument with the unique pointer is simply the default holder type used by pybind11. */ py::class_(m, "ExampleVirt") .def(py::init()) /* Reference original class in function definitions */ .def("run", &ExampleVirt::run) .def("run_bool", &ExampleVirt::run_bool) .def("pure_virtual", &ExampleVirt::pure_virtual); py::class_(m, "NonCopyable") .def(py::init()); py::class_(m, "Movable") .def(py::init()); #if !defined(__INTEL_COMPILER) py::class_(m, "NCVirt") .def(py::init<>()) .def("get_noncopyable", &NCVirt::get_noncopyable) .def("get_movable", &NCVirt::get_movable) .def("print_nc", &NCVirt::print_nc) .def("print_movable", &NCVirt::print_movable); #endif m.def("runExampleVirt", &runExampleVirt); m.def("runExampleVirtBool", &runExampleVirtBool); m.def("runExampleVirtVirtual", &runExampleVirtVirtual); m.def("cstats_debug", &ConstructorStats::get); initialize_inherited_virtuals(m); }); pybind11-2.0.1/tests/test_virtual_functions.py000066400000000000000000000203501303320175600214720ustar00rootroot00000000000000import pytest import pybind11_tests from pybind11_tests import ConstructorStats def test_override(capture, msg): from pybind11_tests import (ExampleVirt, runExampleVirt, runExampleVirtVirtual, runExampleVirtBool) class ExtendedExampleVirt(ExampleVirt): def __init__(self, state): super(ExtendedExampleVirt, self).__init__(state + 1) self.data = "Hello world" def run(self, value): print('ExtendedExampleVirt::run(%i), calling parent..' % value) return super(ExtendedExampleVirt, self).run(value + 1) def run_bool(self): print('ExtendedExampleVirt::run_bool()') return False def get_string1(self): return "override1" def pure_virtual(self): print('ExtendedExampleVirt::pure_virtual(): %s' % self.data) class ExtendedExampleVirt2(ExtendedExampleVirt): def __init__(self, state): super(ExtendedExampleVirt2, self).__init__(state + 1) def get_string2(self): return "override2" ex12 = ExampleVirt(10) with capture: assert runExampleVirt(ex12, 20) == 30 assert capture == """ Original implementation of ExampleVirt::run(state=10, value=20, str1=default1, str2=default2) """ # noqa: E501 line too long with pytest.raises(RuntimeError) as excinfo: runExampleVirtVirtual(ex12) assert msg(excinfo.value) == 'Tried to call pure virtual function "ExampleVirt::pure_virtual"' ex12p = ExtendedExampleVirt(10) with capture: assert runExampleVirt(ex12p, 20) == 32 assert capture == """ ExtendedExampleVirt::run(20), calling parent.. Original implementation of ExampleVirt::run(state=11, value=21, str1=override1, str2=default2) """ # noqa: E501 line too long with capture: assert runExampleVirtBool(ex12p) is False assert capture == "ExtendedExampleVirt::run_bool()" with capture: runExampleVirtVirtual(ex12p) assert capture == "ExtendedExampleVirt::pure_virtual(): Hello world" ex12p2 = ExtendedExampleVirt2(15) with capture: assert runExampleVirt(ex12p2, 50) == 68 assert capture == """ ExtendedExampleVirt::run(50), calling parent.. Original implementation of ExampleVirt::run(state=17, value=51, str1=override1, str2=override2) """ # noqa: E501 line too long cstats = ConstructorStats.get(ExampleVirt) assert cstats.alive() == 3 del ex12, ex12p, ex12p2 assert cstats.alive() == 0 assert cstats.values() == ['10', '11', '17'] assert cstats.copy_constructions == 0 assert cstats.move_constructions >= 0 def test_inheriting_repeat(): from pybind11_tests import A_Repeat, B_Repeat, C_Repeat, D_Repeat, A_Tpl, B_Tpl, C_Tpl, D_Tpl class AR(A_Repeat): def unlucky_number(self): return 99 class AT(A_Tpl): def unlucky_number(self): return 999 obj = AR() assert obj.say_something(3) == "hihihi" assert obj.unlucky_number() == 99 assert obj.say_everything() == "hi 99" obj = AT() assert obj.say_something(3) == "hihihi" assert obj.unlucky_number() == 999 assert obj.say_everything() == "hi 999" for obj in [B_Repeat(), B_Tpl()]: assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 13 assert obj.lucky_number() == 7.0 assert obj.say_everything() == "B says hi 1 times 13" for obj in [C_Repeat(), C_Tpl()]: assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 888.0 assert obj.say_everything() == "B says hi 1 times 4444" class CR(C_Repeat): def lucky_number(self): return C_Repeat.lucky_number(self) + 1.25 obj = CR() assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 889.25 assert obj.say_everything() == "B says hi 1 times 4444" class CT(C_Tpl): pass obj = CT() assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 888.0 assert obj.say_everything() == "B says hi 1 times 4444" class CCR(CR): def lucky_number(self): return CR.lucky_number(self) * 10 obj = CCR() assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 8892.5 assert obj.say_everything() == "B says hi 1 times 4444" class CCT(CT): def lucky_number(self): return CT.lucky_number(self) * 1000 obj = CCT() assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 888000.0 assert obj.say_everything() == "B says hi 1 times 4444" class DR(D_Repeat): def unlucky_number(self): return 123 def lucky_number(self): return 42.0 for obj in [D_Repeat(), D_Tpl()]: assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 4444 assert obj.lucky_number() == 888.0 assert obj.say_everything() == "B says hi 1 times 4444" obj = DR() assert obj.say_something(3) == "B says hi 3 times" assert obj.unlucky_number() == 123 assert obj.lucky_number() == 42.0 assert obj.say_everything() == "B says hi 1 times 123" class DT(D_Tpl): def say_something(self, times): return "DT says:" + (' quack' * times) def unlucky_number(self): return 1234 def lucky_number(self): return -4.25 obj = DT() assert obj.say_something(3) == "DT says: quack quack quack" assert obj.unlucky_number() == 1234 assert obj.lucky_number() == -4.25 assert obj.say_everything() == "DT says: quack 1234" class DT2(DT): def say_something(self, times): return "DT2: " + ('QUACK' * times) def unlucky_number(self): return -3 class BT(B_Tpl): def say_something(self, times): return "BT" * times def unlucky_number(self): return -7 def lucky_number(self): return -1.375 obj = BT() assert obj.say_something(3) == "BTBTBT" assert obj.unlucky_number() == -7 assert obj.lucky_number() == -1.375 assert obj.say_everything() == "BT -7" # PyPy: Reference count > 1 causes call with noncopyable instance # to fail in ncv1.print_nc() @pytest.unsupported_on_pypy @pytest.mark.skipif(not hasattr(pybind11_tests, 'NCVirt'), reason="NCVirt test broken on ICPC") def test_move_support(): from pybind11_tests import NCVirt, NonCopyable, Movable class NCVirtExt(NCVirt): def get_noncopyable(self, a, b): # Constructs and returns a new instance: nc = NonCopyable(a * a, b * b) return nc def get_movable(self, a, b): # Return a referenced copy self.movable = Movable(a, b) return self.movable class NCVirtExt2(NCVirt): def get_noncopyable(self, a, b): # Keep a reference: this is going to throw an exception self.nc = NonCopyable(a, b) return self.nc def get_movable(self, a, b): # Return a new instance without storing it return Movable(a, b) ncv1 = NCVirtExt() assert ncv1.print_nc(2, 3) == "36" assert ncv1.print_movable(4, 5) == "9" ncv2 = NCVirtExt2() assert ncv2.print_movable(7, 7) == "14" # Don't check the exception message here because it differs under debug/non-debug mode with pytest.raises(RuntimeError): ncv2.print_nc(9, 9) nc_stats = ConstructorStats.get(NonCopyable) mv_stats = ConstructorStats.get(Movable) assert nc_stats.alive() == 1 assert mv_stats.alive() == 1 del ncv1, ncv2 assert nc_stats.alive() == 0 assert mv_stats.alive() == 0 assert nc_stats.values() == ['4', '9', '9', '9'] assert mv_stats.values() == ['4', '5', '7', '7'] assert nc_stats.copy_constructions == 0 assert mv_stats.copy_constructions == 1 assert nc_stats.move_constructions >= 0 assert mv_stats.move_constructions >= 0 pybind11-2.0.1/tools/000077500000000000000000000000001303320175600143015ustar00rootroot00000000000000pybind11-2.0.1/tools/FindEigen3.cmake000066400000000000000000000056631303320175600172300ustar00rootroot00000000000000# - Try to find Eigen3 lib # # This module supports requiring a minimum version, e.g. you can do # find_package(Eigen3 3.1.2) # to require version 3.1.2 or newer of Eigen3. # # Once done this will define # # EIGEN3_FOUND - system has eigen lib with correct version # EIGEN3_INCLUDE_DIR - the eigen include directory # EIGEN3_VERSION - eigen version # Copyright (c) 2006, 2007 Montel Laurent, # Copyright (c) 2008, 2009 Gael Guennebaud, # Copyright (c) 2009 Benoit Jacob # Redistribution and use is allowed according to the terms of the 2-clause BSD license. if(NOT Eigen3_FIND_VERSION) if(NOT Eigen3_FIND_VERSION_MAJOR) set(Eigen3_FIND_VERSION_MAJOR 2) endif(NOT Eigen3_FIND_VERSION_MAJOR) if(NOT Eigen3_FIND_VERSION_MINOR) set(Eigen3_FIND_VERSION_MINOR 91) endif(NOT Eigen3_FIND_VERSION_MINOR) if(NOT Eigen3_FIND_VERSION_PATCH) set(Eigen3_FIND_VERSION_PATCH 0) endif(NOT Eigen3_FIND_VERSION_PATCH) set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}") endif(NOT Eigen3_FIND_VERSION) macro(_eigen3_check_version) file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header) string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}") set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}") string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}") set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}") string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}") set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}") set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION}) if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) set(EIGEN3_VERSION_OK FALSE) else(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) set(EIGEN3_VERSION_OK TRUE) endif(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) if(NOT EIGEN3_VERSION_OK) message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, " "but at least version ${Eigen3_FIND_VERSION} is required") endif(NOT EIGEN3_VERSION_OK) endmacro(_eigen3_check_version) if (EIGEN3_INCLUDE_DIR) # in cache already _eigen3_check_version() set(EIGEN3_FOUND ${EIGEN3_VERSION_OK}) else (EIGEN3_INCLUDE_DIR) find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library PATHS ${CMAKE_INSTALL_PREFIX}/include ${KDE4_INCLUDE_DIR} PATH_SUFFIXES eigen3 eigen ) if(EIGEN3_INCLUDE_DIR) _eigen3_check_version() endif(EIGEN3_INCLUDE_DIR) include(FindPackageHandleStandardArgs) find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK) mark_as_advanced(EIGEN3_INCLUDE_DIR) endif(EIGEN3_INCLUDE_DIR) pybind11-2.0.1/tools/FindPythonLibsNew.cmake000066400000000000000000000174761303320175600206700ustar00rootroot00000000000000# - Find python libraries # This module finds the libraries corresponding to the Python interpeter # FindPythonInterp provides. # This code sets the following variables: # # PYTHONLIBS_FOUND - have the Python libs been found # PYTHON_PREFIX - path to the Python installation # PYTHON_LIBRARIES - path to the python library # PYTHON_INCLUDE_DIRS - path to where Python.h is found # PYTHON_MODULE_EXTENSION - lib extension, e.g. '.so' or '.pyd' # PYTHON_MODULE_PREFIX - lib name prefix: usually an empty string # PYTHON_SITE_PACKAGES - path to installation site-packages # PYTHON_IS_DEBUG - whether the Python interpreter is a debug build # # Thanks to talljimbo for the patch adding the 'LDVERSION' config # variable usage. #============================================================================= # Copyright 2001-2009 Kitware, Inc. # Copyright 2012 Continuum Analytics, Inc. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the names of Kitware, Inc., the Insight Software Consortium, # nor the names of their contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #============================================================================= if(PYTHONLIBS_FOUND) return() endif() # Use the Python interpreter to find the libs. if(PythonLibsNew_FIND_REQUIRED) find_package(PythonInterp ${PythonLibsNew_FIND_VERSION} REQUIRED) else() find_package(PythonInterp ${PythonLibsNew_FIND_VERSION}) endif() if(NOT PYTHONINTERP_FOUND) set(PYTHONLIBS_FOUND FALSE) return() endif() # According to http://stackoverflow.com/questions/646518/python-how-to-detect-debug-interpreter # testing whether sys has the gettotalrefcount function is a reliable, cross-platform # way to detect a CPython debug interpreter. # # The library suffix is from the config var LDVERSION sometimes, otherwise # VERSION. VERSION will typically be like "2.7" on unix, and "27" on windows. execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c" "from distutils import sysconfig as s;import sys;import struct; print('.'.join(str(v) for v in sys.version_info)); print(sys.prefix); print(s.get_python_inc(plat_specific=True)); print(s.get_python_lib(plat_specific=True)); print(s.get_config_var('SO')); print(hasattr(sys, 'gettotalrefcount')+0); print(struct.calcsize('@P')); print(s.get_config_var('LDVERSION') or s.get_config_var('VERSION')); print(s.get_config_var('LIBDIR') or ''); print(s.get_config_var('MULTIARCH') or ''); " RESULT_VARIABLE _PYTHON_SUCCESS OUTPUT_VARIABLE _PYTHON_VALUES ERROR_VARIABLE _PYTHON_ERROR_VALUE) if(NOT _PYTHON_SUCCESS MATCHES 0) if(PythonLibsNew_FIND_REQUIRED) message(FATAL_ERROR "Python config failure:\n${_PYTHON_ERROR_VALUE}") endif() set(PYTHONLIBS_FOUND FALSE) return() endif() # Convert the process output into a list string(REGEX REPLACE ";" "\\\\;" _PYTHON_VALUES ${_PYTHON_VALUES}) string(REGEX REPLACE "\n" ";" _PYTHON_VALUES ${_PYTHON_VALUES}) list(GET _PYTHON_VALUES 0 _PYTHON_VERSION_LIST) list(GET _PYTHON_VALUES 1 PYTHON_PREFIX) list(GET _PYTHON_VALUES 2 PYTHON_INCLUDE_DIR) list(GET _PYTHON_VALUES 3 PYTHON_SITE_PACKAGES) list(GET _PYTHON_VALUES 4 PYTHON_MODULE_EXTENSION) list(GET _PYTHON_VALUES 5 PYTHON_IS_DEBUG) list(GET _PYTHON_VALUES 6 PYTHON_SIZEOF_VOID_P) list(GET _PYTHON_VALUES 7 PYTHON_LIBRARY_SUFFIX) list(GET _PYTHON_VALUES 8 PYTHON_LIBDIR) list(GET _PYTHON_VALUES 9 PYTHON_MULTIARCH) # Make sure the Python has the same pointer-size as the chosen compiler # Skip if CMAKE_SIZEOF_VOID_P is not defined if(CMAKE_SIZEOF_VOID_P AND (NOT "${PYTHON_SIZEOF_VOID_P}" STREQUAL "${CMAKE_SIZEOF_VOID_P}")) if(PythonLibsNew_FIND_REQUIRED) math(EXPR _PYTHON_BITS "${PYTHON_SIZEOF_VOID_P} * 8") math(EXPR _CMAKE_BITS "${CMAKE_SIZEOF_VOID_P} * 8") message(FATAL_ERROR "Python config failure: Python is ${_PYTHON_BITS}-bit, " "chosen compiler is ${_CMAKE_BITS}-bit") endif() set(PYTHONLIBS_FOUND FALSE) return() endif() # The built-in FindPython didn't always give the version numbers string(REGEX REPLACE "\\." ";" _PYTHON_VERSION_LIST ${_PYTHON_VERSION_LIST}) list(GET _PYTHON_VERSION_LIST 0 PYTHON_VERSION_MAJOR) list(GET _PYTHON_VERSION_LIST 1 PYTHON_VERSION_MINOR) list(GET _PYTHON_VERSION_LIST 2 PYTHON_VERSION_PATCH) # Make sure all directory separators are '/' string(REGEX REPLACE "\\\\" "/" PYTHON_PREFIX ${PYTHON_PREFIX}) string(REGEX REPLACE "\\\\" "/" PYTHON_INCLUDE_DIR ${PYTHON_INCLUDE_DIR}) string(REGEX REPLACE "\\\\" "/" PYTHON_SITE_PACKAGES ${PYTHON_SITE_PACKAGES}) if(CMAKE_HOST_WIN32) set(PYTHON_LIBRARY "${PYTHON_PREFIX}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib") # when run in a venv, PYTHON_PREFIX points to it. But the libraries remain in the # original python installation. They may be found relative to PYTHON_INCLUDE_DIR. if(NOT EXISTS "${PYTHON_LIBRARY}") get_filename_component(_PYTHON_ROOT ${PYTHON_INCLUDE_DIR} DIRECTORY) set(PYTHON_LIBRARY "${_PYTHON_ROOT}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib") endif() # raise an error if the python libs are still not found. if(NOT EXISTS "${PYTHON_LIBRARY}") message(FATAL_ERROR "Python libraries not found") endif() else() if(PYTHON_MULTIARCH) set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}/${PYTHON_MULTIARCH}" "${PYTHON_LIBDIR}") else() set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}") endif() #message(STATUS "Searching for Python libs in ${_PYTHON_LIBS_SEARCH}") # Probably this needs to be more involved. It would be nice if the config # information the python interpreter itself gave us were more complete. find_library(PYTHON_LIBRARY NAMES "python${PYTHON_LIBRARY_SUFFIX}" PATHS ${_PYTHON_LIBS_SEARCH} NO_DEFAULT_PATH) # If all else fails, just set the name/version and let the linker figure out the path. if(NOT PYTHON_LIBRARY) set(PYTHON_LIBRARY python${PYTHON_LIBRARY_SUFFIX}) endif() endif() MARK_AS_ADVANCED( PYTHON_LIBRARY PYTHON_INCLUDE_DIR ) # We use PYTHON_INCLUDE_DIR, PYTHON_LIBRARY and PYTHON_DEBUG_LIBRARY for the # cache entries because they are meant to specify the location of a single # library. We now set the variables listed by the documentation for this # module. SET(PYTHON_INCLUDE_DIRS "${PYTHON_INCLUDE_DIR}") SET(PYTHON_LIBRARIES "${PYTHON_LIBRARY}") SET(PYTHON_DEBUG_LIBRARIES "${PYTHON_DEBUG_LIBRARY}") find_package_message(PYTHON "Found PythonLibs: ${PYTHON_LIBRARY}" "${PYTHON_EXECUTABLE}${PYTHON_VERSION}") set(PYTHONLIBS_FOUND TRUE) pybind11-2.0.1/tools/check-style.sh000077500000000000000000000044531303320175600170610ustar00rootroot00000000000000#!/bin/bash # # Script to check include/test code for common pybind11 code style errors. # # This script currently checks for # # 1. use of tabs instead of spaces # 2. MSDOS-style CRLF endings # 3. trailing spaces # 4. missing space between keyword and parenthesis, e.g.: for(, if(, while( # 5. Missing space between right parenthesis and brace, e.g. 'for (...){' # 6. opening brace on its own line. It should always be on the same line as the # if/while/for/do statment. # # Invoke as: tools/check-style.sh # errors=0 IFS=$'\n' found= # The mt=41 sets a red background for matched tabs: exec 3< <(GREP_COLORS='mt=41' grep $'\t' include/ tests/*.{cpp,py,h} docs/*.rst -rn --color=always) while read -u 3 f; do if [ -z "$found" ]; then echo -e '\e[31m\e[01mError: found tabs instead of spaces in the following files:\e[0m' found=1 errors=1 fi echo " $f" done found= # The mt=41 sets a red background for matched MS-DOS CRLF line endings exec 3< <(GREP_COLORS='mt=41' grep -IUlr $'\r' include/ tests/*.{cpp,py,h} docs/*.rst --color=always) while read -u 3 f; do if [ -z "$found" ]; then echo -e '\e[31m\e[01mError: found CRLF characters in the following files:\e[0m' found=1 errors=1 fi echo " $f" done found= # The mt=41 sets a red background for matched trailing spaces exec 3< <(GREP_COLORS='mt=41' grep '\s\+$' include/ tests/*.{cpp,py,h} docs/*.rst -rn --color=always) while read -u 3 f; do if [ -z "$found" ]; then echo -e '\e[31m\e[01mError: found trailing spaces in the following files:\e[0m' found=1 errors=1 fi echo " $f" done found= exec 3< <(grep '\<\(if\|for\|while\|catch\)(\|){' include/ tests/*.{cpp,py,h} -rn --color=always) while read -u 3 line; do if [ -z "$found" ]; then echo -e '\e[31m\e[01mError: found the following coding style problems:\e[0m' found=1 errors=1 fi echo " $line" done found= exec 3< <(GREP_COLORS='mt=41' grep '^\s*{\s*$' include/ docs/*.rst -rn --color=always) while read -u 3 f; do if [ -z "$found" ]; then echo -e '\e[31m\e[01mError: braces should occur on the same line as the if/while/.. statement. Found issues in the following files: \e[0m' found=1 errors=1 fi echo " $f" done exit $errors pybind11-2.0.1/tools/clang/000077500000000000000000000000001303320175600153655ustar00rootroot00000000000000pybind11-2.0.1/tools/libsize.py000066400000000000000000000021121303320175600163100ustar00rootroot00000000000000from __future__ import print_function, division import os import sys # Internal build script for generating debugging test .so size. # Usage: # python libsize.py file.so save.txt -- displays the size of file.so and, if save.txt exists, compares it to the # size in it, then overwrites save.txt with the new size for future runs. if len(sys.argv) != 3: sys.exit("Invalid arguments: usage: python libsize.py file.so save.txt") lib = sys.argv[1] save = sys.argv[2] if not os.path.exists(lib): sys.exit("Error: requested file ({}) does not exist".format(lib)) libsize = os.path.getsize(lib) print("------", os.path.basename(lib), "file size:", libsize, end='') if os.path.exists(save): with open(save) as sf: oldsize = int(sf.readline()) if oldsize > 0: change = libsize - oldsize if change == 0: print(" (no change)") else: print(" (change of {:+} bytes = {:+.2%})".format(change, change / oldsize)) else: print() with open(save, 'w') as sf: sf.write(str(libsize)) pybind11-2.0.1/tools/mkdoc.py000066400000000000000000000243521303320175600157560ustar00rootroot00000000000000#!/usr/bin/env python3 # # Syntax: mkdoc.py [-I ..] [.. a list of header files ..] # # Extract documentation from C++ header files to use it in Python bindings # import os import sys import platform import re import textwrap from clang import cindex from clang.cindex import CursorKind from collections import OrderedDict from threading import Thread, Semaphore from multiprocessing import cpu_count RECURSE_LIST = [ CursorKind.TRANSLATION_UNIT, CursorKind.NAMESPACE, CursorKind.CLASS_DECL, CursorKind.STRUCT_DECL, CursorKind.ENUM_DECL, CursorKind.CLASS_TEMPLATE ] PRINT_LIST = [ CursorKind.CLASS_DECL, CursorKind.STRUCT_DECL, CursorKind.ENUM_DECL, CursorKind.ENUM_CONSTANT_DECL, CursorKind.CLASS_TEMPLATE, CursorKind.FUNCTION_DECL, CursorKind.FUNCTION_TEMPLATE, CursorKind.CONVERSION_FUNCTION, CursorKind.CXX_METHOD, CursorKind.CONSTRUCTOR, CursorKind.FIELD_DECL ] CPP_OPERATORS = { '<=': 'le', '>=': 'ge', '==': 'eq', '!=': 'ne', '[]': 'array', '+=': 'iadd', '-=': 'isub', '*=': 'imul', '/=': 'idiv', '%=': 'imod', '&=': 'iand', '|=': 'ior', '^=': 'ixor', '<<=': 'ilshift', '>>=': 'irshift', '++': 'inc', '--': 'dec', '<<': 'lshift', '>>': 'rshift', '&&': 'land', '||': 'lor', '!': 'lnot', '~': 'bnot', '&': 'band', '|': 'bor', '+': 'add', '-': 'sub', '*': 'mul', '/': 'div', '%': 'mod', '<': 'lt', '>': 'gt', '=': 'assign', '()': 'call' } CPP_OPERATORS = OrderedDict( sorted(CPP_OPERATORS.items(), key=lambda t: -len(t[0]))) job_count = cpu_count() job_semaphore = Semaphore(job_count) registered_names = dict() def d(s): return s.decode('utf8') def sanitize_name(name): global registered_names name = re.sub(r'type-parameter-0-([0-9]+)', r'T\1', name) for k, v in CPP_OPERATORS.items(): name = name.replace('operator%s' % k, 'operator_%s' % v) name = re.sub('<.*>', '', name) name = ''.join([ch if ch.isalnum() else '_' for ch in name]) name = re.sub('_$', '', re.sub('_+', '_', name)) if name in registered_names: registered_names[name] += 1 name += '_' + str(registered_names[name]) else: registered_names[name] = 1 return '__doc_' + name def process_comment(comment): result = '' # Remove C++ comment syntax leading_spaces = float('inf') for s in comment.expandtabs(tabsize=4).splitlines(): s = s.strip() if s.startswith('/*'): s = s[2:].lstrip('*') elif s.endswith('*/'): s = s[:-2].rstrip('*') elif s.startswith('///'): s = s[3:] if s.startswith('*'): s = s[1:] if len(s) > 0: leading_spaces = min(leading_spaces, len(s) - len(s.lstrip())) result += s + '\n' if leading_spaces != float('inf'): result2 = "" for s in result.splitlines(): result2 += s[leading_spaces:] + '\n' result = result2 # Doxygen tags cpp_group = '([\w:]+)' param_group = '([\[\w:\]]+)' s = result s = re.sub(r'\\c\s+%s' % cpp_group, r'``\1``', s) s = re.sub(r'\\a\s+%s' % cpp_group, r'*\1*', s) s = re.sub(r'\\e\s+%s' % cpp_group, r'*\1*', s) s = re.sub(r'\\em\s+%s' % cpp_group, r'*\1*', s) s = re.sub(r'\\b\s+%s' % cpp_group, r'**\1**', s) s = re.sub(r'\\ingroup\s+%s' % cpp_group, r'', s) s = re.sub(r'\\param%s?\s+%s' % (param_group, cpp_group), r'\n\n$Parameter ``\2``:\n\n', s) s = re.sub(r'\\tparam%s?\s+%s' % (param_group, cpp_group), r'\n\n$Template parameter ``\2``:\n\n', s) for in_, out_ in { 'return': 'Returns', 'author': 'Author', 'authors': 'Authors', 'copyright': 'Copyright', 'date': 'Date', 'remark': 'Remark', 'sa': 'See also', 'see': 'See also', 'extends': 'Extends', 'throw': 'Throws', 'throws': 'Throws' }.items(): s = re.sub(r'\\%s\s*' % in_, r'\n\n$%s:\n\n' % out_, s) s = re.sub(r'\\details\s*', r'\n\n', s) s = re.sub(r'\\brief\s*', r'', s) s = re.sub(r'\\short\s*', r'', s) s = re.sub(r'\\ref\s*', r'', s) s = re.sub(r'\\code\s?(.*?)\s?\\endcode', r"```\n\1\n```\n", s, flags=re.DOTALL) # HTML/TeX tags s = re.sub(r'(.*?)', r'``\1``', s, flags=re.DOTALL) s = re.sub(r'
(.*?)
', r"```\n\1\n```\n", s, flags=re.DOTALL) s = re.sub(r'(.*?)', r'*\1*', s, flags=re.DOTALL) s = re.sub(r'(.*?)', r'**\1**', s, flags=re.DOTALL) s = re.sub(r'\\f\$(.*?)\\f\$', r'$\1$', s, flags=re.DOTALL) s = re.sub(r'
  • ', r'\n\n* ', s) s = re.sub(r'', r'', s) s = re.sub(r'
  • ', r'\n\n', s) s = s.replace('``true``', '``True``') s = s.replace('``false``', '``False``') # Re-flow text wrapper = textwrap.TextWrapper() wrapper.expand_tabs = True wrapper.replace_whitespace = True wrapper.drop_whitespace = True wrapper.width = 70 wrapper.initial_indent = wrapper.subsequent_indent = '' result = '' in_code_segment = False for x in re.split(r'(```)', s): if x == '```': if not in_code_segment: result += '```\n' else: result += '\n```\n\n' in_code_segment = not in_code_segment elif in_code_segment: result += x.strip() else: for y in re.split(r'(?: *\n *){2,}', x): wrapped = wrapper.fill(re.sub(r'\s+', ' ', y).strip()) if len(wrapped) > 0 and wrapped[0] == '$': result += wrapped[1:] + '\n' wrapper.initial_indent = \ wrapper.subsequent_indent = ' ' * 4 else: if len(wrapped) > 0: result += wrapped + '\n\n' wrapper.initial_indent = wrapper.subsequent_indent = '' return result.rstrip().lstrip('\n') def extract(filename, node, prefix, output): num_extracted = 0 if not (node.location.file is None or os.path.samefile(d(node.location.file.name), filename)): return 0 if node.kind in RECURSE_LIST: sub_prefix = prefix if node.kind != CursorKind.TRANSLATION_UNIT: if len(sub_prefix) > 0: sub_prefix += '_' sub_prefix += d(node.spelling) for i in node.get_children(): num_extracted += extract(filename, i, sub_prefix, output) if num_extracted == 0: return 0 if node.kind in PRINT_LIST: comment = d(node.raw_comment) if node.raw_comment is not None else '' comment = process_comment(comment) sub_prefix = prefix if len(sub_prefix) > 0: sub_prefix += '_' if len(node.spelling) > 0: name = sanitize_name(sub_prefix + d(node.spelling)) output.append('\nstatic const char *%s =%sR"doc(%s)doc";' % (name, '\n' if '\n' in comment else ' ', comment)) num_extracted += 1 return num_extracted class ExtractionThread(Thread): def __init__(self, filename, parameters, output): Thread.__init__(self) self.filename = filename self.parameters = parameters self.output = output job_semaphore.acquire() def run(self): print('Processing "%s" ..' % self.filename, file=sys.stderr) try: index = cindex.Index( cindex.conf.lib.clang_createIndex(False, True)) tu = index.parse(self.filename, self.parameters) extract(self.filename, tu.cursor, '', self.output) finally: job_semaphore.release() if __name__ == '__main__': parameters = ['-x', 'c++', '-std=c++11'] filenames = [] if platform.system() == 'Darwin': dev_path = '/Applications/Xcode.app/Contents/Developer/' lib_dir = dev_path + 'Toolchains/XcodeDefault.xctoolchain/usr/lib/' sdk_dir = dev_path + 'Platforms/MacOSX.platform/Developer/SDKs' libclang = lib_dir + 'libclang.dylib' if os.path.exists(libclang): cindex.Config.set_library_path(os.path.dirname(libclang)) if os.path.exists(sdk_dir): sysroot_dir = os.path.join(sdk_dir, next(os.walk(sdk_dir))[1][0]) parameters.append('-isysroot') parameters.append(sysroot_dir) for item in sys.argv[1:]: if item.startswith('-'): parameters.append(item) else: filenames.append(item) if len(filenames) == 0: print('Syntax: %s [.. a list of header files ..]' % sys.argv[0]) exit(-1) print('''/* This file contains docstrings for the Python bindings. Do not edit! These were automatically extracted by mkdoc.py */ #define __EXPAND(x) x #define __COUNT(_1, _2, _3, _4, _5, _6, _7, COUNT, ...) COUNT #define __VA_SIZE(...) __EXPAND(__COUNT(__VA_ARGS__, 7, 6, 5, 4, 3, 2, 1)) #define __CAT1(a, b) a ## b #define __CAT2(a, b) __CAT1(a, b) #define __DOC1(n1) __doc_##n1 #define __DOC2(n1, n2) __doc_##n1##_##n2 #define __DOC3(n1, n2, n3) __doc_##n1##_##n2##_##n3 #define __DOC4(n1, n2, n3, n4) __doc_##n1##_##n2##_##n3##_##n4 #define __DOC5(n1, n2, n3, n4, n5) __doc_##n1##_##n2##_##n3##_##n4##_##n5 #define __DOC6(n1, n2, n3, n4, n5, n6) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6 #define __DOC7(n1, n2, n3, n4, n5, n6, n7) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6##_##n7 #define DOC(...) __EXPAND(__EXPAND(__CAT2(__DOC, __VA_SIZE(__VA_ARGS__)))(__VA_ARGS__)) #if defined(__GNUG__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-variable" #endif ''') output = [] for filename in filenames: thr = ExtractionThread(filename, parameters, output) thr.start() print('Waiting for jobs to finish ..', file=sys.stderr) for i in range(job_count): job_semaphore.acquire() output.sort() for l in output: print(l) print(''' #if defined(__GNUG__) #pragma GCC diagnostic pop #endif ''') pybind11-2.0.1/tools/pybind11Config.cmake.in000066400000000000000000000073061303320175600204730ustar00rootroot00000000000000# pybind11Config.cmake # -------------------- # # PYBIND11 cmake module. # This module sets the following variables in your project:: # # pybind11_FOUND - true if pybind11 and all required components found on the system # pybind11_VERSION - pybind11 version in format Major.Minor.Release # pybind11_INCLUDE_DIRS - Directories where pybind11 and python headers are located. # pybind11_INCLUDE_DIR - Directory where pybind11 headers are located. # pybind11_DEFINITIONS - Definitions necessary to use pybind11, namely USING_pybind11. # pybind11_LIBRARIES - compile flags and python libraries (as needed) to link against. # pybind11_LIBRARY - empty. # CMAKE_MODULE_PATH - appends location of accompanying FindPythonLibsNew.cmake and # pybind11Tools.cmake modules. # # # Available components: None # # # Exported targets:: # # If pybind11 is found, this module defines the following :prop_tgt:`IMPORTED` # target. Python headers, libraries (as needed by platform), and C++ standard # are attached to the target. Set PythonLibsNew variables to influence # python detection and PYBIND11_CPP_STANDARD (-std=c++11 or -std=c++14) to # influence standard setting. :: # # pybind11::module - the main pybind11 interface library for extension modules (i.e., headers) # # find_package(pybind11 CONFIG REQUIRED) # message(STATUS "Found pybind11: ${pybind11_INCLUDE_DIR} (found version ${pybind11_VERSION} & Py${PYTHON_VERSION_STRING})") # add_library(mylib MODULE main.cpp) # target_link_libraries(mylib pybind11::module) # # Suggested usage:: # # find_package with version info is not recommended except for release versions. :: # # find_package(pybind11 CONFIG) # find_package(pybind11 2.0 EXACT CONFIG REQUIRED) # # # The following variables can be set to guide the search for this package:: # # pybind11_DIR - CMake variable, set to directory containing this Config file # CMAKE_PREFIX_PATH - CMake variable, set to root directory of this package # PATH - environment variable, set to bin directory of this package # CMAKE_DISABLE_FIND_PACKAGE_pybind11 - CMake variable, disables # find_package(pybind11) when not REQUIRED, perhaps to force internal build @PACKAGE_INIT@ set(PN pybind11) # location of pybind11/pybind11.h set(${PN}_INCLUDE_DIR "${PACKAGE_PREFIX_DIR}/@CMAKE_INSTALL_INCLUDEDIR@") set(${PN}_LIBRARY "") set(${PN}_DEFINITIONS USING_${PN}) check_required_components(${PN}) # make detectable the FindPythonLibsNew.cmake module list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR}) include(pybind11Tools) if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) #----------------------------------------------------------------------------- # Don't include targets if this file is being picked up by another # project which has already built this as a subproject #----------------------------------------------------------------------------- if(NOT TARGET ${PN}::pybind11) include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets.cmake") find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} MODULE REQUIRED) set_property(TARGET ${PN}::module APPEND PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${PYTHON_INCLUDE_DIRS}) if(WIN32 OR CYGWIN) set_property(TARGET ${PN}::module APPEND PROPERTY INTERFACE_LINK_LIBRARIES ${PYTHON_LIBRARIES}) endif() select_cxx_standard() set_property(TARGET ${PN}::module APPEND PROPERTY INTERFACE_COMPILE_OPTIONS "${PYBIND11_CPP_STANDARD}") get_property(_iid TARGET ${PN}::module PROPERTY INTERFACE_INCLUDE_DIRECTORIES) get_property(_ill TARGET ${PN}::module PROPERTY INTERFACE_LINK_LIBRARIES) get_property(_ico TARGET ${PN}::module PROPERTY INTERFACE_COMPILE_OPTIONS) set(${PN}_INCLUDE_DIRS ${_iid}) set(${PN}_LIBRARIES ${_ico} ${_ill}) endif() endif() pybind11-2.0.1/tools/pybind11Tools.cmake000066400000000000000000000143711303320175600177610ustar00rootroot00000000000000# tools/pybind11Tools.cmake -- Build system for the pybind11 modules # # Copyright (c) 2015 Wenzel Jakob # # All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. cmake_minimum_required(VERSION 2.8.12) # Add a CMake parameter for choosing a desired Python version set(PYBIND11_PYTHON_VERSION "" CACHE STRING "Python version to use for compiling modules") set(Python_ADDITIONAL_VERSIONS 3.7 3.6 3.5 3.4) find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} REQUIRED) include(CheckCXXCompilerFlag) include(CMakeParseArguments) function(select_cxx_standard) if(NOT MSVC AND NOT PYBIND11_CPP_STANDARD) check_cxx_compiler_flag("-std=c++14" HAS_CPP14_FLAG) check_cxx_compiler_flag("-std=c++11" HAS_CPP11_FLAG) if (HAS_CPP14_FLAG) set(PYBIND11_CPP_STANDARD -std=c++14) elseif (HAS_CPP11_FLAG) set(PYBIND11_CPP_STANDARD -std=c++11) else() message(FATAL_ERROR "Unsupported compiler -- pybind11 requires C++11 support!") endif() set(PYBIND11_CPP_STANDARD ${PYBIND11_CPP_STANDARD} CACHE STRING "C++ standard flag, e.g. -std=c++11 or -std=c++14. Defaults to latest available." FORCE) endif() endfunction() # Internal: find the appropriate LTO flag for this compiler macro(_pybind11_find_lto_flag output_var prefer_thin_lto) if(${prefer_thin_lto}) # Check for ThinLTO support (Clang) check_cxx_compiler_flag("-flto=thin" HAS_THIN_LTO_FLAG) set(${output_var} $<${HAS_THIN_LTO_FLAG}:-flto=thin>) endif() if(NOT ${prefer_thin_lto} OR NOT HAS_THIN_LTO_FLAG) if(NOT CMAKE_CXX_COMPILER_ID MATCHES "Intel") # Check for Link Time Optimization support (GCC/Clang) check_cxx_compiler_flag("-flto" HAS_LTO_FLAG) set(${output_var} $<${HAS_LTO_FLAG}:-flto>) else() # Intel equivalent to LTO is called IPO check_cxx_compiler_flag("-ipo" HAS_IPO_FLAG) set(${output_var} $<${HAS_IPO_FLAG}:-ipo>) endif() endif() endmacro() # Build a Python extension module: # pybind11_add_module( [MODULE | SHARED] [EXCLUDE_FROM_ALL] # [NO_EXTRAS] [THIN_LTO] source1 [source2 ...]) # function(pybind11_add_module target_name) set(options MODULE SHARED EXCLUDE_FROM_ALL NO_EXTRAS THIN_LTO) cmake_parse_arguments(ARG "${options}" "" "" ${ARGN}) if(ARG_MODULE AND ARG_SHARED) message(FATAL_ERROR "Can't be both MODULE and SHARED") elseif(ARG_SHARED) set(lib_type SHARED) else() set(lib_type MODULE) endif() if(ARG_EXCLUDE_FROM_ALL) set(exclude_from_all EXCLUDE_FROM_ALL) endif() add_library(${target_name} ${lib_type} ${exclude_from_all} ${ARG_UNPARSED_ARGUMENTS}) target_include_directories(${target_name} PRIVATE ${PYBIND11_INCLUDE_DIR} # from project CMakeLists.txt PRIVATE ${pybind11_INCLUDE_DIR} # from pybind11Config PRIVATE ${PYTHON_INCLUDE_DIRS}) # The prefix and extension are provided by FindPythonLibsNew.cmake set_target_properties(${target_name} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}") set_target_properties(${target_name} PROPERTIES SUFFIX "${PYTHON_MODULE_EXTENSION}") if(WIN32 OR CYGWIN) # Link against the Python shared library on Windows target_link_libraries(${target_name} PRIVATE ${PYTHON_LIBRARIES}) elseif(APPLE) # It's quite common to have multiple copies of the same Python version # installed on one's system. E.g.: one copy from the OS and another copy # that's statically linked into an application like Blender or Maya. # If we link our plugin library against the OS Python here and import it # into Blender or Maya later on, this will cause segfaults when multiple # conflicting Python instances are active at the same time (even when they # are of the same version). # Windows is not affected by this issue since it handles DLL imports # differently. The solution for Linux and Mac OS is simple: we just don't # link against the Python library. The resulting shared library will have # missing symbols, but that's perfectly fine -- they will be resolved at # import time. target_link_libraries(${target_name} PRIVATE "-undefined dynamic_lookup") if(ARG_SHARED) # Suppress CMake >= 3.0 warning for shared libraries set_target_properties(${target_name} PROPERTIES MACOSX_RPATH ON) endif() endif() select_cxx_standard() if(NOT MSVC) # Make sure C++11/14 are enabled target_compile_options(${target_name} PUBLIC ${PYBIND11_CPP_STANDARD}) endif() if(ARG_NO_EXTRAS) return() endif() if(NOT MSVC) # Enable link time optimization and set the default symbol # visibility to hidden (very important to obtain small binaries) string(TOUPPER "${CMAKE_BUILD_TYPE}" U_CMAKE_BUILD_TYPE) if (NOT ${U_CMAKE_BUILD_TYPE} MATCHES DEBUG) # Link Time Optimization if(NOT CYGWIN) _pybind11_find_lto_flag(lto_flag ARG_THIN_LTO) target_compile_options(${target_name} PRIVATE ${lto_flag}) endif() # Default symbol visibility target_compile_options(${target_name} PRIVATE "-fvisibility=hidden") # Strip unnecessary sections of the binary on Linux/Mac OS if(CMAKE_STRIP) if(APPLE) add_custom_command(TARGET ${target_name} POST_BUILD COMMAND ${CMAKE_STRIP} -u -r $) else() add_custom_command(TARGET ${target_name} POST_BUILD COMMAND ${CMAKE_STRIP} $) endif() endif() endif() elseif(MSVC) # /MP enables multithreaded builds (relevant when there are many files), /bigobj is # needed for bigger binding projects due to the limit to 64k addressable sections target_compile_options(${target_name} PRIVATE /MP /bigobj) # Enforce link time code generation on MSVC, except in debug mode target_compile_options(${target_name} PRIVATE $<$>:/GL>) # Fancy generator expressions don't work with linker flags, for reasons unknown set_property(TARGET ${target_name} APPEND_STRING PROPERTY LINK_FLAGS_RELEASE /LTCG) set_property(TARGET ${target_name} APPEND_STRING PROPERTY LINK_FLAGS_MINSIZEREL /LTCG) set_property(TARGET ${target_name} APPEND_STRING PROPERTY LINK_FLAGS_RELWITHDEBINFO /LTCG) endif() endfunction()