pax_global_header00006660000000000000000000000064130403536310014510gustar00rootroot0000000000000052 comment=89813f6db102e706adf14d34e6d8854bba2631ad pyclipper-1.0.6/000077500000000000000000000000001304035363100135235ustar00rootroot00000000000000pyclipper-1.0.6/.appveyor.yml000066400000000000000000000070711304035363100161760ustar00rootroot00000000000000environment: global: # SDK v7.0 MSVC Express 2008's SetEnv.cmd script will fail if the # /E:ON and /V:ON options are not enabled in the batch script intepreter # See: http://stackoverflow.com/a/13751649/163740 CMD_IN_ENV: "cmd /E:ON /V:ON /C .\\.appveyor\\run_with_env.cmd" matrix: - PYTHON: "C:\\Python27" PYTHON_VERSION: "2.7" PYTHON_ARCH: "32" - PYTHON: "C:\\Python34" PYTHON_VERSION: "3.4" PYTHON_ARCH: "32" - PYTHON: "C:\\Python35" PYTHON_VERSION: "3.5" PYTHON_ARCH: "32" - PYTHON: "C:\\Python36" PYTHON_VERSION: "3.6" PYTHON_ARCH: "32" - PYTHON: "C:\\Python27-x64" PYTHON_VERSION: "2.7" PYTHON_ARCH: "64" - PYTHON: "C:\\Python34-x64" PYTHON_VERSION: "3.4" PYTHON_ARCH: "64" - PYTHON: "C:\\Python35-x64" PYTHON_VERSION: "3.5" PYTHON_ARCH: "64" - PYTHON: "C:\\Python36-x64" PYTHON_VERSION: "3.6" PYTHON_ARCH: "64" init: - "ECHO %PYTHON% %PYTHON_VERSION% %PYTHON_ARCH%" install: # If there is a newer build queued for the same PR, cancel this one. # The AppVeyor 'rollout builds' option is supposed to serve the same # purpose but it is problematic because it tends to cancel builds pushed # directly to master instead of just PR builds (or the converse). # credits: JuliaLang developers. - ps: if ($env:APPVEYOR_PULL_REQUEST_NUMBER -and $env:APPVEYOR_BUILD_NUMBER -ne ((Invoke-RestMethod ` https://ci.appveyor.com/api/projects/$env:APPVEYOR_ACCOUNT_NAME/$env:APPVEYOR_PROJECT_SLUG/history?recordsNumber=50).builds | ` Where-Object pullRequestId -eq $env:APPVEYOR_PULL_REQUEST_NUMBER)[0].buildNumber) { ` throw "There are newer queued builds for this pull request, failing early." } # Prepend newly installed Python to the PATH - "SET PATH=%PYTHON%;%PYTHON%\\Scripts;%PATH%" # Check that we have the expected version and architecture for Python - "python --version" - "python -c \"import struct; print(struct.calcsize('P') * 8)\"" # Upgrade pip to avoid out-of-date warnings - "python -m pip install --disable-pip-version-check --upgrade pip" - "pip --version" # Upgrade setuptools, wheel and virtualenv - "pip install --upgrade setuptools wheel virtualenv" # Create new virtual environment and activate it - "python -m virtualenv venv" - "venv\\Scripts\\activate" - "python -c \"import sys; print(sys.executable)\"" # Install build and test dependencies - "%CMD_IN_ENV% pip install cython sympy unittest2 pytest" # We skip the build step as the `built_ext` command is implicitly called # when running `python setup.py test` build: off test_script: # Run the project tests - "%CMD_IN_ENV% python setup.py test" after_test: # If tests are successful, create binary packages - "%CMD_IN_ENV% pip wheel -w wheelhouse ." - ps: "ls wheelhouse" artifacts: # Archive the generated packages in the ci.appveyor.com build report - path: wheelhouse\*.whl #### Please replace the secure 'auth_token' below with your own. #### First, you need to generate a Github Personal API access token at #### https://github.com/settings/tokens, selecting scope 'public_repo'. #### Then, you encrypt it using https://ci.appveyor.com/tools/encrypt #### and paste it below. #### More info at: https://www.appveyor.com/docs/deployment/github/ deploy: # Deploy wheels on tags to GitHub Releases - provider: GitHub auth_token: secure: 1c66/+HJrHWXxMTWNyLbbiVEsc0YE7yIJd60myQJKGvPQfjcnqQ34NjbrEEGcR85 draft: false prerelease: false on: branch: master appveyor_repo_tag: true pyclipper-1.0.6/.appveyor/000077500000000000000000000000001304035363100154465ustar00rootroot00000000000000pyclipper-1.0.6/.appveyor/run_with_env.cmd000066400000000000000000000065761304035363100206600ustar00rootroot00000000000000:: To build extensions for 64 bit Python 3, we need to configure environment :: variables to use the MSVC 2010 C++ compilers from GRMSDKX_EN_DVD.iso of: :: MS Windows SDK for Windows 7 and .NET Framework 4 (SDK v7.1) :: :: To build extensions for 64 bit Python 2, we need to configure environment :: variables to use the MSVC 2008 C++ compilers from GRMSDKX_EN_DVD.iso of: :: MS Windows SDK for Windows 7 and .NET Framework 3.5 (SDK v7.0) :: :: 32 bit builds, and 64-bit builds for 3.5 and beyond, do not require specific :: environment configurations. :: :: Note: this script needs to be run with the /E:ON and /V:ON flags for the :: cmd interpreter, at least for (SDK v7.0) :: :: More details at: :: https://github.com/cython/cython/wiki/64BitCythonExtensionsOnWindows :: http://stackoverflow.com/a/13751649/163740 :: :: Author: Olivier Grisel :: License: CC0 1.0 Universal: http://creativecommons.org/publicdomain/zero/1.0/ :: :: Notes about batch files for Python people: :: :: Quotes in values are literally part of the values: :: SET FOO="bar" :: FOO is now five characters long: " b a r " :: If you don't want quotes, don't include them on the right-hand side. :: :: The CALL lines at the end of this file look redundant, but if you move them :: outside of the IF clauses, they do not run properly in the SET_SDK_64==Y :: case, I don't know why. @ECHO OFF SET COMMAND_TO_RUN=%* SET WIN_SDK_ROOT=C:\Program Files\Microsoft SDKs\Windows SET WIN_WDK=c:\Program Files (x86)\Windows Kits\10\Include\wdf :: Extract the major and minor versions, and allow for the minor version to be :: more than 9. This requires the version number to have two dots in it. SET MAJOR_PYTHON_VERSION=%PYTHON_VERSION:~0,1% IF "%PYTHON_VERSION:~3,1%" == "." ( SET MINOR_PYTHON_VERSION=%PYTHON_VERSION:~2,1% ) ELSE ( SET MINOR_PYTHON_VERSION=%PYTHON_VERSION:~2,2% ) :: Based on the Python version, determine what SDK version to use, and whether :: to set the SDK for 64-bit. IF %MAJOR_PYTHON_VERSION% == 2 ( SET WINDOWS_SDK_VERSION="v7.0" SET SET_SDK_64=Y ) ELSE ( IF %MAJOR_PYTHON_VERSION% == 3 ( SET WINDOWS_SDK_VERSION="v7.1" IF %MINOR_PYTHON_VERSION% LEQ 4 ( SET SET_SDK_64=Y ) ELSE ( SET SET_SDK_64=N IF EXIST "%WIN_WDK%" ( :: See: https://connect.microsoft.com/VisualStudio/feedback/details/1610302/ REN "%WIN_WDK%" 0wdf ) ) ) ELSE ( ECHO Unsupported Python version: "%MAJOR_PYTHON_VERSION%" EXIT 1 ) ) IF %PYTHON_ARCH% == 64 ( IF %SET_SDK_64% == Y ( ECHO Configuring Windows SDK %WINDOWS_SDK_VERSION% for Python %MAJOR_PYTHON_VERSION% on a 64 bit architecture SET DISTUTILS_USE_SDK=1 SET MSSdk=1 "%WIN_SDK_ROOT%\%WINDOWS_SDK_VERSION%\Setup\WindowsSdkVer.exe" -q -version:%WINDOWS_SDK_VERSION% "%WIN_SDK_ROOT%\%WINDOWS_SDK_VERSION%\Bin\SetEnv.cmd" /x64 /release ECHO Executing: %COMMAND_TO_RUN% call %COMMAND_TO_RUN% || EXIT 1 ) ELSE ( ECHO Using default MSVC build environment for 64 bit architecture ECHO Executing: %COMMAND_TO_RUN% call %COMMAND_TO_RUN% || EXIT 1 ) ) ELSE ( ECHO Using default MSVC build environment for 32 bit architecture ECHO Executing: %COMMAND_TO_RUN% call %COMMAND_TO_RUN% || EXIT 1 ) pyclipper-1.0.6/.git_archival.txt000066400000000000000000000000261304035363100167740ustar00rootroot00000000000000ref-names: tag: 1.0.6 pyclipper-1.0.6/.gitattributes000066400000000000000000000000371304035363100164160ustar00rootroot00000000000000.git_archival.txt export-substpyclipper-1.0.6/.gitignore000066400000000000000000000001261304035363100155120ustar00rootroot00000000000000.idea build dist pyclipper.egg-info *.so pyclipper/pyclipper.cpp *.pyc MANIFEST .eggs/pyclipper-1.0.6/.gitmodules000066400000000000000000000001371304035363100157010ustar00rootroot00000000000000[submodule "multibuild"] path = multibuild url = https://github.com/matthew-brett/multibuild pyclipper-1.0.6/.travis.yml000066400000000000000000000070661304035363100156450ustar00rootroot00000000000000env: global: # directory containing the project source - REPO_DIR=. # pip dependencies to _build_ project - BUILD_DEPENDS="Cython setuptools>=25" # pip dependencies to _test_ project - TEST_DEPENDS="sympy unittest2 pytest" - PLAT=x86_64 - UNICODE_WIDTH=32 # Travis only clones the latest 50 commits. We need the full repository to # compute the version string from the git metadata: # https://github.com/travis-ci/travis-ci/issues/3412#issuecomment-83993903 # https://github.com/pypa/setuptools_scm/issues/93 git: depth: 9999999 language: python # The travis Python version is unrelated to the version we build and test # with. This is set with the MB_PYTHON_VERSION variable. python: 3.5 sudo: required dist: trusty services: docker matrix: exclude: # Exclude the default Python 3.5 build - python: 3.5 include: - os: linux env: MB_PYTHON_VERSION=2.7 - os: linux env: - MB_PYTHON_VERSION=2.7 - UNICODE_WIDTH=16 - os: linux env: - MB_PYTHON_VERSION=2.7 - PLAT=i686 - os: linux env: - MB_PYTHON_VERSION=2.7 - PLAT=i686 - UNICODE_WIDTH=16 - os: linux env: - MB_PYTHON_VERSION=3.3 - os: linux env: - MB_PYTHON_VERSION=3.3 - PLAT=i686 - os: linux env: - MB_PYTHON_VERSION=3.4 - os: linux env: - MB_PYTHON_VERSION=3.4 - PLAT=i686 - os: linux env: - MB_PYTHON_VERSION=3.5 - BUILD_SDIST=true - os: linux env: - MB_PYTHON_VERSION=3.5 - PLAT=i686 - os: linux env: - MB_PYTHON_VERSION=3.6 - os: linux env: - MB_PYTHON_VERSION=3.6 - PLAT=i686 - os: osx language: generic env: - MB_PYTHON_VERSION=2.7 - os: osx language: generic env: - MB_PYTHON_VERSION=3.4 - os: osx language: generic env: - MB_PYTHON_VERSION=3.5 - os: osx language: generic env: - MB_PYTHON_VERSION=3.6 before_install: - source multibuild/common_utils.sh - source multibuild/travis_steps.sh - before_install install: - build_wheel $REPO_DIR $PLAT script: - install_run $PLAT after_success: # if tagged, create the source distribution for the deploy stage - if [ -n "$TRAVIS_TAG" ] && [ "$BUILD_SDIST" == true ]; then pip install cython; pip install -U setuptools; python setup.py sdist -d ${TRAVIS_BUILD_DIR}/wheelhouse; fi #### The following section enables automatic deployment on tags to GitHub Releases. #### You must replace the secure api_key with yours, as created by `travis setup releases`. #### See https://docs.travis-ci.com/user/deployment/releases deploy: provider: releases api_key: secure: cO28Gh+rJ/DgTTM3X7GsAChmOhNxkzZrf6pI3hxGTpDSivyc8hN9TW7sQWaj3A8SfilBM11dvrIvESHRUeQJBkVYANkA2ImREKpH+wXK4qHXxD6I0vWptFXPmPPij7s8oO2c444+HJHq8lB8Y0VJo7HaqLo40SBX9YPiXhbhBMzpYr1ZIPkhzNJmEislQx3WrtGVO9SLAMtWqEvnB9vSwPvm9jTfayNUBewZ7X2NBNmqaP4j7yoW/QGXn2tmdTpRBj45cIZrxvw/8qOf4wEgez8VBndia/Zapc4ivphAbrNscMp4PuWaneGz/DUnMSBN7FZyzwaWuZl+HBLvdeQTLcDWvB5kWDzCRSpEGcCmijT9pjkEM3mUwFLrmb/6r0xLSwmTHqg9+BO0bVYKmPAlSe1qYhZOBdgnsjwbYq7agNV7RCZOzbVExrhucln8jKWgFPdRBqsooUUAMmZBgp4/Vzn2GV3V57zEFAAl1LAyO5irS7LAkmQeZly3nHY0v6eisIsFIUM5kGIuYxYVptGzLhkG0Q0nwcCNPiI5dbzBxjXHV1FDpbeHQcOViweVhG4aJkCGjhFxy+h9uxnr/RqqcgraIi8ooSoHH/bjjDhgx9AExEGE5Oin9OwmrlphLayXhSUYrr9Su2JnvQfPggHOrEEWitvG7bbse8Bzur4t/WE= file_glob: true file: "${TRAVIS_BUILD_DIR}/wheelhouse/*" skip_cleanup: true on: repo: greginvm/pyclipper tags: true pyclipper-1.0.6/LICENSE000066400000000000000000000021261304035363100145310ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2015 Gregor Ratajc, Lukas Treyer, Maxime Chalton Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pyclipper-1.0.6/MANIFEST.in000066400000000000000000000007261304035363100152660ustar00rootroot00000000000000# By default setuptools_scm will include in the source distribution all the # files under version control, as resulting from `git ls-files`. # Here we only need to include those which are not tracked by git but we do # want to be included include pyclipper/pyclipper.cpp # and exclude those that are tracked by git but don't want to be in the sdist exclude dev exclude .git* exclude .appveyor.yml .travis.yml exclude .appveyor/* exclude multibuild/* exclude config.sh pyclipper-1.0.6/README.rst000066400000000000000000000170661304035363100152240ustar00rootroot00000000000000About ===== .. image:: https://badge.fury.io/py/pyclipper.svg :target: https://badge.fury.io/py/pyclipper .. image:: https://travis-ci.org/greginvm/pyclipper.svg?branch=master :target: https://travis-ci.org/greginvm/pyclipper .. image:: https://ci.appveyor.com/api/projects/status/8w19hrxjoohu489c/branch/master?svg=true :target: https://ci.appveyor.com/project/greginvm/pyclipper/branch/master Pyclipper is a Cython wrapper exposing public functions and classes of the C++ translation of the `Angus Johnson's Clipper library (ver. 6.2.1) `__. Pyclipper releases were tested with Python 2.7 and 3.4 on Linux (Ubuntu 14.04, x64) and Windows (8.1, x64). Source code is available on `GitHub `__. The package is published on `PyPI `__. About Clipper ------------- Clipper - an open source freeware library for clipping and offsetting lines and polygons. The Clipper library performs line & polygon clipping - intersection, union, difference & exclusive-or, and line & polygon offsetting. The library is based on Vatti's clipping algorithm. \ `Angus Johnson's Clipper library `__\ Install ======= Dependencies ------------ Cython dependency is optional. Cpp sources generated with Cython are available in releases. Note on using the ``setup.py``: ``setup.py`` operates in 2 modes that are based on the presence of the ``dev`` file in the root of the project. - When ``dev`` is **present**, Cython will be used to compile the ``.pyx`` sources. This is the *development mode* (as you get it in the git repository). - When ``dev`` is **absent**, C/C++ compiler will be used to compile the ``.cpp`` sources (that were prepared in in the development mode). This is the distribution mode (as you get it on PyPI). This way the package can be used without or with an incompatible version of Cython. The idea comes from `Matt Shannon's bandmat library `__. From PyPI --------- Cython not required. :: pip install pyclipper From source ----------- Cython required. Clone the repository: :: git clone git@github.com:greginvm/pyclipper.git Install: :: python setup.py install After every modification of ``.pyx`` files compile with Cython: :: python setup.py build_ext --inplace Clippers' preprocessor directives --------------------------------- Clipper can be compiled with the following preprocessor directives: ``use_int32``, ``use_xyz``, ``use_lines`` and ``use_deprecated``. Among these the ``use_int32`` and ``use_lines`` can be used with Pyclipper. - ``use_int32`` - when enabled 32bit ints are used instead of 64bit ints. This improve performance but coordinate values are limited to the range +/- 46340. In Pyclipper this directive is **disabled** by default. - ``use_lines`` - enables line clipping. Adds a very minor cost to performance. In Pyclipper this directive is **enabled** by default (since version 0.9.2b0). In case you would want to change these settings, clone this repository and change the ``define_macros`` collection (``setup.py``, pyclipper extension definition). Add a set like ``('use_int32', 1)`` to enable the directive, or remove the set to disable it. After that you need to rebuild the package. How to use ========== This wrapper library tries to follow naming conventions of the original library. - ``ClipperLib`` namespace is represented by the ``pyclipper`` module, - classes ``Clipper`` and ``ClipperOffset`` -> ``Pyclipper`` and ``PyclipperOffset``, - when Clipper is overloading functions with different number of parameters or different types (eg. ``Clipper.Execute``, one function fills a list of paths the other PolyTree) that becomes ``Pyclipper.Execute`` and ``Pyclipper.Execute2``. Basic clipping example (based on `Angus Johnson's Clipper library `__): .. code:: python import pyclipper subj = ( ((180, 200), (260, 200), (260, 150), (180, 150)), ((215, 160), (230, 190), (200, 190)) ) clip = ((190, 210), (240, 210), (240, 130), (190, 130)) pc = pyclipper.Pyclipper() pc.AddPath(clip, pyclipper.PT_CLIP, True) pc.AddPaths(subj, pyclipper.PT_SUBJECT, True) solution = pc.Execute(pyclipper.CT_INTERSECTION, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD) # solution (a list of paths): [[[240, 200], [190, 200], [190, 150], [240, 150]], [[200, 190], [230, 190], [215, 160]]] Basic offset example: .. code:: python import pyclipper subj = ((180, 200), (260, 200), (260, 150), (180, 150)) pco = pyclipper.PyclipperOffset() pco.AddPath(subj, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) solution = pco.Execute(-7.0) # solution (a list of paths): [[[253, 193], [187, 193], [187, 157], [253, 157]]] The Clipper library uses integers instead of floating point values to preserve numerical robustness. If you need to scale coordinates of your polygons, this library provides helper functions ``scale_to_clipper()`` and ``scale_from_clipper()`` to achieve that. Migrating from Pyclipper ``0.9.3b0`` ------------------------------------ In previous version of Pyclipper (``0.9.3b0``) polygons could be automatically scaled using the ``SCALING_FACTOR`` variable. This was removed in version ``1.0.0`` due to inexact conversions related to floating point operations. This way the library now provides the original numerical robustness of the base library. The ``SCALING_FACTOR`` removal **breaks backward compatibility**. For an explanation and help with migration, see https://github.com/greginvm/pyclipper/wiki/Deprecating-SCALING_FACTOR. Authors ======= - The Clipper library is written by `Angus Johnson `__, - This wrapper was initially written by `Maxime Chalton `__, - Adaptions to make it work with version 5 written by `Lukas Treyer `__, - Adaptions to make it work with version 6.2.1 and PyPI package written by `Gregor Ratajc `__, - ``SCALING_FACTOR`` removal and additions to documentation by Michael Schwarz (@Feuermurmel), - Bug fix `sympy.Zero` is not a collection by Jamie Bull (@jamiebull1), - Travis CI and Appveyor CI integration for continuous builds of wheel packages by Cosimo Lupo (@anthrotype). The package is maintained by `Gregor Ratajc `__. License ======= - Pyclipper is available under `MIT license `__. - The core Clipper library is available under `Boost Software License `__. Freeware for both open source and commercial applications. Changelog ========= 1.0.3 ------- - added Travis CI and Appveyor CI to build wheel packages (thanks to @anthrotype) 1.0.2 ------- - bug fix: `sympy.Zero` recognized as a collection (thanks to @jamiebull1) 1.0.0 ------- - **(breaks backwards compatibility)** removes SCALING_FACTOR (thanks to @Feuermurmel) 0.9.3b0 ------- - Applied SCALING_FACTOR to the relevant function parameters and class properties - Refactored tests 0.9.2b1 ------- - bug fix: Fix setting of the PyPolyNode.IsHole property 0.9.2b0 ------- - enable preprocessor directive ``use_lines`` by default, - bug fix: PyPolyNode.Contour that is now one path and not a list of paths as it was previously. pyclipper-1.0.6/config.sh000066400000000000000000000007271304035363100153320ustar00rootroot00000000000000# Define custom utilities # Test for OSX with [ -n "$IS_OSX" ] function pre_build { # Any stuff that you need to do before you start building the wheels # Runs in the root directory of this repository. : } function run_tests { # check we have the expected version and architecture for Python python -c "import sys; print(sys.version)" python -c "import struct; print(struct.calcsize('P') * 8)" # run the test suite py.test -v ../tests } pyclipper-1.0.6/dev000066400000000000000000000000001304035363100142120ustar00rootroot00000000000000pyclipper-1.0.6/multibuild/000077500000000000000000000000001304035363100156755ustar00rootroot00000000000000pyclipper-1.0.6/pyclipper/000077500000000000000000000000001304035363100155325ustar00rootroot00000000000000pyclipper-1.0.6/pyclipper/clipper.cpp000077500000000000000000004130631304035363100177060ustar00rootroot00000000000000/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.2.1 * * Date : 31 October 2014 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2014 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ /******************************************************************************* * * * This is a translation of the Delphi Clipper library and the naming style * * used has retained a Delphi flavour. * * * *******************************************************************************/ #include "clipper.hpp" #include #include #include #include #include #include #include #include namespace ClipperLib { static double const pi = 3.141592653589793238; static double const two_pi = pi *2; static double const def_arc_tolerance = 0.25; enum Direction { dRightToLeft, dLeftToRight }; static int const Unassigned = -1; //edge not currently 'owning' a solution static int const Skip = -2; //edge that would otherwise close a path #define HORIZONTAL (-1.0E+40) #define TOLERANCE (1.0e-20) #define NEAR_ZERO(val) (((val) > -TOLERANCE) && ((val) < TOLERANCE)) struct TEdge { IntPoint Bot; IntPoint Curr; IntPoint Top; IntPoint Delta; double Dx; PolyType PolyTyp; EdgeSide Side; int WindDelta; //1 or -1 depending on winding direction int WindCnt; int WindCnt2; //winding count of the opposite polytype int OutIdx; TEdge *Next; TEdge *Prev; TEdge *NextInLML; TEdge *NextInAEL; TEdge *PrevInAEL; TEdge *NextInSEL; TEdge *PrevInSEL; }; struct IntersectNode { TEdge *Edge1; TEdge *Edge2; IntPoint Pt; }; struct LocalMinimum { cInt Y; TEdge *LeftBound; TEdge *RightBound; }; struct OutPt; struct OutRec { int Idx; bool IsHole; bool IsOpen; OutRec *FirstLeft; //see comments in clipper.pas PolyNode *PolyNd; OutPt *Pts; OutPt *BottomPt; }; struct OutPt { int Idx; IntPoint Pt; OutPt *Next; OutPt *Prev; }; struct Join { OutPt *OutPt1; OutPt *OutPt2; IntPoint OffPt; }; struct LocMinSorter { inline bool operator()(const LocalMinimum& locMin1, const LocalMinimum& locMin2) { return locMin2.Y < locMin1.Y; } }; //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ inline cInt Round(double val) { if ((val < 0)) return static_cast(val - 0.5); else return static_cast(val + 0.5); } //------------------------------------------------------------------------------ inline cInt Abs(cInt val) { return val < 0 ? -val : val; } //------------------------------------------------------------------------------ // PolyTree methods ... //------------------------------------------------------------------------------ void PolyTree::Clear() { for (PolyNodes::size_type i = 0; i < AllNodes.size(); ++i) delete AllNodes[i]; AllNodes.resize(0); Childs.resize(0); } //------------------------------------------------------------------------------ PolyNode* PolyTree::GetFirst() const { if (!Childs.empty()) return Childs[0]; else return 0; } //------------------------------------------------------------------------------ int PolyTree::Total() const { int result = (int)AllNodes.size(); //with negative offsets, ignore the hidden outer polygon ... if (result > 0 && Childs[0] != AllNodes[0]) result--; return result; } //------------------------------------------------------------------------------ // PolyNode methods ... //------------------------------------------------------------------------------ PolyNode::PolyNode(): Childs(), Parent(0), Index(0), m_IsOpen(false) { } //------------------------------------------------------------------------------ int PolyNode::ChildCount() const { return (int)Childs.size(); } //------------------------------------------------------------------------------ void PolyNode::AddChild(PolyNode& child) { unsigned cnt = (unsigned)Childs.size(); Childs.push_back(&child); child.Parent = this; child.Index = cnt; } //------------------------------------------------------------------------------ PolyNode* PolyNode::GetNext() const { if (!Childs.empty()) return Childs[0]; else return GetNextSiblingUp(); } //------------------------------------------------------------------------------ PolyNode* PolyNode::GetNextSiblingUp() const { if (!Parent) //protects against PolyTree.GetNextSiblingUp() return 0; else if (Index == Parent->Childs.size() - 1) return Parent->GetNextSiblingUp(); else return Parent->Childs[Index + 1]; } //------------------------------------------------------------------------------ bool PolyNode::IsHole() const { bool result = true; PolyNode* node = Parent; while (node) { result = !result; node = node->Parent; } return result; } //------------------------------------------------------------------------------ bool PolyNode::IsOpen() const { return m_IsOpen; } //------------------------------------------------------------------------------ #ifndef use_int32 //------------------------------------------------------------------------------ // Int128 class (enables safe math on signed 64bit integers) // eg Int128 val1((long64)9223372036854775807); //ie 2^63 -1 // Int128 val2((long64)9223372036854775807); // Int128 val3 = val1 * val2; // val3.AsString => "85070591730234615847396907784232501249" (8.5e+37) //------------------------------------------------------------------------------ class Int128 { public: ulong64 lo; long64 hi; Int128(long64 _lo = 0) { lo = (ulong64)_lo; if (_lo < 0) hi = -1; else hi = 0; } Int128(const Int128 &val): lo(val.lo), hi(val.hi){} Int128(const long64& _hi, const ulong64& _lo): lo(_lo), hi(_hi){} Int128& operator = (const long64 &val) { lo = (ulong64)val; if (val < 0) hi = -1; else hi = 0; return *this; } bool operator == (const Int128 &val) const {return (hi == val.hi && lo == val.lo);} bool operator != (const Int128 &val) const { return !(*this == val);} bool operator > (const Int128 &val) const { if (hi != val.hi) return hi > val.hi; else return lo > val.lo; } bool operator < (const Int128 &val) const { if (hi != val.hi) return hi < val.hi; else return lo < val.lo; } bool operator >= (const Int128 &val) const { return !(*this < val);} bool operator <= (const Int128 &val) const { return !(*this > val);} Int128& operator += (const Int128 &rhs) { hi += rhs.hi; lo += rhs.lo; if (lo < rhs.lo) hi++; return *this; } Int128 operator + (const Int128 &rhs) const { Int128 result(*this); result+= rhs; return result; } Int128& operator -= (const Int128 &rhs) { *this += -rhs; return *this; } Int128 operator - (const Int128 &rhs) const { Int128 result(*this); result -= rhs; return result; } Int128 operator-() const //unary negation { if (lo == 0) return Int128(-hi, 0); else return Int128(~hi, ~lo + 1); } operator double() const { const double shift64 = 18446744073709551616.0; //2^64 if (hi < 0) { if (lo == 0) return (double)hi * shift64; else return -(double)(~lo + ~hi * shift64); } else return (double)(lo + hi * shift64); } }; //------------------------------------------------------------------------------ Int128 Int128Mul (long64 lhs, long64 rhs) { bool negate = (lhs < 0) != (rhs < 0); if (lhs < 0) lhs = -lhs; ulong64 int1Hi = ulong64(lhs) >> 32; ulong64 int1Lo = ulong64(lhs & 0xFFFFFFFF); if (rhs < 0) rhs = -rhs; ulong64 int2Hi = ulong64(rhs) >> 32; ulong64 int2Lo = ulong64(rhs & 0xFFFFFFFF); //nb: see comments in clipper.pas ulong64 a = int1Hi * int2Hi; ulong64 b = int1Lo * int2Lo; ulong64 c = int1Hi * int2Lo + int1Lo * int2Hi; Int128 tmp; tmp.hi = long64(a + (c >> 32)); tmp.lo = long64(c << 32); tmp.lo += long64(b); if (tmp.lo < b) tmp.hi++; if (negate) tmp = -tmp; return tmp; }; #endif //------------------------------------------------------------------------------ // Miscellaneous global functions //------------------------------------------------------------------------------ void Swap(cInt& val1, cInt& val2) { cInt tmp = val1; val1 = val2; val2 = tmp; } //------------------------------------------------------------------------------ bool Orientation(const Path &poly) { return Area(poly) >= 0; } //------------------------------------------------------------------------------ double Area(const Path &poly) { int size = (int)poly.size(); if (size < 3) return 0; double a = 0; for (int i = 0, j = size -1; i < size; ++i) { a += ((double)poly[j].X + poly[i].X) * ((double)poly[j].Y - poly[i].Y); j = i; } return -a * 0.5; } //------------------------------------------------------------------------------ double Area(const OutRec &outRec) { OutPt *op = outRec.Pts; if (!op) return 0; double a = 0; do { a += (double)(op->Prev->Pt.X + op->Pt.X) * (double)(op->Prev->Pt.Y - op->Pt.Y); op = op->Next; } while (op != outRec.Pts); return a * 0.5; } //------------------------------------------------------------------------------ bool PointIsVertex(const IntPoint &Pt, OutPt *pp) { OutPt *pp2 = pp; do { if (pp2->Pt == Pt) return true; pp2 = pp2->Next; } while (pp2 != pp); return false; } //------------------------------------------------------------------------------ int PointInPolygon (const IntPoint &pt, const Path &path) { //returns 0 if false, +1 if true, -1 if pt ON polygon boundary //See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos //http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf int result = 0; size_t cnt = path.size(); if (cnt < 3) return 0; IntPoint ip = path[0]; for(size_t i = 1; i <= cnt; ++i) { IntPoint ipNext = (i == cnt ? path[0] : path[i]); if (ipNext.Y == pt.Y) { if ((ipNext.X == pt.X) || (ip.Y == pt.Y && ((ipNext.X > pt.X) == (ip.X < pt.X)))) return -1; } if ((ip.Y < pt.Y) != (ipNext.Y < pt.Y)) { if (ip.X >= pt.X) { if (ipNext.X > pt.X) result = 1 - result; else { double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) - (double)(ipNext.X - pt.X) * (ip.Y - pt.Y); if (!d) return -1; if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result; } } else { if (ipNext.X > pt.X) { double d = (double)(ip.X - pt.X) * (ipNext.Y - pt.Y) - (double)(ipNext.X - pt.X) * (ip.Y - pt.Y); if (!d) return -1; if ((d > 0) == (ipNext.Y > ip.Y)) result = 1 - result; } } } ip = ipNext; } return result; } //------------------------------------------------------------------------------ int PointInPolygon (const IntPoint &pt, OutPt *op) { //returns 0 if false, +1 if true, -1 if pt ON polygon boundary int result = 0; OutPt* startOp = op; for(;;) { if (op->Next->Pt.Y == pt.Y) { if ((op->Next->Pt.X == pt.X) || (op->Pt.Y == pt.Y && ((op->Next->Pt.X > pt.X) == (op->Pt.X < pt.X)))) return -1; } if ((op->Pt.Y < pt.Y) != (op->Next->Pt.Y < pt.Y)) { if (op->Pt.X >= pt.X) { if (op->Next->Pt.X > pt.X) result = 1 - result; else { double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); if (!d) return -1; if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result; } } else { if (op->Next->Pt.X > pt.X) { double d = (double)(op->Pt.X - pt.X) * (op->Next->Pt.Y - pt.Y) - (double)(op->Next->Pt.X - pt.X) * (op->Pt.Y - pt.Y); if (!d) return -1; if ((d > 0) == (op->Next->Pt.Y > op->Pt.Y)) result = 1 - result; } } } op = op->Next; if (startOp == op) break; } return result; } //------------------------------------------------------------------------------ bool Poly2ContainsPoly1(OutPt *OutPt1, OutPt *OutPt2) { OutPt* op = OutPt1; do { //nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon int res = PointInPolygon(op->Pt, OutPt2); if (res >= 0) return res > 0; op = op->Next; } while (op != OutPt1); return true; } //---------------------------------------------------------------------- bool SlopesEqual(const TEdge &e1, const TEdge &e2, bool UseFullInt64Range) { #ifndef use_int32 if (UseFullInt64Range) return Int128Mul(e1.Delta.Y, e2.Delta.X) == Int128Mul(e1.Delta.X, e2.Delta.Y); else #endif return e1.Delta.Y * e2.Delta.X == e1.Delta.X * e2.Delta.Y; } //------------------------------------------------------------------------------ bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, bool UseFullInt64Range) { #ifndef use_int32 if (UseFullInt64Range) return Int128Mul(pt1.Y-pt2.Y, pt2.X-pt3.X) == Int128Mul(pt1.X-pt2.X, pt2.Y-pt3.Y); else #endif return (pt1.Y-pt2.Y)*(pt2.X-pt3.X) == (pt1.X-pt2.X)*(pt2.Y-pt3.Y); } //------------------------------------------------------------------------------ bool SlopesEqual(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3, const IntPoint pt4, bool UseFullInt64Range) { #ifndef use_int32 if (UseFullInt64Range) return Int128Mul(pt1.Y-pt2.Y, pt3.X-pt4.X) == Int128Mul(pt1.X-pt2.X, pt3.Y-pt4.Y); else #endif return (pt1.Y-pt2.Y)*(pt3.X-pt4.X) == (pt1.X-pt2.X)*(pt3.Y-pt4.Y); } //------------------------------------------------------------------------------ inline bool IsHorizontal(TEdge &e) { return e.Delta.Y == 0; } //------------------------------------------------------------------------------ inline double GetDx(const IntPoint pt1, const IntPoint pt2) { return (pt1.Y == pt2.Y) ? HORIZONTAL : (double)(pt2.X - pt1.X) / (pt2.Y - pt1.Y); } //--------------------------------------------------------------------------- inline void SetDx(TEdge &e) { e.Delta.X = (e.Top.X - e.Bot.X); e.Delta.Y = (e.Top.Y - e.Bot.Y); if (e.Delta.Y == 0) e.Dx = HORIZONTAL; else e.Dx = (double)(e.Delta.X) / e.Delta.Y; } //--------------------------------------------------------------------------- inline void SwapSides(TEdge &Edge1, TEdge &Edge2) { EdgeSide Side = Edge1.Side; Edge1.Side = Edge2.Side; Edge2.Side = Side; } //------------------------------------------------------------------------------ inline void SwapPolyIndexes(TEdge &Edge1, TEdge &Edge2) { int OutIdx = Edge1.OutIdx; Edge1.OutIdx = Edge2.OutIdx; Edge2.OutIdx = OutIdx; } //------------------------------------------------------------------------------ inline cInt TopX(TEdge &edge, const cInt currentY) { return ( currentY == edge.Top.Y ) ? edge.Top.X : edge.Bot.X + Round(edge.Dx *(currentY - edge.Bot.Y)); } //------------------------------------------------------------------------------ void IntersectPoint(TEdge &Edge1, TEdge &Edge2, IntPoint &ip) { #ifdef use_xyz ip.Z = 0; #endif double b1, b2; if (Edge1.Dx == Edge2.Dx) { ip.Y = Edge1.Curr.Y; ip.X = TopX(Edge1, ip.Y); return; } else if (Edge1.Delta.X == 0) { ip.X = Edge1.Bot.X; if (IsHorizontal(Edge2)) ip.Y = Edge2.Bot.Y; else { b2 = Edge2.Bot.Y - (Edge2.Bot.X / Edge2.Dx); ip.Y = Round(ip.X / Edge2.Dx + b2); } } else if (Edge2.Delta.X == 0) { ip.X = Edge2.Bot.X; if (IsHorizontal(Edge1)) ip.Y = Edge1.Bot.Y; else { b1 = Edge1.Bot.Y - (Edge1.Bot.X / Edge1.Dx); ip.Y = Round(ip.X / Edge1.Dx + b1); } } else { b1 = Edge1.Bot.X - Edge1.Bot.Y * Edge1.Dx; b2 = Edge2.Bot.X - Edge2.Bot.Y * Edge2.Dx; double q = (b2-b1) / (Edge1.Dx - Edge2.Dx); ip.Y = Round(q); if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) ip.X = Round(Edge1.Dx * q + b1); else ip.X = Round(Edge2.Dx * q + b2); } if (ip.Y < Edge1.Top.Y || ip.Y < Edge2.Top.Y) { if (Edge1.Top.Y > Edge2.Top.Y) ip.Y = Edge1.Top.Y; else ip.Y = Edge2.Top.Y; if (std::fabs(Edge1.Dx) < std::fabs(Edge2.Dx)) ip.X = TopX(Edge1, ip.Y); else ip.X = TopX(Edge2, ip.Y); } //finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ... if (ip.Y > Edge1.Curr.Y) { ip.Y = Edge1.Curr.Y; //use the more vertical edge to derive X ... if (std::fabs(Edge1.Dx) > std::fabs(Edge2.Dx)) ip.X = TopX(Edge2, ip.Y); else ip.X = TopX(Edge1, ip.Y); } } //------------------------------------------------------------------------------ void ReversePolyPtLinks(OutPt *pp) { if (!pp) return; OutPt *pp1, *pp2; pp1 = pp; do { pp2 = pp1->Next; pp1->Next = pp1->Prev; pp1->Prev = pp2; pp1 = pp2; } while( pp1 != pp ); } //------------------------------------------------------------------------------ void DisposeOutPts(OutPt*& pp) { if (pp == 0) return; pp->Prev->Next = 0; while( pp ) { OutPt *tmpPp = pp; pp = pp->Next; delete tmpPp; } } //------------------------------------------------------------------------------ inline void InitEdge(TEdge* e, TEdge* eNext, TEdge* ePrev, const IntPoint& Pt) { std::memset(e, 0, sizeof(TEdge)); e->Next = eNext; e->Prev = ePrev; e->Curr = Pt; e->OutIdx = Unassigned; } //------------------------------------------------------------------------------ void InitEdge2(TEdge& e, PolyType Pt) { if (e.Curr.Y >= e.Next->Curr.Y) { e.Bot = e.Curr; e.Top = e.Next->Curr; } else { e.Top = e.Curr; e.Bot = e.Next->Curr; } SetDx(e); e.PolyTyp = Pt; } //------------------------------------------------------------------------------ TEdge* RemoveEdge(TEdge* e) { //removes e from double_linked_list (but without removing from memory) e->Prev->Next = e->Next; e->Next->Prev = e->Prev; TEdge* result = e->Next; e->Prev = 0; //flag as removed (see ClipperBase.Clear) return result; } //------------------------------------------------------------------------------ inline void ReverseHorizontal(TEdge &e) { //swap horizontal edges' Top and Bottom x's so they follow the natural //progression of the bounds - ie so their xbots will align with the //adjoining lower edge. [Helpful in the ProcessHorizontal() method.] Swap(e.Top.X, e.Bot.X); #ifdef use_xyz Swap(e.Top.Z, e.Bot.Z); #endif } //------------------------------------------------------------------------------ void SwapPoints(IntPoint &pt1, IntPoint &pt2) { IntPoint tmp = pt1; pt1 = pt2; pt2 = tmp; } //------------------------------------------------------------------------------ bool GetOverlapSegment(IntPoint pt1a, IntPoint pt1b, IntPoint pt2a, IntPoint pt2b, IntPoint &pt1, IntPoint &pt2) { //precondition: segments are Collinear. if (Abs(pt1a.X - pt1b.X) > Abs(pt1a.Y - pt1b.Y)) { if (pt1a.X > pt1b.X) SwapPoints(pt1a, pt1b); if (pt2a.X > pt2b.X) SwapPoints(pt2a, pt2b); if (pt1a.X > pt2a.X) pt1 = pt1a; else pt1 = pt2a; if (pt1b.X < pt2b.X) pt2 = pt1b; else pt2 = pt2b; return pt1.X < pt2.X; } else { if (pt1a.Y < pt1b.Y) SwapPoints(pt1a, pt1b); if (pt2a.Y < pt2b.Y) SwapPoints(pt2a, pt2b); if (pt1a.Y < pt2a.Y) pt1 = pt1a; else pt1 = pt2a; if (pt1b.Y > pt2b.Y) pt2 = pt1b; else pt2 = pt2b; return pt1.Y > pt2.Y; } } //------------------------------------------------------------------------------ bool FirstIsBottomPt(const OutPt* btmPt1, const OutPt* btmPt2) { OutPt *p = btmPt1->Prev; while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Prev; double dx1p = std::fabs(GetDx(btmPt1->Pt, p->Pt)); p = btmPt1->Next; while ((p->Pt == btmPt1->Pt) && (p != btmPt1)) p = p->Next; double dx1n = std::fabs(GetDx(btmPt1->Pt, p->Pt)); p = btmPt2->Prev; while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Prev; double dx2p = std::fabs(GetDx(btmPt2->Pt, p->Pt)); p = btmPt2->Next; while ((p->Pt == btmPt2->Pt) && (p != btmPt2)) p = p->Next; double dx2n = std::fabs(GetDx(btmPt2->Pt, p->Pt)); return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n); } //------------------------------------------------------------------------------ OutPt* GetBottomPt(OutPt *pp) { OutPt* dups = 0; OutPt* p = pp->Next; while (p != pp) { if (p->Pt.Y > pp->Pt.Y) { pp = p; dups = 0; } else if (p->Pt.Y == pp->Pt.Y && p->Pt.X <= pp->Pt.X) { if (p->Pt.X < pp->Pt.X) { dups = 0; pp = p; } else { if (p->Next != pp && p->Prev != pp) dups = p; } } p = p->Next; } if (dups) { //there appears to be at least 2 vertices at BottomPt so ... while (dups != p) { if (!FirstIsBottomPt(p, dups)) pp = dups; dups = dups->Next; while (dups->Pt != pp->Pt) dups = dups->Next; } } return pp; } //------------------------------------------------------------------------------ bool Pt2IsBetweenPt1AndPt3(const IntPoint pt1, const IntPoint pt2, const IntPoint pt3) { if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2)) return false; else if (pt1.X != pt3.X) return (pt2.X > pt1.X) == (pt2.X < pt3.X); else return (pt2.Y > pt1.Y) == (pt2.Y < pt3.Y); } //------------------------------------------------------------------------------ bool HorzSegmentsOverlap(cInt seg1a, cInt seg1b, cInt seg2a, cInt seg2b) { if (seg1a > seg1b) Swap(seg1a, seg1b); if (seg2a > seg2b) Swap(seg2a, seg2b); return (seg1a < seg2b) && (seg2a < seg1b); } //------------------------------------------------------------------------------ // ClipperBase class methods ... //------------------------------------------------------------------------------ ClipperBase::ClipperBase() //constructor { m_CurrentLM = m_MinimaList.begin(); //begin() == end() here m_UseFullRange = false; } //------------------------------------------------------------------------------ ClipperBase::~ClipperBase() //destructor { Clear(); } //------------------------------------------------------------------------------ void RangeTest(const IntPoint& Pt, bool& useFullRange) { if (useFullRange) { if (Pt.X > hiRange || Pt.Y > hiRange || -Pt.X > hiRange || -Pt.Y > hiRange) throw "Coordinate outside allowed range"; } else if (Pt.X > loRange|| Pt.Y > loRange || -Pt.X > loRange || -Pt.Y > loRange) { useFullRange = true; RangeTest(Pt, useFullRange); } } //------------------------------------------------------------------------------ TEdge* FindNextLocMin(TEdge* E) { for (;;) { while (E->Bot != E->Prev->Bot || E->Curr == E->Top) E = E->Next; if (!IsHorizontal(*E) && !IsHorizontal(*E->Prev)) break; while (IsHorizontal(*E->Prev)) E = E->Prev; TEdge* E2 = E; while (IsHorizontal(*E)) E = E->Next; if (E->Top.Y == E->Prev->Bot.Y) continue; //ie just an intermediate horz. if (E2->Prev->Bot.X < E->Bot.X) E = E2; break; } return E; } //------------------------------------------------------------------------------ TEdge* ClipperBase::ProcessBound(TEdge* E, bool NextIsForward) { TEdge *Result = E; TEdge *Horz = 0; if (E->OutIdx == Skip) { //if edges still remain in the current bound beyond the skip edge then //create another LocMin and call ProcessBound once more if (NextIsForward) { while (E->Top.Y == E->Next->Bot.Y) E = E->Next; //don't include top horizontals when parsing a bound a second time, //they will be contained in the opposite bound ... while (E != Result && IsHorizontal(*E)) E = E->Prev; } else { while (E->Top.Y == E->Prev->Bot.Y) E = E->Prev; while (E != Result && IsHorizontal(*E)) E = E->Next; } if (E == Result) { if (NextIsForward) Result = E->Next; else Result = E->Prev; } else { //there are more edges in the bound beyond result starting with E if (NextIsForward) E = Result->Next; else E = Result->Prev; MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; E->WindDelta = 0; Result = ProcessBound(E, NextIsForward); m_MinimaList.push_back(locMin); } return Result; } TEdge *EStart; if (IsHorizontal(*E)) { //We need to be careful with open paths because this may not be a //true local minima (ie E may be following a skip edge). //Also, consecutive horz. edges may start heading left before going right. if (NextIsForward) EStart = E->Prev; else EStart = E->Next; if (EStart->OutIdx != Skip) { if (IsHorizontal(*EStart)) //ie an adjoining horizontal skip edge { if (EStart->Bot.X != E->Bot.X && EStart->Top.X != E->Bot.X) ReverseHorizontal(*E); } else if (EStart->Bot.X != E->Bot.X) ReverseHorizontal(*E); } } EStart = E; if (NextIsForward) { while (Result->Top.Y == Result->Next->Bot.Y && Result->Next->OutIdx != Skip) Result = Result->Next; if (IsHorizontal(*Result) && Result->Next->OutIdx != Skip) { //nb: at the top of a bound, horizontals are added to the bound //only when the preceding edge attaches to the horizontal's left vertex //unless a Skip edge is encountered when that becomes the top divide Horz = Result; while (IsHorizontal(*Horz->Prev)) Horz = Horz->Prev; if (Horz->Prev->Top.X == Result->Next->Top.X) { if (!NextIsForward) Result = Horz->Prev; } else if (Horz->Prev->Top.X > Result->Next->Top.X) Result = Horz->Prev; } while (E != Result) { E->NextInLML = E->Next; if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E); E = E->Next; } if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E); Result = Result->Next; //move to the edge just beyond current bound } else { while (Result->Top.Y == Result->Prev->Bot.Y && Result->Prev->OutIdx != Skip) Result = Result->Prev; if (IsHorizontal(*Result) && Result->Prev->OutIdx != Skip) { Horz = Result; while (IsHorizontal(*Horz->Next)) Horz = Horz->Next; if (Horz->Next->Top.X == Result->Prev->Top.X) { if (!NextIsForward) Result = Horz->Next; } else if (Horz->Next->Top.X > Result->Prev->Top.X) Result = Horz->Next; } while (E != Result) { E->NextInLML = E->Prev; if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) ReverseHorizontal(*E); E = E->Prev; } if (IsHorizontal(*E) && E != EStart && E->Bot.X != E->Next->Top.X) ReverseHorizontal(*E); Result = Result->Prev; //move to the edge just beyond current bound } return Result; } //------------------------------------------------------------------------------ bool ClipperBase::AddPath(const Path &pg, PolyType PolyTyp, bool Closed) { #ifdef use_lines if (!Closed && PolyTyp == ptClip) throw clipperException("AddPath: Open paths must be subject."); #else if (!Closed) throw clipperException("AddPath: Open paths have been disabled."); #endif int highI = (int)pg.size() -1; if (Closed) while (highI > 0 && (pg[highI] == pg[0])) --highI; while (highI > 0 && (pg[highI] == pg[highI -1])) --highI; if ((Closed && highI < 2) || (!Closed && highI < 1)) return false; //create a new edge array ... TEdge *edges = new TEdge [highI +1]; bool IsFlat = true; //1. Basic (first) edge initialization ... try { edges[1].Curr = pg[1]; RangeTest(pg[0], m_UseFullRange); RangeTest(pg[highI], m_UseFullRange); InitEdge(&edges[0], &edges[1], &edges[highI], pg[0]); InitEdge(&edges[highI], &edges[0], &edges[highI-1], pg[highI]); for (int i = highI - 1; i >= 1; --i) { RangeTest(pg[i], m_UseFullRange); InitEdge(&edges[i], &edges[i+1], &edges[i-1], pg[i]); } } catch(...) { delete [] edges; throw; //range test fails } TEdge *eStart = &edges[0]; //2. Remove duplicate vertices, and (when closed) collinear edges ... TEdge *E = eStart, *eLoopStop = eStart; for (;;) { //nb: allows matching start and end points when not Closed ... if (E->Curr == E->Next->Curr && (Closed || E->Next != eStart)) { if (E == E->Next) break; if (E == eStart) eStart = E->Next; E = RemoveEdge(E); eLoopStop = E; continue; } if (E->Prev == E->Next) break; //only two vertices else if (Closed && SlopesEqual(E->Prev->Curr, E->Curr, E->Next->Curr, m_UseFullRange) && (!m_PreserveCollinear || !Pt2IsBetweenPt1AndPt3(E->Prev->Curr, E->Curr, E->Next->Curr))) { //Collinear edges are allowed for open paths but in closed paths //the default is to merge adjacent collinear edges into a single edge. //However, if the PreserveCollinear property is enabled, only overlapping //collinear edges (ie spikes) will be removed from closed paths. if (E == eStart) eStart = E->Next; E = RemoveEdge(E); E = E->Prev; eLoopStop = E; continue; } E = E->Next; if ((E == eLoopStop) || (!Closed && E->Next == eStart)) break; } if ((!Closed && (E == E->Next)) || (Closed && (E->Prev == E->Next))) { delete [] edges; return false; } if (!Closed) { m_HasOpenPaths = true; eStart->Prev->OutIdx = Skip; } //3. Do second stage of edge initialization ... E = eStart; do { InitEdge2(*E, PolyTyp); E = E->Next; if (IsFlat && E->Curr.Y != eStart->Curr.Y) IsFlat = false; } while (E != eStart); //4. Finally, add edge bounds to LocalMinima list ... //Totally flat paths must be handled differently when adding them //to LocalMinima list to avoid endless loops etc ... if (IsFlat) { if (Closed) { delete [] edges; return false; } E->Prev->OutIdx = Skip; if (E->Prev->Bot.X < E->Prev->Top.X) ReverseHorizontal(*E->Prev); MinimaList::value_type locMin; locMin.Y = E->Bot.Y; locMin.LeftBound = 0; locMin.RightBound = E; locMin.RightBound->Side = esRight; locMin.RightBound->WindDelta = 0; while (E->Next->OutIdx != Skip) { E->NextInLML = E->Next; if (E->Bot.X != E->Prev->Top.X) ReverseHorizontal(*E); E = E->Next; } m_MinimaList.push_back(locMin); m_edges.push_back(edges); return true; } m_edges.push_back(edges); bool leftBoundIsForward; TEdge* EMin = 0; //workaround to avoid an endless loop in the while loop below when //open paths have matching start and end points ... if (E->Prev->Bot == E->Prev->Top) E = E->Next; for (;;) { E = FindNextLocMin(E); if (E == EMin) break; else if (!EMin) EMin = E; //E and E.Prev now share a local minima (left aligned if horizontal). //Compare their slopes to find which starts which bound ... MinimaList::value_type locMin; locMin.Y = E->Bot.Y; if (E->Dx < E->Prev->Dx) { locMin.LeftBound = E->Prev; locMin.RightBound = E; leftBoundIsForward = false; //Q.nextInLML = Q.prev } else { locMin.LeftBound = E; locMin.RightBound = E->Prev; leftBoundIsForward = true; //Q.nextInLML = Q.next } locMin.LeftBound->Side = esLeft; locMin.RightBound->Side = esRight; if (!Closed) locMin.LeftBound->WindDelta = 0; else if (locMin.LeftBound->Next == locMin.RightBound) locMin.LeftBound->WindDelta = -1; else locMin.LeftBound->WindDelta = 1; locMin.RightBound->WindDelta = -locMin.LeftBound->WindDelta; E = ProcessBound(locMin.LeftBound, leftBoundIsForward); if (E->OutIdx == Skip) E = ProcessBound(E, leftBoundIsForward); TEdge* E2 = ProcessBound(locMin.RightBound, !leftBoundIsForward); if (E2->OutIdx == Skip) E2 = ProcessBound(E2, !leftBoundIsForward); if (locMin.LeftBound->OutIdx == Skip) locMin.LeftBound = 0; else if (locMin.RightBound->OutIdx == Skip) locMin.RightBound = 0; m_MinimaList.push_back(locMin); if (!leftBoundIsForward) E = E2; } return true; } //------------------------------------------------------------------------------ bool ClipperBase::AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed) { bool result = false; for (Paths::size_type i = 0; i < ppg.size(); ++i) if (AddPath(ppg[i], PolyTyp, Closed)) result = true; return result; } //------------------------------------------------------------------------------ void ClipperBase::Clear() { DisposeLocalMinimaList(); for (EdgeList::size_type i = 0; i < m_edges.size(); ++i) { //for each edge array in turn, find the first used edge and //check for and remove any hiddenPts in each edge in the array. TEdge* edges = m_edges[i]; delete [] edges; } m_edges.clear(); m_UseFullRange = false; m_HasOpenPaths = false; } //------------------------------------------------------------------------------ void ClipperBase::Reset() { m_CurrentLM = m_MinimaList.begin(); if (m_CurrentLM == m_MinimaList.end()) return; //ie nothing to process std::sort(m_MinimaList.begin(), m_MinimaList.end(), LocMinSorter()); //reset all edges ... for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm) { TEdge* e = lm->LeftBound; if (e) { e->Curr = e->Bot; e->Side = esLeft; e->OutIdx = Unassigned; } e = lm->RightBound; if (e) { e->Curr = e->Bot; e->Side = esRight; e->OutIdx = Unassigned; } } } //------------------------------------------------------------------------------ void ClipperBase::DisposeLocalMinimaList() { m_MinimaList.clear(); m_CurrentLM = m_MinimaList.begin(); } //------------------------------------------------------------------------------ void ClipperBase::PopLocalMinima() { if (m_CurrentLM == m_MinimaList.end()) return; ++m_CurrentLM; } //------------------------------------------------------------------------------ IntRect ClipperBase::GetBounds() { IntRect result; MinimaList::iterator lm = m_MinimaList.begin(); if (lm == m_MinimaList.end()) { result.left = result.top = result.right = result.bottom = 0; return result; } result.left = lm->LeftBound->Bot.X; result.top = lm->LeftBound->Bot.Y; result.right = lm->LeftBound->Bot.X; result.bottom = lm->LeftBound->Bot.Y; while (lm != m_MinimaList.end()) { result.bottom = std::max(result.bottom, lm->LeftBound->Bot.Y); TEdge* e = lm->LeftBound; for (;;) { TEdge* bottomE = e; while (e->NextInLML) { if (e->Bot.X < result.left) result.left = e->Bot.X; if (e->Bot.X > result.right) result.right = e->Bot.X; e = e->NextInLML; } result.left = std::min(result.left, e->Bot.X); result.right = std::max(result.right, e->Bot.X); result.left = std::min(result.left, e->Top.X); result.right = std::max(result.right, e->Top.X); result.top = std::min(result.top, e->Top.Y); if (bottomE == lm->LeftBound) e = lm->RightBound; else break; } ++lm; } return result; } //------------------------------------------------------------------------------ // TClipper methods ... //------------------------------------------------------------------------------ Clipper::Clipper(int initOptions) : ClipperBase() //constructor { m_ActiveEdges = 0; m_SortedEdges = 0; m_ExecuteLocked = false; m_UseFullRange = false; m_ReverseOutput = ((initOptions & ioReverseSolution) != 0); m_StrictSimple = ((initOptions & ioStrictlySimple) != 0); m_PreserveCollinear = ((initOptions & ioPreserveCollinear) != 0); m_HasOpenPaths = false; #ifdef use_xyz m_ZFill = 0; #endif } //------------------------------------------------------------------------------ Clipper::~Clipper() //destructor { Clear(); } //------------------------------------------------------------------------------ #ifdef use_xyz void Clipper::ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; } //------------------------------------------------------------------------------ #endif void Clipper::Reset() { ClipperBase::Reset(); m_Scanbeam = ScanbeamList(); m_ActiveEdges = 0; m_SortedEdges = 0; for (MinimaList::iterator lm = m_MinimaList.begin(); lm != m_MinimaList.end(); ++lm) InsertScanbeam(lm->Y); } //------------------------------------------------------------------------------ bool Clipper::Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType, PolyFillType clipFillType) { if( m_ExecuteLocked ) return false; if (m_HasOpenPaths) throw clipperException("Error: PolyTree struct is need for open path clipping."); m_ExecuteLocked = true; solution.resize(0); m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = false; bool succeeded = ExecuteInternal(); if (succeeded) BuildResult(solution); DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded; } //------------------------------------------------------------------------------ bool Clipper::Execute(ClipType clipType, PolyTree& polytree, PolyFillType subjFillType, PolyFillType clipFillType) { if( m_ExecuteLocked ) return false; m_ExecuteLocked = true; m_SubjFillType = subjFillType; m_ClipFillType = clipFillType; m_ClipType = clipType; m_UsingPolyTree = true; bool succeeded = ExecuteInternal(); if (succeeded) BuildResult2(polytree); DisposeAllOutRecs(); m_ExecuteLocked = false; return succeeded; } //------------------------------------------------------------------------------ void Clipper::FixHoleLinkage(OutRec &outrec) { //skip OutRecs that (a) contain outermost polygons or //(b) already have the correct owner/child linkage ... if (!outrec.FirstLeft || (outrec.IsHole != outrec.FirstLeft->IsHole && outrec.FirstLeft->Pts)) return; OutRec* orfl = outrec.FirstLeft; while (orfl && ((orfl->IsHole == outrec.IsHole) || !orfl->Pts)) orfl = orfl->FirstLeft; outrec.FirstLeft = orfl; } //------------------------------------------------------------------------------ bool Clipper::ExecuteInternal() { bool succeeded = true; try { Reset(); if (m_CurrentLM == m_MinimaList.end()) return true; cInt botY = PopScanbeam(); do { InsertLocalMinimaIntoAEL(botY); ClearGhostJoins(); ProcessHorizontals(false); if (m_Scanbeam.empty()) break; cInt topY = PopScanbeam(); succeeded = ProcessIntersections(topY); if (!succeeded) break; ProcessEdgesAtTopOfScanbeam(topY); botY = topY; } while (!m_Scanbeam.empty() || m_CurrentLM != m_MinimaList.end()); } catch(...) { succeeded = false; } if (succeeded) { //fix orientations ... for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec *outRec = m_PolyOuts[i]; if (!outRec->Pts || outRec->IsOpen) continue; if ((outRec->IsHole ^ m_ReverseOutput) == (Area(*outRec) > 0)) ReversePolyPtLinks(outRec->Pts); } if (!m_Joins.empty()) JoinCommonEdges(); //unfortunately FixupOutPolygon() must be done after JoinCommonEdges() for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec *outRec = m_PolyOuts[i]; if (outRec->Pts && !outRec->IsOpen) FixupOutPolygon(*outRec); } if (m_StrictSimple) DoSimplePolygons(); } ClearJoins(); ClearGhostJoins(); return succeeded; } //------------------------------------------------------------------------------ void Clipper::InsertScanbeam(const cInt Y) { //if (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) return;// avoid duplicates. m_Scanbeam.push(Y); } //------------------------------------------------------------------------------ cInt Clipper::PopScanbeam() { const cInt Y = m_Scanbeam.top(); m_Scanbeam.pop(); while (!m_Scanbeam.empty() && Y == m_Scanbeam.top()) { m_Scanbeam.pop(); } // Pop duplicates. return Y; } //------------------------------------------------------------------------------ void Clipper::DisposeAllOutRecs(){ for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) DisposeOutRec(i); m_PolyOuts.clear(); } //------------------------------------------------------------------------------ void Clipper::DisposeOutRec(PolyOutList::size_type index) { OutRec *outRec = m_PolyOuts[index]; if (outRec->Pts) DisposeOutPts(outRec->Pts); delete outRec; m_PolyOuts[index] = 0; } //------------------------------------------------------------------------------ void Clipper::SetWindingCount(TEdge &edge) { TEdge *e = edge.PrevInAEL; //find the edge of the same polytype that immediately preceeds 'edge' in AEL while (e && ((e->PolyTyp != edge.PolyTyp) || (e->WindDelta == 0))) e = e->PrevInAEL; if (!e) { edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); edge.WindCnt2 = 0; e = m_ActiveEdges; //ie get ready to calc WindCnt2 } else if (edge.WindDelta == 0 && m_ClipType != ctUnion) { edge.WindCnt = 1; edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; //ie get ready to calc WindCnt2 } else if (IsEvenOddFillType(edge)) { //EvenOdd filling ... if (edge.WindDelta == 0) { //are we inside a subj polygon ... bool Inside = true; TEdge *e2 = e->PrevInAEL; while (e2) { if (e2->PolyTyp == e->PolyTyp && e2->WindDelta != 0) Inside = !Inside; e2 = e2->PrevInAEL; } edge.WindCnt = (Inside ? 0 : 1); } else { edge.WindCnt = edge.WindDelta; } edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; //ie get ready to calc WindCnt2 } else { //nonZero, Positive or Negative filling ... if (e->WindCnt * e->WindDelta < 0) { //prev edge is 'decreasing' WindCount (WC) toward zero //so we're outside the previous polygon ... if (Abs(e->WindCnt) > 1) { //outside prev poly but still inside another. //when reversing direction of prev poly use the same WC if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt; //otherwise continue to 'decrease' WC ... else edge.WindCnt = e->WindCnt + edge.WindDelta; } else //now outside all polys of same polytype so set own WC ... edge.WindCnt = (edge.WindDelta == 0 ? 1 : edge.WindDelta); } else { //prev edge is 'increasing' WindCount (WC) away from zero //so we're inside the previous polygon ... if (edge.WindDelta == 0) edge.WindCnt = (e->WindCnt < 0 ? e->WindCnt - 1 : e->WindCnt + 1); //if wind direction is reversing prev then use same WC else if (e->WindDelta * edge.WindDelta < 0) edge.WindCnt = e->WindCnt; //otherwise add to WC ... else edge.WindCnt = e->WindCnt + edge.WindDelta; } edge.WindCnt2 = e->WindCnt2; e = e->NextInAEL; //ie get ready to calc WindCnt2 } //update WindCnt2 ... if (IsEvenOddAltFillType(edge)) { //EvenOdd filling ... while (e != &edge) { if (e->WindDelta != 0) edge.WindCnt2 = (edge.WindCnt2 == 0 ? 1 : 0); e = e->NextInAEL; } } else { //nonZero, Positive or Negative filling ... while ( e != &edge ) { edge.WindCnt2 += e->WindDelta; e = e->NextInAEL; } } } //------------------------------------------------------------------------------ bool Clipper::IsEvenOddFillType(const TEdge& edge) const { if (edge.PolyTyp == ptSubject) return m_SubjFillType == pftEvenOdd; else return m_ClipFillType == pftEvenOdd; } //------------------------------------------------------------------------------ bool Clipper::IsEvenOddAltFillType(const TEdge& edge) const { if (edge.PolyTyp == ptSubject) return m_ClipFillType == pftEvenOdd; else return m_SubjFillType == pftEvenOdd; } //------------------------------------------------------------------------------ bool Clipper::IsContributing(const TEdge& edge) const { PolyFillType pft, pft2; if (edge.PolyTyp == ptSubject) { pft = m_SubjFillType; pft2 = m_ClipFillType; } else { pft = m_ClipFillType; pft2 = m_SubjFillType; } switch(pft) { case pftEvenOdd: //return false if a subj line has been flagged as inside a subj polygon if (edge.WindDelta == 0 && edge.WindCnt != 1) return false; break; case pftNonZero: if (Abs(edge.WindCnt) != 1) return false; break; case pftPositive: if (edge.WindCnt != 1) return false; break; default: //pftNegative if (edge.WindCnt != -1) return false; } switch(m_ClipType) { case ctIntersection: switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.WindCnt2 != 0); case pftPositive: return (edge.WindCnt2 > 0); default: return (edge.WindCnt2 < 0); } break; case ctUnion: switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.WindCnt2 == 0); case pftPositive: return (edge.WindCnt2 <= 0); default: return (edge.WindCnt2 >= 0); } break; case ctDifference: if (edge.PolyTyp == ptSubject) switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.WindCnt2 == 0); case pftPositive: return (edge.WindCnt2 <= 0); default: return (edge.WindCnt2 >= 0); } else switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.WindCnt2 != 0); case pftPositive: return (edge.WindCnt2 > 0); default: return (edge.WindCnt2 < 0); } break; case ctXor: if (edge.WindDelta == 0) //XOr always contributing unless open switch(pft2) { case pftEvenOdd: case pftNonZero: return (edge.WindCnt2 == 0); case pftPositive: return (edge.WindCnt2 <= 0); default: return (edge.WindCnt2 >= 0); } else return true; break; default: return true; } } //------------------------------------------------------------------------------ OutPt* Clipper::AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) { OutPt* result; TEdge *e, *prevE; if (IsHorizontal(*e2) || ( e1->Dx > e2->Dx )) { result = AddOutPt(e1, Pt); e2->OutIdx = e1->OutIdx; e1->Side = esLeft; e2->Side = esRight; e = e1; if (e->PrevInAEL == e2) prevE = e2->PrevInAEL; else prevE = e->PrevInAEL; } else { result = AddOutPt(e2, Pt); e1->OutIdx = e2->OutIdx; e1->Side = esRight; e2->Side = esLeft; e = e2; if (e->PrevInAEL == e1) prevE = e1->PrevInAEL; else prevE = e->PrevInAEL; } if (prevE && prevE->OutIdx >= 0 && (TopX(*prevE, Pt.Y) == TopX(*e, Pt.Y)) && SlopesEqual(*e, *prevE, m_UseFullRange) && (e->WindDelta != 0) && (prevE->WindDelta != 0)) { OutPt* outPt = AddOutPt(prevE, Pt); AddJoin(result, outPt, e->Top); } return result; } //------------------------------------------------------------------------------ void Clipper::AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &Pt) { AddOutPt( e1, Pt ); if (e2->WindDelta == 0) AddOutPt(e2, Pt); if( e1->OutIdx == e2->OutIdx ) { e1->OutIdx = Unassigned; e2->OutIdx = Unassigned; } else if (e1->OutIdx < e2->OutIdx) AppendPolygon(e1, e2); else AppendPolygon(e2, e1); } //------------------------------------------------------------------------------ void Clipper::AddEdgeToSEL(TEdge *edge) { //SEL pointers in PEdge are reused to build a list of horizontal edges. //However, we don't need to worry about order with horizontal edge processing. if( !m_SortedEdges ) { m_SortedEdges = edge; edge->PrevInSEL = 0; edge->NextInSEL = 0; } else { edge->NextInSEL = m_SortedEdges; edge->PrevInSEL = 0; m_SortedEdges->PrevInSEL = edge; m_SortedEdges = edge; } } //------------------------------------------------------------------------------ void Clipper::CopyAELToSEL() { TEdge* e = m_ActiveEdges; m_SortedEdges = e; while ( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e = e->NextInAEL; } } //------------------------------------------------------------------------------ void Clipper::AddJoin(OutPt *op1, OutPt *op2, const IntPoint OffPt) { Join* j = new Join; j->OutPt1 = op1; j->OutPt2 = op2; j->OffPt = OffPt; m_Joins.push_back(j); } //------------------------------------------------------------------------------ void Clipper::ClearJoins() { for (JoinList::size_type i = 0; i < m_Joins.size(); i++) delete m_Joins[i]; m_Joins.resize(0); } //------------------------------------------------------------------------------ void Clipper::ClearGhostJoins() { for (JoinList::size_type i = 0; i < m_GhostJoins.size(); i++) delete m_GhostJoins[i]; m_GhostJoins.resize(0); } //------------------------------------------------------------------------------ void Clipper::AddGhostJoin(OutPt *op, const IntPoint OffPt) { Join* j = new Join; j->OutPt1 = op; j->OutPt2 = 0; j->OffPt = OffPt; m_GhostJoins.push_back(j); } //------------------------------------------------------------------------------ void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) { while (m_CurrentLM != m_MinimaList.end() && (m_CurrentLM->Y == botY)) { TEdge* lb = m_CurrentLM->LeftBound; TEdge* rb = m_CurrentLM->RightBound; PopLocalMinima(); OutPt *Op1 = 0; if (!lb) { //nb: don't insert LB into either AEL or SEL InsertEdgeIntoAEL(rb, 0); SetWindingCount(*rb); if (IsContributing(*rb)) Op1 = AddOutPt(rb, rb->Bot); } else if (!rb) { InsertEdgeIntoAEL(lb, 0); SetWindingCount(*lb); if (IsContributing(*lb)) Op1 = AddOutPt(lb, lb->Bot); InsertScanbeam(lb->Top.Y); } else { InsertEdgeIntoAEL(lb, 0); InsertEdgeIntoAEL(rb, lb); SetWindingCount( *lb ); rb->WindCnt = lb->WindCnt; rb->WindCnt2 = lb->WindCnt2; if (IsContributing(*lb)) Op1 = AddLocalMinPoly(lb, rb, lb->Bot); InsertScanbeam(lb->Top.Y); } if (rb) { if(IsHorizontal(*rb)) AddEdgeToSEL(rb); else InsertScanbeam( rb->Top.Y ); } if (!lb || !rb) continue; //if any output polygons share an edge, they'll need joining later ... if (Op1 && IsHorizontal(*rb) && m_GhostJoins.size() > 0 && (rb->WindDelta != 0)) { for (JoinList::size_type i = 0; i < m_GhostJoins.size(); ++i) { Join* jr = m_GhostJoins[i]; //if the horizontal Rb and a 'ghost' horizontal overlap, then convert //the 'ghost' join to a real join ready for later ... if (HorzSegmentsOverlap(jr->OutPt1->Pt.X, jr->OffPt.X, rb->Bot.X, rb->Top.X)) AddJoin(jr->OutPt1, Op1, jr->OffPt); } } if (lb->OutIdx >= 0 && lb->PrevInAEL && lb->PrevInAEL->Curr.X == lb->Bot.X && lb->PrevInAEL->OutIdx >= 0 && SlopesEqual(*lb->PrevInAEL, *lb, m_UseFullRange) && (lb->WindDelta != 0) && (lb->PrevInAEL->WindDelta != 0)) { OutPt *Op2 = AddOutPt(lb->PrevInAEL, lb->Bot); AddJoin(Op1, Op2, lb->Top); } if(lb->NextInAEL != rb) { if (rb->OutIdx >= 0 && rb->PrevInAEL->OutIdx >= 0 && SlopesEqual(*rb->PrevInAEL, *rb, m_UseFullRange) && (rb->WindDelta != 0) && (rb->PrevInAEL->WindDelta != 0)) { OutPt *Op2 = AddOutPt(rb->PrevInAEL, rb->Bot); AddJoin(Op1, Op2, rb->Top); } TEdge* e = lb->NextInAEL; if (e) { while( e != rb ) { //nb: For calculating winding counts etc, IntersectEdges() assumes //that param1 will be to the Right of param2 ABOVE the intersection ... IntersectEdges(rb , e , lb->Curr); //order important here e = e->NextInAEL; } } } } } //------------------------------------------------------------------------------ void Clipper::DeleteFromAEL(TEdge *e) { TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL; if( !AelPrev && !AelNext && (e != m_ActiveEdges) ) return; //already deleted if( AelPrev ) AelPrev->NextInAEL = AelNext; else m_ActiveEdges = AelNext; if( AelNext ) AelNext->PrevInAEL = AelPrev; e->NextInAEL = 0; e->PrevInAEL = 0; } //------------------------------------------------------------------------------ void Clipper::DeleteFromSEL(TEdge *e) { TEdge* SelPrev = e->PrevInSEL; TEdge* SelNext = e->NextInSEL; if( !SelPrev && !SelNext && (e != m_SortedEdges) ) return; //already deleted if( SelPrev ) SelPrev->NextInSEL = SelNext; else m_SortedEdges = SelNext; if( SelNext ) SelNext->PrevInSEL = SelPrev; e->NextInSEL = 0; e->PrevInSEL = 0; } //------------------------------------------------------------------------------ #ifdef use_xyz void Clipper::SetZ(IntPoint& pt, TEdge& e1, TEdge& e2) { if (pt.Z != 0 || !m_ZFill) return; else if (pt == e1.Bot) pt.Z = e1.Bot.Z; else if (pt == e1.Top) pt.Z = e1.Top.Z; else if (pt == e2.Bot) pt.Z = e2.Bot.Z; else if (pt == e2.Top) pt.Z = e2.Top.Z; else (*m_ZFill)(e1.Bot, e1.Top, e2.Bot, e2.Top, pt); } //------------------------------------------------------------------------------ #endif void Clipper::IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &Pt) { bool e1Contributing = ( e1->OutIdx >= 0 ); bool e2Contributing = ( e2->OutIdx >= 0 ); #ifdef use_xyz SetZ(Pt, *e1, *e2); #endif #ifdef use_lines //if either edge is on an OPEN path ... if (e1->WindDelta == 0 || e2->WindDelta == 0) { //ignore subject-subject open path intersections UNLESS they //are both open paths, AND they are both 'contributing maximas' ... if (e1->WindDelta == 0 && e2->WindDelta == 0) return; //if intersecting a subj line with a subj poly ... else if (e1->PolyTyp == e2->PolyTyp && e1->WindDelta != e2->WindDelta && m_ClipType == ctUnion) { if (e1->WindDelta == 0) { if (e2Contributing) { AddOutPt(e1, Pt); if (e1Contributing) e1->OutIdx = Unassigned; } } else { if (e1Contributing) { AddOutPt(e2, Pt); if (e2Contributing) e2->OutIdx = Unassigned; } } } else if (e1->PolyTyp != e2->PolyTyp) { //toggle subj open path OutIdx on/off when Abs(clip.WndCnt) == 1 ... if ((e1->WindDelta == 0) && abs(e2->WindCnt) == 1 && (m_ClipType != ctUnion || e2->WindCnt2 == 0)) { AddOutPt(e1, Pt); if (e1Contributing) e1->OutIdx = Unassigned; } else if ((e2->WindDelta == 0) && (abs(e1->WindCnt) == 1) && (m_ClipType != ctUnion || e1->WindCnt2 == 0)) { AddOutPt(e2, Pt); if (e2Contributing) e2->OutIdx = Unassigned; } } return; } #endif //update winding counts... //assumes that e1 will be to the Right of e2 ABOVE the intersection if ( e1->PolyTyp == e2->PolyTyp ) { if ( IsEvenOddFillType( *e1) ) { int oldE1WindCnt = e1->WindCnt; e1->WindCnt = e2->WindCnt; e2->WindCnt = oldE1WindCnt; } else { if (e1->WindCnt + e2->WindDelta == 0 ) e1->WindCnt = -e1->WindCnt; else e1->WindCnt += e2->WindDelta; if ( e2->WindCnt - e1->WindDelta == 0 ) e2->WindCnt = -e2->WindCnt; else e2->WindCnt -= e1->WindDelta; } } else { if (!IsEvenOddFillType(*e2)) e1->WindCnt2 += e2->WindDelta; else e1->WindCnt2 = ( e1->WindCnt2 == 0 ) ? 1 : 0; if (!IsEvenOddFillType(*e1)) e2->WindCnt2 -= e1->WindDelta; else e2->WindCnt2 = ( e2->WindCnt2 == 0 ) ? 1 : 0; } PolyFillType e1FillType, e2FillType, e1FillType2, e2FillType2; if (e1->PolyTyp == ptSubject) { e1FillType = m_SubjFillType; e1FillType2 = m_ClipFillType; } else { e1FillType = m_ClipFillType; e1FillType2 = m_SubjFillType; } if (e2->PolyTyp == ptSubject) { e2FillType = m_SubjFillType; e2FillType2 = m_ClipFillType; } else { e2FillType = m_ClipFillType; e2FillType2 = m_SubjFillType; } cInt e1Wc, e2Wc; switch (e1FillType) { case pftPositive: e1Wc = e1->WindCnt; break; case pftNegative: e1Wc = -e1->WindCnt; break; default: e1Wc = Abs(e1->WindCnt); } switch(e2FillType) { case pftPositive: e2Wc = e2->WindCnt; break; case pftNegative: e2Wc = -e2->WindCnt; break; default: e2Wc = Abs(e2->WindCnt); } if ( e1Contributing && e2Contributing ) { if ((e1Wc != 0 && e1Wc != 1) || (e2Wc != 0 && e2Wc != 1) || (e1->PolyTyp != e2->PolyTyp && m_ClipType != ctXor) ) { AddLocalMaxPoly(e1, e2, Pt); } else { AddOutPt(e1, Pt); AddOutPt(e2, Pt); SwapSides( *e1 , *e2 ); SwapPolyIndexes( *e1 , *e2 ); } } else if ( e1Contributing ) { if (e2Wc == 0 || e2Wc == 1) { AddOutPt(e1, Pt); SwapSides(*e1, *e2); SwapPolyIndexes(*e1, *e2); } } else if ( e2Contributing ) { if (e1Wc == 0 || e1Wc == 1) { AddOutPt(e2, Pt); SwapSides(*e1, *e2); SwapPolyIndexes(*e1, *e2); } } else if ( (e1Wc == 0 || e1Wc == 1) && (e2Wc == 0 || e2Wc == 1)) { //neither edge is currently contributing ... cInt e1Wc2, e2Wc2; switch (e1FillType2) { case pftPositive: e1Wc2 = e1->WindCnt2; break; case pftNegative : e1Wc2 = -e1->WindCnt2; break; default: e1Wc2 = Abs(e1->WindCnt2); } switch (e2FillType2) { case pftPositive: e2Wc2 = e2->WindCnt2; break; case pftNegative: e2Wc2 = -e2->WindCnt2; break; default: e2Wc2 = Abs(e2->WindCnt2); } if (e1->PolyTyp != e2->PolyTyp) { AddLocalMinPoly(e1, e2, Pt); } else if (e1Wc == 1 && e2Wc == 1) switch( m_ClipType ) { case ctIntersection: if (e1Wc2 > 0 && e2Wc2 > 0) AddLocalMinPoly(e1, e2, Pt); break; case ctUnion: if ( e1Wc2 <= 0 && e2Wc2 <= 0 ) AddLocalMinPoly(e1, e2, Pt); break; case ctDifference: if (((e1->PolyTyp == ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) || ((e1->PolyTyp == ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0))) AddLocalMinPoly(e1, e2, Pt); break; case ctXor: AddLocalMinPoly(e1, e2, Pt); } else SwapSides( *e1, *e2 ); } } //------------------------------------------------------------------------------ void Clipper::SetHoleState(TEdge *e, OutRec *outrec) { bool IsHole = false; TEdge *e2 = e->PrevInAEL; while (e2) { if (e2->OutIdx >= 0 && e2->WindDelta != 0) { IsHole = !IsHole; if (! outrec->FirstLeft) outrec->FirstLeft = m_PolyOuts[e2->OutIdx]; } e2 = e2->PrevInAEL; } if (IsHole) outrec->IsHole = true; } //------------------------------------------------------------------------------ OutRec* GetLowermostRec(OutRec *outRec1, OutRec *outRec2) { //work out which polygon fragment has the correct hole state ... if (!outRec1->BottomPt) outRec1->BottomPt = GetBottomPt(outRec1->Pts); if (!outRec2->BottomPt) outRec2->BottomPt = GetBottomPt(outRec2->Pts); OutPt *OutPt1 = outRec1->BottomPt; OutPt *OutPt2 = outRec2->BottomPt; if (OutPt1->Pt.Y > OutPt2->Pt.Y) return outRec1; else if (OutPt1->Pt.Y < OutPt2->Pt.Y) return outRec2; else if (OutPt1->Pt.X < OutPt2->Pt.X) return outRec1; else if (OutPt1->Pt.X > OutPt2->Pt.X) return outRec2; else if (OutPt1->Next == OutPt1) return outRec2; else if (OutPt2->Next == OutPt2) return outRec1; else if (FirstIsBottomPt(OutPt1, OutPt2)) return outRec1; else return outRec2; } //------------------------------------------------------------------------------ bool Param1RightOfParam2(OutRec* outRec1, OutRec* outRec2) { do { outRec1 = outRec1->FirstLeft; if (outRec1 == outRec2) return true; } while (outRec1); return false; } //------------------------------------------------------------------------------ OutRec* Clipper::GetOutRec(int Idx) { OutRec* outrec = m_PolyOuts[Idx]; while (outrec != m_PolyOuts[outrec->Idx]) outrec = m_PolyOuts[outrec->Idx]; return outrec; } //------------------------------------------------------------------------------ void Clipper::AppendPolygon(TEdge *e1, TEdge *e2) { //get the start and ends of both output polygons ... OutRec *outRec1 = m_PolyOuts[e1->OutIdx]; OutRec *outRec2 = m_PolyOuts[e2->OutIdx]; OutRec *holeStateRec; if (Param1RightOfParam2(outRec1, outRec2)) holeStateRec = outRec2; else if (Param1RightOfParam2(outRec2, outRec1)) holeStateRec = outRec1; else holeStateRec = GetLowermostRec(outRec1, outRec2); //get the start and ends of both output polygons and //join e2 poly onto e1 poly and delete pointers to e2 ... OutPt* p1_lft = outRec1->Pts; OutPt* p1_rt = p1_lft->Prev; OutPt* p2_lft = outRec2->Pts; OutPt* p2_rt = p2_lft->Prev; EdgeSide Side; //join e2 poly onto e1 poly and delete pointers to e2 ... if( e1->Side == esLeft ) { if( e2->Side == esLeft ) { //z y x a b c ReversePolyPtLinks(p2_lft); p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; outRec1->Pts = p2_rt; } else { //x y z a b c p2_rt->Next = p1_lft; p1_lft->Prev = p2_rt; p2_lft->Prev = p1_rt; p1_rt->Next = p2_lft; outRec1->Pts = p2_lft; } Side = esLeft; } else { if( e2->Side == esRight ) { //a b c z y x ReversePolyPtLinks(p2_lft); p1_rt->Next = p2_rt; p2_rt->Prev = p1_rt; p2_lft->Next = p1_lft; p1_lft->Prev = p2_lft; } else { //a b c x y z p1_rt->Next = p2_lft; p2_lft->Prev = p1_rt; p1_lft->Prev = p2_rt; p2_rt->Next = p1_lft; } Side = esRight; } outRec1->BottomPt = 0; if (holeStateRec == outRec2) { if (outRec2->FirstLeft != outRec1) outRec1->FirstLeft = outRec2->FirstLeft; outRec1->IsHole = outRec2->IsHole; } outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->FirstLeft = outRec1; int OKIdx = e1->OutIdx; int ObsoleteIdx = e2->OutIdx; e1->OutIdx = Unassigned; //nb: safe because we only get here via AddLocalMaxPoly e2->OutIdx = Unassigned; TEdge* e = m_ActiveEdges; while( e ) { if( e->OutIdx == ObsoleteIdx ) { e->OutIdx = OKIdx; e->Side = Side; break; } e = e->NextInAEL; } outRec2->Idx = outRec1->Idx; } //------------------------------------------------------------------------------ OutRec* Clipper::CreateOutRec() { OutRec* result = new OutRec; result->IsHole = false; result->IsOpen = false; result->FirstLeft = 0; result->Pts = 0; result->BottomPt = 0; result->PolyNd = 0; m_PolyOuts.push_back(result); result->Idx = (int)m_PolyOuts.size()-1; return result; } //------------------------------------------------------------------------------ OutPt* Clipper::AddOutPt(TEdge *e, const IntPoint &pt) { bool ToFront = (e->Side == esLeft); if( e->OutIdx < 0 ) { OutRec *outRec = CreateOutRec(); outRec->IsOpen = (e->WindDelta == 0); OutPt* newOp = new OutPt; outRec->Pts = newOp; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = newOp; newOp->Prev = newOp; if (!outRec->IsOpen) SetHoleState(e, outRec); e->OutIdx = outRec->Idx; return newOp; } else { OutRec *outRec = m_PolyOuts[e->OutIdx]; //OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most' OutPt* op = outRec->Pts; if (ToFront && (pt == op->Pt)) return op; else if (!ToFront && (pt == op->Prev->Pt)) return op->Prev; OutPt* newOp = new OutPt; newOp->Idx = outRec->Idx; newOp->Pt = pt; newOp->Next = op; newOp->Prev = op->Prev; newOp->Prev->Next = newOp; op->Prev = newOp; if (ToFront) outRec->Pts = newOp; return newOp; } } //------------------------------------------------------------------------------ void Clipper::ProcessHorizontals(bool IsTopOfScanbeam) { TEdge* horzEdge = m_SortedEdges; while(horzEdge) { DeleteFromSEL(horzEdge); ProcessHorizontal(horzEdge, IsTopOfScanbeam); horzEdge = m_SortedEdges; } } //------------------------------------------------------------------------------ inline bool IsMinima(TEdge *e) { return e && (e->Prev->NextInLML != e) && (e->Next->NextInLML != e); } //------------------------------------------------------------------------------ inline bool IsMaxima(TEdge *e, const cInt Y) { return e && e->Top.Y == Y && !e->NextInLML; } //------------------------------------------------------------------------------ inline bool IsIntermediate(TEdge *e, const cInt Y) { return e->Top.Y == Y && e->NextInLML; } //------------------------------------------------------------------------------ TEdge *GetMaximaPair(TEdge *e) { TEdge* result = 0; if ((e->Next->Top == e->Top) && !e->Next->NextInLML) result = e->Next; else if ((e->Prev->Top == e->Top) && !e->Prev->NextInLML) result = e->Prev; if (result && (result->OutIdx == Skip || //result is false if both NextInAEL & PrevInAEL are nil & not horizontal ... (result->NextInAEL == result->PrevInAEL && !IsHorizontal(*result)))) return 0; return result; } //------------------------------------------------------------------------------ void Clipper::SwapPositionsInAEL(TEdge *Edge1, TEdge *Edge2) { //check that one or other edge hasn't already been removed from AEL ... if (Edge1->NextInAEL == Edge1->PrevInAEL || Edge2->NextInAEL == Edge2->PrevInAEL) return; if( Edge1->NextInAEL == Edge2 ) { TEdge* Next = Edge2->NextInAEL; if( Next ) Next->PrevInAEL = Edge1; TEdge* Prev = Edge1->PrevInAEL; if( Prev ) Prev->NextInAEL = Edge2; Edge2->PrevInAEL = Prev; Edge2->NextInAEL = Edge1; Edge1->PrevInAEL = Edge2; Edge1->NextInAEL = Next; } else if( Edge2->NextInAEL == Edge1 ) { TEdge* Next = Edge1->NextInAEL; if( Next ) Next->PrevInAEL = Edge2; TEdge* Prev = Edge2->PrevInAEL; if( Prev ) Prev->NextInAEL = Edge1; Edge1->PrevInAEL = Prev; Edge1->NextInAEL = Edge2; Edge2->PrevInAEL = Edge1; Edge2->NextInAEL = Next; } else { TEdge* Next = Edge1->NextInAEL; TEdge* Prev = Edge1->PrevInAEL; Edge1->NextInAEL = Edge2->NextInAEL; if( Edge1->NextInAEL ) Edge1->NextInAEL->PrevInAEL = Edge1; Edge1->PrevInAEL = Edge2->PrevInAEL; if( Edge1->PrevInAEL ) Edge1->PrevInAEL->NextInAEL = Edge1; Edge2->NextInAEL = Next; if( Edge2->NextInAEL ) Edge2->NextInAEL->PrevInAEL = Edge2; Edge2->PrevInAEL = Prev; if( Edge2->PrevInAEL ) Edge2->PrevInAEL->NextInAEL = Edge2; } if( !Edge1->PrevInAEL ) m_ActiveEdges = Edge1; else if( !Edge2->PrevInAEL ) m_ActiveEdges = Edge2; } //------------------------------------------------------------------------------ void Clipper::SwapPositionsInSEL(TEdge *Edge1, TEdge *Edge2) { if( !( Edge1->NextInSEL ) && !( Edge1->PrevInSEL ) ) return; if( !( Edge2->NextInSEL ) && !( Edge2->PrevInSEL ) ) return; if( Edge1->NextInSEL == Edge2 ) { TEdge* Next = Edge2->NextInSEL; if( Next ) Next->PrevInSEL = Edge1; TEdge* Prev = Edge1->PrevInSEL; if( Prev ) Prev->NextInSEL = Edge2; Edge2->PrevInSEL = Prev; Edge2->NextInSEL = Edge1; Edge1->PrevInSEL = Edge2; Edge1->NextInSEL = Next; } else if( Edge2->NextInSEL == Edge1 ) { TEdge* Next = Edge1->NextInSEL; if( Next ) Next->PrevInSEL = Edge2; TEdge* Prev = Edge2->PrevInSEL; if( Prev ) Prev->NextInSEL = Edge1; Edge1->PrevInSEL = Prev; Edge1->NextInSEL = Edge2; Edge2->PrevInSEL = Edge1; Edge2->NextInSEL = Next; } else { TEdge* Next = Edge1->NextInSEL; TEdge* Prev = Edge1->PrevInSEL; Edge1->NextInSEL = Edge2->NextInSEL; if( Edge1->NextInSEL ) Edge1->NextInSEL->PrevInSEL = Edge1; Edge1->PrevInSEL = Edge2->PrevInSEL; if( Edge1->PrevInSEL ) Edge1->PrevInSEL->NextInSEL = Edge1; Edge2->NextInSEL = Next; if( Edge2->NextInSEL ) Edge2->NextInSEL->PrevInSEL = Edge2; Edge2->PrevInSEL = Prev; if( Edge2->PrevInSEL ) Edge2->PrevInSEL->NextInSEL = Edge2; } if( !Edge1->PrevInSEL ) m_SortedEdges = Edge1; else if( !Edge2->PrevInSEL ) m_SortedEdges = Edge2; } //------------------------------------------------------------------------------ TEdge* GetNextInAEL(TEdge *e, Direction dir) { return dir == dLeftToRight ? e->NextInAEL : e->PrevInAEL; } //------------------------------------------------------------------------------ void GetHorzDirection(TEdge& HorzEdge, Direction& Dir, cInt& Left, cInt& Right) { if (HorzEdge.Bot.X < HorzEdge.Top.X) { Left = HorzEdge.Bot.X; Right = HorzEdge.Top.X; Dir = dLeftToRight; } else { Left = HorzEdge.Top.X; Right = HorzEdge.Bot.X; Dir = dRightToLeft; } } //------------------------------------------------------------------------ /******************************************************************************* * Notes: Horizontal edges (HEs) at scanline intersections (ie at the Top or * * Bottom of a scanbeam) are processed as if layered. The order in which HEs * * are processed doesn't matter. HEs intersect with other HE Bot.Xs only [#] * * (or they could intersect with Top.Xs only, ie EITHER Bot.Xs OR Top.Xs), * * and with other non-horizontal edges [*]. Once these intersections are * * processed, intermediate HEs then 'promote' the Edge above (NextInLML) into * * the AEL. These 'promoted' edges may in turn intersect [%] with other HEs. * *******************************************************************************/ void Clipper::ProcessHorizontal(TEdge *horzEdge, bool isTopOfScanbeam) { Direction dir; cInt horzLeft, horzRight; GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); TEdge* eLastHorz = horzEdge, *eMaxPair = 0; while (eLastHorz->NextInLML && IsHorizontal(*eLastHorz->NextInLML)) eLastHorz = eLastHorz->NextInLML; if (!eLastHorz->NextInLML) eMaxPair = GetMaximaPair(eLastHorz); for (;;) { bool IsLastHorz = (horzEdge == eLastHorz); TEdge* e = GetNextInAEL(horzEdge, dir); while(e) { //Break if we've got to the end of an intermediate horizontal edge ... //nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal. if (e->Curr.X == horzEdge->Top.X && horzEdge->NextInLML && e->Dx < horzEdge->NextInLML->Dx) break; TEdge* eNext = GetNextInAEL(e, dir); //saves eNext for later if ((dir == dLeftToRight && e->Curr.X <= horzRight) || (dir == dRightToLeft && e->Curr.X >= horzLeft)) { //so far we're still in range of the horizontal Edge but make sure //we're at the last of consec. horizontals when matching with eMaxPair if(e == eMaxPair && IsLastHorz) { if (horzEdge->OutIdx >= 0) { OutPt* op1 = AddOutPt(horzEdge, horzEdge->Top); TEdge* eNextHorz = m_SortedEdges; while (eNextHorz) { if (eNextHorz->OutIdx >= 0 && HorzSegmentsOverlap(horzEdge->Bot.X, horzEdge->Top.X, eNextHorz->Bot.X, eNextHorz->Top.X)) { OutPt* op2 = AddOutPt(eNextHorz, eNextHorz->Bot); AddJoin(op2, op1, eNextHorz->Top); } eNextHorz = eNextHorz->NextInSEL; } AddGhostJoin(op1, horzEdge->Bot); AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge->Top); } DeleteFromAEL(horzEdge); DeleteFromAEL(eMaxPair); return; } else if(dir == dLeftToRight) { IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); IntersectEdges(horzEdge, e, Pt); } else { IntPoint Pt = IntPoint(e->Curr.X, horzEdge->Curr.Y); IntersectEdges( e, horzEdge, Pt); } SwapPositionsInAEL( horzEdge, e ); } else if( (dir == dLeftToRight && e->Curr.X >= horzRight) || (dir == dRightToLeft && e->Curr.X <= horzLeft) ) break; e = eNext; } //end while if (horzEdge->NextInLML && IsHorizontal(*horzEdge->NextInLML)) { UpdateEdgeIntoAEL(horzEdge); if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Bot); GetHorzDirection(*horzEdge, dir, horzLeft, horzRight); } else break; } //end for (;;) if(horzEdge->NextInLML) { if(horzEdge->OutIdx >= 0) { OutPt* op1 = AddOutPt( horzEdge, horzEdge->Top); if (isTopOfScanbeam) AddGhostJoin(op1, horzEdge->Bot); UpdateEdgeIntoAEL(horzEdge); if (horzEdge->WindDelta == 0) return; //nb: HorzEdge is no longer horizontal here TEdge* ePrev = horzEdge->PrevInAEL; TEdge* eNext = horzEdge->NextInAEL; if (ePrev && ePrev->Curr.X == horzEdge->Bot.X && ePrev->Curr.Y == horzEdge->Bot.Y && ePrev->WindDelta != 0 && (ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual(*horzEdge, *ePrev, m_UseFullRange))) { OutPt* op2 = AddOutPt(ePrev, horzEdge->Bot); AddJoin(op1, op2, horzEdge->Top); } else if (eNext && eNext->Curr.X == horzEdge->Bot.X && eNext->Curr.Y == horzEdge->Bot.Y && eNext->WindDelta != 0 && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual(*horzEdge, *eNext, m_UseFullRange)) { OutPt* op2 = AddOutPt(eNext, horzEdge->Bot); AddJoin(op1, op2, horzEdge->Top); } } else UpdateEdgeIntoAEL(horzEdge); } else { if (horzEdge->OutIdx >= 0) AddOutPt(horzEdge, horzEdge->Top); DeleteFromAEL(horzEdge); } } //------------------------------------------------------------------------------ void Clipper::UpdateEdgeIntoAEL(TEdge *&e) { if( !e->NextInLML ) throw clipperException("UpdateEdgeIntoAEL: invalid call"); e->NextInLML->OutIdx = e->OutIdx; TEdge* AelPrev = e->PrevInAEL; TEdge* AelNext = e->NextInAEL; if (AelPrev) AelPrev->NextInAEL = e->NextInLML; else m_ActiveEdges = e->NextInLML; if (AelNext) AelNext->PrevInAEL = e->NextInLML; e->NextInLML->Side = e->Side; e->NextInLML->WindDelta = e->WindDelta; e->NextInLML->WindCnt = e->WindCnt; e->NextInLML->WindCnt2 = e->WindCnt2; e = e->NextInLML; e->Curr = e->Bot; e->PrevInAEL = AelPrev; e->NextInAEL = AelNext; if (!IsHorizontal(*e)) InsertScanbeam(e->Top.Y); } //------------------------------------------------------------------------------ bool Clipper::ProcessIntersections(const cInt topY) { if( !m_ActiveEdges ) return true; try { BuildIntersectList(topY); size_t IlSize = m_IntersectList.size(); if (IlSize == 0) return true; if (IlSize == 1 || FixupIntersectionOrder()) ProcessIntersectList(); else return false; } catch(...) { m_SortedEdges = 0; DisposeIntersectNodes(); throw clipperException("ProcessIntersections error"); } m_SortedEdges = 0; return true; } //------------------------------------------------------------------------------ void Clipper::DisposeIntersectNodes() { for (size_t i = 0; i < m_IntersectList.size(); ++i ) delete m_IntersectList[i]; m_IntersectList.clear(); } //------------------------------------------------------------------------------ void Clipper::BuildIntersectList(const cInt topY) { if ( !m_ActiveEdges ) return; //prepare for sorting ... TEdge* e = m_ActiveEdges; m_SortedEdges = e; while( e ) { e->PrevInSEL = e->PrevInAEL; e->NextInSEL = e->NextInAEL; e->Curr.X = TopX( *e, topY ); e = e->NextInAEL; } //bubblesort ... bool isModified; do { isModified = false; e = m_SortedEdges; while( e->NextInSEL ) { TEdge *eNext = e->NextInSEL; IntPoint Pt; if(e->Curr.X > eNext->Curr.X) { IntersectPoint(*e, *eNext, Pt); IntersectNode * newNode = new IntersectNode; newNode->Edge1 = e; newNode->Edge2 = eNext; newNode->Pt = Pt; m_IntersectList.push_back(newNode); SwapPositionsInSEL(e, eNext); isModified = true; } else e = eNext; } if( e->PrevInSEL ) e->PrevInSEL->NextInSEL = 0; else break; } while ( isModified ); m_SortedEdges = 0; //important } //------------------------------------------------------------------------------ void Clipper::ProcessIntersectList() { for (size_t i = 0; i < m_IntersectList.size(); ++i) { IntersectNode* iNode = m_IntersectList[i]; { IntersectEdges( iNode->Edge1, iNode->Edge2, iNode->Pt); SwapPositionsInAEL( iNode->Edge1 , iNode->Edge2 ); } delete iNode; } m_IntersectList.clear(); } //------------------------------------------------------------------------------ bool IntersectListSort(IntersectNode* node1, IntersectNode* node2) { return node2->Pt.Y < node1->Pt.Y; } //------------------------------------------------------------------------------ inline bool EdgesAdjacent(const IntersectNode &inode) { return (inode.Edge1->NextInSEL == inode.Edge2) || (inode.Edge1->PrevInSEL == inode.Edge2); } //------------------------------------------------------------------------------ bool Clipper::FixupIntersectionOrder() { //pre-condition: intersections are sorted Bottom-most first. //Now it's crucial that intersections are made only between adjacent edges, //so to ensure this the order of intersections may need adjusting ... CopyAELToSEL(); std::sort(m_IntersectList.begin(), m_IntersectList.end(), IntersectListSort); size_t cnt = m_IntersectList.size(); for (size_t i = 0; i < cnt; ++i) { if (!EdgesAdjacent(*m_IntersectList[i])) { size_t j = i + 1; while (j < cnt && !EdgesAdjacent(*m_IntersectList[j])) j++; if (j == cnt) return false; std::swap(m_IntersectList[i], m_IntersectList[j]); } SwapPositionsInSEL(m_IntersectList[i]->Edge1, m_IntersectList[i]->Edge2); } return true; } //------------------------------------------------------------------------------ void Clipper::DoMaxima(TEdge *e) { TEdge* eMaxPair = GetMaximaPair(e); if (!eMaxPair) { if (e->OutIdx >= 0) AddOutPt(e, e->Top); DeleteFromAEL(e); return; } TEdge* eNext = e->NextInAEL; while(eNext && eNext != eMaxPair) { IntersectEdges(e, eNext, e->Top); SwapPositionsInAEL(e, eNext); eNext = e->NextInAEL; } if(e->OutIdx == Unassigned && eMaxPair->OutIdx == Unassigned) { DeleteFromAEL(e); DeleteFromAEL(eMaxPair); } else if( e->OutIdx >= 0 && eMaxPair->OutIdx >= 0 ) { if (e->OutIdx >= 0) AddLocalMaxPoly(e, eMaxPair, e->Top); DeleteFromAEL(e); DeleteFromAEL(eMaxPair); } #ifdef use_lines else if (e->WindDelta == 0) { if (e->OutIdx >= 0) { AddOutPt(e, e->Top); e->OutIdx = Unassigned; } DeleteFromAEL(e); if (eMaxPair->OutIdx >= 0) { AddOutPt(eMaxPair, e->Top); eMaxPair->OutIdx = Unassigned; } DeleteFromAEL(eMaxPair); } #endif else throw clipperException("DoMaxima error"); } //------------------------------------------------------------------------------ void Clipper::ProcessEdgesAtTopOfScanbeam(const cInt topY) { TEdge* e = m_ActiveEdges; while( e ) { //1. process maxima, treating them as if they're 'bent' horizontal edges, // but exclude maxima with horizontal edges. nb: e can't be a horizontal. bool IsMaximaEdge = IsMaxima(e, topY); if(IsMaximaEdge) { TEdge* eMaxPair = GetMaximaPair(e); IsMaximaEdge = (!eMaxPair || !IsHorizontal(*eMaxPair)); } if(IsMaximaEdge) { TEdge* ePrev = e->PrevInAEL; DoMaxima(e); if( !ePrev ) e = m_ActiveEdges; else e = ePrev->NextInAEL; } else { //2. promote horizontal edges, otherwise update Curr.X and Curr.Y ... if (IsIntermediate(e, topY) && IsHorizontal(*e->NextInLML)) { UpdateEdgeIntoAEL(e); if (e->OutIdx >= 0) AddOutPt(e, e->Bot); AddEdgeToSEL(e); } else { e->Curr.X = TopX( *e, topY ); e->Curr.Y = topY; } if (m_StrictSimple) { TEdge* ePrev = e->PrevInAEL; if ((e->OutIdx >= 0) && (e->WindDelta != 0) && ePrev && (ePrev->OutIdx >= 0) && (ePrev->Curr.X == e->Curr.X) && (ePrev->WindDelta != 0)) { IntPoint pt = e->Curr; #ifdef use_xyz SetZ(pt, *ePrev, *e); #endif OutPt* op = AddOutPt(ePrev, pt); OutPt* op2 = AddOutPt(e, pt); AddJoin(op, op2, pt); //StrictlySimple (type-3) join } } e = e->NextInAEL; } } //3. Process horizontals at the Top of the scanbeam ... ProcessHorizontals(true); //4. Promote intermediate vertices ... e = m_ActiveEdges; while(e) { if(IsIntermediate(e, topY)) { OutPt* op = 0; if( e->OutIdx >= 0 ) op = AddOutPt(e, e->Top); UpdateEdgeIntoAEL(e); //if output polygons share an edge, they'll need joining later ... TEdge* ePrev = e->PrevInAEL; TEdge* eNext = e->NextInAEL; if (ePrev && ePrev->Curr.X == e->Bot.X && ePrev->Curr.Y == e->Bot.Y && op && ePrev->OutIdx >= 0 && ePrev->Curr.Y > ePrev->Top.Y && SlopesEqual(*e, *ePrev, m_UseFullRange) && (e->WindDelta != 0) && (ePrev->WindDelta != 0)) { OutPt* op2 = AddOutPt(ePrev, e->Bot); AddJoin(op, op2, e->Top); } else if (eNext && eNext->Curr.X == e->Bot.X && eNext->Curr.Y == e->Bot.Y && op && eNext->OutIdx >= 0 && eNext->Curr.Y > eNext->Top.Y && SlopesEqual(*e, *eNext, m_UseFullRange) && (e->WindDelta != 0) && (eNext->WindDelta != 0)) { OutPt* op2 = AddOutPt(eNext, e->Bot); AddJoin(op, op2, e->Top); } } e = e->NextInAEL; } } //------------------------------------------------------------------------------ void Clipper::FixupOutPolygon(OutRec &outrec) { //FixupOutPolygon() - removes duplicate points and simplifies consecutive //parallel edges by removing the middle vertex. OutPt *lastOK = 0; outrec.BottomPt = 0; OutPt *pp = outrec.Pts; for (;;) { if (pp->Prev == pp || pp->Prev == pp->Next ) { DisposeOutPts(pp); outrec.Pts = 0; return; } //test for duplicate points and collinear edges ... if ((pp->Pt == pp->Next->Pt) || (pp->Pt == pp->Prev->Pt) || (SlopesEqual(pp->Prev->Pt, pp->Pt, pp->Next->Pt, m_UseFullRange) && (!m_PreserveCollinear || !Pt2IsBetweenPt1AndPt3(pp->Prev->Pt, pp->Pt, pp->Next->Pt)))) { lastOK = 0; OutPt *tmp = pp; pp->Prev->Next = pp->Next; pp->Next->Prev = pp->Prev; pp = pp->Prev; delete tmp; } else if (pp == lastOK) break; else { if (!lastOK) lastOK = pp; pp = pp->Next; } } outrec.Pts = pp; } //------------------------------------------------------------------------------ int PointCount(OutPt *Pts) { if (!Pts) return 0; int result = 0; OutPt* p = Pts; do { result++; p = p->Next; } while (p != Pts); return result; } //------------------------------------------------------------------------------ void Clipper::BuildResult(Paths &polys) { polys.reserve(m_PolyOuts.size()); for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { if (!m_PolyOuts[i]->Pts) continue; Path pg; OutPt* p = m_PolyOuts[i]->Pts->Prev; int cnt = PointCount(p); if (cnt < 2) continue; pg.reserve(cnt); for (int i = 0; i < cnt; ++i) { pg.push_back(p->Pt); p = p->Prev; } polys.push_back(pg); } } //------------------------------------------------------------------------------ void Clipper::BuildResult2(PolyTree& polytree) { polytree.Clear(); polytree.AllNodes.reserve(m_PolyOuts.size()); //add each output polygon/contour to polytree ... for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { OutRec* outRec = m_PolyOuts[i]; int cnt = PointCount(outRec->Pts); if ((outRec->IsOpen && cnt < 2) || (!outRec->IsOpen && cnt < 3)) continue; FixHoleLinkage(*outRec); PolyNode* pn = new PolyNode(); //nb: polytree takes ownership of all the PolyNodes polytree.AllNodes.push_back(pn); outRec->PolyNd = pn; pn->Parent = 0; pn->Index = 0; pn->Contour.reserve(cnt); OutPt *op = outRec->Pts->Prev; for (int j = 0; j < cnt; j++) { pn->Contour.push_back(op->Pt); op = op->Prev; } } //fixup PolyNode links etc ... polytree.Childs.reserve(m_PolyOuts.size()); for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); i++) { OutRec* outRec = m_PolyOuts[i]; if (!outRec->PolyNd) continue; if (outRec->IsOpen) { outRec->PolyNd->m_IsOpen = true; polytree.AddChild(*outRec->PolyNd); } else if (outRec->FirstLeft && outRec->FirstLeft->PolyNd) outRec->FirstLeft->PolyNd->AddChild(*outRec->PolyNd); else polytree.AddChild(*outRec->PolyNd); } } //------------------------------------------------------------------------------ void SwapIntersectNodes(IntersectNode &int1, IntersectNode &int2) { //just swap the contents (because fIntersectNodes is a single-linked-list) IntersectNode inode = int1; //gets a copy of Int1 int1.Edge1 = int2.Edge1; int1.Edge2 = int2.Edge2; int1.Pt = int2.Pt; int2.Edge1 = inode.Edge1; int2.Edge2 = inode.Edge2; int2.Pt = inode.Pt; } //------------------------------------------------------------------------------ inline bool E2InsertsBeforeE1(TEdge &e1, TEdge &e2) { if (e2.Curr.X == e1.Curr.X) { if (e2.Top.Y > e1.Top.Y) return e2.Top.X < TopX(e1, e2.Top.Y); else return e1.Top.X > TopX(e2, e1.Top.Y); } else return e2.Curr.X < e1.Curr.X; } //------------------------------------------------------------------------------ bool GetOverlap(const cInt a1, const cInt a2, const cInt b1, const cInt b2, cInt& Left, cInt& Right) { if (a1 < a2) { if (b1 < b2) {Left = std::max(a1,b1); Right = std::min(a2,b2);} else {Left = std::max(a1,b2); Right = std::min(a2,b1);} } else { if (b1 < b2) {Left = std::max(a2,b1); Right = std::min(a1,b2);} else {Left = std::max(a2,b2); Right = std::min(a1,b1);} } return Left < Right; } //------------------------------------------------------------------------------ inline void UpdateOutPtIdxs(OutRec& outrec) { OutPt* op = outrec.Pts; do { op->Idx = outrec.Idx; op = op->Prev; } while(op != outrec.Pts); } //------------------------------------------------------------------------------ void Clipper::InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge) { if(!m_ActiveEdges) { edge->PrevInAEL = 0; edge->NextInAEL = 0; m_ActiveEdges = edge; } else if(!startEdge && E2InsertsBeforeE1(*m_ActiveEdges, *edge)) { edge->PrevInAEL = 0; edge->NextInAEL = m_ActiveEdges; m_ActiveEdges->PrevInAEL = edge; m_ActiveEdges = edge; } else { if(!startEdge) startEdge = m_ActiveEdges; while(startEdge->NextInAEL && !E2InsertsBeforeE1(*startEdge->NextInAEL , *edge)) startEdge = startEdge->NextInAEL; edge->NextInAEL = startEdge->NextInAEL; if(startEdge->NextInAEL) startEdge->NextInAEL->PrevInAEL = edge; edge->PrevInAEL = startEdge; startEdge->NextInAEL = edge; } } //---------------------------------------------------------------------- OutPt* DupOutPt(OutPt* outPt, bool InsertAfter) { OutPt* result = new OutPt; result->Pt = outPt->Pt; result->Idx = outPt->Idx; if (InsertAfter) { result->Next = outPt->Next; result->Prev = outPt; outPt->Next->Prev = result; outPt->Next = result; } else { result->Prev = outPt->Prev; result->Next = outPt; outPt->Prev->Next = result; outPt->Prev = result; } return result; } //------------------------------------------------------------------------------ bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint Pt, bool DiscardLeft) { Direction Dir1 = (op1->Pt.X > op1b->Pt.X ? dRightToLeft : dLeftToRight); Direction Dir2 = (op2->Pt.X > op2b->Pt.X ? dRightToLeft : dLeftToRight); if (Dir1 == Dir2) return false; //When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we //want Op1b to be on the Right. (And likewise with Op2 and Op2b.) //So, to facilitate this while inserting Op1b and Op2b ... //when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b, //otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.) if (Dir1 == dLeftToRight) { while (op1->Next->Pt.X <= Pt.X && op1->Next->Pt.X >= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) op1 = op1->Next; if (DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next; op1b = DupOutPt(op1, !DiscardLeft); if (op1b->Pt != Pt) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt(op1, !DiscardLeft); } } else { while (op1->Next->Pt.X >= Pt.X && op1->Next->Pt.X <= op1->Pt.X && op1->Next->Pt.Y == Pt.Y) op1 = op1->Next; if (!DiscardLeft && (op1->Pt.X != Pt.X)) op1 = op1->Next; op1b = DupOutPt(op1, DiscardLeft); if (op1b->Pt != Pt) { op1 = op1b; op1->Pt = Pt; op1b = DupOutPt(op1, DiscardLeft); } } if (Dir2 == dLeftToRight) { while (op2->Next->Pt.X <= Pt.X && op2->Next->Pt.X >= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) op2 = op2->Next; if (DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next; op2b = DupOutPt(op2, !DiscardLeft); if (op2b->Pt != Pt) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt(op2, !DiscardLeft); }; } else { while (op2->Next->Pt.X >= Pt.X && op2->Next->Pt.X <= op2->Pt.X && op2->Next->Pt.Y == Pt.Y) op2 = op2->Next; if (!DiscardLeft && (op2->Pt.X != Pt.X)) op2 = op2->Next; op2b = DupOutPt(op2, DiscardLeft); if (op2b->Pt != Pt) { op2 = op2b; op2->Pt = Pt; op2b = DupOutPt(op2, DiscardLeft); }; }; if ((Dir1 == dLeftToRight) == DiscardLeft) { op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; } else { op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; } return true; } //------------------------------------------------------------------------------ bool Clipper::JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2) { OutPt *op1 = j->OutPt1, *op1b; OutPt *op2 = j->OutPt2, *op2b; //There are 3 kinds of joins for output polygons ... //1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are a vertices anywhere //along (horizontal) collinear edges (& Join.OffPt is on the same horizontal). //2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same //location at the Bottom of the overlapping segment (& Join.OffPt is above). //3. StrictSimple joins where edges touch but are not collinear and where //Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point. bool isHorizontal = (j->OutPt1->Pt.Y == j->OffPt.Y); if (isHorizontal && (j->OffPt == j->OutPt1->Pt) && (j->OffPt == j->OutPt2->Pt)) { //Strictly Simple join ... if (outRec1 != outRec2) return false; op1b = j->OutPt1->Next; while (op1b != op1 && (op1b->Pt == j->OffPt)) op1b = op1b->Next; bool reverse1 = (op1b->Pt.Y > j->OffPt.Y); op2b = j->OutPt2->Next; while (op2b != op2 && (op2b->Pt == j->OffPt)) op2b = op2b->Next; bool reverse2 = (op2b->Pt.Y > j->OffPt.Y); if (reverse1 == reverse2) return false; if (reverse1) { op1b = DupOutPt(op1, false); op2b = DupOutPt(op2, true); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt(op1, true); op2b = DupOutPt(op2, false); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } } else if (isHorizontal) { //treat horizontal joins differently to non-horizontal joins since with //them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt //may be anywhere along the horizontal edge. op1b = op1; while (op1->Prev->Pt.Y == op1->Pt.Y && op1->Prev != op1b && op1->Prev != op2) op1 = op1->Prev; while (op1b->Next->Pt.Y == op1b->Pt.Y && op1b->Next != op1 && op1b->Next != op2) op1b = op1b->Next; if (op1b->Next == op1 || op1b->Next == op2) return false; //a flat 'polygon' op2b = op2; while (op2->Prev->Pt.Y == op2->Pt.Y && op2->Prev != op2b && op2->Prev != op1b) op2 = op2->Prev; while (op2b->Next->Pt.Y == op2b->Pt.Y && op2b->Next != op2 && op2b->Next != op1) op2b = op2b->Next; if (op2b->Next == op2 || op2b->Next == op1) return false; //a flat 'polygon' cInt Left, Right; //Op1 --> Op1b & Op2 --> Op2b are the extremites of the horizontal edges if (!GetOverlap(op1->Pt.X, op1b->Pt.X, op2->Pt.X, op2b->Pt.X, Left, Right)) return false; //DiscardLeftSide: when overlapping edges are joined, a spike will created //which needs to be cleaned up. However, we don't want Op1 or Op2 caught up //on the discard Side as either may still be needed for other joins ... IntPoint Pt; bool DiscardLeftSide; if (op1->Pt.X >= Left && op1->Pt.X <= Right) { Pt = op1->Pt; DiscardLeftSide = (op1->Pt.X > op1b->Pt.X); } else if (op2->Pt.X >= Left&& op2->Pt.X <= Right) { Pt = op2->Pt; DiscardLeftSide = (op2->Pt.X > op2b->Pt.X); } else if (op1b->Pt.X >= Left && op1b->Pt.X <= Right) { Pt = op1b->Pt; DiscardLeftSide = op1b->Pt.X > op1->Pt.X; } else { Pt = op2b->Pt; DiscardLeftSide = (op2b->Pt.X > op2->Pt.X); } j->OutPt1 = op1; j->OutPt2 = op2; return JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide); } else { //nb: For non-horizontal joins ... // 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y // 2. Jr.OutPt1.Pt > Jr.OffPt.Y //make sure the polygons are correctly oriented ... op1b = op1->Next; while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Next; bool Reverse1 = ((op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)); if (Reverse1) { op1b = op1->Prev; while ((op1b->Pt == op1->Pt) && (op1b != op1)) op1b = op1b->Prev; if ((op1b->Pt.Y > op1->Pt.Y) || !SlopesEqual(op1->Pt, op1b->Pt, j->OffPt, m_UseFullRange)) return false; }; op2b = op2->Next; while ((op2b->Pt == op2->Pt) && (op2b != op2))op2b = op2b->Next; bool Reverse2 = ((op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)); if (Reverse2) { op2b = op2->Prev; while ((op2b->Pt == op2->Pt) && (op2b != op2)) op2b = op2b->Prev; if ((op2b->Pt.Y > op2->Pt.Y) || !SlopesEqual(op2->Pt, op2b->Pt, j->OffPt, m_UseFullRange)) return false; } if ((op1b == op1) || (op2b == op2) || (op1b == op2b) || ((outRec1 == outRec2) && (Reverse1 == Reverse2))) return false; if (Reverse1) { op1b = DupOutPt(op1, false); op2b = DupOutPt(op2, true); op1->Prev = op2; op2->Next = op1; op1b->Next = op2b; op2b->Prev = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } else { op1b = DupOutPt(op1, true); op2b = DupOutPt(op2, false); op1->Next = op2; op2->Prev = op1; op1b->Prev = op2b; op2b->Next = op1b; j->OutPt1 = op1; j->OutPt2 = op1b; return true; } } } //---------------------------------------------------------------------- static OutRec* ParseFirstLeft(OutRec* FirstLeft) { while (FirstLeft && !FirstLeft->Pts) FirstLeft = FirstLeft->FirstLeft; return FirstLeft; } //------------------------------------------------------------------------------ void Clipper::FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) { //tests if NewOutRec contains the polygon before reassigning FirstLeft for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec* outRec = m_PolyOuts[i]; if (!outRec->Pts || !outRec->FirstLeft) continue; OutRec* firstLeft = ParseFirstLeft(outRec->FirstLeft); if (firstLeft == OldOutRec) { if (Poly2ContainsPoly1(outRec->Pts, NewOutRec->Pts)) outRec->FirstLeft = NewOutRec; } } } //---------------------------------------------------------------------- void Clipper::FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) { //reassigns FirstLeft WITHOUT testing if NewOutRec contains the polygon for (PolyOutList::size_type i = 0; i < m_PolyOuts.size(); ++i) { OutRec* outRec = m_PolyOuts[i]; if (outRec->FirstLeft == OldOutRec) outRec->FirstLeft = NewOutRec; } } //---------------------------------------------------------------------- void Clipper::JoinCommonEdges() { for (JoinList::size_type i = 0; i < m_Joins.size(); i++) { Join* join = m_Joins[i]; OutRec *outRec1 = GetOutRec(join->OutPt1->Idx); OutRec *outRec2 = GetOutRec(join->OutPt2->Idx); if (!outRec1->Pts || !outRec2->Pts) continue; //get the polygon fragment with the correct hole state (FirstLeft) //before calling JoinPoints() ... OutRec *holeStateRec; if (outRec1 == outRec2) holeStateRec = outRec1; else if (Param1RightOfParam2(outRec1, outRec2)) holeStateRec = outRec2; else if (Param1RightOfParam2(outRec2, outRec1)) holeStateRec = outRec1; else holeStateRec = GetLowermostRec(outRec1, outRec2); if (!JoinPoints(join, outRec1, outRec2)) continue; if (outRec1 == outRec2) { //instead of joining two polygons, we've just created a new one by //splitting one polygon into two. outRec1->Pts = join->OutPt1; outRec1->BottomPt = 0; outRec2 = CreateOutRec(); outRec2->Pts = join->OutPt2; //update all OutRec2.Pts Idx's ... UpdateOutPtIdxs(*outRec2); //We now need to check every OutRec.FirstLeft pointer. If it points //to OutRec1 it may need to point to OutRec2 instead ... if (m_UsingPolyTree) for (PolyOutList::size_type j = 0; j < m_PolyOuts.size() - 1; j++) { OutRec* oRec = m_PolyOuts[j]; if (!oRec->Pts || ParseFirstLeft(oRec->FirstLeft) != outRec1 || oRec->IsHole == outRec1->IsHole) continue; if (Poly2ContainsPoly1(oRec->Pts, join->OutPt2)) oRec->FirstLeft = outRec2; } if (Poly2ContainsPoly1(outRec2->Pts, outRec1->Pts)) { //outRec2 is contained by outRec1 ... outRec2->IsHole = !outRec1->IsHole; outRec2->FirstLeft = outRec1; //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1); if ((outRec2->IsHole ^ m_ReverseOutput) == (Area(*outRec2) > 0)) ReversePolyPtLinks(outRec2->Pts); } else if (Poly2ContainsPoly1(outRec1->Pts, outRec2->Pts)) { //outRec1 is contained by outRec2 ... outRec2->IsHole = outRec1->IsHole; outRec1->IsHole = !outRec2->IsHole; outRec2->FirstLeft = outRec1->FirstLeft; outRec1->FirstLeft = outRec2; //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec1, outRec2); if ((outRec1->IsHole ^ m_ReverseOutput) == (Area(*outRec1) > 0)) ReversePolyPtLinks(outRec1->Pts); } else { //the 2 polygons are completely separate ... outRec2->IsHole = outRec1->IsHole; outRec2->FirstLeft = outRec1->FirstLeft; //fixup FirstLeft pointers that may need reassigning to OutRec2 if (m_UsingPolyTree) FixupFirstLefts1(outRec1, outRec2); } } else { //joined 2 polygons together ... outRec2->Pts = 0; outRec2->BottomPt = 0; outRec2->Idx = outRec1->Idx; outRec1->IsHole = holeStateRec->IsHole; if (holeStateRec == outRec2) outRec1->FirstLeft = outRec2->FirstLeft; outRec2->FirstLeft = outRec1; //fixup FirstLeft pointers that may need reassigning to OutRec1 if (m_UsingPolyTree) FixupFirstLefts2(outRec2, outRec1); } } } //------------------------------------------------------------------------------ // ClipperOffset support functions ... //------------------------------------------------------------------------------ DoublePoint GetUnitNormal(const IntPoint &pt1, const IntPoint &pt2) { if(pt2.X == pt1.X && pt2.Y == pt1.Y) return DoublePoint(0, 0); double Dx = (double)(pt2.X - pt1.X); double dy = (double)(pt2.Y - pt1.Y); double f = 1 *1.0/ std::sqrt( Dx*Dx + dy*dy ); Dx *= f; dy *= f; return DoublePoint(dy, -Dx); } //------------------------------------------------------------------------------ // ClipperOffset class //------------------------------------------------------------------------------ ClipperOffset::ClipperOffset(double miterLimit, double arcTolerance) { this->MiterLimit = miterLimit; this->ArcTolerance = arcTolerance; m_lowest.X = -1; } //------------------------------------------------------------------------------ ClipperOffset::~ClipperOffset() { Clear(); } //------------------------------------------------------------------------------ void ClipperOffset::Clear() { for (int i = 0; i < m_polyNodes.ChildCount(); ++i) delete m_polyNodes.Childs[i]; m_polyNodes.Childs.clear(); m_lowest.X = -1; } //------------------------------------------------------------------------------ void ClipperOffset::AddPath(const Path& path, JoinType joinType, EndType endType) { int highI = (int)path.size() - 1; if (highI < 0) return; PolyNode* newNode = new PolyNode(); newNode->m_jointype = joinType; newNode->m_endtype = endType; //strip duplicate points from path and also get index to the lowest point ... if (endType == etClosedLine || endType == etClosedPolygon) while (highI > 0 && path[0] == path[highI]) highI--; newNode->Contour.reserve(highI + 1); newNode->Contour.push_back(path[0]); int j = 0, k = 0; for (int i = 1; i <= highI; i++) if (newNode->Contour[j] != path[i]) { j++; newNode->Contour.push_back(path[i]); if (path[i].Y > newNode->Contour[k].Y || (path[i].Y == newNode->Contour[k].Y && path[i].X < newNode->Contour[k].X)) k = j; } if (endType == etClosedPolygon && j < 2) { delete newNode; return; } m_polyNodes.AddChild(*newNode); //if this path's lowest pt is lower than all the others then update m_lowest if (endType != etClosedPolygon) return; if (m_lowest.X < 0) m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); else { IntPoint ip = m_polyNodes.Childs[(int)m_lowest.X]->Contour[(int)m_lowest.Y]; if (newNode->Contour[k].Y > ip.Y || (newNode->Contour[k].Y == ip.Y && newNode->Contour[k].X < ip.X)) m_lowest = IntPoint(m_polyNodes.ChildCount() - 1, k); } } //------------------------------------------------------------------------------ void ClipperOffset::AddPaths(const Paths& paths, JoinType joinType, EndType endType) { for (Paths::size_type i = 0; i < paths.size(); ++i) AddPath(paths[i], joinType, endType); } //------------------------------------------------------------------------------ void ClipperOffset::FixOrientations() { //fixup orientations of all closed paths if the orientation of the //closed path with the lowermost vertex is wrong ... if (m_lowest.X >= 0 && !Orientation(m_polyNodes.Childs[(int)m_lowest.X]->Contour)) { for (int i = 0; i < m_polyNodes.ChildCount(); ++i) { PolyNode& node = *m_polyNodes.Childs[i]; if (node.m_endtype == etClosedPolygon || (node.m_endtype == etClosedLine && Orientation(node.Contour))) ReversePath(node.Contour); } } else { for (int i = 0; i < m_polyNodes.ChildCount(); ++i) { PolyNode& node = *m_polyNodes.Childs[i]; if (node.m_endtype == etClosedLine && !Orientation(node.Contour)) ReversePath(node.Contour); } } } //------------------------------------------------------------------------------ void ClipperOffset::Execute(Paths& solution, double delta) { solution.clear(); FixOrientations(); DoOffset(delta); //now clean up 'corners' ... Clipper clpr; clpr.AddPaths(m_destPolys, ptSubject, true); if (delta > 0) { clpr.Execute(ctUnion, solution, pftPositive, pftPositive); } else { IntRect r = clpr.GetBounds(); Path outer(4); outer[0] = IntPoint(r.left - 10, r.bottom + 10); outer[1] = IntPoint(r.right + 10, r.bottom + 10); outer[2] = IntPoint(r.right + 10, r.top - 10); outer[3] = IntPoint(r.left - 10, r.top - 10); clpr.AddPath(outer, ptSubject, true); clpr.ReverseSolution(true); clpr.Execute(ctUnion, solution, pftNegative, pftNegative); if (solution.size() > 0) solution.erase(solution.begin()); } } //------------------------------------------------------------------------------ void ClipperOffset::Execute(PolyTree& solution, double delta) { solution.Clear(); FixOrientations(); DoOffset(delta); //now clean up 'corners' ... Clipper clpr; clpr.AddPaths(m_destPolys, ptSubject, true); if (delta > 0) { clpr.Execute(ctUnion, solution, pftPositive, pftPositive); } else { IntRect r = clpr.GetBounds(); Path outer(4); outer[0] = IntPoint(r.left - 10, r.bottom + 10); outer[1] = IntPoint(r.right + 10, r.bottom + 10); outer[2] = IntPoint(r.right + 10, r.top - 10); outer[3] = IntPoint(r.left - 10, r.top - 10); clpr.AddPath(outer, ptSubject, true); clpr.ReverseSolution(true); clpr.Execute(ctUnion, solution, pftNegative, pftNegative); //remove the outer PolyNode rectangle ... if (solution.ChildCount() == 1 && solution.Childs[0]->ChildCount() > 0) { PolyNode* outerNode = solution.Childs[0]; solution.Childs.reserve(outerNode->ChildCount()); solution.Childs[0] = outerNode->Childs[0]; solution.Childs[0]->Parent = outerNode->Parent; for (int i = 1; i < outerNode->ChildCount(); ++i) solution.AddChild(*outerNode->Childs[i]); } else solution.Clear(); } } //------------------------------------------------------------------------------ void ClipperOffset::DoOffset(double delta) { m_destPolys.clear(); m_delta = delta; //if Zero offset, just copy any CLOSED polygons to m_p and return ... if (NEAR_ZERO(delta)) { m_destPolys.reserve(m_polyNodes.ChildCount()); for (int i = 0; i < m_polyNodes.ChildCount(); i++) { PolyNode& node = *m_polyNodes.Childs[i]; if (node.m_endtype == etClosedPolygon) m_destPolys.push_back(node.Contour); } return; } //see offset_triginometry3.svg in the documentation folder ... if (MiterLimit > 2) m_miterLim = 2/(MiterLimit * MiterLimit); else m_miterLim = 0.5; double y; if (ArcTolerance <= 0.0) y = def_arc_tolerance; else if (ArcTolerance > std::fabs(delta) * def_arc_tolerance) y = std::fabs(delta) * def_arc_tolerance; else y = ArcTolerance; //see offset_triginometry2.svg in the documentation folder ... double steps = pi / std::acos(1 - y / std::fabs(delta)); if (steps > std::fabs(delta) * pi) steps = std::fabs(delta) * pi; //ie excessive precision check m_sin = std::sin(two_pi / steps); m_cos = std::cos(two_pi / steps); m_StepsPerRad = steps / two_pi; if (delta < 0.0) m_sin = -m_sin; m_destPolys.reserve(m_polyNodes.ChildCount() * 2); for (int i = 0; i < m_polyNodes.ChildCount(); i++) { PolyNode& node = *m_polyNodes.Childs[i]; m_srcPoly = node.Contour; int len = (int)m_srcPoly.size(); if (len == 0 || (delta <= 0 && (len < 3 || node.m_endtype != etClosedPolygon))) continue; m_destPoly.clear(); if (len == 1) { if (node.m_jointype == jtRound) { double X = 1.0, Y = 0.0; for (cInt j = 1; j <= steps; j++) { m_destPoly.push_back(IntPoint( Round(m_srcPoly[0].X + X * delta), Round(m_srcPoly[0].Y + Y * delta))); double X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; } } else { double X = -1.0, Y = -1.0; for (int j = 0; j < 4; ++j) { m_destPoly.push_back(IntPoint( Round(m_srcPoly[0].X + X * delta), Round(m_srcPoly[0].Y + Y * delta))); if (X < 0) X = 1; else if (Y < 0) Y = 1; else X = -1; } } m_destPolys.push_back(m_destPoly); continue; } //build m_normals ... m_normals.clear(); m_normals.reserve(len); for (int j = 0; j < len - 1; ++j) m_normals.push_back(GetUnitNormal(m_srcPoly[j], m_srcPoly[j + 1])); if (node.m_endtype == etClosedLine || node.m_endtype == etClosedPolygon) m_normals.push_back(GetUnitNormal(m_srcPoly[len - 1], m_srcPoly[0])); else m_normals.push_back(DoublePoint(m_normals[len - 2])); if (node.m_endtype == etClosedPolygon) { int k = len - 1; for (int j = 0; j < len; ++j) OffsetPoint(j, k, node.m_jointype); m_destPolys.push_back(m_destPoly); } else if (node.m_endtype == etClosedLine) { int k = len - 1; for (int j = 0; j < len; ++j) OffsetPoint(j, k, node.m_jointype); m_destPolys.push_back(m_destPoly); m_destPoly.clear(); //re-build m_normals ... DoublePoint n = m_normals[len -1]; for (int j = len - 1; j > 0; j--) m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); m_normals[0] = DoublePoint(-n.X, -n.Y); k = 0; for (int j = len - 1; j >= 0; j--) OffsetPoint(j, k, node.m_jointype); m_destPolys.push_back(m_destPoly); } else { int k = 0; for (int j = 1; j < len - 1; ++j) OffsetPoint(j, k, node.m_jointype); IntPoint pt1; if (node.m_endtype == etOpenButt) { int j = len - 1; pt1 = IntPoint((cInt)Round(m_srcPoly[j].X + m_normals[j].X * delta), (cInt)Round(m_srcPoly[j].Y + m_normals[j].Y * delta)); m_destPoly.push_back(pt1); pt1 = IntPoint((cInt)Round(m_srcPoly[j].X - m_normals[j].X * delta), (cInt)Round(m_srcPoly[j].Y - m_normals[j].Y * delta)); m_destPoly.push_back(pt1); } else { int j = len - 1; k = len - 2; m_sinA = 0; m_normals[j] = DoublePoint(-m_normals[j].X, -m_normals[j].Y); if (node.m_endtype == etOpenSquare) DoSquare(j, k); else DoRound(j, k); } //re-build m_normals ... for (int j = len - 1; j > 0; j--) m_normals[j] = DoublePoint(-m_normals[j - 1].X, -m_normals[j - 1].Y); m_normals[0] = DoublePoint(-m_normals[1].X, -m_normals[1].Y); k = len - 1; for (int j = k - 1; j > 0; --j) OffsetPoint(j, k, node.m_jointype); if (node.m_endtype == etOpenButt) { pt1 = IntPoint((cInt)Round(m_srcPoly[0].X - m_normals[0].X * delta), (cInt)Round(m_srcPoly[0].Y - m_normals[0].Y * delta)); m_destPoly.push_back(pt1); pt1 = IntPoint((cInt)Round(m_srcPoly[0].X + m_normals[0].X * delta), (cInt)Round(m_srcPoly[0].Y + m_normals[0].Y * delta)); m_destPoly.push_back(pt1); } else { k = 1; m_sinA = 0; if (node.m_endtype == etOpenSquare) DoSquare(0, 1); else DoRound(0, 1); } m_destPolys.push_back(m_destPoly); } } } //------------------------------------------------------------------------------ void ClipperOffset::OffsetPoint(int j, int& k, JoinType jointype) { //cross product ... m_sinA = (m_normals[k].X * m_normals[j].Y - m_normals[j].X * m_normals[k].Y); if (std::fabs(m_sinA * m_delta) < 1.0) { //dot product ... double cosA = (m_normals[k].X * m_normals[j].X + m_normals[j].Y * m_normals[k].Y ); if (cosA > 0) // angle => 0 degrees { m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); return; } //else angle => 180 degrees } else if (m_sinA > 1.0) m_sinA = 1.0; else if (m_sinA < -1.0) m_sinA = -1.0; if (m_sinA * m_delta < 0) { m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[k].X * m_delta), Round(m_srcPoly[j].Y + m_normals[k].Y * m_delta))); m_destPoly.push_back(m_srcPoly[j]); m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + m_normals[j].X * m_delta), Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); } else switch (jointype) { case jtMiter: { double r = 1 + (m_normals[j].X * m_normals[k].X + m_normals[j].Y * m_normals[k].Y); if (r >= m_miterLim) DoMiter(j, k, r); else DoSquare(j, k); break; } case jtSquare: DoSquare(j, k); break; case jtRound: DoRound(j, k); break; } k = j; } //------------------------------------------------------------------------------ void ClipperOffset::DoSquare(int j, int k) { double dx = std::tan(std::atan2(m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y) / 4); m_destPoly.push_back(IntPoint( Round(m_srcPoly[j].X + m_delta * (m_normals[k].X - m_normals[k].Y * dx)), Round(m_srcPoly[j].Y + m_delta * (m_normals[k].Y + m_normals[k].X * dx)))); m_destPoly.push_back(IntPoint( Round(m_srcPoly[j].X + m_delta * (m_normals[j].X + m_normals[j].Y * dx)), Round(m_srcPoly[j].Y + m_delta * (m_normals[j].Y - m_normals[j].X * dx)))); } //------------------------------------------------------------------------------ void ClipperOffset::DoMiter(int j, int k, double r) { double q = m_delta / r; m_destPoly.push_back(IntPoint(Round(m_srcPoly[j].X + (m_normals[k].X + m_normals[j].X) * q), Round(m_srcPoly[j].Y + (m_normals[k].Y + m_normals[j].Y) * q))); } //------------------------------------------------------------------------------ void ClipperOffset::DoRound(int j, int k) { double a = std::atan2(m_sinA, m_normals[k].X * m_normals[j].X + m_normals[k].Y * m_normals[j].Y); int steps = std::max((int)Round(m_StepsPerRad * std::fabs(a)), 1); double X = m_normals[k].X, Y = m_normals[k].Y, X2; for (int i = 0; i < steps; ++i) { m_destPoly.push_back(IntPoint( Round(m_srcPoly[j].X + X * m_delta), Round(m_srcPoly[j].Y + Y * m_delta))); X2 = X; X = X * m_cos - m_sin * Y; Y = X2 * m_sin + Y * m_cos; } m_destPoly.push_back(IntPoint( Round(m_srcPoly[j].X + m_normals[j].X * m_delta), Round(m_srcPoly[j].Y + m_normals[j].Y * m_delta))); } //------------------------------------------------------------------------------ // Miscellaneous public functions //------------------------------------------------------------------------------ void Clipper::DoSimplePolygons() { PolyOutList::size_type i = 0; while (i < m_PolyOuts.size()) { OutRec* outrec = m_PolyOuts[i++]; OutPt* op = outrec->Pts; if (!op || outrec->IsOpen) continue; do //for each Pt in Polygon until duplicate found do ... { OutPt* op2 = op->Next; while (op2 != outrec->Pts) { if ((op->Pt == op2->Pt) && op2->Next != op && op2->Prev != op) { //split the polygon into two ... OutPt* op3 = op->Prev; OutPt* op4 = op2->Prev; op->Prev = op4; op4->Next = op; op2->Prev = op3; op3->Next = op2; outrec->Pts = op; OutRec* outrec2 = CreateOutRec(); outrec2->Pts = op2; UpdateOutPtIdxs(*outrec2); if (Poly2ContainsPoly1(outrec2->Pts, outrec->Pts)) { //OutRec2 is contained by OutRec1 ... outrec2->IsHole = !outrec->IsHole; outrec2->FirstLeft = outrec; if (m_UsingPolyTree) FixupFirstLefts2(outrec2, outrec); } else if (Poly2ContainsPoly1(outrec->Pts, outrec2->Pts)) { //OutRec1 is contained by OutRec2 ... outrec2->IsHole = outrec->IsHole; outrec->IsHole = !outrec2->IsHole; outrec2->FirstLeft = outrec->FirstLeft; outrec->FirstLeft = outrec2; if (m_UsingPolyTree) FixupFirstLefts2(outrec, outrec2); } else { //the 2 polygons are separate ... outrec2->IsHole = outrec->IsHole; outrec2->FirstLeft = outrec->FirstLeft; if (m_UsingPolyTree) FixupFirstLefts1(outrec, outrec2); } op2 = op; //ie get ready for the Next iteration } op2 = op2->Next; } op = op->Next; } while (op != outrec->Pts); } } //------------------------------------------------------------------------------ void ReversePath(Path& p) { std::reverse(p.begin(), p.end()); } //------------------------------------------------------------------------------ void ReversePaths(Paths& p) { for (Paths::size_type i = 0; i < p.size(); ++i) ReversePath(p[i]); } //------------------------------------------------------------------------------ void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType) { Clipper c; c.StrictlySimple(true); c.AddPath(in_poly, ptSubject, true); c.Execute(ctUnion, out_polys, fillType, fillType); } //------------------------------------------------------------------------------ void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType) { Clipper c; c.StrictlySimple(true); c.AddPaths(in_polys, ptSubject, true); c.Execute(ctUnion, out_polys, fillType, fillType); } //------------------------------------------------------------------------------ void SimplifyPolygons(Paths &polys, PolyFillType fillType) { SimplifyPolygons(polys, polys, fillType); } //------------------------------------------------------------------------------ inline double DistanceSqrd(const IntPoint& pt1, const IntPoint& pt2) { double Dx = ((double)pt1.X - pt2.X); double dy = ((double)pt1.Y - pt2.Y); return (Dx*Dx + dy*dy); } //------------------------------------------------------------------------------ double DistanceFromLineSqrd( const IntPoint& pt, const IntPoint& ln1, const IntPoint& ln2) { //The equation of a line in general form (Ax + By + C = 0) //given 2 points (x¹,y¹) & (x²,y²) is ... //(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0 //A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹ //perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²) //see http://en.wikipedia.org/wiki/Perpendicular_distance double A = double(ln1.Y - ln2.Y); double B = double(ln2.X - ln1.X); double C = A * ln1.X + B * ln1.Y; C = A * pt.X + B * pt.Y - C; return (C * C) / (A * A + B * B); } //--------------------------------------------------------------------------- bool SlopesNearCollinear(const IntPoint& pt1, const IntPoint& pt2, const IntPoint& pt3, double distSqrd) { //this function is more accurate when the point that's geometrically //between the other 2 points is the one that's tested for distance. //ie makes it more likely to pick up 'spikes' ... if (Abs(pt1.X - pt2.X) > Abs(pt1.Y - pt2.Y)) { if ((pt1.X > pt2.X) == (pt1.X < pt3.X)) return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; else if ((pt2.X > pt1.X) == (pt2.X < pt3.X)) return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; else return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; } else { if ((pt1.Y > pt2.Y) == (pt1.Y < pt3.Y)) return DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd; else if ((pt2.Y > pt1.Y) == (pt2.Y < pt3.Y)) return DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd; else return DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd; } } //------------------------------------------------------------------------------ bool PointsAreClose(IntPoint pt1, IntPoint pt2, double distSqrd) { double Dx = (double)pt1.X - pt2.X; double dy = (double)pt1.Y - pt2.Y; return ((Dx * Dx) + (dy * dy) <= distSqrd); } //------------------------------------------------------------------------------ OutPt* ExcludeOp(OutPt* op) { OutPt* result = op->Prev; result->Next = op->Next; op->Next->Prev = result; result->Idx = 0; return result; } //------------------------------------------------------------------------------ void CleanPolygon(const Path& in_poly, Path& out_poly, double distance) { //distance = proximity in units/pixels below which vertices //will be stripped. Default ~= sqrt(2). size_t size = in_poly.size(); if (size == 0) { out_poly.clear(); return; } OutPt* outPts = new OutPt[size]; for (size_t i = 0; i < size; ++i) { outPts[i].Pt = in_poly[i]; outPts[i].Next = &outPts[(i + 1) % size]; outPts[i].Next->Prev = &outPts[i]; outPts[i].Idx = 0; } double distSqrd = distance * distance; OutPt* op = &outPts[0]; while (op->Idx == 0 && op->Next != op->Prev) { if (PointsAreClose(op->Pt, op->Prev->Pt, distSqrd)) { op = ExcludeOp(op); size--; } else if (PointsAreClose(op->Prev->Pt, op->Next->Pt, distSqrd)) { ExcludeOp(op->Next); op = ExcludeOp(op); size -= 2; } else if (SlopesNearCollinear(op->Prev->Pt, op->Pt, op->Next->Pt, distSqrd)) { op = ExcludeOp(op); size--; } else { op->Idx = 1; op = op->Next; } } if (size < 3) size = 0; out_poly.resize(size); for (size_t i = 0; i < size; ++i) { out_poly[i] = op->Pt; op = op->Next; } delete [] outPts; } //------------------------------------------------------------------------------ void CleanPolygon(Path& poly, double distance) { CleanPolygon(poly, poly, distance); } //------------------------------------------------------------------------------ void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance) { for (Paths::size_type i = 0; i < in_polys.size(); ++i) CleanPolygon(in_polys[i], out_polys[i], distance); } //------------------------------------------------------------------------------ void CleanPolygons(Paths& polys, double distance) { CleanPolygons(polys, polys, distance); } //------------------------------------------------------------------------------ void Minkowski(const Path& poly, const Path& path, Paths& solution, bool isSum, bool isClosed) { int delta = (isClosed ? 1 : 0); size_t polyCnt = poly.size(); size_t pathCnt = path.size(); Paths pp; pp.reserve(pathCnt); if (isSum) for (size_t i = 0; i < pathCnt; ++i) { Path p; p.reserve(polyCnt); for (size_t j = 0; j < poly.size(); ++j) p.push_back(IntPoint(path[i].X + poly[j].X, path[i].Y + poly[j].Y)); pp.push_back(p); } else for (size_t i = 0; i < pathCnt; ++i) { Path p; p.reserve(polyCnt); for (size_t j = 0; j < poly.size(); ++j) p.push_back(IntPoint(path[i].X - poly[j].X, path[i].Y - poly[j].Y)); pp.push_back(p); } solution.clear(); solution.reserve((pathCnt + delta) * (polyCnt + 1)); for (size_t i = 0; i < pathCnt - 1 + delta; ++i) for (size_t j = 0; j < polyCnt; ++j) { Path quad; quad.reserve(4); quad.push_back(pp[i % pathCnt][j % polyCnt]); quad.push_back(pp[(i + 1) % pathCnt][j % polyCnt]); quad.push_back(pp[(i + 1) % pathCnt][(j + 1) % polyCnt]); quad.push_back(pp[i % pathCnt][(j + 1) % polyCnt]); if (!Orientation(quad)) ReversePath(quad); solution.push_back(quad); } } //------------------------------------------------------------------------------ void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed) { Minkowski(pattern, path, solution, true, pathIsClosed); Clipper c; c.AddPaths(solution, ptSubject, true); c.Execute(ctUnion, solution, pftNonZero, pftNonZero); } //------------------------------------------------------------------------------ void TranslatePath(const Path& input, Path& output, IntPoint delta) { //precondition: input != output output.resize(input.size()); for (size_t i = 0; i < input.size(); ++i) output[i] = IntPoint(input[i].X + delta.X, input[i].Y + delta.Y); } //------------------------------------------------------------------------------ void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed) { Clipper c; for (size_t i = 0; i < paths.size(); ++i) { Paths tmp; Minkowski(pattern, paths[i], tmp, true, pathIsClosed); c.AddPaths(tmp, ptSubject, true); if (pathIsClosed) { Path tmp2; TranslatePath(paths[i], tmp2, pattern[0]); c.AddPath(tmp2, ptClip, true); } } c.Execute(ctUnion, solution, pftNonZero, pftNonZero); } //------------------------------------------------------------------------------ void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution) { Minkowski(poly1, poly2, solution, false, true); Clipper c; c.AddPaths(solution, ptSubject, true); c.Execute(ctUnion, solution, pftNonZero, pftNonZero); } //------------------------------------------------------------------------------ enum NodeType {ntAny, ntOpen, ntClosed}; void AddPolyNodeToPaths(const PolyNode& polynode, NodeType nodetype, Paths& paths) { bool match = true; if (nodetype == ntClosed) match = !polynode.IsOpen(); else if (nodetype == ntOpen) return; if (!polynode.Contour.empty() && match) paths.push_back(polynode.Contour); for (int i = 0; i < polynode.ChildCount(); ++i) AddPolyNodeToPaths(*polynode.Childs[i], nodetype, paths); } //------------------------------------------------------------------------------ void PolyTreeToPaths(const PolyTree& polytree, Paths& paths) { paths.resize(0); paths.reserve(polytree.Total()); AddPolyNodeToPaths(polytree, ntAny, paths); } //------------------------------------------------------------------------------ void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths) { paths.resize(0); paths.reserve(polytree.Total()); AddPolyNodeToPaths(polytree, ntClosed, paths); } //------------------------------------------------------------------------------ void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths) { paths.resize(0); paths.reserve(polytree.Total()); //Open paths are top level only, so ... for (int i = 0; i < polytree.ChildCount(); ++i) if (polytree.Childs[i]->IsOpen()) paths.push_back(polytree.Childs[i]->Contour); } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, const IntPoint &p) { s << "(" << p.X << "," << p.Y << ")"; return s; } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, const Path &p) { if (p.empty()) return s; Path::size_type last = p.size() -1; for (Path::size_type i = 0; i < last; i++) s << "(" << p[i].X << "," << p[i].Y << "), "; s << "(" << p[last].X << "," << p[last].Y << ")\n"; return s; } //------------------------------------------------------------------------------ std::ostream& operator <<(std::ostream &s, const Paths &p) { for (Paths::size_type i = 0; i < p.size(); i++) s << p[i]; s << "\n"; return s; } //------------------------------------------------------------------------------ } //ClipperLib namespace pyclipper-1.0.6/pyclipper/clipper.hpp000077500000000000000000000353301304035363100177100ustar00rootroot00000000000000/******************************************************************************* * * * Author : Angus Johnson * * Version : 6.2.1 * * Date : 31 October 2014 * * Website : http://www.angusj.com * * Copyright : Angus Johnson 2010-2014 * * * * License: * * Use, modification & distribution is subject to Boost Software License Ver 1. * * http://www.boost.org/LICENSE_1_0.txt * * * * Attributions: * * The code in this library is an extension of Bala Vatti's clipping algorithm: * * "A generic solution to polygon clipping" * * Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. * * http://portal.acm.org/citation.cfm?id=129906 * * * * Computer graphics and geometric modeling: implementation and algorithms * * By Max K. Agoston * * Springer; 1 edition (January 4, 2005) * * http://books.google.com/books?q=vatti+clipping+agoston * * * * See also: * * "Polygon Offsetting by Computing Winding Numbers" * * Paper no. DETC2005-85513 pp. 565-575 * * ASME 2005 International Design Engineering Technical Conferences * * and Computers and Information in Engineering Conference (IDETC/CIE2005) * * September 24-28, 2005 , Long Beach, California, USA * * http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf * * * *******************************************************************************/ #ifndef clipper_hpp #define clipper_hpp #define CLIPPER_VERSION "6.2.0" //use_int32: When enabled 32bit ints are used instead of 64bit ints. This //improve performance but coordinate values are limited to the range +/- 46340 //#define use_int32 //use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance. //#define use_xyz //use_lines: Enables line clipping. Adds a very minor cost to performance. //#define use_lines //use_deprecated: Enables temporary support for the obsolete functions //#define use_deprecated #include #include #include #include #include #include #include #include namespace ClipperLib { enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; enum PolyType { ptSubject, ptClip }; //By far the most widely used winding rules for polygon filling are //EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) //Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) //see http://glprogramming.com/red/chapter11.html enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; #ifdef use_int32 typedef int cInt; static cInt const loRange = 0x7FFF; static cInt const hiRange = 0x7FFF; #else typedef signed long long cInt; static cInt const loRange = 0x3FFFFFFF; static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL; typedef signed long long long64; //used by Int128 class typedef unsigned long long ulong64; #endif struct IntPoint { cInt X; cInt Y; #ifdef use_xyz cInt Z; IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {}; #else IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {}; #endif friend inline bool operator== (const IntPoint& a, const IntPoint& b) { return a.X == b.X && a.Y == b.Y; } friend inline bool operator!= (const IntPoint& a, const IntPoint& b) { return a.X != b.X || a.Y != b.Y; } }; //------------------------------------------------------------------------------ typedef std::vector< IntPoint > Path; typedef std::vector< Path > Paths; inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;} inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;} std::ostream& operator <<(std::ostream &s, const IntPoint &p); std::ostream& operator <<(std::ostream &s, const Path &p); std::ostream& operator <<(std::ostream &s, const Paths &p); struct DoublePoint { double X; double Y; DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {} DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {} }; //------------------------------------------------------------------------------ #ifdef use_xyz typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt); #endif enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4}; enum JoinType {jtSquare, jtRound, jtMiter}; enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound}; class PolyNode; typedef std::vector< PolyNode* > PolyNodes; class PolyNode { public: PolyNode(); virtual ~PolyNode(){}; Path Contour; PolyNodes Childs; PolyNode* Parent; PolyNode* GetNext() const; bool IsHole() const; bool IsOpen() const; int ChildCount() const; private: unsigned Index; //node index in Parent.Childs bool m_IsOpen; JoinType m_jointype; EndType m_endtype; PolyNode* GetNextSiblingUp() const; void AddChild(PolyNode& child); friend class Clipper; //to access Index friend class ClipperOffset; }; class PolyTree: public PolyNode { public: ~PolyTree(){Clear();}; PolyNode* GetFirst() const; void Clear(); int Total() const; private: PolyNodes AllNodes; friend class Clipper; //to access AllNodes }; bool Orientation(const Path &poly); double Area(const Path &poly); int PointInPolygon(const IntPoint &pt, const Path &path); void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd); void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd); void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415); void CleanPolygon(Path& poly, double distance = 1.415); void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415); void CleanPolygons(Paths& polys, double distance = 1.415); void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed); void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed); void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution); void PolyTreeToPaths(const PolyTree& polytree, Paths& paths); void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths); void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths); void ReversePath(Path& p); void ReversePaths(Paths& p); struct IntRect { cInt left; cInt top; cInt right; cInt bottom; }; //enums that are used internally ... enum EdgeSide { esLeft = 1, esRight = 2}; //forward declarations (for stuff used internally) ... struct TEdge; struct IntersectNode; struct LocalMinimum; struct Scanbeam; struct OutPt; struct OutRec; struct Join; typedef std::vector < OutRec* > PolyOutList; typedef std::vector < TEdge* > EdgeList; typedef std::vector < Join* > JoinList; typedef std::vector < IntersectNode* > IntersectList; //------------------------------------------------------------------------------ //ClipperBase is the ancestor to the Clipper class. It should not be //instantiated directly. This class simply abstracts the conversion of sets of //polygon coordinates into edge objects that are stored in a LocalMinima list. class ClipperBase { public: ClipperBase(); virtual ~ClipperBase(); bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed); bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed); virtual void Clear(); IntRect GetBounds(); bool PreserveCollinear() {return m_PreserveCollinear;}; void PreserveCollinear(bool value) {m_PreserveCollinear = value;}; protected: void DisposeLocalMinimaList(); TEdge* AddBoundsToLML(TEdge *e, bool IsClosed); void PopLocalMinima(); virtual void Reset(); TEdge* ProcessBound(TEdge* E, bool IsClockwise); void DoMinimaLML(TEdge* E1, TEdge* E2, bool IsClosed); TEdge* DescendToMin(TEdge *&E); void AscendToMax(TEdge *&E, bool Appending, bool IsClosed); typedef std::vector MinimaList; MinimaList::iterator m_CurrentLM; MinimaList m_MinimaList; bool m_UseFullRange; EdgeList m_edges; bool m_PreserveCollinear; bool m_HasOpenPaths; }; //------------------------------------------------------------------------------ class Clipper : public virtual ClipperBase { public: Clipper(int initOptions = 0); ~Clipper(); bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType = pftEvenOdd, PolyFillType clipFillType = pftEvenOdd); bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType = pftEvenOdd, PolyFillType clipFillType = pftEvenOdd); bool ReverseSolution() {return m_ReverseOutput;}; void ReverseSolution(bool value) {m_ReverseOutput = value;}; bool StrictlySimple() {return m_StrictSimple;}; void StrictlySimple(bool value) {m_StrictSimple = value;}; //set the callback function for z value filling on intersections (otherwise Z is 0) #ifdef use_xyz void ZFillFunction(ZFillCallback zFillFunc); #endif protected: void Reset(); virtual bool ExecuteInternal(); private: PolyOutList m_PolyOuts; JoinList m_Joins; JoinList m_GhostJoins; IntersectList m_IntersectList; ClipType m_ClipType; typedef std::priority_queue ScanbeamList; ScanbeamList m_Scanbeam; TEdge *m_ActiveEdges; TEdge *m_SortedEdges; bool m_ExecuteLocked; PolyFillType m_ClipFillType; PolyFillType m_SubjFillType; bool m_ReverseOutput; bool m_UsingPolyTree; bool m_StrictSimple; #ifdef use_xyz ZFillCallback m_ZFill; //custom callback #endif void SetWindingCount(TEdge& edge); bool IsEvenOddFillType(const TEdge& edge) const; bool IsEvenOddAltFillType(const TEdge& edge) const; void InsertScanbeam(const cInt Y); cInt PopScanbeam(); void InsertLocalMinimaIntoAEL(const cInt botY); void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge); void AddEdgeToSEL(TEdge *edge); void CopyAELToSEL(); void DeleteFromSEL(TEdge *e); void DeleteFromAEL(TEdge *e); void UpdateEdgeIntoAEL(TEdge *&e); void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2); bool IsContributing(const TEdge& edge) const; bool IsTopHorz(const cInt XPos); void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2); void DoMaxima(TEdge *e); void ProcessHorizontals(bool IsTopOfScanbeam); void ProcessHorizontal(TEdge *horzEdge, bool isTopOfScanbeam); void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt); OutRec* GetOutRec(int idx); void AppendPolygon(TEdge *e1, TEdge *e2); void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt); OutRec* CreateOutRec(); OutPt* AddOutPt(TEdge *e, const IntPoint &pt); void DisposeAllOutRecs(); void DisposeOutRec(PolyOutList::size_type index); bool ProcessIntersections(const cInt topY); void BuildIntersectList(const cInt topY); void ProcessIntersectList(); void ProcessEdgesAtTopOfScanbeam(const cInt topY); void BuildResult(Paths& polys); void BuildResult2(PolyTree& polytree); void SetHoleState(TEdge *e, OutRec *outrec); void DisposeIntersectNodes(); bool FixupIntersectionOrder(); void FixupOutPolygon(OutRec &outrec); bool IsHole(TEdge *e); bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl); void FixHoleLinkage(OutRec &outrec); void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt); void ClearJoins(); void ClearGhostJoins(); void AddGhostJoin(OutPt *op, const IntPoint offPt); bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2); void JoinCommonEdges(); void DoSimplePolygons(); void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec); void FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec); #ifdef use_xyz void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2); #endif }; //------------------------------------------------------------------------------ class ClipperOffset { public: ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25); ~ClipperOffset(); void AddPath(const Path& path, JoinType joinType, EndType endType); void AddPaths(const Paths& paths, JoinType joinType, EndType endType); void Execute(Paths& solution, double delta); void Execute(PolyTree& solution, double delta); void Clear(); double MiterLimit; double ArcTolerance; private: Paths m_destPolys; Path m_srcPoly; Path m_destPoly; std::vector m_normals; double m_delta, m_sinA, m_sin, m_cos; double m_miterLim, m_StepsPerRad; IntPoint m_lowest; PolyNode m_polyNodes; void FixOrientations(); void DoOffset(double delta); void OffsetPoint(int j, int& k, JoinType jointype); void DoSquare(int j, int k); void DoMiter(int j, int k, double r); void DoRound(int j, int k); }; //------------------------------------------------------------------------------ class clipperException : public std::exception { public: clipperException(const char* description): m_descr(description) {} virtual ~clipperException() throw() {} virtual const char* what() const throw() {return m_descr.c_str();} private: std::string m_descr; }; //------------------------------------------------------------------------------ } //ClipperLib namespace #endif //clipper_hpp pyclipper-1.0.6/pyclipper/extra_defines.hpp000066400000000000000000000002261304035363100210630ustar00rootroot00000000000000#ifndef extra_defines_hpp #define extra_defines_hpp #include "clipper.hpp" #ifdef use_xyz #define _USE_XYZ 1 #else #define _USE_XYZ 0 #endif #endifpyclipper-1.0.6/pyclipper/pyclipper.pyx000066400000000000000000000776521304035363100203240ustar00rootroot00000000000000""" Cython wrapper for the C++ translation of the Angus Johnson's Clipper library (ver. 6.2.1) (http://www.angusj.com/delphi/clipper.php) This wrapper was written by Maxime Chalton, Lukas Treyer and Gregor Ratajc. """ SILENT = True """ SCALING_FACTOR has been deprecated. See https://github.com/greginvm/pyclipper/wiki/Deprecating-SCALING_FACTOR for an explanation. """ SCALING_FACTOR = 1 def log_action(description): if not SILENT: print description log_action("Python binding clipper library") import sys as _sys import struct import copy as _copy import unicodedata as _unicodedata import time as _time import warnings as _warnings import numbers as _numbers from cython.operator cimport dereference as deref cdef extern from "Python.h": Py_INCREF(object o) object Py_BuildValue(char *format, ...) object PyBuffer_FromMemory(void *ptr, int size) #int PyArg_ParseTuple(object struct,void* ptr) char*PyString_AsString(object string) int PyArg_VaParse(object args, char *format, ...) int PyArg_Parse(object args, char *format, ...) int PyObject_AsReadBuffer(object obj, void*buffer, int*buffer_len) object PyBuffer_FromObject(object base, int offset, int size) object PyBuffer_FromReadWriteObject(object base, int offset, int size) PyBuffer_New(object o) cdef extern from "stdio.h": cdef void printf(char*, ...) cdef extern from "stdlib.h": cdef void*malloc(unsigned int size) cdef void*free(void*p) char *strdup(char *str) int strcpy(void*str, void*src) int memcpy(void*str, void*src, int size) from libcpp.vector cimport vector cdef extern from "extra_defines.hpp": cdef int _USE_XYZ cdef extern from "clipper.hpp" namespace "ClipperLib": # enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor }; cdef enum ClipType: ctIntersection = 1, ctUnion = 2, ctDifference = 3, ctXor = 4 # enum PolyType { ptSubject, ptClip }; cdef enum PolyType: ptSubject = 1, ptClip = 2 # By far the most widely used winding rules for polygon filling are # EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32) # Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL) # see http://glprogramming.com/red/chapter11.html # enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative }; cdef enum PolyFillType: pftEvenOdd = 1, pftNonZero = 2, pftPositive = 3, pftNegative = 4 # The correct type definition is taken from cpp source, so # the use_int32 is handled correctly. # If you need 32 bit ints, just uncomment //#define use_int32 in clipper.hpp # and recompile ctypedef signed long long cInt ctypedef signed long long long64 ctypedef unsigned long long ulong64 ctypedef char bool # TODO: handle "use_xyz" that adds Z coordinate cdef struct IntPoint: cInt X cInt Y #typedef std::vector< IntPoint > Path; cdef cppclass Path: Path() void push_back(IntPoint &) IntPoint& operator[](int) IntPoint& at(int) int size() #typedef std::vector< Path > Paths; cdef cppclass Paths: Paths() void push_back(Path &) Path& operator[](int) Path& at(int) int size() cdef cppclass PolyNode: PolyNode() Path Contour PolyNodes Childs PolyNode*Parent PolyNode*GetNext() bool IsHole() bool IsOpen() int ChildCount() cdef cppclass PolyNodes: PolyNodes() void push_back(PolyNode &) PolyNode*operator[](int) PolyNode*at(int) int size() cdef cppclass PolyTree(PolyNode): PolyTree() PolyNode& GetFirst() void Clear() int Total() #enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4}; cdef enum InitOptions: ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4 #enum JoinType { jtSquare, jtRound, jtMiter }; cdef enum JoinType: jtSquare = 1, jtRound = 2, jtMiter = 3 #enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound}; cdef enum EndType: etClosedPolygon = 1, etClosedLine = 2, etOpenButt = 3, etOpenSquare = 4, etOpenRound = 5 cdef struct IntRect: cInt left cInt top cInt right cInt bottom cdef cppclass Clipper: Clipper(int initOptions=0) #~Clipper() void Clear() bool Execute(ClipType clipType, Paths & solution, PolyFillType subjFillType, PolyFillType clipFillType) bool Execute(ClipType clipType, PolyTree & solution, PolyFillType subjFillType, PolyFillType clipFillType) bool ReverseSolution() void ReverseSolution(bool value) bool StrictlySimple() void StrictlySimple(bool value) bool PreserveCollinear() void PreserveCollinear(bool value) bool AddPath(Path & path, PolyType polyType, bool closed) bool AddPaths(Paths & paths, PolyType polyType, bool closed) IntRect GetBounds() cdef cppclass ClipperOffset: ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25) #~ClipperOffset() void AddPath(Path & path, JoinType joinType, EndType endType) void AddPaths(Paths & paths, JoinType joinType, EndType endType) void Execute(Paths & solution, double delta) void Execute(PolyTree & solution, double delta) void Clear() double MiterLimit double ArcTolerance # prefixes are added to original functions to prevent naming collisions bool c_Orientation "Orientation"(const Path & poly) double c_Area "Area"(const Path & poly) int c_PointInPolygon "PointInPolygon"(const IntPoint & pt, const Path & path) # In the following 4 functions default values for fillType and distance were removed # because it caused a bug in C++ code generated by Cython. # See Cython bug report: http://trac.cython.org/ticket/816 void c_SimplifyPolygon "SimplifyPolygon"(const Path & in_poly, Paths & out_polys, PolyFillType fillType) void c_SimplifyPolygons "SimplifyPolygons"(const Paths & in_polys, Paths & out_polys, PolyFillType fillType) void c_CleanPolygon "CleanPolygon"(const Path& in_poly, Path& out_poly, double distance) void c_CleanPolygons "CleanPolygons"(Paths& polys, double distance) void c_MinkowskiSum "MinkowskiSum"(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed) void c_MinkowskiSum "MinkowskiSum"(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed) void c_MinkowskiDiff "MinkowskiDiff"(const Path& poly1, const Path& poly2, Paths& solution) void c_PolyTreeToPaths "PolyTreeToPaths"(const PolyTree& polytree, Paths& paths) void c_ClosedPathsFromPolyTree "ClosedPathsFromPolyTree"(const PolyTree& polytree, Paths& paths) void c_OpenPathsFromPolyTree "OpenPathsFromPolyTree"(PolyTree& polytree, Paths& paths) void c_ReversePath "ReversePath"(Path& p) void c_ReversePaths "ReversePaths"(Paths& p) #============================= Enum mapping ================ JT_SQUARE = jtSquare JT_ROUND = jtRound JT_MITER = jtMiter ET_CLOSEDPOLYGON = etClosedPolygon ET_CLOSEDLINE = etClosedLine ET_OPENBUTT = etOpenButt ET_OPENSQUARE = etOpenSquare ET_OPENROUND = etOpenRound CT_INTERSECTION = ctIntersection CT_UNION = ctUnion CT_DIFFERENCE = ctDifference CT_XOR = ctXor PT_SUBJECT = ptSubject PT_CLIP = ptClip PFT_EVENODD = pftEvenOdd PFT_NONZERO = pftNonZero PFT_POSITIVE = pftPositive PFT_NEGATIVE = pftNegative #============================= PyPolyNode ================= class PyPolyNode: """ Represents ClipperLibs' PolyTree and PolyNode data structures. """ def __init__(self): self.Contour = [] self.Childs = [] self.Parent = None self.IsHole = False self.IsOpen = False self.depth = 0 #============================= Other objects ============== from collections import namedtuple PyIntRect = namedtuple('PyIntRect', ['left', 'top', 'right', 'bottom']) class ClipperException(Exception): pass #============================= Namespace functions ========= def Orientation(poly): """ Get orientation of the supplied polygon. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/Orientation.htm Keyword arguments: poly -- closed polygon Returns: True -- counter-clockwise orientation False -- clockwise orientation """ return c_Orientation(_to_clipper_path(poly)) def Area(poly): """ Get area of the supplied polygon. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/Area.htm Keyword arguments: poly -- closed polygon Returns: Positive number if orientation is True Negative number if orientation is False """ return c_Area(_to_clipper_path(poly)) def PointInPolygon(point, poly): """ Determine where does the point lie regarding the provided polygon. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/PointInPolygon.htm Keyword arguments: point -- point in question poly -- closed polygon Returns: 0 -- point is not in polygon -1 -- point is on polygon 1 -- point is in polygon """ return c_PointInPolygon(_to_clipper_point(point), _to_clipper_path(poly)) def SimplifyPolygon(poly, PolyFillType fill_type=pftEvenOdd): """ Removes self-intersections from the supplied polygon. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/SimplifyPolygon.htm Keyword arguments: poly -- polygon to be simplified fill_type -- PolyFillType used with the boolean union operation Returns: list of simplified polygons (containing one or more polygons) """ cdef Paths out_polys c_SimplifyPolygon(_to_clipper_path(poly), out_polys, fill_type) return _from_clipper_paths(out_polys) def SimplifyPolygons(polys, PolyFillType fill_type=pftEvenOdd): """ Removes self-intersections from the supplied polygons. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/SimplifyPolygons.htm Keyword arguments: polys -- polygons to be simplified fill_type -- PolyFillType used with the boolean union operation Returns: list of simplified polygons """ cdef Paths out_polys c_SimplifyPolygons(_to_clipper_paths(polys), out_polys, fill_type) return _from_clipper_paths(out_polys) def CleanPolygon(poly, double distance=1.415): """ Removes unnecessary vertices from the provided polygon. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/CleanPolygon.htm Keyword arguments: poly -- polygon to be cleaned distance -- distance on which vertices are removed, see 'More info' (default: approx. sqrt of 2) Returns: cleaned polygon """ cdef Path out_poly c_CleanPolygon(_to_clipper_path(poly), out_poly, distance) return _from_clipper_path(out_poly) def CleanPolygons(polys, double distance=1.415): """ Removes unnecessary vertices from the provided polygons. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/CleanPolygons.htm Keyword arguments: polys -- polygons to be cleaned distance -- distance on which vertices are removed, see 'More info' (default: approx. sqrt of 2) Returns: list of cleaned polygons """ cdef Paths out_polys = _to_clipper_paths(polys) c_CleanPolygons(out_polys, distance) return _from_clipper_paths(out_polys) def MinkowskiSum(pattern, path, bint path_is_closed): """ Performs Minkowski Addition of the pattern and path. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/MinkowskiSum.htm Keyword arguments: pattern -- polygon whose points are added to the path path -- open or closed path path_is_closed -- set to True if passed path is closed, False if open Returns: list of polygons (containing one or more polygons) """ cdef Paths solution c_MinkowskiSum(_to_clipper_path(pattern), _to_clipper_path(path), solution, path_is_closed ) return _from_clipper_paths(solution) def MinkowskiSum2(pattern, paths, bint path_is_closed): """ Performs Minkowski Addition of the pattern and paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/MinkowskiSum.htm Keyword arguments: pattern -- polygon whose points are added to the paths paths -- open or closed paths path_is_closed -- set to True if passed paths are closed, False if open Returns: list of polygons """ cdef Paths solution c_MinkowskiSum( _to_clipper_path(pattern), _to_clipper_paths(paths), solution, path_is_closed ) return _from_clipper_paths(solution) def MinkowskiDiff(poly1, poly2): """ Performs Minkowski Difference. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/MinkowskiDiff.htm Keyword arguments: poly1 -- polygon poly2 -- polygon Returns: list of polygons """ cdef Paths solution c_MinkowskiDiff(_to_clipper_path(poly1), _to_clipper_path(poly2), solution) return _from_clipper_paths(solution) def PolyTreeToPaths(poly_node): """ Converts a PyPolyNode to a list of paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/PolyTreeToPaths.htm Keyword arguments: py_poly_node -- PyPolyNode to be filtered Returns: list of paths """ paths = [] _filter_polynode(poly_node, paths, filter_func=None) return paths def ClosedPathsFromPolyTree(poly_node): """ Filters out open paths from the PyPolyNode and returns only closed paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/ClosedPathsFromPolyTree.htm Keyword arguments: py_poly_node -- PyPolyNode to be filtered Returns: list of closed paths """ paths = [] _filter_polynode(poly_node, paths, filter_func=lambda pn: not pn.IsOpen) return paths def OpenPathsFromPolyTree(poly_node): """ Filters out closed paths from the PyPolyNode and returns only open paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/OpenPathsFromPolyTree.htm Keyword arguments: py_poly_node -- PyPolyNode to be filtered Returns: list of open paths """ paths = [] _filter_polynode(poly_node, paths, filter_func=lambda pn: pn.IsOpen) return paths def ReversePath(path): """ Reverses the vertex order (and hence orientation) in the specified path. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/ReversePath.htm Note: Might be more effective to reverse the path outside of this package (eg. via [::-1] on a list) so there is no unneeded conversions to internal structures of this package. Keyword arguments: path -- path to be reversed Returns: reversed path """ cdef Path c_path = _to_clipper_path(path) c_ReversePath(c_path) return _from_clipper_path(c_path) def ReversePaths(paths): """ Reverses the vertex order (and hence orientation) in each path. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Functions/ReversePaths.htm Note: Might be more effective to reverse each path outside of this package (eg. via [::-1] on a list) so there is no unneeded conversions to internal structures of this package. Keyword arguments: paths -- paths to be reversed Returns: list if reversed paths """ cdef Paths c_paths = _to_clipper_paths(paths) c_ReversePaths(c_paths) return _from_clipper_paths(c_paths) def scale_to_clipper(path_or_paths, scale = 2 ** 31): """ Take a path or list of paths with coordinates represented by floats and scale them using the specified factor. This function can be user to convert paths to a representation which is more appropriate for Clipper. Clipper, and thus Pyclipper, uses 64-bit integers to represent coordinates internally. The actual supported range (+/- 2 ** 62) is a bit smaller than the maximal values for this type. To operate on paths which use fractional coordinates, it is necessary to translate them from and to a representation which does not depend on floats. This can be done using this function and it's reverse, `scale_from_clipper()`. For details, see http://www.angusj.com/delphi/clipper/documentation/Docs/Overview/Rounding.htm. For example, to perform a clip operation on two polygons, the arguments to `Pyclipper.AddPath()` need to be wrapped in `scale_to_clipper()` while the return value needs to be converted back with `scale_from_clipper()`: >>> pc = Pyclipper() >>> path = [[0, 0], [1, 0], [1 / 2, (3 / 4) ** (1 / 2)]] # A triangle. >>> clip = [[0, 1 / 3], [1, 1 / 3], [1, 2 / 3], [0, 1 / 3]] # A rectangle. >>> pc.AddPath(scale_to_clipper(path), PT_SUBJECT) >>> pc.AddPath(scale_to_clipper(clip), PT_CLIP) >>> scale_from_clipper(pc.Execute(CT_INTERSECTION)) [[[0.6772190444171429, 0.5590730146504939], [0.2383135547861457, 0.41277118446305394], [0.19245008938014507, 0.3333333330228925], [0.8075499106198549, 0.3333333330228925]]] :param path_or_paths: Either a list of paths or a path. A path is a list of tuples of numbers. :param scale: The factor with which to multiply coordinates before converting rounding them to ints. The default will give you a range of +/- 2 ** 31 with a precision of 2 ** -31. """ def scale_value(x): if hasattr(x, "__len__"): return [scale_value(i) for i in x] else: return (x * scale) return scale_value(path_or_paths) def scale_from_clipper(path_or_paths, scale = 2 ** 31): """ Take a path or list of paths with coordinates represented by ints and scale them back to a fractional representation. This function does the inverse of `scale_to_clipper()`. :param path_or_paths: Either a list of paths or a path. A path is a list of tuples of numbers. :param scale: The factor by which to divide coordinates when converting them to floats. """ def scale_value(x): if hasattr(x, "__len__"): return [scale_value(i) for i in x] else: return x / scale return scale_value(path_or_paths) cdef class Pyclipper: """Wraps the Clipper class. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/_Body.htm """ cdef Clipper *thisptr # hold a C++ instance which we're wrapping def __cinit__(self): """ Creates an instance of the Clipper class. InitOptions from the Clipper class are substituted with separate properties. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Methods/Constructor.htm """ log_action("Creating a Clipper instance") self.thisptr = new Clipper() def __dealloc__(self): log_action("Deleting the Clipper instance") del self.thisptr def AddPath(self, path, PolyType poly_type, closed=True): """ Add individual path. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperBase/Methods/AddPath.htm Keyword arguments: path -- path to be added poly_type -- type of the added path - subject or clip closed -- True if the added path is closed, False if open Returns: True -- path is valid for clipping and was added Raises: ClipperException -- if path is invalid for clipping """ cdef Path c_path = _to_clipper_path(path) cdef bint result = self.thisptr.AddPath(c_path, poly_type, closed) if not result: raise ClipperException('The path is invalid for clipping') return result def AddPaths(self, paths, PolyType poly_type, closed=True): """ Add a list of paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperBase/Methods/AddPaths.htm Keyword arguments: paths -- paths to be added poly_type -- type of added paths - subject or clip closed -- True if added paths are closed, False if open Returns: True -- all or some paths are valid for clipping and were added Raises: ClipperException -- all paths are invalid for clipping """ cdef Paths c_paths = _to_clipper_paths(paths) cdef bint result = self.thisptr.AddPaths(c_paths, poly_type, closed) if not result: raise ClipperException('All paths are invalid for clipping') return result def Clear(self): """ Removes all subject and clip polygons. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperBase/Methods/Clear.htm """ self.thisptr.Clear() def GetBounds(self): """ Returns an axis-aligned bounding rectangle that bounds all added polygons. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperBase/Methods/GetBounds.htm Returns: PyIntRect with left, right, bottom, top vertices that define the axis-aligned bounding rectangle. """ _check_scaling_factor() cdef IntRect rr = self.thisptr.GetBounds() return PyIntRect(left=rr.left, top=rr.top, right=rr.right, bottom=rr.bottom) def Execute(self, ClipType clip_type, PolyFillType subj_fill_type=pftEvenOdd, PolyFillType clip_fill_type=pftEvenOdd): """ Performs the clipping operation and returns a list of paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Methods/Execute.htm Keyword arguments: clip_type -- type of the clipping operation subj_fill_type -- fill rule of subject paths clip_fill_type -- fill rule of clip paths Returns: list of resulting paths Raises: ClipperException -- operation did not succeed """ cdef Paths solution cdef object success = self.thisptr.Execute(clip_type, solution, subj_fill_type, clip_fill_type) if not success: raise ClipperException('Execution of clipper did not succeed!') return _from_clipper_paths(solution) def Execute2(self, ClipType clip_type, PolyFillType subj_fill_type=pftEvenOdd, PolyFillType clip_fill_type=pftEvenOdd): """ Performs the clipping operation and returns a PyPolyNode. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Methods/Execute.htm Keyword arguments: clip_type -- type of the clipping operation subj_fill_type -- fill rule of subject paths clip_fill_type -- fill rule of clip paths Returns: PyPolyNode Raises: ClipperException -- operation did not succeed """ cdef PolyTree solution cdef object success = self.thisptr.Execute(clip_type, solution, subj_fill_type, clip_fill_type) if not success: raise ClipperException('Execution of clipper did not succeed!') return _from_poly_tree(solution) property ReverseSolution: """ Should polygons returned from Execute/Execute2 have their orientations opposite to their normal orientations. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Properties/ReverseSolution.htm """ def __get__(self): return self.thisptr.ReverseSolution() def __set__(self, value): self.thisptr.ReverseSolution( value) property PreserveCollinear: """ Should clipper preserve collinear vertices. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Properties/PreserveCollinear.htm """ def __get__(self): return self.thisptr.PreserveCollinear() def __set__(self, value): self.thisptr.PreserveCollinear( value) property StrictlySimple: """ Should polygons returned from Execute/Execute2 be strictly simple (True) or may be weakly simple (False). More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/Clipper/Properties/StrictlySimple.htm """ def __get__(self): return self.thisptr.StrictlySimple() def __set__(self, value): self.thisptr.StrictlySimple( value) cdef class PyclipperOffset: """ Wraps the ClipperOffset class. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/_Body.htm """ cdef ClipperOffset *thisptr def __cinit__(self, double miter_limit=2.0, double arc_tolerance=0.25): """ Creates an instance of the ClipperOffset class. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/Constructor.htm """ log_action("Creating an ClipperOffset instance") self.thisptr = new ClipperOffset() self.MiterLimit = miter_limit self.ArcTolerance = arc_tolerance def __dealloc__(self): log_action("Deleting the ClipperOffset instance") del self.thisptr def AddPath(self, path, JoinType join_type, EndType end_type): """ Add individual path. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/AddPath.htm Keyword arguments: path -- path to be added join_type -- join type of added path end_type -- end type of added path """ cdef Path c_path = _to_clipper_path(path) self.thisptr.AddPath(c_path, join_type, end_type) def AddPaths(self, paths, JoinType join_type, EndType end_type): """ Add a list of paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/AddPaths.htm Keyword arguments: path -- paths to be added join_type -- join type of added paths end_type -- end type of added paths """ cdef Paths c_paths = _to_clipper_paths(paths) self.thisptr.AddPaths(c_paths, join_type, end_type) def Execute(self, double delta): """ Performs the offset operation and returns a list of offset paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/Execute.htm Keyword arguments: delta -- amount to which the supplied paths will be offset - negative delta shrinks polygons, positive delta expands them. Returns: list of offset paths """ cdef Paths c_solution self.thisptr.Execute(c_solution, delta) return _from_clipper_paths(c_solution) def Execute2(self, double delta): """ Performs the offset operation and returns a PyPolyNode with offset paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/Execute.htm Keyword arguments: delta -- amount to which the supplied paths will be offset - negative delta shrinks polygons, positive delta expands them. Returns: PyPolyNode """ cdef PolyTree solution self.thisptr.Execute(solution, delta) return _from_poly_tree(solution) def Clear(self): """ Clears all paths. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Methods/Clear.htm """ self.thisptr.Clear() property MiterLimit: """ Maximum distance in multiples of delta that vertices can be offset from their original positions. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/MiterLimit.htm """ def __get__(self): return self.thisptr.MiterLimit def __set__(self, value): self.thisptr.MiterLimit = value property ArcTolerance: """ Maximum acceptable imprecision when arcs are approximated in an offsetting operation. More info: http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm """ def __get__(self): _check_scaling_factor() return self.thisptr.ArcTolerance def __set__(self, value): _check_scaling_factor() self.thisptr.ArcTolerance = value cdef _filter_polynode(pypolynode, result, filter_func=None): if (filter_func is None or filter_func(pypolynode)) and len(pypolynode.Contour) > 0: result.append(pypolynode.Contour) for child in pypolynode.Childs: _filter_polynode(child, result, filter_func) cdef _from_poly_tree(PolyTree &c_polytree): poly_tree = PyPolyNode() depths = [0] for i in xrange(c_polytree.ChildCount()): c_child = c_polytree.Childs[i] py_child = _node_walk(c_child, poly_tree) poly_tree.Childs.append(py_child) depths.append(py_child.depth + 1) poly_tree.depth = max(depths) return poly_tree cdef _node_walk(PolyNode *c_polynode, object parent): py_node = PyPolyNode() py_node.Parent = parent cdef object ishole = c_polynode.IsHole() py_node.IsHole = ishole cdef object isopen = c_polynode.IsOpen() py_node.IsOpen = isopen py_node.Contour = _from_clipper_path(c_polynode.Contour) # kids cdef PolyNode *cNode depths = [0] for i in range(c_polynode.ChildCount()): c_node = c_polynode.Childs[i] py_child = _node_walk(c_node, py_node) depths.append(py_child.depth + 1) py_node.Childs.append(py_child) py_node.depth = max(depths) return py_node cdef Paths _to_clipper_paths(object polygons): cdef Paths paths = Paths() for poly in polygons: paths.push_back(_to_clipper_path(poly)) return paths cdef Path _to_clipper_path(object polygon): _check_scaling_factor() cdef Path path = Path() cdef IntPoint p for v in polygon: path.push_back(_to_clipper_point(v)) return path cdef IntPoint _to_clipper_point(object py_point): return IntPoint(py_point[0], py_point[1]) cdef object _from_clipper_paths(Paths paths): polys = [] cdef Path path for i in xrange(paths.size()): path = paths[i] polys.append(_from_clipper_path(path)) return polys cdef object _from_clipper_path(Path path): _check_scaling_factor() poly = [] cdef IntPoint point for i in xrange(path.size()): point = path[i] poly.append([point.X, point.Y]) return poly def _check_scaling_factor(): """ Check whether SCALING_FACTOR has been set by the code using this library and warn the user that it has been deprecated and it's value is ignored. """ if SCALING_FACTOR != 1: _warnings.warn('SCALING_FACTOR is deprecated and it\'s value is ignored. See https://github.com/greginvm/pyclipper/wiki/Deprecating-SCALING_FACTOR for more information.', DeprecationWarning) pyclipper-1.0.6/setup.cfg000066400000000000000000000003311304035363100153410ustar00rootroot00000000000000[metadata] description-file = README.rst [sdist] formats = zip [aliases] test = pytest [tool:pytest] testpaths = tests addopts = # run py.test in verbose mode -v # show extra test summary info -r a pyclipper-1.0.6/setup.py000077500000000000000000000065231304035363100152460ustar00rootroot00000000000000from __future__ import print_function import sys import os from setuptools import setup from setuptools.extension import Extension """ Note on using the setup.py: setup.py operates in 2 modes that are based on the presence of the 'dev' file in the root of the project. - When 'dev' is present, Cython will be used to compile the .pyx sources. This is the development mode (as you get it in the git repository). - When 'dev' is absent, C/C++ compiler will be used to compile the .cpp sources (that were prepared in in the development mode). This is the distribution mode (as you get it on PyPI). This way the package can be used without or with an incompatible version of Cython. The idea comes from: https://github.com/MattShannon/bandmat """ dev_mode = os.path.exists('dev') if dev_mode: from Cython.Distutils import build_ext print('Development mode: Compiling Cython modules from .pyx sources.') sources = ["pyclipper/pyclipper.pyx", "pyclipper/clipper.cpp"] from setuptools.command.sdist import sdist as _sdist class sdist(_sdist): """ Run 'cythonize' on *.pyx sources to ensure the .cpp files included in the source distribution are up-to-date. """ def run(self): from Cython.Build import cythonize cythonize(sources, language='c++') _sdist.run(self) cmdclass = {'sdist': sdist, 'build_ext': build_ext} else: print('Distribution mode: Compiling Cython generated .cpp sources.') sources = ["pyclipper/pyclipper.cpp", "pyclipper/clipper.cpp"] cmdclass = {} needs_pytest = {'pytest', 'test'}.intersection(sys.argv) pytest_runner = ['pytest_runner'] if needs_pytest else [] ext = Extension("pyclipper", sources=sources, language="c++", # define extra macro definitions that are used by clipper # Available definitions that can be used with pyclipper: # use_lines, use_int32 # See pyclipper/clipper.hpp define_macros=[('use_lines', 1)] ) setup( name='pyclipper', use_scm_version=True, description='Cython wrapper for the C++ translation of the Angus Johnson\'s Clipper library (ver. 6.2.1)', author='Angus Johnson, Maxime Chalton, Lukas Treyer, Gregor Ratajc', author_email='me@gregorratajc.com', url='https://github.com/greginvm/pyclipper', keywords=[ 'polygon clipping, polygon intersection, polygon union, polygon offsetting, polygon boolean, polygon, clipping, clipper, vatti'], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Cython", "Programming Language :: C++", "Environment :: Other Environment", "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Operating System :: OS Independent", "License :: OSI Approved", "License :: OSI Approved :: MIT License", "Topic :: Multimedia :: Graphics", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Software Development :: Libraries :: Python Modules" ], ext_modules=[ext], setup_requires=[ 'setuptools_scm>=1.11.1', 'setuptools_scm_git_archive>=1.0', ] + pytest_runner, tests_require=['unittest2', 'pytest'], cmdclass=cmdclass, ) pyclipper-1.0.6/tests/000077500000000000000000000000001304035363100146655ustar00rootroot00000000000000pyclipper-1.0.6/tests/test_pyclipper.py000066400000000000000000000363731304035363100203210ustar00rootroot00000000000000#!/usr/bin/python """ Tests for Pyclipper wrapper library. """ from __future__ import print_function from unittest2 import TestCase, main import sys if sys.version_info < (3,): integer_types = (int, long) else: integer_types = (int,) import pyclipper # Example polygons from http://www.angusj.com/delphi/clipper.php PATH_SUBJ_1 = [[180, 200], [260, 200], [260, 150], [180, 150]] # square, orientation is False PATH_SUBJ_2 = [[215, 160], [230, 190], [200, 190]] # triangle PATH_CLIP_1 = [[190, 210], [240, 210], [240, 130], [190, 130]] # square PATH_SIGMA = [[300, 400], [100, 400], [200, 300], [100, 200], [300, 200]] # greek letter sigma PATTERN = [[4, -6], [6, -6], [-4, 6], [-6, 6]] INVALID_PATH = [[1, 1], ] # less than 2 vertices class TestPyclipperModule(TestCase): def test_has_classes(self): self.assertTrue(hasattr(pyclipper, 'Pyclipper')) self.assertTrue(hasattr(pyclipper, 'PyclipperOffset')) def test_has_namespace_methods(self): for method in ('Orientation', 'Area', 'PointInPolygon', 'SimplifyPolygon', 'SimplifyPolygons', 'CleanPolygon', 'CleanPolygons', 'MinkowskiSum', 'MinkowskiSum2', 'MinkowskiDiff', 'PolyTreeToPaths', 'ClosedPathsFromPolyTree', 'OpenPathsFromPolyTree', 'ReversePath', 'ReversePaths'): self.assertTrue(hasattr(pyclipper, method)) class TestNamespaceMethods(TestCase): def setUp(self): pyclipper.SCALING_FACTOR = 1 def test_orientation(self): self.assertFalse(pyclipper.Orientation(PATH_SUBJ_1)) self.assertTrue(pyclipper.Orientation(PATH_SUBJ_1[::-1])) def test_area(self): # area less than 0 because orientation is False area_neg = pyclipper.Area(PATH_SUBJ_1) area_pos = pyclipper.Area(PATH_SUBJ_1[::-1]) self.assertLess(area_neg, 0) self.assertGreater(area_pos, 0) self.assertEqual(abs(area_neg), area_pos) def test_point_in_polygon(self): # on polygon self.assertEqual(pyclipper.PointInPolygon((180, 200), PATH_SUBJ_1), -1) # in polygon self.assertEqual(pyclipper.PointInPolygon((200, 180), PATH_SUBJ_1), 1) # outside of polygon self.assertEqual(pyclipper.PointInPolygon((500, 500), PATH_SUBJ_1), 0) def test_minkowski_sum(self): solution = pyclipper.MinkowskiSum(PATTERN, PATH_SIGMA, False) self.assertGreater(len(solution), 0) def test_minkowski_sum2(self): solution = pyclipper.MinkowskiSum2(PATTERN, [PATH_SIGMA], False) self.assertGreater(len(solution), 0) def test_minkowski_diff(self): solution = pyclipper.MinkowskiDiff(PATH_SUBJ_1, PATH_SUBJ_2) self.assertGreater(len(solution), 0) def test_reverse_path(self): solution = pyclipper.ReversePath(PATH_SUBJ_1) manualy_reversed = PATH_SUBJ_1[::-1] self.check_reversed_path(solution, manualy_reversed) def test_reverse_paths(self): solution = pyclipper.ReversePaths([PATH_SUBJ_1]) manualy_reversed = [PATH_SUBJ_1[::-1]] self.check_reversed_path(solution[0], manualy_reversed[0]) def check_reversed_path(self, path_1, path_2): if len(path_1) is not len(path_2): return False for i in range(len(path_1)): self.assertEqual(path_1[i][0], path_2[i][0]) self.assertEqual(path_1[i][1], path_2[i][1]) def test_simplify_polygon(self): solution = pyclipper.SimplifyPolygon(PATH_SUBJ_1) self.assertEqual(len(solution), 1) def test_simplify_polygons(self): solution = pyclipper.SimplifyPolygons([PATH_SUBJ_1]) solution_single = pyclipper.SimplifyPolygon(PATH_SUBJ_1) self.assertEqual(len(solution), 1) self.assertEqual(len(solution), len(solution_single)) _do_solutions_match(solution, solution_single) def test_clean_polygon(self): solution = pyclipper.CleanPolygon(PATH_CLIP_1) self.assertEqual(len(solution), len(PATH_CLIP_1)) def test_clean_polygons(self): solution = pyclipper.CleanPolygons([PATH_CLIP_1]) self.assertEqual(len(solution), 1) self.assertEqual(len(solution[0]), len(PATH_CLIP_1)) class TestFilterPyPolyNode(TestCase): def setUp(self): tree = pyclipper.PyPolyNode() tree.Contour.append(PATH_CLIP_1) tree.IsOpen = True child = pyclipper.PyPolyNode() child.IsOpen = False child.Parent = tree child.Contour = PATH_SUBJ_1 tree.Childs.append(child) child = pyclipper.PyPolyNode() child.IsOpen = True child.Parent = tree child.Contour = PATH_SUBJ_2 tree.Childs.append(child) child2 = pyclipper.PyPolyNode() child2.IsOpen = False child2.Parent = child child2.Contour = PATTERN child.Childs.append(child2) # empty contour should not # be included in filtered results child2 = pyclipper.PyPolyNode() child2.IsOpen = False child2.Parent = child child2.Contour = [] child.Childs.append(child2) self.tree = tree def test_polytree_to_paths(self): paths = pyclipper.PolyTreeToPaths(self.tree) self.check_paths(paths, 4) def test_closed_paths_from_polytree(self): paths = pyclipper.ClosedPathsFromPolyTree(self.tree) self.check_paths(paths, 2) def test_open_paths_from_polytree(self): paths = pyclipper.OpenPathsFromPolyTree(self.tree) self.check_paths(paths, 2) def check_paths(self, paths, expected_nr): self.assertEqual(len(paths), expected_nr) self.assertTrue(all((len(path) > 0 for path in paths))) class TestPyclipperAddPaths(TestCase): def setUp(self): pyclipper.SCALING_FACTOR = 1 self.pc = pyclipper.Pyclipper() def test_add_path(self): # should not raise an exception self.pc.AddPath(PATH_CLIP_1, poly_type=pyclipper.PT_CLIP) def test_add_paths(self): # should not raise an exception self.pc.AddPaths([PATH_SUBJ_1, PATH_SUBJ_2], poly_type=pyclipper.PT_SUBJECT) def test_add_path_invalid_path(self): self.assertRaises(pyclipper.ClipperException, self.pc.AddPath, INVALID_PATH, pyclipper.PT_CLIP, True) def test_add_paths_invalid_path(self): self.assertRaises(pyclipper.ClipperException, self.pc.AddPaths, [INVALID_PATH, INVALID_PATH], pyclipper.PT_CLIP, True) try: self.pc.AddPaths([INVALID_PATH, PATH_CLIP_1], pyclipper.PT_CLIP) self.pc.AddPaths([PATH_CLIP_1, INVALID_PATH], pyclipper.PT_CLIP) except pyclipper.ClipperException: self.fail("add_paths raised ClipperException when not all paths were invalid") class TestClassProperties(TestCase): def check_property_assignment(self, pc, prop_name, values): for val in values: setattr(pc, prop_name, val) self.assertEqual(getattr(pc, prop_name), val) def test_pyclipper_properties(self): pc = pyclipper.Pyclipper() for prop_name in ('ReverseSolution', 'PreserveCollinear', 'StrictlySimple'): self.check_property_assignment(pc, prop_name, [True, False]) def test_pyclipperoffset_properties(self): for factor in range(6): pyclipper.SCALING_FACTOR = 10 ** factor pc = pyclipper.PyclipperOffset() for prop_name in ('MiterLimit', 'ArcTolerance'): self.check_property_assignment(pc, prop_name, [2.912, 132.12, 12, -123]) class TestPyclipperExecute(TestCase): def setUp(self): pyclipper.SCALING_FACTOR = 1 self.pc = pyclipper.Pyclipper() self.add_default_paths(self.pc) self.default_args = [pyclipper.CT_INTERSECTION, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD] @staticmethod def add_default_paths(pc): pc.AddPath(PATH_CLIP_1, pyclipper.PT_CLIP) pc.AddPaths([PATH_SUBJ_1, PATH_SUBJ_2], pyclipper.PT_SUBJECT) @staticmethod def add_paths(pc, clip_path, subj_paths, addend=None, multiplier=None): pc.AddPath(_modify_vertices(clip_path, addend=addend, multiplier=multiplier), pyclipper.PT_CLIP) for subj_path in subj_paths: pc.AddPath(_modify_vertices(subj_path, addend=addend, multiplier=multiplier), pyclipper.PT_SUBJECT) def test_get_bounds(self): bounds = self.pc.GetBounds() self.assertIsInstance(bounds, pyclipper.PyIntRect) self.assertEqual(bounds.left, 180) self.assertEqual(bounds.right, 260) self.assertEqual(bounds.top, 130) self.assertEqual(bounds.bottom, 210) def test_execute(self): solution = self.pc.Execute(*self.default_args) self.assertEqual(len(solution), 2) def test_execute2(self): solution = self.pc.Execute2(*self.default_args) self.assertIsInstance(solution, pyclipper.PyPolyNode) self.check_pypolynode(solution) def test_clear(self): self.pc.Clear() solution = self.pc.Execute(*self.default_args) self.assertEqual(len(solution), 0) def test_exact_results(self): """ Test whether coordinates passed into the library are returned exactly, if they are not affected by the operation. """ pc = pyclipper.Pyclipper() # Some large triangle. path = [[[0, 1], [0, 0], [15 ** 15, 0]]] pc.AddPaths(path, pyclipper.PT_SUBJECT, True) result = pc.Execute(pyclipper.PT_CLIP, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD) assert result == path def check_pypolynode(self, node): self.assertTrue(len(node.Contour) is 0 or len(node.Contour) > 2) # check vertex coordinate, should not be an iterable (in that case # that means that node.Contour is a list of paths, should be path if node.Contour: self.assertFalse(hasattr(node.Contour[0][0], '__iter__')) for child in node.Childs: self.check_pypolynode(child) class TestPyclipperOffset(TestCase): def setUp(self): pyclipper.SCALING_FACTOR = 1 @staticmethod def add_path(pc, path): pc.AddPath(path, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) def test_execute(self): pc = pyclipper.PyclipperOffset() self.add_path(pc, PATH_CLIP_1) solution = pc.Execute(2.0) self.assertIsInstance(solution, list) self.assertEqual(len(solution), 1) def test_execute2(self): pc = pyclipper.PyclipperOffset() self.add_path(pc, PATH_CLIP_1) solution = pc.Execute2(2.0) self.assertIsInstance(solution, pyclipper.PyPolyNode) self.assertEqual(len(pyclipper.OpenPathsFromPolyTree(solution)), 0) self.assertEqual(len(pyclipper.ClosedPathsFromPolyTree(solution)), 1) def test_clear(self): pc = pyclipper.PyclipperOffset() self.add_path(pc, PATH_CLIP_1) pc.Clear() solution = pc.Execute(2.0) self.assertIsInstance(solution, list) self.assertEqual(len(solution), 0) class TestScalingFactorWarning(TestCase): def setUp(self): pyclipper.SCALING_FACTOR = 2. self.pc = pyclipper.Pyclipper() def test_orientation(self): with self.assertWarns(DeprecationWarning): pyclipper.Orientation(PATH_SUBJ_1) def test_area(self): with self.assertWarns(DeprecationWarning): pyclipper.Area(PATH_SUBJ_1) def test_point_in_polygon(self): with self.assertWarns(DeprecationWarning): self.assertEqual(pyclipper.PointInPolygon((180, 200), PATH_SUBJ_1), -1) def test_minkowski_sum(self): with self.assertWarns(DeprecationWarning): pyclipper.MinkowskiSum(PATTERN, PATH_SIGMA, False) def test_minkowski_sum2(self): with self.assertWarns(DeprecationWarning): pyclipper.MinkowskiSum2(PATTERN, [PATH_SIGMA], False) def test_minkowski_diff(self): with self.assertWarns(DeprecationWarning): pyclipper.MinkowskiDiff(PATH_SUBJ_1, PATH_SUBJ_2) def test_add_path(self): with self.assertWarns(DeprecationWarning): self.pc.AddPath(PATH_CLIP_1, poly_type=pyclipper.PT_CLIP) def test_add_paths(self): with self.assertWarns(DeprecationWarning): self.pc.AddPaths([PATH_SUBJ_1, PATH_SUBJ_2], poly_type=pyclipper.PT_SUBJECT) class TestScalingFunctions(TestCase): scale = 2 ** 31 path = [(0, 0), (1, 1)] paths = [path] * 3 def test_value_scale_to(self): value = 0.5 res = pyclipper.scale_to_clipper(value, self.scale) assert isinstance(res, integer_types) assert res == int(value * self.scale) def test_value_scale_from(self): value = 1000000000000 res = pyclipper.scale_from_clipper(value, self.scale) assert isinstance(res, float) # Convert to float to get "normal" division in Python < 3. assert res == float(value) / self.scale def test_path_scale_to(self): res = pyclipper.scale_to_clipper(self.path) assert len(res) == len(self.path) assert all(isinstance(i, list) for i in res) assert all(isinstance(j, integer_types) for i in res for j in i) def test_path_scale_from(self): res = pyclipper.scale_from_clipper(self.path) assert len(res) == len(self.path) assert all(isinstance(i, list) for i in res) assert all(isinstance(j, float) for i in res for j in i) def test_paths_scale_to(self): res = pyclipper.scale_to_clipper(self.paths) assert len(res) == len(self.paths) assert all(isinstance(i, list) for i in res) assert all(isinstance(j, list) for i in res for j in i) assert all(isinstance(k, integer_types) for i in res for j in i for k in j) def test_paths_scale_from(self): res = pyclipper.scale_from_clipper(self.paths) assert len(res) == len(self.paths) assert all(isinstance(i, list) for i in res) assert all(isinstance(j, list) for i in res for j in i) assert all(isinstance(k, float) for i in res for j in i for k in j) class TestNonStandardNumbers(TestCase): def test_sympyzero(self): try: from sympy import Point2D from sympy.core.numbers import Zero except ImportError: self.skipTest("Skipping, sympy not available") path = [(0,0), (0,1)] path = [Point2D(v) for v in [(0,0), (0,1)]] assert type(path[0].x) == Zero path = pyclipper.scale_to_clipper(path) assert path == [[0, 0], [0, 2147483648]] def _do_solutions_match(paths_1, paths_2, factor=None): if len(paths_1) != len(paths_2): return False paths_1 = [_modify_vertices(p, multiplier=factor, converter=round if factor else None) for p in paths_1] paths_2 = [_modify_vertices(p, multiplier=factor, converter=round if factor else None) for p in paths_2] return all(((p_1 in paths_2) for p_1 in paths_1)) def _modify_vertices(path, addend=0.0, multiplier=1.0, converter=None): path = path[:] def convert_coordinate(c): if multiplier is not None: c *= multiplier if addend is not None: c += addend if converter: c = converter(c) return c return [[convert_coordinate(c) for c in v] for v in path] def run_tests(): main() if __name__ == '__main__': run_tests()