pax_global_header00006660000000000000000000000064120057711160014512gustar00rootroot0000000000000052 comment=67325573e60493168386208f83e1b28b5605bbae pycollada-0.4/000077500000000000000000000000001200577111600133255ustar00rootroot00000000000000pycollada-0.4/.gitignore000066400000000000000000000001641200577111600153160ustar00rootroot00000000000000*.pyc *.swp .project .pydevproject docs/_build .settings build dist pycollada.egg-info __testing distribute*.tar.gz pycollada-0.4/.travis.yml000066400000000000000000000004701200577111600154370ustar00rootroot00000000000000language: python env: # Using numpy from github due to numpy issue #1857 - DEPS="git+git://github.com/numpy/numpy.git@dba98cc1" - DEPS="git+git://github.com/numpy/numpy.git@dba98cc1 lxml" python: - 2.6 - 2.7 - 3.2 install: - pip install $DEPS - python setup.py install script: python collada pycollada-0.4/AUTHORS.md000066400000000000000000000004161200577111600147750ustar00rootroot00000000000000Authors (Ordered by date of first contribution) =============================================== * Alejandro Conty Estevez (aconty AT gmail.com) * Conrad Wong * Jeff Terrace (jterrace AT gmail.com) * Rehno Lindeque * Dusan Maliarik * Ewen Cheslack-Postava * Ole Laursen pycollada-0.4/CHANGELOG.rst000066400000000000000000000127011200577111600153470ustar00rootroot00000000000000pycollada Changelog =================== 0.4 (2012-07-31) ---------------- Backwards Compatibility Notes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * Python 2.5 is no longer supported. Supported versions are now 2.6, 2.7 and 3.2. New Features ^^^^^^^^^^^^ * Added support for reading the opaque attribute from tag. * Normals and texture coordinate indices are now available in shapes (Triangle and Polygon). * Library is now compatible with python's built-in ElementTree API instead of requiring lxml. lxml is still recommended. * Added support for Python 3.2. Supported versions are now 2.6, 2.7 and 3.2. * Added support for index_of_refraction in . * Added optional parameter to Collada that does XML schema validation when saving. * Automatically corrects broken files that don't have correct xfov, yfov, and aspect ratio in cameras. Bug Fixes ^^^^^^^^^ * Fix the default value for transparency in Effect. Now correctly defaults to 1.0 when opaque mode is A_ONE, and 0.0 when opaque mode is RGB_ZERO. * Fixed bug where BoundPolylist was not returning the correct length value. * Removed support for RGB from Effect since it's not valid in the spec. If an RGB is given, a fourth A channel is automatically added as 1.0. * Made instance_geometry not write an empty bind_material if it's empty since it breaks validation. * Made saving strip out empty tags since it breaks validation. 0.3 (2011-08-31) ---------------- Backwards Compatibility Notes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * If using the old Camera object, this has been changed to an abstract class with types for PerspectiveCamera and OrthographicCamera * If using the old Collada.assetInfo dictionary to read asset information, this has been changed to an object. See documentation for more information. New Features ^^^^^^^^^^^^ * Added support for bump maps inside the extra tag of an effect * Added texbinormal and textangent to triangle sets * Added a method to generate texture tangents and binormals * Added detection for double_sided * Added an optional parameter to specify what filename inside an archive to use when loading from zip * Added support for loading multiple sets of library_* nodes * Refactored asset information into a separate module. Fixed #12 * Refactored Camera into PerspectiveCamera and OrthographicCamera, inheriting from Camera Bug Fixes ^^^^^^^^^ * Changed Collada IndexedLists attributes to be properties. Fixed Issue #14 * Updated scene to use a local scope when nodes are instantiated inside a scene * Changed parsing to raise DaeMalformedError when an lxml parser exception is thrown * Fixed bug when loading an tag local to an not showing up in Collada.images * Fixed bug when loading an empty * Fixed bug in if statement when loading morph controllers * Fixed bug when triangulating a length-0 polylist * Updated install instructions for OS X and Ubuntu problems * Fixed bugs in IndexedList from Issue #13 * Fixed a bug where using the same map twice in an effect would cause incorrrect output * Changed geometry export to delete any sources in the vertices tag that no longer exist * Changed library output to not output emtpy library nodes so validator doesn't complain * Add same checks in scene loading that was done in library_nodes loading so that if nodes are not found yet while loading, it will keep trying * Changed the way library_nodes is loaded so that if a referenced node from instance_node is not loaded yet, it will keep trying * Fixed bug where a triangles xml node would try to set an attribute to None * Fixed bug in handling joints that influence 0 vertices 0.2.2 (2011-05-03) ------------------ * Changed the way instance_node is handled to actually maintain the mapping so it's not lost when saving * Added setdata function to CImage and made Effect compare only image path * Fixed a bug when rewriting geometry sources * Change primitive sources to point to the tag when possible since other importers don't like not having a tag * Export source data with only 7 decimal precision for better file size * Prevent NaN from being the result of a normalize_v3 call * Fixed bug where effect was not correctly reading all four color values * Fixed a bug where a triangleset would not create its xml node when generated from a polylist * Big speed increases for converting numpy data to strings * Moved getInputs function to Primitive * Added functions to triangleset to generate normals and get an input list * Fixed bug in saving a scene node if there was no id * Fixed some bugs/optimizations with saving * Added function to test if an Effect is almost equal to another Effect * Adding dynamic dependencies to setup.py 0.2.1 (2011-04-15) ------------------ * Fixed bug with saving existing files that didn't have some library_ tags. 0.2 (2011-04-15) ---------------- * Many bugfixes * polylist support * polygons support without holes * lines support * blinn and constant material support * More effect attributes * Better support for auxiliary texture files * Lights (directional, ambient, point, spot) * lookat transform * Experimental controller support (skin, morph) * polygons/polylist can be triangulated * Automatic computation of per-vertex normals 0.1 (2009-02-08) ---------------- * Initial release * Triangles geometry * Reads vertices and normals * Multiple texture coordinate channels * Phong and Lambert Materials * Texture support using PIL * Scene suppport for geometry, material and camera instances * Transforms (matrix, rotate, scale, translate)pycollada-0.4/COPYING000066400000000000000000000031341200577111600143610ustar00rootroot00000000000000pycollada 0.2 and above ======================= Copyright (c) 2011, Jeff Terrace and contributors pycollada 0.1 ======================= Copyright (c) 2009, Scopia Visual Interfaces Systems Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Scopia Visual Interfaces Systems nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COMPANY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. pycollada-0.4/README.markdown000066400000000000000000000011171200577111600160260ustar00rootroot00000000000000pycollada ========= pycollada is a python module for creating, editing and loading [COLLADA](http://www.collada.org/), which is a COLLAborative Design Activity for establishing an interchange file format for interactive 3D applications. The library allows you to load a COLLADA file and interact with it as a python object. In addition, it supports creating a collada python object from scratch, as well as in-place editing. See the [pycollada Documentation](http://pycollada.github.com/) for more information. Travis CI Tests --------------- http://travis-ci.org/#!/pycollada/pycollada pycollada-0.4/collada/000077500000000000000000000000001200577111600147245ustar00rootroot00000000000000pycollada-0.4/collada/__init__.py000066400000000000000000000560561200577111600170510ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Main module for collada (pycollada) package. You will find here class `Collada` which is the one to use to access collada file, and some exceptions that are raised in case the input file is not what is expected. """ __version__ = "0.4" import os.path import posixpath import traceback import types import zipfile from datetime import datetime from collada import animation from collada import asset from collada import camera from collada import controller from collada import geometry from collada import light from collada import material from collada import scene from collada.common import E, tag from collada.common import DaeError, DaeObject, DaeIncompleteError, \ DaeBrokenRefError, DaeMalformedError, DaeUnsupportedError, \ DaeSaveValidationError from collada.util import basestring, BytesIO from collada.util import IndexedList from collada.xmlutil import etree as ElementTree from collada.xmlutil import writeXML try: from collada import schema except ImportError: # no lxml schema = None class Collada(object): """This is the main class used to create and load collada documents""" geometries = property( lambda s: s._geometries, lambda s,v: s._setIndexedList('_geometries', v), doc=""" A list of :class:`collada.geometry.Geometry` objects. Can also be indexed by id""" ) controllers = property( lambda s: s._controllers, lambda s,v: s._setIndexedList('_controllers', v), doc=""" A list of :class:`collada.controller.Controller` objects. Can also be indexed by id""" ) animations = property( lambda s: s._animations, lambda s,v: s._setIndexedList('_animations', v), doc=""" A list of :class:`collada.animation.Animation` objects. Can also be indexed by id""" ) lights = property( lambda s: s._lights, lambda s,v: s._setIndexedList('_lights', v), doc=""" A list of :class:`collada.light.Light` objects. Can also be indexed by id""" ) cameras = property( lambda s: s._cameras, lambda s,v: s._setIndexedList('_cameras', v), doc=""" A list of :class:`collada.camera.Camera` objects. Can also be indexed by id""" ) images = property( lambda s: s._images, lambda s,v: s._setIndexedList('_images', v), doc=""" A list of :class:`collada.material.CImage` objects. Can also be indexed by id""" ) effects = property( lambda s: s._effects, lambda s,v: s._setIndexedList('_effects', v), doc=""" A list of :class:`collada.material.Effect` objects. Can also be indexed by id""" ) materials = property( lambda s: s._materials, lambda s,v: s._setIndexedList('_materials', v), doc=""" A list of :class:`collada.material.Effect` objects. Can also be indexed by id""" ) nodes = property( lambda s: s._nodes, lambda s,v: s._setIndexedList('_nodes', v), doc=""" A list of :class:`collada.scene.Node` objects. Can also be indexed by id""" ) scenes = property( lambda s: s._scenes, lambda s,v: s._setIndexedList('_scenes', v), doc=""" A list of :class:`collada.scene.Scene` objects. Can also be indexed by id""" ) def __init__(self, filename=None, ignore=None, aux_file_loader=None, zip_filename=None, validate_output=False): """Load collada data from filename or file like object. :param filename: String containing path to filename to open or file-like object. Uncompressed .dae files are supported, as well as zip file archives. If this is set to ``None``, a new collada instance is created. :param list ignore: A list of :class:`common.DaeError` types that should be ignored when loading the collada document. Instances of these types will be added to :attr:`errors` after loading but won't be raised. Only used if `filename` is not ``None``. :param function aux_file_loader: Referenced files (e.g. texture images) are loaded from disk when reading from the local filesystem and from the zip archive when loading from a zip file. If these files are coming from another source (e.g. database) and/or you're loading with StringIO, set this to a function that given a filename, returns the binary data in the file. If `filename` is ``None``, you must set this parameter if you want to load auxiliary files. :param str zip_filename: If the file being loaded is a zip archive, you can set this parameter to indicate the file within the archive that should be loaded. If not set, a file that ends with .dae will be searched. :param bool validate_output: If set to True, the XML written when calling :meth:`save` will be validated against the COLLADA 1.4.1 schema. If validation fails, the :class:`common.DaeSaveValidationError` exception will be thrown. """ self.errors = [] """List of :class:`common.common.DaeError` objects representing errors encountered while loading collada file""" self.assetInfo = None """Instance of :class:`collada.asset.Asset` containing asset information""" self._geometries = IndexedList([], ('id',)) self._controllers = IndexedList([], ('id',)) self._animations = IndexedList([], ('id',)) self._lights = IndexedList([], ('id',)) self._cameras = IndexedList([], ('id',)) self._images = IndexedList([], ('id',)) self._effects = IndexedList([], ('id',)) self._materials = IndexedList([], ('id',)) self._nodes = IndexedList([], ('id',)) self._scenes = IndexedList([], ('id',)) self.scene = None """The default scene. This is either an instance of :class:`collada.scene.Scene` or `None`.""" if validate_output and schema: self.validator = schema.ColladaValidator() else: self.validator = None self.maskedErrors = [] if ignore is not None: self.ignoreErrors( *ignore ) if filename is None: self.filename = None self.zfile = None self.getFileData = self._nullGetFile if aux_file_loader is not None: self.getFileData = self._wrappedFileLoader(aux_file_loader) self.xmlnode = ElementTree.ElementTree( E.COLLADA( E.library_cameras(), E.library_controllers(), E.library_effects(), E.library_geometries(), E.library_images(), E.library_lights(), E.library_materials(), E.library_nodes(), E.library_visual_scenes(), E.scene(), version='1.4.1')) """ElementTree representation of the collada document""" self.assetInfo = asset.Asset() return if isinstance(filename, basestring): fdata = open(filename, 'rb') self.filename = filename self.getFileData = self._getFileFromDisk else: fdata = filename # assume it is a file like object self.filename = None self.getFileData = self._nullGetFile strdata = fdata.read() try: self.zfile = zipfile.ZipFile(BytesIO(strdata), 'r') except: self.zfile = None if self.zfile: self.filename = '' daefiles = [] if zip_filename is not None: self.filename = zip_filename else: for name in self.zfile.namelist(): if name.upper().endswith('.DAE'): daefiles.append(name) for name in daefiles: if not self.filename: self.filename = name elif "MACOSX" in self.filename: self.filename = name if not self.filename or self.filename not in self.zfile.namelist(): raise DaeIncompleteError('COLLADA file not found inside zip compressed file') data = self.zfile.read(self.filename) self.getFileData = self._getFileFromZip else: data = strdata if aux_file_loader is not None: self.getFileData = self._wrappedFileLoader(aux_file_loader) etree_parser = ElementTree.XMLParser() try: self.xmlnode = ElementTree.ElementTree(element=None, file=BytesIO(data)) except ElementTree.ParseError as e: raise DaeMalformedError("XML Parsing Error: %s" % e) self._loadAssetInfo() self._loadImages() self._loadEffects() self._loadMaterials() self._loadAnimations() self._loadGeometry() self._loadControllers() self._loadLights() self._loadCameras() self._loadNodes() self._loadScenes() self._loadDefaultScene() def _setIndexedList(self, propname, data): setattr(self, propname, IndexedList(data, ('id',))) def handleError(self, error): self.errors.append(error) if not type(error) in self.maskedErrors: raise def ignoreErrors(self, *args): """Add exceptions to the mask for ignoring or clear the mask if None given. You call c.ignoreErrors(e1, e2, ... ) if you want the loader to ignore those exceptions and continue loading whatever it can. If you want to empty the mask so all exceptions abort the load just call c.ignoreErrors(None). """ if args == [ None ]: self.maskedErrors = [] else: for e in args: self.maskedErrors.append(e) def _getFileFromZip(self, fname): """Return the binary data of an auxiliary file from a zip archive as a string.""" if not self.zfile: raise DaeBrokenRefError('Trying to load an auxiliar file %s but we are not reading from a zip'%fname) basepath = posixpath.dirname(self.filename) aux_path = posixpath.normpath(posixpath.join(basepath, fname)) if aux_path not in self.zfile.namelist(): raise DaeBrokenRefError('Auxiliar file %s not found in archive' % fname) return self.zfile.read( aux_path ) def _getFileFromDisk(self, fname): """Return the binary data of an auxiliary file from the local disk relative to the file path loaded.""" if self.zfile: raise DaeBrokenRefError('Trying to load an auxiliar file %s from disk but we are reading from a zip file'%fname) basepath = os.path.dirname(self.filename) aux_path = os.path.normpath(os.path.join(basepath, fname)) if not os.path.exists(aux_path): raise DaeBrokenRefError('Auxiliar file %s not found on disk'%fname) fdata = open(aux_path, 'rb') return fdata.read() def _wrappedFileLoader(self, aux_file_loader): def __wrapped(fname): res = aux_file_loader(fname) if res is None: raise DaeBrokenRefError('Auxiliar file %s from auxiliary file loader not found' % fname) return res return __wrapped def _nullGetFile(self, fname): raise DaeBrokenRefError('Trying to load auxiliary file but collada was not loaded from disk, zip, or with custom handler') def _loadAssetInfo(self): """Load information in tag""" assetnode = self.xmlnode.find(tag('asset')) if assetnode is not None: self.assetInfo = asset.Asset.load(self, {}, assetnode) else: self.assetInfo = asset.Asset() def _loadGeometry(self): """Load geometry library.""" libnodes = self.xmlnode.findall(tag('library_geometries')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for geomnode in libnode.findall(tag('geometry')): if geomnode.find(tag('mesh')) is None: continue try: G = geometry.Geometry.load(self, {}, geomnode) except DaeError as ex: self.handleError(ex) else: self.geometries.append(G) def _loadControllers(self): """Load controller library.""" libnodes = self.xmlnode.findall(tag('library_controllers')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for controlnode in libnode.findall(tag('controller')): if controlnode.find(tag('skin')) is None \ and controlnode.find(tag('morph')) is None: continue try: C = controller.Controller.load(self, {}, controlnode) except DaeError as ex: self.handleError(ex) else: self.controllers.append(C) def _loadAnimations(self): """Load animation library.""" libnodes = self.xmlnode.findall(tag('library_animations')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for animnode in libnode.findall(tag('animation')): try: A = animation.Animation.load(self, {}, animnode) except DaeError as ex: self.handleError(ex) else: self.animations.append(A) def _loadLights(self): """Load light library.""" libnodes = self.xmlnode.findall(tag('library_lights')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for lightnode in libnode.findall(tag('light')): try: lig = light.Light.load(self, {}, lightnode) except DaeError as ex: self.handleError(ex) else: self.lights.append(lig) def _loadCameras(self): """Load camera library.""" libnodes = self.xmlnode.findall(tag('library_cameras')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for cameranode in libnode.findall(tag('camera')): try: cam = camera.Camera.load(self, {}, cameranode) except DaeError as ex: self.handleError(ex) else: self.cameras.append(cam) def _loadImages(self): """Load image library.""" libnodes = self.xmlnode.findall(tag('library_images')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for imgnode in libnode.findall(tag('image')): try: img = material.CImage.load(self, {}, imgnode) except DaeError as ex: self.handleError(ex) else: self.images.append(img) def _loadEffects(self): """Load effect library.""" libnodes = self.xmlnode.findall(tag('library_effects')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for effectnode in libnode.findall(tag('effect')): try: effect = material.Effect.load(self, {}, effectnode) except DaeError as ex: self.handleError(ex) else: self.effects.append(effect) def _loadMaterials(self): """Load material library.""" libnodes = self.xmlnode.findall(tag('library_materials')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for materialnode in libnode.findall(tag('material')): try: mat = material.Material.load(self, {}, materialnode) except DaeError as ex: self.handleError(ex) else: self.materials.append(mat) def _loadNodes(self): libnodes = self.xmlnode.findall(tag('library_nodes')) if libnodes is not None: for libnode in libnodes: if libnode is not None: tried_loading = [] succeeded = False for node in libnode.findall(tag('node')): try: N = scene.loadNode(self, node, {}) except scene.DaeInstanceNotLoadedError as ex: tried_loading.append((node, ex)) except DaeError as ex: self.handleError(ex) else: if N is not None: self.nodes.append(N) succeeded = True while len(tried_loading) > 0 and succeeded: succeeded = False next_tried = [] for node, ex in tried_loading: try: N = scene.loadNode(self, node, {}) except scene.DaeInstanceNotLoadedError as ex: next_tried.append((node, ex)) except DaeError as ex: self.handleError(ex) else: if N is not None: self.nodes.append(N) succeeded = True tried_loading = next_tried if len(tried_loading) > 0: for node, ex in tried_loading: raise DaeBrokenRefError(ex.msg) def _loadScenes(self): """Load scene library.""" libnodes = self.xmlnode.findall(tag('library_visual_scenes')) if libnodes is not None: for libnode in libnodes: if libnode is not None: for scenenode in libnode.findall(tag('visual_scene')): try: S = scene.Scene.load(self, scenenode) except DaeError as ex: self.handleError(ex) else: self.scenes.append(S) def _loadDefaultScene(self): """Loads the default scene from tag in the root node.""" node = self.xmlnode.find('%s/%s' % (tag('scene'), tag('instance_visual_scene'))) try: if node != None: sceneid = node.get('url') if not sceneid.startswith('#'): raise DaeMalformedError('Malformed default scene reference to %s: '%sceneid) self.scene = self.scenes.get(sceneid[1:]) if not self.scene: raise DaeBrokenRefError('Default scene %s not found' % sceneid) except DaeError as ex: self.handleError(ex) def save(self): """Saves the collada document back to :attr:`xmlnode`""" libraries = [(self.geometries, 'library_geometries'), (self.controllers, 'library_controllers'), (self.lights, 'library_lights'), (self.cameras, 'library_cameras'), (self.images, 'library_images'), (self.effects, 'library_effects'), (self.materials, 'library_materials'), (self.nodes, 'library_nodes'), (self.scenes, 'library_visual_scenes')] self.assetInfo.save() assetnode = self.xmlnode.getroot().find(tag('asset')) if assetnode is not None: self.xmlnode.getroot().remove(assetnode) self.xmlnode.getroot().insert(0, self.assetInfo.xmlnode) library_loc = 0 for i, node in enumerate(self.xmlnode.getroot()): if node.tag == tag('asset'): library_loc = i+1 for arr, name in libraries: node = self.xmlnode.find( tag(name) ) if node is None: if len(arr) == 0: continue self.xmlnode.getroot().insert(library_loc, E(name)) node = self.xmlnode.find( tag(name) ) elif node is not None and len(arr) == 0: self.xmlnode.getroot().remove(node) continue for o in arr: o.save() if o.xmlnode not in node: node.append(o.xmlnode) xmlnodes = [o.xmlnode for o in arr] for n in node: if n not in xmlnodes: node.remove(n) scenenode = self.xmlnode.find(tag('scene')) scenenode.clear() if self.scene is not None: sceneid = self.scene.id if sceneid not in self.scenes: raise DaeBrokenRefError('Default scene %s not found' % sceneid) scenenode.append(E.instance_visual_scene(url="#%s" % sceneid)) if self.validator is not None: if not self.validator.validate(self.xmlnode): raise DaeSaveValidationError("Validation error when saving: " + self.validator.COLLADA_SCHEMA_1_4_1_INSTANCE.error_log.last_error.message) def write(self, fp): """Writes out the collada document to a file. Note that this also calls :meth:`save` so avoid calling both methods to save performance. :param file: Either the file name to write to or a file-like object """ self.save() if isinstance(fp, basestring): fp = open(fp, 'wb') writeXML(self.xmlnode, fp) def __str__(self): return '' % (len(self.geometries)) def __repr__(self): return str(self) pycollada-0.4/collada/__main__.py000066400000000000000000000020741200577111600170210ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### import os import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) from collada.util import unittest if __name__ == '__main__': suite = unittest.TestLoader().discover("tests") ret = unittest.TextTestRunner(verbosity=2).run(suite) if ret.wasSuccessful(): sys.exit(0) sys.exit(1) pycollada-0.4/collada/animation.py000066400000000000000000000044071200577111600172620ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains objects representing animations.""" from collada import source from collada.common import DaeObject, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError class Animation(DaeObject): """Class for holding animation data coming from tags.""" def __init__(self, id, name, sourceById, children, xmlnode=None): self.id = id self.name = name self.children = children self.sourceById = sourceById self.xmlnode = xmlnode if self.xmlnode is None: self.xmlnode = None @staticmethod def load( collada, localscope, node ): id = node.get('id') or '' name = node.get('name') or '' sourcebyid = localscope sources = [] sourcenodes = node.findall(tag('source')) for sourcenode in sourcenodes: ch = source.Source.load(collada, {}, sourcenode) sources.append(ch) sourcebyid[ch.id] = ch child_nodes = node.findall(tag('animation')) children = [] for child in child_nodes: try: child = Animation.load(collada, sourcebyid, child) children.append(child) except DaeError as ex: collada.handleError(ex) anim = Animation(id, name, sourcebyid, children, node) return anim def __str__(self): return '' % (self.id, len(self.children)) def __repr__(self): return str(self) pycollada-0.4/collada/asset.py000066400000000000000000000246011200577111600164200ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains COLLADA asset information.""" import numpy import datetime import dateutil.parser from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import _correctValInNode from collada.xmlutil import etree as ElementTree class UP_AXIS: """The up-axis of the collada document.""" X_UP = 'X_UP' """Indicates X direction is up""" Y_UP = 'Y_UP' """Indicates Y direction is up""" Z_UP = 'Z_UP' """Indicates Z direction is up""" class Contributor(DaeObject): """Defines authoring information for asset management""" def __init__(self, author=None, authoring_tool=None, comments=None, copyright=None, source_data=None, xmlnode=None): """Create a new contributor :param str author: The author's name :param str authoring_tool: Name of the authoring tool :param str comments: Comments from the contributor :param str copyright: Copyright information :param str source_data: URI referencing the source data :param xmlnode: If loaded from xml, the xml node """ self.author = author """Contains a string with the author's name.""" self.authoring_tool = authoring_tool """Contains a string with the name of the authoring tool.""" self.comments = comments """Contains a string with comments from this contributor.""" self.copyright = copyright """Contains a string with copyright information.""" self.source_data = source_data """Contains a string with a URI referencing the source data for this asset.""" if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the contributor.""" else: self.xmlnode = E.contributor() if author is not None: self.xmlnode.append(E.author(str(author))) if authoring_tool is not None: self.xmlnode.append(E.authoring_tool(str(authoring_tool))) if comments is not None: self.xmlnode.append(E.comments(str(comments))) if copyright is not None: self.xmlnode.append(E.copyright(str(copyright))) if source_data is not None: self.xmlnode.append(E.source_data(str(source_data))) @staticmethod def load(collada, localscope, node): author = node.find( tag('author') ) authoring_tool = node.find( tag('authoring_tool') ) comments = node.find( tag('comments') ) copyright = node.find( tag('copyright') ) source_data = node.find( tag('source_data') ) if author is not None: author = author.text if authoring_tool is not None: authoring_tool = authoring_tool.text if comments is not None: comments = comments.text if copyright is not None: copyright = copyright.text if source_data is not None: source_data = source_data.text return Contributor(author=author, authoring_tool=authoring_tool, comments=comments, copyright=copyright, source_data=source_data, xmlnode=node) def save(self): """Saves the contributor info back to :attr:`xmlnode`""" _correctValInNode(self.xmlnode, 'author', self.author) _correctValInNode(self.xmlnode, 'authoring_tool', self.authoring_tool) _correctValInNode(self.xmlnode, 'comments', self.comments) _correctValInNode(self.xmlnode, 'copyright', self.copyright) _correctValInNode(self.xmlnode, 'source_data', self.source_data) def __str__(self): return '' % (str(self.author),) def __repr__(self): return str(self) class Asset(DaeObject): """Defines asset-management information""" def __init__(self, created=None, modified=None, title=None, subject=None, revision=None, keywords=None, unitname=None, unitmeter=None, upaxis=None, contributors=None, xmlnode=None): """Create a new set of information about an asset :param datetime.datetime created: When the asset was created. If None, this will be set to the current date and time. :param datetime.datetime modified: When the asset was modified. If None, this will be set to the current date and time. :param str title: The title of the asset :param str subject: The description of the topical subject of the asset :param str revision: Revision information about the asset :param str keywords: A list of words used for search criteria for the asset :param str unitname: The name of the unit of distance for this asset :param float unitmeter: How many real-world meters are in one distance unit :param `collada.asset.UP_AXIS` upaxis: The up-axis of the asset. If None, this will be set to Y_UP :param list contributors: The list of contributors for the asset :param xmlnode: If loaded from xml, the xml node """ if created is None: created = datetime.datetime.now() self.created = created """Instance of :class:`datetime.datetime` indicating when the asset was created""" if modified is None: modified = datetime.datetime.now() self.modified = modified """Instance of :class:`datetime.datetime` indicating when the asset was modified""" self.title = title """String containing the title of the asset""" self.subject = subject """String containing the description of the topical subject of the asset""" self.revision = revision """String containing revision information about the asset""" self.keywords = keywords """String containing a list of words used for search criteria for the asset""" self.unitname = unitname """String containing the name of the unit of distance for this asset""" self.unitmeter = unitmeter """Float containing how many real-world meters are in one distance unit""" if upaxis is None: upaxis = UP_AXIS.Y_UP self.upaxis = upaxis """Instance of type :class:`collada.asset.UP_AXIS` indicating the up-axis of the asset""" if contributors is None: contributors = [] self.contributors = contributors """A list of instances of :class:`collada.asset.Contributor`""" if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the asset.""" else: self._recreateXmlNode() def _recreateXmlNode(self): self.xmlnode = E.asset() for contributor in self.contributors: self.xmlnode.append(contributor.xmlnode) self.xmlnode.append(E.created(self.created.isoformat())) if self.keywords is not None: self.xmlnode.append(E.keywords(self.keywords)) self.xmlnode.append(E.modified(self.modified.isoformat())) if self.revision is not None: self.xmlnode.append(E.revision(self.revision)) if self.subject is not None: self.xmlnode.append(E.subject(self.subject)) if self.title is not None: self.xmlnode.append(E.title(self.title)) if self.unitmeter is not None and self.unitname is not None: self.xmlnode.append(E.unit(name=self.unitname, meter=str(self.unitmeter))) self.xmlnode.append(E.up_axis(self.upaxis)) def save(self): """Saves the asset info back to :attr:`xmlnode`""" self._recreateXmlNode() @staticmethod def load(collada, localscope, node): contributornodes = node.findall( tag('contributor') ) contributors = [] for contributornode in contributornodes: contributors.append(Contributor.load(collada, localscope, contributornode)) created = node.find( tag('created') ) if created is not None: try: created = dateutil.parser.parse(created.text) except: created = None keywords = node.find( tag('keywords') ) if keywords is not None: keywords = keywords.text modified = node.find( tag('modified') ) if modified is not None: try: modified = dateutil.parser.parse(modified.text) except: modified = None revision = node.find( tag('revision') ) if revision is not None: revision = revision.text subject = node.find( tag('subject') ) if subject is not None: subject = subject.text title = node.find( tag('title') ) if title is not None: title = title.text unitnode = node.find( tag('unit') ) if unitnode is not None: unitname = unitnode.get('name') try: unitmeter = float(unitnode.get('meter')) except: unitname = None unitmeter = None else: unitname = None unitmeter = None upaxis = node.find( tag('up_axis') ) if upaxis is not None: upaxis = upaxis.text if not(upaxis == UP_AXIS.X_UP or upaxis == UP_AXIS.Y_UP or \ upaxis == UP_AXIS.Z_UP): upaxis = None return Asset(created=created, modified=modified, title=title, subject=subject, revision=revision, keywords=keywords, unitname=unitname, unitmeter=unitmeter, upaxis=upaxis, contributors=contributors, xmlnode=node) def __str__(self): return '' % (str(self.title),) def __repr__(self): return str(self) pycollada-0.4/collada/camera.py000066400000000000000000000355001200577111600165310ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains objects for representing cameras""" import numpy from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError from collada.xmlutil import etree as ElementTree class Camera(DaeObject): """Base camera class holding data from tags.""" @staticmethod def load(collada, localscope, node): tecnode = node.find('%s/%s' % (tag('optics'),tag('technique_common'))) if tecnode is None or len(tecnode) == 0: raise DaeIncompleteError('Missing common technique in camera') camnode = tecnode[0] if camnode.tag == tag('perspective'): return PerspectiveCamera.load(collada, localscope, node) elif camnode.tag == tag('orthographic'): return OrthographicCamera.load(collada, localscope, node) else: raise DaeUnsupportedError('Unrecognized camera type: %s' % camnode.tag) class PerspectiveCamera(Camera): """Perspective camera as defined in COLLADA tag .""" def __init__(self, id, znear, zfar, xfov=None, yfov=None, aspect_ratio=None, xmlnode = None): """Create a new perspective camera. Note: ``aspect_ratio = tan(0.5*xfov) / tan(0.5*yfov)`` You can specify one of: * :attr:`xfov` alone * :attr:`yfov` alone * :attr:`xfov` and :attr:`yfov` * :attr:`xfov` and :attr:`aspect_ratio` * :attr:`yfov` and :attr:`aspect_ratio` Any other combination will raise :class:`collada.common.DaeMalformedError` :param str id: Identifier for the camera :param float znear: Distance to the near clipping plane :param float zfar: Distance to the far clipping plane :param float xfov: Horizontal field of view, in degrees :param float yfov: Vertical field of view, in degrees :param float aspect_ratio: Aspect ratio of the field of view :param xmlnode: If loaded from xml, the xml node """ self.id = id """Identifier for the camera""" self.xfov = xfov """Horizontal field of view, in degrees""" self.yfov = yfov """Vertical field of view, in degrees""" self.aspect_ratio = aspect_ratio """Aspect ratio of the field of view""" self.znear = znear """Distance to the near clipping plane""" self.zfar = zfar """Distance to the far clipping plane""" self._checkValidParams() if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the data.""" else: self._recreateXmlNode() def _recreateXmlNode(self): perspective_node = E.perspective() if self.xfov is not None: perspective_node.append(E.xfov(str(self.xfov))) if self.yfov is not None: perspective_node.append(E.yfov(str(self.yfov))) if self.aspect_ratio is not None: perspective_node.append(E.aspect_ratio(str(self.aspect_ratio))) perspective_node.append(E.znear(str(self.znear))) perspective_node.append(E.zfar(str(self.zfar))) self.xmlnode = E.camera( E.optics( E.technique_common(perspective_node) ) , id=self.id, name=self.id) def _checkValidParams(self): if self.xfov is not None and self.yfov is None \ and self.aspect_ratio is None: pass elif self.xfov is None and self.yfov is not None \ and self.aspect_ratio is None: pass elif self.xfov is not None and self.yfov is None \ and self.aspect_ratio is not None: pass elif self.xfov is None and self.yfov is not None \ and self.aspect_ratio is not None: pass elif self.xfov is not None and self.yfov is not None \ and self.aspect_ratio is None: pass else: raise DaeMalformedError("Received invalid combination of xfov (%s), yfov (%s), and aspect_ratio (%s)" % (str(self.xfov), str(self.yfov), str(self.aspect_ratio))) def save(self): """Saves the perspective camera's properties back to xmlnode""" self._checkValidParams() self._recreateXmlNode() @staticmethod def load(collada, localscope, node): persnode = node.find( '%s/%s/%s'%(tag('optics'),tag('technique_common'), tag('perspective') )) if persnode is None: raise DaeIncompleteError('Missing perspective for camera definition') xfov = persnode.find( tag('xfov') ) yfov = persnode.find( tag('yfov') ) aspect_ratio = persnode.find( tag('aspect_ratio') ) znearnode = persnode.find( tag('znear') ) zfarnode = persnode.find( tag('zfar') ) id = node.get('id', '') try: if xfov is not None: xfov = float(xfov.text) if yfov is not None: yfov = float(yfov.text) if aspect_ratio is not None: aspect_ratio = float(aspect_ratio.text) znear = float(znearnode.text) zfar = float(zfarnode.text) except (TypeError, ValueError) as ex: raise DaeMalformedError('Corrupted float values in camera definition') #There are some exporters that incorrectly output all three of these. # Worse, they actually got the caculation of aspect_ratio wrong! # So instead of failing to load, let's just add one more hack because of terrible exporters if xfov is not None and yfov is not None and aspect_ratio is not None: aspect_ratio = None return PerspectiveCamera(id, znear, zfar, xfov=xfov, yfov=yfov, aspect_ratio=aspect_ratio, xmlnode=node) def bind(self, matrix): """Create a bound camera of itself based on a transform matrix. :param numpy.array matrix: A numpy transformation matrix of size 4x4 :rtype: :class:`collada.camera.BoundPerspectiveCamera` """ return BoundPerspectiveCamera(self, matrix) def __str__(self): return '' % self.id def __repr__(self): return str(self) class OrthographicCamera(Camera): """Orthographic camera as defined in COLLADA tag .""" def __init__(self, id, znear, zfar, xmag=None, ymag=None, aspect_ratio=None, xmlnode = None): """Create a new orthographic camera. Note: ``aspect_ratio = xmag / ymag`` You can specify one of: * :attr:`xmag` alone * :attr:`ymag` alone * :attr:`xmag` and :attr:`ymag` * :attr:`xmag` and :attr:`aspect_ratio` * :attr:`ymag` and :attr:`aspect_ratio` Any other combination will raise :class:`collada.common.DaeMalformedError` :param str id: Identifier for the camera :param float znear: Distance to the near clipping plane :param float zfar: Distance to the far clipping plane :param float xmag: Horizontal magnification of the view :param float ymag: Vertical magnification of the view :param float aspect_ratio: Aspect ratio of the field of view :param xmlnode: If loaded from xml, the xml node """ self.id = id """Identifier for the camera""" self.xmag = xmag """Horizontal magnification of the view""" self.ymag = ymag """Vertical magnification of the view""" self.aspect_ratio = aspect_ratio """Aspect ratio of the field of view""" self.znear = znear """Distance to the near clipping plane""" self.zfar = zfar """Distance to the far clipping plane""" self._checkValidParams() if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the data.""" else: self._recreateXmlNode() def _recreateXmlNode(self): orthographic_node = E.orthographic() if self.xmag is not None: orthographic_node.append(E.xmag(str(self.xmag))) if self.ymag is not None: orthographic_node.append(E.ymag(str(self.ymag))) if self.aspect_ratio is not None: orthographic_node.append(E.aspect_ratio(str(self.aspect_ratio))) orthographic_node.append(E.znear(str(self.znear))) orthographic_node.append(E.zfar(str(self.zfar))) self.xmlnode = E.camera( E.optics( E.technique_common(orthographic_node) ) , id=self.id, name=self.id) def _checkValidParams(self): if self.xmag is not None and self.ymag is None \ and self.aspect_ratio is None: pass elif self.xmag is None and self.ymag is not None \ and self.aspect_ratio is None: pass elif self.xmag is not None and self.ymag is None \ and self.aspect_ratio is not None: pass elif self.xmag is None and self.ymag is not None \ and self.aspect_ratio is not None: pass elif self.xmag is not None and self.ymag is not None \ and self.aspect_ratio is None: pass else: raise DaeMalformedError("Received invalid combination of xmag (%s), ymag (%s), and aspect_ratio (%s)" % (str(self.xmag), str(self.ymag), str(self.aspect_ratio))) def save(self): """Saves the orthographic camera's properties back to xmlnode""" self._checkValidParams() self._recreateXmlNode() @staticmethod def load(collada, localscope, node): orthonode = node.find('%s/%s/%s' % ( tag('optics'), tag('technique_common'), tag('orthographic'))) if orthonode is None: raise DaeIncompleteError('Missing orthographic for camera definition') xmag = orthonode.find( tag('xmag') ) ymag = orthonode.find( tag('ymag') ) aspect_ratio = orthonode.find( tag('aspect_ratio') ) znearnode = orthonode.find( tag('znear') ) zfarnode = orthonode.find( tag('zfar') ) id = node.get('id', '') try: if xmag is not None: xmag = float(xmag.text) if ymag is not None: ymag = float(ymag.text) if aspect_ratio is not None: aspect_ratio = float(aspect_ratio.text) znear = float(znearnode.text) zfar = float(zfarnode.text) except (TypeError, ValueError) as ex: raise DaeMalformedError('Corrupted float values in camera definition') #There are some exporters that incorrectly output all three of these. # Worse, they actually got the caculation of aspect_ratio wrong! # So instead of failing to load, let's just add one more hack because of terrible exporters if xmag is not None and ymag is not None and aspect_ratio is not None: aspect_ratio = None return OrthographicCamera(id, znear, zfar, xmag=xmag, ymag=ymag, aspect_ratio=aspect_ratio, xmlnode=node) def bind(self, matrix): """Create a bound camera of itself based on a transform matrix. :param numpy.array matrix: A numpy transformation matrix of size 4x4 :rtype: :class:`collada.camera.BoundOrthographicCamera` """ return BoundOrthographicCamera(self, matrix) def __str__(self): return '' % self.id def __repr__(self): return str(self) class BoundCamera(object): """Base class for bound cameras""" pass class BoundPerspectiveCamera(BoundCamera): """Perspective camera bound to a scene with a transform. This gets created when a camera is instantiated in a scene. Do not create this manually.""" def __init__(self, cam, matrix): self.xfov = cam.xfov """Horizontal field of view, in degrees""" self.yfov = cam.yfov """Vertical field of view, in degrees""" self.aspect_ratio = cam.aspect_ratio """Aspect ratio of the field of view""" self.znear = cam.znear """Distance to the near clipping plane""" self.zfar = cam.zfar """Distance to the far clipping plane""" self.matrix = matrix """The matrix bound to""" self.position = matrix[:3,3] """The position of the camera""" self.direction = -matrix[:3,2] """The direction the camera is facing""" self.up = matrix[:3,1] """The up vector of the camera""" self.original = cam """Original :class:`collada.camera.PerspectiveCamera` object this is bound to.""" def __str__(self): return '' % self.original.id def __repr__(self): return str(self) class BoundOrthographicCamera(BoundCamera): """Orthographic camera bound to a scene with a transform. This gets created when a camera is instantiated in a scene. Do not create this manually.""" def __init__(self, cam, matrix): self.xmag = cam.xmag """Horizontal magnification of the view""" self.ymag = cam.ymag """Vertical magnification of the view""" self.aspect_ratio = cam.aspect_ratio """Aspect ratio of the field of view""" self.znear = cam.znear """Distance to the near clipping plane""" self.zfar = cam.zfar """Distance to the far clipping plane""" self.matrix = matrix """The matrix bound to""" self.position = matrix[:3,3] """The position of the camera""" self.direction = -matrix[:3,2] """The direction the camera is facing""" self.up = matrix[:3,1] """The up vector of the camera""" self.original = cam """Original :class:`collada.camera.OrthographicCamera` object this is bound to.""" def __str__(self): return '' % self.original.id def __repr__(self): return str(self) pycollada-0.4/collada/common.py000066400000000000000000000046431200577111600165750ustar00rootroot00000000000000from collada.xmlutil import etree, ElementMaker, COLLADA_NS E = ElementMaker(namespace=COLLADA_NS, nsmap={None: COLLADA_NS}) def tag(text): return str(etree.QName(COLLADA_NS, text)) class DaeObject(object): """This class is the abstract interface to all collada objects. Every in a COLLADA that we recognize and load has mirror class deriving from this one. All instances will have at least a :meth:`load` method which creates the object from an xml node and an attribute called :attr:`xmlnode` with the ElementTree representation of the data. Even if it was created on the fly. If the object is not read-only, it will also have a :meth:`save` method which saves the object's information back to the :attr:`xmlnode` attribute. """ xmlnode = None """ElementTree representation of the data.""" @staticmethod def load(collada, localscope, node): """Load and return a class instance from an XML node. Inspect the data inside node, which must match this class tag and create an instance out of it. :param collada.Collada collada: The collada file object where this object lives :param dict localscope: If there is a local scope where we should look for local ids (sid) this is the dictionary. Otherwise empty dict ({}) :param node: An Element from python's ElementTree API """ raise Exception('Not implemented') def save(self): """Put all the data to the internal xml node (xmlnode) so it can be serialized.""" class DaeError(Exception): """General DAE exception.""" def __init__(self, msg): super(DaeError,self).__init__() self.msg = msg def __str__(self): return type(self).__name__ + ': ' + self.msg def __repr__(self): return type(self).__name__ + '("' + self.msg + '")' class DaeIncompleteError(DaeError): """Raised when needed data for an object isn't there.""" pass class DaeBrokenRefError(DaeError): """Raised when a referenced object is not found in the scope.""" pass class DaeMalformedError(DaeError): """Raised when data is found to be corrupted in some way.""" pass class DaeUnsupportedError(DaeError): """Raised when some unexpectedly unsupported feature is found.""" pass class DaeSaveValidationError(DaeError): """Raised when XML validation fails when saving.""" pass pycollada-0.4/collada/controller.py000066400000000000000000000404671200577111600174740ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains objects representing controllers. Currently has partial support for loading Skin and Morph. **This module is highly experimental. More support will be added in version 0.4.**""" import numpy from collada import source from collada.common import DaeObject, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.geometry import Geometry from collada.util import checkSource from collada.xmlutil import etree as ElementTree class Controller(DaeObject): """Base controller class holding data from tags.""" def bind(self, matrix, materialnodebysymbol): pass @staticmethod def load( collada, localscope, node ): controller = node.find(tag('skin')) if controller is None: controller = node.find(tag('morph')) if controller is None: raise DaeUnsupportedError('Unknown controller node') sourcebyid = {} sources = [] sourcenodes = node.findall('%s/%s'%(controller.tag, tag('source'))) for sourcenode in sourcenodes: ch = source.Source.load(collada, {}, sourcenode) sources.append(ch) sourcebyid[ch.id] = ch if controller.tag == tag('skin'): return Skin.load(collada, sourcebyid, controller, node) else: return Morph.load(collada, sourcebyid, controller, node) class BoundController( object ): """Base class for a controller bound to a transform matrix and materials mapping.""" class Skin(Controller): """Class containing data collada holds in the tag""" def __init__(self, sourcebyid, bind_shape_matrix, joint_source, joint_matrix_source, weight_source, weight_joint_source, vcounts, vertex_weight_index, offsets, geometry, controller_node=None, skin_node=None): """Create a skin. :Parameters: sourceById A dict mapping id's to a collada source bind_shape_matrix A numpy array of floats (pre-shape) joint_source The string id for the joint source joint_matrix_source The string id for the joint matrix source weight_source The string id for the weight source weight_joint_source The string id for the joint source of weights vcounts A list with the number of influences on each vertex vertex_weight_index An array with the indexes as they come from array offsets A list with the offsets in the weight index array for each source in (joint, weight) geometry The source geometry this should be applied to (geometry.Geometry) controller_node XML node of the tag which is the parent of this skin_node XML node of the tag if this is from there """ self.sourcebyid = sourcebyid self.bind_shape_matrix = bind_shape_matrix self.joint_source = joint_source self.joint_matrix_source = joint_matrix_source self.weight_source = weight_source self.weight_joint_source = weight_joint_source self.vcounts = vcounts self.vertex_weight_index = vertex_weight_index self.offsets = offsets self.geometry = geometry self.controller_node = controller_node self.skin_node = skin_node self.xmlnode = controller_node if not type(self.geometry) is Geometry: raise DaeMalformedError('Invalid reference geometry in skin') self.id = controller_node.get('id') if self.id is None: raise DaeMalformedError('Controller node requires an ID') self.nindices = max(self.offsets) + 1 if len(bind_shape_matrix) != 16: raise DaeMalformedError('Corrupted bind shape matrix in skin') self.bind_shape_matrix.shape = (4,4) if not(joint_source in sourcebyid and joint_matrix_source in sourcebyid): raise DaeBrokenRefError("Input in joints not found") if not(type(sourcebyid[joint_source]) is source.NameSource or type(sourcebyid[joint_source]) is source.IDRefSource): raise DaeIncompleteError("Could not find joint name input for skin") if not type(sourcebyid[joint_matrix_source]) is source.FloatSource: raise DaeIncompleteError("Could not find joint matrix source for skin") joint_names = [j for j in sourcebyid[joint_source]] joint_matrices = sourcebyid[joint_matrix_source].data joint_matrices.shape = (-1,4,4) if len(joint_names) != len(joint_matrices): raise DaeMalformedError("Skin joint and matrix inputs must be same length") self.joint_matrices = {} for n,m in zip(joint_names, joint_matrices): self.joint_matrices[n] = m if not(weight_source in sourcebyid and weight_joint_source in sourcebyid): raise DaeBrokenRefError("Weights input in joints not found") if not type(sourcebyid[weight_source]) is source.FloatSource: raise DaeIncompleteError("Could not find weight inputs for skin") if not(type(sourcebyid[weight_joint_source]) is source.NameSource or type(sourcebyid[weight_joint_source]) is source.IDRefSource): raise DaeIncompleteError("Could not find weight joint source input for skin") self.weights = sourcebyid[weight_source] self.weight_joints = sourcebyid[weight_joint_source] try: newshape = [] at = 0 for ct in self.vcounts: this_set = self.vertex_weight_index[self.nindices*at:self.nindices*(at+ct)] this_set.shape = (ct, self.nindices) newshape.append(numpy.array(this_set)) at+=ct self.index = newshape except: raise DaeMalformedError('Corrupted vcounts or index in skin weights') try: self.joint_index = [influence[:, self.offsets[0]] for influence in self.index] self.weight_index = [influence[:, self.offsets[1]] for influence in self.index] except: raise DaeMalformedError('Corrupted joint or weight index in skin') self.max_joint_index = numpy.max( [numpy.max(joint) if len(joint) > 0 else 0 for joint in self.joint_index] ) self.max_weight_index = numpy.max( [numpy.max(weight) if len(weight) > 0 else 0 for weight in self.weight_index] ) checkSource(self.weight_joints, ('JOINT',), self.max_joint_index) checkSource(self.weights, ('WEIGHT',), self.max_weight_index) def __len__(self): return len(self.index) def __getitem__(self, i): return self.index[i] def bind(self, matrix, materialnodebysymbol): """Create a bound morph from this one, transform and material mapping""" return BoundSkin(self, matrix, materialnodebysymbol) @staticmethod def load( collada, localscope, skinnode, controllernode ): if len(localscope) < 3: raise DaeMalformedError('Not enough sources in skin') geometry_source = skinnode.get('source') if geometry_source is None or len(geometry_source) < 2 \ or geometry_source[0] != '#': raise DaeBrokenRefError('Invalid source attribute of skin node') if not geometry_source[1:] in collada.geometries: raise DaeBrokenRefError('Source geometry for skin node not found') geometry = collada.geometries[geometry_source[1:]] bind_shape_mat = skinnode.find(tag('bind_shape_matrix')) if bind_shape_mat is None: bind_shape_mat = numpy.identity(4, dtype=numpy.float32) bind_shape_mat.shape = (-1,) else: try: values = [ float(v) for v in bind_shape_mat.text.split()] except ValueError: raise DaeMalformedError('Corrupted bind shape matrix in skin') bind_shape_mat = numpy.array( values, dtype=numpy.float32 ) inputnodes = skinnode.findall('%s/%s'%(tag('joints'), tag('input'))) if inputnodes is None or len(inputnodes) < 2: raise DaeIncompleteError("Not enough inputs in skin joints") try: inputs = [(i.get('semantic'), i.get('source')) for i in inputnodes] except ValueError as ex: raise DaeMalformedError('Corrupted inputs in skin') joint_source = None matrix_source = None for i in inputs: if len(i[1]) < 2 or i[1][0] != '#': raise DaeBrokenRefError('Input in skin node %s not found'%i[1]) if i[0] == 'JOINT': joint_source = i[1][1:] elif i[0] == 'INV_BIND_MATRIX': matrix_source = i[1][1:] weightsnode = skinnode.find(tag('vertex_weights')) if weightsnode is None: raise DaeIncompleteError("No vertex_weights found in skin") indexnode = weightsnode.find(tag('v')) if indexnode is None: raise DaeIncompleteError('Missing indices in skin vertex weights') vcountnode = weightsnode.find(tag('vcount')) if vcountnode is None: raise DaeIncompleteError('Missing vcount in skin vertex weights') inputnodes = weightsnode.findall(tag('input')) try: index = numpy.array([float(v) for v in indexnode.text.split()], dtype=numpy.int32) vcounts = numpy.array([int(v) for v in vcountnode.text.split()], dtype=numpy.int32) inputs = [(i.get('semantic'), i.get('source'), int(i.get('offset'))) for i in inputnodes] except ValueError as ex: raise DaeMalformedError('Corrupted index or offsets in skin vertex weights') weight_joint_source = None weight_source = None offsets = [0, 0] for i in inputs: if len(i[1]) < 2 or i[1][0] != '#': raise DaeBrokenRefError('Input in skin node %s not found' % i[1]) if i[0] == 'JOINT': weight_joint_source = i[1][1:] offsets[0] = i[2] elif i[0] == 'WEIGHT': weight_source = i[1][1:] offsets[1] = i[2] if joint_source is None or weight_source is None: raise DaeMalformedError('Not enough inputs for vertex weights in skin') return Skin(localscope, bind_shape_mat, joint_source, matrix_source, weight_source, weight_joint_source, vcounts, index, offsets, geometry, controllernode, skinnode) class BoundSkin(BoundController): """A skin bound to a transform matrix and materials mapping.""" def __init__(self, skin, matrix, materialnodebysymbol): self.matrix = matrix self.materialnodebysymbol = materialnodebysymbol self.skin = skin self.id = skin.id self.index = skin.index self.joint_matrices = skin.joint_matrices self.geometry = skin.geometry.bind(numpy.dot(matrix,skin.bind_shape_matrix), materialnodebysymbol) def __len__(self): return len(self.index) def __getitem__(self, i): return self.index[i] def getJoint(self, i): return self.skin.weight_joints[i] def getWeight(self, i): return self.skin.weights[i] def primitives(self): for prim in self.geometry.primitives(): bsp = BoundSkinPrimitive(prim, self) yield bsp class BoundSkinPrimitive(object): """A bound skin bound to a primitive.""" def __init__(self, primitive, boundskin): self.primitive = primitive self.boundskin = boundskin def __len__(self): return len(self.primitive) def shapes(self): for shape in self.primitive.shapes(): indices = shape.indices yield shape class Morph(Controller): """Class containing data collada holds in the tag""" def __init__(self, source_geometry, target_list, xmlnode=None): """Create a morph instance :Parameters: source_geometry The source geometry (Geometry) targets A list of tuples where each tuple (g,w) contains a Geometry (g) and a float weight value (w) xmlnode When loaded, the xmlnode it comes from """ self.id = xmlnode.get('id') if self.id is None: raise DaeMalformedError('Controller node requires an ID') self.source_geometry = source_geometry """The source geometry (Geometry)""" self.target_list = target_list """A list of tuples where each tuple (g,w) contains a Geometry (g) and a float weight value (w)""" self.xmlnode = xmlnode #TODO def __len__(self): return len(self.target_list) def __getitem__(self, i): return self.target_list[i] def bind(self, matrix, materialnodebysymbol): """Create a bound morph from this one, transform and material mapping""" return BoundMorph(self, matrix, materialnodebysymbol) @staticmethod def load( collada, localscope, morphnode, controllernode ): baseid = morphnode.get('source') if len(baseid) < 2 or baseid[0] != '#' or \ not baseid[1:] in collada.geometries: raise DaeBrokenRefError('Base source of morph %s not found' % baseid) basegeom = collada.geometries[baseid[1:]] method = morphnode.get('method') if method is None: method = 'NORMALIZED' if not (method == 'NORMALIZED' or method == 'RELATIVE'): raise DaeMalformedError("Morph method must be either NORMALIZED or RELATIVE. Found '%s'" % method) inputnodes = morphnode.findall('%s/%s'%(tag('targets'), tag('input'))) if inputnodes is None or len(inputnodes) < 2: raise DaeIncompleteError("Not enough inputs in a morph") try: inputs = [(i.get('semantic'), i.get('source')) for i in inputnodes] except ValueError as ex: raise DaeMalformedError('Corrupted inputs in morph') target_source = None weight_source = None for i in inputs: if len(i[1]) < 2 or i[1][0] != '#' or not i[1][1:] in localscope: raise DaeBrokenRefError('Input in morph node %s not found' % i[1]) if i[0] == 'MORPH_TARGET': target_source = localscope[i[1][1:]] elif i[0] == 'MORPH_WEIGHT': weight_source = localscope[i[1][1:]] if not type(target_source) is source.IDRefSource or \ not type(weight_source) is source.FloatSource: raise DaeIncompleteError("Not enough inputs in targets of morph") if len(target_source) != len(weight_source): raise DaeMalformedError("Morph inputs must be of same length") target_list = [] for target, weight in zip(target_source, weight_source): if len(target) < 1 or not(target in collada.geometries): raise DaeBrokenRefError("Targeted geometry %s in morph not found"%target) target_list.append((collada.geometries[target], weight[0])) return Morph(basegeom, target_list, controllernode) def save(self): #TODO pass class BoundMorph(BoundController): """A morph bound to a transform matrix and materials mapping.""" def __init__(self, morph, matrix, materialnodebysymbol): self.matrix = matrix self.materialnodebysymbol = materialnodebysymbol self.original = morph def __len__(self): return len(self.original) def __getitem__(self, i): return self.original[i] pycollada-0.4/collada/geometry.py000066400000000000000000000363251200577111600171420ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains objects for representing a geometry.""" import numpy from collada import source from collada import triangleset from collada import lineset from collada import polylist from collada import polygons from collada import primitive from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.xmlutil import etree as ElementTree class Geometry(DaeObject): """A class containing the data coming from a COLLADA tag""" def __init__(self, collada, id, name, sourcebyid, primitives=None, xmlnode=None, double_sided=False): """Create a geometry instance :param collada.Collada collada: The collada object this geometry belongs to :param str id: A unique string identifier for the geometry :param str name: A text string naming the geometry :param sourcebyid: A list of :class:`collada.source.Source` objects or a dictionary mapping source ids to the actual objects :param list primitives: List of primitive objects contained within the geometry. Do not set this argument manually. Instead, create a :class:`collada.geometry.Geometry` first and then append to :attr:`primitives` with the `create*` functions. :param xmlnode: When loaded, the xmlnode it comes from. :param bool double_sided: Whether or not the geometry should be rendered double sided """ self.collada = collada """The :class:`collada.Collada` object this geometry belongs to""" self.id = id """The unique string identifier for the geometry""" self.name = name """The text string naming the geometry""" self.double_sided = double_sided """A boolean indicating whether or not the geometry should be rendered double sided""" self.sourceById = sourcebyid """A dictionary containing :class:`collada.source.Source` objects indexed by their id.""" if isinstance(sourcebyid, list): self.sourceById = {} for src in sourcebyid: self.sourceById[src.id] = src self.primitives = [] """List of primitives (base type :class:`collada.primitive.Primitive`) inside this geometry.""" if primitives is not None: self.primitives = primitives if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the geometry.""" else: sourcenodes = [] verticesnode = None for srcid, src in self.sourceById.items(): sourcenodes.append(src.xmlnode) if verticesnode is None: #pick first source to be in the useless tag verticesnode = E.vertices(E.input(semantic='POSITION', source="#%s"%srcid), id=srcid + '-vertices') meshnode = E.mesh(*sourcenodes) meshnode.append(verticesnode) self.xmlnode = E.geometry(meshnode) if len(self.id) > 0: self.xmlnode.set("id", self.id) if len(self.name) > 0: self.xmlnode.set("name", self.name) def createLineSet(self, indices, inputlist, materialid): """Create a set of lines for use in this geometry instance. :param numpy.array indices: unshaped numpy array that contains the indices for the inputs referenced in inputlist :param collada.source.InputList inputlist: The inputs for this primitive :param str materialid: A string containing a symbol that will get used to bind this lineset to a material when instantiating into a scene :rtype: :class:`collada.lineset.LineSet` """ inputdict = primitive.Primitive._getInputsFromList(self.collada, self.sourceById, inputlist.getList()) return lineset.LineSet(inputdict, materialid, indices) def createTriangleSet(self, indices, inputlist, materialid): """Create a set of triangles for use in this geometry instance. :param numpy.array indices: unshaped numpy array that contains the indices for the inputs referenced in inputlist :param collada.source.InputList inputlist: The inputs for this primitive :param str materialid: A string containing a symbol that will get used to bind this triangleset to a material when instantiating into a scene :rtype: :class:`collada.triangleset.TriangleSet` """ inputdict = primitive.Primitive._getInputsFromList(self.collada, self.sourceById, inputlist.getList()) return triangleset.TriangleSet(inputdict, materialid, indices) def createPolylist(self, indices, vcounts, inputlist, materialid): """Create a polylist for use with this geometry instance. :param numpy.array indices: unshaped numpy array that contains the indices for the inputs referenced in inputlist :param numpy.array vcounts: unshaped numpy array that contains the vertex count for each polygon in this polylist :param collada.source.InputList inputlist: The inputs for this primitive :param str materialid: A string containing a symbol that will get used to bind this polylist to a material when instantiating into a scene :rtype: :class:`collada.polylist.Polylist` """ inputdict = primitive.Primitive._getInputsFromList(self.collada, self.sourceById, inputlist.getList()) return polylist.Polylist(inputdict, materialid, indices, vcounts) def createPolygons(self, indices, inputlist, materialid): """Create a polygons for use with this geometry instance. :param numpy.array indices: list of unshaped numpy arrays that each contain the indices for a single polygon :param collada.source.InputList inputlist: The inputs for this primitive :param str materialid: A string containing a symbol that will get used to bind this polygons to a material when instantiating into a scene :rtype: :class:`collada.polygons.Polygons` """ inputdict = primitive.Primitive._getInputsFromList(self.collada, self.sourceById, inputlist.getList()) return polygons.Polygons(inputdict, materialid, indices) @staticmethod def load( collada, localscope, node ): id = node.get("id") or "" name = node.get("name") or "" meshnode = node.find(tag('mesh')) if meshnode is None: raise DaeUnsupportedError('Unknown geometry node') sourcebyid = {} sources = [] sourcenodes = node.findall('%s/%s'%(tag('mesh'), tag('source'))) for sourcenode in sourcenodes: ch = source.Source.load(collada, {}, sourcenode) sources.append(ch) sourcebyid[ch.id] = ch verticesnode = meshnode.find(tag('vertices')) if verticesnode is None: vertexsource = None else: inputnodes = {} for inputnode in verticesnode.findall(tag('input')): semantic = inputnode.get('semantic') inputsource = inputnode.get('source') if not semantic or not inputsource or not inputsource.startswith('#'): raise DaeIncompleteError('Bad input definition inside vertices') inputnodes[semantic] = sourcebyid.get(inputsource[1:]) if (not verticesnode.get('id') or len(inputnodes)==0 or not 'POSITION' in inputnodes): raise DaeIncompleteError('Bad vertices definition in mesh') sourcebyid[verticesnode.get('id')] = inputnodes vertexsource = verticesnode.get('id') double_sided_node = node.find('.//%s//%s' % (tag('extra'), tag('double_sided'))) double_sided = False if double_sided_node is not None and double_sided_node.text is not None: try: val = int(double_sided_node.text) if val == 1: double_sided = True except ValueError: pass _primitives = [] for subnode in meshnode: if subnode.tag == tag('polylist'): _primitives.append( polylist.Polylist.load( collada, sourcebyid, subnode ) ) elif subnode.tag == tag('triangles'): _primitives.append( triangleset.TriangleSet.load( collada, sourcebyid, subnode ) ) elif subnode.tag == tag('lines'): _primitives.append( lineset.LineSet.load( collada, sourcebyid, subnode ) ) elif subnode.tag == tag('polygons'): _primitives.append( polygons.Polygons.load( collada, sourcebyid, subnode ) ) elif subnode.tag != tag('source') and subnode.tag != tag('vertices') and subnode.tag != tag('extra'): raise DaeUnsupportedError('Unknown geometry tag %s' % subnode.tag) geom = Geometry(collada, id, name, sourcebyid, _primitives, xmlnode=node, double_sided=double_sided ) return geom def save(self): """Saves the geometry back to :attr:`xmlnode`""" meshnode = self.xmlnode.find(tag('mesh')) for src in self.sourceById.values(): if isinstance(src, source.Source): src.save() if src.xmlnode not in meshnode.getchildren(): meshnode.insert(0, src.xmlnode) deletenodes = [] for oldsrcnode in meshnode.findall(tag('source')): if oldsrcnode not in [src.xmlnode for src in self.sourceById.values() if isinstance(src, source.Source)]: deletenodes.append(oldsrcnode) for d in deletenodes: meshnode.remove(d) #Look through primitives to find a vertex source vnode = self.xmlnode.find(tag('mesh')).find(tag('vertices')) #delete any inputs in vertices tag that no longer exist and find the vertex input delete_inputs = [] for input_node in vnode.findall(tag('input')): if input_node.get('semantic') == 'POSITION': input_vnode = input_node else: srcid = input_node.get('source')[1:] if srcid not in self.sourceById: delete_inputs.append(input_node) for node in delete_inputs: vnode.remove(node) vert_sources = [] for prim in self.primitives: for src in prim.sources['VERTEX']: vert_sources.append(src[2][1:]) vert_src = vnode.get('id') vert_ref = input_vnode.get('source')[1:] if not(vert_src in vert_sources or vert_ref in vert_sources) and len(vert_sources) > 0: if vert_ref in self.sourceById and vert_ref in vert_sources: new_source = vert_ref else: new_source = vert_sources[0] self.sourceById[new_source + '-vertices'] = self.sourceById[new_source] input_vnode.set('source', '#' + new_source) vnode.set('id', new_source + '-vertices') #any source references in primitives that are pointing to the # same source that the vertices tag is pointing to to instead # point to the vertices id vert_src = vnode.get('id') vert_ref = input_vnode.get('source')[1:] for prim in self.primitives: for node in prim.xmlnode.findall(tag('input')): src = node.get('source')[1:] if src == vert_ref: node.set('source', '#%s' % vert_src) self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.name) for prim in self.primitives: if type(prim) is triangleset.TriangleSet and prim.xmlnode.tag != tag('triangles'): prim._recreateXmlNode() if prim.xmlnode not in meshnode.getchildren(): meshnode.append(prim.xmlnode) deletenodes = [] primnodes = [prim.xmlnode for prim in self.primitives] for child in meshnode.getchildren(): if child.tag != tag('vertices') and child.tag != tag('source') and child not in primnodes: deletenodes.append(child) for d in deletenodes: meshnode.remove(d) def bind(self, matrix, materialnodebysymbol): """Binds this geometry to a transform matrix and material mapping. The geometry's points get transformed by the given matrix and its inputs get mapped to the given materials. :param numpy.array matrix: A 4x4 numpy float matrix :param dict materialnodebysymbol: A dictionary with the material symbols inside the primitive assigned to :class:`collada.scene.MaterialNode` defined in the scene :rtype: :class:`collada.geometry.BoundGeometry` """ return BoundGeometry(self, matrix, materialnodebysymbol) def __str__(self): return '' % (self.id, len(self.primitives)) def __repr__(self): return str(self) class BoundGeometry( object ): """A geometry bound to a transform matrix and material mapping. This gets created when a geometry is instantiated in a scene. Do not create this manually.""" def __init__(self, geom, matrix, materialnodebysymbol): self.matrix = matrix """The matrix bound to""" self.materialnodebysymbol = materialnodebysymbol """Dictionary with the material symbols inside the primitive assigned to :class:`collada.scene.MaterialNode` defined in the scene""" self._primitives = geom.primitives self.original = geom """The original :class:`collada.geometry.Geometry` object this is bound to""" def __len__(self): """Returns the number of primitives in the bound geometry""" return len(self._primitives) def primitives(self): """Returns an iterator that iterates through the primitives in the bound geometry. Each value returned will be of base type :class:`collada.primitive.BoundPrimitive`""" for p in self._primitives: boundp = p.bind( self.matrix, self.materialnodebysymbol ) yield boundp def __str__(self): return '' % (self.original.id, len(self)) def __repr__(self): return str(self) pycollada-0.4/collada/light.py000066400000000000000000000532611200577111600164140ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Contains objects for representing lights.""" import numpy from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import _correctValInNode from collada.xmlutil import etree as ElementTree class Light(DaeObject): """Base light class holding data from tags.""" @staticmethod def load(collada, localscope, node): tecnode = node.find( tag('technique_common') ) if tecnode is None or len(tecnode) == 0: raise DaeIncompleteError('Missing common technique in light') lightnode = tecnode[0] if lightnode.tag == tag('directional'): return DirectionalLight.load( collada, localscope, node ) elif lightnode.tag == tag('point'): return PointLight.load( collada, localscope, node ) elif lightnode.tag == tag('ambient'): return AmbientLight.load( collada, localscope, node ) elif lightnode.tag == tag('spot'): return SpotLight.load( collada, localscope, node ) else: raise DaeUnsupportedError('Unrecognized light type: %s'%lightnode.tag) class DirectionalLight(Light): """Directional light as defined in COLLADA tag tag.""" def __init__(self, id, color, xmlnode = None): """Create a new directional light. :param str id: A unique string identifier for the light :param tuple color: Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light :param xmlnode: If loaded from xml, the xml node """ self.id = id """The unique string identifier for the light""" self.direction = numpy.array( [0, 0, -1], dtype=numpy.float32 ) #Not documenting this because it doesn't make sense to set the direction # of an unbound light. The direction isn't set until binding in a scene. self.color = color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the light.""" else: self.xmlnode = E.light( E.technique_common( E.directional( E.color(' '.join(map(str, self.color))) ) ) , id=self.id, name=self.id) def save(self): """Saves the light's properties back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) colornode = self.xmlnode.find('%s/%s/%s' % (tag('technique_common'), tag('directional'), tag('color'))) colornode.text = ' '.join(map(str, self.color)) @staticmethod def load(collada, localscope, node): colornode = node.find( '%s/%s/%s'%(tag('technique_common'),tag('directional'), tag('color') ) ) if colornode is None: raise DaeIncompleteError('Missing color for directional light') try: color = tuple([float(v) for v in colornode.text.split()]) except ValueError as ex: raise DaeMalformedError('Corrupted color values in light definition') return DirectionalLight(node.get('id'), color, xmlnode = node) def bind(self, matrix): """Binds this light to a transform matrix. :param numpy.array matrix: A 4x4 numpy float matrix :rtype: :class:`collada.light.BoundDirectionalLight` """ return BoundDirectionalLight(self, matrix) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class AmbientLight(Light): """Ambient light as defined in COLLADA tag .""" def __init__(self, id, color, xmlnode = None): """Create a new ambient light. :param str id: A unique string identifier for the light :param tuple color: Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light :param xmlnode: If loaded from xml, the xml node """ self.id = id """The unique string identifier for the light""" self.color = color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the light.""" else: self.xmlnode = E.light( E.technique_common( E.ambient( E.color(' '.join(map(str, self.color))) ) ) , id=self.id, name=self.id) def save(self): """Saves the light's properties back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) colornode = self.xmlnode.find('%s/%s/%s' % (tag('technique_common'), tag('ambient'), tag('color'))) colornode.text = ' '.join(map(str, self.color)) @staticmethod def load(collada, localscope, node): colornode = node.find('%s/%s/%s' % (tag('technique_common'), tag('ambient'), tag('color'))) if colornode is None: raise DaeIncompleteError('Missing color for ambient light') try: color = tuple( [ float(v) for v in colornode.text.split() ] ) except ValueError as ex: raise DaeMalformedError('Corrupted color values in light definition') return AmbientLight(node.get('id'), color, xmlnode = node) def bind(self, matrix): """Binds this light to a transform matrix. :param numpy.array matrix: A 4x4 numpy float matrix :rtype: :class:`collada.light.BoundAmbientLight` """ return BoundAmbientLight(self, matrix) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class PointLight(Light): """Point light as defined in COLLADA tag .""" def __init__(self, id, color, constant_att=None, linear_att=None, quad_att=None, zfar=None, xmlnode = None): """Create a new sun light. :param str id: A unique string identifier for the light :param tuple color: Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light :param float constant_att: Constant attenuation factor :param float linear_att: Linear attenuation factor :param float quad_att: Quadratic attenuation factor :param float zfar: Distance to the far clipping plane :param xmlnode: If loaded from xml, the xml node """ self.id = id """The unique string identifier for the light""" self.position = numpy.array( [0, 0, 0], dtype=numpy.float32 ) #Not documenting this because it doesn't make sense to set the position # of an unbound light. The position isn't set until binding in a scene. self.color = color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.constant_att = constant_att """Constant attenuation factor.""" self.linear_att = linear_att """Linear attenuation factor.""" self.quad_att = quad_att """Quadratic attenuation factor.""" self.zfar = zfar """Distance to the far clipping plane""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the light.""" else: pnode = E.point( E.color(' '.join(map(str, self.color ) )) ) if self.constant_att is not None: pnode.append(E.constant_attenuation(str(self.constant_att))) if self.linear_att is not None: pnode.append(E.linear_attenuation(str(self.linear_att))) if self.quad_att is not None: pnode.append(E.quadratic_attenuation(str(self.quad_att))) if self.zfar is not None: pnode.append(E.zfar(str(self.zvar))) self.xmlnode = E.light( E.technique_common(pnode) , id=self.id, name=self.id) def save(self): """Saves the light's properties back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) pnode = self.xmlnode.find( '%s/%s'%(tag('technique_common'),tag('point')) ) colornode = pnode.find( tag('color') ) colornode.text = ' '.join(map(str, self.color ) ) _correctValInNode(pnode, 'constant_attenuation', self.constant_att) _correctValInNode(pnode, 'linear_attenuation', self.linear_att) _correctValInNode(pnode, 'quadratic_attenuation', self.quad_att) _correctValInNode(pnode, 'zfar', self.zfar) @staticmethod def load(collada, localscope, node): pnode = node.find('%s/%s' % (tag('technique_common'), tag('point'))) colornode = pnode.find( tag('color') ) if colornode is None: raise DaeIncompleteError('Missing color for point light') try: color = tuple([float(v) for v in colornode.text.split()]) except ValueError as ex: raise DaeMalformedError('Corrupted color values in light definition') constant_att = linear_att = quad_att = zfar = None qattnode = pnode.find( tag('quadratic_attenuation') ) cattnode = pnode.find( tag('constant_attenuation') ) lattnode = pnode.find( tag('linear_attenuation') ) zfarnode = pnode.find( tag('zfar') ) try: if cattnode is not None: constant_att = float(cattnode.text) if lattnode is not None: linear_att = float(lattnode.text) if qattnode is not None: quad_att = float(qattnode.text) if zfarnode is not None: zfar = float(zfarnode.text) except ValueError as ex: raise DaeMalformedError('Corrupted values in light definition') return PointLight(node.get('id'), color, constant_att, linear_att, quad_att, zfar, xmlnode = node) def bind(self, matrix): """Binds this light to a transform matrix. :param numpy.array matrix: A 4x4 numpy float matrix :rtype: :class:`collada.light.BoundPointLight` """ return BoundPointLight(self, matrix) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class SpotLight(Light): """Spot light as defined in COLLADA tag .""" def __init__(self, id, color, constant_att=None, linear_att=None, quad_att=None, falloff_ang=None, falloff_exp=None, xmlnode = None): """Create a new spot light. :param str id: A unique string identifier for the light :param tuple color: Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light :param float constant_att: Constant attenuation factor :param float linear_att: Linear attenuation factor :param float quad_att: Quadratic attenuation factor :param float falloff_ang: Falloff angle :param float falloff_exp: Falloff exponent :param xmlnode: If loaded from xml, the xml node """ self.id = id """The unique string identifier for the light""" self.color = color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.constant_att = constant_att """Constant attenuation factor.""" self.linear_att = linear_att """Linear attenuation factor.""" self.quad_att = quad_att """Quadratic attenuation factor.""" self.falloff_ang = falloff_ang """Falloff angle""" self.falloff_exp = falloff_exp """Falloff exponent""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the light.""" else: pnode = E.spot( E.color(' '.join(map(str, self.color ) )), ) if self.constant_att is not None: pnode.append(E.constant_attenuation(str(self.constant_att))) if self.linear_att is not None: pnode.append(E.linear_attenuation(str(self.linear_att))) if self.quad_att is not None: pnode.append(E.quadratic_attenuation(str(self.quad_att))) if self.falloff_ang is not None: pnode.append(E.falloff_angle(str(self.falloff_ang))) if self.falloff_exp is not None: pnode.append(E.falloff_exponent(str(self.falloff_exp))) self.xmlnode = E.light( E.technique_common(pnode) , id=self.id, name=self.id) def save(self): """Saves the light's properties back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) pnode = self.xmlnode.find('%s/%s' % (tag('technique_common'), tag('spot'))) colornode = pnode.find(tag('color')) colornode.text = ' '.join(map(str, self.color ) ) _correctValInNode(pnode, 'constant_attenuation', self.constant_att) _correctValInNode(pnode, 'linear_attenuation', self.linear_att) _correctValInNode(pnode, 'quadratic_attenuation', self.quad_att) _correctValInNode(pnode, 'falloff_angle', self.falloff_ang) _correctValInNode(pnode, 'falloff_exponent', self.falloff_exp) @staticmethod def load(collada, localscope, node): pnode = node.find( '%s/%s'%(tag('technique_common'),tag('spot')) ) colornode = pnode.find( tag('color') ) if colornode is None: raise DaeIncompleteError('Missing color for spot light') try: color = tuple([float(v) for v in colornode.text.split()]) except ValueError as ex: raise DaeMalformedError('Corrupted color values in spot light definition') constant_att = linear_att = quad_att = falloff_ang = falloff_exp = None cattnode = pnode.find( tag('constant_attenuation') ) lattnode = pnode.find( tag('linear_attenuation') ) qattnode = pnode.find( tag('quadratic_attenuation') ) fangnode = pnode.find( tag('falloff_angle') ) fexpnode = pnode.find( tag('falloff_exponent') ) try: if cattnode is not None: constant_att = float(cattnode.text) if lattnode is not None: linear_att = float(lattnode.text) if qattnode is not None: quad_att = float(qattnode.text) if fangnode is not None: falloff_ang = float(fangnode.text) if fexpnode is not None: falloff_exp = float(fexpnode.text) except ValueError as ex: raise DaeMalformedError('Corrupted values in spot light definition') return SpotLight(node.get('id'), color, constant_att, linear_att, quad_att, falloff_ang, falloff_exp, xmlnode = node) def bind(self, matrix): """Binds this light to a transform matrix. :param numpy.array matrix: A 4x4 numpy float matrix :rtype: :class:`collada.light.BoundSpotLight` """ return BoundSpotLight(self, matrix) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class BoundLight(object): """Base class for bound lights""" pass class BoundPointLight(BoundLight): """Point light bound to a scene with transformation. This gets created when a light is instantiated in a scene. Do not create this manually.""" def __init__(self, plight, matrix): self.position = numpy.dot( matrix[:3,:3], plight.position ) + matrix[:3,3] """Numpy array of length 3 representing the position of the light in the scene""" self.color = plight.color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.constant_att = plight.constant_att if self.constant_att is None: self.constant_att = 1.0 """Constant attenuation factor.""" self.linear_att = plight.linear_att if self.linear_att is None: self.linear_att = 0.0 """Linear attenuation factor.""" self.quad_att = plight.quad_att if self.quad_att is None: self.quad_att = 0.0 """Quadratic attenuation factor.""" self.zfar = plight.zfar """Distance to the far clipping plane""" self.original = plight """The original :class:`collada.light.PointLight` this is bound to""" def __str__(self): return '' % str(self.original.id) def __repr__(self): return str(self) class BoundSpotLight(BoundLight): """Spot light bound to a scene with transformation. This gets created when a light is instantiated in a scene. Do not create this manually.""" def __init__(self, slight, matrix): self.position = matrix[:3,3] """Numpy array of length 3 representing the position of the light in the scene""" self.direction = -matrix[:3,2] """Direction of the spot light""" self.up = matrix[:3,1] """Up vector of the spot light""" self.matrix = matrix """Transform matrix for the bound light""" self.color = slight.color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.constant_att = slight.constant_att if self.constant_att is None: self.constant_att = 1.0 """Constant attenuation factor.""" self.linear_att = slight.linear_att if self.linear_att is None: self.linear_att = 0.0 """Linear attenuation factor.""" self.quad_att = slight.quad_att if self.quad_att is None: self.quad_att = 0.0 """Quadratic attenuation factor.""" self.falloff_ang = slight.falloff_ang if self.falloff_ang is None: self.falloff_ang = 180.0 """Falloff angle""" self.falloff_exp = slight.falloff_exp if self.falloff_exp is None: self.falloff_exp = 0.0 """Falloff exponent""" self.original = slight """The original :class:`collada.light.SpotLight` this is bound to""" def __str__(self): return '' % str(self.original.id) def __repr__(self): return str(self) class BoundDirectionalLight(BoundLight): """Directional light bound to a scene with transformation. This gets created when a light is instantiated in a scene. Do not create this manually.""" def __init__(self, dlight, matrix): self.direction = numpy.dot( matrix[:3,:3], dlight.direction ) """Numpy array of length 3 representing the direction of the light in the scene""" self.color = dlight.color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.original = dlight """The original :class:`collada.light.DirectionalLight` this is bound to""" def __str__(self): return '' % str(self.original.id) def __repr__(self): return str(self) class BoundAmbientLight(BoundLight): """Ambient light bound to a scene with transformation. This gets created when a light is instantiated in a scene. Do not create this manually.""" def __init__(self, alight, matrix): self.color = alight.color """Either a tuple of size 3 containing the RGB color value of the light or a tuple of size 4 containing the RGBA color value of the light""" self.original = alight """The original :class:`collada.light.AmbientLight` this is bound to""" def __str__(self): return '' % str(self.original.id) def __repr__(self): return str(self) pycollada-0.4/collada/lineset.py000066400000000000000000000246141200577111600167500ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing classes and functions for the primitive.""" import numpy from collada import primitive from collada.util import toUnitVec, checkSource from collada.common import E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.xmlutil import etree as ElementTree class Line(object): """Single line representation. Represents the line between two points ``(x0,y0,z0)`` and ``(x1,y1,z1)``. A Line is read-only.""" def __init__(self, indices, vertices, normals, texcoords, material): """A Line should not be created manually.""" self.vertices = vertices """A (2, 3) numpy float array containing the endpoints of the line""" self.normals = normals """A (2, 3) numpy float array with the normals for the endpoints of the line. Can be None.""" self.texcoords = texcoords """A tuple where entries are numpy float arrays of size (2, 2) containing the texture coordinates for the endpoints of the line for each texture coordinate set. Can be length 0 if there are no texture coordinates.""" self.material = material """If coming from an unbound :class:`collada.lineset.LineSet`, contains a string with the material symbol. If coming from a bound :class:`collada.lineset.BoundLineSet`, contains the actual :class:`collada.material.Effect` the line is bound to.""" self.indices = indices # Note: we can't generate normals for lines if there are none def __repr__(self): return ''%(str(self.vertices[0]), str(self.vertices[1]), str(self.material)) def __str__(self): return repr(self) class LineSet(primitive.Primitive): """Class containing the data COLLADA puts in a tag, a collection of lines. The LineSet object is read-only. To modify a LineSet, create a new instance using :meth:`collada.geometry.Geometry.createLineSet`. * If ``L`` is an instance of :class:`collada.lineset.LineSet`, then ``len(L)`` returns the number of lines in the set. ``L[i]`` returns the i\ :sup:`th` line in the set.""" def __init__(self, sources, material, index, xmlnode=None): """A LineSet should not be created manually. Instead, call the :meth:`collada.geometry.Geometry.createLineSet` method after creating a geometry instance. """ if len(sources) == 0: raise DaeIncompleteError('A line set needs at least one input for vertex positions') if not 'VERTEX' in sources: raise DaeIncompleteError('Line set requires vertex input') #find max offset max_offset = max([ max([input[0] for input in input_type_array]) for input_type_array in sources.values() if len(input_type_array) > 0]) self.sources = sources self.material = material self.index = index self.indices = self.index self.nindices = max_offset + 1 self.index.shape = (-1, 2, self.nindices) self.nlines = len(self.index) if len(self.index) > 0: self._vertex = sources['VERTEX'][0][4].data self._vertex_index = self.index[:,:, sources['VERTEX'][0][0]] self.maxvertexindex = numpy.max( self._vertex_index ) checkSource(sources['VERTEX'][0][4], ('X', 'Y', 'Z'), self.maxvertexindex) else: self._vertex = None self._vertex_index = None self.maxvertexindex = -1 if 'NORMAL' in sources and len(sources['NORMAL']) > 0 \ and len(self.index) > 0: self._normal = sources['NORMAL'][0][4].data self._normal_index = self.index[:,:, sources['NORMAL'][0][0]] self.maxnormalindex = numpy.max( self._normal_index ) checkSource(sources['NORMAL'][0][4], ('X', 'Y', 'Z'), self.maxnormalindex) else: self._normal = None self._normal_index = None self.maxnormalindex = -1 if 'TEXCOORD' in sources and len(sources['TEXCOORD']) > 0 \ and len(self.index) > 0: self._texcoordset = tuple([texinput[4].data for texinput in sources['TEXCOORD']]) self._texcoord_indexset = tuple([ self.index[:,:, sources['TEXCOORD'][i][0]] for i in xrange(len(sources['TEXCOORD'])) ]) self.maxtexcoordsetindex = [numpy.max(tex_index) for tex_index in self._texcoord_indexset] for i, texinput in enumerate(sources['TEXCOORD']): checkSource(texinput[4], ('S', 'T'), self.maxtexcoordsetindex[i]) else: self._texcoordset = tuple() self._texcoord_indexset = tuple() self.maxtexcoordsetindex = -1 if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the line set.""" else: self.index.shape = (-1) acclen = len(self.index) txtindices = ' '.join(map(str, self.index.tolist())) self.index.shape = (-1, 2, self.nindices) self.xmlnode = E.lines(count=str(self.nlines), material=self.material) all_inputs = [] for semantic_list in self.sources.values(): all_inputs.extend(semantic_list) for offset, semantic, sourceid, set, src in all_inputs: inpnode = E.input(offset=str(offset), semantic=semantic, source=sourceid) if set is not None: inpnode.set('set', str(set)) self.xmlnode.append(inpnode) self.xmlnode.append(E.p(txtindices)) def __len__(self): """The number of lines in this line set.""" return len(self.index) def __getitem__(self, i): v = self._vertex[ self._vertex_index[i] ] if self._normal is None: n = None else: n = self._normal[ self._normal_index[i] ] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uv.append( self._texcoordset[j][ uvindex[i] ] ) return Line(self._vertex_index[i], v, n, uv, self.material) @staticmethod def load( collada, localscope, node ): indexnode = node.find(tag('p')) if indexnode is None: raise DaeIncompleteError('Missing index in line set') source_array = primitive.Primitive._getInputs(collada, localscope, node.findall(tag('input'))) try: if indexnode.text is None: index = numpy.array([], dtype=numpy.int32) else: index = numpy.fromstring(indexnode.text, dtype=numpy.int32, sep=' ') index[numpy.isnan(index)] = 0 except: raise DaeMalformedError('Corrupted index in line set') lineset = LineSet(source_array, node.get('material'), index, node) lineset.xmlnode = node return lineset def bind(self, matrix, materialnodebysymbol): """Create a bound line set from this line set, transform and material mapping""" return BoundLineSet( self, matrix, materialnodebysymbol) def __str__(self): return '' % len(self) def __repr__(self): return str(self) class BoundLineSet(primitive.BoundPrimitive): """A line set bound to a transform matrix and materials mapping. * If ``bs`` is an instance of :class:`collada.lineset.BoundLineSet`, ``len(bs)`` returns the number of lines in the set and ``bs[i]`` returns the i\ :superscript:`th` line in the set. """ def __init__(self, ls, matrix, materialnodebysymbol): """Create a bound line set from a line set, transform and material mapping. This gets created when a line set is instantiated in a scene. Do not create this manually.""" M = numpy.asmatrix(matrix).transpose() self._vertex = None if ls._vertex is not None: self._vertex = numpy.asarray(ls._vertex * M[:3,:3]) + matrix[:3,3] self._normal = None if ls._normal is not None: self._normal = numpy.asarray(ls._normal * M[:3,:3]) self._texcoordset = ls._texcoordset matnode = materialnodebysymbol.get( ls.material ) if matnode: self.material = matnode.target self.inputmap = dict([ (sem, (input_sem, set)) for sem, input_sem, set in matnode.inputs ]) else: self.inputmap = self.material = None self.index = ls.index self._vertex_index = ls._vertex_index self._normal_index = ls._normal_index self._texcoord_indexset = ls._texcoord_indexset self.nlines = ls.nlines self.original = ls def __len__(self): return len(self.index) def __getitem__(self, i): v = self._vertex[ self._vertex_index[i] ] if self._normal is None: n = None else: n = self._normal[ self._normal_index[i] ] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uv.append( self._texcoordset[j][ uvindex[i] ] ) return Line(self._vertex_index[i], v, n, uv, self.material) def lines(self): """Iterate through all the lines contained in the set. :rtype: generator of :class:`collada.lineset.Line` """ for i in xrange(self.nlines): yield self[i] def shapes(self): """Iterate through all the lines contained in the set. :rtype: generator of :class:`collada.lineset.Line` """ return self.lines() def __str__(self): return '' % len(self) def __repr__(self): return str(self) pycollada-0.4/collada/material.py000066400000000000000000001057641200577111600171110ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module for material, effect and image loading This module contains all the functionality to load and manage: - Images in the image library - Surfaces and samplers2D in effects - Effects (that are now used as materials) """ import copy import numpy from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import falmostEqual, StringIO from collada.xmlutil import etree as ElementTree try: import Image as pil except: pil = None class DaeMissingSampler2D(Exception): """Raised when a tag references a texture without a sampler.""" pass class CImage(DaeObject): """Class containing data coming from a tag. Basically is just the path to the file, but we give an extended functionality if PIL is available. You can in that case get the image object or numpy arrays in both int and float format. We named it CImage to avoid confusion with PIL's Image class. """ def __init__(self, id, path, collada = None, xmlnode = None): """Create an image object. :param str id: A unique string identifier for the image :param str path: Path relative to the collada document where the image is located :param collada.Collada collada: The collada object this image belongs to :param xmlnode: If loaded from xml, the node this data comes from """ self.id = id """The unique string identifier for the image""" self.path = path """Path relative to the collada document where the image is located""" self.collada = collada self._data = None self._pilimage = None self._uintarray = None self._floatarray = None if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the image.""" else: self.xmlnode = E.image( E.init_from(path) , id=self.id, name=self.id) def getData(self): if self._data is None: try: self._data = self.collada.getFileData( self.path ) except DaeBrokenRefError as ex: self._data = '' self.collada.handleError(ex) return self._data def getImage(self): if pil is None or self._pilimage == 'failed': return None if self._pilimage: return self._pilimage else: data = self.getData() if not data: self._pilimage = 'failed' return None try: self._pilimage = pil.open( StringIO(data) ) self._pilimage.load() except IOError as ex: self._pilimage = 'failed' return None return self._pilimage def getUintArray(self): if self._uintarray == 'failed': return None if self._uintarray != None: return self._uintarray img = self.getImage() if not img: self._uintarray = 'failed' return None nchan = len(img.mode) self._uintarray = numpy.fromstring(img.tostring(), dtype=numpy.uint8) self._uintarray.shape = (img.size[1], img.size[0], nchan) return self._uintarray def getFloatArray(self): if self._floatarray == 'failed': return None if self._floatarray != None: return self._floatarray array = self.getUintArray() if array is None: self._floatarray = 'failed' return None self._floatarray = numpy.asarray( array, dtype=numpy.float32) self._floatarray *= 1.0/255.0 return self._floatarray def setData(self, data): self._data = data self._floatarray = None self._uintarray = None self._pilimage = None data = property( getData, setData ) """Raw binary image file data if the file is readable. If `aux_file_loader` was passed to :func:`collada.Collada.__init__`, this function will be called to retrieve the data. Otherwise, if the file came from the local disk, the path will be interpreted from the local file system. If the file was a zip archive, the archive will be searched.""" pilimage = property( getImage ) """PIL Image object if PIL is available and the file is readable.""" uintarray = property( getUintArray ) """Numpy array (height, width, nchannels) in integer format.""" floatarray = property( getFloatArray ) """Numpy float array (height, width, nchannels) with the image data normalized to 1.0.""" @staticmethod def load( collada, localspace, node ): id = node.get('id') initnode = node.find( tag('init_from') ) if initnode is None: raise DaeIncompleteError('Image has no file path') path = initnode.text return CImage(id, path, collada, xmlnode = node) def save(self): """Saves the image back to :attr:`xmlnode`. Only the :attr:`id` attribute is saved. The image itself will have to be saved to its original source to make modifications.""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) initnode = self.xmlnode.find( tag('init_from') ) initnode.text = self.path def __str__(self): return '' % (self.id, self.path) def __repr__(self): return str(self) class Surface(DaeObject): """Class containing data coming from a tag. Collada materials use this to access to the tag. The only extra information we store right now is the image format. In theory, this enables many more features according to the collada spec, but no one seems to actually use them in the wild, so for now, it's unimplemented. """ def __init__(self, id, img, format=None, xmlnode=None): """Creates a surface. :param str id: A string identifier for the surface within the local scope of the material :param collada.material.CImage img: The image object :param str format: The format of the image :param xmlnode: If loaded from xml, the xml node """ self.id = id """The string identifier for the surface within the local scope of the material""" self.image = img """:class:`collada.material.CImage` object from the image library.""" self.format = format if format is not None else "A8R8G8B8" """Format string.""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the surface.""" else: self.xmlnode = E.newparam( E.surface( E.init_from(self.image.id), E.format(self.format) , type="2D") , sid=self.id) @staticmethod def load( collada, localscope, node ): surfacenode = node.find( tag('surface') ) if surfacenode is None: raise DaeIncompleteError('No surface found in newparam') if surfacenode.get('type') != '2D': raise DaeMalformedError('Hard to imagine a non-2D surface, isn\'t it?') initnode = surfacenode.find( tag('init_from') ) if initnode is None: raise DaeIncompleteError('No init image found in surface') formatnode = surfacenode.find( tag('format') ) if formatnode is None: format = None else: format = formatnode.text imgid = initnode.text id = node.get('sid') if imgid in localscope: img = localscope[imgid] else: img = collada.images.get(imgid) if img is None: raise DaeBrokenRefError("Missing image '%s' in surface '%s'" % (imgid, id)) return Surface(id, img, format, xmlnode=node) def save(self): """Saves the surface data back to :attr:`xmlnode`""" surfacenode = self.xmlnode.find( tag('surface') ) initnode = surfacenode.find( tag('init_from') ) if self.format: formatnode = surfacenode.find( tag('format') ) if formatnode is None: surfacenode.append(E.format(self.format)) else: formatnode.text = self.format initnode.text = self.image.id self.xmlnode.set('sid', self.id) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class Sampler2D(DaeObject): """Class containing data coming from tag in material. Collada uses the tag to map to a . The only information we store about the sampler right now is minfilter and magfilter. Theoretically, the collada spec has many more parameters here, but no one seems to be using them in the wild, so they are currently unimplemented. """ def __init__(self, id, surface, minfilter=None, magfilter=None, xmlnode=None): """Create a Sampler2D object. :param str id: A string identifier for the sampler within the local scope of the material :param collada.material.Surface surface: Surface instance that this object samples from :param str minfilter: Minification filter string id, see collada spec for details :param str magfilter: Maximization filter string id, see collada spec for details :param xmlnode: If loaded from xml, the xml node """ self.id = id """The string identifier for the sampler within the local scope of the material""" self.surface = surface """Surface instance that this object samples from""" self.minfilter = minfilter """Minification filter string id, see collada spec for details""" self.magfilter = magfilter """Maximization filter string id, see collada spec for details""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the sampler.""" else: sampler_node = E.sampler2D(E.source(self.surface.id)) if minfilter: sampler_node.append(E.minfilter(self.minfilter)) if magfilter: sampler_node.append(E.magfilter(self.magfilter)) self.xmlnode = E.newparam(sampler_node, sid=self.id) @staticmethod def load( collada, localscope, node ): samplernode = node.find( tag('sampler2D') ) if samplernode is None: raise DaeIncompleteError('No sampler found in newparam') sourcenode = samplernode.find( tag('source') ) if sourcenode is None: raise DaeIncompleteError('No source found in sampler') minnode = samplernode.find( tag('minfilter') ) if minnode is None: minfilter = None else: minfilter = minnode.text magnode = samplernode.find( tag('magfilter') ) if magnode is None: magfilter = None else: magfilter = magnode.text surfaceid = sourcenode.text id = node.get('sid') surface = localscope.get(surfaceid) if surface is None or type(surface) != Surface: raise DaeBrokenRefError('Missing surface ' + surfaceid) return Sampler2D(id, surface, minfilter, magfilter, xmlnode=node) def save(self): """Saves the sampler data back to :attr:`xmlnode`""" samplernode = self.xmlnode.find( tag('sampler2D') ) sourcenode = samplernode.find( tag('source') ) if self.minfilter: minnode = samplernode.find( tag('minfilter') ) minnode.text = self.minfilter if self.magfilter: maxnode = samplernode.find( tag('magfilter') ) maxnode.text = self.magfilter sourcenode.text = self.surface.id self.xmlnode.set('sid', self.id) def __str__(self): return '' % (self.id,) def __repr__(self): return str(self) class Map(DaeObject): """Class containing data coming from tag inside material. When a material defines its properties like `diffuse`, it can give you a color or a texture. In the latter, the texture is mapped with a sampler and a texture coordinate channel. If a material defined a texture for one of its properties, you'll find an object of this class in the corresponding attribute. """ def __init__(self, sampler, texcoord, xmlnode=None): """Create a map instance to a sampler using a texcoord channel. :param collada.material.Sampler2D sampler: A sampler object to map :param str texcoord: Texture coordinate channel symbol to use :param xmlnode: If loaded from xml, the xml node """ self.sampler = sampler """:class:`collada.material.Sampler2D` object to map""" self.texcoord = texcoord """Texture coordinate channel symbol to use""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the map""" else: self.xmlnode = E.texture(texture=self.sampler.id, texcoord=self.texcoord) @staticmethod def load( collada, localscope, node ): samplerid = node.get('texture') texcoord = node.get('texcoord') sampler = localscope.get(samplerid) #Check for the sampler ID as the texture ID because some exporters suck if sampler is None: for s2d in localscope.itervalues(): if type(s2d) is Sampler2D: if s2d.surface.image.id == samplerid: sampler = s2d if sampler is None or type(sampler) != Sampler2D: err = DaeMissingSampler2D('Missing sampler ' + samplerid + ' in node ' + node.tag) err.samplerid = samplerid raise err return Map(sampler, texcoord, xmlnode = node) def save(self): """Saves the map back to :attr:`xmlnode`""" self.xmlnode.set('texture', self.sampler.id) self.xmlnode.set('texcoord', self.texcoord) def __str__(self): return '' % (self.sampler.id, self.texcoord) def __repr__(self): return str(self) class OPAQUE_MODE: """The opaque mode of an effect.""" A_ONE = 'A_ONE' """Takes the transparency information from the color's alpha channel, where the value 1.0 is opaque (default).""" RGB_ZERO = 'RGB_ZERO' """Takes the transparency information from the color's red, green, and blue channels, where the value 0.0 is opaque, with each channel modulated independently.""" class Effect(DaeObject): """Class containing data coming from an tag. """ supported = [ 'emission', 'ambient', 'diffuse', 'specular', 'shininess', 'reflective', 'reflectivity', 'transparent', 'transparency', 'index_of_refraction' ] """Supported material properties list.""" shaders = [ 'phong', 'lambert', 'blinn', 'constant'] """Supported shader list.""" def __init__(self, id, params, shadingtype, bumpmap = None, double_sided = False, emission = (0.0, 0.0, 0.0, 1.0), ambient = (0.0, 0.0, 0.0, 1.0), diffuse = (0.0, 0.0, 0.0, 1.0), specular = (0.0, 0.0, 0.0, 1.0), shininess = 0.0, reflective = (0.0, 0.0, 0.0, 1.0), reflectivity = 0.0, transparent = (0.0, 0.0, 0.0, 1.0), transparency = None, index_of_refraction = None, opaque_mode = None, xmlnode = None): """Create an effect instance out of properties. :param str id: A string identifier for the effect :param list params: A list containing elements of type :class:`collada.material.Sampler2D` and :class:`collada.material.Surface` :param str shadingtype: The type of shader to be used for this effect. Right now, we only supper the shaders listed in :attr:`shaders` :param `collada.material.Map` bumpmap: The bump map for this effect, or None if there isn't one :param bool double_sided: Whether or not the material should be rendered double sided :param emission: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param ambient: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param diffuse: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param specular: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param shininess: Either a single float or an instance of :class:`collada.material.Map` :param reflective: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param reflectivity: Either a single float or an instance of :class:`collada.material.Map` :param tuple transparent: Either an RGBA-format tuple of four floats or an instance of :class:`collada.material.Map` :param transparency: Either a single float or an instance of :class:`collada.material.Map` :param float index_of_refraction: A single float indicating the index of refraction for perfectly refracted light :param `collada.material.OPAQUE_MODE` opaque_mode: The opaque mode for the effect. If not specified, defaults to A_ONE. :param xmlnode: If loaded from xml, the xml node """ self.id = id """The string identifier for the effect""" self.params = params """A list containing elements of type :class:`collada.material.Sampler2D` and :class:`collada.material.Surface`""" self.shadingtype = shadingtype """String with the type of the shading.""" self.bumpmap = bumpmap """Either the bump map of the effect of type :class:`collada.material.Map` or None if there is none.""" self.double_sided = double_sided """A boolean indicating whether or not the material should be rendered double sided""" self.emission = emission """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.ambient = ambient """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.diffuse = diffuse """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.specular = specular """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.shininess = shininess """Either a single float or an instance of :class:`collada.material.Map`""" self.reflective = reflective """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.reflectivity = reflectivity """Either a single float or an instance of :class:`collada.material.Map`""" self.transparent = transparent """Either an RGB-format tuple of three floats or an instance of :class:`collada.material.Map`""" self.transparency = transparency """Either a single float or an instance of :class:`collada.material.Map`""" self.index_of_refraction = index_of_refraction """A single float indicating the index of refraction for perfectly refracted light""" self.opaque_mode = OPAQUE_MODE.A_ONE if opaque_mode is None else opaque_mode """The opaque mode for the effect. An instance of :class:`collada.material.OPAQUE_MODE`.""" if self.transparency is None: if self.opaque_mode == OPAQUE_MODE.A_ONE: self.transparency = 1.0 else: self.transparency = 0.0 self._fixColorValues() if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the effect""" else: shadnode = E(self.shadingtype) for prop in self.supported: value = getattr(self, prop) if value is None: continue propnode = E(prop) if prop == 'transparent' and self.opaque_mode == OPAQUE_MODE.RGB_ZERO: propnode.set('opaque', OPAQUE_MODE.RGB_ZERO) shadnode.append( propnode ) if type(value) is Map: propnode.append(value.xmlnode) elif type(value) is float: propnode.append(E.float(str(value))) else: propnode.append(E.color(' '.join(map(str, value) ))) effect_nodes = [param.xmlnode for param in self.params] effect_nodes.append(E.technique(shadnode, sid='common')) self.xmlnode = E.effect( E.profile_COMMON(*effect_nodes) , id=self.id, name=self.id) @staticmethod def load(collada, localscope, node): localscope = {} # we have our own scope, shadow it params = [] id = node.get('id') profilenode = node.find( tag('profile_COMMON') ) if profilenode is None: raise DaeUnsupportedError('Found effect with profile other than profile_COMMON') # can be local to a material instead of global in for imgnode in profilenode.findall( tag('image') ): local_image = CImage.load(collada, localscope, imgnode) localscope[local_image.id] = local_image global_image_id = local_image.id uniquenum = 2 while global_image_id in collada.images: global_image_id = local_image.id + "-" + uniquenum uniquenum += 1 collada.images.append(local_image) for paramnode in profilenode.findall( tag('newparam') ): if paramnode.find( tag('surface') ) is not None: param = Surface.load(collada, localscope, paramnode) params.append(param) localscope[param.id] = param elif paramnode.find( tag('sampler2D') ) is not None: param = Sampler2D.load(collada, localscope, paramnode) params.append(param) localscope[param.id] = param else: floatnode = paramnode.find( tag('float') ) if floatnode is None: floatnode = paramnode.find( tag('float2') ) if floatnode is None: floatnode = paramnode.find( tag('float3') ) if floatnode is None: floatnode = paramnode.find( tag('float4') ) paramid = paramnode.get('sid') if floatnode is not None and paramid is not None and len(paramid) > 0 and floatnode.text is not None: localscope[paramid] = [float(v) for v in floatnode.text.split()] tecnode = profilenode.find( tag('technique') ) shadnode = None for shad in Effect.shaders: shadnode = tecnode.find(tag(shad)) shadingtype = shad if not shadnode is None: break if shadnode is None: raise DaeIncompleteError('No material properties found in effect') props = {} for key in Effect.supported: pnode = shadnode.find( tag(key) ) if pnode is None: props[key] = None else: try: props[key] = Effect._loadShadingParam(collada, localscope, pnode) except DaeMissingSampler2D as ex: if ex.samplerid in collada.images: #Whoever exported this collada file didn't include the proper references so we will create them surf = Surface(ex.samplerid + '-surface', collada.images[ex.samplerid], 'A8R8G8B8') sampler = Sampler2D(ex.samplerid, surf, None, None); params.append(surf) params.append(sampler) localscope[surf.id] = surf localscope[sampler.id] = sampler try: props[key] = Effect._loadShadingParam( collada, localscope, pnode) except DaeUnsupportedError as ex: props[key] = None collada.handleError(ex) except DaeUnsupportedError as ex: props[key] = None collada.handleError(ex) # Give the chance to ignore error and load the rest if key == 'transparent' and key in props and props[key] is not None: opaque_mode = pnode.get('opaque') if opaque_mode is not None and opaque_mode == OPAQUE_MODE.RGB_ZERO: props['opaque_mode'] = OPAQUE_MODE.RGB_ZERO props['xmlnode'] = node bumpnode = node.find('.//%s//%s' % (tag('extra'), tag('texture'))) if bumpnode is not None: bumpmap = Map.load(collada, localscope, bumpnode) else: bumpmap = None double_sided_node = node.find('.//%s//%s' % (tag('extra'), tag('double_sided'))) double_sided = False if double_sided_node is not None and double_sided_node.text is not None: try: val = int(double_sided_node.text) if val == 1: double_sided = True except ValueError: pass return Effect(id, params, shadingtype, bumpmap, double_sided, **props) @staticmethod def _loadShadingParam( collada, localscope, node ): """Load from the node a definition for a material property.""" children = node.getchildren() if not children: raise DaeIncompleteError('Incorrect effect shading parameter '+node.tag) vnode = children[0] if vnode.tag == tag('color'): try: value = tuple([ float(v) for v in vnode.text.split() ]) except ValueError as ex: raise DaeMalformedError('Corrupted color definition in effect '+id) except IndexError as ex: raise DaeMalformedError('Corrupted color definition in effect '+id) elif vnode.tag == tag('float'): try: value = float(vnode.text) except ValueError as ex: raise DaeMalformedError('Corrupted float definition in effect '+id) elif vnode.tag == tag('texture'): value = Map.load(collada, localscope, vnode) elif vnode.tag == tag('param'): refid = vnode.get('ref') if refid is not None and refid in localscope: value = localscope[refid] else: return None else: raise DaeUnsupportedError('Unknown shading param definition ' + \ vnode.tag) return value def _fixColorValues(self): for prop in self.supported: propval = getattr(self, prop) if isinstance(propval, tuple): if len(propval) < 4: propval = list(propval) while len(propval) < 3: propval.append(0.0) while len(propval) < 4: propval.append(1.0) setattr(self, prop, tuple(propval)) def save(self): """Saves the effect back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) profilenode = self.xmlnode.find( tag('profile_COMMON') ) tecnode = profilenode.find( tag('technique') ) tecnode.set('sid', 'common') self._fixColorValues() for param in self.params: param.save() if param.xmlnode not in profilenode.getchildren(): profilenode.insert(list(profilenode).index(tecnode), param.xmlnode) deletenodes = [] for oldparam in profilenode.findall( tag('newparam') ): if oldparam not in [param.xmlnode for param in self.params]: deletenodes.append(oldparam) for d in deletenodes: profilenode.remove(d) for shader in self.shaders: shadnode = tecnode.find(tag(shader)) if shadnode is not None and shader != self.shadingtype: tecnode.remove(shadnode) def getPropNode(prop, value): propnode = E(prop) if prop == 'transparent' and self.opaque_mode == OPAQUE_MODE.RGB_ZERO: propnode.set('opaque', OPAQUE_MODE.RGB_ZERO) if type(value) is Map: propnode.append(copy.deepcopy(value.xmlnode)) elif type(value) is float: propnode.append(E.float(str(value))) else: propnode.append(E.color(' '.join(map(str, value) ))) return propnode shadnode = tecnode.find(tag(self.shadingtype)) if shadnode is None: shadnode = E(self.shadingtype) for prop in self.supported: value = getattr(self, prop) if value is None: continue shadnode.append(getPropNode(prop, value)) tecnode.append(shadnode) else: for prop in self.supported: value = getattr(self, prop) propnode = shadnode.find(tag(prop)) if propnode is not None: shadnode.remove(propnode) if value is not None: shadnode.append(getPropNode(prop, value)) double_sided_node = profilenode.find('.//%s//%s' % (tag('extra'), tag('double_sided'))) if double_sided_node is None or double_sided_node.text is None: extranode = profilenode.find(tag('extra')) if extranode is None: extranode = E.extra() profilenode.append(extranode) teqnodes = extranode.findall(tag('technique')) goognode = None for teqnode in teqnodes: if teqnode.get('profile') == 'GOOGLEEARTH': goognode = teqnode break if goognode is None: goognode = E.technique(profile='GOOGLEEARTH') extranode.append(goognode) double_sided_node = goognode.find(tag('double_sided')) if double_sided_node is None: double_sided_node = E.double_sided() goognode.append(double_sided_node) double_sided_node.text = "1" if self.double_sided else "0" def __str__(self): return '' % (self.id, self.shadingtype) def __repr__(self): return str(self) def almostEqual(self, other): """Checks if this effect is almost equal (within float precision) to the given effect. :param collada.material.Effect other: Effect to compare to :rtype: bool """ if self.shadingtype != other.shadingtype: return False if self.double_sided != other.double_sided: return False for prop in self.supported: thisprop = getattr(self, prop) otherprop = getattr(other, prop) if type(thisprop) != type(otherprop): return False elif type(thisprop) is float: if not falmostEqual(thisprop, otherprop): return False elif type(thisprop) is Map: if thisprop.sampler.surface.image.id != otherprop.sampler.surface.image.id or thisprop.texcoord != otherprop.texcoord: return False elif type(thisprop) is tuple: if len(thisprop) != len(otherprop): return False for valthis, valother in zip(thisprop, otherprop): if not falmostEqual(valthis, valother): return False return True class Material(DaeObject): """Class containing data coming from a tag. Right now, this just stores a reference to the effect which is instantiated in the material. The effect instance can have parameters, but this is rarely used in the wild, so it is not yet implemented. """ def __init__(self, id, name, effect, xmlnode=None): """Creates a material. :param str id: A unique string identifier for the material :param str name: A name for the material :param collada.material.Effect effect: The effect instantiated in this material :param xmlnode: If loaded from xml, the xml node """ self.id = id """The unique string identifier for the material""" self.name = name """The name for the material""" self.effect = effect """The :class:`collada.material.Effect` instantiated in this material""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the surface.""" else: self.xmlnode = E.material( E.instance_effect(url="#%s" % self.effect.id) , id=str(self.id), name=str(self.name)) @staticmethod def load( collada, localscope, node ): matid = node.get('id') matname = node.get('name') effnode = node.find( tag('instance_effect')) if effnode is None: raise DaeIncompleteError('No effect inside material') effectid = effnode.get('url') if not effectid.startswith('#'): raise DaeMalformedError('Corrupted effect reference in material %s' % effectid) effect = collada.effects.get(effectid[1:]) if not effect: raise DaeBrokenRefError('Effect not found: '+effectid) return Material(matid, matname, effect, xmlnode=node) def save(self): """Saves the material data back to :attr:`xmlnode`""" self.xmlnode.set('id', str(self.id)) self.xmlnode.set('name', str(self.name)) effnode = self.xmlnode.find( tag('instance_effect') ) effnode.set('url', '#%s' % self.effect.id) def __str__(self): return '' % (self.id, self.effect.id) def __repr__(self): return str(self) pycollada-0.4/collada/polygons.py000066400000000000000000000111531200577111600171510ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing classes and functions for the primitive.""" import numpy from collada import primitive from collada import polylist from collada import triangleset from collada.common import E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import toUnitVec, checkSource from collada.xmlutil import etree as ElementTree class Polygons(polylist.Polylist): """Class containing the data COLLADA puts in a tag, a collection of polygons that can have holes. * The Polygons object is read-only. To modify a Polygons, create a new instance using :meth:`collada.geometry.Geometry.createPolygons`. * Polygons with holes are not currently supported, so for right now, this class is essentially the same as a :class:`collada.polylist.Polylist`. Use a polylist instead if your polygons don't have holes. """ def __init__(self, sources, material, polygons, xmlnode=None): """A Polygons should not be created manually. Instead, call the :meth:`collada.geometry.Geometry.createPolygons` method after creating a geometry instance. """ max_offset = max([ max([input[0] for input in input_type_array]) for input_type_array in sources.values() if len(input_type_array) > 0]) vcounts = numpy.zeros(len(polygons), dtype=numpy.int32) for i, poly in enumerate(polygons): vcounts[i] = len(poly) / (max_offset + 1) if len(polygons) > 0: indices = numpy.concatenate(polygons) else: indices = numpy.array([], dtype=numpy.int32) super(Polygons, self).__init__(sources, material, indices, vcounts, xmlnode) if xmlnode is not None: self.xmlnode = xmlnode else: acclen = len(polygons) self.xmlnode = E.polygons(count=str(acclen), material=self.material) all_inputs = [] for semantic_list in self.sources.values(): all_inputs.extend(semantic_list) for offset, semantic, sourceid, set, src in all_inputs: inpnode = E.input(offset=str(offset), semantic=semantic, source=sourceid) if set is not None: inpnode.set('set', str(set)) self.xmlnode.append(inpnode) for poly in polygons: self.xmlnode.append(E.p(' '.join(map(str, poly.flatten().tolist())))) @staticmethod def load( collada, localscope, node ): indexnodes = node.findall(tag('p')) if indexnodes is None: raise DaeIncompleteError('Missing indices in polygons') polygon_indices = [] for indexnode in indexnodes: index = numpy.fromstring(indexnode.text, dtype=numpy.int32, sep=' ') index[numpy.isnan(index)] = 0 polygon_indices.append(index) all_inputs = primitive.Primitive._getInputs(collada, localscope, node.findall(tag('input'))) polygons = Polygons(all_inputs, node.get('material'), polygon_indices, node) return polygons def bind(self, matrix, materialnodebysymbol): """Create a bound polygons from this polygons, transform and material mapping""" return BoundPolygons( self, matrix, materialnodebysymbol ) def __str__(self): return '' % len(self) def __repr__(self): return str(self) class BoundPolygons(polylist.BoundPolylist): """Polygons bound to a transform matrix and materials mapping.""" def __init__(self, pl, matrix, materialnodebysymbol): """Create a BoundPolygons from a Polygons, transform and material mapping""" super(BoundPolygons, self).__init__(pl, matrix, materialnodebysymbol) def __str__(self): return '' % len(self) def __repr__(self): return str(self) pycollada-0.4/collada/polylist.py000066400000000000000000000373421200577111600171660ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing classes and functions for the primitive.""" import numpy from collada import primitive from collada import triangleset from collada.common import E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import toUnitVec, checkSource, xrange from collada.xmlutil import etree as ElementTree class Polygon(object): """Single polygon representation. Represents a polygon of N points.""" def __init__(self, indices, vertices, normal_indices, normals, texcoord_indices, texcoords, material): """A Polygon should not be created manually.""" self.vertices = vertices """A (N, 3) float array containing the points in the polygon.""" self.normals = normals """A (N, 3) float array with the normals for points in the polygon. Can be None.""" self.texcoords = texcoords """A tuple where entries are numpy float arrays of size (N, 2) containing the texture coordinates for the points in the polygon for each texture coordinate set. Can be length 0 if there are no texture coordinates.""" self.material = material """If coming from an unbound :class:`collada.polylist.Polylist`, contains a string with the material symbol. If coming from a bound :class:`collada.polylist.BoundPolylist`, contains the actual :class:`collada.material.Effect` the line is bound to.""" self.indices = indices """A (N,) int array containing the indices for the vertices of the N points in the polygon.""" self.normal_indices = normal_indices """A (N,) int array containing the indices for the normals of the N points in the polygon""" self.texcoord_indices = texcoord_indices """A (N,2) int array with texture coordinate indexes for the texcoords of the N points in the polygon""" def triangles(self): """This triangulates the polygon using a simple fanning method. :rtype: generator of :class:`collada.polylist.Polygon` """ npts = len(self.vertices) for i in range(npts-2): tri_indices = numpy.array([ self.indices[0], self.indices[i+1], self.indices[i+2] ], dtype=numpy.float32) tri_vertices = numpy.array([ self.vertices[0], self.vertices[i+1], self.vertices[i+2] ], dtype=numpy.float32) if self.normals is None: tri_normals = None normal_indices = None else: tri_normals = numpy.array([ self.normals[0], self.normals[i+1], self.normals[i+2] ], dtype=numpy.float32) normal_indices = numpy.array([ self.normal_indices[0], self.normal_indices[i+1], self.normal_indices[i+2] ], dtype=numpy.float32) tri_texcoords = [] tri_texcoord_indices = [] for texcoord, texcoord_indices in zip( self.texcoords, self.texcoord_indices): tri_texcoords.append(numpy.array([ texcoord[0], texcoord[i+1], texcoord[i+2] ], dtype=numpy.float32)) tri_texcoord_indices.append(numpy.array([ texcoord_indices[0], texcoord_indices[i+1], texcoord_indices[i+2] ], dtype=numpy.float32)) tri = triangleset.Triangle( tri_indices, tri_vertices, normal_indices, tri_normals, tri_texcoord_indices, tri_texcoords, self.material) yield tri def __repr__(self): return '' % len(self.vertices) def __str__(self): return repr(self) class Polylist(primitive.Primitive): """Class containing the data COLLADA puts in a tag, a collection of polygons. The Polylist object is read-only. To modify a Polylist, create a new instance using :meth:`collada.geometry.Geometry.createPolylist`. * If ``P`` is an instance of :class:`collada.polylist.Polylist`, then ``len(P)`` returns the number of polygons in the set. ``P[i]`` returns the i\ :sup:`th` polygon in the set. """ def __init__(self, sources, material, index, vcounts, xmlnode=None): """A Polylist should not be created manually. Instead, call the :meth:`collada.geometry.Geometry.createPolylist` method after creating a geometry instance. """ if len(sources) == 0: raise DaeIncompleteError('A polylist set needs at least one input for vertex positions') if not 'VERTEX' in sources: raise DaeIncompleteError('Polylist requires vertex input') #find max offset max_offset = max([ max([input[0] for input in input_type_array]) for input_type_array in sources.values() if len(input_type_array) > 0]) self.material = material self.index = index self.indices = self.index self.nindices = max_offset + 1 self.vcounts = vcounts self.sources = sources self.index.shape = (-1, self.nindices) self.npolygons = len(self.vcounts) self.nvertices = numpy.sum(self.vcounts) if len(self.index) > 0 else 0 self.polyends = numpy.cumsum(self.vcounts) self.polystarts = self.polyends - self.vcounts self.polyindex = numpy.dstack((self.polystarts, self.polyends))[0] if len(self.index) > 0: self._vertex = sources['VERTEX'][0][4].data self._vertex_index = self.index[:,sources['VERTEX'][0][0]] self.maxvertexindex = numpy.max( self._vertex_index ) checkSource(sources['VERTEX'][0][4], ('X', 'Y', 'Z'), self.maxvertexindex) else: self._vertex = None self._vertex_index = None self.maxvertexindex = -1 if 'NORMAL' in sources and len(sources['NORMAL']) > 0 and len(self.index) > 0: self._normal = sources['NORMAL'][0][4].data self._normal_index = self.index[:,sources['NORMAL'][0][0]] self.maxnormalindex = numpy.max( self._normal_index ) checkSource(sources['NORMAL'][0][4], ('X', 'Y', 'Z'), self.maxnormalindex) else: self._normal = None self._normal_index = None self.maxnormalindex = -1 if 'TEXCOORD' in sources and len(sources['TEXCOORD']) > 0 \ and len(self.index) > 0: self._texcoordset = tuple([texinput[4].data for texinput in sources['TEXCOORD']]) self._texcoord_indexset = tuple([ self.index[:,sources['TEXCOORD'][i][0]] for i in xrange(len(sources['TEXCOORD'])) ]) self.maxtexcoordsetindex = [numpy.max(each) for each in self._texcoord_indexset] for i, texinput in enumerate(sources['TEXCOORD']): checkSource(texinput[4], ('S', 'T'), self.maxtexcoordsetindex[i]) else: self._texcoordset = tuple() self._texcoord_indexset = tuple() self.maxtexcoordsetindex = -1 if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the line set.""" else: txtindices = ' '.join(map(str, self.indices.flatten().tolist())) acclen = len(self.indices) self.xmlnode = E.polylist(count=str(self.npolygons), material=self.material) all_inputs = [] for semantic_list in self.sources.values(): all_inputs.extend(semantic_list) for offset, semantic, sourceid, set, src in all_inputs: inpnode = E.input(offset=str(offset), semantic=semantic, source=sourceid) if set is not None: inpnode.set('set', str(set)) self.xmlnode.append(inpnode) vcountnode = E.vcount(' '.join(map(str, self.vcounts))) self.xmlnode.append(vcountnode) self.xmlnode.append(E.p(txtindices)) def __len__(self): return self.npolygons def __getitem__(self, i): polyrange = self.polyindex[i] vertindex = self._vertex_index[polyrange[0]:polyrange[1]] v = self._vertex[vertindex] normalindex = None if self.normal is None: n = None else: normalindex = self._normal_index[polyrange[0]:polyrange[1]] n = self._normal[normalindex] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append( uvindex[polyrange[0]:polyrange[1]] ) uv.append( self._texcoordset[j][ uvindex[polyrange[0]:polyrange[1]] ] ) return Polygon(vertindex, v, normalindex, n, uvindices, uv, self.material) _triangleset = None def triangleset(self): """This performs a simple triangulation of the polylist using the fanning method. :rtype: :class:`collada.triangleset.TriangleSet` """ if self._triangleset is None: indexselector = numpy.zeros(self.nvertices) == 0 indexselector[self.polyindex[:,1]-1] = False indexselector[self.polyindex[:,1]-2] = False indexselector = numpy.arange(self.nvertices)[indexselector] firstpolyindex = numpy.arange(self.nvertices) firstpolyindex = firstpolyindex - numpy.repeat(self.polyends - self.vcounts, self.vcounts) firstpolyindex = firstpolyindex[indexselector] if len(self.index) > 0: triindex = numpy.dstack( (self.index[indexselector-firstpolyindex], self.index[indexselector+1], self.index[indexselector+2]) ) triindex = numpy.swapaxes(triindex, 1,2).flatten() else: triindex = numpy.array([], dtype=self.index.dtype) triset = triangleset.TriangleSet(self.sources, self.material, triindex, self.xmlnode) self._triangleset = triset return self._triangleset @staticmethod def load( collada, localscope, node ): indexnode = node.find(tag('p')) if indexnode is None: raise DaeIncompleteError('Missing index in polylist') vcountnode = node.find(tag('vcount')) if vcountnode is None: raise DaeIncompleteError('Missing vcount in polylist') try: if vcountnode.text is None: vcounts = numpy.array([], dtype=numpy.int32) else: vcounts = numpy.fromstring(vcountnode.text, dtype=numpy.int32, sep=' ') vcounts[numpy.isnan(vcounts)] = 0 except ValueError as ex: raise DaeMalformedError('Corrupted vcounts in polylist') all_inputs = primitive.Primitive._getInputs(collada, localscope, node.findall(tag('input'))) try: if indexnode.text is None: index = numpy.array([], dtype=numpy.int32) else: index = numpy.fromstring(indexnode.text, dtype=numpy.int32, sep=' ') index[numpy.isnan(index)] = 0 except: raise DaeMalformedError('Corrupted index in polylist') polylist = Polylist(all_inputs, node.get('material'), index, vcounts, node) return polylist def bind(self, matrix, materialnodebysymbol): """Create a bound polylist from this polylist, transform and material mapping""" return BoundPolylist( self, matrix, materialnodebysymbol) def __str__(self): return '' % len(self) def __repr__(self): return str(self) class BoundPolylist(primitive.BoundPrimitive): """A polylist bound to a transform matrix and materials mapping. * If ``P`` is an instance of :class:`collada.polylist.BoundPolylist`, then ``len(P)`` returns the number of polygons in the set. ``P[i]`` returns the i\ :sup:`th` polygon in the set. """ def __init__(self, pl, matrix, materialnodebysymbol): """Create a bound polylist from a polylist, transform and material mapping. This gets created when a polylist is instantiated in a scene. Do not create this manually.""" M = numpy.asmatrix(matrix).transpose() self._vertex = None if pl._vertex is None else numpy.asarray(pl._vertex * M[:3,:3]) + matrix[:3,3] self._normal = None if pl._normal is None else numpy.asarray(pl._normal * M[:3,:3]) self._texcoordset = pl._texcoordset matnode = materialnodebysymbol.get( pl.material ) if matnode: self.material = matnode.target self.inputmap = dict([ (sem, (input_sem, set)) for sem, input_sem, set in matnode.inputs ]) else: self.inputmap = self.material = None self.index = pl.index self.nvertices = pl.nvertices self._vertex_index = pl._vertex_index self._normal_index = pl._normal_index self._texcoord_indexset = pl._texcoord_indexset self.polyindex = pl.polyindex self.npolygons = pl.npolygons self.matrix = matrix self.materialnodebysymbol = materialnodebysymbol self.original = pl def __len__(self): return self.npolygons def __getitem__(self, i): polyrange = self.polyindex[i] vertindex = self._vertex_index[polyrange[0]:polyrange[1]] v = self._vertex[vertindex] normalindex = None if self.normal is None: n = None else: normalindex = self._normal_index[polyrange[0]:polyrange[1]] n = self._normal[normalindex] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append( uvindex[polyrange[0]:polyrange[1]] ) uv.append( self._texcoordset[j][ uvindex[polyrange[0]:polyrange[1]] ] ) return Polygon(vertindex, v, normalindex, n, uvindices, uv, self.material) _triangleset = None def triangleset(self): """This performs a simple triangulation of the polylist using the fanning method. :rtype: :class:`collada.triangleset.BoundTriangleSet` """ if self._triangleset is None: triset = self.original.triangleset() boundtriset = triset.bind(self.matrix, self.materialnodebysymbol) self._triangleset = boundtriset return self._triangleset def polygons(self): """Iterate through all the polygons contained in the set. :rtype: generator of :class:`collada.polylist.Polygon` """ for i in xrange(self.npolygons): yield self[i] def shapes(self): """Iterate through all the polygons contained in the set. :rtype: generator of :class:`collada.polylist.Polygon` """ return self.polygons() def __str__(self): return '' % len(self) def __repr__(self): return str(self) pycollada-0.4/collada/primitive.py000066400000000000000000000256151200577111600173170ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing the base class for primitives""" import numpy import types from collada.common import DaeObject from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.source import InputList class Primitive(DaeObject): """Base class for all primitive sets like TriangleSet, LineSet, Polylist, etc.""" vertex = property( lambda s: s._vertex, doc= """Read-only numpy.array of size Nx3 where N is the number of vertex points in the primitive's vertex source array.""" ) normal = property( lambda s: s._normal, doc= """Read-only numpy.array of size Nx3 where N is the number of normal values in the primitive's normal source array.""" ) texcoordset = property( lambda s: s._texcoordset, doc= """Read-only tuple of texture coordinate arrays. Each value is a numpy.array of size Nx2 where N is the number of texture coordinates in the primitive's source array.""" ) textangentset = property( lambda s: s._textangentset, doc= """Read-only tuple of texture tangent arrays. Each value is a numpy.array of size Nx3 where N is the number of texture tangents in the primitive's source array.""" ) texbinormalset = property( lambda s: s._texbinormalset, doc= """Read-only tuple of texture binormal arrays. Each value is a numpy.array of size Nx3 where N is the number of texture binormals in the primitive's source array.""" ) vertex_index = property( lambda s: s._vertex_index, doc= """Read-only numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual vertex points, one can use this array to select into the vertex array, e.g. ``vertex[vertex_index]``.""" ) normal_index = property( lambda s: s._normal_index, doc= """Read-only numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual normal values, one can use this array to select into the normals array, e.g. ``normal[normal_index]``.""" ) texcoord_indexset = property( lambda s: s._texcoord_indexset, doc= """Read-only tuple of texture coordinate index arrays. Each value is a numpy.array of size Nx2 where N is the number of vertices in the primitive. To get the actual texture coordinates, one can use the array to select into the texcoordset array, e.g. ``texcoordset[0][texcoord_indexset[0]]`` would select the first set of texture coordinates.""" ) textangent_indexset = property( lambda s: s._textangent_indexset, doc= """Read-only tuple of texture tangent index arrays. Each value is a numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual texture tangents, one can use the array to select into the textangentset array, e.g. ``textangentset[0][textangent_indexset[0]]`` would select the first set of texture tangents.""" ) texbinormal_indexset = property( lambda s: s._texbinormal_indexset, doc= """Read-only tuple of texture binormal index arrays. Each value is a numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual texture binormals, one can use the array to select into the texbinormalset array, e.g. ``texbinormalset[0][texbinormal_indexset[0]]`` would select the first set of texture binormals.""" ) def bind(self, matrix, materialnodebysymbol): """Binds this primitive to a transform matrix and material mapping. The primitive's points get transformed by the given matrix and its inputs get mapped to the given materials. :param numpy.array matrix: A 4x4 numpy float matrix :param dict materialnodebysymbol: A dictionary with the material symbols inside the primitive assigned to :class:`collada.scene.MaterialNode` defined in the scene :rtype: :class:`collada.primitive.Primitive` """ pass @staticmethod def _getInputsFromList(collada, localscope, inputs): #first let's save any of the source that are references to a dict to_append = [] for input in inputs: offset, semantic, source, set = input if semantic == 'VERTEX': vertex_source = localscope.get(source[1:]) if isinstance(vertex_source, dict): for inputsemantic, inputsource in vertex_source.items(): if inputsemantic == 'POSITION': to_append.append([offset, 'VERTEX', '#' + inputsource.id, set]) else: to_append.append([offset, inputsemantic, '#' + inputsource.id, set]) #remove all the dicts inputs[:] = [input for input in inputs if not isinstance(localscope.get(input[2][1:]), dict)] #append the dereferenced dicts for a in to_append: inputs.append(a) vertex_inputs = [] normal_inputs = [] texcoord_inputs = [] textangent_inputs = [] texbinormal_inputs = [] color_inputs = [] tangent_inputs = [] binormal_inputs = [] all_inputs = {} for input in inputs: offset, semantic, source, set = input if len(source) < 2 or source[0] != '#': raise DaeMalformedError('Incorrect source id "%s" in input' % source) if source[1:] not in localscope: raise DaeBrokenRefError('Source input id "%s" not found' % source) input = (input[0], input[1], input[2], input[3], localscope[source[1:]]) if semantic == 'VERTEX': vertex_inputs.append(input) elif semantic == 'NORMAL': normal_inputs.append(input) elif semantic == 'TEXCOORD': texcoord_inputs.append(input) elif semantic == 'TEXTANGENT': textangent_inputs.append(input) elif semantic == 'TEXBINORMAL': texbinormal_inputs.append(input) elif semantic == 'COLOR': color_inputs.append(input) elif semantic == 'TANGENT': tangent_inputs.append(input) elif semantic == 'BINORMAL': binormal_inputs.append(input) else: try: raise DaeUnsupportedError('Unknown input semantic: %s' % semantic) except DaeUnsupportedError as ex: collada.handleError(ex) unknown_input = all_inputs.get(semantic, []) unknown_input.append(input) all_inputs[semantic] = unknown_input all_inputs['VERTEX'] = vertex_inputs all_inputs['NORMAL'] = normal_inputs all_inputs['TEXCOORD'] = texcoord_inputs all_inputs['TEXBINORMAL'] = texbinormal_inputs all_inputs['TEXTANGENT'] = textangent_inputs all_inputs['COLOR'] = color_inputs all_inputs['TANGENT'] = tangent_inputs all_inputs['BINORMAL'] = binormal_inputs return all_inputs @staticmethod def _getInputs(collada, localscope, inputnodes): try: inputs = [(int(i.get('offset')), i.get('semantic'), i.get('source'), i.get('set')) for i in inputnodes] except ValueError as ex: raise DaeMalformedError('Corrupted offsets in primitive') return Primitive._getInputsFromList(collada, localscope, inputs) def getInputList(self): """Gets a :class:`collada.source.InputList` representing the inputs from a primitive""" inpl = InputList() for (key, tupes) in self.sources.iteritems(): for (offset, semantic, source, set, srcobj) in tupes: inpl.addInput(offset, semantic, source, set) return inpl def save(self): return NotImplementedError("Primitives are read-only") class BoundPrimitive(object): """A :class:`collada.primitive.Primitive` bound to a transform matrix and material mapping.""" def shapes(self): """Iterate through the items in this primitive. The shape returned depends on the primitive type. Examples: Triangle, Polygon.""" pass vertex = property( lambda s: s._vertex, doc= """Read-only numpy.array of size Nx3 where N is the number of vertex points in the primitive's vertex source array. The values will be transformed according to the bound transformation matrix.""" ) normal = property( lambda s: s._normal, doc= """Read-only numpy.array of size Nx3 where N is the number of normal values in the primitive's normal source array. The values will be transformed according to the bound transformation matrix.""" ) texcoordset = property( lambda s: s._texcoordset, doc= """Read-only tuple of texture coordinate arrays. Each value is a numpy.array of size Nx2 where N is the number of texture coordinates in the primitive's source array. The values will be transformed according to the bound transformation matrix.""" ) vertex_index = property( lambda s: s._vertex_index, doc= """Read-only numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual vertex points, one can use this array to select into the vertex array, e.g. ``vertex[vertex_index]``. The values will be transformed according to the bound transformation matrix.""" ) normal_index = property( lambda s: s._normal_index, doc= """Read-only numpy.array of size Nx3 where N is the number of vertices in the primitive. To get the actual normal values, one can use this array to select into the normals array, e.g. ``normal[normal_index]``. The values will be transformed according to the bound transformation matrix.""" ) texcoord_indexset = property( lambda s: s._texcoord_indexset, doc= """Read-only tuple of texture coordinate index arrays. Each value is a numpy.array of size Nx2 where N is the number of vertices in the primitive. To get the actual texture coordinates, one can use the array to select into the texcoordset array, e.g. ``texcoordset[0][texcoord_indexset[0]]`` would select the first set of texture coordinates. The values will be transformed according to the bound transformation matrix.""" ) pycollada-0.4/collada/scene.py000066400000000000000000001070111200577111600163730ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """This module contains several classes related to the scene graph. Supported scene nodes are: * which is loaded as a Node * which is loaded as a CameraNode * which is loaded as a LightNode * which is loaded as a MaterialNode * which is loaded as a GeometryNode * which is loaded as a ControllerNode * which is loaded as a Scene """ import copy import numpy from collada.common import DaeObject, E, tag from collada.common import DaeError, DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import toUnitVec from collada.xmlutil import etree as ElementTree class DaeInstanceNotLoadedError(Exception): """Raised when an instance_node refers to a node that isn't loaded yet. Will always be caught""" def __init__(self, msg): super(DaeInstanceNotLoadedError,self).__init__() self.msg = msg class SceneNode(DaeObject): """Abstract base class for all nodes within a scene.""" def objects(self, tipo, matrix=None): """Iterate through all objects under this node that match `tipo`. The objects will be bound and transformed via the scene transformations. :param str tipo: A string for the desired object type. This can be one of 'geometry', 'camera', 'light', or 'controller'. :param numpy.matrix matrix: An optional transformation matrix :rtype: generator that yields the type specified """ pass def makeRotationMatrix(x, y, z, angle): """Build and return a transform 4x4 matrix to rotate `angle` radians around (`x`,`y`,`z`) axis.""" c = numpy.cos(angle) s = numpy.sin(angle) t = (1-c) return numpy.array([[t*x*x+c, t*x*y - s*z, t*x*z + s*y, 0], [t*x*y+s*z, t*y*y + c, t*y*z - s*x, 0], [t*x*z - s*y, t*y*z + s*x, t*z*z + c, 0], [0, 0, 0, 1]], dtype=numpy.float32 ) class Transform(DaeObject): """Base class for all transformation types""" def save(self): pass class TranslateTransform(Transform): """Contains a translation transformation as defined in the collada tag.""" def __init__(self, x, y, z, xmlnode=None): """Creates a translation transformation :param float x: x coordinate :param float y: y coordinate :param float z: z coordinate :param xmlnode: When loaded, the xmlnode it comes from """ self.x = x """x coordinate""" self.y = y """y coordinate""" self.z = z """z coordinate""" self.matrix = numpy.identity(4, dtype=numpy.float32) """The resulting transformation matrix. This will be a numpy.array of size 4x4.""" self.matrix[:3,3] = [ x, y, z ] self.xmlnode = xmlnode """ElementTree representation of the transform.""" if xmlnode is None: self.xmlnode = E.translate(' '.join([str(x),str(y),str(z)])) @staticmethod def load(collada, node): floats = numpy.fromstring(node.text, dtype=numpy.float32, sep=' ') if len(floats) != 3: raise DaeMalformedError("Translate node requires three float values") return TranslateTransform(floats[0], floats[1], floats[2], node) def __str__(self): return '' % (self.x, self.y, self.z) def __repr__(self): return str(self) class RotateTransform(Transform): """Contains a rotation transformation as defined in the collada tag.""" def __init__(self, x, y, z, angle, xmlnode=None): """Creates a rotation transformation :param float x: x coordinate :param float y: y coordinate :param float z: z coordinate :param float angle: angle of rotation, in radians :param xmlnode: When loaded, the xmlnode it comes from """ self.x = x """x coordinate""" self.y = y """y coordinate""" self.z = z """z coordinate""" self.angle = angle """angle of rotation, in radians""" self.matrix = makeRotationMatrix(x, y, z, angle*numpy.pi/180.0) """The resulting transformation matrix. This will be a numpy.array of size 4x4.""" self.xmlnode = xmlnode """ElementTree representation of the transform.""" if xmlnode is None: self.xmlnode = E.rotate(' '.join([str(x),str(y),str(z),str(angle)])) @staticmethod def load(collada, node): floats = numpy.fromstring(node.text, dtype=numpy.float32, sep=' ') if len(floats) != 4: raise DaeMalformedError("Rotate node requires four float values") return RotateTransform(floats[0], floats[1], floats[2], floats[3], node) def __str__(self): return '' % (self.x, self.y, self.z, self.angle) def __repr__(self): return str(self) class ScaleTransform(Transform): """Contains a scale transformation as defined in the collada tag.""" def __init__(self, x, y, z, xmlnode=None): """Creates a scale transformation :param float x: x coordinate :param float y: y coordinate :param float z: z coordinate :param xmlnode: When loaded, the xmlnode it comes from """ self.x = x """x coordinate""" self.y = y """y coordinate""" self.z = z """z coordinate""" self.matrix = numpy.identity(4, dtype=numpy.float32) """The resulting transformation matrix. This will be a numpy.array of size 4x4.""" self.matrix[0,0] = x self.matrix[1,1] = y self.matrix[2,2] = z self.xmlnode = xmlnode """ElementTree representation of the transform.""" if xmlnode is None: self.xmlnode = E.scale(' '.join([str(x),str(y),str(z)])) @staticmethod def load(collada, node): floats = numpy.fromstring(node.text, dtype=numpy.float32, sep=' ') if len(floats) != 3: raise DaeMalformedError("Scale node requires three float values") return ScaleTransform(floats[0], floats[1], floats[2], node) def __str__(self): return '' % (self.x, self.y, self.z) def __repr__(self): return str(self) class MatrixTransform(Transform): """Contains a matrix transformation as defined in the collada tag.""" def __init__(self, matrix, xmlnode=None): """Creates a matrix transformation :param numpy.array matrix: This should be an unshaped numpy array of floats of length 16 :param xmlnode: When loaded, the xmlnode it comes from """ self.matrix = matrix """The resulting transformation matrix. This will be a numpy.array of size 4x4.""" if len(self.matrix) != 16: raise DaeMalformedError('Corrupted matrix transformation node') self.matrix.shape = (4, 4) self.xmlnode = xmlnode """ElementTree representation of the transform.""" if xmlnode is None: self.xmlnode = E.matrix(' '.join(map(str, self.matrix.flat))) @staticmethod def load(collada, node): floats = numpy.fromstring(node.text, dtype=numpy.float32, sep=' ') return MatrixTransform(floats, node) def __str__(self): return '' def __repr__(self): return str(self) class LookAtTransform(Transform): """Contains a transformation for aiming a camera as defined in the collada tag.""" def __init__(self, eye, interest, upvector, xmlnode=None): """Creates a lookat transformation :param numpy.array eye: An unshaped numpy array of floats of length 3 containing the position of the eye :param numpy.array interest: An unshaped numpy array of floats of length 3 containing the point of interest :param numpy.array upvector: An unshaped numpy array of floats of length 3 containing the up-axis direction :param xmlnode: When loaded, the xmlnode it comes from """ self.eye = eye """A numpy array of length 3 containing the position of the eye""" self.interest = interest """A numpy array of length 3 containing the point of interest""" self.upvector = upvector """A numpy array of length 3 containing the up-axis direction""" if len(eye) != 3 or len(interest) != 3 or len(upvector) != 3: raise DaeMalformedError('Corrupted lookat transformation node') self.matrix = numpy.identity(4, dtype=numpy.float32) """The resulting transformation matrix. This will be a numpy.array of size 4x4.""" front = toUnitVec(numpy.subtract(eye,interest)) side = numpy.multiply(-1, toUnitVec(numpy.cross(front, upvector))) self.matrix[0,0:3] = side self.matrix[1,0:3] = upvector self.matrix[2,0:3] = front self.matrix[3,0:3] = eye self.xmlnode = xmlnode """ElementTree representation of the transform.""" if xmlnode is None: self.xmlnode = E.lookat(' '.join(map(str, numpy.concatenate((self.eye, self.interest, self.upvector)) ))) @staticmethod def load(collada, node): floats = numpy.fromstring(node.text, dtype=numpy.float32, sep=' ') if len(floats) != 9: raise DaeMalformedError("Lookat node requires 9 float values") return LookAtTransform(floats[0:3], floats[3:6], floats[6:9], node) def __str__(self): return '' def __repr__(self): return str(self) class Node(SceneNode): """Represents a node object, which is a point on the scene graph, as defined in the collada tag. Contains the list of transformations effecting the node as well as any children. """ def __init__(self, id, children=None, transforms=None, xmlnode=None): """Create a node in the scene graph. :param str id: A unique string identifier for the node :param list children: A list of child nodes of this node. This can contain any object that inherits from :class:`collada.scene.SceneNode` :param list transforms: A list of transformations effecting the node. This can contain any object that inherits from :class:`collada.scene.Transform` :param xmlnode: When loaded, the xmlnode it comes from """ self.id = id """The unique string identifier for the node""" self.children = [] """A list of child nodes of this node. This can contain any object that inherits from :class:`collada.scene.SceneNode`""" if children is not None: self.children = children self.transforms = [] if transforms is not None: self.transforms = transforms """A list of transformations effecting the node. This can contain any object that inherits from :class:`collada.scene.Transform`""" self.matrix = numpy.identity(4, dtype=numpy.float32) """A numpy.array of size 4x4 containing a transformation matrix that combines all the transformations in :attr:`transforms`. This will only be updated after calling :meth:`save`.""" for t in self.transforms: self.matrix = numpy.dot(self.matrix, t.matrix) if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the transform.""" else: self.xmlnode = E.node(id=self.id, name=self.id) for t in self.transforms: self.xmlnode.append(t.xmlnode) for c in self.children: self.xmlnode.append(c.xmlnode) def objects(self, tipo, matrix=None): """Iterate through all objects under this node that match `tipo`. The objects will be bound and transformed via the scene transformations. :param str tipo: A string for the desired object type. This can be one of 'geometry', 'camera', 'light', or 'controller'. :param numpy.matrix matrix: An optional transformation matrix :rtype: generator that yields the type specified """ if matrix != None: M = numpy.dot( matrix, self.matrix ) else: M = self.matrix for node in self.children: for obj in node.objects(tipo, M): yield obj def save(self): """Saves the geometry back to :attr:`xmlnode`. Also updates :attr:`matrix` if :attr:`transforms` has been modified.""" self.matrix = numpy.identity(4, dtype=numpy.float32) for t in self.transforms: self.matrix = numpy.dot(self.matrix, t.matrix) for child in self.children: child.save() if self.id is not None: self.xmlnode.set('id', self.id) self.xmlnode.set('name', self.id) for t in self.transforms: if t.xmlnode not in self.xmlnode: self.xmlnode.append(t.xmlnode) for c in self.children: if c.xmlnode not in self.xmlnode: self.xmlnode.append(c.xmlnode) xmlnodes = [c.xmlnode for c in self.children] xmlnodes.extend([t.xmlnode for t in self.transforms]) for n in self.xmlnode: if n not in xmlnodes: self.xmlnode.remove(n) @staticmethod def load( collada, node, localscope ): id = node.get('id') children = [] transforms = [] for subnode in node: try: n = loadNode(collada, subnode, localscope) if isinstance(n, Transform): transforms.append(n) elif n is not None: children.append(n) except DaeError as ex: collada.handleError(ex) return Node(id, children, transforms, xmlnode=node) def __str__(self): return '' % (len(self.transforms), len(self.children)) def __repr__(self): return str(self) class NodeNode(Node): """Represents a node being instantiated in a scene, as defined in the collada tag.""" def __init__(self, node, xmlnode=None): """Creates a node node :param collada.scene.Node node: A node to instantiate in the scene :param xmlnode: When loaded, the xmlnode it comes from """ self.node = node """An object of type :class:`collada.scene.Node` representing the node to bind in the scene""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the node node.""" else: self.xmlnode = E.instance_node(url="#%s" % self.node.id) def objects(self, tipo, matrix=None): for obj in self.node.objects(tipo, matrix): yield obj id = property(lambda s: s.node.id) children = property(lambda s: s.node.children) matrix = property(lambda s: s.node.matrix) @staticmethod def load( collada, node, localscope ): url = node.get('url') if not url.startswith('#'): raise DaeMalformedError('Invalid url in node instance %s' % url) referred_node = localscope.get(url[1:]) if not referred_node: referred_node = collada.nodes.get(url[1:]) if not referred_node: raise DaeInstanceNotLoadedError('Node %s not found in library'%url) return NodeNode(referred_node, xmlnode=node) def save(self): """Saves the node node back to :attr:`xmlnode`""" self.xmlnode.set('url', "#%s" % self.node.id) def __str__(self): return '' % (self.node.id,) def __repr__(self): return str(self) class GeometryNode(SceneNode): """Represents a geometry instance in a scene, as defined in the collada tag.""" def __init__(self, geometry, materials=None, xmlnode=None): """Creates a geometry node :param collada.geometry.Geometry geometry: A geometry to instantiate in the scene :param list materials: A list containing items of type :class:`collada.scene.MaterialNode`. Each of these represents a material that the geometry should be bound to. :param xmlnode: When loaded, the xmlnode it comes from """ self.geometry = geometry """An object of type :class:`collada.geometry.Geometry` representing the geometry to bind in the scene""" self.materials = [] """A list containing items of type :class:`collada.scene.MaterialNode`. Each of these represents a material that the geometry is bound to.""" if materials is not None: self.materials = materials if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the geometry node.""" else: self.xmlnode = E.instance_geometry(url="#%s" % self.geometry.id) if len(self.materials) > 0: self.xmlnode.append(E.bind_material( E.technique_common( *[mat.xmlnode for mat in self.materials] ) )) def objects(self, tipo, matrix=None): """Yields a :class:`collada.geometry.BoundGeometry` if ``tipo=='geometry'``""" if tipo == 'geometry': if matrix is None: matrix = numpy.identity(4, dtype=numpy.float32) materialnodesbysymbol = {} for mat in self.materials: materialnodesbysymbol[mat.symbol] = mat yield self.geometry.bind(matrix, materialnodesbysymbol) @staticmethod def load( collada, node ): url = node.get('url') if not url.startswith('#'): raise DaeMalformedError('Invalid url in geometry instance %s' % url) geometry = collada.geometries.get(url[1:]) if not geometry: raise DaeBrokenRefError('Geometry %s not found in library'%url) matnodes = node.findall('%s/%s/%s'%( tag('bind_material'), tag('technique_common'), tag('instance_material') ) ) materials = [] for matnode in matnodes: materials.append( MaterialNode.load(collada, matnode) ) return GeometryNode( geometry, materials, xmlnode=node) def save(self): """Saves the geometry node back to :attr:`xmlnode`""" self.xmlnode.set('url', "#%s" % self.geometry.id) for m in self.materials: m.save() matparent = self.xmlnode.find('%s/%s'%( tag('bind_material'), tag('technique_common') ) ) if matparent is None and len(self.materials)==0: return elif matparent is None: matparent = E.technique_common() self.xmlnode.append(E.bind_material(matparent)) elif len(self.materials) == 0 and matparent is not None: bindnode = self.xmlnode.find('%s' % tag('bind_material')) self.xmlnode.remove(bindnode) return for m in self.materials: if m.xmlnode not in matparent: matparent.append(m.xmlnode) xmlnodes = [m.xmlnode for m in self.materials] for n in matparent: if n not in xmlnodes: matparent.remove(n) def __str__(self): return '' % (self.geometry.id,) def __repr__(self): return str(self) class ControllerNode(SceneNode): """Represents a controller instance in a scene, as defined in the collada tag. **This class is highly experimental. More support will be added in version 0.4.**""" def __init__(self, controller, materials, xmlnode=None): """Creates a controller node :param collada.controller.Controller controller: A controller to instantiate in the scene :param list materials: A list containing items of type :class:`collada.scene.MaterialNode`. Each of these represents a material that the controller should be bound to. :param xmlnode: When loaded, the xmlnode it comes from """ self.controller = controller """ An object of type :class:`collada.controller.Controller` representing the controller being instantiated in the scene""" self.materials = materials """A list containing items of type :class:`collada.scene.MaterialNode`. Each of these represents a material that the controller is bound to.""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the controller node.""" else: self.xmlnode = ElementTree.Element( tag('instance_controller') ) bindnode = ElementTree.Element( tag('bind_material') ) technode = ElementTree.Element( tag('technique_common') ) bindnode.append( technode ) self.xmlnode.append( bindnode ) for mat in materials: technode.append( mat.xmlnode ) def objects(self, tipo, matrix=None): """Yields a :class:`collada.controller.BoundController` if ``tipo=='controller'``""" if tipo == 'controller': if matrix is None: matrix = numpy.identity(4, dtype=numpy.float32) materialnodesbysymbol = {} for mat in self.materials: materialnodesbysymbol[mat.symbol] = mat yield self.controller.bind(matrix, materialnodesbysymbol) @staticmethod def load( collada, node ): url = node.get('url') if not url.startswith('#'): raise DaeMalformedError('Invalid url in controller instance %s' % url) controller = collada.controllers.get(url[1:]) if not controller: raise DaeBrokenRefError('Controller %s not found in library'%url) matnodes = node.findall('%s/%s/%s'%( tag('bind_material'), tag('technique_common'), tag('instance_material') ) ) materials = [] for matnode in matnodes: materials.append( MaterialNode.load(collada, matnode) ) return ControllerNode( controller, materials, xmlnode=node) def save(self): """Saves the controller node back to :attr:`xmlnode`""" self.xmlnode.set('url', '#'+self.controller.id) for mat in self.materials: mat.save() def __str__(self): return '' % (self.controller.id,) def __repr__(self): return str(self) class MaterialNode(SceneNode): """Represents a material being instantiated in a scene, as defined in the collada tag.""" def __init__(self, symbol, target, inputs, xmlnode = None): """Creates a material node :param str symbol: The symbol within a geometry this material should be bound to :param collada.material.Material target: The material object being bound to :param list inputs: A list of tuples of the form ``(semantic, input_semantic, set)`` mapping texcoords or other inputs to material input channels, e.g. ``('TEX0', 'TEXCOORD', '0')`` would map the effect parameter ``'TEX0'`` to the ``'TEXCOORD'`` semantic of the geometry, using texture coordinate set ``0``. :param xmlnode: When loaded, the xmlnode it comes from """ self.symbol = symbol """The symbol within a geometry this material should be bound to""" self.target = target """An object of type :class:`collada.material.Material` representing the material object being bound to""" self.inputs = inputs """A list of tuples of the form ``(semantic, input_semantic, set)`` mapping texcoords or other inputs to material input channels, e.g. ``('TEX0', 'TEXCOORD', '0')`` would map the effect parameter ``'TEX0'`` to the ``'TEXCOORD'`` semantic of the geometry, using texture coordinate set ``0``.""" if xmlnode is not None: self.xmlnode = xmlnode """ElementTree representation of the material node.""" else: self.xmlnode = E.instance_material( *[E.bind_vertex_input(semantic=sem, input_semantic=input_sem, input_set=set) for sem, input_sem, set in self.inputs] , **{'symbol': self.symbol, 'target':"#%s"%self.target.id} ) @staticmethod def load(collada, node): inputs = [] for inputnode in node.findall( tag('bind_vertex_input') ): inputs.append( ( inputnode.get('semantic'), inputnode.get('input_semantic'), inputnode.get('input_set') ) ) targetid = node.get('target') if not targetid.startswith('#'): raise DaeMalformedError('Incorrect target id in material '+targetid) target = collada.materials.get(targetid[1:]) if not target: raise DaeBrokenRefError('Material %s not found'%targetid) return MaterialNode(node.get('symbol'), target, inputs, xmlnode = node) def objects(self): pass def save(self): """Saves the material node back to :attr:`xmlnode`""" self.xmlnode.set('symbol', self.symbol) self.xmlnode.set('target', "#%s"%self.target.id) inputs_in = [] for i in self.xmlnode.findall( tag('bind_vertex_input') ): input_tuple = ( i.get('semantic'), i.get('input_semantic'), i.get('input_set') ) if input_tuple not in self.inputs: self.xmlnode.remove(i) else: inputs_in.append(input_tuple) for i in self.inputs: if i not in inputs_in: self.xmlnode.append(E.bind_vertex_input(semantic=i[0], input_semantic=i[1], input_set=i[2])) def __str__(self): return '' % (self.symbol, self.target.id) def __repr__(self): return str(self) class CameraNode(SceneNode): """Represents a camera being instantiated in a scene, as defined in the collada tag.""" def __init__(self, camera, xmlnode=None): """Create a camera instance :param collada.camera.Camera camera: The camera being instantiated :param xmlnode: When loaded, the xmlnode it comes from """ self.camera = camera """An object of type :class:`collada.camera.Camera` representing the instantiated camera""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the camera node.""" else: self.xmlnode = E.instance_camera(url="#%s"%camera.id) def objects(self, tipo, matrix=None): """Yields a :class:`collada.camera.BoundCamera` if ``tipo=='camera'``""" if tipo == 'camera': if matrix is None: matrix = numpy.identity(4, dtype=numpy.float32) yield self.camera.bind(matrix) @staticmethod def load( collada, node ): url = node.get('url') if not url.startswith('#'): raise DaeMalformedError('Invalid url in camera instance %s' % url) camera = collada.cameras.get(url[1:]) if not camera: raise DaeBrokenRefError('Camera %s not found in library'%url) return CameraNode( camera, xmlnode=node) def save(self): """Saves the camera node back to :attr:`xmlnode`""" self.xmlnode.set('url', '#'+self.camera.id) def __str__(self): return '' % (self.camera.id,) def __repr__(self): return str(self) class LightNode(SceneNode): """Represents a light being instantiated in a scene, as defined in the collada tag.""" def __init__(self, light, xmlnode=None): """Create a light instance :param collada.light.Light light: The light being instantiated :param xmlnode: When loaded, the xmlnode it comes from """ self.light = light """An object of type :class:`collada.light.Light` representing the instantiated light""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the light node.""" else: self.xmlnode = E.instance_light(url="#%s"%light.id) def objects(self, tipo, matrix=None): """Yields a :class:`collada.light.BoundLight` if ``tipo=='light'``""" if tipo == 'light': if matrix is None: matrix = numpy.identity(4, dtype=numpy.float32) yield self.light.bind(matrix) @staticmethod def load( collada, node ): url = node.get('url') if not url.startswith('#'): raise DaeMalformedError('Invalid url in light instance %s' % url) light = collada.lights.get(url[1:]) if not light: raise DaeBrokenRefError('Light %s not found in library'%url) return LightNode( light, xmlnode=node) def save(self): """Saves the light node back to :attr:`xmlnode`""" self.xmlnode.set('url', '#'+self.light.id) def __str__(self): return '' % (self.light.id,) def __repr__(self): return str(self) class ExtraNode(SceneNode): """Represents extra information in a scene, as defined in a collada tag.""" def __init__(self, xmlnode): """Create an extra node which stores arbitrary xml :param xmlnode: Should be an ElementTree instance of tag type """ if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the extra node.""" else: self.xmlnode = E.extra() def objects(self, tipo, matrix=None): if tipo == 'extra': for e in self.xmlnode.findall(tag(tipo)): yield e @staticmethod def load( collada, node ): return ExtraNode(node) def save(self): pass def loadNode( collada, node, localscope ): """Generic scene node loading from a xml `node` and a `collada` object. Knowing the supported nodes, create the appropiate class for the given node and return it. """ if node.tag == tag('node'): return Node.load(collada, node, localscope) elif node.tag == tag('translate'): return TranslateTransform.load(collada, node) elif node.tag == tag('rotate'): return RotateTransform.load(collada, node) elif node.tag == tag('scale'): return ScaleTransform.load(collada, node) elif node.tag == tag('matrix'): return MatrixTransform.load(collada, node) elif node.tag == tag('lookat'): return LookAtTransform.load(collada, node) elif node.tag == tag('instance_geometry'): return GeometryNode.load(collada, node) elif node.tag == tag('instance_camera'): return CameraNode.load(collada, node) elif node.tag == tag('instance_light'): return LightNode.load(collada, node) elif node.tag == tag('instance_controller'): return ControllerNode.load(collada, node) elif node.tag == tag('instance_node'): return NodeNode.load(collada, node, localscope) elif node.tag == tag('extra'): return ExtraNode.load(collada, node) elif node.tag == tag('asset'): return None else: raise DaeUnsupportedError('Unknown scene node %s' % str(node.tag)) class Scene(DaeObject): """The root object for a scene, as defined in a collada tag""" def __init__(self, id, nodes, xmlnode=None, collada=None): """Create a scene :param str id: A unique string identifier for the scene :param list nodes: A list of type :class:`collada.scene.Node` representing the nodes in the scene :param xmlnode: When loaded, the xmlnode it comes from :param collada: The collada instance this is part of """ self.id = id """The unique string identifier for the scene""" self.nodes = nodes """A list of type :class:`collada.scene.Node` representing the nodes in the scene""" self.collada = collada """The collada instance this is part of""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the scene node.""" else: self.xmlnode = E.visual_scene(id=self.id) for node in nodes: self.xmlnode.append( node.xmlnode ) def objects(self, tipo): """Iterate through all objects in the scene that match `tipo`. The objects will be bound and transformed via the scene transformations. :param str tipo: A string for the desired object type. This can be one of 'geometry', 'camera', 'light', or 'controller'. :rtype: generator that yields the type specified """ matrix = None for node in self.nodes: for obj in node.objects(tipo, matrix): yield obj @staticmethod def load( collada, node ): id = node.get('id') nodes = [] tried_loading = [] succeeded = False localscope = {} for nodenode in node.findall(tag('node')): try: N = loadNode(collada, nodenode, localscope) except DaeInstanceNotLoadedError as ex: tried_loading.append((nodenode, ex)) except DaeError as ex: collada.handleError(ex) else: if N is not None: nodes.append( N ) if N.id and N.id not in localscope: localscope[N.id] = N succeeded = True while len(tried_loading) > 0 and succeeded: succeeded = False next_tried = [] for nodenode, ex in tried_loading: try: N = loadNode(collada, nodenode, localscope) except DaeInstanceNotLoadedError as ex: next_tried.append((nodenode, ex)) except DaeError as ex: collada.handleError(ex) else: if N is not None: nodes.append( N ) succeeded = True tried_loading = next_tried if len(tried_loading) > 0: for nodenode, ex in tried_loading: raise DaeBrokenRefError(ex.msg) return Scene(id, nodes, xmlnode=node, collada=collada) def save(self): """Saves the scene back to :attr:`xmlnode`""" self.xmlnode.set('id', self.id) for node in self.nodes: node.save() if node.xmlnode not in self.xmlnode: self.xmlnode.append(node.xmlnode) xmlnodes = [n.xmlnode for n in self.nodes] for node in self.xmlnode: if node not in xmlnodes: self.xmlnode.remove(node) def __str__(self): return '' % (self.id, len(self.nodes)) def __repr__(self): return str(self) pycollada-0.4/collada/schema.py000066400000000000000000021567311200577111600165550ustar00rootroot00000000000000#encoding:UTF-8 #################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """This module contains helper classes and functions for working with the COLLADA 1.4.1 schema.""" import lxml import lxml.etree from collada.util import bytes, BytesIO COLLADA_SCHEMA_1_4_1 = """ COLLADA Schema Version 1.4.1 (June 23, 2006) Copyright (C) 2005, 2006 The Khronos Group Inc., Sony Computer Entertainment Inc. All Rights Reserved. Khronos is a trademark of The Khronos Group Inc. COLLADA is a trademark of Sony Computer Entertainment Inc. used by permission by Khronos. Note that this software document is distributed on an "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. enable-xmlns The COLLADA element declares the root of the document that comprises some of the content in the COLLADA schema. The COLLADA element must contain an asset element. The COLLADA element may contain any number of library_animations elements. The COLLADA element may contain any number of library_animation_clips elements. The COLLADA element may contain any number of library_cameras elements. The COLLADA element may contain any number of library_controllerss elements. The COLLADA element may contain any number of library_geometriess elements. The COLLADA element may contain any number of library_effects elements. The COLLADA element may contain any number of library_force_fields elements. The COLLADA element may contain any number of library_images elements. The COLLADA element may contain any number of library_lights elements. The COLLADA element may contain any number of library_materials elements. The COLLADA element may contain any number of library_nodes elements. The COLLADA element may contain any number of library_materials elements. The COLLADA element may contain any number of library_physics_models elements. The COLLADA element may contain any number of library_physics_scenes elements. The COLLADA element may contain any number of library_visual_scenes elements. The scene embodies the entire set of information that can be visualized from the contents of a COLLADA resource. The scene element declares the base of the scene hierarchy or scene graph. The scene contains elements that comprise much of the visual and transformational information content as created by the authoring tools. The instance_physics_scene element declares the instantiation of a COLLADA physics_scene resource. The instance_physics_scene element may appear any number of times. The instance_visual_scene element declares the instantiation of a COLLADA visual_scene resource. The instance_visual_scene element may only appear once. The extra element may appear any number of times. The extra element may appear any number of times. The version attribute is the COLLADA schema revision with which the instance document conforms. Required Attribute. The xml:base attribute allows you to define the base URI for this COLLADA document. See http://www.w3.org/TR/xmlbase/ for more information. An enumuerated type specifying the acceptable morph methods. An enumerated type specifying the acceptable node types. This type is used for URI reference which can only reference a resource declared within it's same document. An enumerated type specifying the acceptable up-axis values. An enumerated type specifying the acceptable document versions. The InputGlobal type is used to represent inputs that can reference external resources. The semantic attribute is the user-defined meaning of the input connection. Required attribute. The source attribute indicates the location of the data source. Required attribute. The InputLocal type is used to represent inputs that can only reference resources declared in the same document. The semantic attribute is the user-defined meaning of the input connection. Required attribute. The source attribute indicates the location of the data source. Required attribute. The InputLocalOffset type is used to represent indexed inputs that can only reference resources declared in the same document. The offset attribute represents the offset into the list of indices. If two input elements share the same offset, they will be indexed the same. This works as a simple form of compression for the list of indices as well as defining the order the inputs should be used in. Required attribute. The semantic attribute is the user-defined meaning of the input connection. Required attribute. The source attribute indicates the location of the data source. Required attribute. The set attribute indicates which inputs should be grouped together as a single set. This is helpful when multiple inputs share the same semantics. The InstanceWithExtra type is used for all generic instance elements. A generic instance element is one which does not have any specific child elements declared. The extra element may occur any number of times. The url attribute refers to resource to instantiate. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The TargetableFloat type is used to represent elements which contain a single float value which can be targeted for animation. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The TargetableFloat3 type is used to represent elements which contain a float3 value which can be targeted for animation. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The IDREF_array element declares the storage for a homogenous array of ID reference values. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of values in the array. Required attribute. The Name_array element declares the storage for a homogenous array of Name string values. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of values in the array. Required attribute. The bool_array element declares the storage for a homogenous array of boolean values. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of values in the array. Required attribute. The float_array element declares the storage for a homogenous array of floating point values. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of values in the array. Required attribute. The digits attribute indicates the number of significant decimal digits of the float values that can be contained in the array. The default value is 6. Optional attribute. The magnitude attribute indicates the largest exponent of the float values that can be contained in the array. The default value is 38. Optional attribute. The int_array element declares the storage for a homogenous array of integer values. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of values in the array. Required attribute. The minInclusive attribute indicates the smallest integer value that can be contained in the array. The default value is –2147483648. Optional attribute. The maxInclusive attribute indicates the largest integer value that can be contained in the array. The default value is 2147483647. Optional attribute. The accessor element declares an access pattern to one of the array elements: float_array, int_array, Name_array, bool_array, and IDREF_array. The accessor element describes access to arrays that are organized in either an interleaved or non-interleaved manner, depending on the offset and stride attributes. The accessor element may have any number of param elements. The count attribute indicates the number of times the array is accessed. Required attribute. The offset attribute indicates the index of the first value to be read from the array. The default value is 0. Optional attribute. The source attribute indicates the location of the array to access using a URL expression. Required attribute. The stride attribute indicates number of values to be considered a unit during each access to the array. The default value is 1, indicating that a single value is accessed. Optional attribute. The param element declares parametric information regarding its parent element. The name attribute is the text string name of this element. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The semantic attribute is the user-defined meaning of the parameter. Optional attribute. The type attribute indicates the type of the value data. This text string must be understood by the application. Required attribute. The source element declares a data repository that provides values according to the semantics of an input element that refers to it. The source element may contain an asset element. The source element may contain an IDREF_array. The source element may contain a Name_array. The source element may contain a bool_array. The source element may contain a float_array. The source element may contain an int_array. The technique common specifies the common method for accessing this source element's data. The source's technique_common must have one and only one accessor. This element may contain any number of non-common profile techniques. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Required attribute. The name attribute is the text string name of this element. Optional attribute. Geometry describes the visual shape and appearance of an object in the scene. The geometry element categorizes the declaration of geometric information. Geometry is a branch of mathematics that deals with the measurement, properties, and relationships of points, lines, angles, surfaces, and solids. The geometry element may contain an asset element. The geometry element may contain only one mesh or convex_mesh. The geometry element may contain only one mesh or convex_mesh. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The mesh element contains vertex and primitive information sufficient to describe basic geometric meshes. The mesh element must contain one or more source elements. The mesh element must contain one vertices element. The mesh element may contain any number of lines elements. The mesh element may contain any number of linestrips elements. The mesh element may contain any number of polygons elements. The mesh element may contain any number of polylist elements. The mesh element may contain any number of triangles elements. The mesh element may contain any number of trifans elements. The mesh element may contain any number of tristrips elements. The extra element may appear any number of times. The spline element contains control vertex information sufficient to describe basic splines. The mesh element must contain one or more source elements. The control vertices element must occur exactly one time. It is used to describe the CVs of the spline. The input element must occur at least one time. These inputs are local inputs. The extra element may appear any number of times. The extra element may appear any number of times. The p element represents primitive data for the primitive types (lines, linestrips, polygons, polylist, triangles, trifans, tristrips). The p element contains indices that reference into the parent's source elements referenced by the input elements. The lines element provides the information needed to bind vertex attributes together and then organize those vertices into individual lines. Each line described by the mesh has two vertices. The first line is formed from first and second vertices. The second line is formed from the third and fourth vertices and so on. The input element may occur any number of times. This input is a local input with the offset and set attributes. The p element may occur once. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of line primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The linestrips element provides the information needed to bind vertex attributes together and then organize those vertices into connected line-strips. Each line-strip described by the mesh has an arbitrary number of vertices. Each line segment within the line-strip is formed from the current vertex and the preceding vertex. The input element may occur any number of times. This input is a local input with the offset and set attributes. The linestrips element may have any number of p elements. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of linestrip primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The polygons element provides the information needed to bind vertex attributes together and then organize those vertices into individual polygons. The polygons described can contain arbitrary numbers of vertices. These polygons may be self intersecting and may also contain holes. The input element may occur any number of times. This input is a local input with the offset and set attributes. The p element may occur any number of times. The ph element descripes a polygon with holes. Theere may only be one p element. The h element represents a hole in the polygon specified. There must be at least one h element. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of polygon primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The polylist element provides the information needed to bind vertex attributes together and then organize those vertices into individual polygons. The polygons described in polylist can contain arbitrary numbers of vertices. Unlike the polygons element, the polylist element cannot contain polygons with holes. The input element may occur any number of times. This input is a local input with the offset and set attributes. The vcount element contains a list of integers describing the number of sides for each polygon described by the polylist element. The vcount element may occur once. The p element may occur once. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of polygon primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The triangles element provides the information needed to bind vertex attributes together and then organize those vertices into individual triangles. Each triangle described by the mesh has three vertices. The first triangle is formed from the first, second, and third vertices. The second triangle is formed from the fourth, fifth, and sixth vertices, and so on. The input element may occur any number of times. This input is a local input with the offset and set attributes. The triangles element may have any number of p elements. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of triangle primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. Optional attribute. If the material attribute is not specified then the lighting and shading results are application defined. The trifans element provides the information needed to bind vertex attributes together and then organize those vertices into connected triangles. Each triangle described by the mesh has three vertices. The first triangle is formed from first, second, and third vertices. Each subsequent triangle is formed from the current vertex, reusing the first and the previous vertices. The input element may occur any number of times. This input is a local input with the offset and set attributes. The trifans element may have any number of p elements. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of triangle fan primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The tristrips element provides the information needed to bind vertex attributes together and then organize those vertices into connected triangles. Each triangle described by the mesh has three vertices. The first triangle is formed from first, second, and third vertices. Each subsequent triangle is formed from the current vertex, reusing the previous two vertices. The input element may occur any number of times. This input is a local input with the offset and set attributes. The tristrips element may have any number of p elements. The extra element may appear any number of times. The name attribute is the text string name of this element. Optional attribute. The count attribute indicates the number of triangle strip primitives. Required attribute. The material attribute declares a symbol for a material. This symbol is bound to a material at the time of instantiation. If the material attribute is not specified then the lighting and shading results are application defined. Optional attribute. The vertices element declares the attributes and identity of mesh-vertices. The vertices element describes mesh-vertices in a mesh geometry. The mesh-vertices represent the position (identity) of the vertices comprising the mesh and other vertex attributes that are invariant to tessellation. The input element must occur at least one time. These inputs are local inputs. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Required attribute. The name attribute is the text string name of this element. Optional attribute. The lookat element contains a position and orientation transformation suitable for aiming a camera. The lookat element contains three mathematical vectors within it that describe: 1. The position of the object; 2. The position of the interest point; 3. The direction that points up. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. Matrix transformations embody mathematical changes to points within a coordinate systems or the coordinate system itself. The matrix element contains a 4-by-4 matrix of floating-point values. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The rotate element contains an angle and a mathematical vector that represents the axis of rotation. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The scale element contains a mathematical vector that represents the relative proportions of the X, Y and Z axes of a coordinated system. The skew element contains an angle and two mathematical vectors that represent the axis of rotation and the axis of translation. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The translate element contains a mathematical vector that represents the distance along the X, Y and Z-axes. The image element declares the storage for the graphical representation of an object. The image element best describes raster image data, but can conceivably handle other forms of imagery. The image elements allows for specifying an external image file with the init_from element or embed image data with the data element. The image element may contain an asset element. The data child element contains a sequence of hexadecimal encoded binary octets representing the embedded image data. The init_from element allows you to specify an external image file to use for the image element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The format attribute is a text string value that indicates the image format. Optional attribute. The height attribute is an integer value that indicates the height of the image in pixel units. Optional attribute. The width attribute is an integer value that indicates the width of the image in pixel units. Optional attribute. The depth attribute is an integer value that indicates the depth of the image in pixel units. A 2-D image has a depth of 1, which is also the default value. Optional attribute. The light element declares a light source that illuminates the scene. Light sources have many different properties and radiate light in many different patterns and frequencies. The light element may contain an asset element. The technique_common element specifies the light information for the common profile which all COLLADA implementations need to support. The ambient element declares the parameters required to describe an ambient light source. An ambient light is one that lights everything evenly, regardless of location or orientation. The color element contains three floating point numbers specifying the color of the light. The color element must occur exactly once. The directional element declares the parameters required to describe a directional light source. A directional light is one that lights everything from the same direction, regardless of location. The light’s default direction vector in local coordinates is [0,0,-1], pointing down the -Z axis. The actual direction of the light is defined by the transform of the node where the light is instantiated. The color element contains three floating point numbers specifying the color of the light. The color element must occur exactly once. The point element declares the parameters required to describe a point light source. A point light source radiates light in all directions from a known location in space. The intensity of a point light source is attenuated as the distance to the light source increases. The position of the light is defined by the transform of the node in which it is instantiated. The color element contains three floating point numbers specifying the color of the light. The color element must occur exactly once. The constant_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The linear_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The quadratic_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The spot element declares the parameters required to describe a spot light source. A spot light source radiates light in one direction from a known location in space. The light radiates from the spot light source in a cone shape. The intensity of the light is attenuated as the radiation angle increases away from the direction of the light source. The intensity of a spot light source is also attenuated as the distance to the light source increases. The position of the light is defined by the transform of the node in which it is instantiated. The light’s default direction vector in local coordinates is [0,0,-1], pointing down the -Z axis. The actual direction of the light is defined by the transform of the node where the light is instantiated. The color element contains three floating point numbers specifying the color of the light. The color element must occur exactly once. The constant_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The linear_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The quadratic_attenuation is used to calculate the total attenuation of this light given a distance. The equation used is A = constant_attenuation + Dist*linear_attenuation + Dist^2*quadratic_attenuation. The falloff_angle is used to specify the amount of attenuation based on the direction of the light. The falloff_exponent is used to specify the amount of attenuation based on the direction of the light. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. Materials describe the visual appearance of a geometric object. The material element may contain an asset element. The material must instance an effect. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The camera element declares a view into the scene hierarchy or scene graph. The camera contains elements that describe the camera’s optics and imager. The camera element may contain an asset element. Optics represents the apparatus on a camera that projects the image onto the image sensor. The technique_common element specifies the optics information for the common profile which all COLLADA implementations need to support. The orthographic element describes the field of view of an orthographic camera. The xmag element contains a floating point number describing the horizontal magnification of the view. The ymag element contains a floating point number describing the vertical magnification of the view. It can also have a sid. The aspect_ratio element contains a floating point number describing the aspect ratio of the field of view. If the aspect_ratio element is not present the aspect ratio is to be calculated from the xmag or ymag elements and the current viewport. The znear element contains a floating point number that describes the distance to the near clipping plane. The znear element must occur exactly once. The zfar element contains a floating point number that describes the distance to the far clipping plane. The zfar element must occur exactly once. The perspective element describes the optics of a perspective camera. The xfov element contains a floating point number describing the horizontal field of view in degrees. The yfov element contains a floating point number describing the verticle field of view in degrees. The aspect_ratio element contains a floating point number describing the aspect ratio of the field of view. If the aspect_ratio element is not present the aspect ratio is to be calculated from the xfov or yfov elements and the current viewport. The znear element contains a floating point number that describes the distance to the near clipping plane. The znear element must occur exactly once. The zfar element contains a floating point number that describes the distance to the far clipping plane. The zfar element must occur exactly once. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. Imagers represent the image sensor of a camera (for example film or CCD). This element may contain any number of non-common profile techniques. There is no common technique for imager. The extra element may appear any number of times. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The animation element categorizes the declaration of animation information. The animation hierarchy contains elements that describe the animation’s key-frame data and sampler functions, ordered in such a way to group together animations that should be executed together. The animation element may contain an asset element. The animation element may contain any number of source elements. The animation element may contain any number of sampler elements. The animation element may contain any number of channel elements. The animation may be hierarchical and may contain any number of other animation elements. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The animation_clip element defines a section of the animation curves to be used together as an animation clip. The animation_clip element may contain an asset element. The animation_clip must instance at least one animation element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The start attribute is the time in seconds of the beginning of the clip. This time is the same as that used in the key-frame data and is used to determine which set of key-frames will be included in the clip. The start time does not specify when the clip will be played. If the time falls between two keyframes of a referenced animation, an interpolated value should be used. The default value is 0.0. Optional attribute. The end attribute is the time in seconds of the end of the clip. This is used in the same way as the start time. If end is not specified, the value is taken to be the end time of the longest animation. Optional attribute. The channel element declares an output channel of an animation. The source attribute indicates the location of the sampler using a URL expression. The sampler must be declared within the same document. Required attribute. The target attribute indicates the location of the element bound to the output of the sampler. This text string is a path-name following a simple syntax described in Address Syntax. Required attribute. The sampler element declares an N-dimensional function used for animation. Animation function curves are represented by 1-D sampler elements in COLLADA. The sampler defines sampling points and how to interpolate between them. The input element must occur at least one time. These inputs are local inputs. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The controller element categorizes the declaration of generic control information. A controller is a device or mechanism that manages and directs the operations of another object. The controller element may contain an asset element. The controller element may contain either a skin element or a morph element. The controller element may contain either a skin element or a morph element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The skin element contains vertex and primitive information sufficient to describe blend-weight skinning. This provides extra information about the position and orientation of the base mesh before binding. If bind_shape_matrix is not specified then an identity matrix may be used as the bind_shape_matrix. The bind_shape_matrix element may occur zero or one times. The skin element must contain at least three source elements. The joints element associates joint, or skeleton, nodes with attribute data. In COLLADA, this is specified by the inverse bind matrix of each joint (influence) in the skeleton. The input element must occur at least twice. These inputs are local inputs. The extra element may appear any number of times. The vertex_weights element associates a set of joint-weight pairs with each vertex in the base mesh. The input element must occur at least twice. The vcount element contains a list of integers describing the number of influences for each vertex. The vcount element may occur once. The v element describes which bones and attributes are associated with each vertex. An index of –1 into the array of joints refers to the bind shape. Weights should be normalized before use. The v element must occur zero or one times. The extra element may appear any number of times. The count attribute describes the number of vertices in the base mesh. Required element. The extra element may appear any number of times. The source attribute contains a URI reference to the base mesh, (a static mesh or a morphed mesh). This also provides the bind-shape of the skinned mesh. Required attribute. The morph element describes the data required to blend between sets of static meshes. Each possible mesh that can be blended (a morph target) must be specified. The morph element must contain at least two source elements. The targets element declares the morph targets, their weights and any user defined attributes associated with them. The input element must occur at least twice. These inputs are local inputs. The extra element may appear any number of times. The extra element may appear any number of times. The method attribute specifies the which blending technique to use. The accepted values are NORMALIZED, and RELATIVE. The default value if not specified is NORMALIZED. Optional attribute. The source attribute indicates the base mesh. Required attribute. The asset element defines asset management information regarding its parent element. The contributor element defines authoring information for asset management The author element contains a string with the author's name. There may be only one author element. The authoring_tool element contains a string with the authoring tool's name. There may be only one authoring_tool element. The comments element contains a string with comments from this contributor. There may be only one comments element. The copyright element contains a string with copyright information. There may be only one copyright element. The source_data element contains a URI reference to the source data used for this asset. There may be only one source_data element. The created element contains the date and time that the parent element was created and is represented in an ISO 8601 format. The created element may appear zero or one time. The keywords element contains a list of words used as search criteria for the parent element. The keywords element may appear zero or more times. The modified element contains the date and time that the parent element was last modified and represented in an ISO 8601 format. The modified element may appear zero or one time. The revision element contains the revision information for the parent element. The revision element may appear zero or one time. The subject element contains a description of the topical subject of the parent element. The subject element may appear zero or one time. The title element contains the title information for the parent element. The title element may appear zero or one time. The unit element contains descriptive information about unit of measure. It has attributes for the name of the unit and the measurement with respect to the meter. The unit element may appear zero or one time. The meter attribute specifies the measurement with respect to the meter. The default value for the meter attribute is “1.0â€. The name attribute specifies the name of the unit. The default value for the name attribute is “meterâ€. The up_axis element contains descriptive information about coordinate system of the geometric data. All coordinates are right-handed by definition. This element specifies which axis is considered up. The default is the Y-axis. The up_axis element may appear zero or one time. The extra element declares additional information regarding its parent element. The extra element may contain an asset element. This element must contain at least one non-common profile technique. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The type attribute indicates the type of the value data. This text string must be understood by the application. Optional attribute. enable-xmlns The technique element declares the information used to process some portion of the content. Each technique conforms to an associated profile. Techniques generally act as a “switchâ€. If more than one is present for a particular portion of content, on import, one or the other is picked, but usually not both. Selection should be based on which profile the importing application can support. Techniques contain application data and programs, making them assets that can be managed as a unit. The profile attribute indicates the type of profile. This is a vendor defined character string that indicates the platform or capability target for the technique. Required attribute. Nodes embody the hierarchical relationship of elements in the scene. The node element may contain an asset element. The node element may contain any number of lookat elements. The node element may contain any number of matrix elements. The node element may contain any number of rotate elements. The node element may contain any number of scale elements. The node element may contain any number of skew elements. The node element may contain any number of translate elements. The node element may instance any number of camera objects. The node element may instance any number of controller objects. The node element may instance any number of geometry objects. The node element may instance any number of light objects. The node element may instance any number of node elements or hierarchies objects. The node element may be hierarchical and be the parent of any number of other node elements. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The type attribute indicates the type of the node element. The default value is “NODEâ€. Optional attribute. The layer attribute indicates the names of the layers to which this node belongs. For example, a value of “foreground glowing†indicates that this node belongs to both the ‘foreground’ layer and the ‘glowing’ layer. The default value is empty, indicating that the node doesn’t belong to any layer. Optional attribute. The visual_scene element declares the base of the visual_scene hierarchy or scene graph. The scene contains elements that comprise much of the visual and transformational information content as created by the authoring tools. The visual_scene element may contain an asset element. The visual_scene element must have at least one node element. The evaluate_scene element declares information specifying a specific way to evaluate this visual_scene. There may be any number of evaluate_scene elements. The render element describes one effect pass to evaluate the scene. There must be at least one render element. The layer element specifies which layer to render in this compositing step while evaluating the scene. You may specify any number of layers. The instance_effect element specifies which effect to render in this compositing step while evaluating the scene. The camera_node attribute refers to a node that contains a camera describing the viewpoint to render this compositing step from. The name attribute is the text string name of this element. Optional attribute. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. Bind a specific material to a piece of geometry, binding varying and uniform parameters at the same time. The bind_material element may contain any number of param elements. The technique_common element specifies the bind_material information for the common profile which all COLLADA implementations need to support. The instance_material element specifies the information needed to bind a geometry to a material. This element must appear at least once. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The instance_camera element declares the instantiation of a COLLADA camera resource. The instance_controller element declares the instantiation of a COLLADA controller resource. The skeleton element is used to indicate where a skin controller is to start to search for the joint nodes it needs. This element is meaningless for morph controllers. Bind a specific material to a piece of geometry, binding varying and uniform parameters at the same time. The extra element may appear any number of times. The url attribute refers to resource. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The instance_effect element declares the instantiation of a COLLADA effect resource. Add a hint for a platform of which technique to use in this effect. A platform defines a string that specifies which platform this is hint is aimed for. A profile defines a string that specifies which API profile this is hint is aimed for. A reference to the technique to use for the specified platform. Assigns a new value to a previously defined parameter The extra element may appear any number of times. The url attribute refers to resource. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The instance_force_field element declares the instantiation of a COLLADA force_field resource. The instance_geometry element declares the instantiation of a COLLADA geometry resource. Bind a specific material to a piece of geometry, binding varying and uniform parameters at the same time. The extra element may appear any number of times. The url attribute refers to resource. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The instance_light element declares the instantiation of a COLLADA light resource. The instance_material element declares the instantiation of a COLLADA material resource. The bind element binds values to effect parameters upon instantiation. The semantic attribute specifies which effect parameter to bind. The target attribute specifies the location of the value to bind to the specified semantic. This text string is a path-name following a simple syntax described in the “Addressing Syntax†section. The bind_vertex_input element binds vertex inputs to effect parameters upon instantiation. The semantic attribute specifies which effect parameter to bind. The input_semantic attribute specifies which input semantic to bind. The input_set attribute specifies which input set to bind. The extra element may appear any number of times. The symbol attribute specifies which symbol defined from within the geometry this material binds to. The target attribute specifies the URL of the location of the object to instantiate. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The instance_node element declares the instantiation of a COLLADA node resource. The instance_physics_material element declares the instantiation of a COLLADA physics_material resource. This element allows instancing physics model within another physics model, or in a physics scene. The instance_physics_model element may instance any number of force_field elements. The instance_physics_model element may instance any number of rigid_body elements. The instance_physics_model element may instance any number of rigid_constraint elements. The extra element may appear any number of times. The url attribute refers to resource. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The parent attribute points to the id of a node in the visual scene. This allows a physics model to be instantiated under a specific transform node, which will dictate the initial position and orientation, and could be animated to influence kinematic rigid bodies. This element allows instancing a rigid_body within an instance_physics_model. The technique_common element specifies the instance_rigid_body information for the common profile which all COLLADA implementations need to support. Specifies the initial angular velocity of the rigid_body instance in degrees per second around each axis, in the form of an X-Y-Z Euler rotation. Specifies the initial linear velocity of the rigid_body instance. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The extra element may appear any number of times. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The body attribute indicates which rigid_body to instantiate. Required attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The target attribute indicates which node is influenced by this rigid_body instance. Required attribute This element allows instancing a rigid_constraint within an instance_physics_model. The extra element may appear any number of times. The constraint attribute indicates which rigid_constraing to instantiate. Required attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_animations element declares a module of animation elements. The library_animations element may contain an asset element. There must be at least one animation element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_animation_clips element declares a module of animation_clip elements. The library_animation_clips element may contain an asset element. There must be at least one animation_clip element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_cameras element declares a module of camera elements. The library_cameras element may contain an asset element. There must be at least one camera element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_controllers element declares a module of controller elements. The library_controllers element may contain an asset element. There must be at least one controller element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_geometries element declares a module of geometry elements. The library_geometries element may contain an asset element. There must be at least one geometry element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_effects element declares a module of effect elements. The library_effects element may contain an asset element. There must be at least one effect element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_force_fields element declares a module of force_field elements. The library_force_fields element may contain an asset element. There must be at least one force_field element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_images element declares a module of image elements. The library_images element may contain an asset element. There must be at least one image element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_lights element declares a module of light elements. The library_lights element may contain an asset element. There must be at least one light element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_materials element declares a module of material elements. The library_materials element may contain an asset element. There must be at least one material element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_nodes element declares a module of node elements. The library_nodes element may contain an asset element. There must be at least one node element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_physics_materials element declares a module of physics_material elements. The library_physics_materials element may contain an asset element. There must be at least one physics_material element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_physics_models element declares a module of physics_model elements. The library_physics_models element may contain an asset element. There must be at least one physics_model element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_physics_scenes element declares a module of physics_scene elements. The library_physics_scenes element may contain an asset element. There must be at least one physics_scene element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The library_visual_scenes element declares a module of visual_scene elements. The library_visual_scenes element may contain an asset element. There must be at least one visual_scene element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. When a transparent opaque attribute is set to A_ONE, it means the transparency information will be taken from the alpha channel of the color, texture, or parameter supplying the value. The value of 1.0 is opaque in this mode. When a transparent opaque attribute is set to RGB_ZERO, it means the transparency information will be taken from the red, green, and blue channels of the color, texture, or parameter supplying the value. Each channel is modulated independently. The value of 0.0 is opaque in this mode. When a surface's type attribute is set to UNTYPED, its type is initially unknown and established later by the context in which it is used, such as by a texture sampler that references it. A surface of any other type may be changed into an UNTYPED surface at run-time, as if it were created by <newparam>, using <setparam>. If there is a type mismatch between a <setparam> operation and what the run-time decides the type should be, the result is profile- and platform-specific behavior. The per-texel layout of the format. The length of the string indicate how many channels there are and the letter respresents the name of the channel. There are typically 0 to 4 channels. RGB color map RGB color + Alpha map often used for color + transparency or other things packed into channel A like specular power Luminance map often used for light mapping Luminance+Alpha map often used for light mapping Depth map often used for displacement, parellax, relief, or shadow mapping Typically used for normal maps or 3component displacement maps. Typically used for normal maps where W is the depth for relief or parrallax mapping Each channel of the texel has a precision. Typically these are all linked together. An exact format lay lower the precision of an individual channel but applying a higher precision by linking the channels together may still convey the same information. For integers this typically represents 8 bits. For floats typically 16 bits. For integers this typically represents 8 to 24 bits. For floats typically 16 to 32 bits. For integers this typically represents 16 to 32 bits. For floats typically 24 to 32 bits. Each channel represents a range of values. Some example ranges are signed or unsigned integers, or between between a clamped range such as 0.0f to 1.0f, or high dynamic range via floating point Format is representing a decimal value that remains within the -1 to 1 range. Implimentation could be integer-fixedpoint or floats. Format is representing a decimal value that remains within the 0 to 1 range. Implimentation could be integer-fixedpoint or floats. Format is representing signed integer numbers. (ex. 8bits = -128 to 127) Format is representing unsigned integer numbers. (ex. 8bits = 0 to 255) Format should support full floating point ranges. High precision is expected to be 32bit. Mid precision may be 16 to 32 bit. Low precision is expected to be 16 bit. Additional hints about data relationships and other things to help the application pick the best format. colors are stored with respect to the sRGB 2.2 gamma curve rather than linear the texel's XYZ/RGB should be normalized such as in a normal map. the texel's XYZW/RGBA should be normalized such as in a normal map. The surface may use run-time compression. Considering the best compression based on desired, channel, range, precision, and options If the exact format cannot be resolve via other methods then the format_hint will describe the important features of the format so that the application may select a compatable or close format The per-texel layout of the format. The length of the string indicate how many channels there are and the letter respresents the name of the channel. There are typically 0 to 4 channels. Each channel represents a range of values. Some example ranges are signed or unsigned integers, or between between a clamped range such as 0.0f to 1.0f, or high dynamic range via floating point Each channel of the texel has a precision. Typically these are all linked together. An exact format lay lower the precision of an individual channel but applying a higher precision by linking the channels together may still convey the same information. Additional hints about data relationships and other things to help the application pick the best format. For 1D, 2D, RECT surface types This choice exists for consistancy with other init types (volume and cube). When other initialization methods are needed. Init the entire surface with one compound image such as DDS Init the entire surface with one compound image such as DDS Init mip level 0 of the surface with one compound image such as DDS. Use of this element expects that the surface has element mip_levels=0 or mipmap_generate. Init the entire surface with one compound image such as DDS Init all primary mip level 0 subsurfaces with one compound image such as DDS. Use of this element expects that the surface has element mip_levels=0 or mipmap_generate. This sequence exists to allow the order elements to be optional but require that if they exist there must be 6 of them. If the image dues not natively describe the face ordering then this series of order elements will describe which face the index belongs too Init each face mipchain with one compound image such as DDS This element is an IDREF which specifies the image to use to initialize a specific mip of a 1D or 2D surface, 3D slice, or Cube face. The common set of initalization options for surfaces. Choose which is appropriate for your surface based on type and other characteristics. described by the annotation docs on the child elements. This surface is intended to be initialized later externally by a "setparam" element. If it is used before being initialized there is profile and platform specific behavior. Most elements on the surface element containing this will be ignored including mip_levels, mipmap_generate, size, viewport_ratio, and format. Init as a target for depth, stencil, or color. It does not need image data. Surface should not have mipmap_generate when using this. Init a CUBE from a compound image such as DDS Init a 3D from a compound image such as DDS Init a 1D,2D,RECT,DEPTH from a compound image such as DDS Initialize the surface one sub-surface at a time by specifying combinations of mip, face, and slice which make sense for a particular surface type. Each sub-surface is initialized by a common 2D image, not a complex compound image such as DDS. If not all subsurfaces are initialized, it is invalid and will result in profile and platform specific behavior unless mipmap_generate is responsible for initializing the remainder of the sub-surfaces The fx_surface_common type is used to declare a resource that can be used both as the source for texture samples and as the target of a rendering pass. The common set of initalization options for surfaces. Choose which is appropriate for your surface based on the type attribute and other characteristics described by the annotation docs on the choiced child elements of this type. Contains a string representing the profile and platform specific texel format that the author would like this surface to use. If this element is not specified then the application will use a common format R8G8B8A8 with linear color gradient, not sRGB. If the exact format cannot be resolved via the "format" element then the format_hint will describe the important features of the format so that the application may select a compatable or close format The surface should be sized to these exact dimensions The surface should be sized to a dimension based on this ratio of the viewport's dimensions in pixels the surface should contain the following number of MIP levels. If this element is not present it is assumed that all miplevels exist until a dimension becomes 1 texel. To create a surface that has only one level of mip maps (mip=0) set this to 1. If the value is 0 the result is the same as if mip_levels was unspecified, all possible mip_levels will exist. By default it is assumed that mipmaps are supplied by the author so, if not all subsurfaces are initialized, it is invalid and will result in profile and platform specific behavior unless mipmap_generate is responsible for initializing the remainder of the sub-surfaces Specifying the type of a surface is mandatory though the type may be "UNTYPED". When a surface is typed as UNTYPED, it is said to be temporarily untyped and instead will be typed later by the context it is used in such as which samplers reference it in that are used in a particular technique or pass. If there is a type mismatch between what is set into it later and what the runtime decides the type should be the result in profile and platform specific behavior. A one-dimensional texture sampler. A two-dimensional texture sampler. A three-dimensional texture sampler. A texture sampler for cube maps. A two-dimensional texture sampler. A texture sampler for depth maps. A group that specifies the allowable types for an annotation. A group that specifies the allowable types for effect scoped parameters. The include element is used to import source code or precompiled binary shaders into the FX Runtime by referencing an external resource. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The url attribute refers to resource. This may refer to a local resource using a relative URL fragment identifier that begins with the “#†character. The url attribute may refer to an external resource using an absolute or relative URL. This element creates a new, named param object in the FX Runtime, assigns it a type, an initial value, and additional attributes at declaration time. The annotate element allows you to specify an annotation for this new param. The semantic element allows you to specify a semantic for this new param. The modifier element allows you to specify a modifier for this new param. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The fx_code_profile type allows you to specify an inline block of source code. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The fx_profile_abstract element is only used as a substitution group hook for COLLADA FX profiles. A self contained description of a shader effect. The effect element may contain an asset element. The annotate element allows you to specify an annotation on this effect. The image element allows you to create image resources which can be shared by multipe profiles. The newparam element allows you to create new effect parameters which can be shared by multipe profiles. This is the substituion group hook which allows you to swap in other COLLADA FX profiles. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. A one-dimensional texture sampler for the GLSL profile. A two-dimensional texture sampler for the GLSL profile. A three-dimensional texture sampler for the GLSL profile. A cube map texture sampler for the GLSL profile. A two-dimensional texture sampler for the GLSL profile. A depth texture sampler for the GLSL profile. value=0x0 value=0x1 value=0x0300 value=0x0301 value=0x0306 value=0x0307 value=0x0302 value=0x0303 value=0x0304 value=0x0305 value=0x8001 value=0x8002 value=0x8003 value=0x8004 value=0x0308 value=0x0404 value=0x0405 value=0x0408 value=0x8006 value=0x800A value=0x800B value=0x8007 value=0x8008 value=0x0200 value=0x0201 value=0x0203 value=0x0202 value=0x0204 value=0x0205 value=0x0206 value=0x0207 value=0x1E00 value=0x0 value=0x1E01 value=0x1E02 value=0x1E03 value=0x150A value=0x8507 value=0x8508 value=0x1600 value=0x1200 value=0x1201 value=0x1202 value=0x1602 value=0x2601 value=0x0800 value=0x0801 value=0x8451 value=0x8452 value=0x0900 value=0x0901 value=0x81F9 value=0x81FA value=0x1500 value=0x1501 value=0x1502 value=0x1503 value=0x1504 value=0x1505 value=0x1506 value=0x1507 value=0x1508 value=0x1509 value=0x150A value=0x150B value=0x150C value=0x150E value=0x150F value=0x1B00 value=0x1B01 value=0x1B02 value=0x1D00 value=0x1D01 A group that defines all of the renderstates used for the CG and GLSL profiles. The glsl_newarray_type is used to creates a parameter of a one-dimensional array type. You may recursively nest glsl_newarray elements to create multidimensional arrays. The length attribute specifies the length of the array. The glsl_newarray_type is used to creates a parameter of a one-dimensional array type. You may recursively nest glsl_newarray elements to create multidimensional arrays. The length attribute specifies the length of the array. A surface type for the GLSL profile. This surface inherits from the fx_surface_common type and adds the ability to programmatically generate textures. A procedural surface generator. The annotate element allows you to specify an annotation for this surface generator. The code element allows you to embed GLSL code to use for this surface generator. The include element allows you to import GLSL code to use for this surface generator. The entry symbol for the shader function. The setparam element allows you to assign a new value to a previously defined parameter. A group that specifies the allowable types for GLSL profile parameters. Opens a block of GLSL platform-specific data types and technique declarations. Holds a description of the textures, samplers, shaders, parameters, and passes necessary for rendering this effect using one method. A static declaration of all the render states, shaders, and settings for one rendering pipeline. Declare and prepare a shader for execution in the rendering pipeline of a pass. A string declaring which profile or platform the compiler is targeting this shader for. A string containing command-line operations for the shader compiler. The entry symbol for the shader function. Binds values to uniform inputs of a shader. The identifier for a uniform input parameter to the shader (a formal function parameter or in-scope global) that will be bound to an external resource. In which pipeline stage this programmable shader is designed to execute, for example, VERTEX, FRAGMENT, etc. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. Opens a block of COMMON platform-specific data types and technique declarations. Holds a description of the textures, samplers, shaders, parameters, and passes necessary for rendering this effect using one method. The technique element may contain an asset element. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. Creates a symbolic connection between two previously defined parameters. Creates a parameter of a one-dimensional array type. Nested array elements allow you to create multidemensional arrays. The usertype element allows you to create arrays of usertypes. The length attribute specifies the length of the array. Creates a parameter of a one-dimensional array type. Nested array elements allow you to create multidemensional arrays. The usertype element allows you to create arrays of usertypes. The length attribute specifies the length of the array. Creates an instance of a structured class. Some usertypes do not have data. They may be used only to implement interface functions. Use a combination of these to initialize the usertype in an order-dependent manner. Use a series of these to set the members by name. The ref attribute will be relative to the usertype you are in right now. Reference a code or include element which defines the usertype Declares a resource that can be used both as the source for texture samples and as the target of a rendering pass. A procedural surface generator for the cg profile. The annotate element allows you to specify an annotation for this generator. The code element allows you to embed cg sourcecode for the surface generator. The include element imports cg source code or precompiled binary shaders into the FX Runtime by referencing an external resource. The entry symbol for the shader function. Assigns a new value to a previously defined parameter. A group that specifies the allowable types for CG profile parameters. Create a new, named param object in the CG Runtime, assign it a type, an initial value, and additional attributes at declaration time. The annotate element allows you to specify an annotation for this new param. The semantic element allows you to specify a semantic for this new param. The modifier element allows you to specify a modifier for this new param. Assigns a new value to a previously defined parameter. Opens a block of CG platform-specific data types and technique declarations. Holds a description of the textures, samplers, shaders, parameters, and passes necessary for rendering this effect using one method. The technique element may contain an asset element. A static declaration of all the render states, shaders, and settings for one rendering pipeline. Declare and prepare a shader for execution in the rendering pipeline of a pass. A string containing command-line operations for the shader compiler. The entry symbol for the shader function. Binds values to uniform inputs of a shader. References a predefined parameter in shader binding declarations. The identifier for a uniform input parameter to the shader (a formal function parameter or in-scope global) that will be bound to an external resource. In which pipeline stage this programmable shader is designed to execute, for example, VERTEX, FRAGMENT, etc. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The type of platform. This is a vendor-defined character string that indicates the platform or capability target for the technique. Optional value=0x1E01 value=0x2100 value=0x2101 value=0x0BE2 value=0x0104 value=0x1E01 value=0x2100 value=0x0104 value=0x8574 value=0x8575 value=0x84E7 value=0x86AE value=0x86AF value=0x1E01 value=0x2100 value=0x0104 value=0x8574 value=0x8575 value=0x84E7 value=0x1702 value=0x8576 value=0x8577 value=0x8578 value=0x0300 value=0x0301 value=0x0302 value=0x0303 value=0x0302 value=0x0303 Defines the RGB portion of a texture_pipeline command. This is a combiner-mode texturing operation. Defines a set of texturing commands that will be converted into multitexturing operations using glTexEnv in regular and combiner mode. Defines a texture_pipeline command. This is a combiner-mode texturing operation. Defines a texture_pipeline command. It is a simple noncombiner mode of texturing operations. The extra element may appear any number of times. OpenGL ES extensions may be used here. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. supported by GLES 1.1 only Two-dimensional texture sampler state for profile_GLES. This is a bundle of sampler-specific states that will be referenced by one or more texture_units. The extra element may appear any number of times. OpenGL ES extensions may be used here. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. value=0x1E00 value=0x0 value=0x1E01 value=0x1E02 value=0x1E03 value=0x150A A group that contains the renderstates available for the GLES profile. A group that defines the available variable types for GLES parameters. Create a new, named param object in the GLES Runtime, assign it a type, an initial value, and additional attributes at declaration time. The annotate element allows you to specify an annotation for this new param. The semantic element allows you to specify a semantic for this new param. The modifier element allows you to specify a modifier for this new param. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Opens a block of GLES platform-specific data types and technique declarations. Holds a description of the textures, samplers, shaders, parameters, and passes necessary for rendering this effect using one method. A static declaration of all the render states, shaders, and settings for one rendering pipeline. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The type of platform. This is a vendor-defined character string that indicates the platform or capability target for the technique. Optional An axis-aligned, centered box primitive. 3 float values that represent the extents of the box The extra element may appear any number of times. An infinite plane primitive. 4 float values that represent the coefficients for the plane’s equation: Ax + By + Cz + D = 0 The extra element may appear any number of times. A centered sphere primitive. A float value that represents the radius of the sphere The extra element may appear any number of times. A cylinder primitive that is centered on, and aligned with. the local Y axis. A float value that represents the length of the cylinder along the Y axis. float2 values that represent the radii of the cylinder. The extra element may appear any number of times. A tapered cylinder primitive that is centered on and aligned with the local Y axis. A float value that represents the length of the cylinder along the Y axis. Two float values that represent the radii of the tapered cylinder at the positive (height/2) Y value. Both ends of the tapered cylinder may be elliptical. Two float values that represent the radii of the tapered cylinder at the negative (height/2) Y value.Both ends of the tapered cylinder may be elliptical. The extra element may appear any number of times. A capsule primitive that is centered on and aligned with the local Y axis. A float value that represents the length of the line segment connecting the centers of the capping hemispheres. Two float values that represent the radii of the capsule (it may be elliptical) The extra element may appear any number of times. A tapered capsule primitive that is centered on, and aligned with, the local Y axis. A float value that represents the length of the line segment connecting the centers of the capping hemispheres. Two float values that represent the radii of the tapered capsule at the positive (height/2) Y value.Both ends of the tapered capsule may be elliptical. Two float values that represent the radii of the tapered capsule at the negative (height/2) Y value.Both ends of the tapered capsule may be elliptical. The extra element may appear any number of times. The definition of the convex_mesh element is identical to the mesh element with the exception that instead of a complete description (source, vertices, polygons etc.), it may simply point to another geometry to derive its shape. The latter case means that the convex hull of that geometry should be computed and is indicated by the optional “convex_hull_of†attribute. The extra element may appear any number of times. The convex_hull_of attribute is a URI string of geometry to compute the convex hull of. Optional attribute. A general container for force-fields. At the moment, it only has techniques and extra elements. The force_field element may contain an asset element. This element must contain at least one non-common profile technique. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. This element defines the physical properties of an object. It contains a technique/profile with parameters. The COMMON profile defines the built-in names, such as static_friction. The physics_material element may contain an asset element. The technique_common element specifies the physics_material information for the common profile which all COLLADA implementations need to support. Dynamic friction coefficient The proportion of the kinetic energy preserved in the impact (typically ranges from 0.0 to 1.0) Static friction coefficient This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. The physics_scene element may contain an asset element. There may be any number of instance_force_field elements. There may be any number of instance_physics_model elements. The technique_common element specifies the physics_scene information for the common profile which all COLLADA implementations need to support. The gravity vector to use for the physics_scene. The time_step for the physics_scene. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. This element allows for describing simulated bodies that do not deform. These bodies may or may not be connected by constraints (hinge, ball-joint etc.). Rigid-bodies, constraints etc. are encapsulated in physics_model elements to allow for instantiating complex models. The technique_common element specifies the rigid_body information for the common profile which all COLLADA implementations need to support. If false, the rigid_body is not moveable The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The total mass of the rigid-body Defines the center and orientation of mass of the rigid-body relative to the local origin of the “root†shape.This makes the off-diagonal elements of the inertia tensor (products of inertia) all 0 and allows us to just store the diagonal elements (moments of inertia). float3 – The diagonal elements of the inertia tensor (moments of inertia), which is represented in the local frame of the center of mass. See above. References a physics_material for the rigid_body. Defines a physics_material for the rigid_body. This element allows for describing components of a rigid_body. If true, the mass is distributed along the surface of the shape The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The mass of the shape. The density of the shape. References a physics_material for the shape. Defines a physics_material for the shape. Instances a geometry to use to define this shape. Defines a plane to use for this shape. Defines a box to use for this shape. Defines a sphere to use for this shape. Defines a cyliner to use for this shape. Defines a tapered_cylinder to use for this shape. Defines a capsule to use for this shape. Defines a tapered_capsule to use for this shape. Allows a tranformation for the shape. Allows a tranformation for the shape. The extra element may appear any number of times. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. This element allows for connecting components, such as rigid_body into complex physics models with moveable parts. Defines the attachment (to a rigid_body or a node) to be used as the reference-frame. Allows you to "position" the attachment point. Allows you to "position" the attachment point. The extra element may appear any number of times. The “rigid_body†attribute is a relative reference to a rigid-body within the same physics_model. Defines an attachment to a rigid-body or a node. Allows you to "position" the attachment point. Allows you to "position" the attachment point. The extra element may appear any number of times. The “rigid_body†attribute is a relative reference to a rigid-body within the same physics_model. The technique_common element specifies the rigid_constraint information for the common profile which all COLLADA implementations need to support. If false, the constraint doesn’t exert any force or influence on the rigid bodies. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. Indicates whether the attached rigid bodies may inter-penetrate. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The limits element provides a flexible way to specify the constraint limits (degrees of freedom and ranges). The swing_cone_and_twist element describes the angular limits along each rotation axis in degrees. The the X and Y limits describe a “swing cone†and the Z limits describe the “twist angle†range The minimum values for the limit. The maximum values for the limit. The linear element describes linear (translational) limits along each axis. The minimum values for the limit. The maximum values for the limit. Spring, based on distance (“LINEARâ€) or angle (“ANGULARâ€). The angular spring properties. The stiffness (also called spring coefficient) has units of force/angle in degrees. The spring damping coefficient. The spring's target or resting distance. The linear spring properties. The stiffness (also called spring coefficient) has units of force/distance. The spring damping coefficient. The spring's target or resting distance. This element may contain any number of non-common profile techniques. The extra element may appear any number of times. The sid attribute is a text string value containing the sub-identifier of this element. This value must be unique within the scope of the parent element. Optional attribute. The name attribute is the text string name of this element. Optional attribute. This element allows for building complex combinations of rigid-bodies and constraints that may be instantiated multiple times. The physics_model element may contain an asset element. The physics_model may define any number of rigid_body elements. The physics_model may define any number of rigid_constraint elements. The physics_model may instance any number of other physics_model elements. The extra element may appear any number of times. The id attribute is a text string containing the unique identifier of this element. This value must be unique within the instance document. Optional attribute. The name attribute is the text string name of this element. Optional attribute. constant-strings constant-strings """ XML_XSD = """ See http://www.w3.org/XML/1998/namespace.html and http://www.w3.org/TR/REC-xml for information about this namespace. This schema document describes the XML namespace, in a form suitable for import by other schema documents. Note that local names in this namespace are intended to be defined only by the World Wide Web Consortium or its subgroups. The following names are currently defined in this namespace and should not be used with conflicting semantics by any Working Group, specification, or document instance: base (as an attribute name): denotes an attribute whose value provides a URI to be used as the base for interpreting any relative URIs in the scope of the element on which it appears; its value is inherited. This name is reserved by virtue of its definition in the XML Base specification. lang (as an attribute name): denotes an attribute whose value is a language code for the natural language of the content of any element; its value is inherited. This name is reserved by virtue of its definition in the XML specification. space (as an attribute name): denotes an attribute whose value is a keyword indicating what whitespace processing discipline is intended for the content of the element; its value is inherited. This name is reserved by virtue of its definition in the XML specification. Father (in any context at all): denotes Jon Bosak, the chair of the original XML Working Group. This name is reserved by the following decision of the W3C XML Plenary and XML Coordination groups: In appreciation for his vision, leadership and dedication the W3C XML Plenary on this 10th day of February, 2000 reserves for Jon Bosak in perpetuity the XML name xml:Father This schema defines attributes and an attribute group suitable for use by schemas wishing to allow xml:base, xml:lang or xml:space attributes on elements they define. To enable this, such a schema must import this schema for the XML namespace, e.g. as follows: <schema . . .> . . . <import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="http://www.w3.org/2001/03/xml.xsd"/> Subsequently, qualified reference to any of the attributes or the group defined below will have the desired effect, e.g. <type . . .> . . . <attributeGroup ref="xml:specialAttrs"/> will define a type which will schema-validate an instance element with any of those attributes In keeping with the XML Schema WG's standard versioning policy, this schema document will persist at http://www.w3.org/2001/03/xml.xsd. At the date of issue it can also be found at http://www.w3.org/2001/xml.xsd. The schema document at that URI may however change in the future, in order to remain compatible with the latest version of XML Schema itself. In other words, if the XML Schema namespace changes, the version of this document at http://www.w3.org/2001/xml.xsd will change accordingly; the version at http://www.w3.org/2001/03/xml.xsd will not change. In due course, we should install the relevant ISO 2- and 3-letter codes as the enumerated possible values . . . See http://www.w3.org/TR/xmlbase/ for information about this attribute. """ class ColladaResolver(lxml.etree.Resolver): """COLLADA XML Resolver. If a known URL referenced from the COLLADA spec is resolved, a cached local copy is returned instead of initiating a network request""" def resolve(self, url, id, context): """Currently Resolves: * http://www.w3.org/2001/03/xml.xsd """ if url == 'http://www.w3.org/2001/03/xml.xsd': return self.resolve_string(XML_XSD, context) else: return None class ColladaValidator(object): """Validates a collada lxml document""" def __init__(self): """Initializes the validator""" self.COLLADA_SCHEMA_1_4_1_DOC = None self._COLLADA_SCHEMA_1_4_1_INSTANCE = None def _getColladaSchemaInstance(self): if self._COLLADA_SCHEMA_1_4_1_INSTANCE is None: self._parser = lxml.etree.XMLParser() self._parser.resolvers.add(ColladaResolver()) self.COLLADA_SCHEMA_1_4_1_DOC = lxml.etree.parse( BytesIO(bytes(COLLADA_SCHEMA_1_4_1, encoding='utf-8')), self._parser) self._COLLADA_SCHEMA_1_4_1_INSTANCE = lxml.etree.XMLSchema( self.COLLADA_SCHEMA_1_4_1_DOC) return self._COLLADA_SCHEMA_1_4_1_INSTANCE COLLADA_SCHEMA_1_4_1_INSTANCE = property(_getColladaSchemaInstance) """An instance of lxml.XMLSchema that can be used to validate""" def validate(self, *args, **kwargs): """A wrapper for lxml.XMLSchema.validate""" return self.COLLADA_SCHEMA_1_4_1_INSTANCE.validate(*args, **kwargs) pycollada-0.4/collada/source.py000066400000000000000000000405051200577111600166020ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module for managing data sources defined in geometry tags.""" import numpy from collada.common import DaeObject, E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, DaeMalformedError from collada.xmlutil import etree as ElementTree class InputList(object): """Used for defining input sources to a geometry.""" class Input: def __init__(self, offset, semantic, src, set=None): self.offset = offset self.semantic = semantic self.source = src self.set = set semantics = ["VERTEX", "NORMAL", "TEXCOORD", "TEXBINORMAL", "TEXTANGENT", "COLOR", "TANGENT", "BINORMAL"] def __init__(self): """Create an input list""" self.inputs = {} for s in self.semantics: self.inputs[s] = [] def addInput(self, offset, semantic, src, set=None): """Add an input source to this input list. :param int offset: Offset for this source within the geometry's indices :param str semantic: The semantic for the input source. Currently supported options are: * VERTEX * NORMAL * TEXCOORD * TEXBINORMAL * TEXTANGENT * COLOR * TANGENT * BINORMAL :param str src: A string identifier of the form `#srcid` where `srcid` is a source within the geometry's :attr:`~collada.geometry.Geometry.sourceById` array. :param str set: Indicates a set number for the source. This is used, for example, when there are multiple texture coordinate sets. """ if semantic not in self.semantics: raise DaeUnsupportedError("Unsupported semantic %s" % semantic) self.inputs[semantic].append(self.Input(offset, semantic, src, set)) def getList(self): """Returns a list of tuples of the source in the form (offset, semantic, source, set)""" retlist = [] for inplist in self.inputs.values(): for inp in inplist: retlist.append((inp.offset, inp.semantic, inp.source, inp.set)) return retlist def __str__(self): return '' def __repr__(self): return str(self) class Source(DaeObject): """Abstract class for loading source arrays""" @staticmethod def load(collada, localscope, node): sourceid = node.get('id') arraynode = node.find(tag('float_array')) if not arraynode is None: return FloatSource.load(collada, localscope, node) arraynode = node.find(tag('IDREF_array')) if not arraynode is None: return IDRefSource.load(collada, localscope, node) arraynode = node.find(tag('Name_array')) if not arraynode is None: return NameSource.load(collada, localscope, node) if arraynode is None: raise DaeIncompleteError('No array found in source %s' % sourceid) class FloatSource(Source): """Contains a source array of floats, as defined in the collada inside a . If ``f`` is an instance of :class:`collada.source.FloatSource`, then ``len(f)`` is the length of the shaped source. ``len(f)*len(f.components)`` would give you the number of values in the source. ``f[i]`` is the i\ :sup:`th` item in the source array. """ def __init__(self, id, data, components, xmlnode=None): """Create a float source instance. :param str id: A unique string identifier for the source :param numpy.array data: Numpy array (unshaped) with the source values :param tuple components: Tuple of strings describing the semantic of the data, e.g. ``('X','Y','Z')`` would cause :attr:`data` to be reshaped as ``(-1, 3)`` :param xmlnode: When loaded, the xmlnode it comes from. """ self.id = id """The unique string identifier for the source""" self.data = data """Numpy array with the source values. This will be shaped as ``(-1,N)`` where ``N = len(self.components)``""" self.data.shape = (-1, len(components) ) self.components = components """Tuple of strings describing the semantic of the data, e.g. ``('X','Y','Z')``""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the source.""" else: self.data.shape = (-1,) txtdata = ' '.join(map(str, self.data.tolist() )) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) stridelen = len(self.components) sourcename = "%s-array"%self.id self.xmlnode = E.source( E.float_array(txtdata, count=str(rawlen), id=sourcename), E.technique_common( E.accessor( *[E.param(type='float', name=c) for c in self.components] , **{'count':str(acclen), 'stride':str(stridelen), 'source':"#%s"%sourcename} ) ) , id=self.id ) def __len__(self): return len(self.data) def __getitem__(self, i): return self.data[i] def save(self): """Saves the source back to :attr:`xmlnode`""" self.data.shape = (-1,) txtdata = ' '.join(map(lambda x: '%.7g'%x , self.data.tolist())) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) node = self.xmlnode.find(tag('float_array')) node.text = txtdata node.set('count', str(rawlen)) node.set('id', self.id+'-array' ) node = self.xmlnode.find('%s/%s'%(tag('technique_common'), tag('accessor'))) node.clear() node.set('count', str(acclen)) node.set('source', '#'+self.id+'-array') node.set('stride', str(len(self.components))) for c in self.components: node.append(E.param(type='float', name=c)) self.xmlnode.set('id', self.id ) @staticmethod def load( collada, localscope, node ): sourceid = node.get('id') arraynode = node.find(tag('float_array')) if arraynode is None: raise DaeIncompleteError('No float_array in source node') if arraynode.text is None: data = numpy.array([], dtype=numpy.float32) else: try: data = numpy.fromstring(arraynode.text, dtype=numpy.float32, sep=' ') except ValueError: raise DaeMalformedError('Corrupted float array') data[numpy.isnan(data)] = 0 paramnodes = node.findall('%s/%s/%s'%(tag('technique_common'), tag('accessor'), tag('param'))) if not paramnodes: raise DaeIncompleteError('No accessor info in source node') components = [ param.get('name') for param in paramnodes ] if len(components) == 2 and components[0] == 'U' and components[1] == 'V': #U,V is used for "generic" arguments - convert to S,T components = ['S', 'T'] if len(components) == 3 and components[0] == 'S' and components[1] == 'T' and components[2] == 'P': components = ['S', 'T'] data.shape = (-1, 3) #remove 3d texcoord dimension because we don't support it #TODO data = numpy.array(zip(data[:,0], data[:,1])) data.shape = (-1) return FloatSource( sourceid, data, tuple(components), xmlnode=node ) def __str__(self): return '' % (len(self),) def __repr__(self): return str(self) class IDRefSource(Source): """Contains a source array of ID references, as defined in the collada inside a . If ``r`` is an instance of :class:`collada.source.IDRefSource`, then ``len(r)`` is the length of the shaped source. ``len(r)*len(r.components)`` would give you the number of values in the source. ``r[i]`` is the i\ :sup:`th` item in the source array. """ def __init__(self, id, data, components, xmlnode=None): """Create an id ref source instance. :param str id: A unique string identifier for the source :param numpy.array data: Numpy array (unshaped) with the source values :param tuple components: Tuple of strings describing the semantic of the data, e.g. ``('MORPH_TARGET')`` would cause :attr:`data` to be reshaped as ``(-1, 1)`` :param xmlnode: When loaded, the xmlnode it comes from. """ self.id = id """The unique string identifier for the source""" self.data = data """Numpy array with the source values. This will be shaped as ``(-1,N)`` where ``N = len(self.components)``""" self.data.shape = (-1, len(components) ) self.components = components """Tuple of strings describing the semantic of the data, e.g. ``('MORPH_TARGET')``""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the source.""" else: self.data.shape = (-1,) txtdata = ' '.join(map(str, self.data.tolist() )) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) stridelen = len(self.components) sourcename = "%s-array"%self.id self.xmlnode = E.source( E.IDREF_array(txtdata, count=str(rawlen), id=sourcename), E.technique_common( E.accessor( *[E.param(type='IDREF', name=c) for c in self.components] , **{'count':str(acclen), 'stride':str(stridelen), 'source':sourcename}) ) , id=self.id ) def __len__(self): return len(self.data) def __getitem__(self, i): return self.data[i][0] if len(self.data[i])==1 else self.data[i] def save(self): """Saves the source back to :attr:`xmlnode`""" self.data.shape = (-1,) txtdata = ' '.join(map(str, self.data.tolist() )) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) node = self.xmlnode.find(tag('IDREF_array')) node.text = txtdata node.set('count', str(rawlen)) node.set('id', self.id+'-array' ) node = self.xmlnode.find('%s/%s'%(tag('technique_common'), tag('accessor'))) node.clear() node.set('count', str(acclen)) node.set('source', '#'+self.id+'-array') node.set('stride', str(len(self.components))) for c in self.components: node.append(E.param(type='IDREF', name=c)) self.xmlnode.set('id', self.id ) @staticmethod def load( collada, localscope, node ): sourceid = node.get('id') arraynode = node.find(tag('IDREF_array')) if arraynode is None: raise DaeIncompleteError('No IDREF_array in source node') if arraynode.text is None: values = [] else: try: values = [v for v in arraynode.text.split()] except ValueError: raise DaeMalformedError('Corrupted IDREF array') data = numpy.array( values, dtype=numpy.string_ ) paramnodes = node.findall('%s/%s/%s'%(tag('technique_common'), tag('accessor'), tag('param'))) if not paramnodes: raise DaeIncompleteError('No accessor info in source node') components = [ param.get('name') for param in paramnodes ] return IDRefSource( sourceid, data, tuple(components), xmlnode=node ) def __str__(self): return '' % (len(self),) def __repr__(self): return str(self) class NameSource(Source): """Contains a source array of strings, as defined in the collada inside a . If ``n`` is an instance of :class:`collada.source.NameSource`, then ``len(n)`` is the length of the shaped source. ``len(n)*len(n.components)`` would give you the number of values in the source. ``n[i]`` is the i\ :sup:`th` item in the source array. """ def __init__(self, id, data, components, xmlnode=None): """Create a name source instance. :param str id: A unique string identifier for the source :param numpy.array data: Numpy array (unshaped) with the source values :param tuple components: Tuple of strings describing the semantic of the data, e.g. ``('JOINT')`` would cause :attr:`data` to be reshaped as ``(-1, 1)`` :param xmlnode: When loaded, the xmlnode it comes from. """ self.id = id """The unique string identifier for the source""" self.data = data """Numpy array with the source values. This will be shaped as ``(-1,N)`` where ``N = len(self.components)``""" self.data.shape = (-1, len(components) ) self.components = components """Tuple of strings describing the semantic of the data, e.g. ``('JOINT')``""" if xmlnode != None: self.xmlnode = xmlnode """ElementTree representation of the source.""" else: self.data.shape = (-1,) txtdata = ' '.join(map(str, self.data.tolist() )) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) stridelen = len(self.components) sourcename = "%s-array"%self.id self.xmlnode = E.source( E.Name_array(txtdata, count=str(rawlen), id=sourcename), E.technique_common( E.accessor( *[E.param(type='Name', name=c) for c in self.components] , **{'count':str(acclen), 'stride':str(stridelen), 'source':sourcename}) ) , id=self.id ) def __len__(self): return len(self.data) def __getitem__(self, i): return self.data[i][0] if len(self.data[i])==1 else self.data[i] def save(self): """Saves the source back to :attr:`xmlnode`""" self.data.shape = (-1,) txtdata = ' '.join(map(str, self.data.tolist() )) rawlen = len( self.data ) self.data.shape = (-1, len(self.components) ) acclen = len( self.data ) node = self.xmlnode.find(tag('Name_array')) node.text = txtdata node.set('count', str(rawlen)) node.set('id', self.id+'-array' ) node = self.xmlnode.find('%s/%s'%(tag('technique_common'), tag('accessor'))) node.clear() node.set('count', str(acclen)) node.set('source', '#'+self.id+'-array') node.set('stride', str(len(self.components))) for c in self.components: node.append(E.param(type='IDREF', name=c)) self.xmlnode.set('id', self.id ) @staticmethod def load( collada, localscope, node ): sourceid = node.get('id') arraynode = node.find(tag('Name_array')) if arraynode is None: raise DaeIncompleteError('No Name_array in source node') if arraynode.text is None: values = [] else: try: values = [v for v in arraynode.text.split()] except ValueError: raise DaeMalformedError('Corrupted Name array') data = numpy.array( values, dtype=numpy.string_ ) paramnodes = node.findall('%s/%s/%s'%(tag('technique_common'), tag('accessor'), tag('param'))) if not paramnodes: raise DaeIncompleteError('No accessor info in source node') components = [ param.get('name') for param in paramnodes ] return NameSource( sourceid, data, tuple(components), xmlnode=node ) def __str__(self): return '' % (len(self),) def __repr__(self): return str(self) pycollada-0.4/collada/tests/000077500000000000000000000000001200577111600160665ustar00rootroot00000000000000pycollada-0.4/collada/tests/__init__.py000066400000000000000000000000001200577111600201650ustar00rootroot00000000000000pycollada-0.4/collada/tests/data/000077500000000000000000000000001200577111600167775ustar00rootroot00000000000000pycollada-0.4/collada/tests/data/duck.zip000066400000000000000000004254561200577111600204710ustar00rootroot00000000000000PKO\?>Ý#@"°ˆ, duckCM.tgaUT •äFM­¢vMux èèí½{¬eGuç¶‘‚3ƒ±1¶±±œiH”‡Odÿ¤ßL€üBð3ñLâN¤‘FÈØˆ±Ã+¶Ãäa'Á±ñáìÓÝ·ïíÛ÷ý~?ÚíöChÚŽ_`ŒûW½7»¨]«jÕªÚµwísÎ*}Õº}ï¹çì]µïg­ZµjÕÈÈ+Fd{ÅÈ+ÎxdñI‹Åb —üWŸÙËX,‹5\ðV ùe°X,«e³€ä—Áb±X¬–Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸÅb±†SÌ‹ÅN1ÿY,k8Åüg±X¬áóŸå¥Ýª’_‹Å óŸe“„üMlX¬þóŸ¥Ê øFmWÍAò;b±X61ÿY{þ®¾ÓHI[üY,–&æÿ 'ÿ.x¯P [«Sbþ­vk‹nØ °XóUŸüN£ÀV€Å꾘ÿæFáOŸ ° `±’‹ù?TjþÑ!¶,V*1ÿ‡Dm’ßwRÀ&€ÅJ"æÿ0h·d¬Êdø6,ÖP‰ù?ðÚ­~í$­úš6Í›«e1ÿYD5jvyË0‹Õº˜ÿ,/µ)J~,ÖˆùÏ ›«¯ÅügÕ›«ÅügÕ›«OÅügE›«ïÄügÅ›«¿ÄügE”ÝÌ«›bþ³âʈn6,VÅüg5!Èmæ?‹Õ51ÿY­É ølX¬¦Åügµ&›cO %¿xkðÄügµ//žïúÿ ‹Å¢ˆùÏb±XÃ)æ?‹Åb §˜ÿ,‹5œbþ³X,ÖpŠùÏb±XÃ)æ?‹Åb §˜ÿ,‹5œbþ³X,ÖpŠùÏb±XÃ)æ?‹Åb §˜ÿ,‹5œbþ³X,V¡¢ØàN6²le#›ƒ(õ~™ÿ,ËKƒwLCÁ|ÁÆåld2ùz6rG6òÙÈÿÉFþ:×MÙÈG³‘äúË\7(º¾ª»t]:}´zãÌ‹EÑŸÚ³›;üÙÈR6r$ùZ6òÙläo³‘Od#Ï% ÿ¡\,õRÞWú‹ê3ÿY,®?»­àÿºàaîÿ#÷ÿÿ.ù«Ò|8'g!ͨ¶@SrÚC]W½qæ?‹Å²É‰÷\}mvþ/d#ÙH/ùB6ò÷%ÿ?b'?Âÿä¨gþ³X¬`QÜûEýk þ¯e#ó9ÿ÷g#_ÊFnÉù_8ÿ²À¿<æ?‹Å"ŠŽ}:ÿ»i¤ÿ¿šÌåü?|9ùGÅù7ò¿ïàÏüg±X¸¼|~_þwÐw´UòÿHÉÿÛ”ÈÿxþÌ‹…Ë yD}º(¼[&®æñŸÉlä`6ò/ÙȧólI¹ìë$÷áÏüg±XPu°`’߯vï’ÿ‹ÙÈ”ÿùh5í§ßáÏüg±Xš‚á¿ D7ÉïZ½ý<ù-ßÿ5¯ÿ~1¹5_ÿ½ŽÆÿä`gþ³X,_…Á’ŸhvºgvËÍ_‚ÿ+ÙÈL6rOžÿ)øs¾ŸWÍüìkøÛøßÓ4‹Q”%]_ø÷ ØUø¿ž‡€„ÿÿ¯ÙÈÙȧòÊ7”S#ÿ“óœùÏb±|ELéñâÿ– ¨ ý°“_yÁÿårÿï]yþÏ'Kþ_W.÷5üüW»%ùаX¬&´[…p}ìkrš€î8™ÿeüçö¼þÛ_*ÅÓ>Ôçð§óŸÅb ¤v«†?Ä¾Ñ q¡.`GãÿR6r8÷ÿ¿”|.ù›|ÿׇÁ 9Æ£ó?ùcÉb±ZÐn•ÀíDÏ«jl·ÉM€äÿf¾þ[ÔÿùFžÿg^ô#ù°6HŽñ¸üOþL²X¬þm@é*¥alß8  ó¿S&@å±ÿk*¹7ùJ6rw^î#ùÀ‡•U`æ?‹Åê;íZüy„Òò^! î›5þ³œ×(ö}5ýC¾ì†òT—1ÿY¬¾V*mð×"98ÿ5ž×áÿ6€û&`Wá±ùk!çÿÁü°/å% >¦Ì‹•D¾„Ô’–›€¿,MÀ‡ú9”ùÏH X› C:m9éÙûôð~ö ðq°Uåª»Ê ¸¬ÿ0—Œå[ þ2}LIêëóŸÕ¿²ñ¢ävƒ{ä[¨[l2\ÂÃdŒßG–R™ÿëåàHyØç”Sà? ö'‡9óŸ5$ªCþŽÛç¥:¯ùuþ6ßÞÙ É9èÿ7Kÿ)æ)@ÿœ§Ý˜›€DÐä0gþ³†DqùŸÖD¹6ÊïS=)‚®¾Qó×sQ¬ÀvºDP#ÿò ‡ò*p2tc>øK…ÿÑŸ! æ?«¿Ô(ùÛ1q/€ø&;ì# ¸Nþã>ÿº"Ä l&5j/IþÏçüÏù_Lþ>/úWÕ%€> 1ÿYý¢öÉ_Ç(4ýY¾o¢ºý¶YâÒmMþC+ šƒ„Q ­—Öÿÿp¾üÕ|ð§óU€›•Ð_ômˆùÏê¾’Ó¾eË‚ð?ì=5ÏŸŽt•íø’®üþ#&@턆3•ÿE èRy |± ì ÙÈ?ågAþ0èÇZÌV—•œÆ]P~P«úPbøæÿFhûúÿÎ)nzØÔ=Î’ÿÅ.°‰2 èŽlä3ÙÈße#7•Y@îÛZpÌVg•¼ÝÇ»“ü5áo4Dþ¯ûófm›º«¹çMöØf™ÿYøÿÓù`4ùZ¾ üÏåq`SÊAôãóŸÕA%gr›ðxËÆZÍp‘Wã¶W$ñð>¿ þÿ¿å)€ÿÅðT¾ìky-èbð·J9 ëû³óŸÕ5%grß 9¥Å˜äƒðßpø_pø_§ŒVNŒüo¨ý¶Qåÿl>˳€¾’|97Ÿ)ËÉZ}—ÊüguJÉYÚAÁ’8NòCþûzøÐQwòÝÿ5—!ÀC@ƈþìíTUþÏ•üÿF9ør¾|k¹@-—œêÌV?ª>'wh`4–—ê¼5ùë¬Õ"ÜÆýü5E¾&`Ón¢?~ÚâoqåEü_òÿž< 諹 ¸[9òze89Õ™ÿ¬¾Stfz)9óÕÙ5]ñF¶QøCb#×  À›è ÿ7ªü/âÿ÷–üÿJ¾üù|!øÆê‰0}bþ³:¢$ØOeˆA¿`[a£Ão£tÿ?Bào{%4›í†€d7ÊN[Wâ?ÿ{yü竹¾œÜ•oûû|€ùÏb…).ù‘gÛ>P%æ¾–Åë’ð2n¶´Lb”Fý¯ Ý’ÿtç¿Ëüßü_ÎK€[ÀTþ¥ Ýžoûëj9èä`gþ³úE±ÈcŸ¢†fNóQŸù*ü‘PÿºÉL^ÍeÃõZùÓþßÖ6k0FZæÿ–Âÿ¢ôlÎÿñ’ÿ_Ëù_„€>›óÿ–r Ð_Ç0ÿYÉU“üõ±ß‚ ¦ýNyUÎ+‡éç_…¿ÿk€ÿkUþãÁüñY€ä Kÿ×þÏ(ü—ñÿb ðùœÿÿWºžùÏbù(˜üFBvÊ Äuõµh-æƒPZc;µd¾ÿ8ùü·ý®flükTþË[)ýÿ©¼ \¯Êÿ¯äY ŸÊAÿ6Obþ³Xt…ñßÈ@ãmµŽÖ¡ËÌ'’Ç>tþUP«ÿ5bœÂÍŽÐù¿nš´ÃÿjþçrÉÿé¼P/翺ðÅ|#Ø­ù*ð'úm0óŸ•Põá¿e¢½û[¦WÒ§Fa|bG¶kVõ!F{øCÙDÎøÆã,@›,§ ù¿šó_îÿ=œçþk.¹ àKyEÐÈ—nRN„OÎvæ?«ãŠŠŸO7M(À·§0_Ëð·‘ ÐbyE‘ÿk´ÈÒšéÝ4þÛæ”)@ħqGésuñ·ÈÿŸQøÿÒþÿåð'óZ@}”Êüg¥Røx‰[ÕÂMÓ œV 9‹`C=…ù¶ý¼NSàM€átÿá?e-Xãs&`Géü2ø¿Påÿ=9ü IþK·ä{ÿ²¯R@™ÿ¬Tòâ¿Ñí§°Ñ)ß©ÍLÏ (Ÿn+Ԭºý6àkròµúM„ÿЫ¯É˜Ú4ÿ·Ë_σ? Àÿ—üÿ×| àKå¡`·(KÀýR‚ùÏJ¢øï(°Ý®²1ŒüÁ¶ÀË^ÀyýMlØ·Åù‰À72ßfÖ”×kü·m%ð áοÑÿßiŒÿòa“ü_Tê¿ù?ßKÿ7ßöù¡0ÌË)¯È϶e àåóClª^t£¶€Žzüvà-@ø;×smü_Îe[P¿ù{õô)Âÿm ÿ#>“ÛUþ¯å²TN¦Ëüÿ-%³€Tþÿe_Éügµ/ß°¿ü¤Èflkð§aVÃÛqbß  éüê¿Ð ¬Ôã?žYd3ÿ?îc ã?+Jý‡©œÿû•Å߯–[гþ±äÉügµ¯( Ÿœ8ÞU^mT £Yõ_¯‘óe“<¥Ó†Y[HG¾êö«2Z#ÿ)«Ìø”ÄÆmDZ㿌1ªùŸÿ'óú?ó%`Õù—ü×â?ÌË(¯ÈþxÚòRly†¶éÑ„I CÙl¾°ëÕW=|H~#üqþ¯µÂÿÍ*ÿ£“¿ä¿ Í囿þ6çÿßäüï£-`ÌVûŠÿ`ò;­%F‹öÚôqõmh%Â_ÓR.h–•ïk¡(ü'.hüoþ{`ñ·¸¯•’ÿ‡«üÿzµ \ÿÿdÿaþ³X6ù&|Úà¯É!9×\€ ³F˜#SJlÇv%N®Úb;F¯~¹Ju•ÿÐ ÈïÀ8ûDç_³ÝáÿZÙ«’ÿ‡ªü—&@®ÿÞÌügÕSswGœð¿år¤‰áhº!Ð|òXZ7]³Æ|ŠS½|~£{>K&òkü_ÊãÞÅ7â¿m"  A1Ð2øÓÜ“ ù/;m6ÿÊ×ïQ–€¿žó¿8àÖlä¯òý¿¼þËbÙDá?1òcóŸ!‚èˆu€ ¯ òü ‰,ÕÜ~JxÇæêÛ´\.z.–&.àiœª`*)ÿ€ÿzGpñWæÿõÿ%ÿ¥ øZÿùL¾øû1æ?‹¦]ÓPɯ3ú]×þ Ôõõ<¢Ø‚:"R^-ÌÞ¤Ó~|_…ÿ«Õ_ñZVýÿbôuþ÷,É?Keý7yþ—俌ÿù?ŸÌ€‘üï‹Ìÿ$I¾«ü·Ž’ßQ~¨éüoX<zØÁGÚÔ2ŠBxJ0Ÿrý¸·¯úðüqþ/ºø¿âê(ÕùÇùoëg-øSÿ›~òåÃV)оðµFÈÛ\}b§õÚ×þ/Tù¿\ƒÿDƒÿ[­<äÛÊcVð¡,þ3[­ÿó ¥þó—òõßOåüÿóP¤ùí‚¥"_XæøKçJõ d:,¢¿‘ü0ÈöMüÇ%_9ŸKåÿ"øP ÿÓ.¤5ç³ùÈ!éÿoä—±¢ÿ—ü×ê?|9çÿ]yñ‡›ÿ»o˜ÿ’NFuYi“w)ìa"üw‘/ø;³b`|[ ­Z¨U_ÚûãÀ§¬êÚ¤Â1ÿ &þ×V‡ÿZgÚø_ ÷V[è¨ü³¤þ5¥øÿü þ1¹#OþüDžüÿa%ÿŸùß)í*ÿj_ ˜ŒìMÛóøïTá¿írþqø;3!U M€Jªúü_1]¤¯B¼}|ÌÁµPòÞÒøO|£mFç¿0­=º°òÛR™ü9•×ÿ/ÏÿúZYüáËyðçsyòçÇóäŸë™ÿ“¤_r,·L~§]hy(ü§Ãç¿×ò¨s.€ÌŒfbÅtIˆèä§sŒð§˜€ùª4þ/þÛLå®mÁ4ÿíD~ Iþ¯U;¼à‘ÿy¯rþû¿”ÁŸOçÉŸËýÿëyÿoRÎ8i“V°²1”|eCv!ɸxñ‰ükð‡á”€Ä˜%ÀÕ-B˜œ3õúÔùo|%tþ5ù›¯à|“õðßSø¿ª8ÿóùÉ_“eý‡{røiÿÿ’>ŸW~¸1OþÑâ?Éñ>¨üOŽq_ÎÃÙÌÅLôüññ²•z¶íù²íó2•’cœ8W ¦ ¸y2^í¢þ8ä&ZiŒæÒÆʬÇS“Ö[ ûKÉäÉÿ…ÜùŸÉÁÿÑ’ÿ_Q2??›ûø‰’ÿ×—çÿ2ÿÛHw8¿[…3ÅÕ'ÎŒ¶cðøOÙókŒü@ºz-’ —Q°Ù§{ﻘ»àÉÿyš9(²ç«_Hþ/ZLä?%ê…À_Mþlÿ¹…ǾðŸ.ù0_üýjéü9?ùý¶<óóãyòó? +öpuí6žGä|,1ð×øO ûÓscŒpƒ¶Àרœ|g<*,°/i¯­ÞÂÿçs&©ü7ö’6 .yÓ5þ·ïüï™vþÊÌŸ#eòç¿*ðÿR6òÏùÊï_)üÿp¹ù—ùï…úäJÅs•{Ñ Arø×á?1í‡?âB;ùï\)Ð>úöàS,”Ó÷…îm_«*òÛþ/XújÙâÌSâ`8ÿwÒñ_.þΗðŸTøÿõ2òóå²ìÛÍ%ÿ‹â?Ìœ~kx×øå´ÁÎò±ƒuøï ˜/*ÿÖ´õàäùÛ þ³¨ @fÆxNþ¯% þ@þg¾O–*ÿýšâüߕܒ¯üÞ¨ð¿XüBþïV¿èðÛ÷ä}…ÛŽìã& MŒÈ®©ë¼2ð5߀”ÍIJò=Ã;”˜Q6øC+ .ئF˜—Âð_KüQù¿Rÿ§JøÅŸ{JÚçÝùÊï'sø¢ä¿üþ'»,5ïDnÎGQ€!ÀÇ«eø‡‰È$òoó«mÑoÜð’öqª±€¯©Õÿ9å®ðWMÀ|ÕMÀ2àÿ 9!JÂ_‹ÿì$âÿ¦âÿËàÁÿ‰òä/™öóùòÀ¯ÂùÿXYüí/Jø÷/ÿ5&@>$‡<„IwVè¦}àoT©¾´ þë|Ü×Ú4ð}'Äæüoçf~Â༶½®õç aQ¯#¨‡’äW5ÂßÈÿYS,*ð_´OœÎÿvjøï••ß þÏ({¾¾^òÿóeØÿ¦rå·pþÕ²ÿÉÿˆž¼Ó·ƾ‘ÿ¾_æã¨÷ä?òŠ H5 0F~œðß#‚|6Ÿèü#]½p]ûò‚ÿŒ þS ä!ùþ«%ïTëy£ À³@“G~ ©É?rå÷yÚÏË„ÿ¿.7ü~¢Ìù/‚?ýUö çC¦ý–é¿6èÕwïÔÕ¾Ö¾ Y­ža½~ÅFlºL@’@ñ×½øÛ¶/µÒžcé„gбýNÁßèüOÈO›ø? ¦ ÆŽRl&á"?…då‡"ø?Q|øbžóó©¼ÎóÍ ü%ÿû®ìOsüßÚÁ¾Ñ“ßÿâT§sjúíFòÓ‚ö#ú,  + ÿ]ð`øK` þÈ)€|#ãò¿QÈc_]ð5Â_ÿá? Tþ«+ò› UC@äòœU+ʃ4“¯ü~½<Þñö<ççoü%ÿû1ø‘ÿõ£7^áÜŸ§p¼x^ïëbZ©Cº›؆,úD¾ÌE4†}lÎ?^óÇ–xéôŸµ-N]Pí½à?™ÿkóü¶@nÐ>e¦\кb:ö—ϪÌüŸÉW~ïÍëüÜ‘Ãÿ¶2çóã ù?ªÔüï¯m¿¾ü¯ãÆ×ÑõFï·¾K_ïëU¼¯¹0S°™Ä ´c|ùo{*(üÇs~Ô)€“«Ýá}ìSà¯òŸm-@í4õ›Ðò:MÀVjækÏêb4“G½|9wþ?•ÿ¨ö£Áÿ#ý¹íç,Èk_{Åáa Çk5¶ «H‡_ø –=„oå4ˆ ˆ> 0"Ýö§dâThOÂà?ù1Vû¡ðVùWšcP¨Žu šZ€¿¶`ü©4³%$§•„ÂMÀr÷à_<´ eÁŸ±œÿÿšGþ?›“ÿòRÏ7)ð—ü¿¾ßj¾5ÄzÇù:rÒžŽýµê×Qd,ù/_YÇ ËQf”…ÿFç_ÐâiŸËþ{ÑÕXú^ŵíûðý›öíqÙ²}|MòÓ°4 ùO7]ƒñÐΕG}¾–Wø/JýÜš/þÞ¨øÿéÛš8ÿçŸvøó^±z#®qìã!#ð×M̧Di¼Po#¶ú/r†öã‹'b¬Z -Ôš  “ß þjðÇù·ùÿðŸEáïÅܽošü³>ðŸ,C@Dþ«Ǧª¶`ºÊh´Œ nÂ_åqÎ{/þ|>çÿ§ó´ÿO*üÿˆ)íg`ø_'>“þã>ü&ø"V<AºÍiWË•K!¹q«‹±òɪý­à¤Àfˆ³£¨ Êëœ'ÿ‘ÈÄrüqÙØÞ²Ï?çó™*O3Aø¯®w ÌþK+°Ô±_ÿe©ç»ó´Ï‚ÿ[fþ´$ÿëú3í3"ÿ½B4x¬Þ ž™Y³ ›BéåWŒä—ÈZ©.„ÙŒb Œ&À ˜8 Á€?ÑX„9ÿ6þki?Hµ'6aÅ{_Ð䣿øe €O´ïÈ_Gøo3+]Jõ4ò6¿ÁbÏ×WòRoŸ+ã?“/þ~BÙí[Àÿ/šÿ›ž‡Ì>…öxlÜ¥Yä·¹ëøŽEú¯Ð+¢hß„Y Ì¶ê™ùgâE~ÿƸ"þ+€ÿÆä-¯¡~¡ñ¿Ît }ò#Û»pøãüŸ¬þTûʼn\2ã?¶(Pg=ù<{~÷—uþ?Ÿóÿ3eðÿæ<øc„ÿSc<.ÿél÷…¼‘ZD¤S¼zïFžÎ|'á5'ßõÔ¼eÓ›Pê¥hV`-¶ p|œ¨‡_ ðß²À_h­£l‡*âþÿ¬…üþwÇ.Ì*•<éë¼*Ã'þCç“ ö¥ä/Úø¯™€õÔx§ð:Ïü¹'wþ¿XÂÿSyð¿àÿGËRƒáüù?÷Lï›,NÂÿ Cñª—KA½¯¼x“Öl><âá«  à˜ӄâ.Œb\=ÁM@IA¶7´å‰iN„¿-ì¯Fþð72ߦò_ݨKǾ´?‚òØù2ùßÃ&@áÿR·#?’ÿGÊ´ÿÉ3 ø™Ÿÿ‹˜ÿ‡Ës~û±à…ÿ¾JdžˆqgÄžN~ áôvÂy @Ic»ÍY…/ƒß´MŒÝE…­Îãâ‘q†¸j?Œü‹üÔáÍuáèä`¾1t£±]µFWÿHþãU ."Ïšø/Õ}ç¿àÿ¸²íëŸò=_·æð—þÿõ%ü¥óß§i?DþCïÝèÌÛ"óÁ‡A{J<ÇéÕ;òÒ!ÏZ4aßÈÿ¥*ÿŠÐøo[†qŠ XÄí7& Ûà¯ùÃþ ·?˜ÿ]0^~"ùU¶ãq þ’ÿ‡sAþk_|g¹<ì¬vËs~ïÉK=ÿcIþ¿ÏÏyÿ›<ùçº2áçC}Ž}©¿0ñŸ˜]ã¢ßYña»o0gÙø¾`_2{±Š&ÿ¶¤hH3ÄÉÙNäÿDÿ|©º5ÏÿW3ÿ¯WbA×õ­> ø?û¬ò8êñX5v¬lÖŒç |•ðDÚk@†Þ»Í±7 IŠ^T,‚Í $Ÿxɶλ¥\†qÁò.ûj1J…O„ÿjüŽ˜ßÄ[œß‹ÿðe‡!ü—³ã½¬¦¦º¯ (à:‰î}'È çñ`ކ&"·)¿²HˆDé%<ë‡k¼´PýZ]S¿†Â&Â'¶åãÀ× x™„üð/hÃâ`á¯9ÿÆò>ÿqß^;ß„>˜Uþíùð7:öÚ÷Ÿ_ƒÿX.#ÿ'MÒ˾,UÿW?¯ ÔÀ`»3›ø#bèg>Ň7FlŒ¾ú¢ç å,Ø(Û¤±^&À²™ùNþÛÞÁæð«18µTg‹ÚPÂq ?ä?T›s:¹=að?lâ?âóð?”ÿ;náÿtõ¦òAO4–—ÿg¾çÅà!#Æm¬†?BŒ1t¿hùÂËu·m@¤«P²™h AÑfK¦Nvδ@¾ šã÷m¿‚øüÆÍ p. §ušç¯ö¶–íƒ1Ó4PùX»€ìÃŒ§lü‡Ø—ð+i/á¯ñ†€f•G}#5ÊX*ø¿bré‰Âá¼lñckê‘UÔ(À' ÆyŒÐüUç¼`Ü£mEò. ± Ä…gø¬ÏßH~-棅ý‘lŸYÔøò?–-€Ç¬„9ù*ÿm>DøKzCòÞ¾„?…ÿŬ¥æ+L’ÿ¶¸ Ñ!w¢ÛëÅÎ%Zgžáq"Ýè«Ã(ž…]AŠ Ðîv#}9çÿV•äÁä·-òâIžÐó×F‰ùøü!ÿqàkÔ·­ |èüÛb>&àÛœ|c´G¥=”ÿGòK*ny¥O>YPÿµ8 ûš{ß‹ðt7^ ž ±¶ÈNcÜ!¿1 Îý5ªÐW4 ™l<)š£!0Êèä;>¶ß0Ѝ=Hrø ÆÉ{p¶CþÍÑÄDǾêù#ð'’_Kæ‘Ñ þ£¹40^}+ÿË ÿ~–àÿô÷=<|¢÷¾X…y°K±™¯„‚w£ïû[6çs¦*ÿ‘ÑAßy¾ ~î‰í•ѱÃþô$$Â3^ö@Ôù?V}+9ã˜bø÷¿ þûaˆ®û`|¢3OŒáé Ù2_ýb¾ú…ü”4DLVù¯¦!ÿk´0„˜Ûr@!Éjz¶0ÜÀµ Ü~-æ£ó±­óc>H´ßˆeŠÛ?mÛ©( A¾ü‘P?tþU‡´Šzù߃þk! B ÿPÁŠ£¾d‘çDÇ> >|/Ôk_Ø–k)˸šÏ?cáÆtõoyÊNÕƒ#Ïð@4¶ÍÂH¼È(¤*”1¥_uøµ°!ÅíGbû0£‚2 øó°rNÉá¯Û~êä¿/ù!ê–ÀW¿ãäaþ!Ɉn|A0º0ÎK&øÒÞÉùšÒˆd䯴é¯ÞÉ£0_£Xsu— @Œ‚þÆý\¶ 1ÄmX0à,pûmÄEG\ý0tSLìtòÛBý΀¿J~Iøƒ(ÿGQþç¶\¬(üŸzÎÌs„Û6Cvøõƒ9D’ÛðNä?â4ª[f$ÿ!šl± 5'YDþ;gëÊ¿Fë€;üZÀÇ–Û£. ŸÜç·-¬hȵqx t¾ñ·¼øÜü)Ø×à¯íÞ«öæGœPÈ/ÿ §ÈÀx>RÉÁÅŠ"Éÿ€}_ç"}üÔ¥‡ßÑ8€¯ºRœ|!ÎáYò5¸ç©úoFøÛæt`\ÐLL ¥w…†ÀI~ ˜!Û„öÿ È'Ïm±ô`V7áö`¬*5às Ô~Åá XЦãùµm6Ï%V;*ø ñÕá/«!zòxL>8žCOá¶9œ¶ïSàðßhbÍ=ÂQd¬…¬íJ×®¡Ç‹À§óß¹s* ½#’Ÿ’Ào#?„¿Ê£E ðŸÿA’Ê'«qøûçëËè±CªÉ?cB½ñ›*(ðW·LÃNþ;M€m9ŸØJüiUڌ؇ð‡YÐçWŸ5¶¯u²†zh1Áª­Ý40àCÙº¥2&ó¨ßÌÿ£ üeivþL‚ÿ“Ï‘X„ÜáëÔÇ⿺,ùïä<R6à\À¶€hó3'¦¼øÅ¨Ð¶Usµ(¤nç’ ûƱÓúY]¨uB~ ðóH•óÈöØTü‡ŸEÏç©Õhßü­ò,ÖäÈbEäÿ\ãÿm ‡¿èËybøÝ_'—‘ÿHäÙ #[|§Åe,Tc)ÿ)‹Â©Ùû6òk©§Zª0œ*ÎU{u¶z³²Kmnÿ$à¿$§–HT˜ ¨c,(™œøCþk1Ÿƒ.þïÂù(ï|.ï<`*ø+ SÓŸ§ˆþJHN_þ#/ð‚¿¤ ‚×*@!-§¸ ÐÊ/Àš ª  ”„5n GRzŒÁ|éçO‚.¬ö­üÂI:ÿ}­€ñ5È+ñߥ'sjä‡û¹l¹ýü{¹ üå`ÔdŠ*«©aÅŠ.Áÿ#?¨„Ía§»NùÄÏ÷2FÎ˯ü÷‚¿S¶°¿ü»6þ°)À¼‰ÿš °mÖ  º—åaan§í7ÚwüÓ€óÆØŽêíã©2GP€ÛŒò2¢Ÿ“ß¶¥‹ÿ{sõ,ü·™€Ñ|4yÃ×àIðâÞ^÷\õ ›'ßœoO'|,ò«a |Í×™XüŸÉ;jÁ2 0®¨´Gj:Aþïm>?LÖ £Û?]õóUÎY:¡”²Á­€¯ À'8ü‘ ö"¿õˆÏoµ1òÓSà󚀃ùõ󆯔‘ÿ3.äBn{ï¶OÁiOW͉€1?ß:^ˆüG¬À,ˆ!+ÂÒܶو%`&V£à,hÛÆ¥žº©Ó5#ÅføO‚åtõ!ÞaJ§-ÔCqþ{ ù¥þ¨¾áxžô•œT¬&Tð_¥:ä¤Â*¨áì1òðWàë“?Ì瀿 ANþ{™€9‚ €‹ÒE‡ÖÁ8Bª¿ÊͼFøÃ„Ñ~˜ÀcÃòaàã& #ü7’Üóƒáo#?} p0ÿ¸åÔŒb5§SüÞmpzà³Ê¿È¯×wæÛ‘–‘‚óßÿ0þÓ‚gM›2Œå˜`ˆfA±È|aÉâê£ý0ÏÓfLáò®Ñ[ž¨BRÝ‹tä%BÆÜ Ðm„-ÎC‰í äw†}Ô€¿üþK+°˜P¬Feãÿt56hû’<9ü8µ!WóWðÂÛ,Ú‚9“ @¬,Ö¡qZ2g%X¹aиÔkì4¸¼ C%’çchiʆLD½í§ðû¾ Nõ,ü/¾`øƒ ÿm …Œí ÿq+`sïðW³Ó%µ¼8`ã?1dÔ¬20šïΗ٠”±„¿Ú‡Z&'ž/;mL)_C)P`\@ ík |“v¼<|DÎPOüñ)ÃH$ù¯‘÷UþSo'´£›€iåòˆ´Ÿì5.à¯ñ?Ê ¸¯¹*„ÈËàŒ ×¨ ×ø¿€ ¸Á€?\í5®ð}~cžÌ!SDÚ¶M•BF'ÌÃw&çÓáo[Õ5b? üá —ÄÃh¤ñJa ŽV°N—›ˆë[@t•)>/俚ÑA‡£ü7šü¯Gf6Á¢OpeÇê±Å|´ž¸3Ö+¶M  E ›§(Éù¶}I?tÚ{þð×L@/¿°•ÔDbµ)œÿá ¯Ïx1±øï/„¿Ío¬Ãÿ:«6þÏWá? Lœ ±ÖŸÆÙ{Æ-±þk&`Ì#ÿmód½À¹ÙЏ ‹Ã?Ôü{¡äWM@/ŽÔ8bµ¬‚ÿ”H^üw"=ømëûüDþ«ß„äWÁNŒ0øòŸ2³®)€VpÃ8 ‘æ-n¿-ìóðvã¨)#1^ó<2%hÞ‡ðG|þ^møß[ü¹¶ÛJðüùJnFDþÓ’ˆÂÿÉMÄÐRŽ €ÿα@ø¯­É"™æLVÀçÑ|~ö׺×VÙŒ—ÎÿA{^ºSˆ!p:çMÓž[ ‰ý^$øæÂnC,•ÿ*‹bñ_¾[?òR ö£Á6ø7íÿÏ™øÿU,küW¿˜3Í l #ÿmT`Zøï; ší;–þ–ó5È*†Jþ^3äc·•>¬ä*øoÌHñåÿ´ÿ^1¥„ü—?‚ðרî\%4.{¥yÅTþk7Á¹€‚ðŸüW5[ÿG@‡HC0Žò¿‰‰Q޽/üe´§× ùÇò¡dò³ !üÇრ>Ì•íÿ§JÕ‘-M¨iþÏUQ<£ÀßÈu `„¼Ñÿ/þ ùoìaã°m-àˆÂÿ^$þÓçuL€×›ø’¿>ö‹EÞEŽö°ªÂùoóð!3ûÎØî‚J¡‘ÿ^»€}ù?WM—©òwþ5¶Ãø1F4,ޱ“}MÀx«^&à@¤‰@€àî-MMDøÕ€ÏZjÔ°:('ÿ)Tïwþÿ=B ìÐÈ£ðï7ã³å7án [ n-þ„ýiŸÆüOÕhü7nÓ–4þ÷\V Ö¢@£€ÿNþ¸™œ6øs–QQøß&@½*5É“B~¯=DDþ˜€™ªn$¿sÀ–;Šð߸ läÿtÙ½¸!Ðvþ÷h¶ Ž°í Àí¾†‹ïÛjû…1üYvIþ&þÉíØ6ùò?ØÀÞS÷ÿÂÈ% dKõ±m3¸›@Û ¬Ýb C€ó¿‡Z° Ñ@ÀÉBö{ÍDxŒÏÞfj°º,•ÿG‚ø?eúﲘ*9 ÎÁîÜ‘ÿ^³€YÅ wzþuÈoÜ  €TŠPcSF[ ý·ˆÿÜÛ`4Ä×7—·OÔ4ÚËr) ÿìE£^=¢Éj´Ù/9§°ždð@vàŒð&à¯R¿_ßxnd¾úÀ»“üwš€j Œ4Þoù&ÑpàѧäÌ/t€kx²hükÿ ™'öŒðÇËøšcIá:üŸÊA*ó0½°“|ò ë9ÏUæ0ËGÃÓa´åƒYû Åz Ðzõ —ÂàßN0ŸóáTQÿ¡GÚ&ÀöAên#­ÔŒŒðx•…ñ50–¤vÝþx‘ íÕ¼ðãZyF¤ZðM¾†x$ä¿vô´0}ôàûV@µNæ÷ºAþƒ\Ïå©„ükln?¯ J¯–ùOéüY[b¿ºF#<ƾæÏã§À/£†À6Ð,‚fÅ&óþܲ®WODþão’øRûó§‚—zY¾Òø–ÔÉ ËLÝ~_໌‡€œ«À°ÈÃŒ%Ÿ_sû)þå_Ë@*ó£ Í´èÑ:hYC¹7@Â^<%§:üœáÉ Ó)þÿÐÊ¢>2Nòkü÷ªî[ ‘ÿÈ–^ÍÛŸ#c±úï’ þF9ùï iV 0“–P˜z|©Ñüà[Xu„ó¿_&òßn"†€l=`ß–Õc¾MFø¯€/НWL¡0±¨˜€™¼Ó¦ƒ­ƒù³±Ä¹¬*øo«K6Yrµ³&`JÙ74AðüÈŸŠÿ°Û'þ#…Ú|±/ñ»¤P]j|-¿³ ^¼B›5hÑ$õ¿‹åÌ%î ÕË× Çó§}™Kw²¢JðÿÐ ?> Š¢´V@塱˜Xtø7BÌ.ìù#JäßX´ ¿ùÐu‡<_´_-ÿ…üצ^æ@Zb"0SÝ0$êåVo¼îù¼79™ŸÕŒÿ¾xê‘+Õ~Ѩ؇ä·Áÿpyž`0ù›Ë‚·`äq³3v‡‰êãÀ×U ¨<²—Ý5UdorÞ>+­(üWMÀáÐÐÅŸWanÛ3eŒðHÚ7ÿXü§O¦Ð ¿-³l‡?¢Ç齎~g]òˆ  ÐL†: Ã1Ú‡s^þxLçÝÎÙ›¬.ÈÉÿ±*»ŒÂC^ÛGÀOÄk‰ /þ{MlðW o±þ%ðWLÞ¸¤:Îj É뼃юy`•Ç';üƒù5Oå÷ÎÅyX…ÿc€`DD;C¶tŠÚ„Dþk&Àh1a„ß™·‰_Ìõ"óF®uå_ùí§PÁ† ¸Î•üö§ í^ŽèX>w[Éïz‹cû¬ òŸb¬%žSþcÍÀß—ÿaQ  ÅóŸ÷\Õ%•™Ñ m$¹‘ðª6 ¯¡Ûi–s´N€QîÈDà`>pÛaõ‹‚ùÝ DäãÀBð!ŸÇÕǯÁŸˆh웥Œÿõ•Ó ,—Í ´cz–zAòKâj<¬þ’‘ÿ^&€(Üt™üÁü÷2EØÖ^öݨEYÏ…~>Ây óMAë „íWp[ WËJ¡òˆ²(Üó,w3yX}+ÉÿL€6e¨ïù7í‰Å¼Ó+=0ëïð;]}g$ß éP[Ê[Ê¿å|%>;7XX¹Ü÷>R. }×—ó[ ½5àÃoni¼!4 Æì •2M´¨4¥dQr+Íhyžû¨òµñ¨Ç^‰ý^YŠm6ÿ\Næaõ»ÿ¼ôã¿zêw¢ðŸ¸¬ 2? öëx‡JàŒæÔr’ßäÁWrmA{è™hÛõS)í;[Õïo)ß4šm.7Ž©äf•c%§Êô*íqRmí°øÑü·¦ò·åNÖ ©àÿÅB `MøSœäŽ¿¦Ðîè B˜# ê>=¼ïÅü¨7b»IÙ‚KZ8H忬#-O™ŸTÖYò×o”«É 割Ò`Qmi!ÿézþÑÌ|Ö@ªàáçôç˜  c39á›0 *üÇsÎØÊ/×Á¾3ïd»æ¢××N©0þÛ"Br. ñA9³8æž³ñY,U*ÿ}M@˜`ò;ûêÿ^ÞÉó¦hWœ‡È|œüÝõ¢ðß8ËjWl•×ÃÌg±ŒÒø º(F1ôuá¡%¿Ôþs¿?‚}§«ïéÃùm€î:ü×l´F+PôCžÅò•ÿÁ&Àh†û‡ÊÔtÕóŸCWxðïÛñ¢=…íª ØÍµSþ«}gWù/q.€¯ o§þSb±úNÿª P “ÿ^b˜/u°š@>–‡¦½âü5û-‡qv䉢h¶Rÿ)±X}' ÿ}§,ù{y ÊJ~|a7.ócÅjv,ôŽÂʺÀ&‡€X, þïü7š€QTÉI¬&.~ÔDþýybáJõˆ“:>°Ÿ‹ö*´m ¿ÍàV`3Mò?(«Dçÿ š€¸wa$¡òÖ]_‡¿éÀŽ1h¯™€€hOÜpÐ&/°Xž²ñ?À$'y}øÜ‘¬pÀ‚ý^^:`‚–Ûƒ¿µO$ ?b@Pò?(«$ùOœôõ,¿rUÈmJ'ÿ@•ù÷Z HÞ›ÿʲO)Κä¯Ûé œ-ÞÞÅbyêÿ_Ö‹Ö1É!_“ü£è-Øïyž ²HNæÇÉÝáONõè&€ùÏbÑ%øß{ùGõl¡ °ñ¿_L€ömä—ò%ÿ½ù¯ÌWKS|þàU]:ÿ›£tñ\%±[¼ÌbùHò¿çoð IÈO XQ°¿?èl©ƒå©ßaØw¿Sž=`¤¢Ä0ÿY,ºTþ÷À)uLÀ¨ ȇš7*Òá, ÿÕ:À½ øåyþôL~:ùë`?:ü‹§He¾Í PDÿ\› `þ³XtIþC`, °"Œ«~T‡B~ŠŒ‡=õüá¿?/2¼ª(ŽBþš«ºÑù…¡^|Ï`üoŠÅê©ü¿pOµ¸ hÇ 8c8¶#œ‡ pûÈ™[ðù›€ ånù¯¯`þ³Xtáüïµkp[à‹}ó‰ð÷Â~/'ÿly°HÜ \±à_“ÿ ŸR¯Y@ò¿)«_¤ñßfz–Ñà¡Ùg)¨÷‚¿ù÷—§÷:ɰ¼ÛÏ¿xZ’Xß)@ò¿)«_DçµN»Ðöã’ß û…Fsòo€“GêoÝèó÷µç¯Šh’_'‹Õ/‚üwš€ž(%GÁ¾/ù{õ8oÔx^Òa3*ö‚°dT o÷áµïS®“ýÿA×éG³óîÏÞþPö;ßÌÞ÷oÙ‡Ofÿødö¥§³CßËžËvžÏüaöí²“/fÿþÒ)‰/ÄÅ7ÅÄ ÄËċůˆ_¿.ÞD¼•xCñ¶Éo-™Âøß«º- ÇŽ|WrqòÇb¾ìŸÉ<à³I#?ûÍ‘?ŠФQW½þí² å$zUÚO[$ŒæƒýÿAÔ™÷eÿéÁì½eן<…î•d¿˜½ðr«‰·o(ÞV¼¹øñAâãć&¿ñöóÿ{ 3á7ªiT¶× ìþ¸ä¿7_‰žo 2g äã¿ú´HÌn› Mç¼SðàÛnw;ZÅ Ò9DzËÉ®ùnö/ÏdÇžÏ~ö”&>N|¨øhqâ2ÄÅ$ïfUÔÿ±ñßk.Ð3q88_¢uFõ£cÿÞüS¦òÄþ>%¿¯!PûmÔ«·Íƒ"Êf\ Hþ7ÅòÔiG³_z(û_ßɾòLöÍZ>ÞÄňK&.ï´ 9ùïkz±³qˆjøªäeÜ6•Ó¦l)=ÍUfÞ1ýbðÚ˜O‰Þ@ò7ÍÄlVo'ùß‹¦3Žf—<|*ð2÷\Û~¾o—'.R\ª¸à3ÉPøfz ßvMh4/àì$£ØøÎ»–w&2¿~x§‰¹À6ó¿oô¶‡²Ì–žË^J vß&.X\¶¸xq É»1‚dýg£ê›€FÕùïÍ7v­*ðï ùÕØV~Ëö†6÷Þ¸m¹ƒü·Y®ÿÜm½þþì~;;ðlöƒn{û”&nA܈¸qSÉ;6\^üïŽh‡ü½<Ïg½óU&G§½—$ó×-ò%rþ­ÖIýÒCÙOdý05µhâ¦Ä­ýRŸNÔó_z¥dˆgcµCþ{˽]q½}äûuÀ¾UM!iÃ~MþwÁ¨·¹™÷Iò?+V©Ë;øtö½¾ ôx6qƒâ6ÅÍ&ïp? þ? w¶(½ÓCnG­a¿ ÿLŽÄm€ý0ø#F¡&öqx½zôÌÚpX6Ð+ö²ÿòÍS’akâ–Å¿"uÿS%ø¿ðÔ©­¬½ þØ‚{«HG^Ö²zy¨ÎB~º4o_û~°{¯ÑÞa|äÐáAŠAí¤þËb Ž}/5ˆ“6qû¢’„[‚ÿB¹ÓÛ3™€ö9ܲd#‡s‡¹t·CÉ_‡óΨä¼*œù^¶`0øÏkÁ)ôŸÉzÃçóÛšè Ñ!ÉSÁÿ½œs íÕê¥æssR÷sAg»&À£`ßæáUÑŠ"ùMäÊ>5<hQ¿ø`ö¹§bgŒ&:Dt‹èœäd–äÿ^QÓ¦Ýä nBcÊ~®:»wc_%¿†zˆ}Ø%ɵ©À_Î%¿^æ`­ßAy T¯=–}ðdöÝS£¶ÃMtŽè¢×v°š„Êÿ=“ 88pQ ¹¼›ûFWÝÄs¢Ko”Æ|¨»V=çÉiÏS€z÷cÙÚRãµOšè(Ñ]ɇ¬"ÿ{ùŸüXÎ|µg/5´ë«§Ñ•„üˆŸ¿frÔ!ÉÀ×^oÃ>ÑPæ›Õ/’N’ÿ‰ ¨Þt<ûÌ“­òó¥—^zòÉ'777{½Þí·ß~Ýu×íÛ·ï=ïyÏå—_þ+¿ò+_|ñÏýÜÏþùgŸ}ökò&¾ÿß?///¿"~QüºxñVâ ÅÛ¶y¢ÓD×%¾ ò/ÿÙPê3öm¨—_ÿx62,%òùmžõªoóÃm¬^µØù+K@¾SÕ 8ÿÎNvSÿ‰ ¢þÛ·NÕÕoº 2?òÈ#û÷ï¿é¦›®¼òÊK.¹äg~æg^õªWDjâ­ÄŠ·o.>B|ø¸Ìè:ÑÉñ”ŒüßË'Î3ÕãZúÈôræÏæþÕJI‚üDò¯V¡­Â2\…9´ò§‹&iVÀIþ0øš8U?}v{“n¿ÀïÑ£Gï¼óÎ?û³?ûõ_ÿõ³Î:+í)M|œøPñÑâÄe4j D7þtòÚ6þZÊc&ËcÙûb!`¬<“ÑÈüN‘¿ «Jì%Ã5žCK±˜ß¾Mðñå`z,h³«³€íÔb¤w<ší>ß Ÿ~úéÑÑÑk®¹æ7~ã7Î<óÌ6™okâ2ÄňK&.¯‰»ùŽ´[†qþïåAÓ%ÿ»löç>ÿ|ä)þö[ ?beÔìýu“ÿdòÏ!ù”µï/”¿¨bž` !pNpœó6ñ@ ½êhöïfÏÅNï|ê©§î¹çž}ûö]tÑE©y5qyâ"ťРŽÛ¢KEǾ*UMi'ÿ ­ä+… èN ¨—c,·PËŠÏßùqøKþÀÞe@l£{0|¡Jûù’ùó&῾H^Xµ‚6»½¼›žŸ}­7?u$VÜ633sõÕW_|ñÅ©Ñî×ċ˷7D÷¾1É¢0‘ÿ{9îr+PD„’xø‡r'_\Ñœù 9šÖË?sõO>9ù%5ò/– ž+åD´Fû¹ªfÉ7¤óA™8M€Ì í£)ó¿ž.y8Û‹ó9qâÄm·Ýö[¿õ[§vZj–‡7qñâĈۉÕ3¢“EW·=¾tþÚÎq1™£¸×–“?šoÔ]ªÆŒéí“_ýt•üEò¼êð/”¸žÉ%‰mtÚ¡ íg•w›©šÕhÓ„y ¢ÀßjéøOÕ¡aþ×Ð~;{"ÒÆ®ÝÝÝk¯½ö‚ .H ï˜MÜŽ¸)qkQºHtµèðV‡Ø—ÿ…vrë 1ÿ@nbŽä¼Z1ùœ8üÛ$¿”ôöW€·/A=Kzòs&i¨Ÿ©¾›úžÚÛ:ç‹`ÜbœÄù7š]§˜ÿþzå^vÝÉ,J¼ii骫®zík_›šÖM5qkâÅmÖï+Ñá¢Û_ÙÚ@‡ñ_j3çÆD¤uá^\šÊÁU°ÈV”¦;ä—Þ>ÌÀ×~ˆk›Kotïá›LU¥¾ó¬Å àü7‚ŒûËä e·úöÎõwæ¿¿^s_öéIž‰W^yeGòyšnâ6ÅÍF±¢óÅ´1Ö5ù/µ•£c*x@Õ¸ýyÎy¥â­"e×È¿V%¿í™EáOä<üÝ)»¦ÁüB‹2áð_,—ƒ—Á¾chÖR¸ý^ðgþéüû³oԮṷ··oß¾Ÿú©ŸJMå¶›¸eqãâökv ‚ó[Ø‹ÿR»ù_ÜzÎÀùœBSùzÁ‘\UÓP,éN•µŒ¥‰£?àÈ/Ÿ_ÍÃ_4|4D#Ø×hïdþd.hÔ7Äך&`¥j×NlTgþ7 7Ïf¿_ \'NœøÀ>pî¹ç¦&qÊ&n_tBÍÕa1WŠˆÎÇÇå„ñÜÌ– <°ÖY,ò‡·…“_:üÚ*™Ò9g¾Jéi ö%ü„W4Uý)´rºä£@8ÿWÓñŸ®Í|@SCµ_ô–²íz©>wÜqÇ/üÂ/¤¦oWšè Ñ!uúS ‡”½MþoW#ÌÆB—t·ß—üøÛÈo‹ð«ðW×y🈆>?ľSSv Å‘l&ÀX&®7áÿo^ÀüoE?ÿ`v¬ü766Þýîw§&n›èÑ9Á+åç›;> 5þïæÐЖÃÜ~_ìSàøüFòk…æË•\‰qÑEìKâÚ袙•fàLA³°Th#'kÁ&ÀØÕ5io×ÿ!èÌŽ‡Ös{þùço¼ñÆ×½îu©AÛÝ&:Gt‘訰CÓÔ 2­ñ#ü°ï -Ú×va±9Åí×0.W=$±mQ}/ò­€q^`œnà ª  dµÕñÿ]ºøpøonn¾ãïHÍ×þh¢£Dw›€‹›µÃÿjy1żâö;áoã¿1\ ºýùÕý\³å2·Jò# ü5þ™~By“ Ó;Sà/-Ž6yA°Ý²iÈV•ÍÁþkðçàKo~ <ìsÛm·þù©±ÚOMt—è´°ÞÃôæè& þ¯’D‰ù“Ÿ²È CýZÀgÖÿ)ó EN'ÂGGìüWMÒÀ=pw€fl&{-”ÿ­‘Ÿ‚Þx<Û:½ëäÉ“üÇœš¦ýÚD׉ èv1X‘Ë5ÍÿÝœqÝ~ öénÿ&€ÿªûZ†ºhk¤zAéÊœ¾/ÿXìˆqSL 2îÖ 0úÿk„øÿ–2”퓟—Î=–M¥z®®®¾ýíoO Ñþn¢E7t¾²s#ž#Ü(ÿwG:V´?"ü!ù‹¥^ù¥Û¯ÆRlüqEñȯ™ã¢€ÿjÒѬ½@„¶@ û¬‚ADÖvÛÇ>;ÿy_`IÏ»îºë¼óÎKÏAh¢Eg ¸3cínŽÿÛöŒ‘¦Ý~_øËͶô<±_ã¹Jþ±RÿkbßÉÍØö…Íÿ_[^2Ùn#ÿ·,& •ØùGuË¿‡Àÿúë¯?ãŒ3RƒspšèLÑ¥!†/ΓÐÿ·@ÅH£Ûo„Mò;áÝ~uK—ñ®ùþpéVƒ¹êó•'&È-o±ÈOÌ ²U‡€¹@ÆY€ i1U*ü“;üê#Äο]×~×8Ï<ó̾}ûRór0›èXѽ¾#"1ÂÃÐÿ7íä÷ùø’ßÜíWk8ØÜþYçG¢=Òç?Tå >?%ýdG°\0šÕùï”þv]ñ­ìϲž'Nœx×»Þ•“ƒÜD÷ú‹ƒxEýCä£óÓ²JètûÛ‡ÿšþÐíŸ6­ðNXàh,AûüŸ´‡}ÔqóÕ-`p/°\€Îù¿“ž±Õ/=”ð¬çÿè£^z饩9øMt²èj¯¡C)´Ö#—ÿ[éÜ~È *ùa†§F~­˜Ã”Éç7|4þËs“#ò_Zbu„ÿêFc m4èi3|þ>:ï~ïlÏ|ðmo{[j4K]-:Ük€Ä€žW§LhDþoûðlþ¶€¿µt›zêî ¿ÑÛW£=*üG«JÅJ¹99а¯ ¯fjÃÚìoqÌß¡Wîew=íÿãÇ¿õ­oM Åáj¢ÃE·{ “Öðóbbñ%Ón?þZž þ2ÃGMéqÆyŒðË-¼ƒìüü7žU–Mn?Œæicšœü ‚®ö,E,Q†’&ºÝw 7ðÁˆÂÿÝÒ©ö:±¥Møo˜à¯­óʘZÃa¢Ê5È3ê"ÿÁ\±øo ï#Ø7Öÿç‹Á¿Ëþp5ǸɋáßU]úHöìKj¨ßíÑhoÃþÁHüw®ðÚàìù‚çBÂó¥¹áž_öü;¯se[>aÿ'Nüæoþfj{Cà•$†8d_p}þo»g‡° Á_ýóþêR¯„¿q—Ñ×x·‘ÿ@®ƒMÆpìCþÏ‚œο±Úúeå—áßm}Êç$ßgŸ}–S=;ÒÄ@ˆá hïÇ£&ÿw_ä…äOÿE ü'ìiüóïFøûúÿ‡Éš@M€íð/ü¶$OX`Ù†WuÅ·<à/ÚŸüÉŸ¤Æ·71^Ãç½# &ÿ·,دIþ]E¾ü'Â_ øOç8= òylë¹ÿüþÓ™˜ÛQbò›s¦ò°È§±Â? þÛV[¶ ‚Þx<{äzÜpà ©ÇMobPè#(†Û¯@hþ︰o$?ÿ]“‚á/ë•Ùà/K:LX29%힊 @àoäó'ªä‡>3`‘9í &ùÉ¿^á@Úaø“tÇSðÿ¾púé§§¦7½‰ACCG1èIþo¡õõÉð߸æ«eø;á?]Fûa>'ÕWÉ/´ŸÆÿñ 8’ücËóÔàŸð[þHåvûSë=yÀmmíõ¯}jÔq3714b€è£)†žúœóÇþêíAÈOá¿æùo(i*«¦^j’§ŒöÙym«ºþûMS˜ÿ?^ÏÛw.ûÊÈÿ¬’á3È÷öâåý%ð)ɽ^&nÐÆ_Ìä÷ѹDzûȧzSð¡œêh«ê Ïv„U=mñü}ùO7ÐØIOÑ>Õ¯>œ}Ÿ\áóÓŸþtj°q£61XÄa€x ÜOKÿažžÒI'?îükð‡ž¿„¿šç3 û5ÚCòCí·ðßÿB8ÿʑÏ,X€‡¼Ø¶z!üß0ÉÉÛÚå;©AÚ:ýh6ú=*ü···9ìßGM –2âàŠÇ@< Ž&€ÿFøÇÅ>þü0ì£Ý2YMõð·Åùqþü7N(ÆÈ1¤¼N~þ ¦åà¥ê†/[ðÇ"ÿƒAöñ×''ü?ÿüó¿ýÛ¿iÜüš21pÄ!þïÎí¾üß-9ì~MøÛ"?Èj¯ uo—<·ëˆ)àïùZþ§1ø¯­k2&‚Lľþš pfûóߘìä?‡€þÓe=·Ã(ùÑÍ ;¿lëÈp˜^ðÙíýºóKýÃC^ð(ÿ›dìó@Þpöo´Ý¾/¿üò;ßùÎÔãÞÄð‰A¤Œµx$ăQ—ÿ8üw£’Â_e‚–ê³< ÿ9þEØ?Àí‡q~„ÿp!. {lÜóå û«ð7îüµò¥™€ˆù?a«Ì}üq¢K˜Ýyç©Æ­nƒHnñ`Ôâÿn„'òß™ç©fû,*n¿¬ê#óü™|r:ü!ÿmð·mó:9ÒÝ™ð3kÊüDœÿÒù¶ÿkSù׋ÿ»é¹Úºðì ÚÁ¾O<ñÄE]”š^Üê61ˆb(I#þâ©Ç£.ÿ»ÿMü‹°Ï‚Bþ¥¤› âRï~êÙoaþAû„Bž„ÿz<åH÷)ûš¯þ0ùŸÈ› úÿ[1øÏ)@dý5yÃ×?øÁÔè⧉¡$ú_Û¶ƒ9ùß2üw]ð7Võ„ðŸ4yþÎP?¾øk‹ó#ñ8pbn0æÃþÐ,øðšJü߈q#ÿy 8’èÎÿ±cÇxÙw`šJ1 ”q·Npþ§‚¿mÍÂÑ™ícŒù#Ë»ˆÈ#É?Føƒl/þOšŽôÅá¶õ.ëáY ÄÀ>² ·¼@Ð'È‘.ï?`~@À'Œ«Ýä?¥¼ÃRõÜFóŸR6ù|ùüNþs;mð?à?^Nào«öé„?‘ÿ+@¸ îðÚ4 ÿ·ÒÓµãzÃýÙ šó¿ººzæ™g¦&·˜M ¨VÊ苇Ä„ð?-üµM¾0à#ó|ÔsOÔM¾ÆßÏßéü#¾ŒÎ?>˜$À_ã¿ þ°ìƒÍØàMñ¬7ÊD€ÈÿÝôŒí²þœœóå•W¦Æ·øM +ñøs¸ ÿñ§4˜ÿ*ùÕ€šá¯’_&üŒàO7”^FÏßæüS¢@ÎÊŸÓ®È1 H|f\¦Ì|ƒÿHl‡ò2^°ëìcÙ?$ýí /ñÕ¯~ujVq‹ßݧâQ9[ÛŒó!¹ï³Jä¿„ÿ¦ þÒóŸS¶wÉí½þðÇÓûÃàoä¿­òƒm `”ñÀJäg^1šóÕ×Û…ñµ€`þ¤1ÿíºêÛD×/»êª«RƒŠ[SM .õ1ø6™ÿqååüoVCýHž ÿà üIžêðwîí­ /`;ð‹ÿùê4A› ,)ð‡&€’ùYŸÿ¼lÑéG³™ï“þêï»ï¾×¼æ5©)Å­©&W 1åIL¥(hGø¯nõݨnì•ðŸ¯.õj˜êoÌä4Ÿ²·7˜ÿþ°4²á ?ðkÆ’ðo$¿mEç?<&¬‰Ã‘XóߢËɈeþ¯½öÚÔˆâÖlCLyÄ#›?Eâ?þpµ‡?ä| ð·yþFþ­€þÓÊ€âöûn €V@ÖˆÆ÷Eqû™ÿ.}Žv¼ûÉ“'ög65Ÿ¸5ÛĈüœz@|ø/XÕG–ôQ}þiê3²=ð7Ê7òãLø ƒ¿ñ€#.þϘøK€ùo+ dƒÿr5°ÿ7`ñ—ãÿ½éxv’–öyÛm·¥†·6šh’?ð⩇§süß4íí’ž*ö§”lõÇæà/MþHØÇÉã,‡¿ä¿ û^üGàïeTò-ó¿žþ÷wHð饗.½ôÒÔdâÖF-†›òTˆ‡§[üßþjÀGÃþd“ðGø¯öñ]ó¥À_+ Mä¿q0ÿ‹dþku!ˆQ :Áæ¿I¯Ü£®üÎÏÏŸvÚi©ÉÄ­&Z 7å©Ï+; $Úùo<ÌEå0üqþKÔÉ þÚ\îüRùoÛìÅ$øc+ ¯8ƒÿtÿŸ÷ýêÃÉÏ˲«¯¾:5–¸µ×ÄpSž ñðüètø´üwzþ6çxþ2çSã/üG«ð·ñŸ’íÀ|kÁQà·SÎжC@ÄÅ_:ÿSöƒ"–úúé§ßò–·¤f·öšn1è”gãG‡´Ã#üežÿjµ¤Ï\Õù×Ü~u‡¯­¶ßÈD½—ó $#hDZ Qøo¬ §F€× þsòЫïËvh‡üÞ{ゥĭí&òlˆGHjž§Ñóü‡1ÿž…ÿüm¥™œÿC&Åå?npÿ¿>ÿäצ¶È?ü¦—óÏÁ âQ/O?ýô…^˜šFÜÚnbЉ! S‡Â´Ï‰éükµÔlOÍù—ð—EŒÙ>6øù? à¯ñŸ ÿ'ªÿ…¿h›L»ø…FÎöâÿ*ºÀÎlýä}Ù6-ø366ö?ñ©iÄ­í&] =å ÒO.?Õ,ÿ1•ÿr“ל’Ђ;ÿcŠóÀ¿>ÿéðãÿÀ>±:’J‰ÿ/˜ùï„¿¢óŸhØù7é’‡©5®¹æšÔ(â–¦‰¡§¿/ü‘MÁš‚§PþûîüŃù¿‰òŸÓ~‚ô ò¶¯£GòQ_CÛÄЋ€òœÌ<óbKüלÿÒù_(õ Íí×à?jÙäÕ«Ád{¯“üþÓɯ9ÿ0tðßkó—3ò§ýù¿n/ÿçÈI?}¶ïë®»îJ !n)›x(ÏÉã/¼Üÿqç#G‡\ó®†úÕ€¿ö!F~¼øOÙá‹ä|♟¾ä—üÇ#ÿ^›¿pþÃC!éü_EùOñó9òCÖÿ Ÿöò§ú§© Ä-eå9yêÅVø¿ Ȱ^®ùΚò|l1ÿ:ð§ðÙäeœàð÷"¿¶ìÛ&ÿíðwš€Õ²^kýã þ.}žVðùå—_æàÿ7ñˆÇÀù¨<ÙÿmοÌö„y>jäÇ ÿ&ø§€jž?<ؽüñœÈgæÎXùÙ‹ÿ+%ÿ&€×|ëé'ïËvi™Ÿ<òÈYg•š@ÜR6ñˆÇ ÿñ´Ÿµœ3sÊ‚ïd•üðH/ø×ä?,ìŒG~ ÿàOtþáâoMþ;áOçp¨° T¿üPF«÷Ÿíß¿?5~¸¥oâ1HÃd׬ð¿ lõš¬’_Ý5V…?Îü^Pðÿ ¼Ôä¿3«ÓöSþˆóïä?¥øRö'€ÿ«è€¸òË ?.½ïßhôϲ›o¾95{¸¥oâ1HÏ­ÚCA‰åœBÒù·yþ0òÓ4ÿاóŸÿ°œ#ÿ‰ð·ñŸ/þ¯ùxþÛÕ¯9çÕ?Ñ‚ÿ¢ýÁüAjöpKßÄcÐ!þ«;.„Oÿq%ï ÿ^$þÛ2ÆLüÇwòRÒ´Ií0[äß‹ÿδπ%`òZùeþÛuÚÑlõ$ø¿üòË—\rIjöpKßÄcà\ŽÏ[‘gɇ•ÒùW—}ÕlŸñªó_ÀÙ þ=ÏÊoFþ#[ÀlÎ?îö#ÆœüwÖü‰åü{-HþÓ³=yñ— ‹ȾO«ûðä“O¾á oHÍné›x ÄÞÿ*üW•R?ÿUJïñbñ+âů§¾ƒñ0$ãÿ–‰ÿjäGƒ¿-òcäÿ½¹:ËÄù?ì‚¿1ùǯ)€-øS“ÿ0øÌÞ`Ò_Ñ|/Ú/ÿò/§¦Nß· /¼ð†n8~ü¸G¿ƒ&~]¼‰x«„7"†6øá¿£l]U‚?3 ás œêu  m#ùqø‡ñß þ*ó%€âÿÊÍñ¿Qþ{™æ¿I_zÚ;_|qBàô{;ÿüó´¿óïÔ!¿ÚÄ[‰7o›ävÄÀ_^Süß®ò_`Îä?¬óÐÿ÷×à¿ÑÿwŸâÿ©ÆøÓã?uœÜ@ø3ÿãé•{ÙÜsÀyÓ›Þ”5Ю¸âн½½Z¸·4ñ¶âÍÛ¿#ñ0àÖ8ÿ7Ê´Õù7òÿ ‰ÿìDþM„ÿ~e @ç¿Àpþñäÿ#Õäœÿ¶ó;ÂŽÿÔÓ¸/ûæ ¨9ï¼óÚçL¿·³Ï>û–[n©…xB!>¨Íû~Iøá¯ñ¥ŒüO™‚?0òþNþkß©“ùéËä§Ðùæ¿­æ¿oæ'Îcð‡² ˜×iºðì9Z埢µL˜h^xáÌÌL-²“›ø 6WÄÀ_OSüß*ù_d~.(~ëTx¦Ã¿g2ˆóß)þOÆæ¿Íÿ§Ã߯üÃLóè’‡3ügÿñ?þÇÖð2ímo{[Íu^ß&>N|h;w'übšŠÿl)Áÿ"ø3]å€óß‹Çèü{ñ?lÛEjðßù%þÓÿ×Ñcþýîc~xaþÓ›à0åÄèM|h;&  þ“dògáüËà¿\üÕÒ>˾=ø÷hüÇñÝö‹˜€ þ“ÿ}ùï[ö‡Âÿu”ÿôY×ÿ1‰~ìWÑ8þClo~ó›xàpˆ×kâ£Å4}ÇŒÁÉÿµœ6 å¶_yÔ—Ñùo‚ÿ=ÀhlÉÿç.éÖœPÊ~RR€ð²oô²ŸaþÿzUÄr@¼økÒ¾ë^ÿ¥4ÆÙÙÙp|Çhâš6Ö)×åʯ¬ù6UnûG#?uÒ>¡Œ‰ NøS’Œ)=5MÎç`gü? ÿ)Q þXôwÿîGÎÿ¤´[o½5Üñš¸ŒFo³ñüO#üeåÏ%ÅùWù¶ì[?þS‡ÿtÿ?xØüqN:Å#ü×]SþXôyò±¿Eãý_Îöû¿ÿûáÈŽÝÄÅ4w§ïÿBø_lû‚5߯íðÇs>UþÓ ÂÿúeßÂøo{ Âÿit ùOŒÿx-ð_û2ààE_'Wþ/×ÀÛ¹çž{ìØ±p^ÇnâbÄ%5t³ÍÖ°Á'çÿJÉõÀÜùGÂ>ÿu6‚ùòßvà¯ÿ¸ pîüÒ*?@Õä@ý£ °U~°ñß6`çß®Ãßóã ×ÃÛ 7Üëfš¸¤†n¶ñúoFøë¿ÿ‹Ê0òï£øï[ùÍ–ü¶PŸÿ¶SÀ|óTøÌ(ð§ä‚räß®EŸâ×FÛ\ðøã‡“º™&.I\X÷Ûlýg›ó_Sù/+? ÁÈí(ðï™l³ø=ø2ò–ýwNêó?x ‘ŸÂÿÒág矦íçý`Âç¿ ­ƒÎÑš4{þ üÙPâÿ0ó§Ëü‡i?ÿ#nƒÇ¾ƒÿÆÑ4ÇÿeKðÇ ÿõò\°mþìü£:þC?’ðù¶vÎ9ç<ôÐCáŒn²‰ kâà˜ÏDœÿ"ùG–}Vk>k¥>kòßI{£êðßùUÇxñßw ظù7¸ܲ)øsþmüß,ùÏð'È«ø[Æç¿ÛÛW\èæ[B›=ÿçÿJŠ¥æóxøO‰ÿ´Ïÿ‰ªŽX’?ü÷*þßÿ)þ4}çE?Œôz½èŒv÷Ýw‡Ó¹ù&./ú-‹‡ÿÐøü/\»µ’ÿóÊix©ÿž'üƒã?Γ¿ˆeß4Ô×1ÿSeÅ$/€Ÿÿ¨ü[§èª=þãÜ °Á ŸzÜ“ÿ›››gœqFt’ô{;çœs¾ùÍo†Ó¹ù&./nH<âaÀ?4~üGå¿,û¤tþmü‡ n“ÿÄä_ø#y>þC9³@)çÿÖÙ ñÕ„zÊF0†?YO¾ä‡‘'Ÿ|ò oxCDŒ F»ì²ËÂÑÜVñ–Åc ücò§ÊÿeeóïDõœGÿÒM¿×ÿ»øäù üŸ(Ë>OÓR@‰%àZà?q0G~ÈòåÿË/¿|É%—DÄÈ`´÷¿ÿýá\n«‰‹ŒxËâ1þ‰üGœÉyæãŒ©æ[翦ÿOÜÿü·™€ Àÿ %ùá¿1 ?xÞκ XµðŸ^B>3©éÚ}ùÆDûƒ?øƒˆŒö¹Ï}.Ê-6q‘oY<ÎOl–ÿó噿ZÍçˆü÷5”²ÿò_2ŸÂ$ÿ3lÀ|Œ]Àuø_¬ÿî²  ÊwýW´›o¾9"F£¹å&.2â-‹ÇÀù‰‘ã?ÿ²ìLþ$|kÚÿ·ñ¿Qàäÿ4òM@þSLÀJmþo€''5c»,ßüOÑöïß#ƒÑ¶¶¶BˆÜnñ–ÅcàüÄFø¿Ynþš/Ëþ¨ë¿Nç¿×˜ÿo,þ€ð”œTó\üGLKÀÑ …í3òŸ¹þË&€&ßý_Y~¼ÔYg‘$Ð:žüS4q‘±îW<”£Í‰ÿl–þÿ\ÉÍÿ?P{ñ7Ì Ð‹ÿØüc!8"ÿñt hð-8ÿ‰ÁsA½‚?«€ÿ8ü þo›žŸÔ¤í¦|ë?dùð¯ýÚ¯Å"É`´'žx"„Èí6q‘±îW<ÎÅß,"ÿÕäŸ …ÿÓ ìóA”ÿaðwò©ü¬ã%@ø¯™€q{üg"ˆÿp `ã?Ü &-‚—óW°Åÿ™ÿdùÖ+ÚŸþéŸÆ"É`´aã¿x(Ÿ“ÿÛõøLþˆüG Aà! ¯¥ÜùGvPø¯™Û.ÿqáÌÑä[ÿ¹hwÝuW,’ F¶øx(ŸØ8ÿ‹â?‡Só¿çïÿãü«Áÿqÿ'cðŸ¸@á¿Ñù÷å¿<òŸM€I¾ç¿íèÑ£gžyf,˜ @ªõ_1ôâ |b#ü/þÒ—KþËÅ_<ø_“ÿô)ÅùÇ«ÕLRã?ˆóo<Ìë8`› €! ÿW-òuþ™ÿ>ò=ÿ±h/½ô/¨m¨ò?ÅЋ€ò‰!ü‡¶ÿk%ÿ§Mü¯Yó§¾ÿOá?>¨c(ñãÀ¾ÇÁ;M€ÿЬøï„ÿ:(þÉüwÉ÷üwÙ®¹æš(0Œ6Tû¿ÄÐ?±mþ#™ÿMÇzþÓC@þt[ ñIuòßfˆ¡M2òß:ÿת‡¿0ÿiúÀwa"œÉŸø‰ŸˆÂ“hÃSÿA :}²Óÿ×þËäO<ó³éø4Äõ_'ÿƒ—€!ÿµåÉÊ*ÿs–„¿fçßËÿ߬ûÅü'è}ÿ“§Ÿ~ú /¬Ï“ÁhÃSÿM ºzâ'6Ëuó¯tþ þ7Á¤\¬ø?eGñ,0[Q¸9 d àËbðù¨ß},œ'ûöí«Ï“ÁhÃSÿY :ýCã¯ÿn—ù?ËÊæ/5ùÇüŠ ð]€»ÀÆëÿøO9) $±?ëÉÿ%ŸàÂæ?Y—<œ¹·ñXÚ½÷Þ[Ÿ'Ó†äü1èômÿK¦cß6 /þ·€á»€Ãø?®”ŒÞì[nÖ´/ÀÉÿ¥Áÿ5%íç?›  Èž 5O?ýô[Þò–(T€6 ç?Šá¦²†ø/ëÿÌ€cß›æ¿Ó8³€ˆU€jòß8@¬\®Éÿ9Ëò¿fæÑùGøÏ& ªÿp_H 8Ù®¾úêúTŒ6 ç¿‹áöúÜøõ$ÿËÊÿ‡Ë˜‰ºþÛþM@\ÿ? (<O r†€lð×2‚a Eqþ7Km¡ùÿl€^¹—Í•€(Úüüüi§V,ƒÑn¸á†ð®l²‰ «wb Åp{}nÌõ_•ÿ+þìÿ¡ p®ÿz•ƒ« jÛ@ŸÐùï<áÿj•ÿЬ•{~7«bþûèKz½½ôÒK—^zi}¶ F»à‚ üñðÞl¦‰KVÿîÄ@·}Éÿ»Jý·Íœ eò¿ÿi.ùÇ—ÿăÀpþ‹ÂUáO™2øò_ÛF9€2ð þÐù¿é϶Šþª^é²Ûn»­>[¦up ÅùM ´ïG7Âÿœÿó€ÿÍmþ ã?¥ô!K-[uÍ:÷ûÂ_5“¦ˆÿm‡B™ŸÄø¿-hÃîÿ;M@jðvDøíZx9yòäÏþìÏF!Ì´sÏ=÷رcµ:4j#.©þ}‰!íûéñù¿™ÿÕ¯¤ãô)€6°UÒl²w ©)ê<ÆÆÍ å Œu!Œ‰@+µù¿¡HåÿvÉ6]öH]È\{íµõ 30í÷ÿ÷ëvh¼&.&ÊM‰!øôøç¿l–ÉÿóåÉ_Eþ'~ìc\þã&À6 ,PàpÞöM„ÿxb¦\çÂØø/Ë©%àp°†Jãÿ†…ÿ¼àÒdzgýºz»ï¾û^óš×DáÌ`´[o½µV‡Fjâ2¢ÜŽ\1ÄŸÿ2ù_õÿÇÿ]ðâ?nàÓ/(A<#Ò¶€˜[]8ã*°VùÍÈ_øK°ø˜€Ôìí‚Î8šmü .j®ºêª(¨ŒvöÙgÏÎÎÖíÓzM\€¸Œ(·#7ì"ó«Êÿ…ÿ‡:Ìh"š-àƒÄ…ðí6‹`´Sv+€Ÿ°H¨üïä? þ8ùÏ&Õ—ƒNPÛêêê«_ýê(´Œöæ7¿ù¨Û­¡M|´¸€(7"†U nØe4ÅÿÅ&³öâŸMó1þ{ì ›PÊDجÀtY ÈY ÔXÿNœð·™€MeÿѤfoôAï•=C»òÊ+£g`ÚÛÞö6Ê!éÑ›øPñѱîB kð•Dæÿ¦‰ÿšÿo4]à¿m  ›Ï›€`þÛ¬€–„˜<¤®PàoŒÿ«û‰Q Ôìí‚Þ£t™ðùP0­ ?~Ò€hÛÛÛ¼LlçœsÎe—]öþ÷¿ÿ³Ÿýì¡C‡¶¶¶{ì±'ò&¾ÿß?//‹rŒ ÞÄÀ‰á‹òÄŒÿì”ÅŸUþ!  Z¨ þã¶€Îú,@3¾û…§ÆÄâ¿– 4c:šä¤`hà¹06@á?[Eÿ£^!P­ÝtÓMM“Š[M \¬gੈþ¿äÿ࿺€Oš¶übœV à˜€·ÏLÀ‚Å r(¼´ÚF`£ `þ]ü@ö½z…àÔöüóÏÿöoÿvj˜qókbÈÄÀÅz¡þ¯—ù?sÕŠDd¸Q?Ë‹ÿ”ºÁ«ÄcÅ(&áÿ”¢ér `³ó¦tP›0‹@¬À–Ý0ÿMzÅ^6óýXú§Úöööë_ÿúÔHãFmb°bE~Š6óÌ‹áü‡&@.,+ü—S€±’øF€–ùï4Lé Òøšƒ(&Àf ÿ'@Ì ˜€Y2ÿ¶@;2Æf`R(<ÞÆ6¥®‹QHmŸþô§SSµ‰ÁŠ;úþÖ¢ùÿ’ÿ›åù/’ÿê ƒüÇMä¿óàxü¡ðßv¬$nŒ&ñùü'‰ÿÀƒƒ‘ª05t ì†OWjövA—<œÅ¨QiôG”lÜÜM SÜqÒ%{ÏÆôÿÕ%à…*ÿå@]hs#@üwâ]3^K^¶Àhl>¿1ùQ q:`Ü2fK Úâ)¦Ÿ¼/ÛŽýýQ;yòdÄŠdÜšhb€ŽwÄ›x~rù©˜ü—S€ue x®ä?2HÎÜ Q §{D—Íá/ù§Ï·¸ @vlÙNß.è¯ënú4´µµ5^èlC#(ú ‹éüãòǾ@Oí  ÀW¢l à¿Ñ6¥zzñŸùQeK5šgi -K"(›€ÇÛ¾ð…ÓO?=5ê¸éM Šš&F\  S­fy¤‰GèÔ³TŸÿÐS€õü}Ñ´ |¸$Û(jZöüL€‘ÿÑXÐXÕPBú‡ é ãö]”ЬRÿ?Qÿ €‰óŸM@®_}8‹·¬Òž}öÙw½ë]©±ÇíT!†£‰Qx„âðþ=& -ƒ)À¤2sE’Àßh¼øL4àÕ'n  ãÿ°æ[C&À6ÐLÀ™ÿÃg^{#˜ÚNœ8ñ›¿ù›©á7ìM ˆ††X<<¯Ü‹Ä› ØÊÿÆWªµ Ô)€VÙËøò¿Rw‡y­ BðF`Jý‡iKКü‡Kü§O†Ïüïh%ê íÑGåŒÐ„Mt¾WÑQß&ž‘¦ù¯Nª‰@“ÕU€¾6øÀ90.P"BÄ¢ xýO¸Ÿ„YÕh;ÂŒ& àŒàá3o:žŒu€©=øàƒo}ë[Sƒp›èvÑùͬxlÄÓÿF°£LàB°œhuápÅ Ä5DþÓ -(ÆüDxifLµ ‡Âøšœÿ°4ñ\„ÿCf>¯´±?~œM@ËMtxÍsgœM<6?~Ššãÿ®’ªšYb¢˜€^+Ìï™ø”ƒÃeœJû—OQ£üß)÷Q ­(ô¤‚/m! º `~ÏÎÊtÀ¶^ ™€QOþׂ)SH~í ȹæMÀRµ(ʸ#) Ê& ×éG\–íÑG½ôÒKS£qð›èäFcþEŒxlZâÿ®RzÅdÔ)}-¸L€ñ›M€Wi ¢ˆi¢+@Y°Á_ÍÿŸ¥À5ˆXŽùOÐUQO„±µ'NpRh£MtosÙ>jLåŠÅÿ=‹å T ׂ§ª¹ &À¨ˆü÷- lRrέ6øã‘5ø#áßÐÀvFr^¼ítæ¿¢³eü°ldÏ<ó̾}ûRcr0›èXѽ- ¢xTÄÓ*ÿå*À˜ÈÓá& À ÄrþåÿꢰQÎ bpE€’ÿ©f³ LrFŒ¶°àoã?›€RþÝÈñ£výõןqÆ©y98Mt¦èÒÖ†O<*úóÓÿåÀhŠ…€#f|Å¨æø˜J"m?L…¿‘ÿˆ-ð5øaÌÿÚzÃýÙ‰&Aµv×]wwÞy©Á9Mt£èÌÖN<$âQi–ÿ{ö)€jV ˜jÌDQCS€ƒv+@_@¢@ÈAÚæ¯b.6C3F+à„Ëü&ð‰ÆÊÛêêêÛßþöÔøìï&:Ptc›£ö‰ÇMO;üß&@n –«&f $ÿ‘µj(ž ЬÛ…Ÿ¬îüREœàA!„ÿÄBpþó Ô…dO´8Èò#cþøÿ85Dûµ‰®‹~˜ ÞÄã!’6ø¿g7[ÊÏõr"°`2ƤPÈÞ`ž{©Mø·‰§ÎäÄ Èø?ÿˆpî¶-¬VáïµþËü¯ª‰Caœí¶Ûn;ÿüóSÓ´Ÿšè.ÑiíÔ©£^ŒONüßó1+e¡-äÜ`”/Û)jÿˆ°ÅìË A§•(…ÿÄé1 tÕ$”ùoRûS€¢mnn¾ãïHÕþh¢£Dwµ?FVç¯1þï¡&@ LX¨3QÍ ÒjD Ø‚ˆ¡5þ&à eRNû¯‘ÿ*üU@ä?´”õPÿÁÏó­4|& ¹CðöüóÏßxã¯{ÝëRóµ»MtŽè"ÑQIèãÆÈÿ^ þk&@NT &±TŠóµÁ¶ eçß6°YJPãFH~úÀæü;³ƒŒü7nþ²ñŸX t(ùÿ†û³{! `Nµw¿ûÝ©AÛÅ&ºEtNªq„!íG* ÿ‹å` ZËš (V&-&`Tc`ü)þVÑÝ~œÿšà¿1ì_'àC\V@ã?þ̲®mq/€±Ýqǿ𠿚¸]i¢+D‡¤‘kaοªæø¿G3›U “BU ­€ŒiV `. Zß_i(òc,WÓ@þOûäyF!¿j–J+°jßùkã?ý,€a5gËvÓÄ~ÜNœ8ñ|àÜsÏMMß”Mܾè„vJ: M< gCŸ™$üWM€´Ú,`˜/+l’ð)Š—vî 0†ýéü¯)ã`1èÕ*ü™ÿ‘ôß¿•9?j{{{ûöíû©Ÿú©Ô$n»‰[7.n?õœjâap<0òß׬—ÉK L”¶Yø0š€Eþ½ŽÀSC… Ô__øÏ—áýš†@ã?eå‡?óèô£Ùè÷Rs§lKKKW^yå™gž™šÊm4q›âfÅ-§îõ5ñTJ}v“ÿª ØR D,—uð”2˜P ‡ŽÕagf/»P‡êQ°ù¯¥†ª¡žÉjGM€¿Ñ?_¨þ—ÒqlÉŸjµgÜùÇáÏü7éWξßôÁ>M ñª«®zík_›šÐM5qkâ»C~ÑÄð£ÞÓòŸhT+ Œ&` ¨i¢£UlmÁóéoh‹çPà?jÏóÔ¶€M€ý¼Z2'â„ãZP,ÎvÊ»-‚´„üšóÀŸùoÑM)¶ƒámww÷Úk¯½à‚ RÓ:f·#nJÜZêÞÕÛM¶ _íó1;&°]N4+0Wî˜Ó‰ê~1Íh zYÑ·—Ì7žÛuDY1àk#¿-¯¦â¨e–«ß”¶¾ÃöýåªÔš?Æ}¾Æš8ü™ÿ{,»/õB°±8qâ¶Ûnû­ßú­ÓN;-5¼Ã›¸xq âF’¯ð›úsñeߎð7›.+çpר!Sh‚n8­ŒáØõaÑf›Ÿ#ùÆ,†h¼rÙ"ç{®Ú‹üÃ^ˆägþ£zÏc©1„¶™™™«¯¾úâ‹/NÍr¿&.X\¶¸øÔý‡51ôÔç¤þÓMÀvÕl)%C%‚Š¥a› 8¢-`bŒãE6Vã/Æm<ê«À>r>—æçÛÈ?§|ìÀZt!ZÓšI«ÊXßj­ôù !µÝ¼ÈÏüw鎆ˆ¯ßžzê©{î¹gß¾}]tQj´cM\ž¸Hq©â‚S÷™£Ýñ”ÏCÒ5þC+ nX/¤ÖU Á$°‡«‘óC 4„ëùW‚ÿ¬¾Ï˜)-§=¬Ò ò_ËÛ•Ö`„‡m#öVÀ(ãëÕh?B~¯€þÃÍÿ7ÏI·#Ø«=ýôÓ£££×\sÍoüÆot$_H\†¸qIâÂÄå¥î!RÃ-Ýã!iÿ{ž&ÀhdPh­Ü/ î0Z euàpÕªB^3ðL^ºÕИ¯Åv(~>¬Ïo ò,Xh#ðË.]nÈÒŽe´ÉˆzøÓuü#:üÌEWtc;½½ôÒKG½óÎ;ÿìÏþì×ý×Ï:ë¬6™/>N|¨øhqâ2ÄŤî¿v…3á_S›üß#üµRL€:X­æA+ Í´y3Çf ¬#Bm„Ø¡œ½ŽÔa›™6ÆrÊ6ò/Ù—_)R“óm2Z•ÿÚ¯;ëyF‡ÿÐó_èSO¦¦Rhø}ä‘GöïßÓM7]yå•—\rÉÏüÌϼêU¯ŠE{ñVâ ÅÛŠ7!>H|\ß1_61ÐÞGËü/ Ò²DT+ .ÏoYÚÈá#`‚ NTs`«±£Eu&íAg±Í9 ð)Ø·-ήXœ|\öVúüZ’§WVÃ?žÎ=–mý 5›b4Aæ'Ÿ|rss³×ëÝ~ûí×]wݾ}ûÞóž÷\~ùå¿ò+¿rñÅÿÜÏýÜùçŸöÙg¿&oâ ñ_ñMñ#ññ2ñbñ+âů‹7o%Þ°¯61ÄÔœUIø¿ÕhKrû0LbŸ­fN+vg4» R€):ê6+XW&dMGNÑ5vœQ}_¼û ZbŒ|}~øH0ÿCué#Ù³ƒ9næ&W qȳÑAþ;MÀ¶ÉÈ:rZŽŠšÐ®f³Ã ”–b¤ùð2Ê4¥U€µ”q—ž¾… .ãjlÇ—bñJ;PÁüß4¥÷o+ãØ«ÏüGuuÕ¹ÅibpŒTüßkÆhsUjY i4OæÌ£Iêmë³øf[JÆvŒÁ$zï‹}Š9ؤ½!qo\ø§Ælgõʽì®þÈaáæ×ݾ2øÁHÈÿ½Ú&·Õˆ4â'k6B -X’êm¥r²N¼ƒ9”K$n_û²màu.ÿaw¶1 Üdzr¼‹S]æMàŒc¨i*0¿]kã iöˆŒ{l‘MX8ù!ó#b<ì·4ò{/ÿaýÒCÙ‰Çsk¢‰¡Zë‘HËÿB¾&ÀièìÚ¡˜Ê¢…–« vVQpn°¥ß–¢ãôÆaŸà½„÷$ü©ñ”^:ºþ-êŠoe/t©:(·°&Ñ;Ûª üß‹d  z~£1Æ¢Ú â~Xºˆ´·19ºà;Ã|þ:$gò7¯äÇDr«ß;Õü·™Äࡉ¨ˆÍX…çg:™orC&@ ò A~†WuË¿§æ·M _œ'¡#üßó IJ¾®ÓŽøæÉÛR()œÇÉì%"ê›N×dø·¥3ïËþå™ÔãÔÄÀ‰á‹ó$t‡ÿ{µMÑx™ú›Ø Að\CÂß‹ä¾É–H¿¥Å;“¿a{,›ü~j–qólbÈBöùÚÔ)þjÍ DWýø’æðû¢¾&K?JN{&czãqÎí§&˯¼§Säÿ™uœÛ¬@€-ÀÉ_3öÒÍAììõ‡Þü@v¬“'…qÓš&1X‘€¾æ€9ð •D4á&çåõ<õÝÖÅdǘšnÜÐ&èâèðßë*ÿ 5dê+®9 úù5£=ÉG“2¦É/oXõ‹² ènC#¨‘¡ï2ÿ ‡ Ú±± „ïGô#üYÖÏ?È .61(?ßü÷úÿ{5L´1uÄáV3zËÙ6›€.51oi"ì#Õüß«gúbÊÀägu@o:žÍrRh7šˆ7ÅÍöêþïµeºi‚¯?ù¨±úMçߟ}ãÙÔìú&†àü:…=‰ê#þÚ-ÿM¨Ž3ŸùϪ§×Ü—}ºoO €&:ÿ5±vøâê;þ«Jkš°q¯$ù±úV¯ÜË®;™q¡Ð–›èpÑíáç¹øª¯ùoSrÐ%Vÿë¿=Áç´ÕDW‹ouˆ’ÿ…’˜ÉÏê]òp¶ÇIAÍ7ÑÉ¢«Ûßæ¿Tr 3üYý¬7çb¡Í6ѽ‘ û5 ü—JgÆ>«?õª£Ù¾›=Çë±›èRѱ¢{ÓŒìPñ_Õnùï(yg²†Cïx4ÛåXP¼&:StiÊ1Zþ«ÚU¾è#©WÎbµ¢Ÿ¾?»SCc4Ñ?ÝB†?.æ¿Q}a’÷kXõß¾•=ÈõâB›èºÿVÿèö(bþµ[ýš±Ïn½éxöžø7ÑiWu ‹ù_SÚø,V—ôîDz5>AŒÖDG‰îJ>d1ÿ›Ýig÷žÕ·zí±ìƒ'³ïò61{#ºèµÏí%æ?‹Åª­_|0ûÜSÙ œ Zm¢CD·4uzK}1ÿY,V$ýçG²×-›è Ñ!ÉóŸÅbEÕùf6ö½ÔðMÚÄí‹NH>n1ÿY,Vl½"·†o. nYÜø+R÷?Ű՘.4ûâÓÙ÷^JÍ军¸Aq›—§ÝÌ æ?‹ÅjX¿ôPvãÙCƒ¸eLÜ”¸5qƒÉ;9D̋Պ^ö?¿}*BòƒþO· nDÜÎë“×p¨#æ?‹ÅjWo{(ûÐÉl鹬ïÂBâ‚Åe‹‹[Ÿ:üš˜ÿ,+…Î8zêÄ“ëOfsÏe?ìöŒ@\ž¸Hq©â‚ÏHU«¹ 1ÿY,VRvôTüü}'ûÊ3Ù7_HÍz¥‰‹—$.L\Þiƒ„})æ?‹ÅêŒÎ9–]öHvÍwO‰uìù¶çâãćŠ .ãœVlˆ+æ?‹Åê¤Î¼/ûOfï}ìTàåKOg+?È1f‰ ñVâ ÅÛŠ7!>H|œøÐä7Þž˜ÿ,«túÑì¼û³·?”ýÎ7³÷ý[öá“Ù?>y ݇¾—-<—í<ª®þ·_ÈN¾˜ýûK§$¾ÿß?///¿"~QüºxñVâ OÈÀQÌ‹ÅN1ÿY,k8Åüg±X¬á”€ÿê³é/ƒÅb±X-KÀüáÍX,‹5<ðÿQûÿÞý{—¿ç¿ûŽßù¯¿øÞÿçÿïåoùÿPKN\?> °0¡Ðduck_triangles.daeUT “äFMÅ¢vMux èè´½k¯]וøÝ€ÿÃ4º:äz?ªhŽ]I»ÛBÙIªòE¸¦®,¢H^IÙ¥Fÿøžã±)Û¼R!i)Iwß{ÎÞk¯5ŸcŒùü?þÛëW—?Þ¿}÷òáÍOžä§éÉüìÇ?zþ³ßüò—?ýùO/qõÍ»Ÿ<ùêýû¯ÿöÙ³?ýéOO_<¼zu÷ÅÝÓ‡·xVRêÏr~æßþ틯î_ß=ùøãÚÓü$>ïÿ{~÷îÝý{ÿðâáÍû·/ÿÍû‡·ýX¿ûÍû¯â§xñðöÝÛçÏüßõ·^¾ùÃçï^}ö«»oï.ëiºü¿—Ÿé.ù“?Ö§©ÄÏþ³ˆ”ó‘·?þ³~ñðúõý›÷ï>;ÄúûûúáíûËo¾~Ï÷îo/¿¿û—ûß½½{ó¯ßý$ýÝ=á^}û‡‡7¿º÷Õý»Ÿä¿Ã¯ýòå¾zß¿ôòÝoï^ýJÿñã½øæíïŸ÷þíÝË7]Ò‡ýìîõýÛ»Ÿ¾ûåÃÿܽç_è?ÿñï}øïÿëáeÜÿOß|ñÛyù&~zþì§o^¾¾ãýß~õwo_Þ½ùëû?ùÅ›?¾|÷ò÷¯îýðÅý»¾ô×ñ w¯>úÓûûÙÃÃÛ/>üä¿Ý¿}¾ŠW÷á×âó±œ}RüåG?õ3œUøè¹þá«oß½|ñáwþéï¿|Ççùâþíý—ñÿß¼¸×Óß½à"üÓ~øãí?þÿ‘Ÿ?»½Ñ¿xÓ_ûK~vþý[{\~ûðæÛØJ¯¿þæýýÛËß¿‰ÿû>nsùÅ›Oü£_¾|qÿæÝý—oÞÄÝ\ÞuùíÏþþ§—ß~u÷6~úÛ‡oÞ¾¸¿ø·þæòßt2.qÎ.ÿ{üòô¿ýë7ïÿο ÿø?þîòíÃ7—×wß^Þ<¼¿|óî>>÷å»Ë—/_Ý_îÿíÅý×ï//ß\âyb£ÜÅÃ_þôòýW~œ?èéåŸý ¿Ç_î.xÌË×¼EÿÖåîýßþøG>ÛoïßÝß½}ñÕÓw/îï┿~†ùüäów|Ï_ùã¿zVãÇ?ú¯obϼ»¼½ÿ×o^âqÿíåî븩w±s.¯îþtyx{¹ûÃÛû¸öþ7ý§·/qþæòîáË÷ŠŽ·øò¬ÀwVñÜb<÷Ç¿kw÷æ¢uúéo/¿ø­þõòŸ~úÛ_üöo~ü£ÿþ‹ßýŸ¿ù¯¿»ü÷Ÿþã?þô׿ûÅßÿöò›¼üì7¿þù/~÷‹ßü:þë?_~úë¾üß¿øõÏÿærëßûê-ž#nö%Öôþ‹x³¿½¿ÿÎÄ ç¿ûúþÅË/_¾ˆÇ{ó‡oîþpùÃC¼7ñT—¯ïß¾~ùoø]Üæ?þÑ«—¯_¾×aûËg‹/Á®ü°û¾³-½â_ܽ¿û o>^ѳŸýí³?¾£Ñ}+¡«Ï°A_Ý¿¿ÿüî^üKÜлgØ‚ŸÿÃÛ—¼{ÿ †ëó_=<¼ùåîàþõ•þõ›7ï_¾uÿÅógÛGúÙ_7ÑÏ_¼½þâ3œ’kZ×RWÊß–ý·}ÿø#_ýè^?|‹¦¿˜×T®%ã/zùÛÖâ/n—?ú“oÞ¼|yÏõö'OÒÓ”Ÿ\ÞÄyþÉ“X»÷/ùó'Ͼóû_~÷o/ß}öÏŸÿ×xþìü—}ϳÏóW/ÿöîí·ŸË@¼ûΓñG——_Äñ_ã$}ÿáË?þÙŸ¿²‡p /þܾðÊûû_½yù¯ßÜ+ôðæ¯ü/6ö×û—¼ÿįð×¾ýòáŸÕùtµŽŒÿõÈoßñ#?‹}øY~Ú±ýä‘¿üÞ„Iø,l§þå±ßü¿˜âñË_~òwŸ?{ü Ÿ?ûž•zþì/9ö_ÊíUÿõ·{{é¯è6?þþ„¯ü‹0c/p\ï^Ñ»êE_ãOÏøë¿ñ[á¼ðç}Ô§–ë¼ègùÿgñÕ_„@zâOÒ£ Š¥ú`y>,ÜwVè¶n5„mùøÏù® T9Käÿø"üÔWþÅÚ¼Œƒýù—o^öôÙß¼ø—Ÿýêéû?Ü=öáçß"¿ä/nñ;7s»Åˆkî#”yõ»B«7õÜ©ÿë/oðÝ{øÕÏï¿ü2ÖõòÍÛW?yòôË×/ÿí»fçÙùü¿¸Ç?¿›Ûmêc¿s“þ¦·ˆïùóûúúíÖöóŸýæW¿úͯÿÚNxsÿ§¯ïÞÞ½¾¼»½•ë»oÞ~y÷âþÏ?íö7¾~yÿí×±$åçŸúÅ?{wüð¿þÒþâ¯ß½ÿì§ë×Yÿi=æ|ÊHø–þê^?øƒŸžòí§_×ËÏ{¹ÇϾ³ Çi>öw¯_¾‰¿‰mðÙ/ñë¿ÿé?~þ«_üï~úŸë¿bïÜ®?ö!wøÎ‡`ËýáÑ?{þì±§z| oöB‹(£ñÉÕãf}ìæï=ò;ü=·tÁÿ{ÄÖ}x†ðÁÏï^ÿþeD ÿË¿ûû?7Œû—_Fäþ}_™ÒûoÞÆáÓ?ÿ|Óâç/^ýäÉïþþŸÒw,Ï_ÞÖ÷çsøÞo^=êËù{ÿî%ùüüÝWa-ÞD¤ý}ßþ嫇°éi KÁ}ô›À§>DñÕ÷ÆUüÍ÷“ÿ þp/ßûC¿ÿÇÿüü=Êqêÿÿ8?ì³?º…?p òYø±á»¾¸ÿ·Ï¾ü<–ìíã¥ÿ…wñÃ?ýù³OYÍ¢µ¿ˆã>éüÃ2xø‹øã»aÆ-úøÃýCdOo_~7–óO¿eòËßü¼¾ûš¡íDZïG?þ‹Øäõý»¯þÚÉGþµO½~ýðî%SãóùçŸô6| Ÿß½}{÷WïóÃ'^ù;O./"ÅýÉ“QK{òYíOS)ã²öÓºf»”ú´ÎZ.y?ícòç3Ïz)åi[s_öÓRvŠFÎÔʼäù4§:/íi­©­ËZOgJ+þ»ÏŸÛâóûÌøœ–çÂç®Ò.×'9ïqÉùé(³\Jšküþ5÷§cï‚ ñùëRÛÓRK¾ô™]ÎøÂ™z¿Ô7˜Êeô§³¤ø 7Ÿ3Ÿ¦5ʥȎóäÇÔÖqÿcz‰¬<>¯Uü~n+n4?M­ì˵¥§»ä… ±4ñI;þ¹â âÉãÑñIu¯}Éåé^ñ…#áÆÆ¥ÄíÖ.5Vl·}™ùiÙ«áïSíÿ¬µöxäøÃK…Þ¹]Z}ÚæŒ/^OwÇÇìÚãyã†s<׬OWμ¿ÙJÇ_­Ï[z®øyÝX‡øyüxÆóõ=/=Ö;Uüvic]F‹åÇŽ·HŒ/u=-#^ÓˆÕ[ñÔñÏ–GDzñáã÷zŽ×&÷Ø\×X»\âëãÂÞ;ó¡süò¸Ì/yp1ÖZ±°w¼Î¸Ûh`{æÝñã/°‘âB‰w™ñø9¶I{º[‰OZØ>#ÞZeŒ[ºöøƒÒ'6âž#6d|S‹¯¾ö:â»ãêŒïxMñ­=Í3ÞÓœO×® r‰5½Æ¢Î;·cÍãôÿ¼Ž8ñjñŽÆŽe‹õ(wÛâÕ—Øíñ ¥ÇË—_>øQ{àýÌx/8fñ¶c—ySÄo´x‘=n¯/èÚcŸÍW²ñ†c©RÅJÅ_î]/3=]ø„¯¬\ˆ%Ëq«Ä>Œ-Û»´x—ñ ¥õ‚•J3öuœ:Î[Ž›¾¬8 3ó©G‹;‹…ì=®Ç¯×•â]·XàzI±x¸O~Jü7^l¿ûhñüeÖØf ‡7ªâŸuLøï®Ñ´ívÓÓŽÉݼW¼‹ØgyÄMÅ:ÎÖ¥ãóâ àp`;Ç«jÏïïg/­ŽŸ—û4ÎtŠÕ­°Uqr¼l¢8<ª“‹;6¬S¼ÒÚþ>¾éós‰ ±F¬zÇžˆEÅ ÅéæGŨ•âxÆŒ‚™ña€xÚcCÂŽ-Ø·„]Søèب± w‰×q û/Ö¬ÆFÆïW¼àø žZübyZf|`‡á 楷ºñóXñꩼ >?gý]ÃæŒ7RpæâQb#Tü¼ï0„°œEkÙ{ü]ü|aícÇÚ6Z–7?7Ýà j˜ìKÇ]¸û k\fÏØê#,þ¥Çãì¸Ýk|oÂBÄÒÕï—®à 7n|e,vìP<(.Ô¸,Q-ñã,,˜ìkŽÄ=a¯¶x&|ÔœyÓy¤‡ îiÒ¸Ç{ω6;¾+ÃnŠ?ˆ]9íOÁ§ì6?Üáaðß5ó¥çØÛ|²·i–ø£Xˆ…“߷ٱРVoÀXñîsÆòì;îc­Øòñó–Š l˜p+–¹`«ÆÃϸÕxí%?ß±p—xÆÜb¹Âa¦8°°ñ%Å.’a.ðøíÙyxcÃoÜó CˆßÏÚ÷³‡ ãÎ.n*áÇ…^ñqñ(¾·Æ5ž·Â÷GãËÊ—ö‡qÅ&[8Å?cµ#à§§*.X‡7_»+Ž}ØÅ§%œþÈE{¡Å]g¬`¦·ZØŠ8E>Ÿœc Äc…oßÂ;!ŠïˆP«Ð¯EŒG³{ÀÇ/^I$?Ø3a× 7Ǧᘌ>ù|™># bè:ze<ËÀõ)‹av$qô\£0Ü3NöRz<#RAx(¤ñǰnª6‚2Ž ù–ƒÔ+W¨A<|Sì윈ùí ú+þ‰ÏÉ0êȬVX?Q³27‰¯mĆi¡‚ì5’¹*ûZw|Ò”XÑøàŠ ‡íÎõ²NÊa%=í‚sX3’šÁ ©B‚ýq&§ˆñR4ü:¼/ˆoÝðí‘w,N ó37cî‰@‰ãŒã™{1>,Ž:0 ×EC>Ây!,k‡2Nq˜‡° 5gÆ™ (¯Wî¹ÈéÏ âÓÔ±y—g~ÎZáp`“Kå߈iðϲ65‘Á!öߌK#‰*ñ9‘u%¦°±»—F^’á˜vœíH2±…Mƒ¿F%áJyº2²´ŒÐ ~oÂ5®†JÆ5þ…‡(v]D'<Èa©Sª†'ÁAÞ)7¼lÄF¤v®# Š•»Â'"JCº‡ð2öe׉G< ƒF„È*½³ ‚ ÏÖ´¶11Þ ¶Lü~…t)Ž?0\ Ò&¸$ÆØŠXRä/ˆ5q~à‹ãà„%‰_ðÊpº²ü‚ Ò0䨒YU‚ÜQ HpJ£ øÕ…·R³Œôóž²$Z–…äŸËpe1j2œ­(î ?|6&‹o8¢­¡/Ör}§Um„¸Ã+â§ÈóñÍ…ÙÜ¿·\á«\ž%aÓ:DšJ“ŸÂã÷ÃÉ*l¥£±§ ~Þ†ÞdüùâFà‰Ó9±¶ Ù$+@µù”³Î¶P=©(D¶³/´Ø0®;Àz 42ðÒP"áéÃËŸ¬÷MdGF”@Á«BăzNRx¨ØªöÑÒÇIÄÇÄÿ]åDÖ‰p"7‹+úœŒ3}~?ò£ÅòdxõŠÐæüyã2—„$ žq#“ÁAVçÑ$aá*âà ¯@èO>cyài‘2 Äós±Ôp¢Q?­±ç7ʯ±žòyaíãP… _´ae¯qF#Ã[ðº4VhÅ™]¨|–o:ÂÓ8ṵ4=ܼRŽ/|« ‚‚Ex±Š:NE)„N'âê ‰ø“ÞƒUL8‡0% ¡@ÜÏb4;X.áŠã÷¬}ÁQZüš5ðó®**=Kg>‚e9ÉÆ%ž‚Ñ-CN”ë²KO*ã”Xõ…Pª1¿Âk¤ÇCn2‘Ã`u‹\PEEu¡6…=TTVÂæ·Û”¡ª† E¸×“~;>a2hFÔ”êµÌÄpÃg²(ÜSâXm>~|óF„6òRÞ/ÿL³+eŒó»ñ “ç’ÇFª'ÕiQ,ä7$”YúlÌ»FÚü†Yp0â¤õp— 5ÔɘfÂd\‚% 8,Œ¬˜¶£¢gaÁÁ3KEV ‰zªi|° ç&—ÙöTí¦1ÎB5%¤W¥)žŒÝqED¦¶·ÆP¨g§·YïHêPÑÙøÜx&dñ}œ®¦˜µÊØe§2ÍGÆu0R…ŤÁ%vQGA®5UÁ&*x2w¹äª¿P/v#¸è}0(QNƒS°™ÍNÄ HF77RA]uÁ©fÄý#¤‚'ãÁý¡IQ#´x5ªž¥÷m(I@5 Î2­M·µ2à‰ÍÂÀ 'þ*%Ð*L)L62ð©)Îy‘/j‰vý—Ï™—œ]¢CØá›Y6lrA›Qú,‹ËÁ4#ˆ03HšJhEA–‰šT;8rqæ^NE ³ ó•Ñ]ÜÛ-‘KAèŠÈ…Žb ŽƒŽ*Y¼óÉ0 Awæ gx*„eèk„= ‹Ì’o‡}Š|ue¤ßw¾Xãeªeïcœ=d?¨„Ò ÓåÄvŠ{éð9Ù!zGÜ­a̘’u†´‹Þ3#=œ[®ª›E¨§yußM·™Gœ€8azQT>Ø—YÈ `*¦d?„!ÒÂó`aiÇa qS‘n„³oˆG; ºñÝk¡:6¹5ÙhФ†®{¦éè«sGô\”7Àz¡š† 2~¿#‚ëÎòa]ý7+ ¯µjXUTbÑ"Š[ÍHeQ”ÂÙ€ÇA(o…‹ëbí¼2Ü™eòx¡¯:U9ÅË_ Åxí0€ˆÛ„—:p«²‡„$q#JqîÃÍ¢j€óŸ¦’Ä8,¨æ”…M‚îLRê›P†cû0ö/“S¬ £‚ºR׉¯[xUi(2mô%+í´ßy`Q6ÇÝH §^LÌ"O|Û盩¦9O뢀xì D)LþYÛC ¤¨1ÁúVc,#K*À NFœ `,WÆ|ë!²Aì–T„Š\Šæ¦"RF…f»â±fSN#Þ’T‘³!ÁßÃÅÔáHz©­/cçĆÕÊüñÔªˆÃ ¿Î^£&4à‘R„í ë·uâk÷Á~Od?hmè6ã[7V¿dµ#þã¡©p™%x†ª,‰VÄ\†¡:pÇ~+ôu EšÑÝž¨DÇFqyÂO„!¨¥ ñû¯r•"°î‰ ‡…F3žY1Qˆ4*s?zàʯ%¬@!ÈÆ÷ª’ÕÕ£*mvoqd6)*«’è§#ÃAæ3â#ÑAÓž)ì^â>Œmèþ€ÝƒG_(©dÚ1ÔØ#J*r¢­±Ç6ѹ"µ­z»Ù5&ÈklމBÎJFÜ)ô zc¸ÀU—¾6™…‚ʱxr&FHà`‘\â.Jé ¸ü6ˆô¯ÔíÛƒj8 | t£áªÚgX*t#pÀ¯¬clÚõ ¦¡ …Ñîê èЗßì2`S#²œÙQle›Ni1òKîˆÄi.ìà"4ÄÍVx5" ŸŽ%¿|#¸,x ÖJ’pü `ö`°AÑYfôÚqD"Ô@݇Šp·¢ ©bKR«vŽ¡à2£í Ëë=ñÚæÍ¢b…f/úû=–Å—ÄîZ#M0¶PÜu8Tˆ LÕdÍkó«Ã0á ¯ã5QCGc«g6;CÉÖ­x´ØI‹|”k:@¢?0ÀÊtùbøµå6ê¤Ø¾6 ›®¤ÅÈ)s•ãÓ*ÿ¸/—Þ«(ÖáA£JUÐJâ)©›uÆŽÊDÕ ß2!P妇‰ÀNa¬O4¦—º] ‘ʉÜ9ºÃñµx7l±Ä±^¸¢œVê"éJÛl>u:ð,ŒÒ wç+b­ÙõQÓ‹Ìå_,›¡L›Š±òb;éAì¿ñ**²…´‚Ó»pÔ7#ºEáª1&lf1Sjh¬0¯0ô%q7¼æ`2ØØêh`ã #W¦%ÜIo"¡š[DàR~ÊW5°d“øØ rì‹«Šz[w¿Ý2ÁÆf$v"/a6†o)¡WÚ‘­ xÒ¶‘r#G Èt¥›¯(ÀKˆC…DÄw¸€Ž×™ ÄOèd5ÑC‹ÜµBT¨p%•¤zeÅD<Ķ8ÉG8³âŒbLbüôTJ!¸¢Î©&]!:­ u£&ZExjâLô +ËÜ…*/pø°—8¯HboÏ¢í¢=ì›H¨‰ÎÄrd«¡ƒŽ†/À5ZNX‡á»Š#ŽŒ€±Ó‚ñÎt®a¼ãÃõ4dø(ô”Z¸ Õ}T-PHA½9x[èÕ;¸ ÌŸÐ~J„6d‹màiGMm¨îjÆFÊÆ7QUÝ-øœ)„MŸK‚òýHD‚µ"ÐÁNìç‡Ð©ÑÍ~ñbQ+\.å\Ñdláhðî㋜ð±T{Å1?eM¶™^áÓ—C諵—Àq±"ì¯MØ‘‘íéE!c¢}³™†gÇ8s«Žv 1¦„,ò“sЂŠÁ_Ì,3¾u0 ,#_ÂaAÁ¸‚ÃÎ68Û9@ÚÂêðòø+ÂQl €(*·KsUq`¢h’6¾æÍã…ú5á-@¶à-—vhœÝ‰ZôTÆ‘u’šYÙ×±€£šLÌ"±éÂW 9}eŽb€64“¡¦ DÀ_5¸[À}†=s¬uF–4RÓ¡Pê. à‹êxŒe%@I#9'ú‚XŠ 2á̆älÅIìœÂÝLbT­EY@‹%dŠÍ€}#Έ©qrzŠmChFnz,ž©†ëI›a8j¸EàB°Tè0£w«”xȺ܂=Æ šQxZ—•j´oªR– ôÖÒX¢  ¶-Ï\7#ÏÕq½=~â6 ‚yžðâè>‚Њ£Öi£°ñ°ƒmȃç6„܈¤•U¿pMë´³¹ðkï%ç®\ ]~†~¨^”U››q1ì Eƒ,¶döo´.4jè ï]¹õ£²¾IS+¶ø±ô †p8‘ÏU9“Åžød‰ ;‚è~¢âQDa·pò+XVæîF‹¯¹oTQ½æiï¨Ú`=øþZ•;D®^´ŒH¼¡1Á&fgÕÝÂÝ­ì:*ð†hÁ#ÞŒû‹°"Ët vIë›Ù b‰ð*ìLc,žhÁfôQ˜rgöÞP(õ7×m u£³ð¦šÞî2³YO(3 wÐZc˜rzêæ¦KÆ¿©˜dÆC¸À¢ l¢2é%_µ²0¦UeÁ™4åÂ>,û¯lAL­Uœozr ÙLjИ#ÞCëø CðÎÙðC~\ ®Ì4\ˆs màÀÝ¢~Ö œèÙeUYº"{ËȬ$ø(ßš “&lêÆÛ_¥Oóè0c±´}€AtÓS‰)HÉn VÉ ç7NáÚp°\•ðv®„j%ÞLžì­$†Ó(É"[GØ—TýžHspa íga¡1œ¥'Gª2{N8 r}—Å^óäIdžà_g l0 ƒCZTØNh”y 6«:êC¶ø4ÞX8bÜQŦ ,¢Ãä¨ûBû¾©2Ï Í‚fÖJ¬I±qÅ/b5˜ýVyçÄXobPÙ(ÌGà±ZÈZ>B…J+_sÑá±m ò ’OáXVÓù­Ø¿-¤Ùaœn)e- ×JºÙ9ªì;·+·ƒ;O!BÐ$ž³Ã¿±™¶r‚yéÜYUßÏ0Ÿ-ò|¶0`HÒ¦Pà‡tÕ}–š“}lÏŽ†œÐù™î$Ñå 7¬þ!_ ÊfPK8}¹Ðó°Šóä–0cGôŒ˜wù"èÙ–È‚Tà©æb‹«°ªGöMa,¾æO†î Afe1ÏX‰KA« Èjd{èª&ÓëU LPZÊAVRЙ]¬¡4ـʈ:‘ˆ2\Fº šøL8ÈŠ®/RI+àwvVJ9=°1ˆÓÉôÛL”Eúš€õÐÀsKÄ"vc+«ë¬•©ôø–M©‰Œ Ok‚¤ 5:2!b/ðh(&9ú6OtJP2ïÜE[‘#6àÓäZpsƒE” ªØ¨~ÇŸoÌ$6á`Êp¥ {QèV‘·¢2¤¶[eù / ÷6QËĦ(ñÂady‰ggŠ+¶TæÝ“1ú+B†1øæ^Ñà†gC6ŃW´&™ 7¤‡³(4 Õ4bhp"…€*|3UlŠlP6U¬pj%ÉA1‰<^â<±ºÍŒÚ¶¾;áÔ0±$¢Í:e?ÖTïœÐ0òÓ¦ý’ÇB¤x>X `Nˆ²ç‘-$P å 4%PºÅ˜=ü ’D|+ lHcËÐÏ3¢ñE° ®áMu}­….ZÝÂùL~AGø²\ÎdÔ»«gê@ Б¦[`?¸2à¶Ç")N•êmì°ÁB•Ò-CF Ä †‹uˆ¤V]qlRì~¼˜}‚À—âëo¨¤Ç#î‚æ¦ÑÂ$· z“¢RlÒ÷èoPéj•ûĈûO=÷,Y%ƒˆaV“â&ödA¸›÷¶Û"8[¨ö¥¾;ƒ0€Ð!ªÅÅHàÚ€Ÿ+ð‰¨(ßp 㜙fš„ÿH‚h8ƒ‚´¹5Tµ¾ðߨ\ƒVpÇ•I X7¶ÐÝ MÊʈŸå´NÃH%>cøSkItr–¬¿Ù1UF¥˜¨ÒÌžYÎášÈ t)ˆÛX¼$Ê¡³¸HcŠªØ9p1@=ÀùQS¯['½“²Ö„Å\¨,dçp°ð+šBÙ­’Xh‹€\‡È|ävƒ%ü-úÃÆ¢šÃÆndbˆ…Î\®ÉºÅhÌ.É|eÙj¶0–…õ“‚ ÛIf®:»“þZ¦«8²P.a]yâîI|Æ ÔIiÈXQû`ù@jêÄß2h,nàNY¨nL WyƒäGÅ„€›àA×–0Œ1âH¬Ri€wIeË)é2ÏZqãàUÃt‰WçŧFË:vr17í°?bߪ_‡‹ÆV,  %ÀгUœÄÄÀIo²rš;i‡ÎȉT%¾j,æ„k(»ªÝÁ›U‚ñ"$Rµ¦p}µ«@HWSÀ¡È%'ìhˆ··a×ÅìåÝÍN/ÊH,Rs•l¨?ˆÖ ÐúàZbÍ €8HЂ"¢%ëeŒú(^ü—!7ñw€6ìˆcîÍl©LJØ" ‰¾}—4g"ý2fŽ«Y ;t RCC¼jf ¡*FéøT0q¾@²”Ú|U¬”êa&u%±¸GXG¥ži4sV„ZˆCÙµo ):7Ê]HÈæP<µ[ˆaÌóÅjÁœ ¢ž¢òõÎln²ýxç4ŠQ[30 §vÛÍ(àpø66ªøwÌT:}Ë`I°¬ÈÔ°c*ïN#ÌøG‘hÅÍø­aL,g' F•@!AͲ‹XÅ{AØÌ³!ðAoú!»¸nâG .Êi(¼^ÌXHw0çݘ+ÌßÔ!)K¦­ó="ÄÀí£\…Ö7J]®«ã.…Ò]¢ù¸"Î'|Éœ±Ži*êh! p¾Ùè@y‰…&{øiŒT9#¾(¬ñ 6OÖ‹oÍG„;À4²QŠ(@¤@Ô{@ˆ@û!dQ”6£î…(%µács”Ø;‘±kÇ £_³ƒs=LSv'£Ø'Ì3³b«²/öꌩdYíŠð`د ;¬^âPs€8$\^ÕŒÅ&IÖ$™TÙ:Ž…ÀSac Ž…‹âfÇ9ÂK$r©“Ѭb|%šƒ¬A;ô ah©$1€×)&õ6B×øE –êÇ (-lÒ&yØ)º[7`â2:‹àÅ’7#4âAù^ÙØK¡Î¦Q’˜{r¬å„8 nõéb(Û×0W園eS ›ï²4‘ûÅ;‘q±AÏÄæF1>Ñâ`ÈøÍ•tü20©H;€¯ãö%“ÌÈŸ³>½‰ðÂP8Åé…;@ ò+ë½Ø»U­Ù8²üІæžbÁ‚1X.ü Ô8"›ìãpo±t„;&çGq= QHÑR?xÍÙÑmÌt˜„d³ÉF= RO¸!lªé¨gãJ°Ý>A2¾qŽB_Þ`—zm’^ð@¢k½A¡Ü•€äp¼ È^â\™&‡ÕâCÚà‚}R™þ¤¼ÐmE>IÞ,øª+¾R'ID_°§Î›-€E ƒÈ…OM ê$ÌÀ ð†…«É àÊ(*J 0”ZÆ3^²ûûr1TÂϳ€ÌáFsâ …×Ù Æ^wJY€daâøæ3©•Äm‰ð°`õ:ê`Dƒ²½¦:‹Îºô;DS ½Åíà)–»‘*鈰֓%äNørl=ÂÊ3ý/ÃY¥¨pĺ++!wŸè©„åÛ|C baAÅ©bfì7,x°9r5·0‹¯.eÒçf&^6‹C±nèågr«*Ôà¦6<}Fóc’ZBp(0ñl™V$S”æèŒ’  ŠÀ\@þVÆ6Ⱥ{ÅOÙõ•5ÍÌÍ߸‚®a2÷G8½–Ï0<TТƕJJVf_£ '¯r'r>²6i–° m*[xŽ´zÓâ²AˆFùÍ–;à¯q-½fcPÈDMn¢œ.$ixTÞ•* ø TINì¥ÆCŒsbLbæ<þVf$FÕ¼yxã¶â '{hL±9›øðPdX°ÂÝ –‹êLSôŸ¥F{ã9‚ ÌÂxf ¶°ÑвƛJDÍNøSgo\kÈ×Pƒ¯š¶É0«–c³ë¥—‘$ÑZñuä¾´là¿éqc³ à e¢Y–PÛaÌÍ|‰Üñ†j *$ov|)ÿ’À¥ÕZ}Ü›„V­CÛÄáeHunŒ+Ò ìX Éá(«-%ò^„å8€ÚáÓa½2¡í[ðí:$‡±‚Å%Ø¥ES‡°R,¨“M˜0ng£eÚHãØ `D“ãÀ±,ù‚²D*2Ða]Q ô;¤¯Êb£¢ßˆÆA ¨®¤¦€Ê‰ wuÞXc»}g4`á!É|%"¦!¸ß<È•[p‚™…ëŸd÷£• (-Â!+‡GG†Øh Ûhr©'øšòn‰æ:c…õíM¢S´"ì§!öYk¢ÖN4;6Z •@æÛLÄQîê€màõW©4¡Æ€'X˜T-D˜@(Tös@ا±Ì]ÅÖz2º“G­ Ž’M!ŠS‡ªˆ·]€ê„EDÏwÃÀ—™H»MDê+p-±€Çn‚tƒÚF,®gV6k¬¨ºç[Dˆ_ qžÞ ì‚”Øi¨X¹} p!Ó4·,!"¶FŠ9Ecp^å=øòpK¨m³;w<"¦á…Y!왾ni‡I uC≶·’2Z0*Ý0£6‚Ñò@«p1jl€=x… vÅ™l¨M4õ(߯‚V»iŠÑ]´ãã1xù†à}3¸Œs¾ÑÌKߨè¹ÆêBº 6òˆšÎÌ< ´˜Â³ejv4˜ÁLtv»I>!ð¿å²U µÉ\cU2˜IÖTH{P}\Š$D¾Rú Í“ŒªE¦ÔA0S¨Ác¢ÍtðÜâ!BzZÉ¢Bm™fdùP5v‹&2Ȭà”`uØeECOF<#BÜI‘YD½ }¾Áïïb !%Ëì6CaC1Ó«¸QS%"Ê™±6Œ,î }òLøÃæ:nšßàvU’–ÜDð‡EŠ“Éҭ侦)å8(Ø9V™ÐQ@-¹>¬w×9YYÔZŠ`}` °>D2Ìt%/¬ïJñžÆõÓVÔI*õâÁnBÙY€y(lg‘%±\”7@Ç} ¾ÎHÈ*ÌfeªƒeCˆt‹"d¥8E,B?®*'á0%Æp{XÝ¢rë~pmhŽâ)qF$¬†‡ÄµÛ|ÚV™`.P$”¯á"ÜÅ#G9- ö’7 ëR¼o”-kØ$SHÊ  Yù/ëlÀSâÕb ì1 sŽ^g!‡çÊW.jPõ&ßø¾ÐhZ².½£ŠPƒqÞ˜ª-õh³~†ªÊ  EƆ zX²E½–LX×d‹vÉm”ìI|G Eì ÕP2¥áPŽßÊwŠÁÅó 6es®fé“ 6Ü8*q k»¨~ ˆm;1 H6õy®Yg`-ªæâ0÷ƒ\^ý@ÑÀâÀ(¢ÄÄ7Ž;úº2— ˆI½l€d6Y®lX-÷QdJ½¦úÑìŒOÆõ Y©Œ-fÆ28ëtµ‘ëf–åÁ£ÜØ}B, Ñ)Ù©ÇÍ“;ÐaÖ»Ú ’iA0"zk♾iS¶Ù7ær¶^ô¼ðsÈÇ+ÒMD=•¯e*&aÕúc=^nâ eµ…ZÙb6I1N‘Z»Lþ2“ÐD¡·Y„ÊÝ|bhÔwB”FâðFБPÆ%ḓ€”ù^Pê\*Š5Ñ#Töe °³wº‘7à97_Êøùdc!1¯nR †ÁvJù)Ƈ’,I •I{kƒ± €$k°!”¦ú{¥X°!óK)Ò‰|ŒOlFƒÌü]8¼Þ ¡x×K¢0Yìm€âXØÉÔc,Ô4ÔÅ5C§̉rö Lle e¡Xè)0ØU,j‘õR‰¬|ƒ`TˆpŠJ%ªñl1Ëèä²<*‹YLý`7 ƒ˜ÑzVAõH{ªù³y€Ðiì‘5H;IE,Ô+qÛh¬ÀĪá¡z_'f0#W—U‹5;ÐŒ‚ØÜ‚¿Éb[g¤[Œ¨É|Á«Od±ïJµz 5¾2ÊÖ:b“$ÂXÄ _¬n±fÚ"‘†÷ÂÄ7Pˆœ}57+šÇ‡hìäÒt±Pö!á1ÜCæa© –Á»¢·ž EëÐ}f5õ‰Ÿ·%rPRjßÊKÍw5³Nð•«BDæŽLëÍØ?ú~ÑÉ?“ÞDìªj5EðUÂÚ£E’x;”PÙh5Ñ^òèJø$fÛ8â´0°d Büuð«ðo…7VXû+Àm7¶2;[ˆ‹ã…2ùTœÛ§úˆ¹Rhª“†Ø‚,Ôñ#¡»™Ù9œ7nO™q€eÏz|·"¬‰5»ý:;5õÄMÀ‘€Š€Ä£n[x,ý’T¦ÀŽj„->7>€`4ÖPÁ«¥Š':Pƒ O1¶É€•066€Ãìÿ6…ã¨È£k:¡8‰Û–d/¾wŠ¥¤OÍ@z&´a´‰4»àžP<&~ì䃡DÃ…çèMõ¢,ìjìðÌwÈþTy&i¬¬Óâ(8 @ôB¸ˆNðú]6Œ‰*JŒXMD{—AfB®Â$¯X¿0lö¾ÉÒ!µÁ ª´x`ó‘$ÀâΠP+Ë\`çò¿nS—¯¨»ýÆY§xÊ"5~òšÙ>ŽÎýW¨5UÙµ$8qÛ ¿)>[’X-Hθ)ì3Es€°o¨3‹67ÝÁ$(ƒnç6&5½eA‡(:ƒm\‰ËY¨G •¨}먘ó‘ÚyáI‡ LÝhÚø1ã_TP'v_ª,¹mßì² ÉA,º Ò¨º!ªHÒ"Ì–†w“5±K§xØ2X,ýÀuС£&î„À„È»o's‰ù‘Ⱥ—Oj^~z¢<6"|;%S(žÄ0K»DéÔD“Ž$ _KŸ€>w£‡K,ö!Ç,ý)u¢3…¡ð)@ÝtÚiW¨Ï‡Ÿ³²N©&žðH·uFé盲nt…ä“h@¨£‡hu¢Ó6ET©Fðp‡5建²äÉ·ƒs³ ‚TùÈOd¿[«i¨bÖj@à†põ)ŠZN¬VÄï/ɰÃAŽÓ±}£†Œïe vlFrÕ/AE˜2÷‰Ý«\N5àm AKBõ@óÙKCÎaÓÅ t².#“,TcŸÜé¥ÅöN H-rµj÷&½Â:DD$\—% ¶-æHñ`‹Ðr¨L!U¼ðNŠd`;5c¤R[r5}J‹z)?Äl¡p™ (…†WëR •RØfõ0 ÅCÆÕg·Gªúsƒ‡jH&†bq[!Ya\µÙ~\²J§•†¥p— v˜3ei¥—=ù¤F¥ I’E(Ò"®2YRÝHÃ(©{–5ìr+ª]c(K%r ö¨±É;âÏÉ2­ú(´c3%ÉPpœ¦¥ˆÉ&Üá..¼úÒØª´ÑäaÓ æ‘I¨¥qÝgmP0‡[ãÖF¨¹åc7Õ@"^ÜÚL*öUÈ@›j¯©J7à™€)¬)Ü'_`Wuú\…É~%jÏj‡*îš„"À‘î#@P!†:/’& b®â¡K·)¿VÑÄ +§Á £=ØÜN„кø!u–Ê‚oÁ?‡ÄMùyØ Ø(¤s7êÿ4ú_ªäµ[OöfÐ P• ÿÂÑbU¯iq RHÁìDë:Ò–…b¼ÒnF2UË@*üz£PoÛ(bg²š‚wÍ ¾Y´ÇFÎR8stYåI»ƒTc¹G¨'¯1ä¹ónqa£y§g^òÌDéhÇòs @·°¿é+"H÷EcÝ°Ž”È’àôÄcšÊ0]EäLê š>ƒÕ"ŸW¢¦®^+L2“ÊûÉÄ_£è ô>2™Aå@«? »M‹j(ë4òV“Y&¡>úœ™hÓ”ƒ Ë„#Õöé*R•Œé­Û©QäYüy%U†ûdR¥)îÅeTD¬Â6Ê@¨ÛK‚º>¥×B…¶^’"×MÒh,iP=)L˜²ï5TB¬Ó¬Lµ”$GPOƒ8 MoŽ€Â›&ÞD!j½0x *-ÓÑ è†P˜ýi ›˜ûP’“’Ì,kñ(¢Ø1c¢%™ sN–‡-ÔÅkÁ~Cö>›˜4™}!Ñ‚s·|E*™vª°ÓuoÀ¦l+ê‚@]SJ ÁMMµQ)—Å¢/(Rx÷É%z"n’`ýΘCšµRñQ›0ÐÎŽòÛ£Ð'}Á þ jFÊ„‰Rü©2öObSÅ ÀÖ ÔÝB—A8k4‡U]4|T*Òš!ã‹)z#*£qAVzSàV¬ù@n FZsQø¨:3)ˆ¿¹õ  aL/Åþa"=lžq29{¼Î¾4Ý»¼0ðº6Rä­3MAØ8ÞÀ}³„AÑ\BÚ‚5ǽ±Ék*=õÃV—J"j+{ø!$ôÝXƒZ• ©D[3zˆÛÈZÁŠD‰úÏTÑÄ «=(4¥Á#™æVä„€TüZ'ï ¢mÀÉ-ÐSÙ˜oâÒolBÊÂ}ÒÉ4~Ìq-€f´&^*õ†èUˆïµ€@£ÌbêHíT=D¤eTJl7±«¦Ý\Göˆ’¦mÐE舰%œŒÏ2ó½p r Ïjñwc nöS.Cú¸E ¶ØИbœ@Ðs‘+Ä… cn¡“„Ö0kLe£m¤ ®´.év(ßbt8éÕðÓD™ÀðKc¨"VÙHž‘¨R¤B;‡T8()•¨_È‚ãnâ2H1¨ ¦EaƒÞã»A½g£b øNiÒŒvìèП†Ô?g3(Cl!ØS+XÀï3ï§.cU-ò%¢E|´"9éKûF°7Ð낲J¢Š¾$åÓ’Q#[F¢õ¨Q|HWÒÄ -i6>Ánx&T š¶D4= `‹Ýw“U!&ÜtaÍÁ™Tœ(B£ðx™Àþž¦š$\æYåÈ 0 vÂ?)9ŸYh;dÁ3Q‘ & |)"f"Ša#ˆ•~˜.Dn°6pˆÔ\ÄQ`PHÏ 8Ìf*w¥BÎ&籞Mœ‘Ê©¬×.rWºÐwDüAŠ`‘ ³U kQ ²+È}.&Nhê$1®É²€BüÆVRñ£ÿfYfRz6k–Vޏß<¬•7©×ÈðæD!ÆoâQ£ú,- ÓÅŽ'‚ø,ŸM%뇦šm6ä ÑPD *¨ o(h#î§1U÷c‘{‘$ŒV¾Ì/Jã"—°[Š6Sç݆1FLNmzõø'UF(ÐF1=*6qË›àÊ7l¤AN$Ûó›¦/ššâê$ñ`–ä~q%eÈÉœ|ð%‘´€+ˆ»á-•"2[…›!OÃç®Q»@" Q"c€*Ä+…¡'9‹²ˆ·'û}w3©7%×ææ„›D)Å .…w™:M8Û„÷Ð cdôh~ ‘p¹  6?‡ÀÄœåÎ;å¿èæ©XŒuå ŒÎÜ{s&,%<« 3PèƒðBe½& Ú‡:R‘h"1„Th…rß(h'‘µ³q²0a>q3åøü1u€³p™°YK¾+·´«x¬)4ÁJÄÎs˾&ÓÒŠ ­zÆÆ“±ö{Â1ˆm ©T),­èGN–¾'O6t_aa·œ·†´Që,'Ø£vô€ªÌ¨'°g¤‡£6AÁ$ýâösp‡šäl~ °Y-—A`O•f4qdœV$ìäÌ#¢Çe2Å„!«4¾”÷å݂ɘŸ\s¢J5à YÓ›l¿ãC$’Æ Ã)¾±Ä-‰í–€š\,·ÈÅ—"Æ¥C üÉ60ªa€WNb[+ûÃì5À@ðÌU¦M¸ÚXPijlC_ùáaH¶í¾SM<ºr2 J™è 0ë Œ˜Ùpgƒ±ERÔ6™^^‰v!ê}$G’¤É²Gºøl®ñp/f,öa£ÉGàð Áaãs-£Ö‰ €ïF|ƒƒRµqòuH6ñTÀ7gÞT8ìˆ=f}Rh$óB¼Û„5§pb ¿H{ti":Šž!aÁî gÁÏ…ÚÎæõ¡ONÓ´·Ú™£ˆÖ1´•ÀeHÅ­µ4 1Sé@gdºaU«—]Q¦CƒÔ½AD0q°-ÚÏ9s²‹A—Pýhñ/øUÝôíP/Ü®Tcc«È‚ÈW,š*m& ñ¤òõ"pÄ f Üÿð™uAÝ™N…®oˆ$)pù’¶þbX/ ã$­Â~òÆÛdZŽtr¸ÅÙ‹hM£³9ò3«ˆŸI>Á—¯² Ko¶X‰Gij[õ¬E#€!15€Ü ¯´.o‚t-{®å’¹D*ÐÞHìTºú$‘†-[½‰±jeINn ¾¼N‡ª1Ï¿*Äáš'lQ•Ç•74#v>MUz)ËÙ‚Öížsµxg†‚Äf*jPþŠ{Å÷X8 óNI0j½0 ™J*×0°¹š²ù‘$ôšr53t˜`eî°Ì©B´Ždòaá@#»t `•©ôË:“ KBÔ4™ª „Ñ•tº¦ UhúŠH¢%_À@v¢Ð¥— ÈP¼?zS±¼iòF|B¡si›.aaÀ¡_6–jÑ>@-ˆº“ÄèÄh+MvNDÀÊäRw¢sQtÂó-V¸iú³ö“õ˜t×øR™¢’LªÂ‚c¼Uö¤©}cn4¼ÓÜ ?™üòf;f²¡ÊÕHÖü¡¦ÌëŸì°f1,ÃYHR–BbŒÁDˆ‚ c®S¦ºNw ðQ¦â6©ä$,FœDH”„$Ð%£‡,¸7Õø¦ÇTaÊ›ng2!³Á^xê´x¸÷S)U%äË”Wf!žLŠäêY¦¢ã…°98\hIrž„0&Žœø¶é@&ì#\`c” Ó¥ÉP'u*ÆlU%«Ê¢„-˜šOqÍm|ö2©Ùþ˜‘¡X™¤A"ê-øŸ½qF¶¼<Õþ–Ûü¥?=üý‚j:.uGe]¥½„bá/XÖ—–S?º0 ?VÖ›õ^{,7ç+öS+3ž×·Å¾ç+3À cKQr`—û4G zÐ{ã( ÌÅ2rö¬:ò+½U笥)¢Ïĸ­ Kêb‰£9“^‚A;‘ÃÐÞÝdDRg…•ƒ6ÐâCb‘g€³c­A€0i i-²¶âWK… ‚Ë– Y§©Ê¦`ƒ;$]¦sƒæbTcÙ(cÑM×%G†4ïIÁ z%K,N•&Z¯$²´t—ë!:Â-À-"Êdëé«!ìIjRÔ°£³= ‰’‹b2 ©;2w"8(üX2wž|ðʸ=Ó*2 [ÑOă¹)¥¡<½1ñMjƒBÎFC\‰Êá>ÎȰœ+˜f©û•¸ËDLÀ0ãYÑ·Ì NJ2öîÅæî¸â¢—ݦBàIÝ?ª™¯ádOÆ÷ÌÑ?ò ”®”ÊatBú(&^è(‚ÇJèJ¶‘»ªâÙæ•D8ÉUãq:$tYnÅ¡×Ñô™Jš‘A£•þ›™x–»í1XyîRí¦Û2¶E,Èe.þ$MÔÈðt‡‹èj¾ ¨Ü`zaô © ç)BÙ}®)tA^6[$L½h r$xA,(ÝwB+pzPø‹Bƒ,kƒ'WIÂj ùX9瘟ÍJœx¸;ô4@ #$pϦZ9üTŠf"^$mú©º†Áà+“ f§‡ì¦y“<ëæES rÖ·÷…Ôf@òŠdJS§È€#BÙ†`AÜ7Q©Du\8‚³Ð.%v¡ùò‰1ÛUªÙMQ:Ga@FkP·T"®4ǃJùˆ‘zW)¸Pga‹À€r QÿBävÑ€Ð$JkåP(øiÛçfGGLò6ùå x+Ö3 «m—ª5ÝØ`œÉ*êêT.M™°lÒº÷b ˆ2ñÙ{Fšð„c‚¼©t°nìtqLv×Tpí«J×½WÂfxòÌq× úSªz£Íï(\Ž!éJ2H‡ ¶¡‘€”Ó²wW‚3€~ᶤOwiHi’œ·‚¤ÜØû+*“ÂÅææ 2Bu¡H•D&‰4„O‚®Rs;³‚À;i×¶±b´ƒ³ü6Zu»c+|ÏR“•=«ÜϨ€ý¾ŠýyÏöüìü± f­£âŠ:ìˆx© Dçbš1ç›Ãï'-e_à!CH™ŽQÑn,Ioë‹=U×£ÁˆºâÍ¢®@#Ò„áR³Ä>©ëEÚ²(ØN •ÓÀ¬?ºÔ¢ ¤ 'ÙqŠHï×Ì~¨vì©O½þÌÄÛǹÌù^@á7 ¥QÅB|rªÒýÁûZTQ$Ò’õ·Qjßz0È5#ê¹e-~™IH Meƒ~ÇÖ•Yë¾A¼T©µÂ‡ŽxS˜ $ñL~“²#‚Q²y-̧DÊàC©¶dÐ+MÐ1S 2¨Ê±ØD.4æÍö‰re c©z Ñwê°!Ò¨›(0=#° ‘jW2_’F²BÄEKk2kùö@7x57§yûÎ*ÓñÁÁÄzïêPyòoÖ²?N·}KŠ8–­‰XNy–B e>gjÊVQãVï’úŽ È/””™sýœTš›1B!µFU J± Â‚zÅ[XIŽ/Ñ9&µd"Å¥W|„Í;â+höÜÇœ2»£©ŸÓ2A¬PÔ¬îÃb©K÷^â­¡ò+¥ŠX¹P»¤#ÔxtÑ!«›m[ #QÚ忤(•ª¸…’,Ζ^Ýçîlß’÷ÉÀ g?¨_Z’—qY¤DªI—ÝP©Ø"ä Õý+‰74ée2ôéI­|àf©`ˆr2°ä•gÕ¦F§X6´&üpswwMшs~AÜô [*×$ žŠ¥§—;½“£œ&l‰ÇÌqÈ(*°”§GKÆðɦ~BÕjP-«Aˆ#Šfo¨‘uI³dl ŒwÐ]ì95†ñn¢¢2ïjsãy´j² ¶œ,ñð[ø¡âaµÒ¥x ƒ‡»ÞgÒm­1º‰s°$›Õ Lsä‘"¦X’¥˜ÃB‰&rv©—Y©Ð«ì™®…™ìƒ ƒePbÚ5Ì’"Öc¬¸0 ¬Tø'Ð ±ÚF÷ÅC@H¹É$ <Ù"c…åï1„wãl¯ÖàñPŽ=´|Nª¶$Q¡gj4e'û/~’ü¡ºçyf–7ƒz½ÔÊ:œ~U’I/]9í0RB¾xY‚ŸhŸ46 PÀ”¢xÝ$á‡Õ\\²‹³»¶òñyfA _Q›9$›4: Æá'2Õ¤%~ÚRI!‹œ•ˆ,ò—TóŠHð‹Õ@¸A±5_&!YuGž‡ž»VRË®§Œc±·†QxPŽÞ~ÑNšìÙjTOM• [«å¶´ Õ*lŠÒÌŠD)5Ý”* D(›2Ò7ßCP±€]Ew“¹BÝÍMV!_·n•6èÁ9ë^#² ±H`æÑÆLæ¥7 jÖÁ‰ìN”HÑ0„Ì T-e#“­D#œ—H.œp ñÊQ‹ˆæ½º-$ÁÀI‹º$ö|(0È(uŽa[xï¨BÚ)qì×S Õ ÒˆiwÅ6U€\¤Ss eÁzõÍ!Gƒ´ðº°ÖÔ§‡1ðä”-x¾¹füêÚ ¬‡~0|³Šs™ò¤@($?7"îÂ1¥ªøfÌH¨’¼ Þ;‡l ̤À³˜9Ž+’Éæå‰Å˜z7 Pö•3³ SÏ×!ÖTY?µ2IYAù à]Ûšã„ýFqPÚ³TØ6Ì~%øSŠOƒaaqø9ÚœÞ X~vÄuñØ¥\Ρ0µIß‘ŠV+[ý“°Ž¤• ~×´ƒéIô %—’K–R>£?¨ÑºšXl’'2 ðmÅ&„™P(œd¬/¢dx—Õ­¿ r¸-#•tO A˜K9*¹TŸq¼µxSueÌ–ÂiÊÊå‡fŸpä9'½m-Ûàé9Öºv…vœ£k)À4»Æ”›ÑÈ¢11 ¦Ž-A/0k`ÓNœË.d*ŠSUãÁ2h±Ø(†3âtXÊÜN“ê²zÑp Üm“fá‘~ ïD`‡Ykèåi1µ3¾#â®Åü”ªGØð{äm׉d‰ ±³/DXCö“{Ê'‚*xNP|ØSh,•ñ¦øXlE[EëþHgœ)e?¶tC‚ÆŠªbC‘H8$€Ö/•ßL-, °“ö8Ä‘úòX99cųqB}夼-ø?âLŒîRkgÁ'«5Ít)hša—¡:ÉRÆ‹&µ*<.ì©qRœ·°Ž^A¬Š¼ P³¶zãÌø!PT½s®lRé›ÝEìIœ«ÆÜ_óå9‹Ãøß.'è b³SŠDïŸ ¨ìv …“°&¦ðq#1 Ä»:c9YŽúï"¦Ë7¤ã %°·‚s²µ‹QÛFnCá‘V„¬4Ðó"A1ñ›§-2dXšÀ·Ì)ò„MÍÑR’•%ÛZWà× Ì\-b67ªiª &ñ*ìÕz$Twá#™’áÈu/¨ጀò©ÃÒÿ’*6IªÀùʰ[œ.‹zÆ\œ8KCûHA@¶U»gjH-{ìª#Ç‚2ÊL@2Âk° ©«œ²oÀsCžaQ!¿’€ÁI³›pC‹ŒzåÐÈz¥ÄîJ£A¬"U¥îÉñKƒÇ7Ñ£XülKšš––®_Q²ï¦s”·2kãMqžR·À*Ù;HIò(ØßéDÈÒ<ʪÈ‹n“‰ªbX¨f,biö 9aY¡ør9u\®AÝÔD3áš“wµÎVîÁc°"7$.19×ȲÒK#ž(Ñ ÔÝ\f‹LŸ.‚îjÊ:¦œÆ0ƒÐK†Á„oñ¨ÇaF,Q¸Tv-|« ©Õìš4ÊšiÑr ùÇÄ¥)PX®BX%ª‡‚_¼52Sòñ–¥Ÿ‡‡ÕÏ.(qñ;M~"]@E&‹—“®†ÎPIÈO"Õ€‚(i!¬äjªè^Q™˜@`®\kê¢è R0'€z©N›¦žnMs" ˶‹³Š !œ\ŠŠ¹&GÒ5C4n5À0Íö< ©ú¿a„*[käÞDÄóL™ìP×)» 9$ÖÑ ^>yjSß/ͤùI5,(H±6H¨ÅG»EäämÊŽÞ7]¤a,FFe™ì³ïÑðÔÂ0"¿zbS¢ªIH÷oUm&N¢ƒHÐ,ž|k¬,f"GI^uš£ÌÚósXW÷ªcG{ŠƒJ™†ÜfçW辰ÍC½ž4ôÕ ÙÐÂWnƒacDྕ¯·(…ìo2€£‘p'uÑv»j˜ÃÒ«]-p“¬b°)X…ž.²³’†ã« ã ÙdüÛUÞT ºŸ/©=TZ‰a'ð¯;ÿœ÷ 6L5åŽ"nÓ$iaá²²ŠÊÁ&PXÆG^4¿©¿Häº0\%¸ôÉ&€:êР§£iâ‹"DÀ*¤1™ÇÌÜ8ïÉ\ZsÁ;©ß&9à4ý~PÆZn>’ïâÉ2Ü®«Iîà(9«¼¡É+-›-Gö(•« ‘¿»‹·šZ¯•TÊÚ4NQÕqÖ W¶ºð*ÅaÈW¤Zå`po $ó©5çÁEñ~.F…‘ 'êK!âÁ0 ”” äÁù’œ`q—!’Îb¢Þú‰%†¡g¢y´“Àì›·ìØC‡«©Ñåm8/c2al”“™pçÑgæ&ø # å®âQ0ÈÃØï˜RL9f‘¤°OŇ¥#½,>@IûÅ©56¦d<&¨³0¯äö4:^8,×"ÓZ,ÍÁã nT!­V4çW#ú]ˆÝ®:4©<Óä0ª¶@Uœ žL Hnœpjìr¯{cû$v‚?l!Nå'æÕLRu¶Ð,Þù:í[s¨ø†Šó.šÕX)—%ñ¦êP"wµ‘îR9å–Ož!]@vqæ.#^¬š49îÝw»¶ÓéF¥²ä¶«F²³BºU]$±AÁÜäLwúG–H7ëôm.¥ ò]™‘Ø´(µˆä4pƒ¯rØç°Mã˜UXHpÀEbnÁ HUâ\šØÔÛ_î%<‘´“º6† ¼CsÿX)B£žjR•C¿?Ñ`ÂJ¾mSjŸ…28%c¾Ë8”.ò­õŠ9%àðOíZv¤ÉOôÀñºÅ„m…¢#x çgù¥}¸S©;)ØOTˆÊMüN®c/ŠÒûG„{|5æËÞ%¢z+Ta)JÓÌ…fÛ “ÊiÑc.ÛÕ‡‚¢ôÓÂЙŽ×O»‚òX³0ër-Žž¼;¼åà—Î]ÐÂ¥e¯ì. cãzÄaE‘š’fV /UÖìq’ˆ» 1sЯlÑ .›ôh¹:xb$–¶˜ƒ·à}[?§!ŠŸÓ"B¢­AÂ- ÚÚ'>«ª:tãõ·”ƒ9Š–ß‘‰Žz™¼Gu¥˜.ëd' T5yŠN2yU+—èŒ"Lç€ú … ƒž3éšÝRÀ‰Çþ2 ”Â',xð»7vœH¶+r(é³ÄE–||sëšàÚMèE¸EŒ'Íñ¹G>3¹¦$…Øì©Ÿ‘HCᢃBJ.;¶ÄgZà!³o†gÙÇš6i”UØä–KQ1.•‚C=QƒåïñA˜3ÃcZòòðäùííq&«+ËÒÀà~ aqÚ>Á0¿q9ŒRe©ñAlìÃ=ä ;ÔÈ ©Ç¬MqW¾z—¸§êãÙT$©hÐ/¸&Î: Ã,ÎgF²CÝ:*Iñ¬‚Ö‹`².õ àFlR5VP*ÃÊà w½`â¬D&¨dN¤—媊LX!ƒ*°îEo2ÉUS‰ÎQ ò—!î™’ö%¨t1gua= .þ€AÛªGÒ êm£ 陯'É^„T„ ÕTÕœ:·¬«E~’ÞQßIs`€åt½€ƒÐáv¨aF,ÖÐ. 5‘óímO·ÁÜbÈÚC»Â€t OGÇC¦„c€LÁ©’-©Ñô ¶}q4•TzÎÄÜ×7à«àœÝ¹ÙMojEè`Q<d ÏíîoZÕÇHîy“i¤Éªòôh’yišGʧ 4è©vrhÇ‘ë…Re Ф€R°ØT'Bc¢R :>VªöwBh"¯aXj¬ð.<1ÚeÓ,(Ù™l†²2äÅ?€ƒŸE75âÌÀ\ìåMíΜšÁ8Ö‚ä=( Ã&¸š~ð”$S\A¬æ„D*’ŽÆ&>'_S¬ºÇ,aStªQ<ÕH N:`7ˆLÖÅ&+ù3FS4#)'Ò:4W9Ï“ð«%ˆ%Úbh@Q¹’ià ç±ÝšÛ°‚u¨H¢ë±¶*p$à; }GÜgQo³Ð‘ˆ®¤Ê\õ F²…̱&QUB ±ÍÜɇ8`  æD4)a­ÔU|^ÀÌwŽOÑS ½qØvã‹¿žQÿ‚­=?ÆÁ£½äÐÒUÒùþúhb0öÄ' /‚UoÄAã{avÎã^Ùái½ÂÜ4ºR‡€bš! IÝG±ö5!/àJů,õݶ½ІºrR€‹KCûNƒ‰¨6\–Pé “­°À¡õ»‚ÛgÁ‡~ð!dÇ#ëÑÅ\œ’_Fonˆ •…}Ì·Q‡ŠopŸpP‰XjùÉU®Ø¾B|qÓþélÈìGÐÉnç¼Pþœc½1»§Á!t)ÐÄyçd/ÌùÓKRÒ`?Sž—÷ÌŽ#›¤{@~“r:uñðl@Àý.:$`Ÿ ³’&MWÁ>P~¯R'ílµ0E$ÒÔĦtNÃ`– õçÏAÿDò5îúB à¤tJ(¿ï®a½z’£‘{P°rŒeb‚²z’yA»¢“¾ ¼gŒÿÜHž¤è¨ ™ ARõ¢°è+ µl’ªˆCÛ8d`r㢦 䢠¶ÔÓ F£Ê/þ3£Ö†Œ”£ŠJ‹8•Õ¢ä 0*4î Ãè5&[ÔH~|åØLê~­`Œâ´¡ƒ=Ë!´¨¦à¡¶JIÀM£/©1žÌH¯êúælSèXbÁFä¿›U8ñ*KDçtɺƒwˆ‘È%p&”ycÒ\®Îõ×õ(x©Î’ÏB^…ŸË÷â*‡qRW¸YÞœJ¤p¨ç¡:Á Â]ç/ ª×Èfä¸âÑ“ª’¤ð n§Õ€DCæ /£«n†€OInT¸£Ï(êWùùÆš7GÆoú=Q®î**Ž^^5Oдç‚-P˜ óO]E$ÞxUòd ½BÛzG4„€ÎFש±Æ—V“°´sh¨¸&”Þ§ C J\e)‰;­Q²CL&Plƒ¬)¾±ŒAØDgtŠVTZIÆÃ–˜î9 Rú“šS• »O–<à‹lc}€‚ó…±ûicÀ"š…8”਻O„DÕ£‰‘eLåõj¶FžÊ+é…]=Í‚ôD1jJöz¢à’«&ÿ’øß¥ÿÃV` $ñk8"#[é$‘ÚÛ‘ƒãJ§ÞZ¥(ÂBFË¡ÇWfFŠ‹¯#v¼¸p$=\ƒoV&;g`b×t0LÑñ‚ÿÅÏèÖ8sh‘Kžõyâ´ ßçO'ÇÎ&9·ÆYìƒ8þ ö r{–ÇpvÑÖð€§îàûʺCQÁ³æ >X‚x¥8!ǾLN\ Í's° !‰°¶$‘r€Îdà‹’Ç€Î0‘–¢W>ö嫇»÷Ÿß½}{÷íg?þÑå¯üïùûû_½yù¯ßÜþâáõë‡7Ÿø=þîÝ‹÷ïÞ=¼½¼xøæÍûŸ< Wµž\¾üòÝ}üWzry÷ðÍÛ÷?yò~ù›Ÿ×w_ÿö«»¯ï¯¯^þþúõû—ï_>¼ywåÍÄo¾ûò‹øÍúä‘/ä—~}÷öîõåÍÝëøízryÿí×ñ/|°'Ïþ=ûÏÿû?~øß>vVéS+þì,ùógZÊ¿vIW./¿øÉ“?_æ7o_ß½z÷Ä·­ÿüÔ ?ÿhw<öiç•ù¥5Ó“Ï®…Ö‚  I0,–4lÃöå.Î:¨{Þô7\‹nL_ÄÔ Úyu%ü®?Œ &ã+¦xr^s´ƒõ‡À'â{hÚ`®€RÂ%ˆl#>Š0 éfÂ^sèm¢ðpÅßÁ%L&Çõñ©•JrjIwšAÆßç1¨Å8þ6⦿±#D%å9†“ª%|±8súnÒÓ[ñ‘aF' kßžnKŠŸ´N-“ø¿Y÷É=a/P f*Æ~bâd³Kñl R (¯Õl=¶+©x¸ED§h¡<Ý³Þ î¹5ÝI‚IAT´Q¿ªjÑô`|ëG¸˜&£dê`Á•dÏÊ …—ÂÞ™óæFôûðZO4’ÂÒ"„ä\/|l¸J½hE4|g»Ž”qÓjC7"kXtÞÒv)šÃOë|”ˆzÁ: ¢‹;7n¨ÜÆàô§H‘¡½Žµƒfã§v¼ í}wdå•É@„@…ï’‚|‚‹èG‚Y´ˆj✂Ԅþ6ñìÄ«å‰U©•øâ`´ªï8M=D,©!µXŒîQcC?‰ï‘­{­\£øcYu›¾õ4‘ßú`ùƒp¦`-^÷ÒÁDó‡ÇqÇ6Ó‰s eX,PnüºHƒ+ï7ÜøÖŠ5Z 7¡Y‰MZ8æµ—f×¥T²^+ÕK9¾sÊhÀQÓÌ2Ü ™‰8©‚¿n( JAimò››/¢ƒÕ܉ÿ)T¡=%nÏýý©È$ÍÄ“¶höZ,9o§ciÁši¬äæ­¢l®ÕEöij{æëEŒ¿3;UFçÙêR.|¬Œå“Sa)Êž:Ëð‹Òù±½¹'#wlšâ6©Ý…Eêˆ`ñÊ?ï¤jù€`¡iÕÙ(ñ ƒËÁ²Hñ’i³A¢}AŽïx…õ=’`Kûøýªw™·7ÂÈ:W˜&?9n´øuÄM¹>ðˆkÖ~«Úeá utòLÚñ}™ï“ö¸xSnžÝô>‘ÀH;NÇÖY]íI65¨\_ˆ3jüÚ´H>Ãz5ž›½8Ç‹;¼ÌahNP’Û]†ºÊsD)µcs™‘KHŒ3Lïâ2‡k•#ΰ/mtѵ=¹ÉSXÙàH8‹®5fxâ#99N¦m@•`Ëâ.NÈŒóûâ„kWÇžjzå‰N˜¦bk«T@qÕ‰ˆ÷»¸ÃæX2áO¸]þ+¼›£¢õäê†[JGÌ?èU÷˜a9øú-Çœðàk*-q+„AÐW…}mþ=Ë… NÒä±ÂJÆ ³Š*#ÿ¥àìéZûv”@N8üúÆÁa˜c×9öË>šÂÛçœM[(ÍÀ)7Ù€°‹=ËV½ÖØ“<…‘¡@€ÏNCŽ.ìÁâ‹ËìŸÁLQ׋k Ù» …AS“±ýèü×ÎE†£rÌ{ÉETˆ®gnbŠQ>/É¢¨"[š ·e8ã©h¬’w¥¢M£qŠÌ–5_¶²³\Z^2¦‹“ÿ¸^…òb‰£ª\Z÷ä•ð—ÛC"h|G“_À¸Oß@|â¬3)1-C„ו//Ž\™Ž·~'Çw°|sзÓ/:’F~Å=i¯à;|qUî]ˆè dBF¢cù’ÑÝz $Ì Þ;6YŽ$³‡ˆè½ð´„»Ó ³m]˜EYº8ò bóXMߟµhOö\Ù&"ÜtQ,P`Tø±u¬IíŠÊ"3Q̺Ѵ³MíÛ¦0O=ÊFGAŠº¨&kì4·Žk©xÎpU(þÐ!Iϲ‚­–-ËŒÁ{tGa§öÙß+ë3"ÀÞŒòâ0;ÐÁ¼í½ˆ`&MZ)UàZÊM Ø,Ï>UÝ£K¨Ú'qŒôº f¤ëîãU&f7ñÜ]K׊î4—¦ˆÍ=þÚJS"fÑ2€ú³áL+Ü•\@^{ÓmLêÒ{p€Ço-ÅÌ¥ŸÜpp(=m¦Mpj~ýwÄ-:;-ÙOŒn¥ Œœh4ù}ˆ“ÒLM:áXïVeKbð kÎK‘/eÅgki£§Áß;˜è¯Â§¶é,7qI°÷–Ò´QøŒ ŸÌh`´Äç@‹™Ë‘’<zà´ƒcÈ#%»æ©u‰§›<‰ð< ÇOVEz˜ñrpFñGe*uÙx¢¾˜Ýfz0¨ðw"tŠ›á{üÆJЕÅ×o¥{W%K¹qCZ͈ŸŽD¡ånË™vU Y¯Å¦ca–µ ÂOF'KéE8I9´RU SYc'¨(¾p³W`MiB UN®¢ò|ŵÄk ð¢"'w;ÃÉ/½øT…摪?q;aŠ]£€#î­ÊƒgeµÖt©mN6– âêÂfälæwL­É *ò ÌüTœX¨OC Øí}1¢\ž™¤@–´jw•«é¹ãíWUŸ2gÎñJ_´D¿R3Íž'n)óxDä§Ol6®À×1IÁ21ÄCލ¨/‚¶îøã°ô‡S>)µžô™0lYÞ­ šc4TåÊr% ‡~ó6hE:ÏD‘Dz¼Ö N‚B­¸¥UO:£W©áñŽÉ)K8a†©qÒOE¢ÉŸ(O2çÐ.}¯@5KÍž(ð—|mvÝÊR• ¤@E·±%¹#4îÜ­©SDocea›6Í>=Á˜<¨„10ÙÛ^5q21Ͳé ñæXyeäÏ2l«\ÀBôçÜм”»$ã oÒ芋¢í„pŸç8sÔ=¸ã©Ô9‚µgÑñ¶l‰Â~ÈÅkãµ°0¹¹¸<ìÛÓ„_‘?EwOG6§È ©è‡™4°–…> SãôÐEÔ ‹£Ê°n>`Š[É húRþ³:ƒ„8ʈföY®¹ê¯âÌLþ*D²fÅ‹ê¶Ü‘…,¾ðÈtªRiÐUT"¢>“Ï®3š&cCÖܸÆ'­zÛü2”SáÅ (3’D^‹äb©Nñ®tƒ5—qÑb­ìü1mCîƒ3DHž´¦ÁÒ2¥Jbd‘b¸îˆlôƒ5TºGÚªòÑà ȧ’§x‰YU…Þº H‰®2qxQ®Åî,ÎokMŽ%3ÙÀ¢”åºLgU™yÕà{_¨ Û”ÔáH×ÉÜÐ$vjÒU`Á;dLº•ºsÛÕÁgB_þî[ý-F7ðû`\·œòÁ˜Ã±T¸Y—>ö­Ѹ{6‹ûZ3RT±05/­ÙNrF¨J/õPºV=eJä†ö‹B<$ É~¼}oJ’%÷¥1]ŽÑ&\Ø(îÛ䮃 «ŠÙ¿nçÆiRýº»í’†óãÃð0¾¤ÿ¬)¸o”¼¢;¦•{ñõ®-SŠ}qƒçSõtk;-´œ‰¹¶ïW¶Uv%&(SªŽQO/Æín?¶Ï_M܆kûŒ…}kÊ÷°Q¶­G•ÌÄÏÃPÁèð¹KV’ws#U¶¥w´pF ¥&˜Ó #ÃRÐSRE!„ò—X(}fO§÷§ŽN`.Ø!Ncã®amÈ‘3…©§¶gÌ¨Çø3nUhíº~²‰{L$¹äXºÓvœIÕOc««8’œêSÃRé­£ÂäÒbÚvõ5©è´P“PPÛœa´dª·¼I„þ^íØ ÊÑØ)Ô‘­Ý»±Rmš&^¹LÌr9¦ÈZ#¢)6·Þ‚q` — Ü¿)s]¼4H6º}Ôä ¯…XœD¾£þ, (—¾g©þ3²ôª}cŠŽ¬ ü*¼ny(È7%­äïñllõs•Ù_[‚X=U+&ÈèõDæF÷Z§‚¶Ho›{ÓµHÇU>† WÀQgJiouR’jð‘bºq‰¶¢¹•圑¦Ñ´åÁùW¬46'î[U¶„ù *‘•‚b•þ¨®;t OUÝ#Uƒ"Ì—»c·)žEqUQ¼;®…©à‘C#Fßß-àÖl…<¯"í…q¡]$› H?fÍŨr鯺ÒúÅžOD):x˜û¬Ô¿'ŸŒ‘Šj“Hƒ®Î²|0p¯L–ô#2ʺvul¤¼wNÕKgø»é¢ÚP0+«:M=ÕmËs—íiI9b×Û§O›Õû€e2˜(cφ•^TÝÔô!ëŠfïÅ7(ÃÜé¬h~‡;êaþ|šFÓ!Š•ër|¬¦i‹§mŸößF\º0öÎM+;OÔ¯á™Ñv ç†ß•ƒ#”úípU agɺ)Ô↊ýYáWü#O×R×i dçqK.¹FÒWåC*'ܳ’¹ dhYï8²º­Îí§ž²7$Šéà7ª ‚ª ý®¿RþqW+²c5¹ËâÞÇ“GÈãRYM.ÿÃêéxm ã|Lǘ]y=j›‡ µÕÞ¢~¿ªÎ•žOuù¦½j| ¶b•鮕²çôþêU#Q²U+i§Ó‘­‹ÓÝU< s±|©¨N Ĭš뺃´rq85ºª•­Ÿ‰NƒZíØL%É„—S­c7X#Št¢2Á€VWx"i×!‹ÌF™ñÞî…ß® †3ô¿x_á8m]¹ÍØ.Íà˜w$ï¾\œ>·Sšmà ,Ëí›ÆÁ§tÖCųUNñ;ÌóÐWöL®9‡Ñ|?¥{ÖÙJ/TÄô±(d¬PÄ«r24wåœ.\taâ&¶¾)ÒˆéÂCšE­ÑtÞf®%C`17KMjå×WÜà7&*¹íRïîÙ´Vt$guys&]¼4•Eb“u%fEÆs9\S¢WÉkâÁ\êIf”P•;žšzÉË ¢Ú!^¦f|NUàÈH×úp“2«A”!½­˜²¨Œ¸€Ö©ÖäÚÍq{.C†Ÿá¥† ‡ ÓT§Œ¥S>A…¢Á€£Ëm¶“ bªÂV,f¦Yòæ²mW”c“ªò\’¾QéAü|ØWu#ZVu9ƒ(Æ[ˆó¤b AšÔ¡êT 1f <ü(ñ ®ì¬7¹Õ0lZ¤¸mœØ½ÕÕí]Ýœ=˜­p§rŸ¥ŽZ‹€©Àkµòk"¿ÚJ.Ãꯄº½¬ú(ªutö0¹ÏПtLº¦Z³©;Ëßœ°°uaƒÇ¾ ¥mÌoS¤6Í´™ôåa?«ÀU@£è0Õ­¹òî*·|}¬­}ßΪ~„q\*H@1¥ØB¤Ás¾Ó=Éa†lyª\‰Î™ŽrÔ±ÁEeÁ4ãÃGÂ4ë¤WSV©,UëŠ걂…@¿1’úEÔL¹àÂù¡ÌÇTÜ™ Í Vxrbsë,ÄæÎÛý2*ò°ÒÔ1Ä€ ­Î¢FáEµ©CI!»KælH7.á,ʦŒhB¡V¸²jUGž7Þ—ZB(Ìò 0moîÍ@Å8žC­‘¡Ü/â©¢õ¬¹§Ó)[Â,$°Fåûò©y#(+&W);;õö1öZõÈHóëO¹"§‚Œ°¤s+`J(®Xãâ¢jNªýsæÞU­bw'W ©€›"ƒ‹­çÒVÍ NÑFÜ.^¾Û¥É…ÔÆÙ–í8öÔø¼{´á¢O¦$óU0¹ØuölÜ cÇØZKéõꌦ g*~PE´}²qu;ð[Eµ²Ø£tPñ]©ÞÏnª´ïÊ®ÈÞ4^Ð,²Új^5W°"†Õ¡„%W(²Éê[É‚•A‘WMõ»ºÔÉC–¤Ú[}nt{e®Â«Â·Û n-Úlòˆ>]L¢û …Úž.Y5€„rŒÖ .› ·»ÊžÝz!Yþ--ÃK@ØQ!wÀ2óZjŽùzUšà‚»‘»ucºNzX§’T†ÃÀñlÔÒaúç·š#¦®Éµ(‡´[ÉM=OôÏ«¼îTX•M´]ÀÒÅQ)¹sZw,;ëì³É'$¸Úêù´…&w½˜éÖ,w÷½Wª®±îa|CÖ" YpŠTmt_[UæØQ½°ÃS2lrQ²B¤œ*ÿɕ۰¦¬P*…'Þrß]æzAAGHäc·Š+/ÊÈ–ÆŽïEYoîC °[–8–Òθï¢^Sw/õ:ÚEªVï¥ÈÚ4¯±+ˆôÕE ‘g+S1,¡ jäžÞÒYÎÈ…† Ûcœå!_®W z°×]A^ [|mŸÖ§êèEv·—œh'¼,=CZ7BŒ©ݤt±g_¶3бäâáFTè _©ï k,ë4:µæñðe¨VÒp߉B­x*àñwŒéÞ‰CX*×(LüÔô²ÓUH”еY$/íò³R®´) ÏÀÃm»Ø3FàÔéFYIáÎ_‘é4N8¼¨;TPRheLHCEØ$“‘«¹¯’T J‡bŽA0;wÿ]F.ÎsÛ.ÎÞ[rC0ÕS¤óàó›Á2,ØW‘W‰e¬é ÷G9ñƨ.K—âT µƒè(†è£b€#9ؼiŒ~¶­Â^˜z²ô±·CkDS<ó,7ïÖn~S ð(¦"ôä.Vßê‚Æ[w:¢Ž¡[qB]ÕVd6 b¨|G@‘uÃÅU“7]Ýv•j¡·&Ëü:ý`|¦Ï VC¿•zàY"ŠâÊ7§ÿ£Ó½“Q’w¬i7½H-ª]5.¨w9ÛoÕ<páse’‘ w›Ý´õ³ÈIû©Þ¶¼½FÞQ È} aÍMý E=T~ôNòAÐGVª o+ùj¼ÊaÜyx1U¶"H8¢¸)ý^¼@ÝçlÍy{¼ç­Âsü"³8ËîÍPåw½›x·K"T)3Îø÷9—ÛH®Ç‚4Åh{®gW3‹ï§¢`CVu~@FÀ8‚–t°S³âR·WܘaõVƒ á>µ·ÐÙAš~vcG@”ãðŒ9)ê*§³³µÌõBÀ'wtw©!oÒ§ çó=ÝPjÐù‘kî”K¼²ÐxÚ:èpÞÔ&w”Ø>'ç g@;Û€–_0"v'®ÏÕ"©Ù†%P0ô @Žà(¶n¾Eœ“yè3sð_G3ð~ôû†S>iÛˆhc¸»3Œ‰CO@;¥BNXÿQ\>EÊ‘G^SˆªÜ¼„4€h†ÝÒfˆsȸ¯ G“)j¤O€­Ô,†C Ç›|f×}' ²Z¡½¨pÒÝøql½SШD„ã~S¤J Ï"{Vð –:7ÇÈô„ȬŒì)Fù¡A9]}»(ݽ@L gó£Û ­‡S¢â\9¤ Ê‚L!Ê>ª&§Bã’ó±wªNÖ]ì)yˆëÀ øE[)L±¬:‰bÓ x@oÝ-8E)KUƒˆ‰Æp²š•wêÆÂ¦BÛ!†UèA»J¡E[ºÆV^§ð¹ÝÐìÍÝÈÒlœÂ$)ŽÓ^ÜCŽ;sq£°š0$(\ÃÛÎEŠì·Wàì`geH»NGdè38%÷oz¥+zúÔíþjÍÆwÐ|Nit Ù¼JÞ|k:Æ Ÿ Þ Ã ·]‹[ÛÆŠáh¨ª&Hq4vÔéºùÚzv‹&íƒGÉÓ©¶§|Y¶%vÂVž1ªMLž.GlHûIM#.ŽsxJ'è÷©ÅU*ÓMGéÖÌŒ\`Ï^êé¯7·²ëvê0Ú;v ©“©õ¶Ä078жL@)²‹aк+£szç£3Û1ÁÀ“)È\|x2 -™×4¤0ÿ€…»k;UxÅnT®ÿÒw‘`˜]Å1Z²˜cô‘zwm»ß‰ÅqëM™¶•N™­%ÃÎ÷PU",ˆ¹|• ½l¤vIÄ¢V^§4¶nA 'õMó9Ü€\ /b&‚Ù_ë°‰l¿0/3 n´m¬8n*…´êµ×lg¿°±9üT˜A ѯ¥%Ž&°CÃWÛ•Cº›L#ú‘j´[œx¥ŽÀ·:læµxñÄÓG¨ôÜÂÓå÷0ÊùÙys^—Lï »­eÛ©¤yPÛ©ô¢,³ÀB4k¶¯qlËÆÙ·Ó°Ê§¹ñ*&5ÆžKÊЊa¾'Ñ…¬cT󛣱†k£c+‘D;98œ˜·^Zsµº~¯dJj\Õ^¶u«Æ¦c·Uûð.ÙÜìd~ãC´µ²B¼´¤P.LIÕ@÷ÅÔâÙ]A³:Óݵˆ® ºPq]ü°Cö­ÅŸ·Ü_M ›*1 “œN%LÁK86ç.±Ÿûq¶ÅMB(„ÉÏó°ˆÉª‹Â%ÎD]Û®sú•`‹Ù7T>Ç¿áØË.#aØyò;ß±‡·wpFYWæ¬$ß.Œ’þ0>ÕQB€‹É@©¤éLòxÅ ‘™S_Ë‚¸ Y¤e˜¥œ—Zr:›´oœÍœÆÛ=HÒ|a¨ÌDrUM8I€«²Qí&ƒªPLƒø$±èu¸ˆS‹ìéÜÂÅÖêÚ8J?!‚^­®’,è»È€~î58]àeà÷Îþ1q¹ù…©ŠV¡ìàdgŽ#…&^ý€yséì飗Զñ)íôª",H2Õ}MÇØΗ´1@ =xŠ–Ns²²0û_¬uÀËOå(‹Œ<¦’Šcðb/×lÆ®Aa¾Vrºˆ‡æ œ"q¶÷VÔZ™AÔmˆßÂCUöêÚ.›úµDúˆ%«[NÌ:ÆÍ_&¡œêÊ)â$oÝ]ç/²°ªã2Q¡¦$|½¿*Ÿ,ȪqÐqâv7¾oÉ„q.¿D¤ï|< ‰³/oC•r2Ò>WQ€ÅP xŽ{Ü¥[öÌ=~d¢*Ì$»Dë²sŠs^MÇíHÍMû-9¸Àð9©îtË{ËÛ©ÿ8 º~˜ÞËtu–ƒ=\¯ª®Ð„÷æN@j{ ?è~EOfc,“‹iNb“#åÕ¬7>ßà — ÿ€ ¡y ÙAl ïZn9rvþ\סÔ:K+\m舭Ú}÷ž!éè•í Óò*ð\òqµ˜’«= ¦è<ÆNðÞÛ®%¬bŽ\ÎQM3bwö{{vž Æêд9K`PåÓ°zaëèGsº±€zÎ ¦¥Re\×P¨+I¬cRjš ˜—£ âXGž˜Ø“¨?Z­|Njj_UÑ…-L=(Ñv|Í[}ÈšÊ ~€ùq®ÝFhP×óŸ:M ÓÕdp  NÈFª© ‡®é´ktïµ:yˆøâT³-`ì‡IP† [ÐÒ®Eåºt: Ö8]õ¼¹%Æ¿ö[!Ëô>ð¨¬ÄQëtïº$ï¸qº-c¸Z‚qo†ÙV·Àæœå(a2•o$dH9TÿlW1 Ùl76ðš}ÃËŸ \ß,[G¥kZ?`A·œCi-! aNM®ªäe Mì²ÓžKÍr£`yšcZ\D÷¥àH˜üN÷!}à}×'®QB8Ê›€Þk9MÑa¬Ÿ j>ÕŠ,˜ÜÉ ¶ÔilCq-¡t4è.B[Mì§žL1çZù ýPzÄp‚n BŽUF¶BamÓÝXlö%ò±•àÂXf:ÚŽÉ2\Þ9=á®î „2T‡ÞzðrÑ(J¹€žñÙšµZ3¥T©¢Æëp½/B®ì†`ö ³ö}dhÖ~Dã5KÒé ¥¸ŠmƒÒŠz4hÑžµZÊh‚|@XÔ–Ðö¼ª‘QŽ®`?‡ *ÔRlKÃ˶\NB=,~ûËÃlW¯†y±;˶UdÎ –¢`—V> HͧvÔ¤>ÔZi'½Å8¹2MY†6g:¯Ä=Ì÷±¥é‘,AÉmU”%Õ¶4òéea˜¢Ã/àB#Ta•,5#bÇÙn/„Ò²Sª¦ñë!×4¨}oAèb¯¥rЃú$vt-ïpç5`-6±´³é¸’Ä‹í[$’tÀ!m™»_†¶ÑÁIvxS}G0 Ôj­Ízz+9……¼°д­Q„5wÇ­²ˆ=\¨‘ÚÞ¯AäûÂÖÂÁo¬S¬ÉE‡|`ŽÙ¹v¸ÍÈQa©…‰I:¦B›«ÒÛ]©ê” *µ¯`ë´Dsm§Š9 ¢©ëyµ[*¶Õä’ƒ'x) s{Å~s €˜kŠ# Òˆ.NEí•¿k›Cf»ŸBèuLÓ“^[ùÐêšâ+!&ó’01‰S—±,&ïmQÅ\ŽòŽô¬š¸ ¾ähÂÐÌ£chT5-,Ǫ$%¯s•p*‡Ì]låyJ¼vÎb €zÓ^ËŠé¨>©¿‰àCíÃãš[ˆ¸9 ˜}:Ã}@ôÐ0q¶˜)Z`ËË"Ú Z9Êâ¡c«`¶¤Åý^í´ÑLŒÕ#,_Å̇_7‡8Ó•n'QœÎ¬!ò&¾”<»ØØŽÍlÛ’’šRn¢˜ªV;õƒ+„(•0ÝUëÇ!Rxq]Ù“VŠš (VYÕm-hz¡–c¨r:‚Iô2Œ-fA×AÛw„ ü•*J¸äÓ#ŠçLª"tIŠâ2LéPëÍ#å\“©žIˆšäU Fè]Wă֔;`:ê’å´f3qc–w„ Ù*îàéârϧ‚“'ÑѾþë0|µ£ÒÙ´‘œC3Eâ+e;Ã4Nj©±‰–k¹ÝðÌXÛm§ '—è~ì\)ƒŒ._^OC„¼*Ý4»ê²*TAx‹ûÆŒ¶&9`;‚ÉÆi4X&J_K']8è(ÜYhÊ\ØgPf E÷fÐ¥o޵¬í¯½8 kNÐìÕ_¦êÈ"Fÿ„-bñz¥Ò†/­³—5Ú7°—¨¢¸"a D!vÁÔÄ»]Ýnè§|>»9 E¤¢†ù×fƒ›Œˆ¢K´p#­4‰òô& –¹Nš˜SQ4¼’ô ×8€„øe €›ïB†ÛéVH½ÅO!¨ãa¬8ï¾#y[,8Ù[fÜ{Ë–;,&žq:LEžGASC„ÙßµOG7Hu²ÐDjYÖÀŽÀÁ娗oiw&…’ÈQS­Ór#;°@LdË•w2‘ÿ«HˆËp"!-2⫬Êy&Ää ‘–Ú*gªŒ© S”•Ü<#¼Gz™âýÝ]Øá‘uçÅ¿êªAÕ¤‹„?­ÝÞ=/¢Ã%Ï`mó²¸ç»êS0JÀ'¼4]ƒI°\¥aM:¾LpXYé6É-5Èôã)¨C|›¥u d‰ædS,@Z&â÷°Bå*[º³%Ö ¤®±š• LYÆØ$ÌS±ðxf™ï“->[Fr(‘Î7q;·Ð­aiU•@°%ŒÏÒ´‘xRDIUµÈÛ¸h$Ô¶«ôâ*ˆaÆ$d+ïI{“)–{’ ¿˜Çœ¯<„a”B‘^d j@Å@©&Ý „R9XË¡4Úº’-ŽÿI®{zÍÁó•lÁ¼ZkvöÂzÿ:ÕáfY’æk‡†Ôqº9~p§âP¬usºBC¦­¥o7ðxè.û°ê*Z2»È,ýºYø:Fâ Ueð Ñ ‚ÁpÈ»Eaˆ—hèvöü'À!6Z6xh¾ Bd§B½«Ú`†šLMà¬øv‰ åfNÖࢹê›kÇöî¾ç.ÌõL]‰ßøB› ln[徎궋‘ÕLT¨A¨Â4ÆRØ4zh\´Ã¬[h1Ú{7Éfõrbƒxµ’QÈ_ÇY(U6ß,¼*&PÓ¤-sôɶw²çuV)‚@æÍãw€6‘›ßÖ$,G³oOë–í“ÿÁÚJ…·»vÿéÐ]þ¥Ø2Ò!ɸ8+F“\~jŸ19±lÍzDó2év¹µÕ×äœ+S?Åî5Ù¹æb)n]&Û$åó—#d›^|Z$R©Ž?Ðû–È$Aó ½BÂ,»0l ‡FaEeÄo5éˆ ¾3YÅÜÄH$±d‡ÁÆú "DÞRý<ìŠCñ°°I(:«ÑbZê=ge_P3Ж¦­ SÏ^m1$íS Øœ'¢Xhú|˜0 .¦£JKÓ4)N™ÛeP¬mÖ3( <§ïƒ'Ê’…›’ÅCÌ1RŸ* z/™Åxªbv"ºPÜ EŠ}mŸ2vÚl’~!Èdü²{Åñ™R¿ƒÛP¤˜‡±i¥F4:öæ™LI= ýT´N2Mîèº;¨s«²·4²EFka–%è9ð¦’À]v$~®j¾•Hc’=rUÊ[I¤õ ˜¤f•â-¦hIŠé±ñ% ­pã0ŠÈI ³”p`ú¢j}SZIýà3ÂJÎ,’€.döN­ë$»™K ÒUÄ2±ÉÄ HIŒrÚ]PUÿ§™QŒë,CKš©ÿ™Ú z½š[¶ÍìLsŒ#ª'Íj*˜'"USÏɉ·mæUbÕéBb‹‹ÃÅ`-ôAY“"é=âøqYµDÜQLÐaO ›ËržÐ•>á};².u[kôhÓÂpWŽb“\Kj{Sº4IÉ>vŠ»'!Y£tò8hçÇ=0û@V¾ö3b'iÌSl\ PY}ºøŽÀDòâ«In)BB3úÀRVûÐÖ©º ‹#S•Ö€5öÚ|jó:j¶šq±!væ~½…‘ @ò2ÙË3¥:1ÔžlèÑ1_s 0Š"Û¾Õø•Œ ”‘¯GÀ gTßP8iýú¤.C‘e¹uø %É£Iøä `0yfÉ^» ‚Ib ß–g@‚NìÞd… <¸¹† ÒýpÖ³ê'±§¼ì!VÛF5CL™?©ÕãM¦Úp(÷óöâ’,z^[þ|ª”…„NA%ˆ<&ño{^áq J/ Å ¼Ï"»ßÓ‰ÐjÓé®Í@µ¤Y:£­`/ˆ97ó$j·ÕTÉÀéê°§¡N>Ð\ÖÈñU*š—ß›Ä2“L.t8=8¦@ÐÛ©a©,3»'X„“ðq›'¼”Ò@†!È´j¤þò¿UsIðò»8HkËlècâW…BfÊ`ìfa%œµ(Åm¥6›$ê…ÒQ`am/hÝ[©0Ë(à~D†DÙšÏÜ4¼í‘K ƒ—Ô5r‚š¿fÄþÔnˆ@ŠÈŸ¼€Œ‚¢§¥Ì:Ößw xbÕê8Æ G&+½zìRݦ´•©}Œ¢¢²ŸO_ZhV’åb;Bû¾k©+»‘Ý(.ŠúR¸Dõ}P¢’ñ€O_AP«œãŒÙ#"?y%òœL˜Vßÿôµ…¼Û¥d)1`ÆÝøžKvÔ"êÓ¦=™HñÈ¥VÔ‡EßR ó©ê맯„oW¡Ll6ϸO_A͉Ùlñœ·‚s0¿ÔÑ1ÕÛdt•{•mùäJh¨NÝU­DÙ±>z%òje%á¾=ùD‡]ã[Ô÷d!ò%ñîO_IÃã†_ÙÒ˜„¦¾Îc×ö0ë^BH 4-¿ïZSÙ;½izU‘þ'/ ˜úækj é%?ýØEÈïœ ý t­búصšÝž@v^{´ždŸ¸Æ~ä¶šõ”›€„³ùŒŸ¾D½Qž@0náøÁuê"×"¾œI\gpôãs›Gš°ÝZmÃC$>}Q5O#¸@*Th:Ü?|ôÚô]CRˆÉÕ¬_þÉkphàte²eMÕÇ®!Ur·/{n„«Æã—ÜÛcC¡í#-&®õ§.Ñ`–fnFÜšVâüÔ%ÕÌÜ‹ÏK†ž´9¿ç¤3MˆPRàêô¬’G®å°}Ü ¯…‡ÔÇÇ®åÃam¨ÉKUVñ‘K²`Fÿ”¦>ÒL!GS“5Ús@¨«V5Þ7ÏÐl€«¡3j{œþ¦ÆÂ”Z·x¡JÖ€åVGƒšñWÐQɬ Í™´<¨e(ÊDe­ê‚.^¨Q5·$™{^žD•üÆôH#”x©©,¹ DÂ5˜ž\Œ7ŠöêS–ÆÞð ãCéPk#ìUSLTqÏT¨É®¾[ö ƒª_I½T_´€/Ç…œŠš5Il€U';/¸ôÀfP€—Õ…Q,âPo(Î¥^y„»ú2­ïS¡b „ÑÍG¥tûedå]Ú@:°tÖ’½›~2 Qu`ã|X§©5unûk‚AãA¶É£fW7Ó¥KÇcTº•€,l‚Ð×àL™ÀÕoÔåí²ÙôÌΨ3Nh)dÄ€·#fÞ¬†Aª ·mä‡b@¹›Ûo ÿ(|ù:ÔËÙÜgb‰÷ª&®Y¥jª3´Ç‹}WhmKõ,±ÚGxWÖî›Z*ZÙüÕœãD¨$ŸÏ•CŠ[¹;Ön`jq-#ÜõA·:IØha)ÚR­«•9½{Ýï X+ŸôÀõXF)±‡tö>ya½tz%a t*G)&e 3=è¸"÷@Æ8 øßw ÍX!ÀPÐb´â¹z[(N¬1Œäˆ‚}òR9γ¬—”\¡¬.>@ *iZ‚ùÓTo£ÀãKµ«ç™Ž±|ްÔÜ©gÒ4ªÓ²Â Ë.«1ˆüæ %½å›³%VæPЇ&–<Â%¥Å<1(\+2‰Ê¹cZ*4'§i¥˜­Ú0.M¡ÙJâ<µiè6Úêjd­òk5L€-Te†T±¼ ¢>µ ¡[ærY º²¦é¥¡ÖFZX±Lfè]LÙ<”1/÷9Šž$º-”1#•T䃀˜©A;ÚþRLkL€ÄM±­¬ zëš,ă–0Rá+¦iæ´ìÓE¼Cj`Þ2P¹‚$gнZ¥*®™Y'¡2 –¬ÏÜËCœª =£l Xe̘áG¢_:£½Q¥H.g Z2 ê…<,bô¸­“<ý Àšpke´¬¤’°ëáln”lÕƒKG„ûd(N.–ÖBM»ºr ¸ž N3¡„™~ǘÿ!è€L¼Ÿ8ðÙêÝé4)êr¸‹GâÄýk`!„Å,ú_ö‘ämEGuvzÆ_bê­]* —0ÍÌ#wfµ,P§ÓÖ8M*Ù÷>=b£W+ŸÖ”¤ËƒÎ­a¢NÅšhÜ’ùG×—CÜ…iÉèÌŠyÊí¦Ó/ÌsÛÍ3áÏE f5Üz{:QžkƒtNAGþ Úó–M/âä´FxÕ3I<Ál¶ÙS£ÆŠð¼vÿyÍMцòªUc‡)9À¸ÓN“}d̤Þ2 R«B›Ã÷W‡úäà›y«éïÄܰQ €Õa:ÜnG 4¦JUèøË¹Í6CÜdï¸Öa´«ªÿžG{­CZËYy÷:ÙóXg$diUÅÓÈŒ!NÈÆ¦iž3f¡«ÓzTtàT?·hÛ„©‚–Á(ÁSz ,F‹A-4ó9ü®PSñ õ.à§ÛWM¥r½©ò‡Y/‡ã–—ôÝ-»Ž“ma²ÑT×Kíù„´ÐºËå³RT€ˆ¦9(Ýsl!2Æ›…PF7BC/mºŒÞAshašN~õu¥&Yo” 6 vjVk’±'ÊÍYÞô ކçÄ¡X£Òi.[><+ Ò‚¨ ­[9/ßÔ\!°k©•¢ ¬€ÛŠn¹Á2‚?&ª +Ò—¦1pJ ­ѯ"±ò)t¯õˆb{)(%³x "o™”-0ÚèR q†ÆŽfl„ÃDv†ìaHÓVåq¡M­:t7V ”vm¨~òéÚÎÔ¡Â'tǦ¨zÕÒK¹5KDÅ–>Š´³kÌ&ÚY¡´µqJ!Õ“XKã÷xº)S¯uÔuŠú@'Vœóœ¯Ì›(L- Ü›ø"Óª²˜°Š¯`R &9ÏÖÌÖ1™ R×|€’Õ8‚ªŒø/Pq0æÉëuS\ŠEMƒ~T  êXå`Ç€·ÞA>£ƒsîæ=-‹ Òª’®’ï N"nKÉ-âåJgŒLØ&1ÜjÍa4½²`’/ÿ¨8/t}™'„RáŠO m²X¹@Ϋ.weh̲ÓÞ†5öPÓU]qí3µ.õ#a.s…„P©.Âc¾½[:P( ^³˃.ïŸ=R2lœD¹±.—0©ÑK‹ÞnrxLvuJY1oGœ¦a°{œ0„ùÑ?Š¥3ªç£Îž (H,”ɤ3©“ Ëwµ®6é®0/W˜wôŽ˜mšÛjÉñáb3†É0'ò(Âa>¬†”#dà¢ûQ ¢†]äÕf¹ ˆ,T×Ê{‘ÇZ ›Øác5×ÐÖ¶€¤*Cv¯)e§Z“g×#B—Úy„‘‚ÆE¢& ló,™VjžyÓaˆ-Š $IH“#8Ͷ®EݤƒÚÌg¨wiƽYE!RŽ#5ÝŠÂÒïÍÚéõ@Z›e *pÒh¼Ê˜³šÚŸƒŒA ¶ú[²¢ð NÇ 4íÂJ[ÂH® Aa÷r€ÆµY¥o¡1 ¿L]Ó áº#A–ϸ w‘Žd$eb[¤õÂÁWC¡k?f[Éé› ‹ñ(NÓ_VôDñ•Àc öú¾Ä!´.ZU0^ë–ÞØ &œ¶£@ÛAEûðòù6ð[ÇSÌ‘e­hLs¦l{óègF^úaê¡•@ò™l.¸z*}ͮƠò/û‹òêEc.;ˆjJ!s·ºÙ²*xܵ?z«u¸ï€ž$a^]|òñŒš.ªè8ÎbYÆ µ:5ÍÃ8øÉ‹,AyÖpnÏ–¡(züâ„,2ú¢"šÁ£×–YÒ°7…ÊE´ŸÇ.ÍyF¡\%2A—íyôÀ+6&‚T­ñص9‹/¼NÝZß{ü||R¢:À²©ÖùéKs24AD™Á,(¦òEw¦ÞT=E÷ÏÍ–‘•?çaMìÝyI.×ê&îÃ3óh¡X«’‡UAg‘ƒ´çRÉ Xñ}/Ž:c #AÒ8)ž ·!ÞÉC‰øåB¸Ú¶ ÞFwàÂú¿X,—ÅV¡^jšßHV°ñDÀøHŸo ƒ0±Î?:ö¬€êÎÞö>!CÉOØgÌšžf¨vÑ#!#yÔ}Ç™3·€¢¬ÿ°Ø²Ä]ºýöº;[¹šäQT"Küt·l;«ÌÉ\©LHª?µŸžKt‚x‘æó¢BqtIKó{ší4á< %-  gº‹‹Z.xAԢш Ý 𢚅_â½êíÖ$(G–¿Žív$®Ü½ñ#FÀï ;ó­¡~!%ÆZÊ7k³îb;£"$[žôpÔ›qµ ÷:Ë·ÆE$ÀN¡6«DgÎa'µ€>É%EWË=ĺ…<˜3€\=Ähã …°­ÁPS÷Óï3:*/o œ[°Ò›NgÔÐvƒœëídqˆ9|€LÏ+šéèT÷“eFÚà¹](æx®GµäŠØ:êåp×÷‡ÙÇ|Ä,ÓüæIßQ•,¬Sòx€Ý.ìȉ¿…–²•.S:Ä :JÑíÇaIé ²yöfGÓ ”[wÏ{ƒÀh>ÆHº|øCäÛð²*öõÝã¶ äëŠ=he–Û>¢=ì·²|M>uh+° ïc׺VS ñÜI§@¥¯+«röÚhªÎyz¾v(|œZk%ÍqF‡×¬ØÜC²Åж×.ŒcíOí&Kw¨Ûp«Ãçzn̰Ð(ÖÙKðTN²Fv……»©f3ÍÅŲ êìž YÒ0#'—a¦a=’ÃÏáÅ@Z¢‘T+ÜH亽äÓ :É`;‚Ȫ–`M^Ñ*î®êD©Z÷©¦£n‡3ëËÚ©ƒSéæ ˆ9G¯Ð=‘Ü›¥v&æÃã_À'4Å'@aš¤ a~¥Ûºù•˰ЪQvÁ<ÞÛˆ½oÜãÆ’¬ÝO ™@Úେ¨S¾¢> Z5®ÅP÷S{1,89Ák·±»òœ©UG}ºŸòŒ’ÂÃÅ‘ë<ÜÓãEòTO %*W[6Å6.¥ºåS ;ÅWò}Æ€…u–rF¡!Ô.'²¼±[öQŠOÕ­µ NÚ²ít÷ ,{¤€Ô•n›§IÕƒQ«g"! ¯ç}‰Ü¡gwpb¤&ôRÊrbhz:4Ï»ŽŸÚ4R)†EPµÖùevvUï·_nêÐ>ÕŸÆŸq‚ƒÏ0ø&{Іª¨¡káqÑPRô™?L¡õæ\¼ò#~¿»7Ï<íY¬T95&ªZ p æaBÙGVÔϱéÔ¡ü$)neÏ“-ýja¹z;F¨Ó a$…S`Û½9¬²Eü¬Ü‘ù|CR“Ð`Ò~Áô!—OFB¬‹'f(tÝ„œ\" «¬xj´j)”X4kÂB¨îÈ1ž±`ëe¡G§ð:¡ÆÃ‹qVÝAž…€Æß4žXލ'š&œÈÓg–‚Ù9¨4xUK¦qœÆ"a­ZГuN­ÓËuÖË}Ÿ0_Í5Žº6Ø7–Ž]ÕàÌeœØLXýá°ØfŠ7ê[˜@3°cØ<«Å8® RÆJÞÞXËü}zæ ¹Ú§ûÌ4ê(“ªÉ;öRt×Ó^ìÐUTÆØ[›¬8ÒÐ™š –”7± áÑÂÀÅÃh“„ìN´yè˜#UŽ6nnþ7nëøˆ ;ưZ8!ñiØ02ˆ—p‘U§£k½‹-ÞzuËc›‹‰òðñÚ1+d9ý†É>².Åc 8Á Q<kyÛ³hàqTkÈn`>€Ä#Ë”@ÊCD½åp ~ß{~[Ç»Uƒ Pö0RÈÈH¢ z¤bì“Ú=8ɺ¡Ð4Ò å(K™•øÑ.9#]À¶Ð_vÑc¡ûìaZæiûÛAòöqŠî”Òw‰áÌ­\e£Yû™ÁЬ"œ1NžøçïÛæ-çu)YÆÀƒìïŸVbwxkæÆïšžìÂ>ÛÔhÖp^oe™òÞ2˜Å©M1Z:‚—WÐJ“rê±\ÃMÎ <7/g~[s‡¾ßû±v^1õ—7‹ªŒ\w"4Ž+ŸVù@Ó²„E4vÊ#Té‘ycJØSHO¨¾«¸‚ðPF.Y¥˜^ñÉöÉ*1'Îôá-v>Õ^\´?Ô|¯Ó7„©àV5à’ÓLcó°à«¶–Ž*Æ@.X)Æ¡ºˆqœò>j¦á§·Gí`‰¬¥µ¾BÛA¹¢§ÿ X®ƒ»åœˆ!¹ à½Â#k CQY%°ç‹6ŸûÁ%òÂu¬´¸š 6Z®Þ£iI*mAÔã•=ªÈR>påNæÌWÕ=ö‚í¬ô bI€œ«5Hmœ±pÛ™èÑ,ø†rÆrÓa׊ç¿C/\E…bMLjJhG•-1«@âQ0¥îÌ ·7áA¹¹"èIÞÉMR ˜.˜ÕÅÌÇ Ìî ˜“î dÕrÆîI"SÊ„o¦Ú¢aHŠKŒGs6̳PÈI{íFqÔ¬"&†Ú¼ß$ë*Xr (1°)y«h¹+o‚CÔƒ3+Ðýõ§!2zíÆý$`ë<ì¡뙜úVxÃx+šþ/ó´; ú©­õšÄ½Âð9sb œ`¨œÄ&ŠÓ_Õ¢ u‡ÓÉOg\´räf kÍÍyó*VòVø #ç˜èé%bEí?÷‰‰1EXû¢v-ÐxVê^ªå tØÂjÅjmVñTwa­Øypì–¸¥œi¡@UùeVi§5 ôðe$‡ïàÃJ*?;ÇÆHGC¦Ĉ—o´Ê¤b4¨xë@1Ó±»E‚f«Ç4‚,$6¬jF³7(èø«¥rØ‹ÙPþW…äEô ÄÕ%|®>Ä=ˆ³€öd Ã+ƒ’Ïø´Ô­|¯Ô:¦˜º¨ $ _\W…º‡–yXÈfÍuˆ¬¦I²$ þÌóÅá9N96»Š7J?േƅæFD£/DµÙMŒb¬=Íj8ÓbÐâ—ÔôÂMkÊ"%%œ#ÉMœÖje¹^œ4!Ô!‹e°ìSŠ c…~ìiR*<ñt>“šËTu ™™ëZn§§˜ÝS¼2RÆDÑ3|'{›)¥õvpFI°Ï6\Ä`/€Ë ¨7s#\ÇœÕ`•¾Í²Ègî÷8p¡Û\ƒ´Î.ZëøÔ‰­ðÅlH†eþ" ØpV–×Ü'WÃ*Œ3˜êèo5ZhB‰²P1åÓ êæ‡ÌK ¹ <÷e³+Ü þH guØ &ó©¿ô®&5:Ú@ÀLÄÒÀgXC[†Tí¾êà€êäBå2@ƒ=Dáï§Œâ_s2/‹; ±_×j®…œ}»n l=è: æìy>QXÛæ±Ð³ªð„yˆRAèÉèWpÜŒõ­BÀ`–åB»›Ü­u9ÑÞ%ßL€Dú@ÑéɆ&õ™û)£Ä‚`¬™ž?ÙóÑ×±nB)@ÂN“¼Ìð‡5Ó%L©§œÖjõ@c07£zÅÕKž§ 1)\7ÄiŽQ&æ¢d+T6¨e¹°¤¦ ˜Lvl. ü8ø,™˜ƒ@ãÎÅX+GØæ6vm —DuIò|¬rè¸=ŽA`¢$O@€L«ÀK˜/r‡fâZå î®i%õ|€ ðÍlQ±ŠJªF'éµå¸Mr6Ìü$OÛL ÒéÙO©dŒy˜Ùg޲£ål…Â=ëV- W5:¿x&/P1–ëWÎ/Ÿ¶Ä!YÉYñ,ÝrŒ&«vð¼câF"J¹Pƒí²&ñB”{8ÛZ.(2qçõCJŒY G¶¸~[kŸÙ^fa`¢m&P$…/Û;<Þ4]DZ¸oíÁ £dD´è1±·nñpnž$•·‡/•qêØiË“O8AùŒÛäî, ìˆÒ³Ÿ‰¾«ª=÷ëX"ŒSFˆ–év)Æ»ŽDgÖ4•yr~TÈ<Ôˆ ú¨å)ܱ.ⵕԬ€vD6©K²ôGù½qFŸbœ õ½†ÔÍqÙ¶:Ø x©K˜1rÆÑ™*ˆ@6I²}ÞmZ$~à‘´9ùBLXBE 0®â"jǽekfr*²ÿN" SBø^¦!¸sK©mÈ-°Ã´±. i%KÞ1œJ?Š%ŽIC¢ÛÑ>š°þ5[wºÕþ»¦]Žò dA‡‡ÿFÀ x ºæÂ”ìéâ±»;a`wðÎÐBŠ0]€w+8ÊãP€ ,W[¢ÝlÞñ$ÕŸ°¼äG¹ç‘3Å3Kf*rwË0¢ gYòd• %8Øšf¥ $;‚òs€P•VÅÓû8Ôcâ)$’‘–¹<`Îй¥l€Iî¢,u½02Ùú|'ÌßyŒCÖBÙfâ†ÈGÁ¶E*^'2ؽ ÷1sO8™ÅB‰H†*IåÚ~îúUÃàcÍÄ,DÒÓ#ÁVö’:źr )-æDȞϵ5€Q˜¬^²½Øèáú,ÕkÌn1²"K¢=ÞæR““{˜ÄæžáWÝLÒfû¶çß±Õšëð~Ši†> ÀÈÂfÜW;›ý–»`lKs@w‡±É«¢è•êÓË’´`…—-'Ï>rª-gr±{…`´ P‡Ó¦º%VÊG"I¢C Ϩ~: K|½zÒ4Ó-bG÷±‹0¸Eèž²NŒîjõc×0 Ó¯°2·›ÁK^k³©–ä ræùû®ÁUŸa#0Â'§þ}׊5ü!oÐ\F›FU?r òŠFKì3– nfËŠ>v±ÞÀÿ˜í:I•ßyìX‹J"­øœalÑc—®.èÑý[Æ|¦é¹ŸºÄîƒÿ<š)lù•ï½Èàr|Ãe ¤»šTøØÅÔª¨ è1÷—Œïc×Ðpµ>sv_Ü7K¾|ú8³êälþ2Ðäß{äÚLvc §QÔEmÂG/¢œ¦Z FÄ«O€ ˆã{®A(»§ì‡ÏYÒN\ 2C¶wW¹ª¼¢¥=vmt‰Ÿ´\,€I,V¾ÿô5°iD™NNU`®ÓúS—ZµdB1X¦#ÂG.Å;Ô¿@µ©ZB$¿G.AbÇÑj·Ü<ðTù{®!:Ðæ®Öšgã«<~)‰êšüŠ›šY°ŸºtewCzäh%þV<‹å“×hSut!(€yXÏtù䥅§'2ztWBâñ}×"ãtPÉÙN®Rx¸À'¯q—UÁl1ÅÎ/NÊøþ‹P:UÉ–>u/·z>}[mÁÕR•¸²­¤þÑ‹@×¹=R³gÅC=dåÇ/2ˆ%âˆDO{`ïdÿEÕ:?4w4Rß{pO"™'£in+=~µìåiK>ŽÑ<"Ç^­È»Œ ,nŃÇQ~ÀU äX_ÜÃCÇÀ=Ý£O\cÍÄÁ\î \³¬U#Y³S7Ý*$µH­>žQƺOÏà±èE…f!¥xfæ‰à3û¡hƒ-# 'ºV[ïÄ=S ?¬S}àj´æß[²LiXú m(HIôgˆ@ÙŠâÜÒ„A‡Ò’ G"3W%¡\Ô©d,³\[³ I÷á ÀÒyËþ¹Í“%›¥2†ˆ"Y¯‚„¹“ÕŒju ÜG“(µÛ¾oOCß)¿ÀI½5'× æ©ÈJYï6.r¢ɧƒQ>ÝjgÒ³Õr!†" ”†t,c $´cj&Ê©£C†agÖ*?Ñm’ëÒ÷f´ÝÁWE5õz1Ȇ:,ÅŒ.¶féÙe"pÈFS}ÍÐÓa9&(ñÒè?:<š4.ížìݘ°Cá%<@xXã„!¡oW•¢8†ÕMËäjÌx¯ÙÀ°¼Ï読ò$g¦‹–‡î™0kTJ#s¸·¡"rQît´Œ·ñ)ÅœbgÙ?VV oEè*jbJ?¬ûDìH¶µbÍ2Hç*Qä.°n|…ÓÍH†DWÇX UªÚ2ꑽ ®âlÖHnÕÐ)º9$V¤–ލ6T¤Ö r²ž­›ÿW݇ºoZ èèp³ 6Ä=Z—«Ñ 7I &'1!F/jg5â1öp —½O?;5ëÕˆó‹·„¯öòx{ܾzðmlßM ¬iV0µÌ‰%4EÖϳÿÊšž‹ýÑš'­#3º‡åukèCWÄÑËR8ºP ·BFÚ§é²Ezá5X”ñÕKº—ø¥£13N±ŸÖÀP(E'˶Š` =.k²yô/¹—éEÊ Ã…P0²aŸ–ÆDaÜ`Û0Ê…§Œ^yÔÙ\n‡>r #„}RznŠHÜLË,7èbº© ÉÖ¥kpy¤Fg`ßa>v‘ÀsSÖg?ž©ê£Ã…3c˜:<6ð±k`¡h&ñ¼uðA’×;ÆËôÔf¯†ìcéV( G #+ÄDv¾ÿÒ ¡êã”1:Ì*nÍ|ê™n¾jŒ¦¯]ŸcÛ™tÌq1-é‚>€Å£¤ÆI­ i] r€Àžÿ׺ùXPUI9ÔåŠgæaè÷×µ ¡ix[r3«¦#³œ¬8¯Q²œŠ5?‡2äqi*O6 úAå]*–hÑ4ŽC”4y“‘(Çæù”S­©q”Ü¿éviè•î^ëá>6k„21íb†xµdŒ¾de>¨Ù$ÈN©ÚUL†ˆHÌh™xn)EÇr»ƒa]ÉÉÚ˜îwÎCÂïòI-À»УMIéÀ˜o²’Šy"0DÊùHI¹"ŸЬ–£f±“$ L’#¶£y¤¦]ØsЪ‚äÔX£4Õe/Éó4†gEÏqb“È~4žn™-]&þ[ܱ†…¤!ˆzŸÙX¤7 q9õcÀ{pЉ—Á÷y8T±™í˜ÂÒ:}ÜÅñ„|`ö‘žñˆRN3EÀ:›ÎëLMÅ¢€é)–±=oå„t0 R±®¿é÷ÔM]IG@1LP9ÓlAìÅÃW%#<™ rgŒ3ȤU¹¡w­r²ž3ìdI¾ÑîºÂîz Yeµ›¸êMðÕñW-‡CÖ«ìŠg ƒB¢®ᥛqÕܘ<€ÁhŠL:f@ÄÍ÷]àAƒã‰0áé†Ô¶r®íùF”=1Á!ÁÀÓràíó"M••loºá{©’› C¢Qð§ìFi+uÀežÏ7\ì7Ã<ÄumÇÇö%‘ˆð ¡­:± 3·[½‚ÌH…UGS óéëè|A÷5ÙÇ5CUãï<×DMP«îB@×cÝ Ó2uï¦(ÁÍ êwò€yÓön“r¡J˜w? †–­D.lÁµ5¶‹öpŒ!Ñî_N¯ù¥BtÎyÁÀƤEìFÐAíÐ8sà1oÝTé5ønyïT<&‹‹Áù¯\5hÂû€g‡ŠÀ6²ÛƒXÓXaêØÊ©óèÌaŽEc|eÃ1ÿPzBËBª-q¢÷•È^ÎQ0Ô$0EÙ ™F¬½äáE›âˆSZ¶å¶p.üE+b©ÛU ë‹àî FO–ŸÃ$n ÓÉÁY]:Z Û 8(9€tšž=3Uök>|¼d,b:oøV G §Z;"ki+fˆ—{ˆ2±„ü) Óû”r ²@¸òu‡…5¬u•›Üvx j"n¢€VvÄ`§YÚ¹M8I2ÇsXÑ2,¡T&²ÉWQu\äF486ÒÈkV\')G ØÃoI²;`¥¨R„”¶÷^AÃq"¼­ßèù7‰’ìzÛ j¼D‡—ÂtâV”@GÕ¬ûea«nµiÓ Dhå“y†ìăh$6úá^M÷1‹s»*4¤îiW ±z”|œÿCoÏrt@:I˜/Ü+/ v©Õ¿µäñʼ# Rጒ͹U ”§$…?ëô³£´Æ~”´*r¦sƲUgk÷ÈeÌ™ÜÖoÛî˜`“KQÕmX$’¨ ±´ j„å’Îï'YÆÖvp:¬÷ÕÀ©–%Jj¨ÂMY°d6 $ ;Ö}è ïi‰ncñ7ç%ãGá­Úá$ÙK¯uœY¢„¸{³íËt~’õ!ò‰1iv ¿lofFuاš2œ§aQ¸.7 qã*ÏþævRd8æA&c*Í[&¥anz}îå,G’)Ÿ©ðf<âN}_ÝòaÈN/£Os*?}1IüÇ1CIöxàqÞˆiâ\:fýú䧯…—Â'¸¤tú,³(á9Š_¦íÊwÍš.ŽÇs¦Ñu¡F Êl)YŠl2·=G:§¤Lon—©€M"7/É#mÍáfì„N‹m·=«–£1Þ5=òù2{©[È©.—*™"Á…ë}È×f‹ÐV ©n©Xéå wNAýæž©ÃY€-ŠAD!&&ÝYø×¾Xˆá½²|ª²ÌNGÖL_Mjk ÃäP/9»®¡>˜ë61UY|üÃe؇«çQâ\\[]M‘J‘,Ýfõ(rø9Õ,]áìȸ%‡UvdpïÌàlšÆñèÅİ(Åê3=õñëiå£ÄÀ‰K1ÖÐp”²«ä÷-ÓÆ k`¯¥4üÑ‹¦4ïm›3‹¢lÒæMÚ‡NB95#eë ó‰Ê€„b…‚°¯ìú@§—Ó1ÅóüýWÕm ”w'œ#9Ê?Ÿº(„¼ã Æ1ö|[G±&¼ˆ‹ åqˆcî|ú"\$f:Éy¹¥ÈzTÈzüâžêåP{Ãl#5…»„Î¥J¯ØãZØ"W󨵙ÍìEOçÙ»Æ%úÒjéè©ï³¥v~äH‡Fa6ˆ‘Z~‚G®i2 ö[³H° ^éO_CñbœÂ}?¹ÖòT°zÔ!Ðé7Õ‚£T%À510Û IËGü§¸ ÆTß^0S×<¦ÑLƒNI$'° ÿíkÝêBÊÄK;LupRµí è µ¸U.ÑÏÓ=bNŒR²Ù…Bþ>Òšsž'•£Mr +Íf%R ŒukffÍ•@gʲ"Ði’5‰÷ç‘M=*8U÷6ºÝ@1"¥ƒUß{ŸáeÔu×E‡¡û gHêÄÏêÓv=PhüO/"Õtþ-Ûµc›RÕ²É"ILK”ZÕܪ®ŠXÎDך̶d/»-@U»`ý݃äȵÏl+}B-¥«Îš›[h¢Ë®Ö%_Êñ1ºW²|˜·**ù ‚/%µõ)…«r¦X@&[¸«HÁÔCÉÕöôÖž“)@ŽÐ6wÚ¸ÆMZ] â!"…OFîø­À:ü%Ì[˜ü®y`ÝKCqÖí»çpÂ¥yl ‚Hø+Œ¥õ—ÌòŽ-¡©[ÅiPФ¬_—õ±¥j»ì)Ô22Èrî×SÕá†ð¡:ŠÛó#nãd˜@R õG=ɶhC-•žÉ :e¢eÁ1Q¿·T{Òx#Ðnô^ªÛɘ¦œ:RøC’†mA8̘‚d&s7„bëŽ!œ"-@˜õL€Á´^«›7Ozö¬X!៫Ò9Øj5€)ìJxS ª«J·0ôÌÀ¢¦™‡8Òâß!œÙ\ËÊÐK4/H(¦:þ¥“ÚȰ°jPHNºl;¤—'-`ßhÕ·§=î%´[Í꾞g3X¡è£YâùÐr†ÎXÀèRD‰‹¼Ù’䮲£ƒw¼júp¡zCê^È¿ÓÙ¶÷VÖîÅøÕÈ›ˆ5øúÙìò <"û¤ Yˆ'ë­f+/Œ&»ˆ8²Eó B±Åüžšð‹4|º]´%æ»V3B‡Ç¯Ï­J6' ˆ«lý×´Ïéæ¡FwƆÖ= õùP–ÇÁJ9/ž%^·ØÖý¢hIÔmÝMÓFzñü…xønQó|{RQ î|ÍäáÂWĘV±RÝ 5Qaš· ¤à,š1Z49Cs5©U&_°ôRdÉ.±„]WK?aËsU¾•‚–Œë9Ódî.á}À,i×ú.âfi|c‚™l“…#Ès · •)"‚ÅDÉ·/ç/÷ubºW…¸R( ÏDí˜T¦]’UŸZÉÒÓqzPÌÖÔ\©3 ~Kaãhz> ¼Mõ%ø)«ïÁÃs²F—¯(ID"l| x%5èÆƒÓ; Es³,áˆUöD|kQq@³†(¿iìˆæLÂùþ \§[GÿNõ¥¦ià‘.Œªò)Æï]TÕ®Tj¹ ´Â]Žóh¯Û¦hªv“ªÀnx¨b’¢e@‰‡}Xh¤À0¨‡W–Ǭ:ñ—À¢”;‰à3 RÃË3ï&dNDSòÇ©K†l£mÌS“[>³Vò€¿*.Ïž>K:± " .¤º‹²®ÉջʑV¡VðrX(¶U¯øj~õOÄ“KŽ"Ø ÑÍH듆ì8Z1uz¿Y?™"o·…™ãÄÙHl[?RéUm1|¯î2l”4#RQ=Ù¥£f6 û•7myYÃSàµ{е÷§PCUËÖï¡©$WS׵ϳÐ\½yŒ`–Ê"\‘g2CäI(¦¡ðPžÑȼiæEõèñ‚iµBaˆ›Y5ÇÂÕM©TE%Ôd B™]7Kðæõú³‹& V 9]¸@KWÅ̹Q ÏܲŠÊCÖ¦ÞÞÙ= V4ß´÷©ON‚N×#³ˆ•Ê9ÅÃÄäÐS•®¶v¸kQÐ1™I}ÿ*‚o>s´Áðßú¥ñG?£±e»„±0L­—Vmpæ“¥ü²š¶dÓ=“Ò n,’ÕË„ÚÀí©â'UÚ•ˆR~Ç&±L~—šÚùj,*à;‹g¨5Rëá‹U’—@QeäaÝxï„‚Zjˆ¢iMµKRßúãÙE¹K˜+0ÁØÂ¿F¨.~Æ ð— ø"‰o<ƒ’d Ö°°| jÊ´¦ÂÚÀãç/ÝÅêVúÐRsºjñ8òÒÄ´™­8áH¦£dG›±¦¢£Œ¯¿>Òœæ5=Ö,`^làèÔâÈhúJ¸%E1Û•V¾=CüO$&r-ƒŠÜœ" Ù~ôrShQ2‘07B”…¤z á»?v¯vÑP ›ôsÒ!a¾„Rœ”¢ü4/ƒ–·“HtìQ!W"lÇFË\ްÞ´)㊗·|lûö0.LÆn6)üÄ])%Â@vk]™2ñ‡†ljTT ÈSr@õ@mM†Æi$žnÈh¡.r2á+žÅ»µb'yÛÌñv²ø²Nÿ±— žq‘¯kþIâÚvêÑê'2ËÐÑVêB5bj¨NénÝv¦»ýçW¾¿ S®ž'Â,¹ç:-×´êz˜~ÕÚü¥yä6æKCîRË”I…ö‘ò²x`%ÿ•Ju‰c§úi»H Gº¸¤•¬,ÛCM#iÆÇMmÒ µÅ»ŒnÇ0*õºXÚeN xÆ} ‹ÐRô>R•¹9°a—•Qvõ4·dÕœäá¡áëøÿz{·^kŽä:ð}ÿ‡ú¹›•U™U™[€a†{ †g^T‹–°É6É6Fÿ~r­ˆÜ;VÔÙû“ü0šßŽ“«ò~‰Œ[¯sš.»¡= ‹—nŒÅ´p&“U·À<½†é<¬Îi±îë¬zÌëK„I1sIÄ0cQsݘçËîí:ì4è0^4'ŽUïÕ¯‰ðž°œ¶ÇâRlq w÷kB7WÓ L›HãØì>¾,ê B Pˆ¹c»Ð¼\Ù¹8gùåAì$/°ýåüšl¸‰ØýåèHv³™¯ÆϯLtîÁc³äƒÝ†M‡áLT-&@èQ³ =}+9¯Óœžš?Ñ0çI5×gDHf³33nÆ;âd2kÀv˜y<¤Gäþê°ëU…‹ƒaw‹Ä¨Y/C´0öÂVkvuDHZëѽX°üG s…´‚à°wØHÙÒYa¬è¹oO×ï8¶9Ó-+§1B૬6»Y“ÏÞX÷Ía¡³á$ï÷ÉÑý•ÜZü J³~™/|÷ˆ”“ôWc÷êš.“×·n~lÁ¥ð¦„­—vø#px­Ò>呂€y¨ùØC%nõÛL w OZwævØU¾ŒuI¦Ý6gÛð“òò°¢Û°(*Îs„ H#+8™M!žæÌ89mìá¡_oßæOëÁlÍî5͸¼èOöÃÞÓƒ g±muG´?'.ÛJ!m2Çæ——ó2f¦;·…§ ¶ÍfÙEm%›¹oþPí9º]6s,¾.ÐÛè¹gOànn÷‰…¸ûqÚÝQ­ø €'²¤=M÷Èv@^p‹2O“ÍâV! “…9›¸[к0ûŒ ïîÙpÁÚ]#v—]ö¬,¬ ¬+ð·Y…ÃPØ3iX9&!5IL/w µ]/¿Öký…|ÀìsëYó/»Ëy.{Ï£ù0i1ÓãÖ!!f.e_ApŒ§AxÿÈ \ªsymŽåefBÕùñíá6âÌpbµ™œkî²ÛT3 ÀSzvMÂï‰Å!8 ™¼öhv5e4|»ÉÛAŒxèv»Þ·u;°÷º'Ж zÕ6“­™<î¸KéÿxïÛ8-¸³Wë¤ËŒÁ`Üe·lÊÝle»ÛjíöàÌ-®=lþO[<‹ÆæjsÓín(Qmè‡[ Ìzsä: ’LL¸ùÛ`‡ÇÃ@™çÇæë½…­1e½©içéÖMB9v·TëPY¸ÜÂØ³Ž†m9wc(!`7ùÚ\ŸVÑÒ,"ÌDL}0¶I>{õ’mWˆ3l6=çåä]f¼„Y¦˜€}¡Y¹'qëþ¼#¦¨é_v»Ü÷e»ˆ£Ñ?jÆòOŒí|®èƒ‡®Ë[¯îq®fÇF¿|ƒË ÍÃ{U‹Ê¡²wçäµ­è2wý´]¹Œ‡ë‡å‹l„4c¤;Bò›úŤ ð*uÓÏb—R<ÿRý:i±b U¶³¼ {ö°WÜÝŸnÞf?¹&L³ý–s†Ù«‡}útl3žQ.8àôRbmè>ˬ“à>éš÷¯ÿÅ2áËghõc=±zZt¼lSòòÀÒð:·Ýþ<†bL¿¬¶+ëf¡2'«b¢½ù—Ó Ë†…Ý›iæŸÕ!»]«]]wÜ‘‡-¯Ó0‡· –RKüà­ráÊdzmÕ3ü̯-öŒ4âž™Ðu«ÍY›«#ËfÇÉm&‚ÜÜ´.vÞü5•Y¸kùЉæpzx¾í²0øCy6Íí¶˜@0´©³›Âl§]akqs‹ÙÕJ{îb ÛhŠÉV`©ã½u^¾ÌÎî[Îåvé§ûÏÍ+vµqA¤XnÛn"ªBÍêÚ]OÀçO7>˜`ACšûΜ7ÕàZQ–é« É²n®o(&‹ADU«N©îíš\ìZ…7DýmòËÄJƒOgó/ÞÙ¸IxuÆå>ÿ{1ߘ³Xì¼mÞÛý~y>öÙ¼»Ú+ÌÍÅs [|F„B>|U[踚¹Èß) ¶ù_ŒEÂâ¾<ó°™›xs_½ùäòWÎO{J|ཛÉ~üã56‡eè3=B”+XfËÍ”üqÕÇîmLÝQ»Ë³O»ÀAÕnÇA_5nîÍ‹~7±‚KLùâ­­é£y$þÃú£ûÚ;ü#H×m^¸ª ‰?;Ƕ_<~gÖÝî<¸;Ù†ÌÈÇüK3_Ì L›¸×š·r¦ª6o»?¡ÍèÖ–ñ¸|§?,."^޵ƒg¯ÕY‚ôÓP]ÇËç6ˆÁ+ÏüË05ã<+½Û Ï\7A¶YZw³v…àÙ7×âw7uæ~˜OtßÅûÜ Ú ßyW¶\M8—¯G*óÆöÈý°Ù óC›üûqù;ï»éq“ß„n¸ÞÚÖu™}¶ÒS{q½+ÜuÇ2°ëÁérr=æ1ÇÌ„´óøñ+Ä<õÌ2¦aT{¸Mü®¬£¸šz3¥"|Mc¹}uln…°4¹³—\Mç/' ÆaéÛº= 7¥¨‡]Ô𕛌ìÃe Å^®‚`ÂL°«{ŸìÕâ¼ñeýþx—}=á®6ãaXý~0`KàŠ‹&£ëÓ¥<‡û·æ3S5B>èát«¿¾¼‹í¿ï.û•þGEì®7Ú݇ò~³rÖ“˜Çöž-ÂùYw]v ‚ûp&ë´£f­vÈÁôÞ0ÃV;‡Ï6ExÀÚð¹¹µ¿»±ÃÚÀxÒfA’À Ù5ùèÆÁkÉÅ?íòÍÿª¾“fV±/·†¹S]þ ÀðïCøa‘ž Æy¾a’GØL´u¬¸ÈjsA2îüËYßÍ“¢Ìœ‡¿øÀŒ³ ºst}ß¶úkÐû2d¶%‹¤¯jSß"Ø.W(üÑŸ‚& Bœ EÛHéÃ^ú@LqãåOWaž~îÀˆ¼Û‰=6àˆ§æü‰æ³{dVw’œz?›  ¶¿Œê ]5û¸OÛ&;B[øWuÚaÚH4w?Þ7;+‹ûˆ€Å3ɼ«–šÂVyu¥÷a¼ÚÀm‚éËߚ‚.4ÁãmYŸµþJâ ûjóX”½û-›ï¾Õ'Îl¶ï­¦ºÃ9]Në‚‚Ã#Î"¶q;|9ØÙÔý½uN~Ÿ~¶†ŽËÙD@4Áõ;VÆù˜1 ·ïÚ¶±U¿-íÅg_õ[ai>âç0†qu÷0Ãh“·ng_Ò'×:ûÙÂ?ØÌ:ìd¢ kgLЇm|·Éæ%k0Ï‚±”¯~kÂär ?€g}m¤†#uì¾™>G½§Zרñ=~2íÝÇÖm¢V;7æÅÐãÉ_fÇ‹Bv×Ú¬ýpé5ÙѼõØÐ͵fþló’dŒPofÿ_æ‡äêð3ºû=¥ÙŒÇ¢²]söš_‡/ó Úñ°…5«ìk×4ÿ1c`¬G÷ÓÃñßú7‹²3>>ÿ"ÿ‹IöƒÌ5æxíô¿\V´D6•΋uÇK=6sæEÏföuš:×L“3À¸ýÅØü¹“™î÷L“±œ›ë _Ê„‰›/™î!çæ1ã{E¯ÅOSÄ0YqžÙ÷œî¢k„–?»”^6gcúrUš‡±]yÐK7÷¶Õvñcøn±Û[Øøël̰¹‡wNmú]ãÊ2)ûœf ‰÷¶ÏÅǾ7›²0'õ Ä·Àe‡5Òýîd°£:¯²{/¨g¬¤?ž£6QÏj¼(î[n{S‡¼U3…ì¾¹Ûǰã}w+@\Êl¯*çá&ƒûpv­Ùͯ£ZXz˜ØÂiÝò˜KÉ…Íö<´l@x5›Tý¬~¡>Mù²ƒ/²¯ºi¢vlD.ìè®Èß–Lâ,nS[Ìv4^–9|εf $xhšÖjöž›r©Vë+lû¹»£€0:ò›ùnNxeÕÖ1Šbuðú…I)šñ½Ûm"Óî “u ýø•Ï=¾gQªIäðŒÌ£Y‡çc±_`ºeBéÓ†t6fÉvc‚á:nÛS3›¢ÕìVæ>Ù0 ´Ðêˆ b5ì6Jn•Ü»›¸âbéÛðî!ìϲyÙÝŽŸãtyhwí4m_Lʳ›ühΛ‹sâÚ z ô¢7ÓXCX^.µp²Y§5j¬‹.S´Iyù‹×Û¶"÷tŸ²ÔÒx>Üš‰G—ì¶ä¯šûËnø¸Ø¶ y­Ç =ìê0®²Þ«.››=ƒ‰Í§-6ÞÍùºÉ{†É>ÈääQPl·65›7ûæ¬Îá¬ã±ùåe^·ÌŒ¼ô‡ˆÂùM¼ç÷²Ů<›¿"0—½Çª§àìî|;O³¡ÁÓ"Æ;5]îš+ ‹ô BnåvÐt™Ùlƒƒ•®K®åvKˆm§#ì N;ãµgû޵½Ú9‰uÆ„ÌV6S³Òð£º#Ws8¬}˜|ÚÜ^]ztBiZ«â 8Êù21Ù3Þ>Ɔï&òƒxº9#l1ðࣩòa2kê wõ¿æÉêñ¦†Åø€¥­Géþ:ôô¦…ÅãÔu˜ºÿDü]~¡)ÕBˆ´fz&· ¿hÐõÁ`#NwòÃ?g‹/ª»˜Ïæ*©ÓÙ4ÅçüÄ.ÀçæA´ÀóX˜ÇÉŒºs¸E¼n¦‚dÄFûñ™ënfXðýXŸ˜¢ÚúÎÔÕ¼}ºh·#wq7T¦ÞÞ\8‹÷V͹¹°÷°êîþÑa‡X[vÕÝ 7 ›ƒÃ7ÀÙ % ÛÀhÚÜ©.mò‡8N3ÿ`ˆüáýf§ïä-l° ·ðû­­ˆ‹Î/7¶Ö`r?üàšŸ²/‹ß,¯Ó×#­ /›>·a\k_5¿ñ6¿{`ÚWKï {íî* ·ßØüÒÐÐÌNÂâÂ9psn¬`'3ŒmŸÍÔï@ä~êÃïó^Rœ wKx—›Qoî’°Pðжµúã\‡ió+ŸvöÕà¾/v›×wÍò—¡54‹T-_Û`1oÒ”¶W÷"ßM’‹rs†D‰f!ÆGM˜¯]UÁNY»K7›Œ~¸Ë#'1¼!¸Û_ÌNL´ÅôÇp¸u]ã*\1¹Û0cʧ=]i‹¯ò˜íçYÌŠ¬"¼‹åcwéÚ¼Uçjx«ÎÞÍÍ­ú¸ø‘gVä}¸TÞ Ö)Ü–* ˜}äšÙa ”€M¤kó;Ì>ܾØÃ%#0¯ÃuÙwàMbÞ<ñ¤…Iå]ìƒ7Uíæy–®oö û2Å;lH\ÔîˆWm·ï²œéý¼o‡mî¸Æl ÷V¯nÀ>™Ãê¶f_ÙÎu‡šüº°xÜL$ášåÝ‚¶C”f×À<ׄ-ͤ^óð4CV—ï\»ë]Oúû~ÐGÆ>ÐÜXÐLšðÁÃÍÅh†‡'döügk3‹Ø`ó×=t+þ´aš·>·v<]ˆU‚/|>Bòÿ˜+9ÜAKag¤Ÿˆ à}ìˆÙnÏ}Éöñ9çl7÷Q?Ýêæv–ñÉ(¶ÛÌÌ2ÏÍxFLX7U-n%<9 "й}å6ºpþ0ñÂ9Pž¯ëæËÞ)Ç{ì>½DðUªw|·ÃfÖñW·ƒ~vÛáî$Åõžð£sµs™8› ¹`¥³bxÏtÂÕÇmïæó3c}âX1‡ÉVŸ„Y­ @±­œñ|Ù¾½›N½aW0î  Çl.=†]~fÜ©ÖeÓsFšÄO&T[¾ÃŸëu>¶âÀNOÄ(fg÷nB,èË—ñªíÒˆ¡i1¶¥ÕÜzðv¶×§?à Ó9“´ÍÇôÓ¥´îk‰¶ù ,!Îd¬Mê‹Y~¨5ãö*¬lmsw;îfË=.S;×2܉¿›D?Q›T—YºUXwØÐ»Þ´"Þ-'ÌáÁ*õçCK³©m–F|._c½Úû+§[uÓé? 29\¼ægš?ÈŒ¨ÆÃ÷í\’q _‹gƒ¹Ê«?oç¶ÃÀÞ?‡YZw×ðoxÚŽ›Xõ3î&i®ØÇ#\¦Á¨ÃÍWäòÓX#¸cí>IŒe›}eî ªoüŠe QêKc‡ñYÝddnkjù Vêv-qEƒkÙ-ÒÌœÁgYª8vœ}gî%K P)´|ð€ÞóÚ¥ø8ÌâíÓg„ jÁþÚWus}ÀÜŽlfÁ²Ý¾î÷±ÅVÎs~øpù^·ÕÚ-X4 6âs/¸Üˆæ´åQ[’»"Ï©[—-º™@òí^‰ØƒmqžÅírñÔ«/ªfïBaašðÂŽqsðˇ×g`/60›mÿ˜%6Ûà6cùZ4ã9.Ö‚Ý%ð˜[b7SØÁê×ZvÚúæ<|W¿&Ÿn¢]ü¤˜Ì@_ãîׯ•0åXO虆֣'ã 0-*¬Õü(þ´áÞýA›n ÓÃu‰Ç¡ËÊÌÑ®l‹onãË€M&÷Àiþ(ï·8׎§K¬IóæhM:OŸž›Çr:¯c1™f¿‡¿¸“ða‚§ù‘Ea†Í€ åÜ_ ÆÚ²\Wëºî“Uñ«ÿqºOFó8*°a°ëÝ ÷4¯¶ÂæD±épz¤±Ü+|µ{5Ú­…a¡<œ¹8—ÌXà³úþ4w|—KÔÃíÛº¤øëg°Ð÷¢ÛåWòQO·ŸE,Ôr™t0Œx­²ªoY—•·`bV¨r.8y€âRêÓ®µˆ­d\ë<~üûâ¬ï!žµK,îÝÅJ²ûË€iеÁu£¸è!Ô»km}[;]ª‹¿˜?÷å\KŠhά‹ç„›Æz Îîæ©‡h¨°I·qñ½O>¬‘ó —»ï÷±™Žj9Y"ÆØésúôƒÄdÍ•a–SóëÓ91·n¨ÎB‡åÂ4#îí¨s¸mRCS²OwÞÑ%/˜Ã»¯ëa¼¥XÖú±yÞÖù¸]Ö7§‡à²Åq™( ,ˆKyN‹2³³ÙŒ•é ¯Ç2™o¾Ùø¦ o2;›Ý¯îç.½,f,ß|úm&RèKXDû?®Í¾òÞ} ~|o˰ùäÂÔŽÌvx<þmsgãaÌ<uVVw§üê¡—àO{8Cä²7¸cÛÉ 39bv»à×âÆÅÐrÚ¡_]„¹¶oœn±f³n®‘±L*Ì…ua×ø¢;]©‚jU³Ó±–¬òÍ,ô¡Q\·–s¬]âZ÷BwÓ:L{Ë›¢ÝlüV„gž÷‡qš•ÔÌÄ^Åï6vvøgXY× È~4¿É^Åw­2<·œ‡ûð¿Tׂn渌ɶP°ô¶•l.±8O×êASjö’îƒÁ;‘1®.>æqcW‰xYÝEõÍ#À]Õý“}n ±áwk,×â#e6TäÇݦË­Üž>\6üyç‡C tY¶¿ÔÞÑ M‰X«ßfIf)~çæ*w®nÔµ¦=2Å\0—_ö–gçæÈ •]u^»… îCœT7gœ7Ó?ÃHÂÌÒÿr¸j㺎u<› jÎÉn´ùFÕ­Áø‹+Ûvçw6·ÇK×çj¹;P™¡(FÏ­ ]ûñhwk>SVÔÅQë,¾=7g‘—é;¢Y/x8¹£›¯&¯YeÁaØ>Ú6÷z®棸.µW—cz4¹ŽWÓlìãnvºY5)Õ<†p…âÞw:‹CÞ¸Ä0„¼1yÅæ|vmݯ·¾3C{êû°rá°¶½g÷ÈØNü*èjÝÄÙþgšâ¼c÷ƒ¬µu¥ì׊¬âüÐÞý#÷ág8c½ŽÚÖ=tIÇýî:r ¿ÌŸÏàÑŒ‡ëyêÃõFÕ¢ÓÎE`Æzµ2,þfoôøÕÚ|¢B¹ø™j‚ ±{tD"tñbŸW„ç·Ivz°¢Éxúb:üÒÜ8 ¯vÛÕµëDv«…ÚÒ–Ê\mi ý”p¯<¨$ýY;~»Œ!ÀAâg”¿=wç =È—ÛžÎ?ìîM²Ÿ¾§/ø¶NÌnÂsÈ¢{„¯-öa&&Ð[º|ÞÞBoiÛ>b»BÔ¢*uÁͦ·róíûÃ¥:®.µû{wו åºë0¥±ôHÁÃMÿxxšN°œ¬v¸aݼv4B˜¹ÔÜÑýÂYŽá†~—Çø+®…ƒ©–$0š³]æô€x}Ü0Õn£u÷øpxžÖG¨v†×ÃãM²qwŸcs±DqeB?]†…ùéx~z-1Sá+¿$›P½ã¥>•­z¬‰nú&hf]]Õ-â6!–Ð|Öàµ7;ü6°º~!l‡+·›²Ÿ}©È]…7+:c2³9÷÷ÒÖò§˜ŽvÊïÕç„GÁ»S>…ÝB©,e2¶¦,Þ{s‡wìöKÓîœK9]Ðì¶µð´k¦¸ÀõpFzþ¥/ý‰OÁê×Å£/MkµØ6|ºÛfåiÀøàˆ_¦lg‡„½T-«¿Sø<Ü~pÓÄfqÞ.½¡{«KZîö‚››3ãYQ} Žqº.É‹‚uŠUÍ•¦ìΤ™%$ÕµB®O;ü5DÈï켂ɛ͞fvià\ãw˜Î®ÂRÐD…Ý„¹¸-yÿŒá˜rºøÆãváaX·x³sk.Ôu?v_^üåô%qø!ìFq¸Ú_êã2³šÀ]p1ø}Éô\½u »CÎ=Î=Øñ€KZÖûÖá©ÂÊÌûËùÃËô®cE[šû½kÂçFá×¾n|WsᦇÊiþ¸V]–“O³Co8jÅÜëa‚ñNxîÙ^SP̾3#¤Ç»‹)ýÎ5ycúë'³d3Ï~ij5žm¶ÅX| ˜mt®r!7a±ñŸ³ÚÇAüÆÚ] ŒWaí+8ÃÄŸ´_ü’]}F.’,î¯ßâ ^W:Î{ªQüÆ·¢2ÁûÔšT.åÓ[ˆ{6»q*Äß~W†:ËÊñr°0vÙ±í@{ó3ðð?áÃæg©k˜öæ‹Ð  uqnõr{àZÇæº75?¢ërµì¶+šŒ¸]œç."ÛWãZX<”îü‹muKˆ¼n3¼;#‡>º/e?H·Ó½8«+~®ÝíGÅõ·á6wõÂöÞ}E.·»;ëf[8g1Ìv+²º«í¾F½ÕÕÕjà \@`M«»`ùòì‡ÛòÕm C›K¾/·íò`N°úñà§c[†,3ìÎÛîéõëÙÜ j.oßÞ‹™CAkí%=Bh»¯ô¶Ž„îέP}øÒ÷¥c‰°Á^üý&œ#®™Ý=.&.‹.|¼ü|™,2¶nçÑð€ÀÃt+|oƒ%-£mÜ­6µøÆÔ\hs^~æ!9ȵ ]»û´6MqÀ—%+q±Ç¦…´t,™‹ËO[uf¢ g ŽÓy›ëô×4×}ürýØ]Þ*ØŸ›r¹æ “Ú¥˜ÍõØmÉ,=Éæ#†l\iZóu ?Uüé Cý´tÐC<ºL+ß§€‹›P–O}×ÏA|k3Éuó#ÓxìÄ]!æ®é2¡nú?úzQ»=Íï{fBAïÕ¸r7ƒ„†ØvÔtãªqŸ‹g5ÚÖܬË,øñà²IÑqnÙ7Õ\ðÀ;Y×,ÂÀó²’ü¥ 8EÛ¢Z¯¹à`³BØv—´_ÃVØ·ù,év[þ²n †Gfõ*¦!€ë÷r¤vý×ðЛ¡¢ý/ÝcÏ g(çmÛMŠ©âZ_ã!tÝϵX<ˆÊ«µ#¼M‡‹²çQhõX¾Íè­Ë¾2#jlr¦îÏ ¡Ý¶Š†éxp·´VwÇ^tñîûC†×°‹âoÛÌî+&7ÂäU^ox¹ÜásóÈÌp›ðF˜ž/4o¨»@hîNZÅx•«J«á~­W…Ö‹’¶æˆ?Þ‘žÍòùíK@ÇÃT×f`“(þ—ÕP²×݉þ™>VþZAí®Aá‹ÆüƒËL„Ân¸<[«v£V¾Ý'gLss9äbÍ,龯ëpCr&G\ oB7?c<÷{,‘”O‰Ëý•Á t늲¤ø»7Ü_%§>Ðf@­n™î×ïÙp0üùDÉvçõffq•vØö’û:̪a\ݸèýòX¸è-%€sµCq³°å0#ÛW3mì‹wÁfîAeY iC\íÙýÓožÃöpaxð,<-æÚÓanŠs—w«sî²Y}x`MÜâM&TÝ¥ ¯7Ïgó ¸¢zóô«ØM»)ý1XË}¼ï>VÖ$¿Uc¨Ü…z_ûËæÁP&'åüþižlÌ~Rù¤¥ÒŽÕ»F_h;ÆûVVÐ1¿„^þá8œC‡Éß„ï6 ‚Aûªš¼´áŽhõ™3Ƨ—»¹B8|d\„ÖÍÊoØô‚{–m¬c½Ñwm¾È¯ë†Ü„«¸2™ú«înKsî^Ÿaw¦v¸A\¸íˆ;ÜXrP¥a}8<,÷æ²úáòÁÆ;›ãáEFÛŽÅ}Z.Ý…›ð$2åáa¡”g¾np5G‚~K2­‚Ÿy†Ì™O\/lh&³lû1B*›&ðð§D r7̲Ž7.Ó{úTÙݬfÀ„Ë&ûõxÒ|mv¿Rãý¤!˜€ÕÆ÷ϹîK_[›su]ó=†œ¹•4¬Zp¥Ü\Ãè²à¹Yì>Àn2´„¦PÜYÿyÛµÕeGà¹øªüá_UŸÈu±Ã»;Y6wpoð¨ôõ°ûÈôU;˾÷zèɹ@<Âcó·°Zñ7/'ÆÔ…s&¹ýÇãI¼ËeùÕIaJsúru¥¸Þco(—à`óÎüÖeFô¸úkÄ}ß‹¯ÄÓ""°´›ÎtãsÎì²Ö”­DX2þ[‰»¿#—b+h©ªï¹Xdk^{.åXÏÒXùù÷ [Žnóˆ ³mnð©—¯†m_±‘mËhë™;¬EkCiëàÞ-lV[fætr«bn´?9¼pÛ²«?wW~wh?ÇZä¾~«o¬Ûz?§4/ûñSba‘¹ÙH=ßnÜ ´z˜dãæÂ¥ú¥ÓeäX þÄõ¾6M7°Ãða-q0Ê–?h„9fͬ¶aÁ?Úãø³äm½ŠPÉ.ÒòeX¥ûåâ|¸€øî²…âFç³–‡KÏ–ÍáCðô0xvŠVŸZ›OÈk[»‹ÙŽ`õ¹Qôf¾Ùó«±øçMv,æ·¾A_Ñ®¾`Êc‹´á=ýí¶y…Û¹–ÝåLlÛ}–ìÅ…H£xŸ›º±Á‘{ýžoó˜ xÉÊ{¯tí¾I›olþŽ 6 ‡4_àçµ\y¯[“âù\bºa.M½ý°ÝÜ?ÏE³‚nW(›ãìkÃ9—ÄØ¿Ó÷ë;›Xn# Ù–K²üÙYè–o].—¤½-»—!&‹!×|–m*_¼»ç¥{g¾ÄçénâsŒ¾¾z˜Í-yæ¹¢G•ºäÞOmËCÙÕ‰P-9¤ËÝlf—¯©km/þ—”ì*½ËG|t7Çz<”wùÉ»o'ŒæÛÃÇøŠÂ}û¨mme|úLrá´?ZÉü/þ0ÝáïMÞfM·ÃE§»ßvàïáë¶”Ìþ 6æ±·ª.¥Û¨Ás`i¶ßPž:ë®î|4Ø?럀Ã_Ì:<Ž'®J~º£¹qß‹·¥ÿlkRW/þ—¹òüúÜݬáð«ãÛøiVG¹ô%ǹdîã\j{—½œkȇ·jYK  :*7ð[GÙ×>u W¡c=Ô¸­eå­âc¤Ö)›?—¹v·-¶á)µ@< cYÑ)×Õàyi—v-Ù³«âvw8›9/+š}íÐ×2R9\Äî! ÀÑ,½Æáëáôc[AÊëbô‹ßY`äX\“àÑŠk[“àZð=þî¼Ò›Âòš REßQü•e¬û¥Xsóbì:v@´Ýó©—1ƸÍÚ.Ø× êÇ:]ÛÚ´]‡ÒÇÚn×<«?…^º«ÚÜNg¬S QåÜXèòkäå‹ᓜ[r%w¹Ü¾ŠÉ˾¬,¦—2kƒk»ágéb»µåÍñs¬ƒf;¼†aÊi×!{ÔêìŒ3+þÃÕ×ÂßÜšd,%” ºÝ•uþň…MäÒÚº”½×Rô¥[õ½vä®q7áÌ–VÜÞO§æRžê7,D„sV}·‡w¨ Úesb™·{À0(E§î®K‡!·}µØœ¶b7õꇞ¿6]áÝâj*÷<ĹÔÎëð\Oþ$'í±<g#]³ßáñ˜KÝì±/^sn¹œOÑ•1¬‡;«uçÆ&o¼µ‡D‡p $Œá`yÒÃ"Ù®1Ê.æX„°*–MuIøÕ—·ýÙÝ\¶­˜Î%BàåÅkxä¨ët£éÃN þŤ¿ÇX^´¶ãr#º súÓåü‹Ý׺]õùПíSÍBkó/v?v7wü¥úÝÜî¦ü‹‰ʶ¢6ž‹aÞ=´Çµ ´k„YY6³ïf™ÏiæÀüCwÈñh¨uêî!úÇŠ>ìϦ?{çrõ|hù /þòðû=cnÆë³~Þ;W_­r;[ËÆ¯¬/Êþ¨²‹²êX wk: É|MÒR¡z@à_d¬ {´ÊŽÞ9…<2´¿ÒÝxä~ ¬ñ’rtˆ9Qó™j—_:X*b.žÝ¡¸æ¦qÇÑ‹šŸµì² `îhþn*üû›ýÅd“ 3¿>âÊ¿øÛx¼–‰W¡ì¢{öc=n·b‘3±ÚùÞ§½k 'ØVDýîánûÀK8.Ì5-ÃVíÉ.ÄÔà´ƒßuÀ¹Ù sL“ žŽô„øØ:i7w<kR•fo W Áfó²a°«+»2¶vÔø[cŠGÒj`ïË<ÕªÇÃÆ®Æ"‹íÖkøŸ|NõÓE@çzâûÄó`ÌfòQnVí¬¿–â6—[ûæëÿñÃOßþú‡oþùÛù«÷||òßüúÝÿùÇïÿç_¾ûÃúÓŸ~úñŽØoÿøÇï~ùå§Ÿ?þøÓ_~üõw_á¥Ú¯>~úÿã—ï&µ}õñËOùùßýî«ÿ7¿ÿëã—?ÿÝ?ûçï~óÃ÷ÿð›?}ûçòÖc‚~ýùûœ ý«7e±¼?ûó·úøñÛ?Môß}õñë¿üyþ`›¾úúßòíßÿë¿ýæëÕÈWöõ¿¢Ç¾ùÚzⳤÿõÝÏ¿~?‹øøþ÷Uî§•øªk¾ùþÇ?ÿå×_¾ûÓ·?Nàï¾ú¿~ÿwÿåïÿËïÿ뛾ÿóO¿|ÿë÷?ýøË§ ÿæëUæg‰s¨¾ýñŸ~˜µõ!‡ƒÌWúö×ïfÊ¿ûê~øþÇ¿ûÏ_¨pœ#ºÿ·ÿô·ÿŸþû›š?zãÕˆ¥ÜKÌý¿þþoÿÏÿð7orÿñ§ŸÿôíÿêÌ÷˜ù¬÷üýïÿö¯¿0åñ [ý²Œ?ÿÎà¹wBã_>&Ct~Lb¬õ1··ÇÖ‡sO©Çöøwý½ÍÿŸGþÜgVÈ¿~\G[÷^Ÿ?ÿ°>œûZÿ˜;öãÇ#enHãcžçó|Ö¼çNîm “ ¸>Êö1yˆõï#¡Ì­jŸ?<¿ý˜LÌ<øÿ>êÇ9ºÙœyj‡?ÍÊÎèÏ´ç•4«¸osÇüåùýlúÜ©¯íù#ä½*ŒožD×s¤>)ÍSnCº>}ŒÄóÇ#íØØ“í Eab}ôŸ¿‰02÷y_{þé‘Å£á!ûg_Îÿ]…ÇxÏÿbòžÏÏ©°F~ýáùùš6ëßgJA½;–Ôˆs—“® £ °/œ8Lï<û`VêòÇgN¹à´æ6Eæh Ób²ks„JÝâÏì"ÌšG&Ÿõì3qrh{'üµq…n[ÈÏ'à\ó#ü1æ5ÿˆúŒðKŠ -»Øþ¶kç=äùë‘üìÈðÅ3Ÿçp„ Åœ³`˜«àv:«ƒGŸ DLNìóïŸÉa <ÿrš¿&dr°áWH¾>æî¸Ÿ³AØšæâ=w­H¨Þ§5 •zþ1äõ,àÓ¢æ¼Á"ö1ÍQÄ.ƒµ2‡i²És*5tù…äÙ| foúó ø´øgò³OæÔ˜LH{$§Gõäçr Ô9´;¦É‹ >fͦa0±\æ¦>s»â\S çT ¿Br™åÏkd ñ£Ð“!ýñ3¤‡N uÜp\}ÚýÏä˜}økÿ˜¼?¤Ÿ—¡}s ÍÞ—çìPˆsç}bw:ä×#¹`3ñó |ôìÈgz„>ÒcŸ>ë<ÓϹ#lõóÞ&Köá¯åc^p ¹ú¼ü­²³~NŽc®%0ævv¬³žv¡ÓÑ ˜ðë‘ ƒ’α 3>ÿê!5üz¤‚›ÜЊ<êì ~¬¤yDq;ø(ÆlâÔlÆ–U°…óù#¤ÍCãÒÂßž¹>Ÿ¿ž‰Þa¡K™®Ú<~„Ìñ·çJüÛªô35þZ©¸âO…½Ìœ}çiKNH|üx¦ÅBŸ«dwPÁOK}$‡Î}ü-”{’ÃñW(…Ü ‹^ÕÉñç#ý0¾]O¨~pñW2‚ƒLx-rfÏŸPX)»=Æ.2Vd,Ÿ?%‡‹¬š&~´!ô÷£Ï ß?Ú³zþz$?ûv`S`³ü¸ß|Î=?“·½Ç…(äò¼/…_!ý(ÆÍÁâ)þŸ©÷Hç_0-äöÙº£^׋z‡ôj<èÊß×cÒŒüŸá5 ŽY®¹RöøS+SÈÌÀhCþ®["¿äyã’Á46n:â‘T5¾±äïÍØ˜zGŒüèp4Bà y†î ?µ6q ÂßãL~9PóœÝŽ,.¿ø÷¯Vâ fÿ>~Ài‡Ý^Â4 Y=gäóWHyò‰Ñ› ‚Ñ7BüÔÁN~ hG`ìùcÇqW8ë^ É…Rµ=°gáWHÌüb%Èáöã O¶jýµoì&g„q8¸Å=…dØ]c|Àª=ÿºZT8åˆð3"°\4‚î…ädG%/Ûng½15+:ëŠ?#Ñç08°œŠ^ñü/OëF (t pxíèÚñ)GÓ#sÿÜ6Vj1{@âÏ€ׂø×_è¥ðSJŒ] 6L»/þv_¸šQ4Aèç·Ì˜.½ÿÞ }{92††9蘲=ÙïÏo[Ïôx‡{$?»:f*¿,塯ʹüÂE<ûÉi‡ÔÀºÇoÀü‘w¹>eßcúóB  ¹Å¥ôü)µ 6þ94éóÏ­``$öýÖÈ¥¬S'“ü˜£8Káïóïü—ÛoLü1;D°Ø|p¢Å¿Ç²>çEc©‡•Ê<ø9Ç‘S†ˆÎ%†ð*èm”{:þ˜Ð¿ë¯¸Z­çiòéÕ ¤Çû„üùqÏ W”ðӓýdÝc{>›è¡µ±U‘Å?Áˆº¯Æã‰ˆ#©£úÄÄ‘—ß±$|OqéÐüŸw¿€ˆ¿bÝnÃ8q¿JAáâ¶4„æÃƒôˆîþùlþÜ€a¬ÿŽ÷©`׈@À£ø'YQÅE‡Æ¢fhfÙIÍÇeCyr"‰ˆ°¸'Æ¿KƘÁPÁ#þ¬Â •cì=I™?.̦}K0% õ¹°±Á‘ïcÎ/ŽQ锨ô—¹Æ>•þ —ƒA/æ@‹¤}‘:–òÜÂÀ„Ÿ‘SNÐN°f¸‡¼:#(œ²òmÌçü…Žœ{[üŠžÅñãTIѦ ,‹“ Ënˆ‘î‡ÇCAxއBùñC“] ‰õS:5j‡Éÿ;õo š X@Ç‹¿Ä9ѹ'ž9Ej`‰°§2V“Tà‚½‡·×ñ°xX ÄDׇKC9Í;õ€ÛMý.‰]íοò‚[lÍ :ûõ®»K$g$Rm8Úø;Ã’ÇÈ¡)Óñ€<,Ö4§ÛTIUˆcû{dðšß²IGLzÚÄ¿î¼æSm{~bä ÉO+üL:w×Ù_¸6cQÐ~ €KÜaÍß!lqEü Å८G6ñÓ¹ƒöûx|Pà·‘ˆ›ÓÔ”ÙÔE†Éù„ì ]6Äß©xë–ÿP©/k 'Ø¡Þ~V>6#°1A€ÀýîñS ˜`ojø•òh”¶íö8Ð_¢*Ø£[ÎS~ ; '¤ )Eº5À`±ÃwXª@jµ ¶møÍ/jïÄôlyø£äˆ†Šž¿R‘ó¦5´‹@Ô…ŒÁ’Aƒ=Ù®M~ ›ŒþÎ*§„îX"Lƒv7XîèÇx˧WxS+‰!Ã'È_c¦ANñü%€ ÆÇÉVÁSD?üø)ˆ§8J-"nÍATrUFò™cd¾bñhPxmóóWDÅ}ü;¶ÜBS’¦*ÿÇψxêô寗ÉðËÆe² áWˆaÅã§B>1'ŒvÒ`dÑ|ì`<óæ)G –`¬òø£æ÷‰”`ŒI"<»vê$i¸²ÑÌýÖß§%vÌ*ØNÅââïhÃlu”üÖÑý0Ē„;ˆ¦™ [žÜ7=M~X;Éß‘çNÓ¡ããs[/A<üñ¯° 5\ju%€¨jˆ èeì:ºŸ+"&ª2¨ræÞÌMÐËð$[êCD²T"¢\Á¶±Éö…%B´´î¢¹ sè)!)R´T6‚b$AòuiËü½ËoEq?†kþÆÆŸÜñ‚Ž!ê#ž€¨yÀªÂöÆ~ï!×ðó™rRÃS–ê~FDlרÙC"Ë™{´1 Ђޛ* žµ&äA/aQqìÁ3Æ©«„àd> `0›„Ý–²è{bøùš Ûâ7Nc«yfV((¡%WøK‹ù.Ó^ÄçÑÆE- \û!5¶¸ &u;¨ ìº6”\\0¤#{åâVƒ"Íòƒ§ÁóçPÜ’ˆWŽgÏ>3 }»3”ó•–Æá”¡Õ~Ж‡Ý|çùL ã¼ ÄÓ&þVÔÎc !*U·vk<Úih&Ñ! pIÅâÞ¹Õ þ@Î…b]•%À(h„ƒ£†£–—¢ E 9š‡ž*0Æ”j„#¡0QG•ºdýÊf!•ß8} –æÁÙ®¨USÔ! S…xP=etÂy<H`Y"úÌ.î§ÏŸQˆ3Ž’ÀÇ\ùœIÓÉø‹§¤ì)+üœÉŠÒÆÀèEc™Dž2¢ŸÈB†S"2ø/ºC®Ïn – _°àN¡ÐS²d¥×ÂÎ0º‘›Èë^-÷'(æ)¬—x"'«HD="G’Œ_Êû”õ ,¥#§[ûü‘ëŽì²È#…wþ¤\ZJ½EfÂ×Ò/奣dGîðñ“TL€E–/‰–Âþs›ÄiKR‘Èo¿‰°ÈÆÛfáÄK¥\0Ÿ(Љ>óûœG–ûmdËT„S¯øZ %L±Æ!"€";ùÊpãþœ=–ûyÜqÑ=°mƒ«*Ô/}YB;y0¬Õz¦”G޲‚ ,0KPâSd™»…ÐX|à9 ý> ô Ȳº1Õ‘?~d*B‚^<šý ql¦Á+´°ø4ð‚@ -€'9B¶æ™J…x¡Á•¾|G¬¢vƒÇøŸ òT·iåB¦¯Z&Gþy|–^©ÝÀ%ÅìúCÀ…ÇÏyÆYˆõ”L%ðÃãg‚<òÇ€X—|‰:¢‘Â9ï Ü×@¥ž Ü8i‹A‰ÿ9Ä/U€P‚‚ó7æ.¯f¿?cò"Q5›HØGiâå4ðïîðÃ:ŽÓ—‡[Ó:èE@¹^(GIÖ"]8ÁBqûä÷Õ…^`s~peñò(R iOø&•`ÒR5œà‹,(⥗~!†àýÍuFª¤Z‡r„˜d-b„{m[FT!°Æ€R”ž'!†ÔZÊB`’µˆðçAÙ„fQ „ÀzÁ>fK²©µ”#„ÀR âý=ÊZË]`«J o´/ÂŽ› µ–oR9¦¹mØ2¸)aWM9,µØëhêCƒÚH /ÖTàØa€fàj¾Á} 8t «XV*9s5î’NXôÊP„4 eå’Pr\1wa?Ï¥0(…#ÀÓa²}¸t@7káV%7)DlÁšà9 » Ü‚íPaÜÿŽTðvϾߨˆ;7ü¾ès§:Ïa+¨ì%S|ä~Sñݸàɸ'Y™ Î7){BîißÐÝá¥ØP`šùΈ;M‡®¼í‰+)”é¨TÄé„–N–Žå¤RNjàHЛq¸ë‰J¸¹ÜÁ›‚a–”ôDP‰RÜÙ¶*)*EQB)î@Ø >)”Ê#$¨@Òw‘ËŽ…Sx½çKw WðŠRÝ)]?nÓ2LÄ7aÁiö;Ä\x$§à8=5‡£LkÔ¸§§>Óv[ŒVÆ 'Òƒ­W*+•’»H¢Oø¹ág›×Z/ ¹#FDÅíy§m*ì.4ÆŒ5OíˆÀÜ(Ä{ÃÆƒ‘ÇzC-ÜÆ(”¥”%÷(i ©§óÛ@¨8σáùäÂËlLÊÓ,àòW 3•ƧŤÍ0ÝCÍ¿ž;¢´ÐÀº+!0RéÆ ÖÑ3À'Ñö$fÆUZóbÞ)`RþŠG— ”&’5|®Ø¥!Å"Õ ”QzÅZƒËd¶àù¼%",•3kͨ#õdûñ¸Zz’y¼^à¬$„ÀP/¼Ï7qÐth`Ȫ„ŽRÐRô¦Î…BGM§²;ëÜè*Umt"²f7X"LëS ©ØqP½«[€I¤¹#3äeÝt†À†ȱÑÙ&ŸÀ„Ð9JA!F Ç Í2Fˆ¹Íx2%"À´n1E†ä]ÝdädLe&Æ©H+½:¦ó4 ¸jž2]ˆCW¸lQTÜÓຖ`i‚Iq]J,MK¸xQ/?rÖ ¨wïJìu9 &MxÕLÖj‚å-W'VT`‘Hí™ÿ‡OAhö*- ÀDç³Ð~a· Œ§7% ñMÐo¸ÚF"Õíun–ºW2ˆåÄ&(¡ÕAðtUÂRk8b|úõ¦ sÃò¤`‰Œæìk^DÁqc)êE‰C€Œ$ѱn2$KßL µN͆&¾» ËÑZÏ~ D`oê–`±ìdf»l:ÊJQ„Ƹcðú3.%†…Ôx‚ 2ÖM†D`雓r¤ÖÚìùM3ULW"õŽ”k=a #è?^×MaZNûhŒ ŠÙâNÀ^šÅs^6F¹ßŽDe ò€fwÛ5é —8\)I‰8¥2!ˆhrÞ¨Ím ‹ #À &é0«GU§TJ C._Í"Ðö/ÔP¡7Æ2¢6|ã!‹§‘ ¬V+?‚15b$)`'>-îë®)ƒ #LUvú‘cÇÊØ,–ê&ƒ¦Î»ºÉ “>ŠJf­wzœJ âèf!t[n‚|ú uH„1òæbÎbL!ß7J¿šƒv~çP£b?þ޶Sëó7•g³÷ ٹ·³ñwÄTVÈ ¡ öjÆ\Æà jÚÊŒþ~b4Ä‹ÙhlÛøÀŸ§þ˜ØÞÊ€TflM\†ÅÚ‰w.óöŠ¿#¦²æÉ«ýëóÄÈo©Ï3¯g_×'ôú–Žª;uΘ‡´1bô÷#õa{/Ä<ÏøÎ8Qñ·–ëë Ì sûëú<11ÿøwhÿä ý]}ž˜Æh^…WPÈ5tÀn…6FLü1ZäÐàZµ†{zÇxÍòhN3äwĀ»ÙÐÁÇß›YÌË|¦2†X§Iöÿ³Î£¿c»b=cÿ<Û¨yÆßOŒä£·ó(x}_ùÀ0mÜ“ä@DB% £ÀrPCÛ}Û62„ 2,˜–,¦u‹)rM}W7¹Í†>h8m ÿ‡” :©f¨gC-xü1àÞÕÚ¼ÆG_‘ç,:±Z~GŒä¯7eiÝ,™®Öx’.ÚºŠ ÝÐJ¬Up0 ¥OXF L‰“r$å1qa9õ¦n¾¼œW¾ßG C„)!©›ÌŠ8áNc8Yë¡Dš—Ètªêæ? Épú7 zR&„À¤I‘!yS79SmYM/ÇTWS(:ÇÆWñâ-‚õuÆÄÂE©Á` ‚åð;bNè>ùôoÓ9ÖBÄÄßóßæ²³ƒÎ–Ø~/šé¡<Á€CÉ Å¡¥¨g¹.R¨\¡Yä¼OÄøäC…Xï‘H z`A•9E€;¾eˆÅýšu0)g¥@­xƒýøaQS~G ®tí2GPXt4Fƒx¶ªüˆÑßOŒæ‹Döé 1HƒèC¸6{CpW"Áæ ð1;ȼãÅSîÛKßL ÿƒ‰Ê¬x¹:±Bî-©K׸pIÄM·uZ§‹ “r$E:ñMÝ"L{Tû 4ûõ(LÊ‘«¼ .f ¢3‘`q|t´gý ¢‚%Äë1M°PÎɨØ£È%É->^®„È·ýxWÃz‚d ºrb)IiÞ¸Ë7>*|É}êĈñ)gý­w®x{ÞÑÚfÆ”0^yu‹˜˜ü{\ò/ë#ÛBÜ.žÛHlã«í"b´>~®Až¶NÌ`­i‚~G :VPâà –|0~ÄPÀrŽf•#¿&æÿ.¼ý«úoîáîÛøê1RŸ8âöŽEáOÿÆß2.‡ÙÑ)Ü­â½la`˜ËÎó§½¦Ü ãý=Þãï'&æe².^µ+`tM=û?ŽÝ«;”Ž»YÂÈJ¾ s)bâooø{1{‘9<ïéË]>æ/²Žp—Q½K†öÆSvÞ“OFbï‡)r$tƒ¦E ¶aè¸Àb’u¡F¼Ð.¬ÀV@`B,•¶ZÈîN{ßÔd‘'¥ 0ÐU"ÀNTöÞé©)°M9¹ó͇BaØúì™Ô®L’N{Öq¼Í-°ёoÀÅ8z¸¿ÌM÷ØRŽÉËB&ã#£ }5¦Ú„XŽŒ‚ ð î…ü,,#¡09Xã¡á8ÉQC÷ò0V˜S*MÑ0-:éU݆ÆQÆŒ{gœ;:-#Lˆ4{cDûˆ‡O œqO‹f9B¬ÑKsìÖ…ÔØ¦7[ßåàcRÊ!±æÉŽ?“aP*'À”ˆ0)G,‹ÀZÀ&ªP“ÍÀ„؉1‚xL®ôAêăÆ'œ¨S‹íƒJ ‘Â+Àë–FØIT|ZL 94tÌ¢À„ß'o^W6 V\B`ZŽÚ„…~S7|±âø¨ Å‚èQî‘P 3µ¡ 6-í2!wæµí™À¤œFÙ¬…q4n&š¥ÅþwÐ*½+Q`¨!d?m&n±öÛEœ…Œþ~b´Š0ÊÎ%.ÆãÛ'Ŷ>!låVÈÅŸ| ¡W… !°ÕE…ÜK¨tlðYCÙie éÃ"Zfëfg/,¿ÀË`ÃMYÄèï'F X \\N¾Âѽà äpB¬1~)V"ØÅHÈH¼ËM,K¨tlðY-‹bÆHh·Ø¸`ó‰¿k±,®ßËœªQ¸µ1$ûú] 9…ÆI å(ÏË1%ÍÎIY®,Ú“a(–ˆ“rDž¢T Û2î0B¨ƒ’u¼‰D' = %ãŒ`NnúÄöéµA‡ÀR9A* ¼n”õ$Á°Ä¯¸à$ø‰¹Åêh{(Il\J$c“håírÕ˜ö£¿± ˜S4kÜdøÈ:D‘H–A¯ ¯‚­Õ»Üfj“‚»\2 o"Á*ÏR§FLæ‚5žÀ„H°ƒ|N©t݉<x)è (ý~yò+ §8¤õØ©“™j°2•Bµ ¹%3ÕÀ¢Lk 0©u<Å€xËpa‚P-j+6žQ;!Á >ڊ׶±ÓBcJÊ,lj”K ÕO‰æ*ê´pY?aeŠSùµæJ`ZÎ’îàœj|{°ƒ(O½8x%f8R¤­¨À"¡°XŽÖm‰˜pܤD"ÂNzT3ƒª)KØUàå'0!¦Š¨¹¢×saøÇ¨¡’߃ìd, Sˆ·sù;«ÂG$6ù-߆<¥¦¢ó‘j'åTT EVÕü×Kå{ª’É$IòK&x1IÔXŠ“ ´ãU2ø£8¾^+ŠÛñŽ×i]ѹuœ|±o'qò)”ƒg \¶¡ÆŒ¿ÓÌï6×Ð'œB=Ü¡íy:É?üLÈsG—Ó^«º3hÅ•ÒÍEz"ÎþïJ|l ’É—kNq;ž8ùÊnÿ~t{= |ÔÉÇE%=§¿· ¢(XDz8ô¤ä~ &ä™gNPq¥tËÓMJŽ—pÚíxŒþs¥î™Ê@øbŸÚ<‡½;ƒ"Ïa¯u@Ã|2®j•ßžïd|,nO(ð*cvB® ¿Ð+”EB`ПÜãx6È¡½ã)­òôj1£•Ò:[ãD~yÈ*nÇ;o–=ÅŠˆ™·Yï=ðŰ®«-üVPXb‰9 ßô‚à¸ò•€H)P»Az.¶‹^а™“>Ž„Àv¼íq1bn’CG³1OidqJ æöÉJÛ"a-CãwÄ,¾ ® © ”®Î7ä¾3l2Ä••k"•±¬XwlP—=¹r¥†DB`;ß$á3Ô(ã¡LDÜ[0 ÿ¬uÓ´ Óìv¼3wA¢ I¡\/Þ¶Wo(±ËâíiÇ+ld¿|½¾O*nGX© _ˆØÀƒ\|©’¶+À¡P–w´]V« ÃL‚D²òáñÙÍ»éÍе[PœUÊŽÕ%„ <_(ñwÄݽvöj×˶6@)½•khçÇqyyñTÜŽGë®ÔàFAb[íUJÄ6B-ÀªÈ,ŠDÂÅ™£ý{UJB`šwž:oB;”RiAì år#ƒ·ovT1E"•Ñ‚©£ºÁn°_°ã–ßýÚB¤‘P³„@Û.IˆLƒ€„6#²‘Ï‘&ߘ™@%`ìpÎ×aAT¤Å³Ð nëe“ß#ŸÌòœHðœGÍB®3Ÿ·ÁÇ€Q± pÛÞˆ¥°/ØtbÍ €èñ·Ú±ûΈ‰6 5ELâC‹-i°1Óôšy+Ýx0¬sÕ pÆáwĈÝ^ÄDÛ¾ØÞø;b¤P¾ìW„⚀A FÕ«Ü> T:$×*ÓöB 4=B Óëâ‹íP¬ÆÎ ˆ;Ï5·æ8üVÌÓ¾*7‘¦%$Y”ÛKET:a"ˆŽåh¡FúªÜ¸l`¯ÊÕs¥”×BòK5¹¥oðLVzKD’¿á2ØÓ rk:|Š@DFp"É­ƒà{ÁFJÄ)óBœþùÅ`›çoÁɺ¶D„á8, âûH$™y”ŒË7"g—ÖG"‰ãcƒqØ7„ï tÍÉ3h’„áwÄD„`Äœ÷™¿”·ˆ¸½Ä:`{œsqŒí¥ $b¢%þ½ ìƒsæ 68‚ž¿4 bÎ${ÉEœf/’~¾6¸e8{láy3¶vŠS*+^JDwœÉ4E“ÄEÅMjNé‹›ý%¬‘ˆÕ^°a"ÐŒ"¶À[ǽ÷•H.b4ÿ§H&r>qbÅß#ë(Ô3¶ñ•PUú!²¸1ÿ(:zÁ6GŒmåLŒýó¼ÅÄßÒ?Ò·ñ, ç`¸BÈï€Ñ²ž}ûMmZŠ“}#‚ÌòÝ^q"ÏTF5py"êByÆ(RNWxSo aZN¼Äƒ4&þŽ ‘à ÷+)¢Z!´-±Æ¯¹iô a"ÝRÎXÅc1k-'ÀTVS$ë×B­0±Âƒªüäã«’¬XŽ\°å-b­ð[AA’A‘½ËE< EE~2ÖW¬¢»Hh¿Èe$^'DX®"ñwÀ¨ÜNxçç>$"‡ð[öª¸' v˜ÆŒyˆ]xí ³ï" ¡ì$E²~@L``…/*$1¢ï·a…ÀhP„#LˆÂ,”“â…°MC\i8ïh*YKèHU.¡Å¤ B#½5.0‰íbR…¬¥ B,•"Iœî×!˜R8ïj\ã>é7¡ ÚžÓÜbð‰Ó-ñ‹„Há¼%Šyl\l¶À„Hñ˜¤Ð`Gât¿L”ÂyKsi\h¶À„Hb¡Ñ_O" ¿þ#0 5žš-0!4h’*¡f¢/mŒ.„À$sŠàãÛH`òH(Lˉ‘o$öxŒú"D*'„½•.PªAbGêÏBµ0ù³•#¼jŒÞ,á\B0óø[¹H(˜2Šðìôéÿ<ìIĀϾÀ_3¶ï³žÒƈ ¿%ÜJ Ã÷r9 ^‡tÔÆ¬ a½%QËÕy_`‘HÎû¯ÂMHÖ¯÷¦‘Ò¡CÃa_`‰ ð: ºÀR`à¶âr«×vðΖØÝÏ êi!ÉJ áÑ5VºxµG·xq4ÓðÒ¯„sêö<CR -ˆ”…<Ó=_e…@éá·`â Ý/^¶±›ÃoÁÄü£·«OƦ~á±1'_£Ý~þDÎQ¯DÁ„ßâ¹øÂƒ6æùÊs1b j¸ðâ%.‹aÛ-'bÂü£ß œ~íº¨8kž!)¹—ËLÖÈë^]ϰõ#&ØEí%­Ý¡Ï[HÈôBÍ‹FPœ¡ i¡âð$Ül „.„Àôµ S˜©·8Ø û63"¯h4éÄB`ÒRíªYú…±c¯G!´И¢Î/ë–|ÅÉPêãÙd€kãÕ3a1 <²S Üq¢Ë–rR¡¦YÏÔŽý œ ò:o °ÒŠå¤BL³Þ5xkZ&âAèâJåh¡&YoÈz€è´çë`LÀk9Zh„i fÖà“à÷«É¦î0ZŽaZƒ™5ØX°ÅRwÜäˆAËÑB#LksÛPzç¶~#å O)£ß°©JʆrÐ;Pí L¿ÞMF¿Aí·¡Pt¸´Ùþη› ’o„XÌ1ò:X(p™¯w°¸``µ -5´ ³ Ø'àòDÇZ¦DctàШãny…K¡¦5ˆË·ÁašV¸aZƒ¸< "€Øš–šºÂ#!0­A\;ôN¿­p)4´qy̶ Ái•¨+\ 0ÉZÎlˀؚ€ºÂ¥Ð“¬uMƵ¢ßDBau¦`|h4Sd L¿X›)Ÿ±§•7Û2 †Ê4­pÉ Âbn;5¯¥˜çnX¸Ý^L-°–‰¿Óò–%œc\$3‹ù5 á”PXŸ)lèud]̦ŒV gúF3ˆ0Í-®‹Ù¢hØ—¥¥ i ⺘½1 Þ‚ÍGZÚRh„iÖq]ÌÞ½ÁF&-m)4Â$kY³gÄä°Ór´Ð“¬e]ÌŽ½ÑK—¶aZƒ¸bf?Ýaâ’–¶aZYŒqùè7RŽÀ満ð†#ºã’˜~#°9¯!ö‡ŠI—Üìç± ´;úfaš›¬Ÿ8¯g§Èi#D„AÃ8 Ÿ6Sž0•¡ßPÀ"6vZ?a^+L¿æ5æäײJf?Û!S¿Ñ "Ls“õçõìôY9¼p•PØmèá„«Syvà¨4ëÞÓ7šA„inq*ÏÃ[:­F)4´q*ÏžAðÃð´¥ÐÓÄ©<;®hѳÓj”B#Lk§ò츦8Ú§Õ(…F˜Ö NåÙ‘ð2.HVc$¦55g¼|£ålN1ˆãDSdÆ L…͹q>"ž¤õçµÀô͹Ñ<‚©hŠ,é7›sRLD?Hë'Îë9PðÒ-ˆï „ÀàØA?‚ŒëT†ƒ3Ä술­ßh¦¹Å© WkˆÙ$­F)4´q*ÃAbvDpI«Q 0­AœÊpE‡˜Q.Òj”B#Lk§2œ¸qGF°ñ´#!0Í:NòÙÏ”Q $­F)4Â4kY?qÆë7‘PØœ| *MZ?qÆ L¿Øœ°Ð xŒNr8šCD3oV–À^ç&«D¿‘r6g"Ô.§KFæõìt¼®VBM …ÍцˆÑé4EæµÀôÍцˆ!¾Òš‹óZ`úM„ÍÞ„abA,™´æâ¼˜~#0ÌLŠ–§rÛ-`B¬¤Õ(D˜ä&Sa ®G8Ž´d¤Ð“¬e’ÃQÂ.„ÎÐr´Ð“¬uýįßH9k 3Q'C§2üÂ!®GD‰7+K`š[œäˆöq=âAh9Zh„i âÂ@ÀèQâÍʘÖ@ÖOœñˆI?‚ (!0÷z‘Òú‰3^`úÀЏ@ M‘/0!6ÇâPDH31ÎÄÜþö:r±y>ëßL$inqäfÏ@ÛYà[¯åh¡¦5ˆ#7ûÚ˜oø4ù¤ÐÓÄI1ûy@ž/õ4ù¤ÐÓÄ¢£=ËԎ܉ذX ðEO)2Ú"Âfç#êJïv*4~s (We%¶3ŽB·µf}- ^Ãoê&0Í­1úW¿.´‚ gÙ4"¡0™|qH®Óây=½æaRíëb¯ŸÔ4«¤ÐÓ¬¥¯¥:Cq8C&B`Ã"ÁÿT{´oØ ^é›H(,æ†˘;p¦Óþ…Ð"tx(*!0G!b'¼ÉM`‡í;žö)zzÛè™3×,—2”>–ŽhÀ!qdJ'’Ðú±ç¤ØÍŠK”/$¡•kcÌ6ˆÖáùB5Ý)5}^÷aÂÉ *Pº#¦” 17¸é6¡]õÒÜ?¥ÉüHH¥"’Å)øô%þ¾A{YTt4î!YCÿm|ô²,¡nPö :£œÙå)8PQùµñÝáÒ³3Sø(ãÄM)|¤8ñ9’2N\‹ÂG'NCᣌw ðQƉ Pø(ãĹ'|”qâœ>Ê8ñº ½ÁiRòé‰.9êw£ŸQX¶Áwºøí`CÈnQ2dwKTB¨µ!ÐW¶~†ù¸1ÈØ™ ‹DÂáÊ¿íÞô”!n³öªÛ»>ƒäm sÏŸÅÚka‘H8¦xäXˆ·yÏ?vç¹7¼ŒžçF»Í|޽&*™Çì’c?nŸíÃÇ’G> ‹DÂ5o۱玽û¶† Œ¹çÏbíß²àâ$¢`tÃk^Ì›v÷seC`‘cKTr¼ðŒ7«ªŸaAmþC1a,, ±Ø†çœ!擎½û¶† Œ¹çÏbíß²àâ$âqksLŽjÝ<©9^ðAR¼áéXH"#¡8;¿6¼ xœ7ŠÕijÕÇõ6GÁ$æA¬&{÷]Á sÏŸi›_²àt±Œ·òÍ$Kx¶áàãñP*¾á9YÚÔ¡:&¯k¨À˜{þ,Öþݼ\šz2±ePôÆ œµ Š°Ù¼ÞC|ÁÇ¿6Nzø•]pq¿xåQòÆ| žÍ4¯Â‹}…~Qd€ç• _¥¢'býFjNä ,SÖ‰ŸÅÚØs'ðu&š.âuºGÚLÞÀè È àÃKÛ,¼CW.rC˜+xÁ­À;¶ÐH/‡•‹/™*™Áš±aÑ\nؼðW¹žå}ÆÌ:¢£¨af"ºÂø;~ŠÖaé~að28fL†·°ýÖñ«P²SÝú¶ ž œ/T‚¦‘¥•\¡T†<ÇN,ª„JëÔBy8†DÞÀR%£ÐMœ÷8÷ ¥a|yä}ÆÌ:¢Së} ËøÆ‡¤Ò¯P°¾N¨œ W eeuIª ÅU È D‰ÎÌÎB¡¸6¡´Ðb³P¶En§²´†/¥h¾ŒÌLÁW«‰ºå›ê[Y 4ŽÇXõÑ-ÜRÐT ÂÚ™¨½Õ,8£å|ñ£`5òá¡îù¢T¬™‹ü@#‰bø Žƒ¶B™…yS¼ˆP zË×H4ŽÎjš/*W°ᦥÔ=_–Š=ý;ç$ÇW{¸<±H®¥ ,X‰õŒ‘JÐ[¾ÜÕ0Ïù$HÊãY°œà©¤Ô-_Ìä‚ÕÅÀê¸,N»8ÏH¢[ !â ÃjB|w¥ô–/:ãâÛ+š/·%¬Cxë(uÏW·~•A`©ÇI ¡D„q9“ã?VÊn–+š7ËmÆ‘ ‘ë B Õ¡K°BÉåE¹ÆåŠ[yR¦œ~;‘¼ÙK`Ç8ó‘ë ²>‘‚ab`yžg‰)aÖfma)¼œ9o6ƒ×ŠDä:ˆM…#XhV¤HJ”ˆ0NBìX)ÕoÈ’7'ªl$.IW"lj®.äåoìg$Æq:}Ð,Å[ ys ?-+!râ5"É¢0…[Àe“Uˆ,ÒAýÈ o·$ésâL€“ˆãh\k4”½Ž¶ðj¡¹×CJ-×+Ì#ìD·;^J g 0ÆŒP½Ýÿ£…;ñe¬¾Y–ÃŽ},uIŠ"0â ÐæÊ"Â8NÝ-] ãÕšÍè¶™ ‘p“ÖÞ¨IQ,b¸J\""ŒÇ6œßhª§7ÿ(=1œmóBd“Nã†5Id_†ëÄ)!0ŽS÷Aã6ÏN_šÎ jËŸW§k$*Cßñ½^Èn…è½)QŠä–J†žƒ5Ã; „½·”Ù`…ÊP¹SÜîDš+yÃ@ uË•µ;­v©UÖŽníÈ—?%kç¯YÝO‹>'«´ÈíèíF¥[”ˆ=vçuŒ– rà>µóÖ‡ù'T†êM“eçSGf‡—جÄDåy¤µi€ž>|¢†­êùn›(A¦«lâ±R"CÞóê×G¢2Ô é^ÆûæåFrâþµóî9¶De¨Þ“8e ‡ö¸•xX‰‰Ò{[®M·§¬|i‡÷L¸z¾aG™ØÚÄiçÄ _b<à*T†Z!§Wçö^Baða½Yq_ÛÙH8‚ uƒÊ­ËϯáÐg‰¤à6ª”ÞZs›Ç¶g¯ÍCçÓ_ôÍ¥D‘ér“î[)…í¼ìÂÒB¨ µBªWGïtöáùøPnƒJ*–GÎÎ[1ÜX9ûc8¤Ç 9©”Þsùrù§µÜNìoïè ÉÐü*F§N™ªA?L ’Áå‘3ÃJ«8†¢ŒŠLÔ7·ó„<rLoSIËEH£nMÔÚHߨ|K…žtuã#­t)*Cù  #£V¡™¤ÅÕ¿ÆñBÚ#ãYöB×Ó7wò„´`ÑTOi¹FüE×P¡nµF–‰FÁ,ýåð~{1OÒHe(Ÿ¯ÂaHV¡n¹b'Ç"§«¨P*2æ,#‘¬Ž@…ò9+H:h¡•¥Cš(Ej_e9hãÒ¥pÇj¦©PÊ'µ0=!7%ªüW ‰R¤.•>ªVw‹¼w(”Oí`3ünJ”þPh¢™;' iÿÌŸéíúF6—ºX$-¡›PªÒK•ËѤ{Ç:¤Ç­NëD R׊¤å"t·*CUˆë~á£ßtàå£PXtÀ}w°(R7v,áÓ•V†©ˆ÷³Jk£G™ž,¹ß¡Ú6¦D=ÚRw•A=Ë{+ÐŒÏ0“Ñ6:Þ¾9Y24f|>î¦v‹¥|ahª.¼˜OOÜ÷3+BÍDOºlN¥RønNÝlÚ"™BY²éxÁ7xµ¨Ðéöí¡%P3¾Çƒ…Æ¥)£T zn‹V2éLãÝ¢!Z­ê¾;a24g®|,å ½ ÐT&oˆ`ÜÀžú;˜ZúÒ¾9d24mÝ2©S)ïÙ7…¦2ù„ „ktΕ]çí1£È´ICroOïT-Rš“Ãò¸MðÄÀ ô¶n4#=êd£Ë”в{¦“ÆÞyÜ¥<Ù#ô¶j4£TJÚ;„Ìç¢nBj"ƒyá†jq¡D„‰-†ZzˆˆÚlP‚ü0çÜüW,˜ÔîI¡ÕDNͰ%{µó±5~]X2ÊÖ’ÕØ-³¥3~f\z}›œßr$Éá_g£ƒOú鑮仴„ÅŸnšy{{ímëÕƒ!n¯)V‚[xµFS4Ýâ|Ò)“yñH¥É•NJv(£)r'«Ûå‹%Ró”½ê-­±©0ò¥ 'ÞuowJ’'¬„&uÝ¡·çñN8CŽžP Ék ‰ÑÁš¦%Ó¾”ž¨ŒDV°ïî»s¿;Ì' …8ør8¬3ú­ )AjžÅÒ.>ËÌó?xwž‚WäÞ&B)Rk¦”Öå]ž )}M%Ꭷ.±ýÀôjR3mPG‡òðZfï™JH.1<=9ŠË÷y˰7ÃSÿdï²'*!¥ªˆÀ³á´`›§&‡7®7J‘5ó÷ÚÁ¤Ïa›-ý–†•yl;LN”"Y±•U‚ôKeÚÁGÁ­µÇÖBÛTBâÐ9¶êO\KÚnøšÔþ@ž†T*!éÎg³œ–JÀNȇé¹Á+•ê鋉ºç4?AfJGZf¤ñÇx6ž}Ým«\ÜôgžwŠÊ#U¨„Äv„›`Ý–Bù9¯%-•.TBJ 0ä›Ú• ¿{•»R”½s[™=O[¡'?ßçt—4Jj`GWÍH/"ów‚ÄyKvå²”´\:¨ÙáuY)>©Ü"̉ùŸJ»6¡RúƉèÊŽ­¤ª½ÿn'$ß/ç³íÛ-MKàëè;ž/™R$Õ6_ŒßïõĈíx÷¸!…Jȓޙ¯9¶BŸo©”"7{Ü ðñê”–JÝM©TOÙÏr¤—ÒÎ'TêO?{Ke÷w„kµ×Çð ²Ù>|ßw»Q‚,ö~’=}œ¨„Ô]C¨„Ô}"¥é.¥ë])Aꮡ­•žx·+¦>“]øÝš¦],vñìx¢òj²›x¶;QÉ\ìqxóP€%,^e¦o•f¥¨Õâ¯àµùš)EÒ8±|É9§ÅhÙR%$TB’®‡½ ‹âÑú-C^U)x› WÝJY‘P ÉØ¬£¹åTŠ»0Màk[Ét0^çA(TFböà5xŠx$MoŠŠLß%d¼7jš– 7ÓtOMH¶aÎ JW$M{B‘J%$©¹(ª™~ /Ì›“¦ÒäÿÝi¨H 7æf=¹¦YÂM3ç×4Œæü¸bÃH” s èùYõÊk(ïN^1Ái’ˆ~®œ‘B%$jfU)×HièÝùŸJ„ 3%H¬܉+å’–ëw†´O¤ºÄuK¤•²é‰Â÷åæì©\qJ)R{IV•î(´I€l¢¢1…B‘9¯+g²¤¥H‘ZëwÜ…"!ô£R¦“Ò´µ™)Ab5B2R¹6ùÞí¼ÃUÊCt4)Êé³f”Æ(•Æ]F3»” 3D¨„¤@hrµßrÀ¨à¦[!RdúNTªC2R)Ò4-»ðÜŽªY~•êû…6Ùà׫ÝvYÞÞÊÁT@žSæ`*!Q!ÈB*¥8” Ì;GGN£™7î•[§P ™J röï8\ q¨” -ƒL£òN"TB¢; '©4ŒJiÔl%C‚Ì” Á–{¯”IZ®'©ó£Qn#T®ËÕ>š©#4-ö„"3%H0…Øÿ%CèTÜc%Cmw0¯¸É7JU„JH nùr¢”†q˜gNã $ÈL Rù:ÍS[”J*µ]fHšKÚvé%¡rûbÒƒ Ò¶-ý(nQ²§ÔiÊt”Rdg¿Ìñ£DIÒèêiK+û )TBb¿Æý¼™×‘¤i ºn…JH]©©ž±'ÒΠ”"uÁ¡YO+÷µ9XÞóV*­MYqimJ ºŠ…JÈAj®2ö’U@T¨QF&Èô i¢ ÙK£AÓ´ܲ #jh*•êû%í»¿›ó…>|ïÆ]‘ifaWœÓ«™¤-Î3ý.Qog$óœiûa,y¬§QF6˜6‘” ¥H:š@šÔ(#Ó4-A{^)A¾ME¾K‚Lç‘–'­}w)R÷:LuHwÚÎHÍ™enMo¤š‚L2UÍEK£fr¾H)’öÔ5ÊòGlÎ%Ê¥©Ù"ò˜8Ì ëi” ¥HÆM€¨7>™vÈIåRïî°‚¤‡%$#ì3¶~ÈYA_52©8$ {idבšgêÁ“i³_(ë’^J}&HºwBîÔê–Óh N£$J‘B)Ö~Ršfr0ÉEKPµP©E*!×4!o$ä ©s÷dÏÏYP9 â :X¤22Ê ’ìBJÐ[yº£+’µ®sf™d/¦Ñ‘’­FI¢ ÓwŠÄå ¼R£„NÒ´„º:„Rd^›1-õ©ÈÔ×iÜAÍ™ÚÚm†¤ù¢HŽÊ\’­ÝÒ´„ÜבÊHé$ó£©TFFC’º‹¼\Ç/¦ÊÙeÄ4Måì ©#-š [ˆÆ°›4ÊTÁªCÆ×xæ\ìù‰äY¥”"wŽÊìîDš&%$YžP ©Ò;MS œJ•R¤J Us§=ñN¨HíÜ& alf–ˆ¾žðfò]‘œ(%È$Ñ\pEƒ|³7 OúN‘*'’´Tú;™€"•Ÿ×zJO¼»¥>“ûò1;šÙ‚šçXc„›w2A2t$¡íü$ í›ó¥qž)2Q©2@•<ä'ÕÎ/ÌyE2$~Írû”´$#KTDæÐKs4ʽ/¦Íž§”øœA‘* ’´ŸªÐûfºSŠžR)EŠö1¥é-Y‘J©äR4“ù®-rLÕaêw‚Ü)™ýÒ®[.i*R)Aê ×u¤:›¼R…R$å`sŒÇ(å"*E*¥–\jëô\H{Xd 2}§Hµ—zcöÖÎJ‘j×…E F3KX±‚²y=Ì>2QŠ”<ÿ»^ãúSk-µÁ’t¾£Ë-YyïtÓ—û»rðÊ{¿¹é'.OËS{ åë´<½i$PJà. MÓÝÎqãI9Ïèfvè‘J֒ܽû,z'¡RžäC:v©ž©de©–”j D)@Ç9nHµý¤–—r‘2­@Ôhq-T¶5®Kø,†?¹ب{í)2—'¼›p±ú]./"7Jºç^Ö¨½R^˜å͵Ù;Lé;A2N1$ÒÍ4p1M¥õŠLß û£®Neþ"­WdúNåú¼IÍ£™6P4*SdúNe£ó|hÔª WÎ[EæïÉòfÍÈK%)q<™™¿S$zpn'žõÒœY9•­’2‘©<-Aθ·vzÊ™šít¢-λz&«±ëR õpzç”ü¤Ôr,å"%¤ˆ‘ʾI.Øù$ŠEŠ1ñ6OAJ\Ž´›&Ÿ´ø]Î%"SüÝ[e‡Nq2Þìå©.|}Û_§ma'ÈæÒ{ʽ:¯ÆJ&0•Tjt:Fò½v°cš<ç0Z‘ºAqñf\m>®jÕ”Ç ¤£TDR»eQñ¯¹Æ:%XŒ+ð“G¡‰L1€¤ÈN9£Î—=•Qü¥õ²fò†Õ ×àN'7¾wÏ@®Tq¢Î4Qêäß”¼Á1’$wW4„—ÌÎÝCÁ)îM&œb¸ñrî“máVÖ)'*$1­Úq'3›-Ê2ÔÈ´eìÍõ+…Æ[})ù w´N×­D ¸S4ÊÇ ¸Wä^޳ùm4» Õ¹{"öx§dš¯FÌ,•º Žv?u¡°m¶û Ï*v îZ¢ï*!S̉í#D‹ˆŒëH‹“¨ˆ´«à|Ø­¤Ð~êyóàBTÎ0ÜÛ'¤€;Eà ½½Ý«' ñ*œ^¡2’ÝqYw¤ N÷ʼ÷¤ýE¡I>Pnó.Oaƺáí§S@®d3hU²' ·`ÆJ¬÷ú3r y†ÎcVÉÜXݾ¼/pJå.Ã^ÏMçAæ“@VÖm§Ðmäí:Óíéí¶˜Vm|ŒÖÖÊL`[[ ÁxÞÖl^Ñ>œÈ¼ü9Ýð³­NÀ:ßÓìÏдs¤lu r90#7ÔD*Ø:CÀŸd¥ÛÀ ´w¶™Áœç Éhó³ñľæL½ô&®÷kµÊP©±Z^(òME¦šIdýŽSaãuÚÞ©ŒŒy*•Z«QBRÌEFéE®‹”'6/‰ÒºHy)OµœI§…œŠÔ3çMÜ¡·å¥~)¯¢,)Rc°èsãÒÑÉŒ•ɨ¾‘*yÄ©áNϸ0)îeB$"nb35›ù˜D3_îÊØŸ˜¿Š¸z1p¢’Dû’Ž‹2„çÌ_Ez×"“#Ä$NÃNùuߘ¿Š¸ <zãJ$žíÂ&ÕºŠÛùø oCá'Ÿˆä%©½ÉIPÃßM…bªóÕ:p`'‚1ð1_½Ú†•¼ázwÎO”R$å‘ö†Ü5×.?¦àgP¦ÊiÃiö%£n—©(…H@ÎqëÖnág4Õö[LýNd3+[¦@ÐTL Š:e, œ¿UpeV8_Ll£©˜œT·tÞ]8›ÀÈŠÌE)Ç/üsço˜YàŽ™RqΓ)ç4Ïàüm3+ŒÅV)‡9å:MË8›ÀÌ £p{*™=üêTâ%pþ6›/R†ÝÍdƒDB§¤8‘ >‰¦mr“ N©$ѱôNdƒ1 ¡—óČůNÓŽ/äœÀÌ £Ð¯{*Ή1Äl'RÁÿÖ ·ÝÀ‰L`¾;Ð 7wüÉG3L0™&n›Í²ÜuŸJ›–o›OJ剂ý±s×Nàü­‚Óæ“Ry¦¡ †r¾íTéÛÖÍ'¥žë!·}Û©Ò· ¬›OJŶK£12ù·*}›Àºù¤T4•Æbœ·*}›Àºù¤Tlè4<£Ôë¶S¥oX7Ÿ”J™#Ê Tì¶S¥o8m JfpÚ”L`Þ»Q?Joà”úv{I` - Ð(M¼‘|Véöå+ƒeóa;hAÆ{5_â ™ž¼5åíEÀºà=\ÞŒé¶L)3U ‚Èn’¶Þ¶ˆ”Š=Ц\cûl?Iß&°n)Ó”&GÃTi?Iß&°n)Õ:íùÉn“¿M`Ý"RêEnô9>ÙOÒ· ¬[DJÅ1O_º»í'éÛÖ-"¥bÒ”…OÑÝö“ômë‘R$eðå¸Û~’¾Mà´Ì•Ì`]¹y!+˜êQ?¾FÁ)õý&À|óeðè8¥êžÈæS (ƒ¯D³¦Ô=ñúÃj¨ÎæÊi?¹m/Ö DvŒ«"¢?åbí“u/»‰BÁ„QnË×—o$#Ëæåú]¾w°n),Å#|Ÿø¶Ÿ¤oX·ˆ”ÚÙiJ ò~’¾M`Ý"R*˜¿eð¹áÛ~’¾M`Ý"R*ßk@|¯ý¶Ÿ¤oX·ˆ” –ôD|Ðü¶Ÿ¤oX·ˆ”Š£âD|ãü¶Ÿ(™ÁºÌ™Àyå*™À|xõãSã738>™ý¥œ8-s%3X6L&0vAýø7w  |šÏQL8¶û~’·Ë"+/˜’£3ŸàwÛ@‚âè:Y3ÊH3‰UÀ²iâô~{É`Ý"R*ŽŸeð»Û~’¾M`Ý"R*ΪeðùÅÛ~’¾M`Ý"R*ŸzAÃŒÝÒ~’¾M`Ý"R*O ”Á‡oûIú6u‹ÐT¾‘p¢ŒaŽÔi?ò–-"¥òí‡e 3^Öý$«à¼Ì…¼ßm LÈõãš73¸a!ÇÞçœÀ²ÌS*c©Ÿ(cåÏ{Bú6ÓŽ02ñqøQû~’·Ë"+Ï “ͦàæí6 Pz‡ž¬™…K$V˦ZáíörË‘RÓãDƒŠÝ¼Ÿ¤oX¶ˆ”ÊØú'ÊTÎæý$}›À²E¤TzzŸ(cP œ÷“ômË‘Ri¹p¢ŒAUoÞOôÛ Ö-BSùžÆ‰2µÆi·Éß 8o)µpbcô[ùd?Iß&pZæJfðÛM qŸ¨ßÿ}#1cõ}Î ¬[DJÅA~¢ŒaA>Ó~’¾Mà¸ì|…ôD¦·Ýö†åíƒÎ„J%(œ,Èÿœ”²ê/}›ÀºS*˜<¬XøˆèmÕ+™ÁºS*vZ>žÊgM38«à´S*˜¾uKùómÕ§oXrJóÀ'H© »­úômëBN©`Îkq¶·UŸ¾Mà´•Ìà´¾”L`‰çµ´73ö¢œÿürÎ ¬ 9¥‚y8/žÚ×7 ŽË\Ög‡7ga_X¬ –ã¼(|蟘«¥—_Ê÷Ö…œRÁåœ(ƒÏ˜ÞV½’¬ 9¥‚»9Q_†Îàü­‚ÓBN©`Mø,,ì½­úômëBN©`MN”1xåÊ«>}›ÀºS*YE”1ô"¯úômëBN©`MN”1> ¯úôm§Å¨d¿]ª ¶æDýä373¸Á@_È9u!§T°&'Êàë½·UŸ¾Mà¸Ìe}òaeÎÞŸß-Ö÷Ã7ʃô%ÌIµ&¼ßo¬ 9¥‚)á›Ó|D9ƒó· N 9¥‚¡9i­A÷à¼êÓ· ¬ 9¥‚‡‚-[á#Ý·UŸ¾M`]È)Lω2CÐçUŸ¾M`]È)Lω2¯]yÕ§oXrJÓÃgèÐçUŸ¾Mà´•Ìà·K5Á0¨ßX!œRÓÚT2Á0ñ•ëa!°8¥êÊMdƒa:Q^J—õ _Þìy)}»X¬¬)w¾î~#1Wga“üò&Ài!§T°;×,c§åçmÕ§oXrJ»ƒ·æ÷Í\7ÓªOß&°.ä” V ®B“¬Ÿ¬úômëBN©`zàh°o°"­úômëBN©`zàß0Éó“UŸ¾Mà´•Ìà´¾”L`0L°ßù&ü œRÓúR2Á0Áx’ýpJMëKÉÃËôÈ7pJKõF&0¦kâ+›®Oº¿¼î¶/,Ö«{™g¹™SÓÚT2ÁW]Ëb28¥¦µ©dƒU‚»æN§¼8¥¦µ©dƒU‚ é¾­ÐB6s>Ýé ô¥œXrJÓwÔ·UŸ¾M`]È)L|Ywš¼ßV}ú6ÓbT2ƒÓúR2Á0Á{o§Ç œRÓúR2Á0Áõo’ãpJÕõ•—›‚Á0]Kcßîà”*KõF&0¦«`iÀ{%®O¸´æÕñ¶Â"™ `•àä²Ó¹9™SÓúR2ÁWÁÍf§Ãõ œRÓúR2ÁW];æùþÉ<o;ÆÎÛyF¥Tð׎o÷Oæjþ6uF¥Tð׎o÷Oæjþ6ÓŒÒTð׎o÷Oæj"8Ï(%38η™Àà'®åîC',¹É¬òÎv›&‘ÌPŒìŽê™gYú2¥¦I’ÈÆÈîh ¸ÝX*«’kËø°3óŸzÚ<=°:ÌpêZ™ÀiÒ¦œÁŽÀam’ŸLé\®‚óôHdÇÉs'½q ÜãÒ1€Å93ÞyÞH†¢TúÛL¢¥êsü+:u(sËèð-‚ëÀ4 ç”’70ºôÀ¬¨÷Yqû6õ¡·rÑ¢Š1îY§Ô8™L`†é»ªë}e è«CÆ…w‚·#’°|Œòªh:³úé-5 Ì0x—i­Ùåh\EOÔϺ ýTÑtz e2eôn©© Ô‹‰L`4¿¢ùtWÊà”äN&0úª¢¯`ì'ƒ@³~2 `±ïýÉŒ¯sU´½}òiNM#¢d³ŒŠN¦÷8«¡ut¬Ñ~£ŸÈÕÐQ ª ä­“Óàjj.(u£’ Ì" ͧN§Ô8"7RÁtÊ»úŠ>: N©ô"¹H] ’9+6hh>U’é[N”B>"ᆵOÈÆîL~¼£NæsûHÞ°˜6 m§ Nþ4¥¦Y”ÈÆÄhÈÊB9ì!ŠPŠ:BÿK¸[OìžÉ„¥ŸúÕP*}çÅ˜Öæ<+ÁÌ%dñîUäÝ!yûxúëÞ°1£ä›±Ù}¾|joؘQò’½acFÉïõ†%·×6f”YoؘQò6½acFÉô†e_SuMŸªhJL®¥t̸æ:Í”snÿ°ƒ”ÆY?(âRJ‘Tã_ü`&”’‹–€!»è&eJ‘t¡¼æd¤ŒZ®9ÝNj ¼Lž˜ê#S©žZzª§” -J‘4$»`³ÊÓ [Ü5«~™é+Ê›“™! èâ…8 ×#þÁƒRäi¹À÷¸å¢%TæÒ>®‡Ñ؃R$×ßuÕ†jÊã.%hÏ •ê©¥§zJ Ú"¡Ò¸ë¬cÏ_¹Àcy×O:ã]ˆ= [)EÒ4æšü%c9¤\´l?×\¢—YeEJ‘Üû.„·`äú4îR‚ö¼P©žZzª§” -*{šgè]ØLšQz¾ÏºX|%Ôl2:—…‡ŠTBòJ6w#ÆÒÒ<Ów•i³ 4þ*•G±é<à¯G€£0îR‚ö¼P©}Zzª§” íËý"㮳ÇúÕ-4Œù._p±¥ úy§¾hD%TBâ`¸è̿߾“´·c¤HéÏ”'y `.mƒPФú÷Bì1â!ìôhê¦òš{ÄŸ;'¿›=ÈÀWB%$eÞÆýö¹î(<ãVžP YÙ»³ 4MÐï$ímÛ)#–{éM¿(¥Hé :Jô¹f/º0<Û†€A#°„œ·K¦’ÿÜW/^üõ;2tèl·ò„JHF¬ƒC'MCR=cÚûq¤ŒXúNæÄÛz*Rz‚®%`}/šˆð·!RË#rö<åB%$y¥¹¯^ÆÅÊwäåæ>pÑìBË*!yÅ*ð¥ÝoßIÚÛqW¤ŒX÷8'Þ×SÒtés§¹Ì¢Ÿ-šå‘fø‚°UG¦’a œƒÏÛw之ŴÊå ••Üûí;I{;ËãçÄÛz*R{B9NFF„ $/ëÊU ¥Hºv'k·´Tc¡Íýê¢1P‰§UŽZGSKqH£¢õÔÒ5—4_¤EB¥ù¢sIû,õü~>!eÎ#«NíMY¹ùPa„k2Íj;Õ ˜‰L`ºíuJ×é˹”Ó “±H)åƒH³¸NqúyÝÈN9Ó™½SA@“FFê¥DšNôìA*ÀÙ'2é®Ö)¯æ¥’qM)s¦ ‘¢`:ÿ}EÇ%8ç ö¢SJK³¸”3e#ÓgPÉœ374Êp/Î-‚Ñ41K#È0¡”´Ò#[ÉÛJÎ4ù픥â,ãC!ÒR‘YLg4Ÿ–_JÞÀ2 ™Dškqô)^¤^ŠcD)'ý…•Là[¹£ š)¥œ)Ï¡x±÷™sf_QLF ƒ›RÆ€~[C 'òFV”òÖn‘QÑ.WìÇÒFšÞX¨iÔŠ&0JÞÀè Š&y›e°SJí*Ï‚Ð9 Ïñ>ç Ö:3P*Å6p (äu|”޵ˆJ¹óiÏDfpª3«1³ßùÜ&73¶ðÎW-¿s“<@r7C¹s?ØíiDÎÉ9ïw¾\H/7¸ôï|è/‘7°æÌùæ—I§{·ƒ‡ƒs*÷kÜa‹m)Bf°²ˆvšàËÇålÛÄM“¯à¥[[¾Ä)8]Ón7>/÷Xå&29 õ1 ÖÀsµ7µˆçNåwRÁ™Ù6ðåàœÊ}Þò< dëõÁN™Êìk;m£q»æë¡‚Óðv—”Q°r[Yå&29 í1 l`««½¹ELÅ‘eI¤‚óEÌÀÍÁ9•çnôÅZ!ow:¹ZÚéƒ}±£—d|+wØ|¥UpÊùvÿ•QðrÇ*7‘ Ì=Ÿ 0GŒ6¯È“GVIB"8 CÌ…Wx^'TÜ‘¿Íå*8çŒsrÛ’ä€òÔIB&|³hV©sœ¿Upî:•×ñE§Ayà·rà¶Ð¯œ ¼÷2L § ÅÝ*pÎ`%8—Ë+hÐ/‘Â$ŠJxKQIB"ø&fѬb†‚:&°’¬B˜$æUƒr:­½•]g°…µÅ¦o¡’|Gep“¡àrV° Øó¥}+»¾>å9ŒX®-J“ÀùÛN媘Ok Фèy¨’í,èN`Æ¡åÌ¡Écšíºp8›À©\ÝUÒõ^vÁRRöÅÀéÚ¢Ô9 œ¿MàTnžínôôlÔÉ#¬âÙ”š6Õ N¢Ý´§=6Ïv (Ùžsÿdò'RÁ*êL©yƒJà$&UpÞ¾ò9pyÞÅ©`êÁ:R¹©2înÇÌa4õ4‘XÉ Î§d:­ty§ëHåÝJÉ ¦»ƒ¤n1ŸezhæÎ2ƒs¹zðQøÝAžŸmé´R°…PéH¥Æ“¡ƒ;–·Ü´1&°’ |;%Ói¥³ŽWËTªG•Ì`Šó;HôËmuë¡ÉÁ©Œ1žÈNÕȧ•mT¨¤òƧdÓ&x€ä%.¯n=%©UHµxÎJ&p*7 ™èûÓ*ƒywHå¡™›zCÁJÞ¸‚tÂêYFÅÈyݶL&0/Ú©×}¶ç…“ÀJfp>aÓ®"ÔûÓ*ƒ©?‡ç~¡ÐI[”;'•¼q©zZ¥…C?ÜüùÀ|"3X×QÞ Ó¡©c&8U#ŸVºp.F%@*y$%3X×Ñ3×CS7™L&pªF²µŠ–-ÉZFÓ’íÌk»šd“Ð(êì‡×#~B§Ô·ûÆ-ƒnAºÇÞΔ·wóÖã)·(/XÔêupÝ740NæÏÓyô6Agïw‹XÔ>Nóv!u~˜%+;tÿËi ?Õ?Ì•M™ŠH-ÏŽyîÓ‹Ù}ÖO(õ‰,ˆRФ6pŸÃÀ ¨lCì!º“h ´‰ƒ_ùi2¦H%¤”—s‰%t‹¢4yS*)¥È¾ÙxÒ1ƒÆ¤ûœ´G¿åBÕÒ>ÿÎgƒ”J%Ph:7WšÝk¿¤Þ•ò”Êm—N–0GóØ×Nçs,-¸IñÀ¡Ê?Q‚DPFF*¢†¦i ˆÓÉ0ETÉ+•‘ŒI3Çïàø5[ZTÉyø ÙjR‡¢ZT©„ì»12TÜRðyÌ]ˆ›À€›§#ÉåE*#YÂe%ä~aûº·q³æHÒÜP)EzˆÙŸ<;:ƒ¶ÌQ¥H‘õÌ݌순#b¦–B)2•®¹ 8cqoê©H‹îs ?Ï÷³@‘™’ù’êɶÏÞ¥Y–ÅVšÈ:ìâÂ`64-K” &“ç‘t&k­µ<¥rû¤.<æ¬âEŽé<÷í2[< ¯?J)ÒâÍvŸÜ“‘Hf_·f—u2Ãv¥¤RŠÌ¥k.L›=Áp ‚Ô´“ã>{–×ú÷-ŠHí l4ûòl·uÛy<Îñ1ý®Pi…süf¯Ÿ¿²ÙiG}¥–pñ»Y25¬‰¤–—ëKèdxgKM3'T® Óf¿œ<ÿvDß( °Oû˜cƒñ+2}'H-OÓt?{WOEêî–öOíÏ7»bîO)Ý‚²ÌYǨ’œósþ™Îך9WLo$”"-x՜Ԋ)¥+ü]ži/Ð}"­pÝ¥t½+‘¹ ²·jO¼Ù™Ûw|3l ÅyõGJ‘ßk®!òÁ™¢½ß\+|·<åÂËÆw²µä½!½ãu\bsÇUJöê¼Ü¦\˜6ÇwTA¦ïIï˜%òžc¸`1Îq³°4ýƒaË;£6ξ¤¸J)EÒJ Q]H=Qö¼û\vn¾ËS¦ÞŸ}M!›´A{B‘é;EJyyŒbO¤¾NTDjž󜳃‘Ù-øíœ ½Þy“œe1¨¹RŠ´ f³‹XÝ"ùÎ’ÀÏîËs\?ðôUJ´„mãE‡(]Umf__õ¶3Ð:°ë¶kèwŠLÜ…”®Tâ.š›¾^/oƒ…ŽNO¿Yt øÁ rO¢yîåÓ©ùP¾Ž¶sˆÑÍ0¶ŠLTDæòtü¤í©¡RÛ%Ï4—bï¾o»Œƒö M|šAQ©\›Wún—¤ÚbÒ$*!›;ètªB©g:<$èuºƒØ“„Lß)RË“4]coë™V£¬TÝ'´'©” syºdUÑàÁ¤W©´6Ùƒsž1LlZ›qõ+2}§û„™zm|Na›èFa’E~€'H/7dúN©tMÛÜ4‷õTdêÝiuÜé†èÎ¥e*»Îªc'ƒŠ+cþNç®P ™ò¤/ «ã,§áÜlà ›•èÌ¥\™R$£³Àž´óÖ£i:bŠTJïF3Ï¥×yæ3GÏ#Ùë´µïÎ#í -o™xvú9«T“~¥sëè4å*I5UŠZh88çƒ4J ÕÝó»Î»¨R‚Ôòøî U;5wfn7[DŸÞÎùB¹©R‚¤m;lEû~»3§;,]]çqÙ- Q¤ÒÖŒñ âÈ”Eó˜‡Y§ó% Wç±Ðé.›(ERß>ûå¸õ‹ö.£.Á ©S›$TšúÎÑBt¥²­—$›I°`ç1g™¾¤–§i*Û~WOEª¤;Í3í‰7ò4—´t‘3dY‚ŽC¤’>ÊsíÇ™Óô6¯H¥¹ÙKãƒ>‡tîÁ3tt¸.·Á@ЪŒJ‘©žš&óì]=Rû¥Ð2x®*Êüu~V·²ét×*ÍÏ´È ×ÕOÃä ™••¬'ž2Üî+NÛNs'<¾´ß¨ÔvsMŠ’`{§´Ð4]WݸaÚÓ©kJ‘iÅi¿hï¾Y›ŠÔòÒì‘™Åpk°Þê&‡Ž”"7{“nRí6'òÌŠ½¤TžŸ±¼<¶qüÞËü#Ru *g×{'KÏHéÏ4*¢qx3î)²ûeVÕMwMÛÅY‚iiëÔøè_¢’±ð,¯éÃcšÊÝ™¾Kº(½KòAÕÀ©œO)A¦ò4Õ¾«§"µ—x›ÀãAnD$.‡›VuÊî•d’ƨL‡–`O¯í7¤R‚ÔòR.*xSÏt~>Ý ¤'ÞÝRŸ¥òh#8W1ù%• 0(żµuê „J2š`Ï›`§Re€ÝÍ;9+E&*"SyI-sžÜá<û»é"•æ|wƒÁNƒÞaEž•‰É—–G+Ãyoêí.g`Ü<ÂK=‚PYÞ£² ™i~¾‘éüÔò4•¾«g’Á«|^äÞÚïäó‚LåÉ}S5“oï°ŠT½¡jå–üV¿©H-OïÚªµÙh’”*’Ò‘¹·öó¾6uÖ 2}÷N2«ëHWÜýQBR6ðßž­TC¥H¥2•§z.±zg»¥uIvVbƒ¥vŽo쬙˓<Õ:ŒózìfÙ¨”"´µà].ÞÑ)9™ éçÝÎJ-¹ôî›îůoú‰Ç¥+ïöî¦/Èt+4åòÞÝ&R¬>6ÞgW1C„À8›á”hIYF3KJ¥©ö‘š¶]îEÃÀqÉÊR(Eª%¦1X ÞdT¤de)”"ÕJHÓ fë q”쉄R¤òYšÆp´ðšhÆÅŠ}–PŠTnÑ¿ðò¤‡Š‹¼°~—Ë‹ÈÄKš–À°ReàÓ–)E2ž^®d¸¢Í¼ö†×Sù¼"•Ê’üXž¦i ï$ùŠdL!¸B0ê£nÀµ…Ρ*aU¤RI›Ê«ö%]Eõ¼Õòréz2Ç™ï™Ñ­SÏb-/—.–G©.—yÐE‘a‹ñt¤93ªå‘PŠdв2©në(¦YÜ·¹ÐS‘J)Rå×ÀcVî®ddNn:é&©´P )rh-OKÐÒßÕå]yXdNn â¢òr¡Rôšf‘kæDdÈŠ¤á*!åžcA¦ç@1â“…#ŸÍb ‰t³*!åþ§åi é–õ¦.ïʳ8bðžÙî÷T¡Rôýšf1 aóE=¥Z•b  iÙ+Eì „JHñXQkBµId¯@RB TBÒk€ó¿K›Tž¥H¥©¥«L%_oê©H†‡³c먩ö„"•J˜ZžìŸºóå=R÷VAÊ>ˆ×³ðÞ\b ôFÛ’lpÃÜ7¼È¼ÝrQ%E •ª‰Dw²A|+šOºLjÖ…vHo48 ™êÓTžü¶žIò,½¤r ‘y¼½õ$ ©h•î9é–­®’µ–– –UÚZí‰$aɺö'¬7f|õ3ç"#¦H¡ c¤Iá÷z“¨ÅàÉïð~xËT’:¼³¯Kcô.O•`‰”*YÈEÈ;é– Sy*ýÑžH6'ZžHN4OÍ4¯­÷óøUP³“ÈÇK•7ãž‘’§JcÄžè­”#Y‰u‘Ž‘ÊQÞY% 2•.§L:¹¤EJ% }íká*“d¸sbtóxˆTâùÔj Y¨½ÔkkŠd‘¥åi.iŒÞÔSÇ(yˆ_öĀėkyêa¡º3‘$EªìB½ÕãOøª´R ù榟,ÜÞH$RËS‹:µÃ}WϤÓP}‡êB¤'Þê;D©å©ÖD÷ÏwzEª®'qVQbýV'¥ÈTúkùd¡Ÿìõeå¨U¼æ™ryç×£vþâW ¼”X7$~IÏbµƒH¶š‹ò`¯-R]ï­%È]íÍi˜r¦&k-µèyk‘¥>Fjí£¾Bj%$þNê¥Èäá$ßidŒTžø;%dôFÒ¸9ú…FéÐ\$6…z8éÞ*HõsK^o )5Ó}WJxë'È\:f$íÝ{\.Šs¶&çß)3¢qŽ’ |X¨lWÍ_<4É”øCFÈÆûR“g@áQþVÃ…i¹™Tp§Ä|ýÆ0†9òo5+ìOß¾p£f’'3Ö-ågœBã,ò&Ë'Ñ›ÉNÅ2¨ÅÎ{&_4^§Û•”/líûΓ︑70Olët˜HQÙRÌ6˜¨îܓǼxK9£\úGPŽ ÝËNÓŠ 9%éQCil"z°¦ì ŸOKl¾È}l°½§mt³'1¨‡³L™Ì`>üv¸|è>CÓ””°F‰LàÛ H?瞤-4ßNlǼ‚ôF˜!á%*Ç »ÚS¨„´˜‡¹9=k˜ŽÆ°`/)hD¢"Òf=,Dm³¢~2ç$7ž‰ÌóËá(&Ðóºƒ=´ºk»X‡Ýê ”"¥%ƒŠî¹åúÒ®—Ⱦí¶X%‡KDòd œý¨vµÈd§¹l»<Ô±`E(÷¸LÚvßm…¼e.{j÷TÛÈÚÉ“&¾7°,‹´…Ü–TÚQ„¼uÁq²×b V^C¶)Vêe2/¸\ ô3ŸÛ±½J–£—»¯r™Ào·Û¶' è¶žRβbla².T¤æÄJÖµU'25g›¢Õ/Ã÷9Ér]˜™É¾Ä~žÛÃâé]\ì2”J7s•µKžÉºãMŒ›\žX~Hžé»Á®œ¼§¨P ™âæD©Dj‘DQ*õ’ÖL#‘hOˆEL¦Û6[µ«ysPä$Ï„”L±ÐKÏLÚ/ÑŽ'SÚR—|òÈœL¬ÇIXyÇS)ƒ{,×càcg8Èv?02™Ád>ESΘ“ YÊ(Õ × v5•›ÈΑƒÄ]‡O¾šdú[¹·j8Tíù-$Ôâu!×À÷KS¹·j8”r®Œ¿Êhä О¿RÁ0§·ÒĈ×H̦¯Çaîfµß¾K¤@SžÜB¹ØÁi óî¤ì²Ïï6óÛ¬ îÍ´êÂ&9– ƒ±òåËLÞÀËmt£ãM+n©ƒòA;˜áÂz>ejf—½Éöô‰|B1¬LŽCïžš¾ŠY>njÁ=øX¨’7l÷ƒ‡”Ëã!àݰÚû²þB¾«õ-Ã-ʇ/ÒӌnÈ„X^q ´Á•eZ¼1ÆÇ£«¦¸fz%36õƒYE}›õµBÝ©‹²šZÑ•ÌØTß¶¬ :òQ€S¿TߌeFÕ$:e3‹ßœK¡h”a[ßÖ7c—™!FElËÂGp`öŒçF ÚâK³ƒf%Ô¿ðM!oØX_ÄÁ6÷¼‹;O*§C©îE“Éæ~È×d ï´öà]¿­í°Xì fŒO)g  …’ œ›ƒ6ß(6¶7Õ]ž 3ó=°Hd§[\´z«ñÎö8ïšÉ[QÇÝyWëqóaª÷ã>rHcøDÞjÌÔb,ß -!…{Ç&&=ÃèrVY§ÓvÁL&pª18¸¤pypî®$4 N©®‰Ïd§£²ew¥ú­Æ(ŸxZT$%sm¨›™ ,ßJ¼Ö›Á±Æ˜‚|7”BýDæ[±T­Ì·0‘*_¶ŽŸR Ši@T2Ö%ò–&äóô•»TDÞÀÔc1 z2?V½ìŠÉB}¡ÎL-4õ¹0¹M/òêsÅãx¨Åø:’7°Ö9=I«/ÅöQízÞÈXëœ4ÕWH¿Pç~z‚S•‘«¦nŸšÛã‹uN`fE›+0†·gƒ9Ü´¦h~E£zœg"o`­³>ñ˜Þ¾¦V¥!C»‘7°Ô9?Z©/M~¡ÎÌæczÓ:?VM0”O`½¯sÇœ¡*hØä{ ¼YÌÒZ\'ÛÖ˜;r¤nHò°Ü`‡vÌÕAæ1 À…®]Ól Œ¬gÒ‘¨|“Jd 6¾ÁGÄ#¥H)¡nÅÂt³ã!·çÓÏÕ:ÌŠ±ò¤ŒTv3O¨°n‚Œ»ýÁc—{¾s6ºQ… ‰‹ŠÓ²ê¶› ÷¸Pp5MóÁݽó eK¡2PªqYtÊNl»ù„Ö9­à0Eî±5…P\*+fhfôêÚ?ù,PŠtçÔŽ´ƒ¾>4ç"ÏÒÜpïšTØÙáÖ< ¿ÅçÐÉ’ŽÁ°Ù0#ß)jýñÊM›SQ  #‰¿ÄÇÒÁûâ‘Æ×æêä¬ (Șpb`vÆß9«N'~¼miúç-®Y´Q¼Ô°n°·Ô"¿$Y5ÆôŸûMKYU82€k—üNYÍà«ñ M›ÛeÃvK“è‹Ñì] ‘P…öx«©Âž<Æ“~{sï! ~î ð‚÷Ž„H¨gVzCqØÎuñͺ£îD¸¢áj ˆ/CâÖ‡W‚æ–¦m|¶T*Ö©9š‹ºÒâr3·5!ª®®RtgÁìѱô["à©@Ûa¸ú ‘€©¼êf|q*QÝ,—á’(D¦ò¨½%O͈$RÄ]£ wL!PÊ; õ0½=÷ŠIúÀ1R +d‚¦QrN) ËG•ÌÐXžÊN³\u.Ь q£R¾i¤¶ •4t(:š6}áw‚QƒKy ì“ YäËï†G€i”)᧦[ªó±Zü‘HpZî*Š3“ ÌGcýË9j"¹®ìº}q—¢+™ 4žåþfÒAa…xçºÈõiÎ_Qd­äkKmÏL¥î|䂸N«?ðFöWÈ;8•s¾ …UskäDÞËÅØQàiñèŠpZûäÛØu÷žLà˜3l*ýËøüÁœ@¼*LŠð¶.}Ú𘖊ãÓ.×4!’ŽR·Œ¤˜ôÌùÂ1µ9y kó0íS²½ºÓ5¬`V`wájż;7Z™ÇR" å †kÿÞcÝiã -ªgÿ,F’s©°üþà‡æAôåô{勉€œ-ý¨‚¡\íƒuò=N>ÓºCΰsQ2AÑGAÐÒÓ^ãA•å|³‘ºm>£ºÓPno72AQEš,ómØPž …¿­‹–†=ŽónA~MË-DÚ˦ûµ™-È$OØr¿ò%Öý¢×u#4vs*^Ê;f·PvM™¹b|8s§KÂl.ÖÆAu¹=²*ÍgOw0;ïüJ&hlC.>–§ÃšÆX€iÈÓÌ^3žïàͯh¹ÝÈ›õ"[‚W¥ÑÚ0ØÄâ*TP !Ðl÷‹¦¦…¯{ò#P‚W¯X ´µ¤úN7ÊÚ„ÌP4ÿ¢æÎ[½á!ãÌzy‡x™v£Jfh,Ò)Ä¡-{Mðq› tÃÕDf¨–òÌßUÄ–¼v(q/Íî4……Ll²³4Ê=™†ê#Öº &¡|[ù€Ô. HÿŽ}§9"ßkö +‚Êò…Ï™æv«"ü"y©Ÿ$­å¶[ñ/ËË…G`*Bæ¤Ò|ˆô¸ö_!\‚S pñàiù‹ ÚB©@$TÈŠ1È…H¶ ‘Z©KDBÅ2žY¥/P÷oùÊðíÃ8FÙYÂŽ4çM¥àhKÄCgX›nÐìЮ—Q .¢ÅÎ)˜ø[@’?À|ãšIŸ¡¥=!©hËhP¨€ C–øÄë(TDÁîdfDÃÌÍy41$ Ô–8^¨}{~?ÉhgTªÎ˜½G·7Ç¡‚ %ha“2~fÅðŸƒÁ‚Ò&uI%ü"“ƒÆêgM ¥—:ðÎ&¿ I³~­êyŽ0¥ÎôÉ… øœ·ô¸…Ç åØàÐÝᣔA@ivAÃSúàÂmBÊI…FœVAôI÷ÊÒb“‚0ä®Úޤ|§dº«,c!I¥"jš÷ÊÎ6ªM“öG4JwÝ­|™±QW›UQ÷u×5ˇ U˪O[u¸yø{}z†Fż9&Ñâ;‰$ʇwþë|”Rõ£ª&éyºCËofèL7Þ™–;ß]>2¡8,`:µÃ’ùÀÂÓŒÀÁÂA Œ›ÎxnbM+Šê|.k»ábŠV\[!¸XW„úïnÃù á£kt³Èâ•J)a]£kùˆc¥†ç+l)i>;cdJ`P¿°Í=–s•â^žJDÓ¯Jc7ÚjAµQ¶D L;BÇ<Œ2Dû0t³ð™ë§bhO¾3x86ÿgãå 顳ÂM A;ºqÕ„&“ê¸Y¶åÕ ÅÑN~ç~js J‘‰^ŽNÞFáx…-’qâoEáÊN‹)^sp@ágúÚ+J9@nƒÖº™ÊªØÀ ¥HL0ê¦mXckŸóåÖ&퇈“É” EñŠ AZ9G"W ³ƒ:hÂV`H¢ò/ºfJ‘èà‹æ)˜¯X~(wý ×꫹+•!Kª¨!É0w&-ÛÃÊSþ© ¥ñN ‡N X“ì¬Øg;EÜÞ„JÀ9:ײ46ËŠïß¡¶tôÙyíæ TBƦxiæd¦ù¯¢ EË‘ÊÀPX<-bóó‘(Å®(cîtÃ…6æ»`Á8C—9=ñ™n羑¿„µíaÂÆg‚[ïÁù ‡¹öÝ)Âç2?K-J2×rßÔ"Õx³-œOô):mì;-Ý@öæá·¢èˆsše"Œ¥…?†a@q«=yKÇÜ?ä·¢èmÀ ¸±&\H‰µN-¨\S؃Ùà°/rÜgcµS*W5ŒŒÄOŸ¢:^J)ϜЌä8rKŸ>¿Iß”æ6ÙíÂ,C”ÚpFà×Ýu†Öò·îH%L h_ÑǸñUNh­»YÒ_è¤Õ,Wf¤2šoF?èRÔÊÜÔRîçµX@/ ×ÑT,Àù^„ [(8S‚døiJ'hû0÷›Ì%XÚ¿2bi ó‡‚FºE+•…L}©±˜„oO]*ß‹ÀDeä¤ @„mmCc M·7ó¬b¹J´|–3‰HÉ’²ô|¯¢söÉNäÐârÙ§ù7t$ä4PâZôoÈN*•RX.:"SEvÞÎ{ñÁ€V€÷ËM âoEYÜZ9ÁÈ,ßã}$X7HÝsCN++'S:~bÕ¥éÐ’úÞ;Ò a…Žä¹³5óp¢öCºñ†Ãøgñqµo¾þó_ý»ÿã#ýß7_ÿúó÷ßþøO?|÷KJýæë?}÷Ë?‡?~óõ?}÷ÓŸ¾ûõçñ?~óõßÿÃÏßþü/ð„ï™|³Rþ×÷¿üåÛþðË¿ûQJø&&||ÿ¿ûê¿ñú¿þôß}õñã·úîw_ýåÇ_¿ÿõ‡ïþñ«\½'ˆþÍïÿúøåÏ ïÔgMýù§_¿ýõ»_ð‘ýþ¾ú«ícöáÇöÍ×ö—Ýwÿ7¾ƒYå¿ñ»ÿþÕ_ñ«÷ß}ÿã/¿~ûã¿[Ýú/ùù‡ß}õï­i÷Ïßþù»ßÌþý¬üþ¾ÿñÿð§™ùÙ^€üõ»?þóßÿÏ¿|÷‡?þô§?ýôã¬VleþñË¿üé~šuû‡¾ÿñÇãïþóW¿~ûó?}÷묭ýéU%ïþ_ßýüëwÿï¾ÿñÏùõã—ïþôíø?þî«¿ÿOÿ}ûêƒýƒüõ?þþ÷û×Ï”YäöÕ×_jÁ×·&¼ëŸ¯ÿ•ôÍ×_êòPpZDO&ôËIþÇ9¹þ¶¬Y¾ÈÏŠúõçoüå‡ÇÌ{_ýUݶßâfSÏã·¸šý¦å·óž†MÀAÿ?­›ßìû¬ÂÿæâùÍÑ[ÿU Ⱥɗ\>å6S¾ÐýÿøýÏßýñ×ïúñÛþæûúç_qOø· I©ý·'ãú¿…vô7ûØ[®ñ¿?$¿)ûoû<ÝÿwGf^¿fMþŸ?Ǧ¶ßžGëÿªáù=棓;ÒÆ‰ûÜÇꛯãir;>;ƒ¾‰P­•œLV¹|6}ý(ceóÍ×ÿñ÷ó7ÿá¯ÿÃüýÿPKO\?>Ý#@"°ˆ, íduckCM.tgaUT•äFMux èèPKN\?> °0¡Ðíôˆduck_triangles.daeUT“äFMux èèPK¨p*pycollada-0.4/collada/tests/data/duckCM.tga000077500000000000000000030000541200577111600206470ustar00rootroot00000000000000¿áËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËð¿áÏôØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÏôËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿÕÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÓÿÍÿÃÿ³ÿ¥ÿšÿ“ÿ‘ÿ‘ÿÿ‰ÿˆÿˆÿ‡ÿ‡ÿ†ÿ†ÿ†ÿ†ÿ…ÿ…ÿ…ÿ…ÿ…ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿ„ÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿ‰ÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÒÿÌÿÂÿ²ÿ¡ÿ•ÿŒÿ‹ÿ‹ÿ†ÿÿÿ€ÿ€ÿ€ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ‚ÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÑÿËÿÃÿµÿ¥ÿ–ÿÿŒÿ‹ÿ„ÿ‚ÿ‚ÿ‚ÿÿÿ€ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÕÿÑÿÊÿÁÿ¸ÿ©ÿ—ÿÿŒÿˆÿ‚ÿ‚ÿÿÿ€ÿ€ÿ€ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÐÿÉÿÁÿ¹ÿ­ÿ˜ÿÿ‹ÿ„ÿÿÿÿ€ÿ€ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÕÿÏÿÈÿÁÿºÿ®ÿ›ÿŒÿˆÿ‚ÿÿÿÿ€ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÏÿÈÿÂÿºÿ®ÿÿ‹ÿ„ÿ‚ÿÿ€ÿ€ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÓÿÏÿÉÿÃÿ»ÿ¯ÿžÿ‰ÿ‚ÿ‚ÿ‚ÿ€ÿ€ÿ€ÿÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÓÿÏÿËÿÄÿºÿ®ÿ›ÿ‰ÿ‚ÿ‚ÿ‚ÿÿ€ÿÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÒÿÐÿÍÿÅÿ¹ÿ¬ÿ™ÿÿƒÿ‚ÿ‚ÿÿ€ÿÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÒÿÐÿÎÿÆÿ¶ÿ©ÿ™ÿÿ…ÿ‚ÿÿÿ€ÿÿÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÕÿÒÿÑÿÏÿÅÿ´ÿ§ÿœÿ‘ÿ†ÿƒÿ‚ÿÿ€ÿÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÒÿÑÿÍÿÃÿµÿ¨ÿÿ’ÿ†ÿƒÿƒÿ‚ÿ€ÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÒÿÑÿÍÿÁÿ¶ÿ©ÿŸÿ“ÿ‡ÿƒÿƒÿƒÿÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÒÿÑÿÌÿÀÿµÿ­ÿ¢ÿ”ÿˆÿ„ÿƒÿƒÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÖÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÓÿÐÿÊÿÁÿµÿ¯ÿ§ÿ•ÿˆÿ…ÿƒÿƒÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÓÿÏÿÉÿÄÿ·ÿ°ÿªÿ—ÿˆÿ†ÿ„ÿƒÿ‚ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÕÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÔÿÒÿÍÿÈÿÄÿºÿ±ÿ­ÿšÿ‰ÿ†ÿ…ÿ„ÿƒÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÖÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿÔÿÐÿÍÿÊÿÄÿ»ÿ³ÿ­ÿžÿ‹ÿˆÿ†ÿ„ÿƒÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÓÿÐÿÍÿÉÿÄÿ»ÿµÿ­ÿŸÿŽÿ‰ÿˆÿ…ÿ„ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÔÿÒÿÏÿËÿÅÿ»ÿµÿ¬ÿŸÿÿŠÿ‰ÿ‡ÿ…ÿ„ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÔÿÒÿÐÿÎÿÈÿ¾ÿ¶ÿ¬ÿŸÿ’ÿ‹ÿŠÿˆÿ…ÿƒÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÔÿÒÿÑÿÏÿËÿÂÿ¹ÿ­ÿ¢ÿ•ÿŒÿ‹ÿ‰ÿ†ÿƒÿƒÿ‚ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÔÿÓÿÐÿÎÿÌÿÅÿ¼ÿ±ÿ¦ÿšÿŽÿŒÿŠÿ†ÿ„ÿƒÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÔÿÓÿÐÿÎÿÊÿÆÿ½ÿ´ÿ¬ÿŸÿ’ÿŽÿ‹ÿ‡ÿ„ÿƒÿ‚ÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÕÿÓÿÐÿÎÿÉÿÆÿ¿ÿ´ÿ±ÿ¦ÿ—ÿ‘ÿÿˆÿ…ÿƒÿ‚ÿ‚ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÕÿÕÿÕÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÕÿÕÿÕÿÑÿÎÿÊÿÆÿÀÿ¶ÿ±ÿªÿžÿ•ÿÿŠÿ†ÿ„ÿ‚ÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÕÿÕÿÕÿÒÿÏÿÌÿÈÿÂÿ»ÿ³ÿ©ÿ£ÿ›ÿ“ÿÿˆÿ…ÿƒÿ‚ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÕÿÔÿÒÿÏÿÌÿÉÿÄÿÁÿ¹ÿ­ÿ¥ÿ ÿ–ÿÿ‰ÿ†ÿ„ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÕÿÓÿÑÿÏÿÌÿÈÿÅÿÂÿ¼ÿ²ÿ¬ÿ¦ÿœÿ‘ÿŠÿˆÿ†ÿ„ÿ‚ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÕÿÓÿÑÿÏÿÌÿÉÿÆÿÄÿ¾ÿ²ÿ¯ÿ­ÿ¥ÿ•ÿ‹ÿˆÿ†ÿ…ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÖÿÕÿÒÿÑÿÏÿÌÿÉÿÇÿÅÿ¾ÿ´ÿ°ÿ®ÿ­ÿ ÿŽÿ‰ÿ‡ÿ…ÿ„ÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÕÿÒÿÑÿÏÿÌÿÉÿÈÿÅÿ¾ÿµÿ²ÿ¯ÿ®ÿ©ÿ™ÿ‹ÿ‡ÿ…ÿ„ÿƒÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÓÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÔÿÒÿÑÿÐÿÌÿÈÿÈÿÅÿ¾ÿ¶ÿ³ÿ±ÿ¯ÿªÿ¢ÿ”ÿˆÿ…ÿ„ÿƒÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÓÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÔÿÒÿÒÿÐÿÌÿÈÿÈÿÄÿ¾ÿ·ÿ³ÿ±ÿ°ÿ¬ÿ¤ÿœÿŽÿ…ÿ„ÿƒÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÓÿÓÿÒÿÑÿÌÿÉÿÈÿÄÿ¾ÿ¸ÿ²ÿ±ÿ±ÿ®ÿ¨ÿžÿ—ÿ‰ÿ„ÿƒÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÓÿÓÿÒÿÑÿÍÿËÿÈÿÂÿ¾ÿ¸ÿ²ÿ±ÿ°ÿ¯ÿªÿŸÿ›ÿ‘ÿ…ÿƒÿ‚ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÏÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÔÿÓÿÒÿÑÿÏÿËÿÇÿÂÿ¿ÿ¸ÿ²ÿ²ÿ°ÿ°ÿ¬ÿ¡ÿ›ÿ˜ÿ‰ÿ„ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÑÿÑÿÐÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÔÿÓÿÑÿÑÿÏÿËÿÆÿÂÿ¿ÿ¸ÿ³ÿ±ÿ°ÿ°ÿ¯ÿ¤ÿ›ÿšÿÿ…ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÏÿÐÿÑÿÐÿÏÿÐÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÔÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÔÿÒÿÑÿÑÿÎÿËÿÇÿÄÿÀÿ¸ÿ³ÿ±ÿ°ÿ°ÿ°ÿ©ÿœÿ™ÿ•ÿˆÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÐÿÑÿÐÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÖÿÔÿÒÿÑÿÐÿÍÿËÿÇÿÅÿÁÿ¸ÿ³ÿ²ÿ±ÿ°ÿ¯ÿ¬ÿ ÿ™ÿ—ÿŒÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÖÿÔÿÒÿÑÿÏÿÍÿÉÿÇÿÅÿÀÿ·ÿ´ÿ´ÿ³ÿ±ÿ¯ÿ­ÿ£ÿšÿ˜ÿÿ„ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÔÿÒÿÑÿÏÿËÿÈÿÈÿÆÿÀÿ·ÿ´ÿµÿ´ÿ³ÿ¯ÿ¬ÿ§ÿ›ÿ˜ÿ’ÿ†ÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÔÿÔÿÒÿÑÿÎÿÊÿÈÿÈÿÆÿÀÿ¶ÿµÿµÿµÿ³ÿ¯ÿ¬ÿ©ÿœÿ˜ÿ”ÿ‡ÿ‚ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÏÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÔÿÓÿÑÿÍÿÊÿÈÿÈÿÆÿÀÿ·ÿµÿµÿµÿ´ÿ°ÿ­ÿªÿžÿ˜ÿ•ÿˆÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÖÿÕÿÔÿÕÿÕÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÏÿÎÿÎÿÏÿÏÿÐÿÐÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÕÿÓÿÑÿÍÿËÿÉÿÈÿÅÿÀÿ¸ÿµÿ´ÿ´ÿ³ÿ±ÿ¯ÿ«ÿŸÿšÿ–ÿˆÿ‚ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÏÿÐÿÐÿÑÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÔÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÖÿÕÿÕÿÓÿÐÿÍÿÌÿÊÿÈÿÅÿ¿ÿ¸ÿ´ÿ´ÿ´ÿ²ÿ±ÿ°ÿ«ÿŸÿšÿ–ÿ‡ÿ‚ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÍÿÎÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÑÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿÖÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÔÿÓÿÑÿÎÿÍÿËÿÈÿÄÿ¿ÿ¹ÿµÿ´ÿ³ÿ±ÿ°ÿ°ÿ­ÿ ÿ›ÿ–ÿ‡ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÎÿÍÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿÖÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÔÿÒÿÑÿÏÿÍÿËÿÈÿÃÿ¾ÿ»ÿ¶ÿ´ÿ²ÿ±ÿ°ÿ°ÿ­ÿ ÿšÿ–ÿˆÿ‚ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÕÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÖÿÕÿÔÿÒÿÑÿÐÿÍÿÌÿÈÿÁÿ¾ÿ»ÿ¶ÿ´ÿ²ÿ±ÿ°ÿ°ÿ­ÿ¡ÿšÿ”ÿˆÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÍÿÌÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÐÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÔÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÓÿÑÿÑÿÐÿÎÿÌÿÈÿÀÿ¾ÿ»ÿ¶ÿ´ÿ³ÿ²ÿ°ÿ°ÿ¬ÿŸÿšÿ’ÿ‡ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÓÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÏÿÎÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÔÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÓÿÑÿÐÿÏÿÎÿÌÿÈÿÀÿ½ÿ»ÿ¶ÿ´ÿ³ÿ³ÿ²ÿ°ÿ«ÿŸÿšÿÿ‡ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿËÿÌÿÌÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÕÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÓÿÑÿÐÿÎÿÍÿÍÿÇÿÁÿ½ÿ¹ÿ¶ÿµÿ´ÿ³ÿ³ÿ°ÿªÿŸÿ™ÿÿ†ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿËÿËÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÔÿÒÿÑÿÏÿÎÿÍÿËÿÇÿÂÿ½ÿ¹ÿ¶ÿ¶ÿµÿ´ÿ²ÿ°ÿ¬ÿ ÿ–ÿŠÿ†ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÔÿÒÿÑÿÏÿÍÿÌÿÉÿÇÿÂÿ¾ÿ¸ÿ¶ÿ¶ÿµÿ³ÿ²ÿ°ÿ­ÿ ÿ’ÿ‰ÿ†ÿƒÿÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÔÿÒÿÑÿÎÿÌÿÊÿÈÿÇÿÄÿ¾ÿ¸ÿ¶ÿµÿµÿ³ÿ±ÿ¯ÿ¬ÿŸÿÿ‰ÿ…ÿ‚ÿÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿËÿÊÿÊÿËÿÊÿËÿÌÿÍÿÎÿÍÿÍÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÓÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÓÿÓÿÑÿÎÿËÿÊÿÈÿÇÿÅÿ¿ÿ¸ÿµÿµÿ´ÿ´ÿ°ÿ®ÿ«ÿžÿÿ‰ÿ„ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿÌÿËÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÍÿÎÿÍÿÍÿÍÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÓÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÓÿÓÿÓÿÑÿÎÿÊÿÉÿÈÿÇÿÅÿÀÿ¸ÿµÿµÿ´ÿ³ÿ¯ÿ­ÿªÿœÿÿˆÿ„ÿƒÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÎÿÍÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿËÿËÿËÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿËÿÉÿÉÿÊÿÊÿÊÿËÿËÿÍÿÍÿÍÿÌÿÌÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÓÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÓÿÒÿÐÿÎÿËÿÈÿÈÿÇÿÅÿÀÿ¹ÿµÿ´ÿ³ÿ±ÿ®ÿ­ÿ¨ÿ›ÿÿˆÿ„ÿƒÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÎÿÏÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿËÿÉÿÉÿÊÿÊÿÊÿÊÿËÿÍÿÍÿÍÿÌÿÌÿÍÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÓÿÒÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÔÿÓÿÑÿÎÿÍÿÌÿÉÿÇÿÅÿÄÿÀÿ¸ÿµÿ³ÿ±ÿ±ÿ®ÿ¬ÿ¥ÿ™ÿŒÿ‡ÿ„ÿƒÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿØÿØÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÍÿÍÿÌÿÌÿÍÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÓÿÑÿÎÿÍÿÌÿËÿÇÿÄÿÃÿ¿ÿ·ÿ´ÿ²ÿ±ÿ°ÿ®ÿªÿ¢ÿ–ÿ‹ÿ†ÿ…ÿƒÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÎÿÏÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÍÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÓÿÐÿÍÿÌÿÌÿËÿÇÿÄÿÂÿ¾ÿ·ÿ³ÿ²ÿ±ÿ¯ÿ­ÿ¨ÿžÿ’ÿŠÿ‡ÿ…ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÎÿÎÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÊÿÊÿËÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÌÿÍÿÌÿÌÿÌÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÓÿÏÿÍÿÌÿËÿÉÿÆÿÃÿÀÿ½ÿ¶ÿ²ÿ²ÿ°ÿ¯ÿ¬ÿ¤ÿšÿŽÿ‰ÿ‡ÿ„ÿƒÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿÌÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿÊÿÊÿÊÿËÿËÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÔÿÒÿÏÿÍÿÌÿÊÿÇÿÆÿÂÿÀÿ¼ÿ¶ÿ²ÿ°ÿ°ÿ®ÿ«ÿ¡ÿ•ÿŒÿ‰ÿ‡ÿ…ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿ×ÿÖÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÉÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÏÿÏÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÓÿÑÿÎÿÍÿËÿÇÿÆÿÅÿÂÿÀÿ»ÿµÿ±ÿ°ÿ¯ÿ®ÿ©ÿÿÿ‹ÿˆÿ‡ÿ…ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÊÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÎÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÒÿÑÿÎÿÌÿÊÿÇÿÅÿÄÿÂÿÀÿ¹ÿ´ÿ°ÿ¯ÿ®ÿ­ÿ¦ÿ–ÿÿ‹ÿˆÿ‡ÿ„ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÒÿÐÿÍÿÌÿÉÿÅÿÄÿÃÿÂÿÀÿ¹ÿ³ÿ°ÿ®ÿ®ÿ¬ÿ ÿÿÿ‹ÿ‰ÿ†ÿ„ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿÊÿÊÿÊÿËÿÊÿËÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÒÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÒÿÐÿÍÿÌÿÈÿÅÿÃÿÃÿÃÿ¿ÿ¹ÿ²ÿ¯ÿ®ÿ­ÿ¨ÿ˜ÿŽÿŽÿ‹ÿ‰ÿ†ÿƒÿ€ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÒÿÐÿÎÿËÿÇÿÄÿÃÿÃÿÂÿ½ÿ¸ÿ±ÿ¯ÿ­ÿªÿ¡ÿ’ÿŽÿŒÿ‹ÿ‰ÿ…ÿ‚ÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿËÿÌÿËÿÌÿÌÿËÿËÿËÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÊÿÊÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÈÿÈÿÈÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÎÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÏÿÐÿÐÿÐÿÑÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÒÿÐÿÍÿÊÿÇÿÅÿÃÿÃÿÁÿ»ÿ¶ÿ°ÿ®ÿ«ÿ¤ÿšÿÿŽÿ‹ÿŠÿ‰ÿ„ÿ‚ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÉÿÉÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÉÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÏÿÏÿÎÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÑÿÎÿÌÿÊÿÈÿÅÿÃÿÁÿ¿ÿ¹ÿ´ÿ¯ÿ¬ÿ¦ÿŸÿ–ÿÿŽÿŠÿŠÿˆÿ„ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÊÿÊÿËÿËÿËÿËÿÊÿÊÿËÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÇÿÈÿÈÿÉÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÏÿÏÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÑÿÎÿÌÿÊÿÈÿÆÿÃÿ¿ÿ¼ÿ·ÿ²ÿ®ÿ§ÿ¡ÿœÿ“ÿŽÿŒÿ‹ÿŠÿ‡ÿ„ÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðËð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÈÿÈÿÈÿÊÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÎÿÏÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÑÿÍÿËÿÊÿÈÿÆÿÂÿ½ÿºÿ´ÿ¯ÿ©ÿ£ÿ ÿ—ÿÿÿ‹ÿ‹ÿˆÿ†ÿƒÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿÖÿ×ÿÖÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿÊÿÊÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÊÿÊÿËÿËÿËÿËÿÍÿÍÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÑÿÍÿÊÿÊÿÈÿÅÿÁÿ½ÿ¶ÿ®ÿªÿ§ÿ¡ÿ›ÿ’ÿÿŒÿ‹ÿ‰ÿ†ÿ…ÿ‚ÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÕÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿÖÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÑÿÐÿÐÿÏÿÐÿÎÿÎÿÎÿÎÿÍÿÌÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÊÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÊÿÊÿËÿËÿÊÿËÿÌÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÑÿÍÿÊÿÊÿÇÿÂÿ¾ÿºÿ°ÿªÿ©ÿ¦ÿœÿ”ÿÿÿŒÿŠÿ‡ÿ…ÿ„ÿÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊð×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿËÿÊÿÊÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÅÿÄÿÄÿÅÿÄÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÈÿÉÿÉÿÊÿËÿÊÿÊÿÌÿÍÿÍÿÌÿËÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÑÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÐÿÌÿÊÿÈÿÄÿÀÿ»ÿ¶ÿ®ÿ©ÿ©ÿ¡ÿ”ÿÿÿŽÿ‹ÿˆÿ†ÿ…ÿ„ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÆÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÍÿÌÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÒÿÏÿÌÿÊÿÆÿÃÿ¿ÿ¹ÿ³ÿ®ÿ©ÿ¤ÿ—ÿÿÿŽÿŒÿŠÿ‡ÿ†ÿ…ÿƒÿ€ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿÊÿÊÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÇÿÇÿÆÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÌÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÑÿÎÿÌÿÊÿÆÿÂÿ½ÿµÿ²ÿ¬ÿ¤ÿšÿ‘ÿŽÿŽÿŒÿŠÿ‰ÿ‡ÿ…ÿ…ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÔÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÍÿÌÿÍÿÌÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÆÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÑÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÐÿÍÿÌÿÊÿÇÿÁÿ¹ÿ²ÿ¬ÿ£ÿœÿ•ÿÿŽÿŒÿŠÿŠÿ‰ÿ‡ÿ†ÿ„ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÖÿÕÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÕÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÒÿÒÿÒÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÆÿÆÿÇÿÇÿÈÿÉÿÈÿÉÿÉÿÈÿÇÿÈÿÉÿÊÿÊÿÊÿËÿËÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÎÿÌÿÌÿÊÿÆÿ¾ÿ³ÿªÿ¢ÿŸÿ›ÿ”ÿŽÿŒÿŠÿŠÿ‰ÿ‰ÿ‡ÿ†ÿƒÿ€ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÍÿÌÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÆÿÇÿÈÿÈÿÈÿÈÿÇÿÆÿÇÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÍÿËÿÊÿÆÿÀÿ·ÿ­ÿ¥ÿŸÿÿ›ÿ’ÿ‹ÿŠÿ‰ÿ‰ÿ‰ÿˆÿ‡ÿ…ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÍÿÍÿÌÿÌÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÈÿÈÿÇÿÇÿÆÿÆÿÆÿÈÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿËÿÈÿÆÿÀÿ»ÿµÿ®ÿ¢ÿœÿ›ÿšÿÿŠÿ‰ÿ‰ÿ‰ÿˆÿˆÿ‡ÿ„ÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÑÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÑÿÑÿÐÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÇÿÈÿÈÿÈÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÇÿÈÿÆÿÅÿÆÿÆÿÅÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÎÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÊÿÅÿÃÿ¾ÿ»ÿ´ÿ¬ÿ¡ÿšÿšÿ˜ÿÿ‰ÿ‰ÿ‰ÿ‰ÿˆÿˆÿ…ÿ‚ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÊñÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÒÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÆÿÆÿÅÿÈÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÍÿÍÿÍÿÍÿÍÿÎÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÈÿÄÿÂÿ½ÿºÿ²ÿ¨ÿ¡ÿœÿ™ÿ•ÿŽÿŠÿ‰ÿ‰ÿˆÿˆÿ†ÿƒÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÉòÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÏÿÏÿÏÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÅÿÄÿÄÿÅÿÄÿÄÿÅÿÅÿÅÿÆÿÅÿÅÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÍÿÍÿÎÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÈÿÄÿÀÿ¼ÿ¸ÿ®ÿ¤ÿ¡ÿžÿ—ÿ’ÿŽÿŠÿ‰ÿˆÿ‡ÿ†ÿ„ÿÿ€ÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÉòÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÒÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿËÿËÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÄÿÅÿÅÿÅÿÅÿÆÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÏÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÈÿÄÿ¿ÿ¹ÿ´ÿªÿ£ÿ¡ÿžÿ•ÿ‘ÿŽÿ‰ÿ‡ÿ†ÿ†ÿ„ÿƒÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÉòÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÎÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿËÿËÿËÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÅÿÅÿÅÿÅÿÆÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÎÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÇÿÃÿ½ÿµÿ°ÿ§ÿ¢ÿ¡ÿœÿ”ÿÿŒÿ‡ÿ†ÿ…ÿ„ÿƒÿ‚ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÉòÔÿÔÿÔÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÏÿÎÿÏÿÎÿÎÿÍÿÍÿÌÿÌÿËÿËÿËÿËÿÊÿÉÿÉÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÄÿÅÿÄÿÅÿÅÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÆÿÂÿ¹ÿ²ÿ®ÿ¤ÿ¢ÿ ÿ™ÿ•ÿÿŠÿ†ÿ…ÿ„ÿƒÿ‚ÿÿ€ÿ€ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÉòÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÓÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÍÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÑÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿÖÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÎÿÎÿÎÿÎÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÁÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÄÿÅÿÅÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÅÿ¾ÿ¶ÿ°ÿ¬ÿ¢ÿ ÿœÿ—ÿ•ÿÿ‰ÿ…ÿ…ÿ„ÿƒÿ‚ÿÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÈóÓÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿËÿÊÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÁÿÂÿÃÿÃÿÃÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÁÿÁÿÂÿÃÿÂÿÁÿÁÿÀÿÁÿÁÿÁÿÁÿÃÿÄÿÅÿÅÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÌÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÂÿ»ÿµÿ¯ÿ¨ÿ ÿœÿšÿ˜ÿ•ÿÿ†ÿ„ÿ„ÿ„ÿ‚ÿ‚ÿ€ÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÈóÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÌÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÏÿÐÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÂÿÂÿÁÿÁÿÀÿ¿ÿÀÿÁÿÁÿÁÿÂÿÃÿÄÿÅÿÇÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ¿ÿ»ÿµÿ®ÿ£ÿ›ÿ™ÿ˜ÿ—ÿ•ÿÿ…ÿ„ÿ„ÿƒÿ‚ÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿƒÿØÿØÿØÿØÿËðÈóÒÿÒÿÒÿÑÿÒÿÒÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿËÿÊÿÉÿÊÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÂÿÁÿÁÿÀÿ¿ÿ¿ÿÀÿÁÿÀÿÀÿÂÿÃÿÄÿÅÿÇÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÍÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ¿ÿ¼ÿ¶ÿ©ÿ›ÿ˜ÿ—ÿ—ÿ–ÿ”ÿŽÿƒÿƒÿÿÿÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ~ÿ‚ÿØÿØÿØÿØÿËðÈóÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿÌÿËÿÌÿÌÿËÿËÿÌÿËÿÌÿËÿËÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÌÿÌÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÑÿÑÿÑÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÌÿËÿËÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÃÿÃÿÆÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÁÿ¾ÿ¸ÿ¦ÿœÿœÿœÿœÿœÿ™ÿ’ÿ‰ÿˆÿ‡ÿ†ÿ…ÿ„ÿ„ÿ„ÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿƒÿ‰ÿØÿØÿØÿØÿËðÇôÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿÌÿÌÿËÿËÿËÿËÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿËÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÔÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÌÿÌÿËÿËÿÊÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÄÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÏÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿØÿØÿØÿØÿËðÇôÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÎÿÎÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿËÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÊÿÊÿËÿËÿËÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÑÿÑÿÑÿÐÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿËÿËÿËÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÇÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÁÿÁÿÁÿÂÿÁÿÁÿÁÿÀÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÇÿÈÿÈÿÈÿÈÿÈÿÌÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÇôÏÿÐÿÐÿÐÿÏÿÐÿÏÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÎÿÎÿÎÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÊÿËÿËÿËÿËÿËÿËÿÊÿÊÿËÿËÿËÿÊÿÊÿÊÿÊÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÓÿÓÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÎÿÎÿÏÿÎÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÁÿÂÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ¾ÿ¿ÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÅÿÈÿÈÿÈÿÈÿÊÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÆõÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿËÿÌÿÌÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÉÿÊÿÉÿÈÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÁÿÂÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÄÿÇÿÈÿÈÿÉÿÒÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÆõÎÿÏÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÍÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿËÿËÿËÿËÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÌÿËÿËÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿËÿÊÿÊÿÉÿÊÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¾ÿ½ÿ¾ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÄÿÇÿÇÿÈÿÐÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÆõÎÿÎÿÎÿÎÿÎÿÍÿÎÿÎÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÒÿÒÿÑÿÑÿÒÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿËÿËÿËÿÊÿËÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÄÿÆÿÆÿÎÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÆõÍÿÍÿÎÿÎÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿËÿÊÿÊÿÊÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÇÿÇÿÆÿÅÿÆÿÇÿÇÿÇÿÇÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÐÿÑÿÑÿÑÿÐÿÐÿÏÿÎÿÎÿÏÿÎÿÎÿÎÿÍÿÌÿÍÿÌÿÌÿËÿËÿÊÿÉÿÊÿÊÿÊÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÆÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¿ÿÀÿÀÿÀÿÀÿÂÿÂÿÂÿÄÿÆÿÍÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÅöÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÅÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÇÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÐÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÔÿÓÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÐÿÐÿÐÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¾ÿ¿ÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿÀÿÀÿÀÿÀÿÁÿÂÿÁÿÄÿÍÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÅöÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÌÿÌÿËÿËÿËÿÌÿËÿËÿËÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿÊÿÊÿÊÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÈÿÉÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÈÿÇÿÇÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÐÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÌÿËÿËÿËÿÊÿËÿÊÿÊÿÉÿÉÿÉÿÈÿÈÿÈÿÇÿÈÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÍÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÅöËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÆÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÅÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÈÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÌÿÍÿÌÿÌÿÍÿÌÿËÿËÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÅÿÅÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÊÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÅöËÿËÿËÿËÿÌÿËÿËÿÌÿËÿËÿËÿËÿÌÿËÿËÿËÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿËÿËÿËÿÊÿËÿÊÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÑÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÇÿÇÿÈÿÇÿÇÿÇÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿ¿ÿÃÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÄ÷ÊÿËÿËÿËÿËÿËÿËÿÊÿËÿÊÿËÿËÿËÿÊÿÊÿÊÿËÿËÿËÿÊÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÃÿÃÿÃÿÄÿÅÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿÌÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿ»ÿ»ÿ»ÿºÿºÿ»ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿÀÿÀÿÀÿ¿ÿÊÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÄ÷ÊÿÊÿËÿËÿÊÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÃÿÃÿÄÿÅÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÎÿÍÿÍÿÍÿÌÿÍÿÌÿËÿËÿËÿËÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿºÿºÿºÿ¹ÿºÿ»ÿ»ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿ¿ÿÂÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÄ÷ÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÅÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÍÿÍÿÍÿÍÿÌÿËÿËÿËÿÊÿÊÿËÿÊÿÉÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿºÿºÿºÿºÿ¹ÿºÿ»ÿºÿºÿºÿ¹ÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÀÿ¿ÿÊÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÄ÷ÉÿÊÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÌÿÌÿËÿËÿËÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÇÿÇÿÈÿÇÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÁÿÂÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿºÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿÂÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÃ÷ÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÇÿÇÿÈÿÇÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÆÿÆÿÇÿÇÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿËÿÊÿÊÿÉÿÉÿÉÿÈÿÈÿÈÿÇÿÈÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÅÿÅÿÆÿÅÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÁÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿÌÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÃ÷ÉÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÉÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÉÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÊÿÊÿÊÿËÿÊÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÌÿÌÿÌÿÌÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÇÿÇÿÆÿÆÿÇÿÅÿÅÿÆÿÆÿÅÿÅÿÄÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÁÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¾ÿ½ÿÄÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÃ÷ÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÎÿÏÿÎÿÎÿÎÿÏÿÎÿÎÿÏÿÎÿÎÿÏÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÊÿÊÿÊÿÉÿÉÿÈÿÈÿÈÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÄÿÅÿÄÿÃÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÃÿÂÿÂÿÃÿÂÿÂÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¿ÿÏÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÂøÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÇÿÇÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÂÿÂÿÁÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÎÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿËÿËÿËÿÊÿÊÿÉÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÆÿÆÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÄÿÃÿÃÿÃÿÄÿÃÿÃÿÃÿÂÿÃÿÂÿÂÿÁÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿÉÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÁøÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÎÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿËÿÊÿËÿÊÿÊÿÈÿÈÿÈÿÈÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÃÿÂÿÃÿÂÿÂÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÁÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿÂÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÁøÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÍÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÍÿÍÿÍÿÎÿÍÿÎÿÍÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÊÿÊÿÊÿÊÿÉÿÉÿÈÿÈÿÇÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÂÿÂÿÂÿÂÿÂÿÁÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ¼ÿ¼ÿ¼ÿ»ÿ¿ÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÁøÆÿÆÿÇÿÇÿÆÿÆÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÆÿÇÿÈÿÇÿÇÿÇÿÆÿÆÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÇÿÇÿÆÿÆÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿËÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿËÿÌÿËÿÊÿÊÿÊÿÊÿÉÿÉÿÈÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÄÿÅÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ¼ÿ»ÿ½ÿÍÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÁùÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿËÿËÿÊÿÊÿÊÿËÿÌÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÈÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÀÿÁÿÀÿÀÿÀÿ¿ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿËÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÁùÅÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÅÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÈÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÊÿÉÿÉÿÊÿÊÿÊÿËÿËÿÊÿËÿËÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿÉÿÊÿÉÿÈÿÈÿÈÿÇÿÇÿÇÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿ¿ÿÀÿÀÿ¾ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ¹ÿºÿÈÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÄÿÅÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÅÿÅÿÄÿÃÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿËÿËÿÌÿÌÿËÿÌÿÌÿÌÿËÿËÿÊÿÊÿÊÿÉÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÆÿÄÿÄÿÄÿÃÿÃÿÄÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¹ÿ¹ÿÈÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÄÿÅÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÅÿÄÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÇÿÇÿÇÿÇÿÆÿÅÿÅÿÄÿÄÿÃÿÃÿÃÿÂÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿ¾ÿ¼ÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿÈÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÈÿÈÿÈÿÉÿÊÿÉÿÊÿÊÿÉÿÉÿÊÿÊÿËÿËÿËÿÊÿËÿËÿËÿËÿÊÿËÿÊÿÊÿËÿÊÿÉÿÊÿÉÿÉÿÉÿÈÿÈÿÇÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÂÿÁÿÁÿÀÿÀÿÀÿÀÿ½ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ»ÿÊÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÁÿÀÿÀÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÇÿÇÿÆÿÆÿÆÿÆÿÄÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÁÿÁÿÀÿÀÿÀÿ¿ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿ¹ÿ¸ÿ¾ÿÎÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÅÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÂÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÊÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÈÿÇÿÇÿÆÿÆÿÅÿÅÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÁÿÁÿÀÿÀÿ¾ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿÂÿÒÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÀùÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÂÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÈÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÅÿÅÿÅÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿ¼ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿÈÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÃÿÃÿÄÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÄÿÄÿÃÿÁÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÈÿÈÿÈÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿ¿ÿÀÿ¾ÿ»ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿÀÿÏÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÃÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÄÿÃÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÉÿÈÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÈÿÈÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÉÿÈÿÈÿÈÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿ½ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÊÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÄÿÂÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÇÿÇÿÈÿÇÿÈÿÇÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÈÿÈÿÉÿÈÿÈÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÀÿ»ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÈÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÃÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÂÿÀÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿ¿ÿ»ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÉÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÁÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÉÿÈÿÆÿÆÿÆÿÅÿÆÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÈÿÉÿÈÿÉÿÉÿÇÿÈÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÂÿÂÿÁÿ¿ÿ»ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿËÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÄÿÁÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÈÿÆÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÂÿÂÿ¿ÿºÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÐÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÅÿÄÿÂÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÈÿÈÿÇÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÇÿÈÿÈÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÇÿÈÿÈÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÂÿ¿ÿºÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÈÿÈÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÉÿÈÿÈÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÃÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿ¾ÿºÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ½ÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÁÿÀÿ¿ÿÀÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÉÿÆÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿ¾ÿºÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿÀÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÃÿÂÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÇÿÈÿÉÿÈÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÇÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÃÿÃÿ¿ÿºÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿÅÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ùÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÈÿÉÿÉÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÊÿËÿÊÿÌÿÌÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÈÿÈÿÇÿÆÿÄÿÄÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿ¿ÿºÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿÊÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾ùÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÇÿÉÿÉÿÇÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÉÿÉÿÊÿÏÿÑÿÌÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿËÿËÿÊÿÊÿËÿËÿËÿÊÿÊÿÊÿÊÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÈÿÇÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÀÿ¼ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿÀÿÐÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾ùÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÂÿÂÿÁÿÂÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÈÿÉÿÇÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÏÿÒÿÐÿÌÿÊÿÊÿÊÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿËÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÂÿ¼ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ»ÿÊÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾ùÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÇÿÉÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÇÿÈÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÊÿÊÿÊÿÊÿËÿÊÿÊÿËÿËÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÇÿÆÿÆÿÆÿÆÿÃÿ¾ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÄÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾ùÁÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÈÿÇÿÆÿÆÿÆÿÇÿÆÿÇÿÈÿÇÿÈÿÈÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿËÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÌÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÈÿÇÿÇÿÆÿÆÿÁÿ»ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÄÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾úÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÇÿÇÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÈÿÉÿÈÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿËÿÊÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÈÿÈÿÇÿÃÿ¼ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÆÿÒÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾úÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÍÿÎÿÍÿÍÿÍÿÎÿÎÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿËÿÊÿÈÿÈÿÆÿ¿ÿ»ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ»ÿÃÿÌÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¾úÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÃÿÃÿÂÿÁÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÃÿÆÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÎÿÎÿÎÿÍÿÎÿÍÿÎÿÎÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÌÿÍÿÍÿÍÿÌÿÌÿËÿÉÿÈÿÃÿ¼ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿºÿ¿ÿÅÿÍÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð½ûÀÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÂÿÅÿÈÿÇÿÈÿÈÿÈÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÎÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿËÿÊÿÆÿ¿ÿºÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¼ÿ¿ÿÂÿÅÿÉÿÎÿÓÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ¾ÿ¿ÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÃÿÂÿÆÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÊÿÄÿ½ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿÃÿÑÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿÀÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÆÿÈÿÉÿÉÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÊÿÄÿ¾ÿºÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿÁÿÎÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿÀÿÀÿÀÿÁÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÇÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÐÿÏÿÏÿÐÿÐÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÊÿÄÿ¿ÿ¼ÿºÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿÁÿÎÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÅÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÏÿÏÿÎÿÍÿÉÿÄÿÀÿ½ÿ½ÿ»ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÆÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÐÿÏÿÏÿÏÿÏÿÍÿÊÿÄÿ¿ÿ½ÿ½ÿ½ÿ¼ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¾ÿÅÿÎÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÉÿÊÿÊÿÉÿÊÿÊÿÊÿËÿËÿËÿÌÿËÿÌÿÌÿÌÿÌÿÍÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÉÿÄÿ¿ÿ½ÿ½ÿ½ÿ½ÿ»ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ»ÿ¿ÿÄÿÊÿÑÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÉÿÊÿÉÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÑÿÒÿÑÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÐÿÎÿËÿÅÿ¿ÿ½ÿ½ÿ½ÿ½ÿ¼ÿºÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÈÿÎÿÒÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÁÿÄÿÉÿÊÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÏÿÍÿÈÿÁÿ¾ÿ½ÿ½ÿ½ÿ½ÿ»ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ»ÿÉÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÄÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÍÿËÿÅÿÁÿ¾ÿ½ÿ½ÿ½ÿ»ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿºÿÅÿÒÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÃÿÉÿËÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÏÿÎÿËÿÆÿÁÿ¿ÿ¾ÿ½ÿ¼ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ»ÿÆÿÑÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÀÿÇÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÎÿËÿÈÿÅÿÂÿ¿ÿ½ÿºÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¹ÿºÿºÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¹ÿ¿ÿÉÿÓÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð»ü¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿÁÿÊÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÎÿÍÿÊÿÈÿÇÿÄÿÂÿÁÿÁÿÂÿÃÿÃÿÂÿÀÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ¸ÿºÿ¿ÿÇÿÏÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ½ÿ»ÿºÿ¼ÿÈÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÔÿÔÿÕÿÕÿÕÿÔÿÕÿÕÿÔÿÔÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÍÿÌÿËÿÊÿÇÿÆÿÅÿÅÿÄÿÂÿÂÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¼ÿÀÿÄÿËÿÑÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºýºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ»ÿ¹ÿ¹ÿ¹ÿÂÿËÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÑÿÑÿÐÿÐÿÏÿÎÿÍÿÌÿÌÿËÿÉÿÇÿÅÿÅÿÃÿÁÿÁÿÃÿÊÿÐÿÒÿÐÿÍÿÊÿÈÿÆÿÅÿÅÿÅÿÆÿÈÿÊÿÍÿÑÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ»ÿ¹ÿ¹ÿ¹ÿ¿ÿÊÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÑÿÐÿÎÿÍÿÌÿÌÿËÿÊÿÉÿÈÿÈÿËÿÏÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ»ÿ¹ÿ¹ÿ¸ÿ¼ÿÉÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÔÿÓÿÒÿÒÿÒÿÓÿÔÿÕÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿºÿ¹ÿ¹ÿ¸ÿ»ÿÈÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÕÿÖÿÖÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÓÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¹ÿ¹ÿ¹ÿ¸ÿ¼ÿÈÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿÖÿ×ÿ×ÿÖÿ×ÿÖÿÖÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ»ÿ¹ÿ¸ÿ¸ÿ¸ÿ¾ÿÊÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðºý¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ»ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿÁÿÌÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹ý¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ»ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿÆÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹ý¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ»ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿÆÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿÖÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹ý¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿÁÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹ý¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ½ÿÍÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿºÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ»ÿËÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿÉÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ»ÿÊÿÑÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÌÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÃÿÏÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÊÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¾ÿÇÿÐÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÁÿÊÿÐÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÊÿÒÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¿ÿÎÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÜÿ5àÿOäÿgèÿ„ìÿ›ðÿ­òÿ½õÿÊ÷ÿÖùÿßúÿçûÿìüÿïýÿïýÿìüÿçûÿßúÿÖùÿÊ÷ÿ½õÿ­òÿ›ðÿ„ìÿgèÿOäÿ5àÿÜÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿÃÿÐÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÖÿÖÿÕÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ1ßÿXåÿ…ìÿ­òÿÎøÿíüÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿíüÿÎøÿ­òÿ…ìÿXåÿ1ßÿ ÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¸þ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ½ÿÉÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿÖÿÕÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÓÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿDâÿyëÿ¯óÿÛùÿúþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúþÿÛùÿ¯óÿyëÿDâÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÄÿÏÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ3àÿnéÿ°óÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäûÿ°óÿnéÿ3àÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿËÿÓÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ>áÿ…ìÿÈ÷ÿúþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúþÿÈ÷ÿ…ìÿ>áÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÍÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÕÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ4àÿìÿÌ÷ÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÌ÷ÿìÿ4àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÏÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÔÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿbçÿºôÿøþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøþÿºôÿbçÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿÃÿÑÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÓÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ3àÿŽîÿàúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàúÿŽîÿ3àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¹þ¸ÿ¹ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÊÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿEãÿ¬òÿõýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõýÿ¬òÿEãÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËð¿ù·ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÆÿÑÿÕÿÔÿÔÿÔÿÔÿÕÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿMäÿºôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿºôÿMäÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÊñ¿ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¾ÿÈÿÑÿÕÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÕÿÖÿÕÿÕÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿMäÿ¾õÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾õÿMäÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðÒÿ¼ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿºÿÀÿÆÿÍÿÓÿÕÿÕÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿAâÿ¸ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸ôÿAâÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿÐÿ»ÿ¸ÿºÿºÿºÿºÿºÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÄÿÏÿÓÿÕÿÕÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ-ßÿ¢ñÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿ¢ñÿ-ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿÏÿ¼ÿ¹ÿºÿºÿºÿºÿºÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿËÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÑÿÑÿÒÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿ€ìÿëüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëüÿ€ìÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿÏÿ¼ÿ¹ÿºÿºÿºÿ»ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¼ÿÆÿÑÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿRåÿÐøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐøÿRåÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿÑÿ¾ÿ¹ÿ»ÿ»ÿ»ÿ»ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¾ÿÇÿÐÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Ýÿ ðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýðððÓÓÓ¸¸¸ŸŸŸƒƒƒiiiVVVEEE777***!!!!!!***777EEEVVViiiƒƒƒŸŸŸ¸¸¸ÓÓÓðððýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ðÿ ÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿÓÿÁÿºÿ»ÿ»ÿ¼ÿºÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ»ÿ¿ÿÅÿÌÿÑÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ]æÿßúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýâââ¹¹¹```>>>>>>```¹¹¹âââýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßúÿ]æÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿÖÿÆÿ»ÿ»ÿ¼ÿ¼ÿºÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¿ÿÇÿËÿÏÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÏÿÎÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿŸðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýÙÙÙ§§§kkk;;;;;;kkk§§§ÙÙÙýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸðÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿÌÿ¾ÿ»ÿ¼ÿ½ÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¾ÿÊÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÌÿÌÿËÿËÿÌÿÌÿÌÿÌÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿIãÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò¼¼¼yyy<<< <<áÿØùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêBBBBBBêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØùÿ>áÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿËÿÃÿ½ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¼ÿÄÿÌÿÐÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÓÿÓÿÒÿÒÿÑÿÑÿÏÿÎÿÍÿÌÿÊÿÈÿÇÿÆÿÆÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÎÿÏÿÏÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿcçÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××zzz""""""zzz×××ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿcçÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÏÿÅÿ¼ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿºÿ½ÿÂÿÉÿÎÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÐÿÏÿÎÿÎÿÍÿËÿÊÿÉÿÇÿÆÿÆÿÅÿÅÿÆÿÆÿÇÿÈÿÈÿÈÿÈÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿƒìÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÌÌeeeeeeÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿƒìÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿËÿÁÿ¹ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¾ÿÄÿÈÿÌÿÎÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÏÿÎÿÎÿÎÿÍÿÍÿÊÿÈÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÚÿžðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÌÌ``` ```ÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžðÿÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÌÿÄÿ¾ÿºÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¹ÿÀÿÉÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÐÿÏÿÎÿÎÿÎÿÎÿÍÿÌÿÊÿÇÿÇÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÆÿÆÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÈÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÍÿÍÿÏÿÏÿÎÿÎÿÏÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿµôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØiii iiiØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿµôÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÔÿÑÿÌÿÉÿÆÿÄÿÃÿÂÿÂÿÁÿ¸ÿ·ÿ·ÿ·ÿ¹ÿ½ÿÄÿËÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÏÿÎÿÎÿÍÿÍÿÍÿÌÿËÿÉÿÇÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÅÿÅÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÍÿÎÿÏÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÝÿÇöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇöÿ ÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËÿ¾ÿ¿ÿÂÿÇÿÊÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÐÿÏÿÎÿÍÿÍÿÍÿÍÿÍÿÌÿËÿÊÿÈÿÆÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÄÿÄÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÃÿÄÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÏÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ'ÞÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥¥¥,,,,,,¥¥¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕùÿ'ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿËÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÏÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÌÿÊÿÉÿÇÿÆÿÅÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ+ßÿÛùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒRRRRRRÒÒÒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛùÿ+ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÏÿÌÿÍÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÑÿÏÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿÌÿËÿÉÿÈÿÇÿÅÿÅÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÅÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿËÿËÿÌÿÍÿÎÿÎÿÎÿÏÿÏÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ-ßÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùŽŽŽŽŽŽùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝúÿ-ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÒÿÌÿÍÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÏÿÎÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÈÿÇÿÆÿÅÿÄÿÄÿÃÿÃÿÃÿÂÿÂÿÁÿÂÿÂÿÃÿÅÿÅÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿËÿËÿÌÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÑÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ*ÞÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓIIIIIIÓÓÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝúÿ*ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÎÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÑÿÎÿÎÿÎÿÎÿÍÿÍÿÌÿÌÿÌÿÌÿÊÿÈÿÇÿÇÿÆÿÄÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÂÿÂÿÃÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÂÿÁÿÂÿÂÿÂÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÄÿÅÿÆÿÇÿÈÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ$ÞÿÛùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛùÿ$ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÑÿÍÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÐÿÎÿÎÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿËÿÉÿÇÿÇÿÇÿÆÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÃÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÄÿÄÿÅÿÄÿÅÿÅÿÅÿÆÿÇÿÈÿÈÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÏÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììffffffìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒøÿÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÒÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÏÿÎÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿÊÿÈÿÆÿÆÿÅÿÅÿÄÿÃÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿÀÿÀÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿËÿËÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÃöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ555555ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃöÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÐÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÑÿÏÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿÉÿÇÿÅÿÅÿÄÿÅÿÄÿÃÿÂÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿÍÿÎÿÏÿÏÿÐÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ¯óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯óÿ ÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÏÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÑÿÐÿÎÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿÊÿÈÿÆÿÅÿÅÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÂÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¿ÿÁÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÌÿÎÿÏÿÏÿÐÿÐÿÐÿÏÿÐÿÐÿÑÿÑÿÒÿÓÿÔÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ˜ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………………ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜ïÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÏÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÐÿÏÿÎÿÍÿÌÿÌÿÌÿÌÿËÿËÿËÿÉÿÈÿÆÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ¾ÿ¿ÿÂÿÂÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÒÿÓÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿzëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóiiiiiióóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzëÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÎÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÑÿÏÿÎÿÎÿÍÿÌÿÌÿÌÿÌÿËÿËÿÊÿÈÿÇÿÅÿÄÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÈÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÌÿÍÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿYæÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêQQQQQQêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿYæÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÐÿÏÿÎÿÎÿÍÿÌÿÌÿÌÿËÿËÿËÿÉÿÈÿÆÿÅÿÃÿÃÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÉÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÒÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ3àÿêüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿããã@@@@@@ãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêüÿ3àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÐÿÎÿÎÿÎÿÍÿÌÿÌÿËÿËÿËÿÊÿÉÿÇÿÆÿÅÿÄÿÃÿÂÿÂÿÂÿÁÿÁÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÉÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÐÿÐÿÐÿÑÿÑÿÒÿÓÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßßß444444ßßßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒøÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÐÿÎÿÎÿÍÿÍÿÌÿËÿËÿËÿÊÿÊÿÈÿÆÿÅÿÄÿÃÿÂÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÉÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¨òÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝ......ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨òÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÑÿÐÿÎÿÍÿÍÿÍÿÌÿËÿËÿËÿÊÿÊÿÈÿÅÿÄÿÄÿÂÿÁÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÆÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÇÿÈÿÊÿÊÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿuêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßßß......ßßßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuêÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÒÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÐÿÎÿÍÿÍÿÌÿÌÿËÿËÿÊÿÊÿÉÿÇÿÄÿÃÿÃÿÂÿÁÿÁÿÀÿÀÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÉÿÉÿÊÿËÿËÿÌÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ@âÿôýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿããã444444ãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôýÿ@âÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÓÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÒÿÑÿÐÿÎÿÍÿÌÿÌÿÌÿËÿËÿÊÿÊÿÈÿÇÿÄÿÃÿÂÿÂÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿËÿËÿËÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÐÿÐÿÑÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÔøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêê??????êêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔøÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÐÿÏÿÎÿÍÿÌÿÌÿÌÿËÿËÿÊÿÉÿÈÿÇÿÄÿÂÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÈÿÉÿÉÿÊÿÊÿÊÿÉÿËÿËÿÌÿÍÿÍÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÑÿÑÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿœðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôQQQQQQôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœðÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÓÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÐÿÏÿÎÿÍÿÌÿÌÿËÿËÿËÿÊÿÉÿÈÿÇÿÄÿÁÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÏÿÏÿÐÿÏÿÐÿÐÿÐÿÐÿÑÿÐÿÑÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿYæÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhhhhhhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿYæÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÑÿÐÿÏÿÎÿÍÿÌÿÌÿËÿËÿÊÿÊÿÉÿÇÿÅÿÂÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ»ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÅÿÅÿÆÿÆÿÆÿÆÿÅÿÅÿÅÿÆÿÆÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝÿâûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ††††††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâûÿÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÐÿÏÿÏÿÎÿÍÿÌÿÌÿËÿËÿÊÿÊÿÈÿÆÿÄÿÁÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿÀÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¥ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥ñÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÒÿÐÿÏÿÏÿÎÿÍÿÌÿÌÿËÿËÿÊÿÊÿÈÿÅÿÂÿÁÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ¿ÿÁÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÇÿÇÿÇÿÈÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿVåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÐÐÐÐÐÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVåÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÐÿÏÿÎÿÍÿÍÿÌÿËÿËÿÊÿÉÿÇÿÄÿÁÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÇÿÇÿÈÿÈÿÉÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÚùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿììì444444ìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚùÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÑÿÑÿÐÿÏÿÎÿÍÿÌÿÌÿËÿËÿÊÿÉÿÇÿÄÿÁÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÇÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿddddddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÐÿÏÿÎÿÍÿÍÿÌÿËÿËÿÊÿÈÿÆÿÃÿÀÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ9áÿöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžžžžžžÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöþÿ9áÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÒÿÑÿÑÿÐÿÏÿÎÿÍÿÍÿÌÿËÿÊÿÉÿÇÿÅÿÃÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿËÿÌÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ¼õÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼õÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÓÿÒÿÑÿÑÿÐÿÏÿÏÿÎÿÍÿÌÿÌÿËÿÉÿÈÿÆÿÄÿÃÿÁÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¾ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÍÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ^æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùHHHHHHùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^æÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÎÿÍÿÌÿËÿÊÿÉÿÈÿÆÿÄÿÄÿÂÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÍÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×ùÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÓÿÓÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÎÿÍÿÌÿËÿÊÿÉÿÈÿÇÿÄÿÄÿÂÿÀÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿºÿºÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿzëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzëÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÐÿÏÿÏÿÎÿÎÿÌÿËÿÉÿÉÿÈÿÇÿÅÿÃÿÂÿÀÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿèûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþPPPPPPþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèûÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÔÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÐÿÐÿÏÿÎÿÍÿÌÿËÿÉÿÉÿÈÿÈÿÅÿÃÿÂÿÁÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‹íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§§§§§§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹íÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÐÿÏÿÏÿÎÿÍÿÍÿËÿÉÿÈÿÇÿÇÿÅÿÂÿÁÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&Þÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîî((((((îîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿ&ÞÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÏÿÏÿÎÿÎÿÌÿÊÿÈÿÇÿÇÿÆÿÅÿÂÿÀÿÀÿ¿ÿ½ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿ¹ÿºÿ¹ÿºÿºÿºÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‘îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘îÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÒÿÒÿÑÿÐÿÏÿÎÿÍÿÌÿÊÿÈÿÇÿÇÿÆÿÅÿÃÿÁÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÓÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&ÞÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛÛÛÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿ&ÞÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÓÿÓÿÒÿÒÿÑÿÐÿÏÿÎÿÍÿËÿÊÿÈÿÇÿÇÿÆÿÅÿÄÿÂÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÅÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿŒíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhhhhhhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŒíÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÔÿÔÿÔÿÓÿÒÿÒÿÑÿÐÿÏÿÎÿÌÿÊÿÊÿÈÿÇÿÇÿÇÿÅÿÄÿÃÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÅÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÓÿÔÿÔÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿêüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêüÿÜÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÔÿÔÿÓÿÒÿÐÿÏÿÎÿÍÿÌÿÊÿÉÿÉÿÈÿÆÿÆÿÆÿÅÿÄÿÃÿÁÿ¿ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ~ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ``````ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~ëÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÕÿÔÿÒÿÐÿÏÿÎÿÎÿÍÿËÿÊÿÉÿÉÿÈÿÇÿÆÿÅÿÄÿÃÿÂÿÁÿÀÿ¾ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÞúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞúÿÛÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÓÿÒÿÐÿÏÿÎÿÎÿÍÿÌÿÊÿÉÿÈÿÈÿÇÿÅÿÄÿÄÿÂÿÁÿÁÿÀÿ¾ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÈÿÈÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿeçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeeeeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeçÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÓÿÑÿÐÿÏÿÎÿÎÿÍÿÌÿÊÿÈÿÇÿÇÿÆÿÅÿÄÿÄÿÂÿÁÿÀÿÀÿ¾ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÎÿÎÿÏÿÎÿÏÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚÚÚÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆöÿÙÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÒÿÐÿÐÿÏÿÎÿÎÿÍÿÌÿÉÿÈÿÇÿÇÿÇÿÆÿÅÿÄÿÃÿÁÿÀÿÀÿ¿ÿ½ÿ¼ÿ»ÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzzzzzzÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿDâÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÔÿÒÿÐÿÐÿÏÿÎÿÎÿÍÿÌÿÉÿÈÿÇÿÇÿÆÿÆÿÅÿÄÿÃÿÁÿÀÿÀÿ¿ÿ½ÿ¼ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÏÿÏÿÐÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¢ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿììììììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢ñÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÒÿÑÿÐÿÐÿÏÿÎÿÌÿËÿÉÿÇÿÇÿÆÿÅÿÅÿÅÿÄÿÃÿÁÿ¿ÿ¿ÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÈÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÏÿÐÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Ýÿìüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìüÿ ÝÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÓÿÑÿÐÿÏÿÎÿÍÿËÿÉÿÈÿÆÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÂÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÈÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÏÿÐÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿqéÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý@@@@@@ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿqéÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÐÿÏÿÎÿÍÿÌÿÉÿÈÿÇÿÇÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÂÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÐÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÉÉÉÉÉÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆöÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÐÿÎÿÎÿÍÿÌÿÉÿÈÿÇÿÇÿÆÿÅÿÄÿÄÿÄÿÃÿÃÿÂÿÀÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÅÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÐÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ9áÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuuuuuuÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿ9áÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÐÿÏÿÎÿÍÿÌÿÉÿÈÿÇÿÇÿÇÿÅÿÄÿÄÿÄÿÃÿÃÿÃÿÁÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‹íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò''''''òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹íÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÑÿÏÿÏÿÎÿÌÿÊÿÈÿÈÿÇÿÇÿÆÿÄÿÄÿÃÿÃÿÂÿÂÿÁÿÀÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÒÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÚÿÖùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ······ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖùÿ ÚÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÒÿÐÿÏÿÎÿÌÿÊÿÈÿÈÿÇÿÆÿÆÿÄÿÃÿÃÿÃÿÂÿÂÿÁÿÀÿ¿ÿ½ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÑÿÒÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿiiiiiiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDâÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÓÿÑÿÏÿÎÿÍÿËÿÉÿÈÿÇÿÆÿÅÿÅÿÄÿÃÿÃÿÂÿÂÿÁÿÀÿ¿ÿ¿ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÒÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‘îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò&&&&&&òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘îÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÓÿÒÿÐÿÏÿÍÿÌÿÊÿÈÿÇÿÆÿÅÿÅÿÅÿÃÿÃÿÃÿÂÿÂÿÀÿ¿ÿ¿ÿ¾ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÒÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÚÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¾¾¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕùÿ ÍñËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÒÿÐÿÎÿÌÿËÿÈÿÆÿÆÿÅÿÅÿÅÿÄÿÃÿÃÿÂÿÂÿÁÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÑÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ>áÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyyyyyyÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿ>ØôËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÓÿÑÿÏÿÌÿËÿÉÿÇÿÆÿÆÿÅÿÅÿÄÿÄÿÂÿÂÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿƒìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý::::::ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„æøËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÓÿÓÿÓÿÐÿÎÿËÿÊÿÈÿÆÿÆÿÅÿÄÿÄÿÃÿÃÿÁÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆóüËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÓÿÒÿÏÿÌÿÊÿÉÿÇÿÅÿÄÿÃÿÂÿÂÿÂÿÁÿÁÿÀÿÀÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÑÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ*Þÿõýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíûþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÓÿÓÿÓÿÒÿÎÿÊÿÈÿÇÿÅÿÃÿÃÿÂÿÂÿÂÿÂÿÁÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÊÿÊÿÊÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿaçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿjjjjjjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÓÿÓÿÑÿËÿÈÿÇÿÅÿÃÿÃÿÃÿÂÿÂÿÂÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÊÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¤ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ::::::þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÓÿÓÿÓÿÒÿÎÿÈÿÇÿÆÿÄÿÃÿÃÿÂÿÂÿÁÿÁÿÁÿÀÿÀÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿââââââÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÓÿÑÿÐÿÌÿÈÿÆÿÅÿÄÿÃÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÑÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ6àÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹¹¹¹¹¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÓÿÒÿÑÿÐÿÏÿÊÿÇÿÆÿÅÿÃÿÁÿÁÿÁÿÁÿÁÿÀÿÀÿÀÿ¾ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿgèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÓÿÑÿÐÿÐÿÍÿÉÿÆÿÅÿÄÿÂÿÁÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ£ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ______ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÑÿÐÿÐÿÏÿÌÿÇÿÅÿÄÿÃÿÂÿÁÿÁÿÁÿÀÿÀÿ¿ÿ¿ÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÏøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ>>>>>>þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÑÿÐÿÐÿÐÿÎÿÉÿÆÿÄÿÃÿÃÿÂÿÁÿÁÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿ»ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ(ÞÿöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿððððððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÑÿÐÿÐÿÐÿÏÿËÿÈÿÆÿÄÿÃÿÃÿÂÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿPäÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓÓÓÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÓÿÐÿÐÿÐÿÐÿÎÿÉÿÇÿÆÿÄÿÃÿÃÿÁÿÀÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ€ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸¸¸¸¸¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÒÿÐÿÐÿÐÿÏÿËÿÈÿÇÿÆÿÄÿÃÿÂÿÁÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÁÿÂÿÃÿÄÿÄÿÄÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ®óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ      ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÑÿÐÿÐÿÐÿÎÿÊÿÈÿÇÿÅÿÅÿÂÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿºÿ»ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÃÿÂÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒƒƒƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÑÿÐÿÐÿÏÿÌÿÉÿÇÿÇÿÅÿÃÿÁÿ¿ÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ"ÝÿôýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿggggggÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÒÿÐÿÐÿÍÿËÿÉÿÇÿÇÿÄÿÁÿÀÿ¿ÿ¿ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUUDDDsss¡¡¡½½½ÔÔÔåååîîîîîîåååÔÔÔ½½½¡¡¡sssDDDUUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÐÿÎÿÌÿÊÿÈÿÆÿÅÿÂÿÀÿÀÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÀÿÂÿÂÿÃÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿcçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿEEEXXXªªªãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãã㪪ªXXXEEEÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÒÿÐÿÎÿÌÿÊÿÇÿÅÿÃÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ666&&&†††ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝ݆††&&&666ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÓÿÓÿÏÿÍÿËÿÉÿÆÿÃÿÁÿÀÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ­òÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ***†††éééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéé醆†***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÓÿÏÿÌÿÊÿÈÿÅÿÂÿÁÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ¹ÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÈ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ YYYØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØYYY ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÒÿÏÿËÿÉÿÆÿÃÿÁÿÁÿÀÿ¿ÿ¾ÿ¾ÿ¾ÿ½ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÃÿÃÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÚÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜˜˜ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜˜˜ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÒÿÎÿÊÿÇÿÄÿÃÿÁÿÀÿÀÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&Þÿ÷þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ&&&ÆÆÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆ&&&ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÓÿÐÿÍÿÊÿÆÿÄÿÃÿÁÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÃÿÂÿÃÿÃÿÃÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ>áÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ444ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝ444ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÓÿÏÿËÿÉÿÅÿÄÿÃÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÃÿÂÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿSåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ444âââÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââ444ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÒÿÍÿÊÿÉÿÆÿÃÿÂÿÁÿÀÿ¾ÿ½ÿ½ÿ½ÿ¼ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿgèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ$$$ÞÞÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞÞÞ$$$ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÐÿËÿÊÿÉÿÇÿÄÿÂÿÁÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÐÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÇÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÇÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÒÿÎÿÊÿÊÿÈÿÇÿÄÿÂÿÀÿ¿ÿ½ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ–ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ™™™ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™™™ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÑÿÌÿÊÿÉÿÇÿÇÿÄÿÂÿÀÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¤ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ***WWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWW***ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÏÿÌÿËÿÉÿÇÿÇÿÄÿÁÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ³óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ666ÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛÛÛ666ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÎÿÌÿËÿÈÿÇÿÆÿÄÿÀÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÑÿÑÿÑÿÒÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÀõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿEEE†††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††EEEÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÔÿÎÿÌÿËÿÈÿÇÿÅÿÂÿ¿ÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿË÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿUUU"""íííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿííí"""UUUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÓÿÎÿÌÿËÿÈÿÆÿÃÿÁÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÐÿÐÿÐÿÐÿÑÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÔÿÕÿÔÿÔÿÔÿÕÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿggg†††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††gggÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÒÿÏÿÌÿËÿÇÿÄÿÂÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÔÿÕÿÔÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒƒƒàààÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàààƒƒƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÑÿÏÿÍÿËÿÆÿÃÿÁÿÀÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÕÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ   YYYÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿYYY   ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÑÿÎÿÍÿÊÿÅÿÂÿÁÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÔÿÕÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿéüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸¸¸ªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª¸¸¸ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÔÿÐÿÎÿÍÿÉÿÅÿÂÿÀÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÄÿÅÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÌÿÌÿÌÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÔÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿíüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓäääÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääÓÓÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÔÿÐÿÎÿËÿÉÿÆÿÂÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÖÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿðýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðððDDDÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDDDðððÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÐÿÍÿÊÿÉÿÇÿÁÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÅÿÅÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÔÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿðýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ>>>sssÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿsss>>>þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÐÿÌÿÊÿÈÿÆÿÁÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÅÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÔÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿíüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ___¢¢¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢¢¢___ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÐÿÌÿÉÿÈÿÅÿÁÿÀÿ¾ÿ½ÿ½ÿ¼ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿéüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÐÿÌÿÉÿÇÿÄÿÁÿÀÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹¹¹ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔ¹¹¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÓÿÏÿÌÿÉÿÆÿÄÿÂÿ¿ÿ¾ÿ¾ÿ¼ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââäääÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääâââÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÓÿÐÿÌÿÈÿÆÿÄÿÁÿÀÿ¾ÿ½ÿ¼ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿÌÿÌÿÌÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÐÿÏÿÐÿÑÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþ:::îîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîî:::þþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÒÿÐÿÌÿÈÿÅÿÄÿÁÿ¿ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÐÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿË÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿjjjîîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîîjjjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÒÿÐÿÌÿÈÿÅÿÄÿÁÿ¿ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÀõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨äääÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿää䨨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÒÿÐÿÌÿÈÿÆÿÃÿÀÿ¿ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿÌÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÐÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÔÿÔÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ³óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÙÙ ÔÔÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÔÔ ÙÙÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÑÿÑÿÍÿÈÿÆÿÂÿ¿ÿ¾ÿ½ÿ¼ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÔÿÔÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¤ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý:::¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¾¾:::ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÑÿÐÿÍÿÈÿÅÿÂÿ¿ÿ¾ÿ½ÿ¼ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÌÿÌÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÕÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ–ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyyy¢¢¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢¢¢yyyÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÑÿÐÿÍÿÈÿÅÿÂÿ¿ÿ¾ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÒÿÔÿÕÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¾¾sssÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿsss¾¾¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÑÿÑÿÍÿÈÿÅÿÁÿÀÿ¾ÿ¼ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÁÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÓÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿgèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò&&&DDDÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDDD&&&òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÔÿÑÿÑÿÍÿÇÿÄÿÁÿÀÿ½ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÓÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿSåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿiiiäääÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäääiiiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÒÿÐÿÍÿÆÿÄÿÁÿ¿ÿ½ÿ¼ÿ»ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÈÿÈÿÈÿÇÿÈÿÈÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ>áÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ···ªªªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿªªª···ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÒÿÐÿÌÿÆÿÃÿÁÿ¿ÿ½ÿ¼ÿ»ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÒÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&Þÿ÷þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò'''YYYÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿYYY'''òòòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÕÿÕÿÓÿÏÿÌÿÆÿÂÿÀÿ¿ÿ½ÿ¼ÿ»ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÚÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuuuàààÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàààuuuÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÓÿÏÿËÿÆÿÁÿÀÿ¿ÿ¾ÿ¼ÿºÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÈ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÉÉɆ††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÉÉÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÓÿÎÿËÿÆÿÁÿÀÿ¿ÿ¾ÿ¼ÿ»ÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ­òÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýý@@@"""íííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿííí"""@@@ýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÔÿÓÿÍÿÊÿÅÿÂÿÀÿ¿ÿ½ÿ¼ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¾ÿ¾ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÐÿÑÿÑÿÑÿÑÿÑÿÐÿÑÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÔÿÒÿÍÿÉÿÅÿÂÿÀÿ¿ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿcçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛÛÛìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÓÿÑÿÎÿÉÿÅÿÂÿÀÿ¿ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿËÿÌÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzzzWWWÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿWWWzzzÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÓÿÐÿÍÿÉÿÄÿÂÿÁÿ¿ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÊÿÊÿËÿÌÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ"ÝÿôýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚÚÚ™™™ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™™™ÚÚÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÒÿÐÿÌÿÉÿÅÿÂÿÀÿ¾ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeeeÇÇÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÇÇeeeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÒÿÐÿÌÿÉÿÆÿÂÿÀÿ¾ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿËÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ®óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ $$$ÞÞÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞÞÞ$$$ ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÒÿÐÿËÿÉÿÇÿÂÿ¿ÿ¾ÿ½ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÆÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ€ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ```444âââÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâââ444```ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÒÿÐÿËÿÉÿÇÿÂÿÀÿ¾ÿ½ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÈÿÈÿÊÿËÿËÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿPäÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ 444ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝ444 ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÏÿËÿÉÿÇÿÂÿÀÿ¿ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÈÿÊÿÊÿÊÿËÿÌÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ(Þÿöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhhh&&&ÆÆÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆ&&&hhhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÏÿÌÿÊÿÇÿÃÿÁÿ¿ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÉÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÍÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÏøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛÛÛ˜˜˜ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜˜˜ÛÛÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÏÿÌÿÉÿÇÿÄÿÁÿ¿ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÇÿÇÿÈÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ£ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€YYYØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØYYY€€€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÎÿÌÿÉÿÇÿÄÿÁÿ¿ÿ½ÿ½ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¿ÿ¿ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÇÿÈÿÉÿÉÿÉÿÉÿÊÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÎÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿgèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîîî(((†††éééÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéé醆†(((îîîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÎÿÌÿÊÿÇÿÅÿÂÿ¿ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¿ÿ¿ÿ¿ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÅÿÆÿÆÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ6àÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§§§&&&†††ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝ݆††&&&§§§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÏÿÌÿÊÿÇÿÆÿÃÿÀÿ¾ÿ¼ÿ»ÿ»ÿ»ÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÆÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþþþPPPXXXªªªãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãã㪪ªXXXPPPþþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÏÿËÿÉÿÈÿÆÿÄÿÀÿ¾ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÇÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¤ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕDDDsss¡¡¡½½½ÔÔÔåååîîîîîîåååÔÔÔ½½½¡¡¡sssDDDÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÏÿËÿÉÿÈÿÇÿÅÿÁÿ¿ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÆÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿaçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñüþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÐÿËÿÉÿÈÿÇÿÅÿÂÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÅÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÒÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ*ÞÿõýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùHHHHHHùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíûþËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÑÿÌÿÉÿÈÿÈÿÆÿÄÿÀÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÅÿÆÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÕÕÕÕÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆóüËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÍÿÉÿÈÿÈÿÇÿÅÿÂÿ¾ÿ¼ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿƒìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžžžžžžÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„æøËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÓÿÎÿÉÿÈÿÈÿÇÿÆÿÄÿÀÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ>áÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿddddddÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿ>ØôËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÏÿÊÿÈÿÈÿÇÿÆÿÅÿÂÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÏÿÏÿÐÿÐÿÐÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÚÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿììì444444ìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕùÿ ÍñËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÑÿËÿÉÿÈÿÈÿÆÿÅÿÄÿÀÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÈÿÈÿÈÿÈÿÈÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÏÿÏÿÐÿÐÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‘îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÐÐÐÐÐÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘îÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÒÿÍÿÉÿÈÿÈÿÇÿÅÿÅÿÁÿ¿ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÈÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÏÿÏÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©©©©©©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDâÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÒÿÏÿÊÿÈÿÈÿÇÿÆÿÅÿÃÿÀÿ¿ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÀÿÁÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÈÿÈÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÌÿÌÿÌÿÍÿÍÿÎÿÎÿÏÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÚÿÖùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ††††††ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖùÿ ÚÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÐÿÌÿÉÿÈÿÈÿÆÿÅÿÄÿÁÿÀÿ¿ÿ½ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÈÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‹íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhhhhhhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹íÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÑÿÎÿËÿÈÿÈÿÇÿÆÿÅÿÂÿÀÿ¿ÿ¾ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÄÿÅÿÇÿÉÿÉÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÍÿÎÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ9áÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôôôQQQQQQôôôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿ9áÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÒÿÏÿÍÿÉÿÈÿÈÿÆÿÅÿÃÿÁÿÀÿ¿ÿ¾ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÆÿÇÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêê??????êêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆöÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÐÿÎÿËÿÉÿÈÿÇÿÆÿÅÿÂÿÀÿÀÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÆÿÇÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÊÿËÿËÿËÿÌÿÍÿÍÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿqéÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿããã444444ãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿqéÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÒÿÏÿÍÿÊÿÈÿÈÿÇÿÅÿÃÿÁÿÀÿ¿ÿ½ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÅÿÆÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Ýÿìüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßßß......ßßßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìüÿ ÝÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÐÿÎÿÌÿÉÿÈÿÈÿÆÿÅÿÂÿÀÿÀÿ¿ÿ½ÿ¼ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÆÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¢ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÝÝ......ÝÝÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢ñÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÒÿÏÿÎÿÌÿÉÿÈÿÇÿÆÿÄÿÁÿÀÿÀÿ¾ÿ½ÿ¼ÿ»ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÆÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÎÿÎÿÎÿÎÿÐÿÐÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿDâÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßßß444444ßßßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿDâÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÑÿÏÿÍÿËÿÉÿÈÿÇÿÅÿÃÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÆÿÈÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÍÿÎÿÎÿÎÿÐÿÐÿÑÿÑÿÐÿÑÿÒÿÒÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÆöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿããã@@@@@@ãããÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆöÿÙÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÔÿÓÿÑÿÎÿÍÿËÿÉÿÈÿÇÿÅÿÁÿÀÿÀÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÅÿÇÿÈÿÇÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÍÿÎÿÎÿÎÿÏÿÐÿÐÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿeçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêQQQQQQêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeçÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÒÿÑÿÎÿÍÿËÿÈÿÈÿÇÿÄÿÁÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÆÿÈÿÇÿÇÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÌÿÍÿÍÿÎÿÎÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÞúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóóóiiiiiióóóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞúÿÛÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÒÿÒÿÑÿÎÿÍÿËÿÉÿÇÿÆÿÃÿÁÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ·ÿ·ÿ·ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿ¿ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÄÿÅÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ~ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ………………ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ~ëÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÓÿÒÿÒÿÑÿÎÿÍÿËÿÉÿÇÿÅÿÃÿÂÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ·ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿÀÿÀÿÀÿÁÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÄÿÅÿÅÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿêüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¨¨¨¨¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêüÿÜÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÕÿÓÿÒÿÒÿÑÿÏÿÍÿËÿÉÿÇÿÅÿÄÿÂÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿºÿºÿºÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÄÿÅÿÅÿÆÿÇÿÇÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÍÿÍÿÎÿÎÿÏÿÐÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿŒíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏÏÏ555555ÏÏÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŒíÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÕÿÓÿÒÿÒÿÑÿÐÿÎÿËÿÈÿÆÿÄÿÄÿÂÿÀÿ¿ÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ¼ÿ¼ÿ½ÿ¾ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÂÿÂÿÃÿÄÿÄÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿÌÿÌÿÍÿÍÿÎÿÏÿÐÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&Þÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìììffffffìììÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿ&ÞÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÒÿÒÿÒÿÑÿÑÿÏÿÊÿÈÿÆÿÄÿÄÿÂÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿÀÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÁÿÁÿÁÿÁÿÁÿÂÿÃÿÃÿÃÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÍÿÍÿÎÿÏÿÑÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‘îÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘îÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÒÿÒÿÒÿÑÿÑÿÎÿËÿÊÿÇÿÅÿÄÿÂÿÀÿÀÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÃÿÄÿÅÿÅÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÍÿÎÿÏÿÑÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ&ÞÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓÓÓIIIIIIÓÓÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿ&ÞÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÒÿÒÿÑÿÐÿÌÿÌÿÊÿÇÿÆÿÅÿÃÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÁÿÁÿÂÿÂÿÃÿÄÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÎÿÏÿÐÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ‹íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùùùŽŽŽŽŽŽùùùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹íÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÔÿÓÿÒÿÑÿÑÿÎÿÌÿÌÿÊÿÇÿÇÿÅÿÃÿÂÿÂÿÁÿÀÿ¿ÿ½ÿ½ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÅÿÅÿÅÿÅÿÆÿÆÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿÌÿÌÿÌÿÎÿÏÿÐÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿèûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÒÒRRRRRRÒÒÒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèûÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÒÿÒÿÐÿÍÿÌÿÌÿÊÿÇÿÇÿÆÿÄÿÃÿÂÿÁÿÀÿ¿ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÃÿÃÿÃÿÅÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿËÿÌÿÌÿÌÿÎÿÐÿÐÿÐÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿzëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥¥¥,,,,,,¥¥¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzëÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÔÿÓÿÒÿÐÿÍÿÌÿËÿÉÿÇÿÇÿÆÿÄÿÃÿÃÿÂÿÁÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¸ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÂÿÃÿÃÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÌÿËÿÌÿÏÿÐÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×ùÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÔÿÓÿÐÿÍÿÌÿÌÿÊÿÈÿÇÿÆÿÄÿÃÿÃÿÃÿÂÿÁÿ¿ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÁÿÂÿÂÿÃÿÄÿÅÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿÍÿÏÿÐÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ^æÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØØØiii iiiØØØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^æÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÕÿÕÿÔÿÓÿÑÿÍÿÍÿÌÿËÿÈÿÈÿÇÿÄÿÄÿÄÿÄÿÃÿÂÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ»ÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¾ÿ¿ÿÀÿÀÿÁÿÁÿÁÿÂÿÄÿÅÿÅÿÅÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿÍÿÏÿÑÿÑÿÑÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ¼õÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÌÌ``` ```ÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼õÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÕÿÕÿÔÿÔÿÑÿÎÿÍÿÍÿÌÿÊÿÉÿÇÿÅÿÄÿÄÿÄÿÃÿÃÿÁÿÀÿ¾ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¾ÿ¿ÿÀÿÁÿÂÿÃÿÄÿÄÿÃÿÃÿÄÿÅÿÆÿÆÿÆÿÇÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÊÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿËÿÌÿÌÿÍÿÐÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ9áÿöþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌÌÌeeeeeeÌÌÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöþÿ9áÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÔÿÒÿÏÿÎÿÍÿÌÿÊÿÉÿÇÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÂÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ¹ÿ¹ÿºÿ¹ÿ¹ÿ¹ÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿÀÿÁÿÂÿÃÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÇÿÈÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿÊÿÉÿÉÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÍÿÎÿÏÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×××zzz""""""zzz×××ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÑÿÏÿÎÿÍÿÌÿÊÿÈÿÆÿÅÿÅÿÅÿÄÿÄÿÄÿÃÿÁÿÀÿÀÿ¿ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿºÿºÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿºÿºÿºÿºÿºÿºÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ½ÿ¾ÿÀÿÁÿÁÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÂÿÂÿÃÿÃÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÈÿÈÿÉÿÉÿÉÿÉÿÉÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÌÿÌÿÌÿÌÿËÿËÿÊÿÉÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿËÿËÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÏÿÐÿÒÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÚùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêêêBBBBBBêêêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚùÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÔÿÓÿÑÿÏÿÎÿÍÿÌÿÊÿÈÿÆÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÂÿÁÿÁÿÀÿ¿ÿ¾ÿ½ÿ½ÿ½ÿ½ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿºÿºÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ¿ÿÀÿÁÿÂÿÂÿÂÿÂÿÂÿÂÿÂÿÃÿÃÿÃÿÃÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÈÿÈÿÉÿÈÿÈÿÈÿÉÿÉÿÉÿËÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÍÿÎÿÎÿÎÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÌÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÐÿÑÿÑÿÒÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿVåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆÆÆuuu******uuuÆÆÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVåÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÒÿÑÿÏÿÎÿÎÿÍÿËÿÈÿÅÿÅÿÄÿÄÿÄÿÄÿÃÿÂÿÂÿÂÿÁÿÁÿ¿ÿ¾ÿ¾ÿ¾ÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ»ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ½ÿ¿ÿÀÿÂÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÈÿÇÿÇÿÈÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÊÿÊÿËÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÒÿÒÿÒÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¥ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñññ¶¶¶iii((((((iii¶¶¶ñññÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥ñÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÓÿÒÿÑÿÐÿÏÿÎÿËÿÈÿÆÿÅÿÅÿÄÿÄÿÃÿÃÿÂÿÂÿÂÿÁÿÀÿ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ½ÿ½ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ¼ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿ¼ÿ¼ÿ¼ÿ½ÿ¾ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÂÿÃÿÃÿÃÿÃÿÃÿÃÿÄÿÄÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÇÿÇÿÈÿÈÿÈÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÒÿÒÿÒÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝÿâûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòòò¼¼¼yyy<<< <<>>>>>```¹¹¹âââýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœðÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÒÿÑÿÏÿÍÿÌÿÊÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÆÿÅÿÄÿÃÿÃÿÃÿÃÿÃÿÃÿÂÿÁÿÀÿÀÿÀÿÀÿÀÿÀÿ¿ÿ¿ÿ¿ÿ¾ÿ¾ÿ¾ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿ¿ÿÀÿÁÿÃÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÅÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÓÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÔøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýýýðððÓÓÓ¸¸¸ŸŸŸƒƒƒiiiVVVEEE777***!!!!!!***777EEEVVViiiƒƒƒŸŸŸ¸¸¸ÓÓÓðððýýýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔøÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÒÿÑÿÐÿÏÿÍÿÌÿËÿËÿÊÿÊÿÉÿÉÿÈÿÇÿÆÿÅÿÅÿÅÿÅÿÆÿÅÿÄÿÂÿÂÿÂÿÃÿÃÿÃÿÂÿÁÿÀÿÀÿÀÿÁÿÁÿÂÿÂÿÃÿÂÿÂÿÂÿÂÿÂÿÃÿÄÿÅÿÆÿÆÿÅÿÅÿÆÿÆÿÆÿÆÿÇÿÈÿÈÿÉÿÉÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿÊÿÊÿËÿËÿËÿËÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ@âÿôýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôýÿ@âÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÒÿÐÿÐÿÏÿÏÿÎÿÎÿÍÿÌÿÌÿÌÿËÿËÿÊÿÉÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÆÿÆÿÅÿÅÿÄÿÄÿÄÿÅÿÅÿÅÿÅÿÅÿÄÿÄÿÃÿÄÿÅÿÇÿÇÿÆÿÆÿÆÿÆÿÆÿÇÿÈÿÉÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿËÿÌÿÌÿÌÿÍÿÎÿÎÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÒÿÓÿÓÿÓÿÔÿÔÿÕÿÖÿÖÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿuêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuêÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÑÿÐÿÏÿÏÿÏÿÏÿÏÿÎÿÍÿÍÿÌÿÌÿÌÿËÿÊÿÊÿËÿËÿÊÿÉÿÈÿÈÿÈÿÉÿÉÿÈÿÈÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÆÿÆÿÆÿÇÿÇÿÇÿÇÿÇÿÇÿÇÿÈÿÉÿÊÿËÿËÿËÿËÿËÿËÿËÿËÿÊÿËÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÎÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÓÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ¨òÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨òÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÐÿÐÿÐÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÎÿÍÿÌÿËÿËÿÊÿÊÿÊÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÉÿÈÿÈÿÈÿÉÿÉÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒøÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÑÿÐÿÐÿÐÿÐÿÐÿÏÿÎÿÍÿÌÿÌÿËÿËÿËÿËÿËÿÊÿÊÿËÿËÿÌÿÌÿÌÿÌÿÌÿÌÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÍÿÎÿÎÿÎÿÎÿÎÿÍÿÍÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ3àÿêüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêüÿ3àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÏÿÏÿÎÿÍÿÍÿÍÿÎÿÏÿÏÿÏÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÎÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿYæÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿYæÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÐÿÐÿÏÿÏÿÏÿÏÿÏÿÏÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÐÿÑÿÑÿÑÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿzëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzëÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÑÿÐÿÐÿÐÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ˜ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜ïÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÑÿÑÿÒÿÒÿÒÿÒÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ¯óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯óÿ ÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÒÿÒÿÒÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿÃöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃöÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝÿÒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒøÿÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÓÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ$ÞÿÛùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛùÿ$ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ*ÞÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝúÿ*ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÔÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ-ßÿÝúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝúÿ-ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÕÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ+ßÿÛùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛùÿ+ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ'ÞÿÕùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕùÿ'ÞÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ ÝÿÇöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇöÿ ÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿµôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿµôÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÚÿžðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžðÿÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿÖÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿƒìÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÿÿƒìÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿcçÿîüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîüÿcçÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ>áÿØùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØùÿ>áÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÝÿ¯óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯óÿÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿëÿ÷þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷þÿëÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿIãÿ×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×ùÿIãÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿŸðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸðÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ]æÿßúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßúÿ]æÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Ýÿ ðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ðÿ ÝÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿ×ÿØÿØÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿRåÿÐøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐøÿRåÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ×ÿ×ÿ×ÿ×ÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿ€ìÿëüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëüÿ€ìÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ-ßÿ¢ñÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿ¢ñÿ-ßÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿAâÿ¸ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸ôÿAâÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿMäÿ¾õÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾õÿMäÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿMäÿºôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿºôÿMäÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿEãÿ¬òÿõýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõýÿ¬òÿEãÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ3àÿŽîÿàúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàúÿŽîÿ3àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÜÿbçÿºôÿøþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøþÿºôÿbçÿÜÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ4àÿìÿÌ÷ÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÌ÷ÿìÿ4àÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ>áÿ…ìÿÈ÷ÿúþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúþÿÈ÷ÿ…ìÿ>áÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿ3àÿnéÿ°óÿäûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿäûÿ°óÿnéÿ3àÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÛÿDâÿyëÿ¯óÿÛùÿúþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúþÿÛùÿ¯óÿyëÿDâÿÛÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿ Úÿ1ßÿXåÿ…ìÿ­òÿÎøÿíüÿûþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûþÿíüÿÎøÿ­òÿ…ìÿXåÿ1ßÿ ÚÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÙÿÜÿ5àÿOäÿgèÿ„ìÿ›ðÿ­òÿ½õÿÊ÷ÿÖùÿßúÿçûÿìüÿïýÿïýÿìüÿçûÿßúÿÖùÿÊ÷ÿ½õÿ­òÿ›ðÿ„ìÿgèÿOäÿ5àÿÜÿÙÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðËðØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿËðÏôØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿØÿÏô¿áËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËðËð¿áTRUEVISION-XFILE.pycollada-0.4/collada/tests/data/duck_polylist.dae000077500000000000000000010536121200577111600223520ustar00rootroot00000000000000 gcorson Maya 8.0 | ColladaMaya v3.02 | FCollada v3.2 Collada Maya Export Options: bakeTransforms=0;exportPolygonMeshes=1;bakeLighting=0;isSampling=0; curveConstrainSampling=0;exportCameraAsLookat=0; exportLights=1;exportCameras=1;exportJointsAndSkin=1; exportAnimations=1;exportTriangles=0;exportInvisibleNodes=0; exportNormals=1;exportTexCoords=1;exportVertexColors=1;exportTangents=0; exportTexTangents=0;exportConstraints=1;exportPhysics=0;exportXRefs=1; dereferenceXRefs=0;cameraXFov=0;cameraYFov=1 Copyright 2006 Sony Computer Entertainment Inc. Licensed under the SCEA Shared Source License, Version 1.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://research.scea.com/scea_shared_source_license.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. file:///C:/vs2005/sample_data/Complete_Packages/SCEA_Private/Maya_MoonLander/Moonlander/untitled 2006-08-23T22:29:59Z 2007-02-21T22:47:42Z Y_UP 37.8492 1.5 1 10000 1 1 1 ./duckCM.tga file2 A8R8G8B8 file2-surface LINEAR_MIPMAP_LINEAR LINEAR 0 0 0 1 0 0 0 1 0 0 0 1 0.3 0 0 0 1 0.5 0 0 0 1 1 1 35.0226 89.3874 23.3732 19.5676 89.7173 22.4879 9.22909 91.5427 17.1037 4.33048 88.7008 4.57726 45.0571 89.4178 19.824 -30.5196 11.6272 25.1326 -15.6992 11.4278 34.2321 51.8411 17.7055 36.5602 65.7206 18.372 27.0862 56.0117 11.4345 22.6963 -23.2343 18.1488 41.0429 -40.9218 18.6322 29.6382 62.4487 11.3989 12.9806 60.2326 28.1944 39.5949 71.2984 29.0359 29.3335 -32.9737 29.6914 43.477 -48.95 28.9358 31.4102 73.8118 41.7425 29.8584 65.2513 41.3955 39.884 72.6597 55.003 29.2468 64.6263 55.4849 38.2648 66.5829 66.4165 27.9218 55.5179 67.734 35.7358 43.4971 75.6992 31.8699 56.934 75.0037 25.7495 14.7601 73.8701 35.1574 -12.1248 73.9991 28.9191 14.7016 78.8465 28.8886 -3.37962 78.0576 23.1953 -24.7824 78.2304 7.65121 4.94216 81.4267 15.8195 -54.7257 89.9761 8.84491 -53.6566 74.7375 26.9735 -44.1714 77.8938 26.1268 -64.7587 73.8997 7.15297 -61.5691 65.6958 25.2253 -42.9296 61.2502 39.4496 -64.9663 57.2673 21.7398 -48.9596 49.2561 39.8218 -58.3698 43.9468 28.036 -31.7993 70.8398 33.4366 -33.1153 82.3349 8.62471 48.2452 81.0789 22.327 34.1225 80.5718 26.6473 15.5527 81.3807 24.423 0.65596 81.0723 3.99376 15.1798 11.41 36.4164 17.2973 17.3674 43.2976 43.8649 67.7941 39.8677 55.9835 56.1625 42.7808 56.4187 41.7648 44.4371 46.9566 29.0085 44.2399 18.041 21.337 45.4158 -24.2634 29.7596 46.4694 -37.1346 44.6474 44.4312 -35.8668 57.8953 42.7333 -24.1626 66.8013 39.6298 -14.2645 43.4767 51.8892 10.1522 43.8267 53.9252 -10.3735 36.316 51.8336 -14.5047 52.2745 51.0455 9.35439 52.1796 53.5056 24.5685 36.9247 52.4691 11.2191 35.6243 52.5988 27.0248 44.5585 52.8835 25.4374 55.0852 52.0724 9.23132 59.258 51.2115 21.2751 61.6417 50.3945 -11.0645 57.3325 50.3033 -22.8339 53.8174 48.6047 -22.3883 43.3299 49.8488 -13.3437 34.4469 50.7719 -15.0193 59.7488 48.0109 12.3031 31.6369 51.4681 28.2 34.9703 51.4911 34.9314 44.1559 51.2583 33.7281 55.8993 50.0475 24.8495 63.37 48.6114 9.96162 62.8873 48.4038 6.73344 84.5266 2.83788 10.2211 84.9641 13.1445 19.05 85.0093 20.4734 35.2584 84.9759 22.0089 44.8651 85.199 18.7578 54.1484 90.1992 13.1393 25.84 89.3162 23.5593 14.5318 90.4728 20.5795 5.99276 89.5698 10.1098 59.1034 90.0324 3.37689 -23.9364 11.5353 30.6125 -11.459 10.0413 29.8243 -24.5326 10.1147 22.2069 -35.1528 11.6836 17.7191 61.5472 14.2726 25.2082 43.6854 11.43 30.0164 47.7677 14.1162 33.6212 -19.459 14.309 37.9267 -36.067 14.5054 27.6816 -32.9292 18.5574 36.7248 -46.1733 18.6604 20.5246 73.3418 18.3468 14.9194 68.8732 23.4107 28.4208 55.7803 22.4988 38.5465 -27.0171 23.4671 43.0366 -45.2302 23.6628 30.9246 -41.0731 29.3325 39.4763 79.4615 29.1894 16.0672 76.9844 23.4678 15.5749 72.8865 35.1223 29.8369 63.2406 34.5574 39.8307 81.8608 42.114 16.7292 80.9318 35.3877 16.409 66.0817 48.5555 39.2449 73.9987 48.5347 29.6857 80.1688 55.1853 16.948 81.5894 48.8387 16.9628 61.1927 62.0057 37.295 70.17 61.0152 28.6395 74.8647 66.3268 16.601 77.7874 61.0196 16.7611 61.7637 71.037 26.8557 67.1835 75.4493 16.6366 71.6321 71.1772 16.667 -7.40039 76.1581 26.3759 14.8335 76.3145 32.0471 -20.947 75.0059 21.3995 -9.30957 78.0917 17.6635 2.33308 81.2658 10.7014 -55.3055 81.4823 20.1865 -44.1025 82.8784 21.08 -48.3998 77.2606 26.9595 -63.8341 69.8359 17.705 -58.2579 70.6396 26.4175 -58.1459 60.4109 31.5845 -50.1918 68.7831 33.097 -53.5557 46.1592 34.9928 -63.069 52.729 24.0553 -63.6495 60.7883 23.3658 -54.4261 28.5392 21.6382 -12.4228 39.2454 51.9419 -52.1766 34.1006 30.9987 -39.3582 37.1753 42.8245 -63.2047 33.3562 7.77354 -14.9689 48.0973 51.5712 -13.2184 68.1588 38.5488 -20.841 71.9312 31.5875 -34.0814 73.6573 23.1685 39.0864 77.6536 29.4959 52.286 78.2905 24.2985 28.6752 75.0467 34.74 24.5284 79.4248 29.0977 58.2456 81.6454 14.9372 62.5867 78.8584 16.1198 -40.058 73.3058 29.0169 -62.4832 42.7738 19.6053 -66.2542 57.7677 16.0138 -46.3972 55.562 40.3341 46.1403 83.2928 20.059 52.8472 87.516 12.3304 24.3957 81.2413 26.4145 17.5457 83.2299 21.6568 35.0308 86.9496 21.9178 5.66061 83.0193 2.97282 39.2717 10.0042 25.9897 49.7414 9.99683 19.7068 14.6156 10.0124 31.7958 28.2119 11.4278 34.5791 55.179 10.0309 11.4214 16.1259 13.9798 40.2177 33.0793 17.7336 41.3765 18.9195 36.2041 52.5892 10.6044 39.6524 53.4314 18.2523 44.3116 53.7955 25.9535 39.9994 52.7745 9.73549 48.0914 53.8815 16.9236 53.6009 53.2898 26.8721 49.8693 52.6952 9.12603 55.8675 52.7181 15.9783 60.8706 50.8542 23.2428 59.2083 51.1997 15.2006 70.9348 38.4909 -38.0814 66.6122 37.6368 -31.4745 63.2943 41.295 -12.9337 55.4359 50.6592 -29.8093 42.9681 46.5354 -18.6612 31.1764 47.8255 -30.266 55.8423 44.7033 36.2897 31.2217 48.0605 46.511 42.7776 47.7899 45.6636 56.4673 46.2574 32.8524 66.1703 44.2955 12.3579 67.2602 43.2175 -19.149 38.1518 50.4005 -23.6628 48.8825 49.2194 21.1045 32.7401 51.4785 32.4268 38.9651 51.46 35.2465 50.0413 50.7771 17.9201 63.7837 48.4371 30.018 60.597 49.2453 -20.4236 57.6424 48.1257 -7.11345 60.5511 48.2081 -5.54756 57.4675 50.6459 -6.2067 51.4293 52.475 -5.95461 43.3855 53.166 -4.66971 35.7333 52.2177 -5.70251 32.445 51.1085 -8.3205 17.8723 43.3717 -2.69678 11.3425 36.4653 -27.2981 42.8866 48.0687 -27.8897 55.043 46.5161 -16.4436 32.2248 49.3054 -18.5848 62.3861 45.599 13.6265 28.0639 49.9986 41.3922 43.4352 49.4685 32.3868 32.7171 49.8711 40.4699 56.3449 48.0345 28.9733 65.0389 46.3945 11.0523 65.6624 45.6909 -37.9272 11.78 6.99728 -50.2675 18.389 7.36354 75.8256 18.3928 2.93945 64.2756 11.6576 2.65993 82.8128 29.1368 2.93945 85.8726 42.1384 2.93945 84.9147 55.2091 3.25752 79.936 66.2007 3.25752 72.9207 75.6569 3.11665 -13.2799 78.2816 6.78078 -42.4217 91.5301 9.02211 -66.2519 42.375 7.59116 -67.9758 58.5114 6.99802 8.76422 81.5601 20.2429 8.65004 83.1534 13.7124 6.16626 86.3527 3.3376 10.3479 87.4003 13.9949 7.91973 84.7475 8.18356 19.5238 87.0994 20.6484 13.8638 85.0248 17.2846 35.1961 83.043 23.5111 26.055 84.941 22.3278 44.4291 87.1742 18.6599 55.1672 83.7325 13.2216 53.3737 85.5572 12.3674 -18.7264 10.108 26.6814 -28.5504 10.1785 15.7995 -28.6467 14.412 33.9793 -40.9463 14.6426 19.2219 68.6182 14.2022 14.0757 -36.9819 23.7436 38.5844 48.5084 72.1529 33.9029 -14.7042 76.6096 19.7209 -49.515 83.8778 20.7678 -60.3339 76.3635 19.0618 -54.5522 64.8765 32.9243 -60.8158 55.9957 28.5728 -50.6442 23.4975 21.2438 -45.1383 35.1824 39.0803 -57.747 33.5446 21.51 -27.5531 73.6877 22.8942 26.6207 76.9559 31.9144 -39.393 77.9086 22.2647 -65.5928 51.6658 17.2594 -44.8336 71.3336 32.1213 -65.569 63.5509 16.5565 25.3055 83.1594 23.781 12.1192 83.2358 18.075 25.9631 10.0257 30.0393 30.5288 14.0969 38.2233 18.4628 39.992 53.2994 17.691 48.9863 53.8221 16.1429 57.6002 52.3171 32.2615 71.41 37.9727 51.4408 62.676 41.4618 57.6406 48.9151 43.8433 52.9177 35.0586 44.5773 36.217 23.1483 43.9056 -31.7681 36.6178 45.7769 -37.83 51.5724 43.6927 -25.9576 36.5644 47.2776 -31.2662 49.6491 45.6583 26.7542 27.5116 48.1161 23.2102 67.8126 43.5534 -9.81152 64.5785 42.5347 -5.73514 54.6841 51.8166 -6.34459 47.5345 53.0926 -5.18279 39.3551 52.8687 -13.0679 23.5531 45.6457 -5.21985 14.0791 40.2548 -0.679352 10.0168 31.8299 -28.752 49.271 47.2864 -23.8534 36.6519 48.7626 -24.6964 59.5316 45.8889 -7.15942 29.3978 49.7079 38.1551 37.5127 49.7814 23.9612 29.5453 49.9126 42.2701 49.9123 48.8776 35.8278 61.6884 47.1419 20.5055 66.243 45.9037 -8.95663 63.2617 45.5834 -31.1142 10.1703 6.38486 -44.1714 14.6552 7.27827 70.6407 14.3913 2.92833 79.9353 23.413 2.93945 84.5803 35.3544 2.93945 85.9631 48.8595 3.25752 82.8254 61.0226 3.25826 76.7546 71.3433 3.2553 -19.2017 77.8115 7.33611 -48.5489 92.2656 9.06511 -60.1596 84.4057 8.28143 -55.757 23.043 7.73055 -29.2013 79.6561 8.08569 -37.1064 88.1752 8.91461 -68.0046 51.5783 7.15372 -66.9147 65.618 7.07735 57.0756 10.1525 2.28551 6.64003 83.0734 8.64102 7.67061 86.759 8.63805 14.3983 87.2706 17.8748 26.21 86.9437 22.1654 62.3057 92.5874 2.9313 1.3848 69.2606 38.5873 1.56273 65.4519 43.0262 1.32251 64.1537 45.6605 4.95551 9.99831 32.3904 4.63076 11.3477 37.0599 4.48174 13.922 40.9628 4.08211 17.3859 43.9419 3.02928 21.4474 45.8963 3.07525 28.2293 49.9356 3.11009 31.6361 51.3265 3.03002 35.4574 52.4675 2.61333 39.4033 53.3009 2.11362 43.4389 53.8266 1.75772 47.519 53.7873 1.63762 51.3863 53.3032 1.70287 54.8295 52.4802 1.76736 58.0161 51.0099 1.52196 61.5001 48.3586 1.93642 72.8387 33.8763 3.64763 75.9142 30.548 5.31806 78.4269 26.9639 58.5778 87.5953 2.23361 59.1501 85.8263 2.11721 61.5583 84.2063 2.51758 64.9644 82.1214 2.892 69.0133 79.1475 3.00989 32.7991 89.7151 -30.4233 18.3501 89.4171 -27.9721 8.67525 89.5668 -20.9938 2.39314 90.3705 -9.85685 41.3633 90.1718 -28.7054 -31.106 11.4775 -32.9686 -16.1893 11.413 -41.8242 -37.8441 11.7199 -17.9362 51.1145 17.827 -43.7764 65.4167 18.372 -34.6672 55.5386 11.4663 -30.2365 -22.7101 18.3816 -48.1723 -41.2258 18.6322 -37.22 -49.9064 18.1281 -19.4546 62.0944 11.4196 -20.5393 59.314 28.4606 -46.5397 70.9277 29.0352 -36.8544 -33.1991 29.873 -50.7109 -49.3615 28.878 -39.0246 73.4812 41.7559 -37.3453 64.6226 41.5905 -46.5931 72.9066 55.0971 -37.0309 63.9264 55.2231 -45.5736 67.308 66.4328 -36.116 55.8026 66.7664 -44.1694 43.9561 74.6649 -39.815 57.8297 75.238 -34.1393 15.5401 73.1894 -42.5115 -12.2174 73.8819 -36.4385 15.3978 78.7998 -35.5147 -2.0421 78.412 -29.475 -24.7876 76.5792 -19.7267 -12.534 78.2897 -17.6678 4.34457 81.1227 -24.1642 -55.8163 87.2424 -22.0756 -43.7036 88.3494 -22.3158 -54.1303 74.7924 -34.6324 -44.4888 77.8752 -33.6648 -65.5053 72.5896 -18.5049 -61.9613 65.7536 -32.9553 -43.4634 60.448 -47.4894 -65.1954 57.0723 -29.5143 -59.2654 27.9119 -20.2361 -49.2087 49.1998 -47.3723 -58.9689 43.7199 -35.5858 -66.3446 42.1948 -19.4391 15.5861 70.0443 -46.0785 -33.1287 69.3852 -41.4713 -34.4892 80.0254 -21.5618 48.699 81.1865 -30.8689 34.2382 80.5703 -34.2498 16.5759 81.1153 -31.895 0.727875 81.1872 -12.4148 -68.018 58.2133 -17.8183 14.7802 11.3848 -44.0174 16.9221 17.4452 -50.8066 -13.0864 43.3447 -58.8481 10.4495 43.9097 -61.0858 -9.32663 36.6667 -59.0505 -14.22 51.903 -58.0496 9.45597 51.998 -60.0277 24.246 37.0634 -60.5519 11.3896 35.7436 -60.2776 26.5918 44.6467 -61.0071 25.4626 54.4929 -59.5273 9.00666 58.9948 -57.2808 21.3366 60.5555 -57.2059 -11.1972 57.2725 -56.9708 -22.2438 53.1256 -56.0203 -20.3457 43.0689 -57.3067 -12.1122 35.0371 -58.1689 -14.9222 59.3774 -55.2218 12.2904 31.7184 -59.1973 27.7581 35.2002 -59.4961 33.8971 44.4969 -59.5273 32.7486 55.5991 -57.9969 24.5692 62.5262 -55.8246 9.69026 62.3164 -55.2589 6.31009 84.6215 -9.59067 9.94086 84.9232 -20.0693 19.0219 85.0345 -27.4843 34.7653 85.0426 -29.4209 44.1941 85.119 -26.7866 50.8728 90.6708 -23.6459 25.0482 89.5646 -29.954 12.9607 89.423 -24.9078 5.25504 89.8204 -16.202 3.24726 88.5844 -2.72431 56.928 89.7848 -10.5352 -24.3405 11.4359 -38.3603 -12.0514 9.99387 -37.4698 -25.119 9.92937 -30.186 -35.4745 11.6324 -25.6774 -30.9667 10.1577 -16.9998 61 14.303 -32.6913 42.9826 11.5093 -37.4209 46.9722 14.2133 -40.7944 -19.5197 14.3549 -45.3897 -36.488 14.4595 -35.3605 -33.1887 18.5722 -44.2309 -44.1233 14.4447 -18.6976 -46.6619 18.3928 -28.2843 73.0378 18.3468 -22.5011 68.5692 23.4107 -36.0025 54.8395 22.7093 -45.7182 -26.8814 23.6917 -50.1401 -45.535 23.6628 -38.5063 -41.3718 29.3444 -46.7703 79.1575 29.1894 -23.6481 76.6804 23.4678 -23.1566 72.5633 35.1268 -37.3883 62.517 34.8109 -46.6606 81.5568 42.114 -24.311 80.6278 35.3877 -23.9899 65.2083 48.5511 -46.1149 73.84 48.5629 -37.3 80.6871 55.3477 -24.807 81.674 48.8988 -24.6283 60.7961 61.4452 -45.0316 70.7794 61.119 -36.7907 75.5475 66.5218 -24.6246 78.6126 61.265 -24.804 62.9885 71.049 -35.1951 66.8647 75.4648 -24.4251 71.4756 71.2009 -24.4489 -6.85692 76.1307 -33.2993 15.3904 76.124 -38.9186 -20.6749 74.9933 -28.8188 -18.659 77.1776 -18.9697 -8.319 78.3549 -24.2702 1.96458 81.2562 -18.3514 -55.843 81.314 -28.5504 -49.6254 89.3466 -22.4648 -44.4451 82.6048 -28.9686 -48.6808 77.2324 -34.5316 -64.3131 69.6573 -25.8984 -61.7107 81.899 -20.9783 -58.7835 70.7123 -34.1097 -58.4469 60.3879 -39.1736 -50.5077 68.7809 -40.6817 -54.183 45.9931 -42.2824 -63.8549 52.5711 -32.0063 -63.9335 60.729 -31.1655 -54.957 22.8131 -19.9766 -55.152 28.2115 -29.5499 -11.2032 39.4137 -59.029 -53.076 34.2815 -38.5249 -39.7533 37.3377 -50.1979 -63.1283 33.463 -20.1464 -14.2141 47.7244 -58.4915 -30.0695 77.3155 -20.5683 -21.5757 71.2928 -39.3886 -34.2579 73.9026 -30.84 39.2161 77.6454 -37.0836 52.7939 78.4766 -32.8685 29.7051 73.7336 -42.0511 25.218 79.3136 -35.8083 57.9394 81.7173 -23.2211 62.3879 78.9177 -24.2442 -40.3947 73.317 -36.5831 -38.6256 84.6334 -22.1512 -63.1328 42.5522 -27.8513 -68.0395 51.255 -18.387 -66.6864 57.5891 -24.6884 -46.719 55.3544 -48.0974 -67.0838 65.1042 -17.911 46.0958 83.2499 -28.6417 50.9529 87.3143 -20.6038 25.2513 81.0708 -33.3601 17.9216 83.2039 -29.0153 34.0372 87.1164 -29.0287 5.17719 83.0067 -10.4967 38.7965 10.0502 -33.6129 49.3922 10.0272 -27.3241 14.187 9.93604 -39.5629 27.7425 11.4278 -42.1534 55.0359 10.0176 -19.0023 15.6372 13.9546 -47.8631 32.7953 17.7996 -48.8099 18.8513 36.2745 -60.5645 10.861 39.7903 -60.8997 18.3879 44.3219 -61.3282 25.5709 40.1514 -60.9249 9.98461 48.0417 -60.7803 17.172 53.0256 -60.1664 26.7053 49.7018 -60.6231 9.02446 55.628 -58.8755 15.9709 59.969 -57.3289 23.2776 58.2326 -58.209 44.1377 66.4765 -47.442 32.9162 70.0487 -45.5996 -39.1943 64.8054 -45.7138 55.5401 55.5242 -49.7715 51.248 61.6595 -48.7462 56.0065 41.9561 -51.2803 57.0734 48.8091 -50.5693 46.5132 29.225 -51.505 52.5663 35.3329 -51.6029 17.5056 21.4015 -53.1414 35.7529 23.258 -51.4249 -24.8654 30.3579 -52.8774 -37.595 44.6801 -51.7631 -32.3879 37.056 -52.6379 -36.3175 56.5451 -50.6094 -38.0947 50.8613 -51.419 -25.0582 65.9138 -47.2878 -13.0315 55.2283 -57.5699 -29.5994 42.7331 -54.0504 -17.7196 32.1054 -55.3997 -31.0452 54.9518 -52.1567 14.4814 25.6447 -55.9766 35.6595 31.6265 -55.6473 45.0786 43.2372 -55.4835 44.2682 56.1306 -54.0718 32.613 65.3459 -51.8098 12.2638 66.6664 -50.3239 -16.8788 38.5536 -57.7812 -22.2779 48.1633 -56.692 20.9614 32.7638 -59.3975 31.7892 39.2914 -59.6303 34.2463 50.1711 -58.9927 17.7651 63.1379 -55.4049 29.3959 59.9275 -56.7944 -19.9928 57.0804 -55.4805 -7.23875 60.3598 -55.204 -5.65804 57.5512 -57.0761 -6.0065 51.3551 -59.049 -5.22208 43.4715 -59.8809 -3.96387 36.0409 -59.508 -5.15608 32.8988 -58.5686 -13.5854 23.9342 -52.6112 -9.06415 18.1577 -50.5723 -3.25877 11.387 -43.9714 -26.2193 42.6871 -55.6006 -28.5919 54.4558 -53.8865 -15.0875 33.3422 -56.7928 -18.825 61.9909 -52.8915 13.3618 27.7844 -57.7174 39.8055 43.952 -57.5439 31.8122 33.1212 -57.6826 38.9151 56.1492 -56.0878 28.5307 64.3375 -53.8731 10.8825 65.2576 -52.8604 -38.7872 11.7814 -10.3899 -51.3804 18.2081 -11.1306 75.9308 18.2734 -10.619 64.3713 11.5264 -10.1319 82.6956 29.1294 -10.748 85.6139 42.137 -11.5317 84.7924 55.3455 -12.4133 79.6343 66.3979 -12.9219 71.6684 75.6332 -12.7061 -25.2621 79.1542 -11.2952 -14.3624 78.3676 -10.5812 -55.4174 91.1379 -15.1558 -43.1913 92.0224 -14.9719 -65.5402 74.7902 -11.1558 -61.0434 28.0454 -11.3123 -32.6111 84.6875 -12.5304 -67.2833 42.4839 -10.9141 -68.8802 58.6841 -10.4374 0.543259 81.1205 -6.22162 9.52418 81.0708 -28.7966 8.37571 83.1824 -21.1125 5.53085 86.6678 -9.24443 6.35532 84.3783 -3.72153 9.91936 86.9399 -19.9543 7.46301 84.8157 -15.1358 19.1716 86.9829 -27.1848 13.7244 84.9789 -24.2465 35.0315 83.0667 -31.2656 26.1633 85.0641 -29.3275 42.8321 87.2394 -26.5835 54.4673 83.6613 -21.5529 52.1903 85.3592 -20.4029 -19.1772 9.97014 -34.5627 -29.0093 10.0524 -23.9684 -28.9966 14.3787 -41.6404 -41.4341 14.4313 -27.1351 68.2653 14.2141 -21.6559 -37.1724 23.751 -45.8917 49.1935 70.9503 -42.3484 -14.5648 76.6133 -27.0075 -49.8916 83.6109 -28.9872 -61.1227 76.1114 -27.2671 -55.0601 65.0337 -40.5186 -61.3029 55.8348 -36.2984 -51.2017 23.1727 -29.0783 -45.8464 35.4359 -46.3143 -58.6945 33.6906 -29.4149 -27.3062 73.8878 -30.3291 27.1279 76.7275 -38.8845 -39.6428 78.0687 -29.8339 -66.1326 51.3373 -25.8257 -45.1368 71.2869 -39.6934 -65.8464 63.4174 -25.0094 25.8474 83.1357 -30.877 12.1451 83.2039 -25.5855 25.4849 9.93826 -37.9992 30.078 14.1043 -45.7664 18.448 40.0625 -61.2347 17.9876 48.7616 -61.0605 16.2348 56.7727 -58.8674 -32.2767 62.0154 -49.2051 -13.9368 67.8282 -45.9206 -24.8684 37.0434 -54.8511 -31.525 48.8313 -53.174 26.4258 27.5071 -55.6637 23.2554 67.017 -50.8845 -10.1563 64.4547 -50.0444 -5.75739 54.7064 -58.2557 -5.8419 47.5145 -59.5984 -4.37907 39.5768 -59.8409 -5.9761 14.2111 -47.5917 -0.926239 9.96272 -39.5747 -28.5177 48.5533 -54.7769 -21.6936 37.4949 -56.2842 -25.4638 59.1765 -53.191 -6.8028 30.1029 -57.2111 37.0326 38.1125 -57.7227 23.7499 29.4563 -57.6722 40.6137 50.1599 -57.0286 34.858 61.1842 -54.92 20.4387 65.7863 -53.1414 -9.18353 63.1068 -52.8225 -31.7926 10.1666 -9.9777 -45.2866 14.5017 -10.8326 70.7816 14.2259 -10.5137 79.9368 23.3648 -10.642 84.3683 35.367 -11.0661 85.8037 48.9262 -12.0255 82.7112 61.2146 -12.6921 76.0168 71.4278 -13.3949 -20.2604 77.9924 -11.2248 -49.3845 92.9811 -15.3182 -60.8729 85.6046 -14.2238 -56.4851 22.8762 -11.2211 -64.3531 34.2467 -11.1677 -29.1309 81.0871 -11.445 -37.3177 89.3021 -14.5323 -69.0093 51.6317 -10.622 -67.6547 66.1837 -10.4878 5.71547 83.0356 -4.42811 57.0919 10.0917 -9.5929 6.03725 83.0742 -16.133 5.45968 86.1214 -3.26036 7.12048 86.8962 -15.0149 13.8867 86.9385 -24.0596 25.9809 87.0964 -28.959 -11.6043 122.781 8.68477 -11.2981 122.692 9.69681 -10.977 122.366 10.6888 -10.6656 121.82 11.586 -10.3765 121.078 12.3445 -10.1237 120.175 12.9302 -9.91827 119.156 13.3142 -9.77222 118.067 13.4803 -9.68768 116.96 13.4188 -9.67062 115.887 13.1341 -9.72327 114.899 12.6358 -9.85822 114.021 11.8907 -10.7227 112.914 8.71887 -11.1023 127.944 8.41562 -10.4921 127.767 10.4464 -9.85971 127.122 12.423 -9.24655 126.037 14.2114 -8.68082 124.561 15.7276 -8.18628 122.764 16.8946 -7.78964 120.733 17.6635 -7.49306 118.563 17.9719 -7.3344 116.363 17.8451 -7.30846 114.233 17.2735 -7.41818 112.273 16.2733 -7.69992 110.534 14.786 -8.2775 109.033 12.4727 -9.35776 108.08 8.5424 -9.95609 132.998 7.96262 -9.04932 132.737 10.981 -8.11142 131.781 13.9103 -7.20317 130.173 16.5602 -6.3661 127.988 18.8075 -5.64024 125.328 20.5468 -5.05821 122.318 21.6961 -4.64821 119.099 22.2025 -4.42282 115.824 22.0238 -4.39761 112.65 21.1845 -4.56294 109.746 19.6875 -4.97073 107.211 17.3891 -7.42485 103.383 8.21767 -8.20483 137.879 7.33685 -7.0141 137.537 11.2983 -5.78555 136.284 15.1374 -4.59557 134.176 18.611 -3.49826 131.313 21.5559 -2.54626 127.827 23.8351 -1.78407 123.883 25.3417 -1.24654 119.664 26.006 -0.958862 115.367 25.7954 -0.932175 111.202 24.7018 -1.15683 107.411 22.6977 -1.71957 104.094 19.6809 -4.90993 99.0215 7.7476 -5.87453 142.516 6.54797 -4.41762 142.098 11.3954 -2.91623 140.566 16.0879 -1.46082 137.989 20.3341 -0.119568 134.489 23.9337 1.04373 130.229 26.72 1.97571 125.407 28.5617 2.63261 120.249 29.3728 2.98405 114.998 29.1163 3.01297 109.897 27.8025 2.72233 105.248 25.381 2.00388 101.315 21.4907 -1.90344 95.1527 7.08847 -2.99854 146.84 5.6071 -1.29695 146.353 11.2694 0.45578 144.564 16.7478 2.15439 141.556 21.7035 3.72029 137.47 25.9059 5.07858 132.497 29.1585 6.16626 126.869 31.3079 6.93364 120.848 32.2555 7.3429 114.718 31.9552 7.37701 108.764 30.4219 7.02557 103.335 27.5927 6.15958 98.8146 22.9217 1.31064 91.5316 5.92221 0.38089 150.789 4.52833 2.30194 150.239 10.9231 4.28081 148.22 17.1066 6.19814 144.825 22.7007 7.96496 140.213 27.4444 9.49823 134.6 31.1152 10.7268 128.246 33.5419 11.592 121.45 34.611 12.0547 114.531 34.2722 12.0932 107.81 32.5417 11.6995 101.628 29.4492 10.7461 96.4739 24.1724 4.21408 154.305 3.32648 6.32714 153.7 10.3604 8.50323 151.481 17.1593 10.6111 147.749 23.3102 12.5537 142.677 28.5254 14.2397 136.505 32.5617 15.5905 129.519 35.2301 16.5418 122.048 36.4053 17.0504 114.439 36.0331 17.0919 107.05 34.1306 16.6589 100.258 30.74 15.7233 94.7279 25.791 8.4454 157.338 2.02082 10.7201 156.687 9.59079 13.0608 154.299 16.9057 15.3288 150.283 23.5229 17.4189 144.827 29.1348 19.2332 138.186 33.4774 20.6856 130.67 36.3481 21.7103 122.631 37.6123 22.2575 114.445 37.2119 22.3019 106.495 35.1648 21.8259 99.2209 31.4888 20.825 93.3985 26.5962 13.0133 159.842 0.628418 15.4163 159.154 8.62471 17.8875 156.633 16.3489 20.283 152.392 23.3369 22.4903 146.631 29.2623 24.4054 139.618 33.8481 25.9394 131.682 36.879 27.0211 123.193 38.2151 27.5987 114.549 37.7917 27.6461 106.153 35.6297 27.1561 98.4202 31.8069 26.2026 92.3353 26.7949 17.8512 161.781 -0.829224 20.3468 161.067 7.47549 22.9136 158.449 15.497 25.4011 154.045 22.7534 27.6929 148.063 28.9072 29.6814 140.78 33.6686 31.2747 132.539 36.8168 32.3972 123.724 38.2032 33.0378 114.732 37.7776 33.1394 106.004 35.5511 32.5863 97.9694 31.5919 31.965 91.3737 26.2299 28.0317 162.761 5.43213 30.6652 160.074 13.6627 33.218 155.556 21.1096 35.5698 149.416 27.4236 37.6109 141.943 32.3103 39.2458 133.487 35.5408 40.3779 124.44 36.8931 41.0778 115.182 36.3645 41.3685 106.251 34.3441 40.5714 98.0124 30.0964 39.483 90.8428 24.5869 25.47 163.494 -3.09354 33.2647 163.97 -5.38011 35.8181 163.241 3.11665 38.442 160.564 11.3176 40.9852 156.062 18.737 45.5605 150.164 24.1539 46.9596 143.512 28.5313 48.7731 136.143 30.9839 48.1273 125.112 34.1698 49.5294 116.289 34.2469 49.9179 107.113 32.426 48.6893 98.8206 27.8254 47.2243 91.628 22.178 38.4532 163.455 -6.88224 40.9503 162.742 1.42916 43.5171 160.123 9.45065 47.7967 155.173 17.3906 53.1913 129.392 30.4605 57.4434 120.187 30.353 57.7555 108.881 29.1971 56.501 100.349 24.8901 54.4406 93.4897 18.651 43.5401 162.322 -8.34137 45.9453 161.636 -0.335434 50.4154 158.124 9.95186 48.4521 160.589 -9.73451 50.7305 159.939 -2.15119 54.3182 157.614 6.23138 63.8033 119.565 25.3861 63.9101 110.06 24.7226 62.901 102.219 20.9027 60.7679 96.0876 14.7059 53.1171 158.28 -11.0416 55.2347 157.675 -3.99215 58.19 155.872 2.80748 67.2969 119.573 21.0355 67.7537 111.25 20.0049 67.3733 103.92 17.1459 65.043 98.1407 11.5222 57.4671 155.429 -12.245 59.394 154.879 -5.83163 62.1915 152.982 0.103493 69.6977 119.848 16.5973 70.8076 112.269 15.649 70.4413 106.039 12.8968 68.5447 100.725 8.19913 61.4382 152.077 -13.326 63.1457 151.59 -7.6422 65.78 149.427 -2.04368 72.9933 113.56 10.1899 72.6093 109.123 7.23009 71.4208 102.692 -5.93692 66.1158 146.314 -14.556 67.6306 145.656 -8.87371 68.937 144.641 -4.73136 71.1249 140.238 -3.87204 72.9303 135.432 -3.25369 73.955 129.872 0.956131 73.8222 124.051 6.88754 69.9913 140.169 -15.5436 71.876 138.749 -9.69077 -11.3759 117.634 8.77818 63.3644 132.244 19.7795 58.7861 144.777 19.4836 67.0122 129.764 16.8798 70.6155 138.855 5.83472 63.4756 148.383 9.49515 62.8195 133.184 17.464 65.3848 131.323 15.0306 58.8061 141.77 16.8434 60.1659 137.06 18.4575 67.3103 131.311 12.1873 59.8997 144.627 13.2097 68.6945 133.697 9.63008 62.6779 144.573 10.0134 68.5944 137.783 7.94185 66.1373 141.972 8.0323 63.5846 133.449 17.7798 66.1373 131.523 15.497 59.6002 142.393 17.3936 68.0977 131.472 12.4801 69.5345 133.885 9.64862 63.3399 145.241 10.1906 69.4233 138.273 7.76169 66.8358 142.631 7.99524 70.3049 128.194 12.73 72.5233 132.983 6.70811 70.8876 139.701 3.88477 57.3232 138.168 24.4749 62.3546 131.157 22.7541 67.3926 146.279 4.41341 62.6852 151.575 8.16354 58.5355 152.152 14.7897 56.0087 147.327 21.699 67.4163 128.203 18.5732 61.7689 138.738 16.9517 60.1192 142.066 15.9826 64.1066 135.62 16.4201 65.946 133.39 14.7222 67.2903 132.939 12.8657 68.2793 135.009 11.4955 67.7633 138.355 10.7993 65.6517 141.685 10.9157 62.861 143.967 11.7343 60.6115 144.197 13.6175 60.9733 137.35 18.8824 60.8999 145.33 13.6701 65.4233 132.097 14.9091 64.194 132.052 16.3667 63.0381 133.984 17.1452 60.5626 137.576 18.0038 59.2072 139.485 18.0623 59.179 141.815 16.5439 61.4122 134.887 18.1943 67.2154 132.019 12.4453 66.4087 131.047 13.613 59.0411 143.572 15.1678 60.1096 144.464 13.3409 68.5151 134.306 10.3248 68.0821 132.189 10.829 61.149 144.974 11.4258 62.7831 144.363 10.5976 68.2882 138.059 8.96576 68.9548 135.624 8.61655 64.3898 143.534 8.86493 66.015 141.892 9.0614 67.5801 139.948 7.72906 62.5229 143.343 13.2497 61.0674 143.946 13.8533 64.8184 141.126 13.1519 66.8854 138.187 12.9695 67.3889 133.651 13.1986 66.7994 134.635 14.1328 65.5909 137.242 14.9847 63.4504 140.109 15.2998 61.4471 142.587 14.915 69.5049 129.705 12.5735 72.1177 136.32 4.77299 71.5801 133.393 8.20432 59.2932 134.201 23.8217 59.9546 137.579 21.2023 65.0801 149.359 5.97188 67.3192 144.395 6.27661 56.9459 150.409 18.5398 60.5959 148.729 14.5628 56.1303 142.947 23.7928 65.2135 129.283 20.9902 68.9562 127.783 15.7988 69.2988 142.988 3.69571 60.547 152.61 11.1863 71.7477 130.025 9.56706 72.9533 131.626 4.33482 71.3592 125.34 12.6099 70.8958 140.288 0.80043 60.4142 128.485 25.3476 53.3566 137.368 28.099 60.1785 154.454 5.65604 66.8521 148.152 1.54631 50.4599 149.321 23.457 54.4777 155.19 14.0957 66.8083 125.61 19.6379 60.7657 140.445 16.6648 62.9418 137.1 16.8738 65.1157 134.361 15.6497 66.6044 132.832 13.8036 67.9094 133.728 12.0538 68.246 136.622 11.0736 66.8721 140.078 10.7355 64.2593 143.015 11.2634 61.6205 144.401 12.4393 60.0361 143.345 14.9402 62.2167 135.13 18.5205 60.0235 144.253 15.7061 59.9835 139.927 18.519 64.9258 132.28 16.7923 67.1776 131.236 14.0179 68.9044 132.335 10.9928 69.7696 135.952 8.50682 68.3794 140.573 7.55853 64.9874 144.212 8.9287 61.9957 145.611 11.7513 64.3364 132.866 16.125 59.6128 139.75 17.5893 61.7458 135.583 17.8214 66.3694 131.791 13.6738 59.3318 143.457 15.0788 67.9657 132.894 11.3154 61.3218 144.772 11.7684 68.6738 136.094 9.51442 64.4194 143.374 9.69681 67.3615 140.039 8.78485 61.7844 144.005 13.1407 63.6091 142.365 13.2305 65.9438 139.693 13.0347 67.4912 136.673 12.9257 66.9492 133.714 13.8169 66.3464 135.861 14.5969 64.5685 138.672 15.2167 62.3546 141.447 15.1878 60.8028 143.341 14.6881 70.7571 131.099 10.3129 71.4393 136.084 6.66586 61.5272 134.531 20.6551 65.2209 146.715 7.63861 59.5052 147.331 17.3142 58.8328 141.204 20.8056 65.3699 130.706 18.6303 68.3045 129.387 14.7556 69.1838 141.704 5.63008 61.9527 149.098 11.8158 72.6026 127.566 8.47568 72.3965 136.097 1.70497 56.5247 132.614 27.6949 63.6929 151.685 3.08774 52.022 153.009 18.9305 51.1249 144.226 26.8356 63.9865 126.508 22.5154 69.2202 125.238 16.535 69.0541 144.317 0.692924 57.2187 155.661 9.56113 67.741 135.282 12.8723 67.7907 134.283 12.7419 71.6609 136.111 -15.9358 72.3201 105.969 -15.2641 74.0417 117.157 -16.1597 75.2065 106.525 -16.2769 79.8634 107.308 -17.6552 91.3867 109.457 -21.1013 88.3001 106.164 -20.0804 79.2991 114.295 -17.6596 83.595 107.064 -18.7273 84.1132 113.461 -18.9875 85.3967 106.488 -19.2404 74.3568 135.883 -16.7173 78.9611 134.305 -18.0244 82.9529 133.126 -19.1618 84.9244 134.248 -19.7638 86.99 136.683 -20.4237 90.4947 139.433 -21.5114 93.7133 139.447 -22.4507 94.9967 133.968 -22.6969 95.4994 138.023 -22.9393 92.0955 130.536 -21.7701 88.3638 126.832 -20.5942 85.6599 124.96 -19.7608 81.4537 123.062 -18.4885 74.8654 115.813 -16.3999 75.0456 119.162 -16.437 77.3477 106.901 -16.9108 90.4702 107.067 -20.7351 76.8324 114.944 -16.9597 81.866 106.977 -18.232 81.8267 113.709 -18.3173 87.5994 113.172 -20.0641 72.8517 136.463 -16.4526 76.6211 135.168 -17.3616 81.0749 133.56 -18.6235 84.1259 133.478 -19.5125 85.7941 135.222 -20.0404 95.5972 136.005 -22.9201 93.7963 132.209 -22.3054 90.1255 128.604 -21.1495 87.0197 125.694 -20.1745 83.7714 124.169 -19.1907 77.8207 121.529 -17.3927 90.9181 111.196 -21.0087 72.5032 108.223 -2.09484 75.2258 128.38 -2.75545 73.0089 134.723 -11.6266 74.987 120.808 6.20024 75.9205 117.527 -9.42607 74.9633 116.553 -9.73895 78.1707 127.11 -4.45851 76.4373 109.876 3.38505 75.8359 108.157 -4.45555 81.7666 127.621 -5.91393 76.6804 114.045 7.19746 76.6345 120.205 6.07716 82.3917 119.936 3.28125 80.7256 108.785 -7.12913 83.5075 117.685 2.46864 82.9974 115.277 1.76725 92.4261 111.042 -14.8022 90.3783 110.634 -9.15768 95.4037 129.402 -7.5814 96.0984 136.789 -17.4832 82.3405 119.579 -9.26593 80.8413 115.369 -9.65369 85.2625 124.587 -1.81087 84.8272 129.21 -7.48057 85.7451 117.806 -3.52579 86.8232 121.414 -9.52765 85.9097 118.886 0.325172 87.199 131.776 -9.16064 88.7516 134.416 -11.1099 90.1003 121.341 -5.78863 94.2515 126.991 -9.62626 89.9564 123.624 -10.2795 92.7753 126.838 -11.8772 90.8128 122.536 -2.9371 84.8317 108.856 -9.63812 86.0135 114.746 -2.76731 86.5792 108.162 -11.0609 90.7371 125.097 -2.53673 73.043 106.875 -10.3143 75.0849 116.366 -9.04127 75.9716 116.037 -9.92357 74.6763 117.226 -13.3023 76.6107 127.495 -3.81347 75.8715 107.338 -10.9986 74.2945 131.787 -6.83849 77.6673 130.92 -7.97213 79.9509 127.383 -5.12654 76.4239 117.364 7.49699 79.6098 120.36 4.88643 79.5468 114.305 5.90663 78.3479 108.471 -5.80049 80.1169 108.117 -13.6233 81.3351 130.611 -9.06203 83.483 116.149 2.62879 83.0011 114.026 3.50368 91.761 108.672 -14.126 92.1266 109.889 -18.0081 93.8845 131.645 -7.45462 96.1799 134.037 -11.4887 81.9698 117.706 -6.57603 78.9833 118.659 -9.33636 78.2737 115.773 -9.7916 81.6235 116.026 -5.37269 79.8693 114.493 -14.8934 83.5372 128.01 -6.78511 83.5372 116.896 -3.09725 86.2686 119.313 -6.65833 84.7701 120.477 -9.37344 85.7155 117.814 -1.09836 82.8336 116.065 -0.2435 84.0376 118.31 1.24899 82.4806 122.05 -11.5955 87.1182 124.405 -12.0018 88.0999 133.229 -10.2009 92.2897 123.818 -7.20253 93.4241 126.82 -10.8934 91.5661 125.3 -11.0513 89.9394 122.25 -7.90022 90.4806 121.459 -4.05592 93.4426 125.358 -4.55564 95.0537 127.861 -8.4207 86.6067 133.598 -11.5288 88.5707 135.852 -12.9256 89.8207 126.465 -12.6372 92.9117 128.817 -13.9117 95.0404 130.344 -13.2941 82.9299 109.011 -8.36213 85.6702 113.376 -2.09262 83.9642 114.927 -0.734322 83.2265 115.122 -10.3417 85.751 115.129 -7.31301 84.1511 107.994 -14.6242 84.6693 113.83 -16.0203 88.6597 113.95 -5.64331 88.16 112.314 -5.20661 87.6284 114.616 -8.44739 91.1709 112.257 -10.1186 89.261 107.896 -12.7825 84.4929 131.425 -10.2884 88.4714 122.412 -9.79086 88.4424 120.148 -1.065 85.9995 121.323 0.560211 86.1099 130.434 -8.26055 87.8345 118.872 -4.42515 91.1968 133.419 -9.01013 88.8191 128.275 -4.56676 81.5976 122.873 0.828606 76.9644 122.205 2.94316 81.4612 110.902 -0.296883 85.7392 110.723 -3.63627 75.9894 134.176 -12.4407 80.1251 132.842 -13.5803 83.9442 132.485 -14.6398 85.946 134.022 -15.3694 88.0213 136.327 -16.4059 91.3103 138.582 -16.933 94.3976 138.399 -17.1755 95.3962 132.764 -17.8798 92.8436 130.018 -17.5358 89.2928 126.974 -16.3569 86.4413 124.91 -15.6051 82.4754 123.01 -14.5108 91.896 112.486 -14.9156 82.8751 115.658 -0.544518 86.2805 115.188 -4.50003 76.1644 116.572 -8.83145 75.4185 115.882 -13.8516 76.0488 119.438 -12.6624 75.6543 131.457 -7.41829 79.4986 117.656 6.72963 79.0322 110.008 1.65974 78.0128 107.635 -12.0211 79.5268 130.758 -8.47779 82.1877 117.111 4.66623 91.3177 107.267 -17.6789 94.3523 135.804 -11.3701 79.199 116.397 -7.74822 77.416 115.064 -14.3959 84.1318 118.571 -6.36101 83.3881 117.034 -0.32283 85.0712 123.225 -11.8706 91.807 124.332 -9.03386 92.9703 124.047 -5.59067 87.5542 134.782 -12.3095 91.394 127.808 -13.2948 94.0891 129.464 -13.8324 83.6906 111.07 -2.07482 83.6929 113.909 0.096817 83.6402 115.586 -6.22978 82.2292 108.145 -14.0185 82.2626 114.108 -15.3812 85.9475 107.439 -15.3597 88.2578 113.456 -17.1125 88.2163 114.084 -11.2463 88.9763 106.666 -16.7455 83.1168 130.614 -9.81607 88.5233 125.332 -12.2287 88.5596 122.718 -0.990116 88.1236 120.568 -7.14322 91.5424 136.545 -12.2591 90.1959 130.708 -6.46555 83.1835 123.375 -0.566017 79.5957 122.783 1.99635 74.3672 117.295 7.88031 87.5631 110.072 -6.37584 74.1744 134.769 -11.9588 77.8467 133.564 -12.9456 82.0565 132.388 -14.1586 85.1416 133.114 -14.9897 86.8728 135.108 -15.8513 96.088 134.721 -17.6366 94.3716 131.254 -17.9443 90.9752 128.478 -16.8885 87.8886 125.817 -15.9581 84.6456 124.017 -15.1551 78.798 121.528 -13.6567 91.6357 111.58 -17.9377 84.2971 115.519 -2.50114 83.7426 120.625 1.77541 88.5833 114.451 -6.97195 88.0828 118.976 -2.26166 92.4098 128.085 -4.46593 90.9233 113.198 -10.8133 95.8359 131.912 -12.44 88.8584 109.104 -9.27186 75.6269 121.857 3.65715 78.5266 120.452 -11.3783 85.7325 132.479 -10.7807 87.2109 126.227 -3.03349 82.3865 115.792 -3.39975 85.5323 114.683 -10.7629 88.5351 113.906 -14.361 85.1809 114.135 -13.5766 82.7372 114.618 -13.0324 80.3171 114.815 -12.4815 77.8096 115.265 -12.0804 75.7054 115.895 -11.7089 74.7512 116.96 -11.2522 75.744 118.732 -10.8711 69.843 141.836 -9.30819 67.9679 143.189 -15.0231 72.8213 119.941 10.9157 71.6506 104.986 0.684029 69.456 100.727 -14.47 73.995 114.29 6.9995 73.1142 110.85 3.56299 72.9748 136.288 -10.6843 71.3295 137.732 -15.8765 71.3963 104.177 -15.1099 74.1581 133.103 -5.27631 75.2109 128.825 -1.40012 75.073 122.123 6.21136 74.2901 118.616 8.83824 74.0083 114.133 7.99301 73.4597 110.347 4.91832 72.8198 106.93 -0.967873 82.4554 113.29 2.18171 79.572 111.521 3.2642 80.1607 112.304 4.14649 -10.1429 113.254 10.7089 72.7842 105.382 -7.25814 -5.83078 104.99 14.0223 -2.85619 101.143 15.3198 0.690811 97.9167 16.3207 4.67302 94.8688 16.9057 66.3361 95.2358 0.153168 -11.892 122.645 7.67271 -12.1529 122.274 6.67995 -12.3643 121.685 5.78059 -12.534 120.909 5.0184 -12.626 119.978 4.42898 -12.646 118.938 4.04047 -12.5956 117.84 3.87142 -12.4777 116.734 3.92851 -12.2953 115.674 4.20803 -12.0595 114.707 4.70033 -11.7659 113.862 5.43361 -11.6777 127.672 6.3856 -12.1989 126.934 4.40896 -12.6304 125.765 2.6199 -12.9514 124.219 1.10294 -13.1465 122.369 -0.071487 -13.2072 120.301 -0.848503 -13.1242 118.113 -1.18808 -12.8996 115.91 -1.07389 -12.5437 113.798 -0.511894 -12.0803 111.876 0.468269 -11.5131 110.201 1.90664 -10.7279 108.684 4.35558 -10.8109 132.596 4.94501 -11.5843 131.502 2.01563 -12.2226 129.769 -0.634972 -12.6979 127.479 -2.88298 -12.987 124.738 -4.62311 -13.0768 121.674 -5.77454 -12.9633 118.431 -6.28242 -12.6504 115.16 -6.12376 -12.1492 112.018 -5.30077 -11.4627 109.168 -3.83942 -10.636 106.694 -1.7434 -9.32736 137.352 3.37615 -10.3401 135.919 -0.462959 -11.1772 133.648 -3.93729 -11.8 130.646 -6.88298 -12.1796 127.054 -9.1636 -12.2968 123.039 -10.6717 -12.1477 118.789 -11.3375 -11.7385 114.502 -11.1299 -11.0883 110.379 -10.0578 -10.1881 106.649 -8.12857 -9.11383 103.415 -5.39493 -7.24765 141.871 1.70126 -8.48584 140.119 -2.99197 -9.509 137.344 -7.23812 -10.2704 133.674 -10.8392 -10.7339 129.283 -13.627 -10.8777 124.375 -15.4702 -10.6953 119.179 -16.2843 -10.1948 113.94 -16.03 -9.38 108.916 -14.6924 -8.24042 104.41 -12.2576 -6.81169 100.55 -8.6587 -4.60298 146.087 -0.054435 -6.04802 144.042 -5.53284 -7.24321 140.802 -10.4893 -8.13144 136.519 -14.6932 -8.67267 131.393 -17.9473 -8.84024 125.664 -20.0997 -8.62744 119.599 -21.0494 -8.04318 113.482 -20.7529 -7.08603 107.625 -19.1759 -5.77963 102.353 -16.3577 -4.12698 97.8226 -12.2769 -1.43115 149.939 -1.86574 -3.0623 147.631 -8.04924 -4.41095 143.974 -13.6441 -5.41411 139.139 -18.3892 -6.02504 133.353 -22.0622 -6.21411 126.886 -24.4919 -5.97388 120.04 -25.564 -5.31401 113.136 -25.2289 -4.25377 106.509 -23.4776 -2.81467 100.514 -20.3577 -0.857285 95.3878 -15.9247 2.22112 153.371 -3.70596 0.427597 150.832 -10.5049 -1.05525 146.812 -16.6565 -2.15849 141.496 -21.8739 -2.82948 135.134 -25.9124 -3.03783 128.024 -28.5838 -2.77313 120.497 -29.7627 -2.04877 112.906 -29.3942 -0.897324 105.606 -27.4954 0.658188 98.9955 -24.1115 2.66969 93.7269 -19.7623 6.30045 156.332 -5.54841 4.37052 153.602 -12.8633 2.77497 149.275 -19.4821 1.58868 143.556 -25.0954 0.866531 136.711 -29.4409 0.642624 129.061 -32.3147 0.926575 120.963 -33.5833 1.70657 112.796 -33.1866 2.9455 104.941 -31.144 4.64336 97.9398 -27.491 6.69341 92.8958 -23.465 10.7483 158.78 -7.36639 8.71009 155.896 -15.0906 7.02557 151.328 -22.08 5.77182 145.289 -28.0077 5.00963 138.061 -32.5957 4.77312 129.983 -35.6311 5.07339 121.431 -36.9701 5.89712 112.807 -36.5512 7.20499 104.513 -34.3944 9.05486 97.2925 -30.556 11.2406 92.5807 -26.9734 15.4979 160.678 -9.13321 13.3818 157.684 -17.1547 11.6321 152.94 -24.4125 10.3309 146.669 -30.5671 9.53901 139.163 -35.3323 9.29359 130.775 -38.4834 9.60574 121.895 -39.8743 10.4606 112.939 -39.4398 11.8189 104.326 -37.2 14.0588 96.9514 -33.3467 16.6434 92.4725 -29.9718 23.0545 162.362 -11.6177 20.8829 159.289 -19.8483 19.0871 154.421 -27.2967 17.7525 147.986 -33.6129 16.9392 140.284 -38.5019 16.6871 131.675 -41.736 17.0074 122.563 -43.1632 17.8853 113.373 -42.7169 19.2791 104.535 -40.4185 21.2106 97.0107 -36.2628 23.42 92.7149 -32.4103 30.8573 162.843 -13.8754 28.6938 159.781 -22.0763 26.9055 154.931 -29.4973 27.9242 148.749 -36.2635 26.8335 141.896 -40.4148 27.1308 134.403 -43.1558 24.8332 123.19 -45.306 25.7073 114.033 -44.8611 27.096 105.227 -42.5709 28.977 97.7766 -38.3173 31.01 93.1798 -33.7501 36.0984 162.352 -15.1936 33.9816 159.358 -23.2144 33.3826 154.015 -31.9877 31.2043 127.797 -45.1888 41.2721 161.261 -16.3458 39.5527 157.252 -27.2589 34.1114 118.081 -46.7154 35.274 106.958 -44.7195 36.8836 99.3018 -39.4702 38.9366 94.263 -33.7738 46.3034 159.583 -17.3163 44.8502 156.854 -26.2038 42.5748 117.521 -46.6924 42.9789 108.591 -45.2964 44.501 100.951 -40.6187 47.291 94.8665 -33.4268 51.1197 157.345 -18.0904 49.9772 155.213 -25.3275 48.2059 117.708 -45.7612 48.7168 109.961 -44.0908 50.3568 102.509 -40.027 53.4827 96.7468 -32.9174 55.6498 154.578 -18.6568 54.8409 152.392 -25.0769 52.7864 118.209 -43.2581 53.6228 111.351 -41.2941 55.2413 104.656 -38.0407 58.7364 99.47 -31.8202 59.8286 151.323 -19.0083 59.0656 148.888 -25.0487 58.6371 112.647 -37.2162 60.0213 108.358 -34.3455 66.7364 101.215 -23.2055 64.3461 145.393 -20.1264 63.2939 144.171 -24.2324 64.6093 139.563 -25.8976 66.0209 134.24 -27.224 64.8265 128.137 -31.0498 61.4092 121.344 -36.0211 68.4454 138.292 -21.5291 45.453 130.809 -41.5454 41.6524 143.401 -39.21 50.101 128.433 -40.9145 59.0129 137.957 -33.7931 50.9314 147.376 -33.4765 46.2433 131.854 -39.2708 49.7303 130.061 -38.4737 43.1271 140.511 -36.8678 43.4601 135.718 -38.774 52.9147 130.138 -37.0872 45.9668 143.509 -34.5197 55.443 132.636 -35.7653 50.0284 143.557 -33.3201 56.2208 136.784 -34.4582 54.0432 141.001 -33.4001 46.726 132.091 -39.9847 50.1181 130.245 -39.3182 43.4927 141.099 -37.7857 53.4219 130.291 -37.7879 56.1362 132.807 -36.2509 50.4828 144.208 -33.8546 57.0422 137.29 -34.817 54.643 141.653 -33.7723 55.0842 126.961 -39.0439 60.0643 131.807 -35.2485 60.3282 138.873 -32.42 37.8104 136.599 -42.3736 42.95 129.62 -43.6504 57.0126 145.449 -31.2322 50.941 150.632 -32.0693 43.8723 150.975 -35.442 38.0876 145.889 -39.6926 49.5108 126.802 -42.685 45.605 137.439 -38.4211 44.6923 140.828 -36.8618 47.893 134.316 -39.1277 50.3776 132.134 -38.6198 52.5225 131.75 -37.7278 54.0743 133.869 -37.1666 53.9713 137.248 -36.4482 52.0865 140.596 -35.554 49.2647 142.875 -34.8407 46.3531 143.052 -35.2278 43.9086 135.978 -39.5785 46.5533 144.179 -35.4761 49.8356 130.846 -38.4441 47.9983 130.76 -39.0142 46.6052 132.656 -39.1566 44.0339 136.249 -38.6168 42.8387 138.17 -38.0111 43.6017 140.564 -36.8188 44.6634 133.535 -39.1929 52.6931 130.851 -37.3023 51.3763 129.845 -37.8198 44.2029 142.382 -35.6615 46.0758 143.337 -34.7362 54.9106 133.214 -36.2776 54.299 131.078 -36.3859 47.9753 143.917 -33.7041 49.8059 143.321 -33.8591 55.4037 137.025 -35.1736 56.1837 134.599 -35.1328 52.1021 142.547 -33.2281 53.387 140.878 -34.1972 55.4482 138.973 -33.8331 48.1733 142.19 -35.9091 46.6141 142.785 -35.6607 50.1892 139.952 -36.9649 52.0658 136.997 -37.7961 52.4194 132.447 -38.0845 51.4089 133.398 -38.5931 49.903 135.983 -38.7555 47.893 138.861 -37.994 46.3798 141.377 -36.6995 54.5637 128.486 -38.5583 60.8235 135.305 -33.5811 58.5718 132.382 -36.0552 39.8159 132.627 -42.8845 41.7955 136.119 -41.0087 54.1663 148.483 -31.4153 55.9539 143.477 -32.6654 40.5373 149.092 -37.6693 45.7748 147.539 -36.2109 37.1201 141.421 -41.3319 46.3145 127.804 -43.6823 52.3171 126.477 -40.9857 59.1168 142.133 -31.5495 47.4993 151.562 -33.5084 58.2159 128.907 -37.3334 61.9319 130.28 -33.5996 55.9843 124.214 -39.8068 61.9357 139.512 -29.8517 40.0547 127.159 -44.8752 32.5262 135.693 -43.2641 50.1396 153.648 -28.7343 58.0699 147.457 -28.6001 32.4395 147.874 -38.275 40.7865 154.09 -32.8062 48.5485 123.891 -44.2502 44.8917 139.171 -37.7145 46.6541 135.791 -38.9245 49.1683 133.076 -38.9875 51.4356 131.609 -38.169 53.4767 132.569 -37.389 54.253 135.498 -36.8633 53.2321 138.983 -35.9892 50.709 141.926 -35.1558 47.8345 143.294 -34.7866 45.1675 142.152 -35.9951 45.1713 133.754 -39.9113 44.7331 143.025 -36.6728 43.2421 138.583 -38.8326 48.3979 130.967 -39.812 51.8085 130.009 -38.6079 54.898 131.214 -36.9842 56.9414 134.926 -35.5317 56.2052 139.595 -34.146 52.5633 143.214 -33.6329 48.5055 144.528 -34.4611 48.2504 131.567 -38.9341 43.4311 138.451 -37.8428 45.1446 134.246 -39.058 51.3088 130.573 -37.8872 44.498 142.267 -35.7379 53.9312 131.767 -36.7632 47.939 143.698 -34.0771 55.4586 135.033 -35.7586 51.6817 142.351 -33.9384 54.6942 139.021 -34.6087 47.6009 142.867 -35.4487 49.1112 141.201 -36.4341 51.2183 138.511 -37.4098 52.6196 135.479 -38.0192 51.7129 132.488 -38.381 50.7646 134.609 -38.7822 48.8984 137.414 -38.4633 47.013 140.215 -37.3683 45.949 142.148 -36.1946 56.8747 130.003 -37.3653 59.271 135.122 -34.8148 43.4222 133.063 -41.3875 53.4219 145.768 -32.7803 43.3933 146.037 -37.8806 41.0259 139.775 -40.1938 47.7811 129.312 -41.5937 52.3542 128.12 -39.7631 57.9468 140.752 -33.0391 48.3905 148.009 -34.6435 59.466 126.101 -36.8574 62.769 134.918 -31.1499 35.337 130.917 -44.7544 54.5184 150.949 -28.3414 36.1436 151.734 -35.4628 31.2473 142.63 -41.2578 44.4825 124.75 -45.068 52.223 123.767 -42.08 60.3461 143.735 -29.0309 45.5294 154.723 -30.4826 52.8762 134.088 -38.0496 52.9993 133.095 -37.9288 65.4323 107.528 -26.9171 67.9487 126.833 -28.5074 70.5081 134.319 -20.2732 62.6749 119.616 -35.7438 72.6589 117.278 -23.098 72.2444 116.442 -22.3254 71.3889 125.795 -28.3703 65.5901 109.029 -33.5959 69.3603 107.637 -26.6398 75.0515 126.757 -29.2103 63.5342 113.12 -36.9642 64.2148 119.206 -36.4696 70.5985 118.958 -37.1681 74.9121 108.319 -27.0453 71.9998 116.742 -36.9872 71.9612 114.391 -36.0381 88.8094 110.578 -26.9527 84.1169 110.131 -30.6072 87.2695 128.749 -35.4465 93.0867 136.547 -27.8016 77.576 118.913 -26.6205 76.2215 114.981 -25.3972 75.678 123.817 -34.645 78.3012 128.686 -29.8368 77.0845 117.097 -33.174 81.2906 120.822 -28.8656 75.1464 118.021 -36.546 81.172 131.293 -29.8079 83.4949 133.994 -29.1154 81.9364 120.685 -33.7567 87.4282 126.444 -33.002 84.2007 123.162 -29.9962 87.3956 126.405 -30.3062 80.9881 121.747 -36.5927 79.7217 108.446 -27.144 76.8458 113.737 -33.7746 81.9683 107.792 -26.8548 80.6767 124.289 -36.9998 70.1714 106.645 -20.1493 72.022 116.241 -22.9037 72.8888 115.884 -22.6383 73.3892 117.141 -19.0068 69.7533 125.895 -28.1175 72.9185 107.101 -21.1147 69.1965 130.484 -24.8144 72.6997 129.897 -25.4795 73.1742 126.294 -28.81 63.1531 116.358 -37.3542 67.3688 119.359 -37.0517 66.7935 113.286 -37.5877 72.197 107.977 -26.8719 77.8994 107.939 -21.2215 76.3201 129.88 -26.4826 71.9026 115.225 -37.0598 71.0463 113.066 -37.4483 87.9791 108.369 -27.0824 90.3568 109.787 -24.1197 85.8919 131.003 -34.834 89.9668 133.538 -32.7744 75.3807 117.261 -28.6335 74.2589 118.273 -24.8974 74.5081 115.555 -23.9173 74.7186 115.201 -29.2771 78.273 114.414 -20.2702 76.9377 127.337 -29.5447 74.9877 116.19 -32.3036 79.228 118.61 -30.8741 79.7455 119.59 -27.752 75.7618 117.015 -35.1966 72.8947 115.268 -34.2906 73.0867 117.445 -36.2917 78.8617 122.15 -25.111 82.7305 124.079 -27.0743 82.4725 132.777 -29.4795 84.5114 123.193 -33.8509 87.4141 126.338 -31.4821 85.952 124.849 -30.2847 82.9247 121.687 -31.9314 81.3232 120.724 -35.4257 84.0399 124.603 -36.7655 87.4445 127.25 -34.4856 81.9223 133.222 -27.574 84.3016 135.509 -27.551 85.3181 126.104 -28.0604 88.5803 128.469 -28.7521 90.0231 129.941 -30.4819 77.43 108.57 -27.2025 76.3149 112.625 -34.143 74.121 114.113 -34.4307 78.5236 114.752 -26.0741 79.2235 114.861 -29.7308 81.84 107.809 -22.5419 82.8432 113.477 -21.7471 80.6945 113.198 -32.7484 80.1006 111.667 -32.8137 81.4167 114.445 -29.7768 85.2891 111.653 -30.1957 85.1586 107.567 -26.8363 79.5016 131.024 -27.3879 82.7149 121.901 -29.5647 78.0128 119.311 -36.7914 75.0649 120.445 -36.8974 79.7863 129.926 -29.9221 79.3229 118.187 -33.5803 84.4402 132.877 -32.1553 80.111 127.576 -34.3959 71.2569 121.989 -34.7844 66.2834 120.958 -33.9154 71.8315 110.129 -33.2852 77.2358 110.04 -32.7655 73.4782 133.884 -21.131 77.6228 132.464 -22.2276 81.3655 132.277 -23.4746 83.426 133.82 -24.0033 85.7036 136.141 -24.3458 88.7308 138.375 -25.7679 91.4667 138.163 -27.2159 92.7583 132.552 -26.9171 90.4562 129.827 -25.7152 86.8669 126.78 -24.6669 84.0844 124.721 -23.6771 80.1888 122.834 -22.3988 88.4224 111.98 -26.642 73.0971 114.872 -34.0422 78.0365 114.257 -32.4652 72.6559 116.366 -23.6348 74.0565 115.738 -18.8756 74.3546 119.371 -20.3332 70.6786 130.252 -24.9797 66.3234 116.559 -38.424 68.7427 109.182 -33.5877 75.2695 107.415 -21.4172 74.5162 129.923 -26.0103 69.7229 116.044 -38.0771 89.5331 107.124 -23.792 88.3401 135.32 -31.9677 74.1388 115.95 -26.0645 75.9612 114.948 -19.4391 77.1416 118.114 -30.0044 73.3922 116.231 -34.5642 80.9955 123.121 -26.1556 85.0815 123.793 -32.0715 84.2148 123.344 -35.5836 83.1264 134.427 -27.4776 86.9811 127.454 -28.4118 89.522 129.098 -29.4795 74.6652 110.346 -32.9938 73.4634 113.087 -34.946 76.8228 114.888 -29.5521 79.8915 107.956 -22.0252 80.6122 114.073 -21.0487 83.7573 107.262 -22.8645 86.4999 113.195 -22.8837 83.3651 113.698 -27.6845 87.0649 106.513 -23.293 78.1729 130.027 -26.8719 84.0191 124.97 -27.6585 78.0395 121.874 -37.0279 80.9955 119.953 -31.531 86.4391 136.135 -29.7404 82.2626 130.071 -33.6418 73.3188 122.63 -34.5204 68.9993 121.598 -34.5597 61.1201 116.288 -36.4563 80.2549 109.485 -31.4116 71.6743 134.356 -20.764 75.3384 133.298 -21.6337 79.5527 132.054 -22.774 82.5547 132.906 -23.8513 84.4528 134.914 -24.1434 93.1861 134.488 -27.5777 91.9487 131.059 -26.2461 88.5515 128.283 -25.1888 85.4827 125.624 -24.1983 82.3397 123.833 -23.052 76.6708 121.456 -21.1288 89.869 111.457 -23.9848 75.2791 114.471 -33.131 72.5418 119.712 -36.6595 81.3907 113.876 -31.5584 78.3679 118.196 -35.5399 83.0864 127.336 -36.4037 85.4308 112.541 -29.518 90.2145 131.46 -31.6971 82.9166 108.627 -29.6277 64.7835 120.521 -33.7531 75.2428 120.861 -23.2937 80.7976 132.083 -27.6852 77.9572 125.484 -34.7339 74.1796 115.013 -31.4161 80.9021 114.638 -26.7177 85.1483 113.312 -25.263 82.0676 114.019 -24.0982 79.6802 114.358 -23.3746 77.3173 114.669 -22.6413 75.2124 115.161 -21.7041 73.588 115.837 -21.0027 72.7523 116.861 -20.956 73.4137 118.581 -21.8902 66.4762 141.604 -20.8641 58.3546 118.743 -38.2809 63.6573 103.164 -29.6181 61.2017 113.464 -35.2759 62.603 110.079 -31.8602 69.9438 135.891 -21.1621 68.2393 131.67 -26.2038 67.4378 127.136 -29.5202 62.8091 120.687 -35.9907 60.5767 117.653 -37.3935 60.7761 113.247 -36.1998 62.0921 109.556 -33.1525 65.2417 105.935 -28.1842 71.3073 112.394 -36.0092 68.3164 110.617 -35.2945 68.3445 111.331 -36.3747 -11.3552 113.133 6.63324 68.4684 104.805 -22.5375 -9.45044 104.401 1.95409 -7.56053 100.492 -0.627556 -5.0686 97.2087 -3.46945 -1.8849 93.9531 -6.38548 56.808 93.3547 -23.3279 61.9223 96.6682 -23.3508 59.4081 140.566 19.6623 60.4639 137.464 20.042 61.8763 134.831 19.5882 63.4845 132.857 18.7674 59.1931 143.585 18.4382 65.1653 131.503 17.6961 59.7648 145.792 16.5098 66.574 130.654 16.1776 60.7479 147.03 14.1165 67.7426 130.322 14.3856 61.9742 147.354 11.7839 68.7983 130.581 12.5261 63.4081 146.812 9.84286 69.823 131.736 10.6896 65.1046 145.464 8.28365 70.6207 133.636 8.99838 67.079 143.51 7.13741 70.6489 135.976 7.7083 68.7916 141.109 6.6273 70.0306 138.529 6.87865 46.0899 131.451 -40.7647 44.2964 133.408 -40.6498 42.8521 136.048 -40.2939 42.1344 139.179 -39.5132 48.0895 130.139 -40.7032 42.5725 142.25 -38.4974 50.1107 129.339 -40.116 44.0636 144.531 -37.2763 52.0814 129.065 -39.1855 46.164 145.859 -35.8431 53.992 129.384 -38.172 48.4484 146.268 -34.5523 55.8478 130.62 -37.1918 50.7075 145.792 -33.6656 57.2832 132.639 -36.2405 52.9926 144.492 -33.2066 58.0113 135.002 -35.2811 55.2984 142.565 -33.2185 57.9772 137.569 -34.3714 57.0771 140.172 -33.5929 1.38182 68.9774 -45.9569 1.47894 65.0285 -50.2728 1.09637 63.909 -52.87 4.59888 9.97681 -40.0908 4.56625 11.4122 -44.5415 4.27933 14.0176 -48.351 3.6239 17.5846 -51.2515 2.5518 21.6054 -53.3934 2.81797 25.9316 -56.0077 3.01964 28.3271 -57.5284 3.3214 31.8267 -58.9081 3.45486 35.6754 -59.9047 3.14198 39.6169 -60.4303 2.63558 43.6332 -60.5215 2.15143 47.625 -60.2798 1.8074 51.4352 -59.6459 1.64281 54.9177 -58.6553 1.54494 58.1214 -57.1999 1.24614 61.2169 -55.2299 2.20258 72.8765 -41.2252 4.0999 75.8378 -37.4454 6.18702 78.5203 -33.435 56.4936 87.4619 -10.08 57.7629 85.6098 -10.3506 59.9983 84.0135 -10.7406 63.4852 82.0057 -11.5406 67.5801 79.1089 -12.265 -10.1652 108.262 6.21582 -11.0734 112.965 7.57632 -0.481384 91.8178 -0.502998 -8.62003 103.705 4.73889 -6.45135 99.499 2.95057 -3.73181 95.6969 0.985786 -60.1092 28.2359 7.92776 -8.84988 108.395 10.4182 -10.438 113.006 9.67531 2.73864 92.5778 10.975 -6.7205 103.892 10.9765 -4.01207 99.6658 11.3213 -0.806137 95.8341 11.3643 64.3527 94.8043 -12.5052 60.0369 91.4033 -11.0824 -11.539 10.151 19.9241 -5.49863 10.1436 21.8177 -15.9268 10.1577 16.38 -19.33 10.1651 11.6357 -22.5381 10.1681 4.40154 32.719 10.1303 18.5309 40.266 10.1244 13.6679 14.2263 10.1377 23.0462 22.7994 10.1333 21.7028 2.70157 10.137 23.1159 44.4157 10.1281 7.56966 6.82094 10.137 23.6438 46.5807 10.1555 0.804138 -22.7316 10.1651 -8.79883 46.5392 10.1481 -8.35619 -6.5737 10.1422 -30.0845 -12.5993 10.151 -28.2717 -18.4966 10.1644 -25.6115 -21.6988 10.1659 -20.5282 -21.6462 10.1607 -14.2928 40.6619 10.1362 -21.951 32.9614 10.1496 -27.1618 22.9625 10.1599 -31.832 13.8408 10.1637 -33.647 2.11658 10.1488 -32.443 44.7679 10.1347 -15.5147 6.04318 10.1488 -32.526 12.5907 10.1733 -3.80531 59.1887 91.8044 8.95242 -37.1383 88.9529 -2.97714 -31.8022 10.0858 -1.97102 -25.1531 10.1622 -2.2068 -48.967 94.3801 -3.43312 -42.7435 92.7505 -3.24479 -45.2458 14.541 -1.9814 -38.8006 11.688 -1.94433 -51.5643 18.2037 -2.1067 -56.8395 22.9229 -2.04294 -61.3273 28.167 -2.00068 -64.683 34.1592 -1.92802 -67.7244 42.676 -1.88947 -69.2985 52.0358 -1.98363 -69.0782 59.0674 -1.98585 -68.0128 66.587 -1.96361 -66.3149 75.4782 -2.11857 -61.6254 86.6775 -2.9586 -55.4464 92.4777 -3.38715 -32.8632 83.5116 -1.95249 -29.1664 80.3716 -1.67964 -25.0219 78.6923 -1.82199 -19.731 77.9019 -1.94433 -13.8211 78.3245 -1.89985 0.599609 81.0967 -1.11393 5.68803 83.0274 -0.72765 6.50954 84.4391 -0.967133 5.72511 86.2104 -0.331726 3.73808 88.5303 1.10886 0.442429 91.5093 2.82008 -2.82133 95.1602 4.04714 -5.66766 99.1208 5.2742 -8.03503 103.465 6.34038 -9.79816 108.128 7.22415 -10.9333 112.931 8.02786 -26.7479 60.7542 43.6698 -20.1774 63.8423 42.5992 -8.42801 27.4619 48.2347 14.9477 25.7121 48.3904 3.09452 25.896 48.4757 42.6645 36.5214 48.0598 47.7344 49.638 47.1827 40.5551 62.2549 45.2372 -20.4769 63.1994 -50.3046 -27.628 60.1306 -51.1217 -8.33606 28.1588 -55.7549 41.6947 37.0493 -55.6696 46.1069 49.7648 -54.9594 39.661 61.5616 -52.9449 -28.2701 61.5994 42.6785 -21.096 64.5792 41.7131 -10.6093 65.5757 41.2676 1.58052 66.8139 41.2357 -20.6037 30.6107 47.064 -27.9498 36.4747 46.6355 -32.0076 43.3195 45.7562 -33.3289 50.1288 44.8568 -9.84192 26.1273 47.153 -32.1367 56.4888 43.8329 40.1118 30.266 46.5139 29.9349 25.9004 46.5236 16.4046 23.9305 47.0581 3.12344 24.0639 47.2805 46.8217 35.817 46.5762 50.7757 42.2756 46.3478 52.0569 49.3051 45.7651 50.1277 56.399 44.7582 45.0638 62.5551 43.5645 13.7088 68.7742 41.1082 26.4851 69.2584 41.2994 37.1171 66.9377 42.3456 1.53827 66.2289 -48.7276 -11.1349 65.489 -48.6957 -21.7418 64.0098 -49.2903 -29.2399 60.7943 -50.2557 -33.7448 49.2984 -52.3954 -32.2894 43.1438 -53.1362 -27.8334 36.8602 -53.862 -20.3917 31.2343 -54.2831 -10.0503 26.5855 -54.5085 -32.8298 55.3737 -51.4331 2.729 24.1781 -54.8289 15.8893 23.9164 -54.731 29.5034 26.0458 -54.0829 39.6795 30.5618 -53.8806 46.253 36.21 -53.7901 50.0128 42.5536 -53.5439 51.139 49.2547 -52.9597 49.321 55.8341 -52.0848 44.6241 61.6202 -51.0127 37.1431 65.7944 -49.8316 26.732 68.0261 -48.7847 13.6339 67.8667 -48.6371 -0.192109 -0.934569 0.299458 -0.06315 -0.993623 0.093407 -0.038767 -0.993005 0.111528 -0.11695 -0.921313 0.370816 -0.085264 -0.993927 0.06957 -0.25821 -0.942076 0.214058 -0.305238 -0.944237 0.123473 -0.103012 -0.993873 0.04007 -0.109849 -0.993698 0.02232 -0.319871 -0.945464 0.061492 0.322015 -0.653105 0.68539 0.238016 -0.809438 0.536805 0.39559 -0.829362 0.394547 0.547107 -0.665777 0.50736 0.149283 -0.925897 0.34703 0.227375 -0.943129 0.242504 -0.182106 -0.7902 0.585167 -0.310544 -0.820667 0.479654 -0.418246 -0.841388 0.342252 -0.407245 -0.671943 0.618582 -0.544891 -0.711903 0.443045 -0.234371 -0.618101 0.750347 -0.474249 -0.857348 0.200104 -0.472515 -0.875412 0.101901 -0.601129 -0.750567 0.274396 -0.593419 -0.791427 0.146617 0.282256 -0.953514 0.105559 0.497204 -0.845385 0.195227 0.680184 -0.678639 0.277127 0.475425 -0.378716 0.794069 0.394699 -0.508097 0.765539 0.651796 -0.507567 0.563506 0.728714 -0.35445 0.585953 -0.280085 -0.456993 0.844222 -0.472084 -0.52749 0.706322 -0.629949 -0.5896 0.505505 -0.525528 -0.402813 0.749375 -0.688269 -0.483465 0.540877 -0.345696 -0.333643 0.877027 0.797494 -0.502759 0.333521 0.868857 -0.332163 0.36709 0.779236 -0.208323 0.591094 0.556733 -0.232343 0.797537 0.611419 -0.086952 0.786515 0.805975 -0.07802 0.586786 0.901017 -0.198547 0.385677 0.912954 -0.073233 0.401437 0.587309 0.31693 0.74473 0.626298 0.112282 0.771455 0.807598 0.10215 0.580819 0.767563 0.296279 0.568389 0.905959 0.097128 0.412074 0.868972 0.273148 0.412646 0.369046 0.664292 0.650016 0.498279 0.502362 0.706648 0.692864 0.459155 0.555982 0.584348 0.597963 0.548615 0.813067 0.415121 0.408163 0.751114 0.515121 0.41289 0.19627 0.766932 0.610977 0.270011 0.7156 0.644213 0.477417 0.672112 0.565984 0.38089 0.730939 0.56626 0.665617 0.613839 0.424448 0.5601 0.712938 0.42191 -0.142237 0.892596 0.427833 -0.115435 0.801937 0.586149 -0.145778 0.823148 0.548795 -0.183731 0.901347 0.392196 -0.170598 0.892172 0.418242 -0.198923 0.94046 0.275618 -0.083913 0.784617 0.614276 -0.104776 0.836925 0.537195 -0.07128 0.762805 0.642687 -0.083732 0.95816 0.273711 -0.152017 0.963903 0.218593 -0.043758 0.995476 0.084341 0.11433 0.983142 0.142691 -0.188565 0.971095 0.146345 -0.153667 0.986837 0.050398 -0.277878 0.955105 0.102752 -0.278528 0.959779 0.035299 -0.266228 0.943946 0.195163 -0.494465 0.642119 0.585822 -0.123678 0.744163 0.656449 -0.094312 0.919596 0.381378 -0.521981 0.776809 0.352284 0.287464 0.72515 0.625717 0.35104 0.866307 0.355363 -0.085399 0.659129 0.747166 0.224013 0.689809 0.688464 -0.41145 0.564912 0.715251 -0.896437 0.304297 0.322186 -0.755967 0.475931 0.449448 -0.804069 0.52634 0.276477 -0.929837 0.307416 0.202235 -0.651421 0.428251 0.626301 -0.812838 0.261118 0.520685 -0.700828 0.14352 0.698743 -0.528973 0.340042 0.777534 -0.323564 0.505566 0.799819 -0.384671 0.217738 0.897005 -0.26768 0.410295 0.871783 -0.51729 -0.021456 0.855541 -0.703157 -0.1848 0.686599 -0.802326 -0.033833 0.595927 -0.877917 -0.14451 0.456484 -0.806047 -0.267053 0.528176 -0.89323 0.116397 0.434273 -0.92976 -0.00252 0.368157 -0.693473 -0.636086 0.338364 -0.705373 -0.68381 0.186692 -0.75587 -0.532488 0.380943 -0.796546 -0.566484 0.211211 -0.077417 -0.240522 0.967551 -0.089798 -0.134723 0.986806 -0.168487 -0.121841 0.978145 -0.138523 -0.221426 0.965289 -0.113525 -0.038943 0.992772 -0.195995 -0.017488 0.980449 -0.602195 -0.290799 0.743503 -0.742439 -0.374894 0.555193 -0.432918 -0.200289 0.878901 -0.818103 -0.413906 0.399236 -0.879805 -0.419705 0.22314 -0.8832 -0.285146 0.372357 -0.940384 -0.263381 0.215195 -0.205308 0.092751 0.974293 -0.12459 0.080228 0.988959 -0.122228 0.178941 0.976238 -0.196017 0.189929 0.962031 -0.04789 0.778827 0.625407 -0.065661 0.712179 0.698921 -0.086279 0.666075 0.740878 -0.054107 0.736647 0.674109 0.32735 0.918436 0.222077 0.038245 0.947019 0.318892 -0.067436 0.912058 0.404479 0.299059 0.868082 0.396229 0.020777 0.864061 0.502958 0.601008 0.74983 0.276665 0.10013 0.787789 0.607752 0.137884 0.80072 0.582954 0.293157 0.782715 0.549014 0.251535 0.793724 0.553834 0.033793 0.760625 0.648311 0.012829 0.792843 0.609291 -0.001462 0.805911 0.592035 0.470195 0.782277 0.408607 0.406592 0.824118 0.394351 -0.228092 0.919665 0.319673 -0.149194 0.877198 0.45636 0.221981 0.775644 0.590848 0.477153 0.718896 0.505483 0.642223 0.702693 0.306223 -0.941954 -0.151996 0.299365 -0.977272 -0.097629 0.18817 -0.969667 0.027366 0.242894 -0.984274 0.065087 0.16422 -0.081923 0.660823 0.746057 -0.143863 0.635643 0.75846 -0.950758 0.179022 0.253002 -0.969441 0.180582 0.166057 0.433741 0.791171 0.431182 0.286611 0.730746 0.619568 0.635928 0.49935 0.588427 0.410194 0.41588 0.811655 -0.030936 0.832088 0.553781 -0.063268 0.738092 0.671727 -0.236437 0.785277 0.572222 -0.098454 0.365739 0.925495 -0.356861 0.365039 0.859882 0.116456 0.704283 0.700303 0.160354 0.369389 0.915335 -0.380395 0.81813 0.431235 -0.491132 0.823545 0.283836 -0.59916 0.341103 0.724332 -0.798743 0.301719 0.520552 0.047573 -0.992573 0.111966 0.069354 -0.994739 0.075398 0.015592 -0.990695 0.135202 0.028503 -0.991144 0.129693 0.0864 -0.911356 0.402449 0.046371 -0.905885 0.420977 -0.018844 -0.991895 0.125654 -0.057065 -0.909815 0.411073 0.087743 -0.99576 0.027619 0.126144 -0.779499 0.613571 0.067151 -0.760559 0.645787 0.153713 -0.607983 0.778928 0.075394 -0.57677 0.81342 -0.085238 -0.760064 0.644234 -0.102578 -0.566247 0.817827 0.045094 -0.227711 0.972684 0.047131 -0.133922 0.98987 0.005657 -0.158915 0.987276 0.006376 -0.238835 0.971039 0.058631 -0.040878 0.997442 0.002975 -0.056704 0.998387 0.127635 -0.116289 0.98498 0.152279 -0.014755 0.988227 0.100619 -0.20516 0.973543 0.059288 0.068169 0.995911 -0.006745 0.055506 0.998436 0.05032 0.180626 0.982264 -0.021925 0.163036 0.986376 0.163736 0.099069 0.981517 0.156175 0.220652 0.962768 0.020684 0.317842 0.947918 -0.050294 0.316731 0.947181 -0.025411 0.533931 0.845146 -0.086911 0.5228 0.848014 0.127716 0.356862 0.925385 0.071441 0.516034 0.853584 -0.061054 0.766638 0.63917 0.078289 0.741306 0.666586 0.208508 0.671416 0.711144 0.313289 0.499706 0.807554 0.378689 0.310587 0.871855 0.400342 0.118619 0.908656 0.381543 -0.070384 0.921668 0.331083 -0.22771 0.915714 0.260306 -0.364971 0.893889 0.178111 -0.473128 0.862802 0.071351 -0.485088 0.87155 -0.127917 -0.411323 0.902469 -0.217134 -0.272275 0.9374 -0.28612 -0.114565 0.95132 -0.297833 0.014133 0.954513 -0.259212 0.153056 0.953616 -0.214461 0.319798 0.922895 -0.151901 0.528641 0.835144 -0.103669 0.295387 0.949736 -0.165776 0.313209 0.935104 -0.083675 0.492895 0.866056 -0.119834 0.470121 0.874429 -0.087588 0.774585 0.626376 -0.256922 -0.123444 0.958516 -0.282852 0.013185 0.959073 -0.378724 -0.276752 0.883163 -0.438423 -0.070607 0.895991 -0.437651 -0.063548 0.896897 -0.390678 -0.27619 0.878117 -0.251518 -0.431278 0.866451 -0.276371 -0.456203 0.845871 -0.19905 -0.303218 0.9319 -0.274611 0.135247 0.951996 -0.249887 0.293965 0.922573 -0.442099 0.099565 0.891423 -0.416837 0.295755 0.859521 -0.412837 0.32408 0.851198 -0.438351 0.113033 0.891668 0.156401 -0.497394 0.85331 0.061408 -0.535686 0.842181 0.119454 -0.452018 0.883974 0.032667 -0.468626 0.882793 0.050048 -0.559259 0.827481 0.150699 -0.524664 0.837865 0.208739 -0.361482 0.908713 0.238743 -0.413555 0.878621 0.232419 -0.391651 0.890276 -0.125806 -0.451337 0.883441 -0.128663 -0.465603 0.875591 -0.150994 -0.530967 0.833832 0.284031 -0.235212 0.929517 0.269401 -0.199777 0.942079 0.293517 -0.238502 0.925724 0.286186 -0.032306 0.957629 0.310905 -0.056264 0.948774 0.312743 -0.062252 0.947795 0.322676 0.120164 0.938851 0.286685 0.125421 0.94978 0.312932 0.123775 0.941676 0.279716 0.294166 0.913907 0.303905 0.313656 0.89959 0.309104 0.311381 0.898608 0.037576 0.808415 0.587412 0.169817 0.698638 0.69503 -0.000992 0.780213 0.625514 0.138259 0.681294 0.718834 0.161529 0.715447 0.679738 0.018778 0.826522 0.562592 -0.09996 0.801388 0.589733 -0.098648 0.85295 0.512587 -0.076807 0.814801 0.574631 0.262922 0.511395 0.818137 0.242579 0.49202 0.836105 0.262895 0.521513 0.811733 -0.185749 0.495789 0.848346 -0.322481 0.52883 0.785076 -0.160242 0.722224 0.672841 -0.146317 0.772841 0.617501 -0.312096 0.577251 0.754571 -0.076559 0.797941 0.597853 -0.071594 0.840171 0.537576 -0.107376 0.806238 0.581766 -0.112987 0.848782 0.51653 -0.287568 -0.01818 0.957588 -0.246849 -0.15606 0.956405 -0.173556 -0.290795 0.940913 -0.283237 0.22681 0.931844 -0.297529 0.100463 0.949412 0.014537 -0.330354 0.943745 0.072188 -0.329168 0.941508 0.150177 -0.268878 0.951394 -0.091484 -0.341365 0.935468 0.211928 -0.141481 0.96699 0.233591 -0.009434 0.972289 0.24083 0.120366 0.963075 0.233787 0.260424 0.936762 0.102888 0.613185 0.78321 -0.030399 0.694019 0.719314 -0.098708 0.675427 0.730791 0.204918 0.428836 0.879834 -0.132475 0.557408 0.819602 -0.232943 0.388015 0.89173 -0.075386 0.634728 0.769049 -0.09685 0.652599 0.751489 -0.092397 0.509504 0.855493 -0.081276 0.316551 0.945087 -0.068265 0.172012 0.982727 -0.054553 0.065325 0.996372 -0.043341 -0.055449 0.99752 -0.033383 -0.160096 0.986537 -0.028874 -0.24536 0.969002 -0.033304 -0.336054 0.941254 -0.042357 -0.467717 0.882863 -0.046567 -0.556118 0.829798 -0.037674 -0.519487 0.853647 -0.022566 -0.457423 0.888963 -0.012961 -0.556886 0.830488 -0.007732 -0.753873 0.656974 -0.003792 -0.90729 0.420489 -0.001149 -0.991208 0.132304 0.512335 -0.857386 0.049017 0.70555 -0.704425 0.077354 0.297092 -0.954566 0.023258 0.84286 -0.528889 0.09931 0.930258 -0.348816 0.113782 0.968103 -0.21837 0.122848 0.986591 -0.093131 0.134031 0.985676 0.081564 0.147617 0.95281 0.259757 0.157095 0.894834 0.417704 0.157465 0.844113 0.514896 0.149516 0.774064 0.618654 0.134508 0.673761 0.729252 0.119321 0.59429 0.795832 0.116061 0.5205 0.84585 0.116695 0.525074 0.841884 0.124616 0.765546 0.621669 0.16573 0.097097 -0.995263 0.004896 -0.565407 0.809464 0.158374 -0.611313 0.789337 0.056957 -0.920895 0.236324 0.310006 -0.979363 0.144989 0.140806 -0.738247 -0.362498 0.568846 -0.830423 -0.418752 0.367485 -0.844491 -0.498578 0.195588 -0.637358 -0.672695 0.37584 -0.668066 -0.709833 0.223216 -0.553902 -0.635855 0.537476 -0.346188 -0.291036 0.891881 -0.564224 -0.330618 0.756534 -0.436173 -0.617389 0.654663 -0.266348 -0.628612 0.730688 -0.097978 -0.251576 0.962865 -0.086895 -0.643915 0.760146 0.176816 -0.222898 0.958672 0.120695 -0.699248 0.704617 0.465192 -0.190422 0.864486 0.373032 -0.681742 0.629345 0.749171 -0.141411 0.647105 0.57208 -0.682024 0.455597 0.984143 0.023025 0.175875 0.738366 -0.656556 0.154109 -0.095635 0.76965 0.631263 -0.315057 -0.948903 0.017974 -0.110306 -0.993886 0.004918 -0.457702 -0.888528 0.032039 -0.589111 -0.807168 0.037792 0.510058 -0.858624 -0.051043 0.70623 -0.703125 -0.082786 0.294439 -0.955391 -0.023102 0.843862 -0.525198 -0.109834 0.928966 -0.346434 -0.130403 0.964683 -0.219414 -0.145751 0.981881 -0.104853 -0.157847 0.98501 0.058597 -0.162241 0.95819 0.238399 -0.158234 0.897823 0.414043 -0.149942 0.829346 0.538002 -0.150797 0.747675 0.644543 -0.159833 0.659153 0.734437 -0.161615 0.265044 0.963485 0.038059 0.039034 0.999086 0.017437 0.018622 0.997848 -0.062875 0.244836 0.962544 -0.116463 -0.130658 0.991351 0.012349 -0.138096 0.990164 -0.022449 -0.273293 0.96189 0.008822 -0.274255 0.961657 0.000421 -0.053579 0.998129 0.029453 -0.515915 0.855204 0.049583 0.344116 0.89883 -0.271457 -0.055876 0.956544 -0.286182 0.365283 0.930753 0.01632 -0.828131 0.557888 0.054409 -0.952772 0.299578 0.049783 -0.711727 -0.701459 0.037422 -0.905755 -0.418034 -0.069676 -0.8121 -0.578723 -0.074656 -0.818385 -0.573492 0.036778 -0.910268 -0.412077 0.040054 0.709552 0.701423 0.067393 0.515618 0.854187 0.067105 0.52626 0.835416 -0.158524 0.711562 0.67733 -0.186822 0.587221 0.793907 -0.157743 0.504751 0.849895 -0.151344 0.655685 0.754174 0.036026 0.627882 0.742251 -0.234154 -0.995755 -0.076042 0.051857 -0.966252 -0.253074 0.048064 -0.995208 0.084624 0.048994 -0.98245 0.180559 0.046801 0.500696 0.849415 -0.166726 0.699452 0.674292 -0.236847 -0.644888 0.764208 0.010314 -0.658085 0.75262 0.022063 -0.996997 0.052783 0.056672 -0.999004 0.031144 0.031952 0.095211 -0.995451 -0.003478 -0.828476 -0.551185 0.099113 -0.83354 -0.552229 0.015914 -0.680841 -0.722996 0.117184 -0.70438 -0.709823 0.000289 0.942473 0.130036 -0.307954 0.760792 -0.603232 -0.239387 -0.191598 -0.926128 -0.324926 -0.11404 -0.910397 -0.397707 -0.034523 -0.992382 -0.118262 -0.056307 -0.993628 -0.097639 -0.08229 -0.99447 -0.065257 -0.263919 -0.93806 -0.224478 -0.301453 -0.945273 -0.124839 -0.10268 -0.994176 -0.032728 -0.109842 -0.993816 -0.016268 -0.306215 -0.95011 -0.059356 0.319117 -0.647606 -0.691933 0.534285 -0.666968 -0.519319 0.385251 -0.83007 -0.403195 0.239592 -0.805165 -0.542499 0.228594 -0.939199 -0.256224 0.158278 -0.918607 -0.362089 -0.178484 -0.75672 -0.628902 -0.309497 -0.797477 -0.51792 -0.420841 -0.831771 -0.362009 -0.538657 -0.700909 -0.467519 -0.394197 -0.64598 -0.653696 -0.222745 -0.580396 -0.783278 -0.463953 -0.858375 -0.218951 -0.461429 -0.880375 -0.109649 -0.599801 -0.782405 -0.167575 -0.59309 -0.744341 -0.306921 0.280118 -0.952342 -0.120743 0.489162 -0.845976 -0.212238 0.674722 -0.67782 -0.292079 0.467443 -0.364911 -0.805194 0.712309 -0.345361 -0.611018 0.641575 -0.494023 -0.586791 0.39121 -0.489528 -0.779305 -0.257887 -0.431057 -0.864687 -0.450347 -0.520374 -0.725533 -0.610796 -0.588414 -0.529809 -0.665056 -0.488467 -0.56489 -0.505193 -0.408993 -0.759938 -0.312897 -0.314982 -0.896037 0.796286 -0.495922 -0.346396 0.865739 -0.328626 -0.377493 0.760432 -0.204661 -0.616326 0.545204 -0.224716 -0.807623 0.593644 -0.079984 -0.800743 0.783915 -0.086134 -0.614865 0.896384 -0.199742 -0.395726 0.906271 -0.095045 -0.411874 0.551478 0.253954 -0.794594 0.749758 0.226635 -0.62169 0.783116 0.056593 -0.619295 0.5969 0.085909 -0.797703 0.90526 0.04554 -0.42241 0.880719 0.218398 -0.420282 0.336343 0.599609 -0.726183 0.572035 0.582293 -0.577677 0.679985 0.408785 -0.6087 0.461982 0.425407 -0.778204 0.822759 0.398489 -0.405308 0.73865 0.550111 -0.389581 0.158279 0.713924 -0.6821 0.37644 0.723509 -0.578643 0.467127 0.676077 -0.569835 0.228363 0.685665 -0.691168 0.648361 0.657528 -0.383777 0.564637 0.73282 -0.379684 -0.132948 0.895471 -0.424801 -0.16783 0.911023 -0.376656 -0.12755 0.841928 -0.524298 -0.095044 0.810733 -0.577649 -0.191234 0.937857 -0.289574 -0.161097 0.88789 -0.430929 -0.099619 0.831047 -0.547207 -0.068866 0.782563 -0.618751 -0.042804 0.75673 -0.652324 -0.106611 0.95728 -0.268792 0.061832 0.967519 -0.24512 -0.090989 0.984179 -0.152028 -0.171442 0.958937 -0.225938 -0.170146 0.982001 -0.081999 -0.195635 0.967138 -0.16239 -0.282706 0.95847 -0.037576 -0.282545 0.952356 -0.114834 -0.262642 0.936921 -0.230646 -0.457702 0.605028 -0.651498 -0.494691 0.715297 -0.493589 -0.076223 0.822259 -0.563986 -0.087936 0.702019 -0.706709 0.319664 0.765998 -0.557729 0.294833 0.694844 -0.655946 0.224172 0.682804 -0.695361 -0.063717 0.649517 -0.757673 -0.387084 0.558006 -0.734027 -0.896043 0.261582 -0.358722 -0.944002 0.274393 -0.183216 -0.810194 0.488173 -0.324457 -0.742944 0.435424 -0.508371 -0.645648 0.412332 -0.642745 -0.811086 0.243382 -0.531887 -0.699157 0.136155 -0.701885 -0.530892 0.331786 -0.77979 -0.30426 0.511436 -0.803654 -0.248492 0.408629 -0.878222 -0.387347 0.198969 -0.900208 -0.511763 -0.033699 -0.858465 -0.688173 -0.178311 -0.703294 -0.790784 -0.260454 -0.553917 -0.872048 -0.112083 -0.476413 -0.794394 -0.013341 -0.607256 -0.920109 0.042291 -0.389372 -0.884532 0.127633 -0.44868 -0.676964 -0.636735 -0.369174 -0.702442 -0.678564 -0.214769 -0.78028 -0.57775 -0.239514 -0.733839 -0.540713 -0.41123 -0.092147 -0.181509 -0.979062 -0.144369 -0.166467 -0.975421 -0.159435 -0.079334 -0.984015 -0.094565 -0.065989 -0.993329 -0.168501 -0.000101 -0.985701 -0.104493 0.01153 -0.994459 -0.726284 -0.369697 -0.579514 -0.588438 -0.292192 -0.753899 -0.407291 -0.20071 -0.890971 -0.869486 -0.42871 -0.245363 -0.799739 -0.41079 -0.4378 -0.938755 -0.260153 -0.225963 -0.869609 -0.274794 -0.410206 -0.170534 0.079532 -0.982137 -0.161151 0.169743 -0.972223 -0.090409 0.181448 -0.979236 -0.10396 0.092065 -0.990311 -0.061474 0.779505 -0.623373 -0.054952 0.743789 -0.666152 -0.103099 0.66864 -0.736404 -0.089248 0.714186 -0.694242 0.313646 0.879357 -0.358269 0.027421 0.941997 -0.334499 -0.080622 0.891857 -0.445073 0.022338 0.831019 -0.555795 0.289168 0.850636 -0.43909 0.556005 0.699289 -0.449281 0.050624 0.773712 -0.631511 0.231632 0.808083 -0.541616 0.288863 0.771715 -0.566581 0.103245 0.744807 -0.659244 0.031939 0.724546 -0.688486 0.003268 0.749951 -0.661485 -0.026171 0.792703 -0.609046 0.482137 0.794981 -0.36817 0.398207 0.851469 -0.34122 -0.221077 0.901734 -0.371484 -0.143622 0.850839 -0.505417 0.234374 0.743588 -0.626216 0.46128 0.703836 -0.540218 0.562017 0.649813 -0.511741 -0.977474 -0.09123 -0.19032 -0.936551 -0.12725 -0.326619 -0.984003 0.070682 -0.163533 -0.961337 0.050417 -0.270718 -0.12138 0.620783 -0.774529 -0.05521 0.647511 -0.760053 -0.944461 0.162933 -0.285388 -0.972855 0.171501 -0.15537 0.237565 0.800499 -0.55024 0.395586 0.847721 -0.353385 0.35269 0.570432 -0.741766 0.568049 0.652016 -0.502191 -0.054488 0.806873 -0.588206 -0.221404 0.774347 -0.592762 -0.082141 0.728443 -0.680164 -0.34248 0.449493 -0.825023 -0.1184 0.432945 -0.893611 0.102358 0.477975 -0.872389 0.062161 0.735187 -0.675008 -0.351621 0.822971 -0.446186 -0.453177 0.839825 -0.298872 -0.753559 0.408132 -0.515341 -0.56556 0.457673 -0.686059 0.070662 -0.994095 -0.082354 0.053046 -0.991548 -0.1184 0.013209 -0.990078 -0.139895 0.042006 -0.899343 -0.435221 0.096965 -0.90473 -0.414802 0.032991 -0.99044 -0.133938 -0.056118 -0.897897 -0.436614 -0.016738 -0.990736 -0.134764 0.086464 -0.995644 -0.034877 0.061043 -0.750045 -0.658564 0.137198 -0.774505 -0.61751 0.069229 -0.578014 -0.813085 0.165722 -0.607498 -0.776841 -0.08926 -0.735213 -0.671934 -0.114239 -0.544747 -0.830783 0.019911 -0.230638 -0.972836 -0.030593 -0.214954 -0.976145 -0.045955 -0.097756 -0.994149 0.002659 -0.095509 -0.995425 -0.052141 0.011297 -0.998576 0.002127 0.01818 -0.999832 0.120697 0.01473 -0.99258 0.113372 -0.110702 -0.987366 0.096736 -0.223211 -0.969958 -0.055442 0.119889 -0.991238 -0.003618 0.136061 -0.990694 -0.057352 0.236947 -0.969828 -0.01353 0.263616 -0.964533 0.087309 0.294367 -0.951696 0.113304 0.153076 -0.981697 -0.061332 0.359879 -0.930981 -0.028754 0.371752 -0.927887 -0.069217 0.479884 -0.874597 -0.04309 0.485197 -0.873342 0.017067 0.479437 -0.87741 0.052641 0.398131 -0.915817 -0.034654 0.760876 -0.647972 0.07156 0.732098 -0.67743 0.191934 0.634425 -0.748777 0.303753 0.458556 -0.835141 0.384402 0.282027 -0.879031 0.419845 0.110042 -0.9009 0.406427 -0.062856 -0.911518 0.353955 -0.220425 -0.908916 0.281504 -0.354287 -0.89176 0.067511 -0.500136 -0.863311 0.193668 -0.469971 -0.861174 -0.14958 -0.414815 -0.897527 -0.228363 -0.298833 -0.926579 -0.288297 -0.161724 -0.943785 -0.298702 -0.022525 -0.954081 -0.190826 0.301532 -0.934165 -0.246409 0.126265 -0.960906 -0.15017 0.520238 -0.840715 -0.129702 0.309072 -0.942153 -0.066417 0.305119 -0.949995 -0.055085 0.462192 -0.885067 -0.090042 0.449004 -0.888981 -0.071733 0.766958 -0.637675 -0.283007 -0.028509 -0.958694 -0.281863 -0.191917 -0.940065 -0.351312 -0.084797 -0.932411 -0.309888 -0.241843 -0.919501 -0.329877 -0.256795 -0.908426 -0.371873 -0.083592 -0.924512 -0.244245 -0.370528 -0.896133 -0.261882 -0.399787 -0.878401 -0.239012 -0.350966 -0.905371 -0.228514 0.26963 -0.935457 -0.253264 0.114721 -0.960571 -0.387754 0.261515 -0.883887 -0.38213 0.068912 -0.921536 -0.395833 0.087229 -0.914171 -0.400411 0.295266 -0.867461 0.059717 -0.537384 -0.841221 0.170799 -0.490618 -0.854471 0.023673 -0.491984 -0.870282 0.138029 -0.482666 -0.864859 0.172547 -0.546798 -0.819292 0.048051 -0.585369 -0.809342 0.24535 -0.391127 -0.88703 0.271557 -0.425603 -0.863203 0.253362 -0.383231 -0.888224 -0.16392 -0.464478 -0.870282 -0.156074 -0.43633 -0.886147 -0.174103 -0.495914 -0.85074 0.311338 -0.234144 -0.921002 0.314452 -0.22765 -0.921573 0.331844 -0.253055 -0.908759 0.334948 -0.047443 -0.941041 0.358791 -0.06942 -0.930833 0.352034 -0.064094 -0.93379 0.370008 0.120956 -0.921121 0.325861 0.13785 -0.935314 0.365501 0.126808 -0.922133 0.293842 0.331419 -0.896559 0.345775 0.339247 -0.874843 0.349666 0.318511 -0.88107 0.181191 0.722006 -0.667741 0.050427 0.826013 -0.561391 0.124911 0.682336 -0.720288 -8.3e-005 0.771418 -0.636329 0.029371 0.862647 -0.504953 0.172441 0.753171 -0.634821 -0.088449 0.796983 -0.597491 -0.084759 0.878493 -0.470177 -0.056365 0.816918 -0.573992 0.28721 0.527283 -0.799677 0.229314 0.522426 -0.821271 0.28443 0.557632 -0.779838 -0.184783 0.47937 -0.857939 -0.159072 0.705689 -0.690434 -0.306838 0.513915 -0.801088 -0.313651 0.56677 -0.761837 -0.157757 0.765176 -0.624195 -0.073978 0.778021 -0.623867 -0.070331 0.835642 -0.544753 -0.087799 0.795672 -0.599331 -0.090591 0.859197 -0.503561 -0.232887 -0.144487 -0.961711 -0.244705 -0.029472 -0.96915 -0.189644 -0.261806 -0.946305 -0.251478 0.075314 -0.964928 -0.245154 0.195506 -0.949567 0.069738 -0.345456 -0.93584 -0.006898 -0.32309 -0.946343 0.169707 -0.300933 -0.938424 -0.116208 -0.315517 -0.941778 0.239122 -0.166926 -0.956533 0.255866 -0.011563 -0.966643 0.242809 0.152646 -0.957989 0.202267 0.315072 -0.927264 -0.032641 0.607102 -0.793953 0.060458 0.564272 -0.823372 -0.076278 0.598808 -0.797252 0.144831 0.45396 -0.879173 -0.202967 0.364176 -0.908945 -0.116061 0.523868 -0.843856 -0.061288 0.585836 -0.808109 -0.069247 0.590821 -0.803825 -0.06147 0.471147 -0.87991 -0.062087 0.339494 -0.938557 -0.069753 0.213116 -0.974534 -0.075711 0.106988 -0.991373 -0.074759 0.010224 -0.997149 -0.065915 -0.084862 -0.99421 -0.056359 -0.195476 -0.979088 -0.058264 -0.312594 -0.948098 -0.069962 -0.465689 -0.882179 -0.071195 -0.557949 -0.826815 -0.045754 -0.47841 -0.876944 -0.060646 -0.52652 -0.847997 -0.029989 -0.553187 -0.832517 -0.018388 -0.737572 -0.675018 -0.009087 -0.897441 -0.441041 -0.00158 -0.989993 -0.141109 -0.308322 -0.951065 -0.020322 -0.110713 -0.99381 -0.009215 -0.455221 -0.889796 -0.032191 -0.596471 -0.800898 -0.052761 -0.511407 0.823202 -0.246578 -0.952243 0.291325 -0.09145 -0.828387 0.538442 -0.154449 -0.712918 -0.697663 -0.070811 -0.964192 -0.256036 -0.069136 -0.99426 -0.077609 -0.073642 -0.993521 0.085088 -0.075342 -0.980403 0.180699 -0.07847 -0.618484 0.785248 -0.029371 -0.985065 0.143698 -0.094851 -0.540296 0.826158 -0.159823 -0.899944 0.302263 -0.314224 -0.858864 -0.489238 -0.15165 -0.711588 -0.680949 -0.173063 -0.767866 -0.270651 -0.580629 -0.848883 -0.383401 -0.36387 -0.671939 -0.656576 -0.342645 -0.602072 -0.614193 -0.510173 -0.382168 -0.137855 -0.913752 -0.607476 -0.181274 -0.773377 -0.492091 -0.563373 -0.66367 -0.327921 -0.53701 -0.777231 -0.13782 -0.132667 -0.981532 -0.138241 -0.548212 -0.824835 0.069946 -0.573914 -0.815923 0.11889 -0.117351 -0.985948 0.269629 -0.627654 -0.730309 0.418909 -0.085153 -0.904027 0.751138 0.018205 -0.659894 0.495888 -0.698066 -0.516526 -0.95931 0.034968 0.280182 -0.952229 0.032635 0.303636 -0.93144 0.167086 0.323268 -0.946666 0.171861 0.272557 -0.944846 0.025037 0.326557 -0.91551 0.150958 0.372899 -0.937578 0.012119 0.347564 -0.899986 0.12397 0.417919 -0.930687 -0.005661 0.365772 -0.885622 0.08696 0.456193 -0.924746 -0.02703 0.379623 -0.873384 0.042333 0.485189 -0.919713 -0.051956 0.389139 -0.863691 -0.010116 0.503919 -0.915891 -0.078133 0.39375 -0.857075 -0.064545 0.511132 -0.913924 -0.104134 0.392301 -0.854193 -0.116994 0.506623 -0.913686 -0.130204 0.385001 -0.854276 -0.170718 0.490986 -0.915221 -0.154787 0.372036 -0.856986 -0.224754 0.463745 -0.918574 -0.175545 0.354127 -0.862661 -0.271395 0.426803 -0.924357 -0.190998 0.330279 -0.874699 -0.302741 0.378484 -0.93489 -0.202027 0.291831 -0.900162 -0.32556 0.289342 -0.890596 -0.319641 0.323525 -0.930807 -0.199874 0.306022 -0.896 0.289458 0.336747 -0.918721 0.296141 0.261252 -0.872107 0.26593 0.410745 -0.848724 0.226438 0.477905 -0.827137 0.172709 0.534805 -0.80861 0.10747 0.578446 -0.794368 0.032855 0.606547 -0.785336 -0.046853 0.617294 -0.781515 -0.12666 0.610894 -0.781913 -0.208771 0.58739 -0.785856 -0.293485 0.544332 -0.793937 -0.361184 0.489091 -0.811021 -0.403504 0.423592 -0.835242 -0.430573 0.342022 -0.847345 0.403795 0.3449 -0.876998 0.412515 0.246384 -0.816114 0.373023 0.441375 -0.785473 0.321444 0.528872 -0.757102 0.251755 0.60284 -0.732492 0.167285 0.659903 -0.71285 0.071993 0.697612 -0.699448 -0.030237 0.714044 -0.693366 -0.135002 0.707826 -0.694705 -0.244186 0.676579 -0.700161 -0.36004 0.616559 -0.706167 -0.453566 0.543697 -0.723583 -0.510419 0.464651 -0.757493 -0.546167 0.357639 -0.786239 0.510828 0.347683 -0.822283 0.521471 0.227858 -0.748188 0.473296 0.464978 -0.710816 0.41044 0.571208 -0.676265 0.32557 0.66081 -0.646313 0.222825 0.729815 -0.622397 0.107069 0.775344 -0.605751 -0.016281 0.795488 -0.597541 -0.142104 0.789146 -0.599072 -0.273389 0.752576 -0.605625 -0.422009 0.67463 -0.607323 -0.542234 0.580639 -0.62045 -0.60942 0.493609 -0.663091 -0.648882 0.373178 -0.713977 0.609147 0.34522 -0.755821 0.6215 0.206088 -0.669772 0.565403 0.481378 -0.626414 0.492206 0.604433 -0.58635 0.393512 0.708055 -0.551603 0.274208 0.787746 -0.523909 0.140003 0.84019 -0.504656 -0.002861 0.863316 -0.494725 -0.148092 0.856339 -0.496885 -0.296649 0.81554 -0.511217 -0.470298 0.719359 -0.523448 -0.603062 0.601929 -0.54514 -0.6692 0.504969 -0.589688 -0.712391 0.380483 -0.632092 0.697412 0.337752 -0.679083 0.71125 0.181575 -0.582478 0.648166 0.490511 -0.533908 0.565768 0.62837 -0.489063 0.454778 0.744308 -0.450216 0.320826 0.833293 -0.419311 0.170384 0.891711 -0.397828 0.010371 0.917402 -0.386738 -0.152189 0.909545 -0.388906 -0.314579 0.865905 -0.416834 -0.497637 0.760662 -0.460989 -0.625959 0.629018 -0.542107 0.774681 0.32556 -0.593506 0.78981 0.15476 -0.487909 0.720672 0.492521 -0.434921 0.630341 0.64305 -0.3861 0.508756 0.769476 -0.343913 0.362223 0.866325 -0.310381 0.197869 0.929791 -0.287052 0.023243 0.957633 -0.274984 -0.154056 0.949026 -0.274153 -0.330443 0.903132 -0.301736 -0.514601 0.802584 -0.360883 -0.638403 0.679857 -0.445437 0.840329 0.308923 -0.50045 0.856542 0.126038 -0.387543 0.782319 0.487634 -0.331043 0.685354 0.648614 -0.279115 0.554987 0.783636 -0.234323 0.398047 0.886934 -0.198766 0.222238 0.954517 -0.174032 0.035606 0.984096 -0.161146 -0.153806 0.974872 -0.161623 -0.341915 0.925728 -0.183322 -0.527132 0.829774 -0.220903 -0.657095 0.720714 -0.343523 0.893833 0.288192 -0.401399 0.910874 0.095845 -0.282773 0.832684 0.476106 -0.223681 0.730476 0.645269 -0.169508 0.593188 0.787016 -0.122852 0.428085 0.895349 -0.085869 0.24334 0.966133 -0.060478 0.047525 0.997037 -0.048298 -0.151042 0.987347 -0.051169 -0.346801 0.936542 -0.071334 -0.536879 0.840638 -0.087789 -0.68823 0.720162 -0.21986 0.940431 0.259327 -0.28005 0.958152 0.059303 -0.156918 0.876718 0.454689 -0.095926 0.770248 0.630489 -0.040164 0.627316 0.777728 0.007734 0.455603 0.890149 0.046891 0.262808 0.963708 0.076503 0.059129 0.995315 0.087975 -0.141662 0.985998 0.082632 -0.346525 0.934394 0.066735 -0.543112 0.837004 0.044893 -0.70688 0.705907 -0.074449 0.972485 0.220751 -0.13589 0.990587 0.016451 -0.0105 0.907325 0.420298 0.052421 0.798072 0.600278 0.112271 0.651463 0.750327 0.17284 0.475296 0.862682 0.224622 0.286559 0.931359 0.237263 0.088989 0.967361 0.218281 -0.113 0.969322 0.208533 -0.342413 0.916116 0.208343 -0.548433 0.809824 0.177566 -0.726111 0.664254 0.072457 0.981536 0.17702 0.011184 0.999581 -0.026697 0.13045 0.91774 0.375149 0.17379 0.810665 0.559124 0.202259 0.677497 0.70717 0.281823 0.466274 0.838549 0.389486 0.279956 0.877454 0.38011 0.146887 0.913204 0.357385 -0.040932 0.93306 0.345941 -0.321259 0.881543 0.34413 -0.559385 0.754098 0.331752 -0.740685 0.584232 0.196145 0.971318 0.134422 0.140044 0.988072 -0.064045 0.22226 0.915547 0.335221 0.215212 0.826522 0.520139 0.485045 0.203691 0.850436 0.549186 0.085396 0.831326 0.51886 -0.274121 0.809717 0.494351 -0.559544 0.665228 0.486216 -0.716967 0.499552 0.288962 0.953069 0.090338 0.249176 0.963756 -0.09532 0.279421 0.910567 0.304618 0.388152 0.921065 0.031265 0.355698 0.926134 -0.125519 0.404067 0.903782 0.141097 0.68549 -0.217008 0.69499 0.702569 0.095581 0.705167 0.629523 -0.529053 0.569037 0.593718 -0.693079 0.408828 0.496683 0.867503 -0.027267 0.458279 0.875316 -0.154276 0.528047 0.848543 0.03378 0.806768 -0.152023 0.570977 0.808457 0.086821 0.582116 0.751952 -0.463847 0.468417 0.679141 -0.659907 0.321388 0.597185 0.799146 -0.068811 0.555473 0.811556 -0.181181 0.641605 0.76683 -0.017718 0.890943 -0.106367 0.441483 0.8665 0.068021 0.494522 0.874776 -0.373384 0.30879 0.812876 -0.546789 0.200637 0.713003 0.692155 -0.112017 0.675208 0.706006 -0.213658 0.760001 0.64795 -0.050575 0.881663 0.086627 0.463859 0.915057 -0.143088 0.377089 0.91943 -0.337729 0.201463 0.893271 -0.433495 0.118948 0.740476 -0.66906 0.063675 0.859379 -0.511092 0.015908 0.647012 -0.745143 -0.161672 0.622061 -0.770384 0.139818 0.519697 -0.840964 -0.150645 0.82048 0.555122 -0.136569 0.782459 0.574043 -0.241314 0.857424 0.511442 -0.057009 0.806681 0.536729 -0.247364 0.862468 0.496193 -0.099707 0.878972 0.473396 -0.057475 0.818208 0.516312 -0.252897 -0.95504 -0.087036 0.283414 0.458007 0.336509 0.822795 0.548647 0.436829 0.712858 0.498793 0.508214 0.702085 0.40895 0.438856 0.800103 0.458788 0.419381 0.783347 0.488579 0.295919 0.820806 0.338496 0.547557 0.765246 0.40128 0.540787 0.739273 0.447903 0.573978 0.685516 0.572577 0.090453 0.814846 0.659971 0.242585 0.711049 0.600793 0.356629 0.715446 0.507798 0.222804 0.832165 0.525407 0.175386 0.832579 0.592642 0.076696 0.801806 0.696495 -0.160757 0.699323 0.747071 -0.060562 0.66198 0.716368 0.089686 0.691935 0.643654 -0.044528 0.76402 0.679875 -0.004061 0.733317 0.751902 -0.071444 0.655392 0.836517 -0.293072 0.462977 0.828132 -0.230473 0.510959 0.762807 -0.199352 0.61513 0.753672 -0.259258 0.603957 0.803598 -0.130297 0.580735 0.857252 -0.175255 0.484153 0.916775 -0.199713 0.345889 0.913851 -0.163134 0.371839 0.958882 -0.051876 0.279022 0.954667 -0.015331 0.297282 0.878559 0.023718 0.477045 0.887732 -0.142315 0.437811 0.881622 0.374121 0.287709 0.786275 0.361357 0.501191 0.845764 0.203036 0.493417 0.938392 0.191581 0.287606 0.964699 0.141352 0.222208 0.919874 0.344658 0.187198 0.735833 0.601185 0.31165 0.66518 0.53777 0.518014 0.724119 0.464664 0.509645 0.811286 0.503396 0.297333 0.847399 0.503007 0.169996 0.757311 0.630422 0.170435 0.55095 0.766953 0.328993 0.550236 0.662384 0.508417 0.604139 0.603421 0.520479 0.650213 0.6874 0.32358 0.647232 0.739853 0.183595 0.52066 0.823219 0.226328 0.232539 0.84106 0.48841 0.333081 0.772484 0.540672 0.4542 0.75815 0.467879 0.390892 0.846896 0.360515 0.372475 0.869089 0.325495 0.285053 0.827495 0.483733 0.339781 0.673393 0.656575 0.238562 0.704887 0.668 0.320797 0.691569 0.647164 0.829927 0.324203 0.453996 0.78816 0.413058 0.456275 0.818961 0.437724 0.37108 0.868606 0.367447 0.332424 0.594766 0.761672 -0.257117 0.732865 0.586033 -0.345649 0.753901 0.533838 0.38295 0.862991 0.204761 0.461865 0.867214 0.193679 0.458725 0.940858 -0.000486 0.3388 0.908483 -0.022324 0.417326 0.966409 -0.169051 -0.193584 0.923393 -0.383468 0.01723 0.951149 0.102662 0.291162 0.867316 0.198019 0.456675 0.856872 0.261318 0.444391 0.920131 0.262219 0.290862 0.845974 0.375555 -0.378531 0.934245 0.115443 -0.337429 0.724297 0.540152 0.42852 0.705159 0.593618 0.387773 0.719293 0.595991 0.356949 0.405662 0.913937 -0.012545 0.486535 0.862055 -0.141935 0.71787 0.605721 0.343167 0.730039 0.584407 0.354276 0.725686 0.562032 0.396862 0.693853 0.591752 0.410363 0.217331 0.868422 0.445659 0.312452 0.932842 0.179389 0.629841 0.545507 0.552922 0.214362 0.527633 0.821981 0.173015 0.7023 0.690536 0.57713 0.459556 0.675077 0.602476 0.389152 0.696838 0.688167 0.493994 0.531411 0.689409 0.382203 0.615335 0.751692 0.33439 0.568456 0.797599 0.361585 0.482797 0.671211 0.364963 0.645196 0.411128 0.319273 0.853838 0.313319 0.402291 0.860228 0.718031 0.380064 0.58308 0.802641 0.402836 0.439876 0.786668 0.41629 0.455912 0.7261 0.396288 0.561903 0.493842 0.121551 0.861014 0.469657 0.240907 0.849345 0.710366 0.36318 0.602894 0.767343 0.380847 0.515888 0.773688 0.31236 0.551215 0.718919 0.257235 0.645744 0.615801 -0.251493 0.746687 0.530844 -0.044491 0.846301 0.775459 0.113009 0.621203 0.81328 0.246247 0.527199 0.846491 0.212923 0.487972 0.849483 0.012404 0.52747 0.842402 -0.47405 0.256193 0.735809 -0.426295 0.526173 0.762121 0.060604 0.644592 0.762121 0.060604 0.644592 0.670388 0.105094 0.734531 0.670388 0.105094 0.734531 0.53593 0.35712 0.765013 0.53593 0.35712 0.765013 0.519593 0.470857 0.712963 0.519593 0.470857 0.712963 0.592721 0.147272 0.791829 0.592721 0.147272 0.791829 0.539402 0.227876 0.810628 0.539402 0.227876 0.810628 0.838046 -0.041961 0.543984 0.838046 -0.041961 0.543984 0.805134 0.024108 0.592603 0.805134 0.024108 0.592603 0.458987 0.56981 0.681651 0.458987 0.56981 0.681651 0.36131 0.737053 0.571146 0.36131 0.737053 0.571146 0.930114 -0.106536 0.351481 0.930114 -0.106536 0.351481 0.880661 -0.11099 0.460561 0.880661 -0.11099 0.460561 0.320732 0.857422 0.402441 0.320732 0.857422 0.402441 0.44726 0.859353 0.247932 0.44726 0.859353 0.247932 0.95182 0.231775 0.200795 0.95182 0.231775 0.200795 0.964167 0.021103 0.264456 0.964167 0.021103 0.264456 0.579093 0.8006 0.153919 0.579093 0.8006 0.153919 0.697437 0.705567 0.12553 0.697437 0.705567 0.12553 0.814036 0.566095 0.129927 0.814036 0.566095 0.129927 0.890074 0.43096 0.148464 0.890074 0.43096 0.148464 0.029208 0.881474 -0.471328 0.029208 0.881474 -0.471328 0.096449 0.728365 -0.678368 0.096449 0.728365 -0.678368 0.4685 0.04873 -0.882118 0.4685 0.04873 -0.882118 0.638087 -0.253445 -0.727056 0.638087 -0.253445 -0.727056 0.178322 0.511529 -0.840559 0.178322 0.511529 -0.840559 0.316697 0.307225 -0.897394 0.316697 0.307225 -0.897394 -0.229597 0.97301 0.023188 -0.229597 0.97301 0.023188 -0.099111 0.961282 -0.257125 -0.099111 0.961282 -0.257125 0.690989 -0.552351 -0.466307 0.690989 -0.552351 -0.466307 0.614728 -0.774975 -0.146708 0.614728 -0.774975 -0.146708 -0.213285 0.674612 0.706689 -0.213285 0.674612 0.706689 -0.277125 0.880387 0.384865 -0.277125 0.880387 0.384865 0.522099 -0.831492 0.189823 0.522099 -0.831492 0.189823 0.41303 -0.701304 0.581016 0.41303 -0.701304 0.581016 0.016451 0.304495 0.952372 0.016451 0.304495 0.952372 -0.102423 0.482133 0.87009 -0.102423 0.482133 0.87009 0.321342 -0.449506 0.833477 0.321342 -0.449506 0.833477 0.240502 -0.251619 0.937468 0.240502 -0.251619 0.937468 0.177609 -0.048219 0.982919 0.177609 -0.048219 0.982919 0.113264 0.143803 0.983103 0.113264 0.143803 0.983103 0.856752 0.237426 0.457827 0.923385 0.210649 0.320917 0.807841 0.342573 0.479622 0.926355 0.306361 0.219111 0.893024 0.401372 0.203491 0.707489 0.350542 0.613661 0.690028 0.404138 0.600445 0.701459 0.296818 0.647962 0.79174 0.518629 0.322757 0.756722 0.567339 0.324806 0.829456 0.472735 0.297531 0.598529 0.538416 0.593188 0.611969 0.432342 0.662249 0.636119 0.597396 0.488334 0.661695 0.3349 0.670821 0.723255 0.374582 0.580165 0.790325 0.34767 0.504491 0.811959 0.371822 0.449969 0.863778 0.442517 0.24097 0.701135 0.600411 0.384599 0.932766 0.160597 0.322732 0.970845 0.170441 0.168552 0.883636 0.175716 0.433947 0.958137 0.275993 0.076165 0.918477 0.391142 0.058382 0.596042 0.268924 0.756581 0.631692 0.23949 0.737299 0.526233 0.296752 0.79688 0.713347 0.696389 0.078601 0.607873 0.785114 0.118686 0.815341 0.574919 0.068466 0.317442 0.747572 0.583409 0.328784 0.607429 0.72314 0.382484 0.824581 0.416859 0.421264 0.422347 0.802596 0.694449 0.183029 0.695875 0.790988 0.142639 0.594973 0.851498 0.154648 0.501034 0.88206 0.467139 0.061249 0.494106 0.834447 0.244044 0.898388 0.239427 0.368203 0.928433 0.290662 0.231361 0.927907 0.362185 0.088373 0.90613 0.422899 -0.009252 0.502343 -0.531378 -0.68212 0.481433 0.034979 -0.875785 0.821621 0.007587 -0.569984 0.601173 0.059321 -0.796914 0.288385 0.93379 -0.211824 0.988457 0.045901 -0.144378 0.606647 0.786641 -0.114787 0.631147 0.75431 -0.180748 0.972584 0.01879 -0.231792 0.50542 0.85821 -0.089584 0.979429 0.125423 -0.158074 0.681238 -0.704485 -0.199036 0.649817 -0.670326 -0.358331 0.486326 -0.865845 -0.117473 0.446328 -0.866561 -0.223303 0.749936 -0.639396 -0.169616 0.164446 0.814374 0.556554 0.230868 0.7458 0.624886 0.513037 0.656869 0.552553 0.434017 0.729299 0.528916 0.753221 0.48407 0.445347 0.753221 0.48407 0.445347 0.124146 -0.973254 0.193296 0.136691 -0.979344 0.149 0.136691 -0.979344 0.149 0.184839 -0.973906 0.131688 0.16227 -0.986484 -0.022769 0.212195 -0.968006 0.133929 0.212195 -0.968006 0.133929 0.404326 0.749489 0.524201 0.579587 0.654669 0.485269 0.579587 0.654669 0.485269 0.267339 0.835446 0.480167 0.245983 0.889628 0.38478 0.267339 0.835446 0.480167 0.316456 0.757992 0.570354 0.349573 0.870764 0.345787 0.299173 0.736411 0.60679 0.210334 0.763548 0.610536 0.173912 0.765408 0.619601 0.197207 0.7873 0.584182 0.208134 0.150701 0.966421 0.45413 0.145812 0.878922 0.34138 0.606573 0.718004 0.193961 0.656473 0.728987 0.702212 0.014831 0.711813 0.629702 0.408791 0.660579 0.464374 -0.299888 0.833321 0.195845 -0.470873 0.860188 0.247334 -0.957018 0.151467 0.40013 -0.846054 0.352263 0.156142 -0.842984 0.51478 0.487382 -0.796965 0.356799 0.24234 -0.955279 0.169453 0.220077 -0.968074 0.119991 0.144759 -0.978459 0.147185 0.183204 -0.982603 -0.03045 0.067622 -0.997704 0.003667 0.333609 0.885237 0.324131 0.26257 0.786829 0.558531 0.249027 0.818022 0.518484 0.310909 0.905688 0.288211 0.981618 -0.064667 0.179569 0.953472 -0.110057 0.280676 0.829047 -0.397145 0.393645 0.92859 0.156172 0.336647 0.777747 -0.421784 0.466056 0.769156 -0.579058 0.270354 0.995933 0.044395 0.078399 0.452986 -0.772336 0.445309 0.25562 -0.911562 0.322045 0.985612 -0.013881 -0.168452 0.7241 -0.689125 0.028032 0.669094 -0.721471 -0.178308 0.959852 -0.03757 -0.277979 0.142983 -0.970854 0.192352 0.080246 -0.996775 0.00032 0.399717 0.880195 0.255896 0.376418 0.74386 0.552252 0.932941 0.251988 0.257146 0.923519 0.376658 0.072404 0.341071 0.563945 0.752088 0.901143 0.06264 0.428972 0.473307 -0.704975 -0.528197 0.53861 0.034196 -0.841861 0.284747 -0.650038 -0.704536 0.28859 -0.717857 -0.633559 0.66476 -0.69131 -0.283167 0.687122 0.601648 -0.407288 0.19454 0.943367 -0.268726 0.142669 0.967481 -0.20887 0.158097 0.977372 -0.140534 0.267227 0.956959 -0.113221 0.206618 0.964826 -0.16254 0.111176 0.975912 -0.187714 0.29006 0.951394 -0.103509 0.197728 0.977642 -0.071559 0.133329 0.730763 0.669484 -0.021072 0.776457 0.629818 -0.048861 0.692427 0.719831 -0.267381 0.736738 0.621067 0.502201 -0.841758 -0.198082 0.347489 -0.823244 -0.44891 0.323269 -0.832159 -0.450565 0.365532 -0.909977 -0.195774 0.278989 -0.744812 -0.606152 0.310543 -0.724294 -0.615598 0.470573 -0.845704 0.251686 0.639991 -0.751749 0.159014 0.847528 -0.526779 -0.064814 0.931762 0.360605 -0.042234 0.731131 -0.37377 0.57074 0.545828 -0.440059 0.713036 0.28654 -0.807827 -0.515083 0.336227 -0.798398 -0.499512 0.390344 -0.778946 -0.490791 0.394888 -0.900382 -0.182694 0.453746 -0.877199 -0.156959 0.356802 -0.910855 -0.207449 -0.344161 0.695104 0.631176 -0.149439 0.640429 0.753338 -0.149043 0.665502 0.731364 -0.349826 0.693839 0.629452 -0.136209 0.702366 0.698663 -0.323407 0.705435 0.63069 0.682989 -0.682468 -0.260315 0.59895 -0.703991 -0.381648 0.629914 -0.656157 -0.415531 0.77097 -0.571238 -0.281588 0.426971 -0.693708 -0.580055 0.470882 -0.685627 -0.555145 0.547183 -0.735019 -0.400422 0.403878 -0.692278 -0.598025 0.639219 -0.729933 -0.242067 0.756317 -0.646196 0.102054 0.818345 -0.573567 0.036491 0.814869 -0.159464 0.557279 0.753505 -0.300809 0.584589 0.916322 -0.395282 -0.064085 -0.552229 0.717565 0.424433 -0.549898 0.723485 0.417351 -0.689114 0.695621 0.20306 -0.692124 0.693865 0.198787 -0.449937 0.772191 0.44864 -0.582332 0.776773 0.23982 0.4591 -0.736156 -0.497294 0.428557 -0.75507 -0.496193 0.470093 -0.756298 -0.455001 0.604445 -0.773438 -0.190894 0.573109 -0.784752 -0.236031 0.620477 -0.767507 -0.161065 -0.154659 0.830449 0.535196 -0.208047 0.933434 0.292262 0.839948 -0.488026 -0.237313 0.649751 -0.668884 -0.361136 0.686328 -0.685198 -0.243841 0.870409 -0.456272 -0.184943 0.113928 -0.971144 0.209524 0.420169 -0.778433 0.466369 0.36716 -0.763202 0.531711 -0.02591 -0.968892 0.246125 0.735247 0.502746 0.454597 0.760736 -0.231899 0.60622 0.709739 -0.164748 0.68493 0.677088 0.518341 0.522374 0.150157 0.985896 -0.073902 0.110758 0.979195 -0.170028 0.14924 0.977328 -0.150193 0.102024 0.980668 -0.166976 0.092901 0.976521 -0.194362 0.035026 -0.981694 0.187218 -0.094184 -0.972517 0.212932 -0.040179 -0.998571 0.035247 -0.134425 -0.988935 0.062742 0.104938 0.981244 -0.161707 0.151335 0.986059 -0.069173 0.069929 0.986197 -0.150086 0.095076 0.992657 -0.074781 -0.031932 -0.959846 0.278703 0.3959 -0.771292 0.498369 0.753955 -0.269659 0.599029 0.811465 0.345679 0.471202 0.245701 0.963498 -0.106314 0.226774 0.963215 -0.144187 -0.201856 -0.975954 0.082263 -0.144695 -0.963786 0.22401 0.238399 0.953876 -0.182445 0.263237 0.957272 -0.119739 0.137189 0.954008 0.266548 0.004047 0.860303 0.509766 -0.324412 0.82325 0.46585 -0.221133 0.946632 0.234497 0.552688 -0.819889 -0.14939 0.435697 -0.752668 -0.493618 0.365249 -0.701895 -0.611504 0.358271 0.298744 0.88453 0.369064 0.261778 0.891776 0.680582 -0.368671 0.633159 0.35026 0.27383 0.895732 -0.101362 0.652868 0.750659 -0.31403 0.712829 0.627104 0.528306 -0.819128 -0.223433 0.448996 -0.780542 -0.434921 0.341896 0.423686 0.838807 0.504935 0.340193 0.79329 0.181522 0.411952 0.892942 0.181522 0.411952 0.892942 0.465736 -0.606641 0.644264 -0.0363 0.939717 0.340021 0.06455 0.996125 -0.059741 -0.0363 0.939717 0.340021 0.286421 0.951044 -0.116095 0.288616 0.950349 -0.116354 0.275757 0.953921 -0.118292 0.150003 0.985457 -0.079833 -0.160278 0.98687 0.019962 -0.557805 0.804225 0.205125 -0.528811 0.837981 0.134713 -0.689987 0.699784 0.184985 -0.704052 0.684413 0.189445 -0.639015 0.750411 0.168948 -0.301208 0.951297 0.065638 0.321965 0.939617 -0.116016 0.978366 -0.179418 -0.103002 0.950511 -0.146462 -0.274005 0.864752 0.428163 -0.262451 0.86448 -0.440579 -0.242001 0.720676 -0.665351 -0.194768 0.631835 -0.756962 -0.166709 0.640249 -0.749264 -0.169365 0.627443 -0.760901 -0.165364 0.541996 -0.828837 -0.138816 0.434754 -0.894291 -0.105989 0.396475 -0.913174 -0.094449 0.3782 -0.921198 -0.091428 0.733887 0.635327 -0.240355 0.720343 0.687761 -0.089944 0.744559 0.62451 -0.235838 0.345736 0.9286 0.13479 0.993133 0.093733 0.070012 0.356159 0.925036 0.132136 0.187307 0.978163 -0.09007 0.502357 0.858922 0.099456 0.251333 0.962401 -0.103033 0.65335 -0.735934 0.17758 0.65112 0.755621 0.071276 0.96166 -0.25776 -0.093651 0.209729 0.846026 0.490157 0.369985 -0.806261 -0.461579 -0.486759 0.759504 0.431532 0.951681 0.185976 -0.24437 0.902737 0.332183 -0.273352 0.941165 0.315326 -0.121568 0.951681 0.185976 -0.24437 0.956675 0.290442 0.020395 0.999368 -0.03479 -0.007251 0.964422 0.229761 0.130768 0.952504 0.13236 0.274258 0.999368 -0.03479 -0.007251 0.940577 -0.003262 0.339566 0.985356 -0.047323 -0.163812 0.973149 -0.138935 0.183517 0.98634 -0.163979 0.015638 0.985356 -0.047323 -0.163812 0.800077 -0.569905 -0.187309 0.874318 -0.431977 -0.221278 0.945305 -0.32607 -0.008707 0.031586 -0.183913 0.982435 0.031586 -0.183913 0.982435 -0.030751 -0.950601 0.30889 -0.030751 -0.950601 0.30889 0.985137 -0.170059 0.024169 -0.138803 -0.672288 0.727161 -0.138803 -0.672288 0.727161 0.909257 -0.407951 -0.082632 0.909257 -0.407951 -0.082632 0.975975 0.172973 -0.132486 0.975975 0.172973 -0.132486 0.980139 0.18814 -0.062699 0.980139 0.18814 -0.062699 0.977763 -0.075286 0.195733 0.977763 -0.075286 0.195733 0.989301 -0.108793 0.097195 0.989301 -0.108793 0.097195 0.977445 0.124096 -0.170885 0.977445 0.124096 -0.170885 0.998153 0.056019 0.023506 0.998153 0.056019 0.023506 0.796335 -0.523715 0.302611 0.474101 -0.734714 0.485204 -0.961031 0.165053 0.221757 -0.966015 0.031778 0.256527 -0.974186 0.146597 0.171671 -0.972365 0.022683 0.232362 -0.984794 0.118521 0.127015 -0.97678 0.011602 0.213931 -0.992779 0.080892 0.088578 -0.980405 -0.006081 0.1969 -0.997692 0.034776 0.058321 -0.983084 -0.030932 0.180525 -0.999084 -0.01652 0.039467 -0.983546 -0.055798 0.171824 -0.996955 -0.071034 0.03217 -0.982323 -0.081459 0.168542 -0.991355 -0.12588 0.037019 -0.979425 -0.107879 0.170556 -0.982538 -0.178319 0.053122 -0.975168 -0.132497 0.177459 -0.97118 -0.224992 0.078667 -0.9699 -0.153567 0.188972 -0.957807 -0.263848 0.113978 -0.963903 -0.170188 0.204763 -0.939615 -0.29636 0.171153 -0.955655 -0.183417 0.230396 -0.916192 -0.318352 0.243403 -0.943673 -0.194814 0.26745 -0.940074 0.285894 0.18581 -0.959445 0.258862 0.111609 -0.975323 0.216319 0.04416 -0.986978 0.160325 -0.013014 -0.993968 0.093475 -0.057363 -0.996059 0.018754 -0.086686 -0.993227 -0.06055 -0.099163 -0.985628 -0.140582 -0.09367 -0.972899 -0.220345 -0.070116 -0.955697 -0.29262 -0.031897 -0.933885 -0.356815 0.023271 -0.904554 -0.412768 0.106793 -0.874187 -0.443341 0.198105 -0.904883 0.399162 0.14784 -0.930066 0.363832 0.051015 -0.950616 0.308169 -0.036885 -0.965592 0.235032 -0.111317 -0.974471 0.147814 -0.168987 -0.976979 0.05078 -0.207202 -0.973161 -0.05162 -0.224262 -0.963025 -0.155851 -0.219756 -0.94516 -0.263631 -0.192798 -0.918341 -0.367435 -0.147108 -0.884469 -0.46033 -0.076225 -0.846414 -0.531736 0.028979 -0.81683 -0.561478 0.132408 -0.856198 0.505244 0.107954 -0.886734 0.462178 -0.009715 -0.911564 0.394322 -0.116455 -0.92955 0.305236 -0.206801 -0.940103 0.199203 -0.276631 -0.942966 0.081326 -0.322801 -0.938215 -0.042948 -0.343377 -0.925514 -0.170798 -0.338011 -0.90304 -0.303133 -0.304351 -0.869126 -0.43109 -0.242446 -0.825613 -0.542663 -0.154533 -0.78679 -0.615366 -0.04782 -0.763783 -0.641746 0.069265 -0.795208 0.602633 0.06691 -0.830597 0.552504 -0.069627 -0.85928 0.473551 -0.193358 -0.879991 0.369951 -0.297914 -0.892055 0.246859 -0.378547 -0.895219 0.110198 -0.431786 -0.889617 -0.03377 -0.455457 -0.87547 -0.181874 -0.447743 -0.852671 -0.3311 -0.404135 -0.819795 -0.473097 -0.322669 -0.773161 -0.597383 -0.21297 -0.732323 -0.672114 -0.109388 -0.703802 -0.710148 0.018793 -0.723285 0.690084 0.025367 -0.762965 0.633675 -0.127835 -0.79508 0.544841 -0.266451 -0.818228 0.428382 -0.383395 -0.831653 0.290204 -0.47343 -0.835118 0.137002 -0.532737 -0.828804 -0.024239 -0.559013 -0.813771 -0.188224 -0.549862 -0.79107 -0.350428 -0.501406 -0.757687 -0.507139 -0.410755 -0.712161 -0.640658 -0.287028 -0.672656 -0.725938 0.143347 -0.641851 0.766661 -0.016075 -0.68527 0.704796 -0.183489 -0.720395 0.607414 -0.334782 -0.745674 0.479891 -0.46225 -0.760327 0.328783 -0.560182 -0.764125 0.161453 -0.624537 -0.757252 -0.014499 -0.652962 -0.740618 -0.191819 -0.643964 -0.713493 -0.368156 -0.596145 -0.67319 -0.539525 -0.505696 -0.633594 -0.66652 -0.392824 -0.552217 0.831757 -0.056883 -0.598779 0.765354 -0.236001 -0.636491 0.660838 -0.397708 -0.663675 0.524103 -0.533716 -0.679467 0.362301 -0.638015 -0.683616 0.18334 -0.706439 -0.676308 -0.004709 -0.736604 -0.658096 -0.193709 -0.72759 -0.624976 -0.385418 -0.678866 -0.57331 -0.567527 -0.590956 -0.539712 -0.669892 -0.509859 -0.455829 0.884817 -0.096532 -0.504906 0.814845 -0.284776 -0.544771 0.704701 -0.454557 -0.573584 0.560728 -0.597148 -0.59041 0.390539 -0.706325 -0.594941 0.202476 -0.777849 -0.58738 0.005005 -0.809296 -0.568315 -0.193377 -0.799765 -0.531724 -0.399254 -0.746904 -0.472063 -0.588647 -0.65624 -0.438252 -0.663694 -0.606173 -0.336649 0.931055 -0.140727 -0.387856 0.858178 -0.336301 -0.429627 0.743452 -0.512543 -0.459974 0.593597 -0.660353 -0.477869 0.416607 -0.773356 -0.482921 0.221168 -0.847273 -0.475295 0.016124 -0.879678 -0.455543 -0.189817 -0.869741 -0.417917 -0.406061 -0.812687 -0.353552 -0.60422 -0.714086 -0.307968 -0.666598 -0.678825 -0.193714 0.962913 -0.187815 -0.246267 0.8884 -0.387424 -0.288613 0.77069 -0.568101 -0.317008 0.616998 -0.720292 -0.324374 0.435579 -0.839674 -0.320365 0.248902 -0.91401 -0.326185 0.041175 -0.944409 -0.317893 -0.181748 -0.930544 -0.279515 -0.404386 -0.870829 -0.213288 -0.614544 -0.759503 -0.156721 -0.682515 -0.713871 -0.046463 0.971992 -0.230375 -0.103325 0.898972 -0.425645 -0.164362 0.783516 -0.59924 -0.218293 0.643744 -0.733446 -0.220032 0.426957 -0.877094 -0.163378 0.257767 -0.952294 -0.189104 0.091231 -0.97771 -0.196106 -0.137994 -0.970824 -0.15848 -0.395997 -0.904473 -0.068774 -0.626707 -0.776214 0.011498 -0.702817 -0.711278 0.080842 0.962059 -0.260588 -0.004368 0.897342 -0.441313 -0.108637 0.80053 -0.589364 -0.077282 0.160772 -0.983961 -0.047366 -0.005136 -0.998864 -0.055321 -0.376835 -0.924627 0.024205 -0.64051 -0.767568 0.122657 -0.746286 -0.654227 0.182989 0.944565 -0.272601 0.060296 0.892968 -0.446064 0.298773 0.913904 -0.274797 0.253313 0.891687 -0.375137 0.114854 -0.338324 -0.933994 0.102232 0.013353 -0.994671 0.151765 -0.614693 -0.774028 0.247572 -0.789545 -0.561539 0.422501 0.861523 -0.281553 0.416333 0.839555 -0.34902 0.37199 -0.274879 -0.886603 0.353485 0.017625 -0.935274 0.378321 -0.507369 -0.774242 0.386435 -0.730111 -0.563565 0.530382 0.793788 -0.297652 0.540498 0.759214 -0.362568 0.588887 -0.200332 -0.782994 0.56861 0.014756 -0.822475 0.582449 -0.344028 -0.736476 0.575726 -0.569224 -0.586961 0.65241 0.687716 -0.318445 0.658927 0.642592 -0.391012 0.527988 0.032741 -0.848621 0.572271 -0.222348 -0.789346 0.647447 -0.270239 -0.712589 0.71954 -0.352064 -0.598592 0.761452 -0.51329 -0.395884 0.588683 -0.724004 -0.359542 0.425419 -0.825843 -0.370137 0.75829 0.548346 -0.35258 0.752446 0.495489 -0.433954 0.762878 0.455469 -0.458873 0.774527 0.480972 -0.410821 -0.059483 0.299655 -0.952191 -0.090596 0.399221 -0.912368 0.036545 0.471124 -0.881309 0.07364 0.399264 -0.913874 -0.030114 0.266255 -0.963432 -0.038844 0.381241 -0.923659 -0.13284 0.509742 -0.85001 -0.066453 0.503298 -0.861554 0.001768 0.538105 -0.842876 0.050754 0.065758 -0.996544 -0.019181 0.193572 -0.980899 0.117727 0.320417 -0.939933 0.173089 0.209675 -0.962329 0.073986 0.047418 -0.996131 -0.002861 0.154045 -0.98806 0.22268 -0.189591 -0.956279 0.142047 -0.070696 -0.987332 0.235945 0.061061 -0.969846 0.284019 -0.085242 -0.955022 0.284187 -0.119522 -0.95129 0.18495 -0.046926 -0.981627 0.469944 -0.314762 -0.824668 0.324898 -0.286474 -0.901318 0.327435 -0.220891 -0.918691 0.436096 -0.251459 -0.864054 0.473624 -0.209127 -0.855538 0.371679 -0.174482 -0.911817 0.593781 -0.220328 -0.773873 0.64569 -0.038921 -0.762607 0.659388 -0.074842 -0.748068 0.577338 -0.188497 -0.794449 0.520053 -0.164818 -0.838081 0.486574 -0.003404 -0.873633 0.583694 0.350278 -0.732535 0.633952 0.167061 -0.755112 0.445809 0.172583 -0.878333 0.388775 0.329865 -0.860258 0.670839 0.324639 -0.666772 0.692093 0.11947 -0.711852 0.445222 0.577844 -0.684013 0.517686 0.479897 -0.708308 0.330597 0.433029 -0.838565 0.275479 0.50654 -0.817024 0.53871 0.612813 -0.578145 0.616696 0.484403 -0.620516 0.278003 0.744964 -0.606418 0.365453 0.664551 -0.651779 0.221829 0.57283 -0.789087 0.182217 0.632878 -0.752504 0.306851 0.80584 -0.506422 0.437533 0.722967 -0.534681 -0.077112 0.816166 -0.572649 0.125172 0.825515 -0.550324 0.121846 0.731498 -0.670868 -0.019603 0.743964 -0.667932 -0.030227 0.802231 -0.596248 0.128031 0.849287 -0.512171 -0.166759 0.672289 -0.721262 -0.074919 0.639876 -0.764817 -0.086363 0.65898 -0.747185 0.419268 0.406688 -0.811677 0.45283 0.31045 -0.835802 0.550354 0.354523 -0.755926 0.488995 0.426269 -0.761038 0.798505 0.589542 -0.121777 0.629664 0.764854 -0.136094 0.428097 0.516657 -0.741484 0.481992 0.162651 -0.860946 0.476625 0.173666 -0.861782 0.541781 -0.051837 -0.83892 0.610962 -0.026965 -0.7912 0.77405 -0.395398 -0.494477 0.920958 -0.172543 -0.349378 0.643893 0.078074 -0.761122 0.480736 0.233816 -0.845117 0.483133 0.167149 -0.859444 0.616661 0.240115 -0.749715 0.967736 0.117908 -0.222674 0.913198 0.379905 -0.147451 0.390578 0.591083 -0.705741 0.382839 0.535126 -0.753044 0.414139 0.577573 -0.70349 0.47634 0.860797 -0.179246 0.340392 0.907818 -0.24495 0.421549 0.584377 -0.693397 0.405414 0.540989 -0.736865 0.431518 0.576007 -0.694268 0.364935 0.56563 -0.739517 0.160295 0.921034 -0.354968 -0.063838 0.850342 -0.522343 0.231853 0.516573 -0.824255 -0.234963 0.674542 -0.699847 -0.263787 0.488611 -0.831671 0.143761 0.349005 -0.926028 0.121957 0.430188 -0.894463 0.244238 0.368175 -0.897104 0.286839 0.465666 -0.837185 0.431825 0.308888 -0.847417 0.349106 0.306214 -0.88564 0.242828 0.317447 -0.916658 -0.193183 0.358321 -0.913393 -0.108882 0.280328 -0.953709 0.308743 0.342271 -0.887428 0.400235 0.380025 -0.833902 0.437071 0.358464 -0.824907 0.306876 0.362809 -0.879885 -0.062544 0.201463 -0.977497 -0.04802 0.0781 -0.995788 0.266858 0.326827 -0.906626 0.350138 0.278047 -0.894479 0.354862 0.347322 -0.868009 0.255429 0.219947 -0.941477 -0.006971 -0.087812 -0.996113 0.120653 -0.291438 -0.94895 0.318338 0.07641 -0.944893 0.448609 0.180967 -0.875215 0.399034 0.212972 -0.89186 0.432397 -0.02109 -0.901437 0.342686 -0.457883 -0.820311 0.578434 -0.49519 -0.648229 0.296419 -0.000702 -0.955058 0.296419 -0.000702 -0.955058 0.172523 0.052896 -0.983584 0.172523 0.052896 -0.983584 0.039158 0.322577 -0.945733 0.039158 0.322577 -0.945733 0.047516 0.433082 -0.900101 0.047516 0.433082 -0.900101 0.073663 0.121903 -0.989805 0.073663 0.121903 -0.989805 0.020637 0.212144 -0.977021 0.020637 0.212144 -0.977021 0.424054 -0.091556 -0.900997 0.424054 -0.091556 -0.900997 0.357272 -0.03225 -0.933444 0.357272 -0.03225 -0.933444 0.012525 0.534209 -0.84526 0.012525 0.534209 -0.84526 -0.011494 0.7071 -0.707021 -0.011494 0.7071 -0.707021 0.597526 -0.131026 -0.791072 0.597526 -0.131026 -0.791072 0.505826 -0.146625 -0.850083 0.505826 -0.146625 -0.850083 0.043082 0.835064 -0.548463 0.043082 0.835064 -0.548463 0.232892 0.841802 -0.486962 0.232892 0.841802 -0.486962 0.692441 0.211038 -0.689919 0.692441 0.211038 -0.689919 0.670034 -0.002279 -0.742327 0.670034 -0.002279 -0.742327 0.395537 0.785831 -0.475416 0.395537 0.785831 -0.475416 0.511415 0.69064 -0.511342 0.511415 0.69064 -0.511342 0.608864 0.549501 -0.572131 0.608864 0.549501 -0.572131 0.665886 0.412472 -0.621662 0.665886 0.412472 -0.621662 0.267718 0.900516 0.342634 0.267718 0.900516 0.342634 0.434491 0.763425 0.477912 0.434491 0.763425 0.477912 0.869912 0.076138 0.487294 0.869912 0.076138 0.487294 0.932155 -0.229683 0.279881 0.932155 -0.229683 0.279881 0.602872 0.538559 0.588642 0.602872 0.538559 0.588642 0.752279 0.323048 0.574209 0.752279 0.323048 0.574209 -0.213672 0.974192 0.072768 -0.213672 0.974192 0.072768 0.039021 0.973056 0.227243 0.039021 0.973056 0.227243 0.840289 -0.540248 0.045233 0.840289 -0.540248 0.045233 0.606818 -0.775669 -0.17352 0.606818 -0.775669 -0.17352 -0.573632 0.648601 -0.500262 -0.573632 0.648601 -0.500262 -0.459052 0.865899 -0.198721 -0.459052 0.865899 -0.198721 0.348772 -0.845309 -0.404736 0.348772 -0.845309 -0.404736 0.044107 -0.731158 -0.680781 0.044107 -0.731158 -0.680781 -0.526631 0.262875 -0.808429 -0.526631 0.262875 -0.808429 -0.572583 0.444835 -0.688673 -0.572583 0.444835 -0.688673 -0.171813 -0.489749 -0.854767 -0.171813 -0.489749 -0.854767 -0.298216 -0.294897 -0.907801 -0.298216 -0.294897 -0.907801 -0.378075 -0.092709 -0.921121 -0.378075 -0.092709 -0.921121 -0.44719 0.096281 -0.889242 -0.44719 0.096281 -0.889242 0.612429 0.206829 -0.762989 0.464886 0.248405 -0.849809 0.407407 0.351958 -0.842701 0.648197 0.357749 -0.672202 0.671753 0.259933 -0.693674 0.260779 0.444292 -0.857088 0.266283 0.359019 -0.894538 0.239549 0.282383 -0.928911 0.456076 0.54318 -0.704947 0.484975 0.494828 -0.721072 0.523431 0.452679 -0.721874 0.154432 0.395601 -0.905345 0.17883 0.504716 -0.84456 0.266157 0.567731 -0.779001 0.193307 0.300033 -0.934138 0.427534 0.439385 -0.790035 0.307666 0.464115 -0.830626 0.465664 0.419078 -0.779442 0.586011 0.418412 -0.693919 0.376686 0.574397 -0.726757 0.72401 0.167928 -0.669036 0.615211 0.144276 -0.775048 0.538442 0.194451 -0.81992 0.755996 0.352652 -0.551458 0.765047 0.251817 -0.592698 0.104303 0.251884 -0.96212 0.084593 0.265317 -0.960443 0.005837 0.281933 -0.959416 0.438714 0.77153 -0.460728 0.549094 0.684577 -0.479427 0.639111 0.567102 -0.51955 -0.119349 0.571474 -0.811895 -0.055497 0.717664 -0.694175 0.087893 0.80095 -0.592244 -0.082255 0.383999 -0.919662 0.371981 0.25099 -0.893663 0.168173 0.254214 -0.952414 0.515832 0.244885 -0.820943 0.711746 0.448691 -0.540457 0.274747 0.816832 -0.507247 0.645705 0.281916 -0.70964 0.539281 0.220414 -0.812769 0.769022 0.394085 -0.503292 0.726749 0.338639 -0.597628 0.910687 0.132665 0.391214 0.999599 0.019627 0.020427 0.95412 0.024299 0.298438 0.445708 0.894704 -0.029136 0.965917 0.00636 -0.258774 0.63813 0.749781 -0.174984 0.564478 0.808758 -0.165152 0.955888 0.074409 -0.28415 0.833027 -0.550995 -0.049699 0.747769 -0.638876 -0.180774 0.496269 -0.862279 -0.100952 -0.207933 0.848115 -0.487303 0.067624 0.763984 -0.641681 0.12728 0.626188 -0.769213 -0.218784 0.728379 -0.649305 0.477035 0.407812 -0.778542 0.477035 0.407812 -0.778542 0.017333 -0.981177 -0.192329 0.100697 -0.980826 -0.166857 0.066985 -0.985016 -0.158922 0.066985 -0.985016 -0.158922 0.113176 -0.977596 -0.177477 0.113176 -0.977596 -0.177477 0.260639 0.584649 -0.768279 0.260639 0.584649 -0.768279 0.016554 0.67435 -0.738226 -0.106362 0.750404 -0.652366 -0.106362 0.750404 -0.652366 -0.052394 0.836039 -0.546163 0.073173 0.824552 -0.561034 -0.11046 0.686583 -0.718611 -0.155032 0.743111 -0.650962 -0.209657 0.806439 -0.552901 -0.277141 0.74834 -0.602644 -0.254322 0.755762 -0.603444 -0.358109 0.092557 -0.929081 -0.250923 0.673348 -0.695442 -0.112663 0.603179 -0.789609 -0.09202 0.089713 -0.991708 0.154625 0.382352 -0.910988 0.205405 -0.026468 -0.978319 -0.072607 -0.353019 -0.932795 -0.315135 -0.516218 -0.796372 0.137801 -0.96591 -0.219155 -0.147037 -0.862058 -0.485012 0.15353 -0.866566 -0.474859 0.229098 -0.817711 -0.528075 0.125194 -0.964684 -0.231758 0.055128 -0.985656 -0.159509 0.133227 -0.975043 -0.1776 0.08158 0.845691 -0.5274 0.078804 0.875247 -0.477213 -0.135909 0.78308 -0.606889 -0.14307 0.731129 -0.667069 0.652262 -0.134271 -0.746006 0.728452 -0.084587 -0.679855 0.489926 -0.423017 -0.762253 0.604152 0.140091 -0.784458 0.789901 0.036981 -0.612119 0.511155 -0.597093 -0.618224 0.41548 -0.442463 -0.794735 0.053874 -0.927755 -0.369281 0.152238 -0.796477 -0.58519 0.917433 -0.01634 -0.397554 0.60325 -0.699086 -0.383887 0.029478 -0.980033 -0.196639 0.188278 0.863211 -0.468421 0.734878 0.361526 -0.573806 0.645074 0.228829 -0.729052 0.011092 0.714503 -0.699544 0.528285 0.032629 -0.84844 -0.123905 0.526586 -0.841044 0.709036 -0.679127 0.189881 0.54884 -0.680148 0.485977 0.696633 -0.536154 0.476698 0.937025 0.142119 0.319041 0.883729 -0.390989 0.257199 0.771856 0.621298 -0.135006 0.80244 -0.582305 -0.130427 0.360455 0.931906 0.040288 0.246781 0.968966 0.014261 0.199409 0.979909 0.003657 0.20259 0.97835 0.042279 0.297397 0.954751 0.002279 0.296878 0.953346 -0.054732 -0.448272 0.750301 -0.485901 -0.299256 0.711329 -0.635969 -0.449932 0.662013 -0.599417 -0.604373 0.702658 -0.375506 0.543677 -0.837776 -0.05046 0.41825 -0.908309 0.006481 0.525642 -0.828016 0.195167 0.513327 -0.837473 0.187441 0.632445 -0.690176 0.351668 0.562937 -0.723503 0.399556 0.270888 -0.860723 -0.431018 0.466072 -0.760826 -0.451575 0.785817 -0.470274 -0.401664 0.806986 0.379916 -0.452147 0.311722 -0.406116 -0.859011 0.08011 -0.476468 -0.875534 0.492226 -0.783275 0.379728 0.564196 -0.75938 0.324076 0.615425 -0.747397 0.250297 0.467281 -0.880804 -0.076373 0.423525 -0.905139 -0.036738 0.388235 -0.921287 -0.022439 -0.638353 0.671458 -0.376365 -0.642083 0.670375 -0.371923 -0.527289 0.635121 -0.564436 -0.53912 0.609156 -0.581618 -0.499354 0.673213 -0.545371 -0.620665 0.681581 -0.387585 0.724403 -0.679107 -0.118553 0.808578 -0.568186 -0.152862 0.76273 -0.645516 0.039393 0.719046 -0.694329 0.029644 0.704086 -0.666952 0.243799 0.68063 -0.673335 0.288725 0.675478 -0.668555 0.311069 0.688796 -0.721756 0.068031 0.678689 -0.726051 -0.110594 0.590821 -0.659388 -0.464906 0.324614 -0.335183 -0.884465 0.389368 -0.193616 -0.900503 0.677507 -0.584788 -0.446103 0.811911 -0.403641 -0.421752 -0.702864 0.705439 -0.091315 -0.699069 0.693346 0.174852 -0.698884 0.694843 0.169571 -0.697074 0.711711 -0.08692 -0.629707 0.772938 0.077689 -0.630257 0.757744 -0.169115 0.665495 -0.718329 0.202779 0.637554 -0.7383 0.220087 0.650398 -0.741869 0.163133 0.619906 -0.781037 -0.075482 0.62189 -0.772088 -0.130895 0.619404 -0.767547 -0.164959 -0.428525 0.808484 -0.403384 -0.344282 0.922494 -0.174568 0.841854 -0.487833 -0.230867 0.838993 -0.458769 -0.292613 0.718357 -0.682624 -0.134116 0.750372 -0.66081 -0.016469 -0.004385 -0.980634 -0.195802 0.11327 -0.803082 -0.585003 0.033162 -0.790045 -0.612151 -0.142029 -0.978203 -0.151482 0.398848 0.500353 -0.768484 0.284867 0.522124 -0.803889 0.240759 -0.182234 -0.953324 0.326055 -0.256882 -0.90978 0.106126 0.992625 0.058596 0.101925 0.991712 -0.078227 0.185058 0.981762 0.043548 0.161241 0.98316 0.086007 0.203627 0.976108 0.075821 -0.181266 -0.979622 -0.086502 -0.058418 -0.989239 -0.134139 0.18691 0.981774 0.034418 0.16088 0.98655 0.028917 -0.164751 -0.970502 -0.176023 0.075477 -0.797038 -0.599194 0.41959 0.332341 -0.844685 0.322606 -0.288805 -0.901397 0.338129 0.937695 -0.079978 0.299596 0.953203 -0.040569 -0.230271 -0.970692 -0.068787 0.273756 0.960659 -0.046809 -0.093554 0.935084 -0.341855 -0.357811 0.927392 -0.109158 -0.580229 0.784645 -0.218327 -0.370232 0.823908 -0.429073 0.555442 -0.82035 -0.136052 0.648256 -0.730721 0.214037 0.665073 -0.670138 0.329534 -0.177345 0.255741 -0.950339 0.237945 -0.404121 -0.883215 -0.171659 0.218398 -0.960643 -0.191232 0.22974 -0.95428 -0.611039 0.688951 -0.389844 -0.497376 0.621066 -0.605717 0.578572 -0.812132 -0.075471 0.636769 -0.760919 0.124606 -0.168096 0.382717 -0.908445 -0.01579 0.29859 -0.954251 -0.354497 0.372019 -0.857866 -0.354497 0.372019 -0.857866 0.030753 -0.642052 -0.766044 -0.28865 0.899627 -0.327645 -0.28865 0.899627 -0.327645 -0.590748 0.801531 0.092551 0.882451 -0.187177 -0.431561 0.631213 0.690214 -0.3538 0.716773 0.651128 -0.249539 0.810085 0.079366 -0.580916 0.218435 0.918014 -0.330963 0.140919 0.983259 -0.115515 0.178425 0.905077 -0.386006 0.364259 0.817074 -0.446884 0.299785 0.939825 -0.163886 0.464631 -0.750462 -0.470027 0.536199 0.720631 -0.439525 0.864301 -0.265631 -0.427112 -0.127859 0.902899 -0.410396 0.648779 -0.746777 0.14632 -0.65206 0.746179 -0.134292 0.932257 0.179954 -0.313868 0.932257 0.179954 -0.313868 0.85443 0.301563 -0.423095 0.797829 0.26596 -0.541049 0.873116 -0.177098 -0.454207 0.873116 -0.177098 -0.454207 0.649289 0.072699 -0.757059 0.753442 0.191783 -0.628923 0.6043 -0.0704 -0.793641 0.921298 -0.001363 -0.388856 0.921298 -0.001363 -0.388856 0.805464 -0.09727 -0.584608 0.710857 -0.181827 -0.679427 0.859553 -0.250977 -0.445172 -0.504833 -0.252405 -0.825491 -0.504833 -0.252405 -0.825491 -0.176988 -0.95937 -0.219738 -0.176988 -0.95937 -0.219738 0.838581 -0.043777 -0.543014 -0.50884 -0.695521 -0.507279 -0.50884 -0.695521 -0.507279 0.843621 -0.371969 -0.387224 0.843621 -0.371969 -0.387224 0.897769 0.154532 -0.41247 0.897769 0.154532 -0.41247 0.883068 0.157461 -0.442037 0.883068 0.157461 -0.442037 0.71598 -0.20424 -0.667576 0.71598 -0.20424 -0.667576 0.84052 -0.139279 -0.523572 0.84052 -0.139279 -0.523572 0.889164 0.201883 -0.410647 0.889164 0.201883 -0.410647 0.844759 0.094819 -0.526679 0.844759 0.094819 -0.526679 0.516769 -0.546521 -0.658988 0.137687 -0.761356 -0.633545 -0.073521 0.769689 -0.634171 -0.902895 -0.325759 0.280467 -0.936415 -0.200727 0.287811 -0.858832 -0.448083 0.248252 -0.80054 -0.564124 0.202238 -0.740856 -0.649577 0.170825 -0.640499 -0.727822 0.245023 -0.852262 -0.443442 0.277505 -0.785146 -0.561254 0.261802 -0.709343 -0.657204 0.254784 0.578683 -0.759785 0.2964 -0.000115 -0.99999 -0.004589 -0.00051 -0.999977 -0.006811 -3.4e-005 -0.999995 -0.003095 -0.0006 -0.999998 -0.001658 0.001309 -0.999998 0.001288 -0.003465 -0.999976 -0.006061 -0.004195 -0.999979 -0.004981 -0.000633 -0.99997 -0.007748 -0.001948 -0.999974 -0.00693 -6e-006 -0.999971 -0.007673 -0.00264 -0.99998 -0.005704 -6.6e-005 -0.999967 -0.008151 -0.00142 -0.999996 -0.002481 0.003645 -0.999993 4.6e-005 -0.002686 -0.999991 0.003221 0.002724 -0.999944 0.010221 0.004946 -0.999932 0.010546 0.006765 -0.99992 0.010688 0.004595 -0.999966 0.006817 0.001146 -0.999997 0.002298 -0.004822 -0.999982 0.003527 -0.003588 -0.999964 0.00771 -0.00298 -0.999888 0.014663 -0.001243 -0.999863 0.016531 0.001848 -0.999933 0.011451 -0.004415 -0.999984 0.003674 0.001118 -0.999907 0.013595 0.001334 -0.999999 -0.000699 -0.00033 -1 -0.000292 0.245158 0.423975 0.25011 0.468112 0.150442 0.543685 0.148569 0.498875 0.302841 0.416173 0.345064 0.636086 0.339502 0.673242 0.260986 0.672117 0.283208 0.642063 0.331126 0.714598 0.241009 0.71553 0.233372 0.762934 0.302959 0.373132 0.224027 0.289653 0.23558 0.359702 0.143764 0.429085 0.134156 0.320572 0.298228 0.319321 0.288073 0.263566 0.326898 0.757163 0.328393 0.797118 0.23841 0.805793 0.60087 0.640918 0.866606 0.398924 0.510699 0.676291 0.517366 0.634965 0.871384 0.397619 0.505796 0.719121 0.878048 0.397558 0.87416 0.398826 0.86606 0.397625 0.86057 0.399008 0.501279 0.762876 0.856321 0.39906 0.497144 0.804816 0.862375 0.397683 0.860024 0.397676 0.853776 0.399148 0.494669 0.842655 0.936097 0.40457 0.495808 0.877438 0.932361 0.401286 0.944998 0.401429 0.333511 0.830512 0.255441 0.838224 0.335539 0.859065 0.275714 0.857682 0.13703 0.645509 0.099669 0.709478 0.072436 0.710311 0.114209 0.64461 0.217381 0.600094 0.193334 0.589335 0.083907 0.774978 0.093256 0.834193 0.067488 0.842396 0.056643 0.778851 0.948825 0.405179 0.543475 0.557405 0.5578 0.533271 0.685834 0.551732 0.928618 0.398828 0.939922 0.398832 0.318062 0.571086 0.304302 0.551225 0.870712 0.401462 0.862287 0.401557 0.855482 0.401642 0.85836 0.405349 0.85103 0.405417 0.86725 0.404976 0.851008 0.401767 0.84805 0.401779 0.618068 0.949096 0.595914 0.442419 0.701364 0.36472 0.704143 0.312403 0.595493 0.387203 0.757075 0.288915 0.749567 0.262372 0.79867 0.019963 0.720188 0.090411 0.342229 0.232442 0.353643 0.285267 0.846214 0.405443 0.84246 0.405195 0.945825 0.3988 0.51556 0.94314 0.529717 0.959537 0.951482 0.401365 0.955814 0.405156 0.355112 0.336459 0.416748 0.23909 0.409212 0.301844 0.412385 0.174765 0.722678 0.141004 0.371257 0.129527 0.316583 0.183819 0.278107 0.146712 0.815355 0.094326 0.586596 0.164171 0.31201 0.090946 0.272238 0.213152 0.591566 0.221736 0.775513 0.183818 0.258385 0.177707 0.714664 0.225413 0.594393 0.311859 0.803506 0.201004 0.853165 0.100422 0.240207 0.064107 0.220228 0.127313 0.134162 0.116701 0.137886 0.045291 0.20962 0.176711 0.132836 0.176022 0.393776 0.367451 0.346805 0.380154 0.21424 0.228892 0.133514 0.241035 0.127886 0.880246 0.194162 0.909528 0.176891 0.924466 0.105635 0.892789 0.298575 0.918513 0.289302 0.932026 0.41004 0.927663 0.412647 0.940987 0.152917 0.714025 0.188039 0.660899 0.251002 0.622891 0.148083 0.821618 0.139091 0.770988 0.529124 0.59406 0.624566 0.605374 0.943792 0.414167 0.33386 0.602351 0.939709 0.408955 0.951716 0.40979 0.95394 0.414936 0.863781 0.409841 0.854643 0.410095 0.847079 0.410021 0.50373 0.914675 0.043999 0.560029 0.039161 0.51728 0.035514 0.442488 0.02836 0.327681 0.57657 0.399149 0.579657 0.45714 0.483058 0.467543 0.484696 0.402538 0.027211 0.11532 0.026409 0.041836 0.027231 0.176259 0.027041 0.244825 0.496033 0.232082 0.498386 0.171519 0.545104 0.178866 0.55478 0.242428 0.486973 0.320445 0.572701 0.32584 0.253473 0.42034 0.198325 0.471074 0.201641 0.514357 0.257191 0.464291 0.304409 0.414784 0.305266 0.371658 0.230885 0.286168 0.167912 0.306331 0.188981 0.401339 0.242536 0.354324 0.300813 0.31779 0.290984 0.262458 0.644363 0.422582 0.643061 0.366324 0.70337 0.314326 0.703499 0.366966 0.745969 0.26707 0.75382 0.293297 0.343946 0.231017 0.355397 0.284532 0.356783 0.335152 0.414764 0.29281 0.419941 0.236001 0.413771 0.173263 0.370421 0.125545 0.313385 0.086563 0.282902 0.142155 0.319456 0.18046 0.261679 0.175104 0.275739 0.211488 0.247515 0.05956 0.175872 0.043369 0.166908 0.113803 0.230266 0.122298 0.162066 0.173298 0.220575 0.173418 0.399643 0.347472 0.348371 0.378515 0.850892 0.415208 0.23283 0.882474 0.174218 0.860862 0.318561 0.890705 0.412205 0.900441 0.414872 0.864697 0.414169 0.832004 0.413463 0.796679 0.414763 0.757 0.418623 0.715141 0.424042 0.67374 0.797949 0.022112 0.816816 0.093012 0.720595 0.147032 0.715991 0.092651 0.636546 0.210325 0.627672 0.148444 0.772502 0.189202 0.711355 0.231084 0.641706 0.289174 0.223314 0.226619 0.162858 0.235961 0.139391 0.505963 0.140772 0.546375 0.105327 0.324975 0.131454 0.436403 0.855305 0.0942 0.800674 0.205793 0.103269 0.042003 0.100779 0.11305 0.099208 0.173793 0.099637 0.242841 0.428561 0.633258 0.429426 0.594048 0.429051 0.559095 0.429259 0.535162 0.35272 0.639241 0.294558 0.645659 0.274212 0.673847 0.348213 0.675519 0.253789 0.714174 0.339072 0.715472 0.241562 0.759109 0.241492 0.801977 0.330569 0.796358 0.332348 0.756954 0.843668 0.414845 0.519216 0.636196 0.513483 0.677706 0.858319 0.415536 0.509018 0.719971 0.595108 0.724198 0.959154 0.409842 0.961426 0.415077 0.955396 0.420505 0.503982 0.762367 0.946551 0.419988 0.498249 0.80295 0.581926 0.813498 0.948394 0.426244 0.956245 0.426562 0.493564 0.840197 0.962774 0.420748 0.49337 0.874734 0.5689 0.884732 0.963626 0.426902 0.947821 0.439136 0.254385 0.836095 0.333265 0.830744 0.334347 0.859927 0.274272 0.857068 0.111374 0.707428 0.160452 0.654158 0.126019 0.649524 0.074711 0.707898 0.232092 0.611555 0.203545 0.598866 0.085639 0.828171 0.086444 0.767612 0.053832 0.770468 0.05904 0.833261 0.5406 0.554531 0.653253 0.57169 0.949156 0.432796 0.552741 0.532581 0.956416 0.432776 0.955188 0.438695 0.321928 0.578317 0.3053 0.558373 0.963377 0.433055 0.962074 0.438861 0.939469 0.450342 0.944673 0.445101 0.952905 0.444195 0.949616 0.449137 0.959891 0.444199 0.95721 0.449055 0.928445 0.45763 0.933041 0.454385 0.647892 0.957038 0.945196 0.453364 0.513713 0.938992 0.528694 0.953445 0.940767 0.456994 0.954246 0.453493 0.191556 0.905473 0.119561 0.876603 0.09609 0.886393 0.173642 0.917872 0.296111 0.916924 0.285563 0.930752 0.407594 0.925155 0.699705 0.808301 0.767751 0.813767 0.770203 0.857847 0.710393 0.859091 0.67046 0.86001 0.652167 0.800156 0.732575 0.902022 0.706983 0.910753 0.776574 0.894725 0.709069 0.706824 0.772884 0.721001 0.769128 0.766819 0.69961 0.756109 0.650715 0.739559 0.665169 0.685443 0.747389 0.629544 0.781976 0.645207 0.777571 0.679447 0.726035 0.663915 0.69251 0.641696 0.7256 0.608173 0.800842 0.598447 0.800844 0.613722 0.782354 0.62203 0.77064 0.606739 0.761516 0.586356 0.801211 0.57812 0.833474 0.606525 0.843418 0.585771 0.884582 0.608278 0.861681 0.62927 0.826927 0.645008 0.821482 0.621769 0.901508 0.709495 0.841154 0.721344 0.835351 0.679466 0.88519 0.664947 0.920582 0.64464 0.946246 0.692573 0.905321 0.811872 0.840491 0.814502 0.842749 0.767471 0.908491 0.759591 0.957769 0.748636 0.953229 0.808266 0.87648 0.901039 0.832824 0.894364 0.83647 0.858222 0.893987 0.860506 0.934495 0.863509 0.904941 0.908789 0.811165 0.93926 0.808557 0.928096 0.833115 0.918674 0.850764 0.928355 0.866017 0.939324 0.815782 0.955298 0.781351 0.919619 0.767445 0.930389 0.756778 0.947206 0.874321 0.260529 0.87457 0.258357 0.870642 0.262514 0.870232 0.260129 0.875205 0.262091 0.87418 0.274349 0.878088 0.275377 0.879128 0.284194 0.875282 0.284248 0.876451 0.268146 0.87176 0.26763 0.879196 0.270887 0.875496 0.265391 0.893101 0.28442 0.892287 0.271326 0.879947 0.284131 0.862255 0.219399 0.877309 0.242158 0.869772 0.241647 0.855575 0.218438 0.862432 0.239621 0.84944 0.210845 0.867315 0.244511 0.849901 0.240235 0.863194 0.266321 0.876212 0.265675 0.880423 0.283451 0.866718 0.283089 0.870498 0.254293 0.863904 0.253791 0.870234 0.270504 0.864805 0.270607 0.879852 0.25405 0.878645 0.27023 0.884908 0.221559 0.894641 0.243235 0.885819 0.242521 0.87478 0.219802 0.853855 0.205189 0.868038 0.204565 0.870975 0.210424 0.856654 0.209577 0.882303 0.208527 0.885027 0.21281 0.869343 0.207181 0.855354 0.205901 0.879862 0.246326 0.872817 0.221463 0.859409 0.2185 0.885826 0.225344 0.891813 0.248223 0.886742 0.266822 0.897889 0.269881 0.890434 0.283337 0.902191 0.283202 0.887267 0.269985 0.888486 0.253806 0.897003 0.253871 0.897865 0.269734 0.890567 0.21382 0.890889 0.214313 0.887336 0.211472 0.940502 0.247339 0.935827 0.245027 0.948386 0.259727 0.952135 0.261243 0.929477 0.246937 0.935892 0.257903 0.955141 0.271935 0.951237 0.271687 0.951697 0.282445 0.956107 0.282705 0.939971 0.271031 0.941535 0.28252 0.963745 0.266939 0.955791 0.248173 0.96377 0.246708 0.971434 0.266214 0.948554 0.235961 0.955224 0.234835 0.896396 0.245174 0.886107 0.251776 0.887306 0.25714 0.901578 0.253513 0.893935 0.234459 0.893306 0.241625 0.88488 0.259333 0.895682 0.256287 0.898524 0.274248 0.887363 0.275119 0.885952 0.26722 0.897217 0.265981 0.888292 0.284017 0.899782 0.283788 0.893557 0.224473 0.903384 0.244263 0.904117 0.226402 0.909834 0.245212 0.898452 0.232315 0.90536 0.242289 0.914901 0.24109 0.908475 0.23147 0.912117 0.251402 0.92111 0.249824 0.905103 0.223634 0.894105 0.223477 0.891627 0.223783 0.892209 0.224715 0.894785 0.217728 0.904032 0.218825 0.905292 0.26092 0.916745 0.259188 0.925679 0.257542 0.919312 0.270264 0.927598 0.269904 0.909165 0.270372 0.922229 0.248254 0.923018 0.231732 0.931448 0.236491 0.927474 0.250713 0.939132 0.243721 0.931475 0.252998 0.941395 0.236759 0.941774 0.24318 0.951181 0.24757 0.953028 0.242625 0.943442 0.249961 0.949719 0.251412 0.932269 0.241398 0.935522 0.24909 0.930136 0.234395 0.929446 0.228394 0.942151 0.230847 0.942787 0.227016 0.929372 0.224433 0.954848 0.237908 0.922857 0.256527 0.927955 0.258098 0.929776 0.270263 0.925166 0.269641 0.93313 0.259066 0.935431 0.270899 0.938091 0.256867 0.945703 0.257403 0.953024 0.257866 0.948714 0.269472 0.957575 0.269677 0.940805 0.269454 0.944953 0.253898 0.950208 0.269278 0.961307 0.253711 0.957956 0.256418 0.964661 0.269455 0.96896 0.268209 0.902892 0.249987 0.897745 0.228849 0.908596 0.231834 0.912735 0.252197 0.897122 0.224227 0.89485 0.22181 0.90624 0.226903 0.908607 0.228742 0.903082 0.242361 0.906809 0.256103 0.917237 0.255133 0.919494 0.264606 0.908311 0.265315 0.907454 0.269025 0.916487 0.269043 0.911531 0.283044 0.919593 0.2829 0.909419 0.273405 0.911476 0.28336 0.920571 0.273041 0.922157 0.283218 0.922114 0.255039 0.920062 0.238863 0.921052 0.234472 0.923775 0.23538 0.929369 0.253983 0.934895 0.263753 0.927988 0.282737 0.92516 0.269608 0.937386 0.272947 0.938515 0.283177 0.906903 0.269654 0.905634 0.25451 0.912156 0.254648 0.915624 0.269303 0.934262 0.269581 0.931993 0.256855 0.928513 0.24901 0.928512 0.223212 0.917128 0.220406 0.916725 0.220767 0.9041 0.217973 0.914088 0.228391 0.916363 0.246441 0.918617 0.23227 0.923487 0.240784 0.938248 0.22777 0.892821 0.216321 0.844542 0.206031 0.874322 0.212263 0.870581 0.286403 0.864795 0.285932 0.877377 0.285736 0.887924 0.285532 0.898823 0.285311 0.908672 0.285115 0.917425 0.284957 0.921216 0.269224 0.922914 0.284906 0.926665 0.284912 0.930758 0.284928 0.936388 0.28496 0.952837 0.284936 0.967867 0.284724 0.971593 0.266723 0.976556 0.284338 0.976161 0.284497 0.973686 0.284223 0.968029 0.284169 0.960033 0.284154 0.950775 0.284138 0.942494 0.284121 0.936182 0.284123 0.929809 0.284158 0.920968 0.284223 0.910111 0.284292 0.952943 0.272204 0.950019 0.262148 0.953976 0.282879 0.900909 0.229617 0.889642 0.217102 0.912068 0.234085 0.913562 0.243735 0.925227 0.239763 0.92311 0.245509 0.916786 0.225007 0.940372 0.24984 0.963568 0.250138 0.888081 0.264217 0.918118 0.254988 0.844126 0.209259 0.844951 0.221286 0.886769 0.216308 0.872985 0.215718 0.879346 0.309871 0.875833 0.306046 0.875654 0.308144 0.879007 0.306407 0.876295 0.294136 0.878977 0.293033 0.879812 0.300399 0.876175 0.301094 0.880254 0.30345 0.882198 0.297454 0.893175 0.297687 0.865817 0.349629 0.859181 0.350621 0.872916 0.327332 0.880252 0.326495 0.865713 0.330422 0.852822 0.359205 0.869257 0.322943 0.877097 0.301439 0.864055 0.301093 0.852819 0.327816 0.866118 0.317194 0.872679 0.31623 0.865658 0.301152 0.871305 0.301562 0.879516 0.300927 0.881998 0.315802 0.888262 0.347411 0.878301 0.348969 0.888479 0.326114 0.897047 0.325511 0.857019 0.363938 0.860381 0.359999 0.874655 0.358691 0.872015 0.364197 0.888629 0.3558 0.886097 0.359632 0.872907 0.361011 0.858128 0.36229 0.881706 0.320824 0.862423 0.349295 0.875903 0.346079 0.888714 0.341972 0.893556 0.318638 0.898554 0.296744 0.887564 0.300041 0.888147 0.300674 0.898715 0.300283 0.89883 0.31539 0.89048 0.315686 0.894383 0.353795 0.894065 0.354129 0.890921 0.356254 0.942171 0.318343 0.9529 0.304272 0.949521 0.305533 0.937705 0.320863 0.937122 0.30759 0.931259 0.318903 0.955735 0.293528 0.951772 0.293299 0.940544 0.294181 0.964624 0.302435 0.972337 0.302695 0.965634 0.321964 0.957594 0.320997 0.957663 0.333351 0.950951 0.332759 0.897685 0.323309 0.904388 0.314564 0.887892 0.312338 0.888936 0.316243 0.699423 0.809253 0.710111 0.860044 0.769921 0.8588 0.767468 0.81472 0.651885 0.801109 0.669688 0.860514 0.732293 0.902975 0.706453 0.911484 0.776292 0.895678 0.708787 0.707777 0.699329 0.757062 0.768846 0.767772 0.772602 0.721954 0.664887 0.686395 0.650433 0.740512 0.747107 0.630497 0.725753 0.664868 0.777288 0.6804 0.781693 0.64616 0.725318 0.609127 0.692228 0.642648 0.80056 0.5994 0.770358 0.607692 0.782072 0.622983 0.800562 0.614675 0.800928 0.579073 0.761234 0.587309 0.833192 0.607478 0.861399 0.630223 0.8843 0.609231 0.843136 0.586725 0.8212 0.622722 0.826645 0.645961 0.901226 0.710448 0.884907 0.6659 0.835069 0.680418 0.840872 0.722297 0.945964 0.693526 0.920299 0.645594 0.905039 0.812825 0.908209 0.760544 0.842467 0.768423 0.840209 0.815454 0.952947 0.809219 0.957487 0.749588 0.876198 0.901993 0.893705 0.861459 0.836187 0.859175 0.832541 0.895317 0.904659 0.909742 0.934213 0.864462 0.810883 0.940213 0.850482 0.929308 0.832833 0.919627 0.808275 0.929049 0.815494 0.955807 0.865735 0.940277 0.767163 0.931342 0.781069 0.920572 0.878641 0.308129 0.757688 0.947696 0.89571 0.326063 0.896265 0.333541 0.887647 0.308911 0.896958 0.311973 0.898883 0.293285 0.897963 0.301935 0.887703 0.301029 0.887878 0.29293 0.905567 0.324686 0.896731 0.344468 0.906991 0.342485 0.911791 0.324251 0.900908 0.335596 0.911043 0.336295 0.917143 0.326675 0.907054 0.325968 0.923285 0.31808 0.915184 0.316034 0.908088 0.344187 0.897103 0.344536 0.894607 0.344154 0.895142 0.343144 0.898106 0.350443 0.90726 0.349181 0.907871 0.308374 0.918398 0.309598 0.927049 0.310818 0.928305 0.298442 0.920004 0.298182 0.909927 0.298243 0.924036 0.321254 0.929162 0.318872 0.933826 0.332572 0.925629 0.337191 0.941158 0.32555 0.933051 0.316658 0.943727 0.330971 0.955075 0.325269 0.952983 0.320359 0.943791 0.324629 0.951332 0.316568 0.945126 0.31796 0.937248 0.318798 0.934373 0.326359 0.932584 0.333273 0.932192 0.3393 0.932318 0.343421 0.945607 0.340893 0.944776 0.336887 0.957129 0.33006 0.924262 0.313255 0.925922 0.300164 0.930502 0.299579 0.929283 0.311724 0.936126 0.298969 0.93441 0.310774 0.939442 0.311396 0.947027 0.310849 0.954323 0.310334 0.958291 0.298597 0.94944 0.298819 0.941532 0.298832 0.946483 0.315703 0.950981 0.300512 0.962811 0.314479 0.969751 0.300159 0.965388 0.298807 0.959326 0.311738 0.904541 0.316598 0.900452 0.33816 0.911146 0.334819 0.914268 0.314088 0.900043 0.343367 0.910827 0.338483 0.909045 0.340214 0.897918 0.345703 0.907714 0.311836 0.905082 0.324826 0.918749 0.311513 0.909052 0.30192 0.920236 0.301846 0.91718 0.297035 0.908155 0.297332 0.909931 0.29344 0.92041 0.293444 0.923496 0.310879 0.922253 0.327378 0.925923 0.331262 0.923469 0.332076 0.930583 0.312153 0.934974 0.302503 0.925817 0.29614 0.93758 0.293425 0.907706 0.300101 0.916398 0.300537 0.913653 0.315103 0.907277 0.314776 0.934984 0.298714 0.933344 0.311407 0.930312 0.318902 0.931529 0.345055 0.919853 0.347075 0.920283 0.347817 0.907379 0.350402 0.918259 0.323025 0.916863 0.340467 0.921166 0.335346 0.925584 0.327014 0.941044 0.340685 0.896265 0.352186 0.847118 0.363087 0.877923 0.355511 0.921992 0.300554 0.972463 0.301867 0.950828 0.303658 0.953466 0.293583 0.892951 0.350759 0.90326 0.337983 0.915596 0.322974 0.91417 0.333036 0.927312 0.326701 0.92504 0.320904 0.919699 0.342662 0.941871 0.316003 0.965254 0.318221 0.889956 0.306147 0.919598 0.314755 0.845891 0.359181 0.847322 0.346695 0.890112 0.35133 0.87636 0.352039 0.950166 0.457401 0.877438 0.456074 0.890333 0.455013 0.891902 0.457826 0.881771 0.45805 0.893433 0.460126 0.885457 0.459788 0.90216 0.458193 0.902038 0.46051 0.902093 0.455956 0.869348 0.456995 0.875073 0.458463 0.870949 0.459563 0.865831 0.459946 0.88002 0.459819 0.876379 0.459992 0.890696 0.462723 0.889158 0.462546 0.893089 0.46287 0.842115 0.409869 0.837426 0.409453 0.838646 0.414482 0.833434 0.414204 0.847163 0.42056 0.840709 0.41957 0.839445 0.430603 0.83503 0.428579 0.852464 0.422383 0.843659 0.433436 0.835601 0.419062 0.830596 0.418889 0.831257 0.427506 0.827802 0.427141 0.876435 0.450731 0.866399 0.449489 0.869211 0.447456 0.878828 0.448367 0.861778 0.461251 0.86329 0.45579 0.869445 0.454182 0.919848 0.462088 0.9244 0.459418 0.936505 0.460001 0.932799 0.462552 0.914853 0.457033 0.912969 0.45878 0.983064 0.742705 0.970242 0.681277 0.978343 0.807461 0.961861 0.871181 0.925 0.920764 0.93957 0.629718 0.896636 0.591965 0.87816 0.953598 0.820182 0.969676 0.849136 0.56846 0.801508 0.561342 0.753635 0.961316 0.693916 0.922274 0.756457 0.570463 0.715065 0.59271 0.62759 0.729278 0.628526 0.797321 0.647916 0.672373 0.648988 0.865355 0.678001 0.627321 0.970524 0.680324 0.983346 0.741752 0.978626 0.806509 0.962143 0.870229 0.925282 0.919811 0.896919 0.591012 0.939853 0.628765 0.878442 0.952645 0.819304 0.969461 0.80179 0.560389 0.849419 0.567507 0.753465 0.960832 0.694447 0.921544 0.715348 0.591757 0.756739 0.569509 0.628808 0.796368 0.627873 0.728326 0.648199 0.671421 0.648584 0.866073 0.678283 0.626368 0.411737 0.936637 0.212659 0.665019 0.175067 0.711347 0.264355 0.628942 0.154113 0.763611 0.154483 0.81452 0.911051 0.461039 0.528987 0.594894 0.945951 0.460521 0.339791 0.607004 0.94197 0.46307 0.896594 0.462992 0.902819 0.462828 0.939147 0.46498 0.588358 0.917245 0.930869 0.464578 0.500784 0.908814 0.937502 0.466649 0.178893 0.855096 0.23388 0.878659 0.317203 0.888741 0.409219 0.897533 0.412456 0.865776 0.413517 0.832907 0.415303 0.797177 0.41903 0.758087 0.424284 0.717135 0.429773 0.675932 0.433166 0.635493 0.431719 0.596003 0.42845 0.560105 0.426262 0.535529 0.166927 0.932027 0.089131 0.90146 0.412839 0.954955 0.280654 0.94225 0.092604 0.643694 0.172265 0.583534 0.034269 0.783775 0.048602 0.713913 0.288973 0.53753 0.047197 0.849027 0.9297 0.466322 0.910929 0.462701 0.429574 0.516361 0.573602 0.514995 0.911763 0.464455 0.904647 0.46452 0.91245 0.466086 0.906026 0.466148 0.920833 0.464349 0.682918 0.980037 0.544365 0.975068 0.92089 0.466118 0.274953 0.94136 0.412382 0.948959 0.078614 0.893197 0.159929 0.926191 0.045546 0.712112 0.029763 0.775258 0.174568 0.589926 0.093871 0.647648 0.286715 0.542233 0.039682 0.837587 0.568016 0.514851 0.425296 0.517534 0.89967 0.464526 0.715649 0.536695 0.89649 0.46445 0.90127 0.466162 0.89793 0.466107 0.92457 0.397524 0.934172 0.397517 0.90196 0.397532 0.543555 0.96576 0.912366 0.397543 0.914428 0.398827 0.902477 0.39881 0.887934 0.397535 0.886084 0.398748 0.939158 0.397548 0.916553 0.401268 0.903345 0.401161 0.918892 0.404595 0.904419 0.40426 0.88377 0.401252 0.880927 0.404722 0.905294 0.428912 0.905488 0.424961 0.912357 0.424967 0.91334 0.429138 0.905906 0.421495 0.911087 0.422154 0.904076 0.437412 0.90478 0.43319 0.913199 0.433998 0.911884 0.43877 0.90321 0.444063 0.903361 0.441071 0.909872 0.442542 0.908067 0.444769 0.902496 0.453271 0.918142 0.453706 0.928783 0.450398 0.93573 0.445715 0.939896 0.439756 0.941415 0.433124 0.940295 0.426582 0.937084 0.420446 0.931618 0.414911 0.921769 0.409549 0.905101 0.407893 0.876573 0.40992 0.866307 0.415598 0.859425 0.421874 0.854503 0.429219 0.846009 0.439206 0.853866 0.435555 0.855666 0.44134 0.849189 0.44441 0.859693 0.44628 0.853635 0.449316 0.859396 0.453185 0.889827 0.45174 0.862926 0.421743 0.859205 0.428005 0.869662 0.416377 0.857993 0.434235 0.859086 0.440054 0.916008 0.412068 0.903601 0.410265 0.918257 0.418305 0.91053 0.415402 0.913091 0.413541 0.921836 0.416936 0.92534 0.416062 0.879532 0.412275 0.931494 0.42114 0.923547 0.422692 0.927682 0.421785 0.926515 0.428111 0.931209 0.427509 0.93512 0.42705 0.936295 0.433481 0.92732 0.434037 0.932331 0.433786 0.925669 0.439922 0.930432 0.440034 0.934525 0.439972 0.912845 0.451737 0.922595 0.449614 0.907361 0.448978 0.915126 0.447877 0.918684 0.448912 0.909842 0.450414 0.901128 0.451294 0.929882 0.445604 0.921412 0.444811 0.925747 0.445329 0.862632 0.44473 0.90791 0.418325 0.914417 0.420366 0.918293 0.424021 0.92059 0.42877 0.920879 0.434155 0.919487 0.439514 0.911345 0.446349 0.90499 0.446728 0.916084 0.443813 0.891421 0.410387 0.891335 0.407994 0.8923 0.404278 0.892667 0.401108 0.892803 0.398753 0.893101 0.397518 0.953337 0.401538 0.958091 0.405199 0.9475 0.399036 0.96186 0.409791 0.964499 0.415028 0.96612 0.420717 0.967305 0.426924 0.967388 0.433074 0.966427 0.438883 0.96451 0.444202 0.961861 0.44894 0.958944 0.453645 0.955428 0.457592 0.951844 0.460785 0.948132 0.463506 0.945008 0.465414 0.9428 0.466896 0.940897 0.39766 0.894646 0.464377 0.893748 0.464327 0.895819 0.465909 0.894732 0.465707 0.898046 0.468336 0.895591 0.467749 0.894211 0.467377 0.894053 0.470321 0.892528 0.469525 0.89702 0.472125 0.906461 0.46806 0.901761 0.468217 0.901883 0.471147 0.906501 0.470456 0.912592 0.467918 0.912253 0.470089 0.920682 0.467923 0.920674 0.470154 0.9293 0.468129 0.929876 0.470181 0.93702 0.468441 0.938213 0.470896 0.942275 0.468514 0.942757 0.470744 0.890006 0.4495 0.852976 0.399065 0.859393 0.397599 0.847065 0.401675 0.84127 0.405026 0.953466 0.401386 0.958188 0.405089 0.947588 0.398916 0.961862 0.409747 0.964391 0.415022 0.965926 0.420729 0.967068 0.426923 0.967242 0.433135 0.966314 0.439008 0.964406 0.444378 0.961584 0.44912 0.958267 0.453722 0.954279 0.457569 0.865611 0.460368 0.870463 0.459645 0.869977 0.459728 0.865391 0.460791 0.875883 0.460032 0.875386 0.460071 0.889107 0.462568 0.889055 0.46259 0.836433 0.409343 0.829542 0.419704 0.832578 0.41403 0.832317 0.414141 0.82924 0.419624 0.86181 0.461905 0.861843 0.46256 0.95053 0.46075 0.946775 0.4634 0.943577 0.465237 0.941527 0.466697 0.893773 0.464335 0.893798 0.464342 0.894526 0.465626 0.894385 0.465571 0.940912 0.397604 0.893807 0.467247 0.893563 0.467166 0.891985 0.469369 0.891535 0.469419 0.940364 0.468392 0.940762 0.470517 0.866236 0.398834 0.873711 0.398813 0.877506 0.397514 0.870971 0.397493 0.865522 0.397455 0.860032 0.398872 0.856026 0.399014 0.861954 0.397568 0.860159 0.397664 0.853853 0.399094 0.935431 0.404681 0.948546 0.405179 0.944496 0.401457 0.931632 0.401375 0.939488 0.398861 0.927974 0.398901 0.870657 0.401504 0.861966 0.401526 0.855096 0.4016 0.850751 0.405417 0.858121 0.405363 0.867731 0.405188 0.850561 0.401575 0.848094 0.401586 0.842791 0.404957 0.845766 0.405198 0.9455 0.398818 0.951158 0.401375 0.955535 0.405156 0.94295 0.41441 0.9536 0.414936 0.951437 0.40979 0.938847 0.409148 0.863906 0.410047 0.854469 0.410101 0.8468 0.410021 0.843291 0.414792 0.850618 0.415218 0.858112 0.415702 0.958875 0.409842 0.961147 0.415077 0.9551 0.420509 0.945887 0.42022 0.947818 0.426423 0.955942 0.426574 0.962495 0.420748 0.963347 0.426902 0.947179 0.438896 0.955415 0.438781 0.95627 0.432802 0.948355 0.432791 0.963455 0.433109 0.96255 0.43901 0.93973 0.449457 0.950281 0.449152 0.953464 0.44429 0.944309 0.444589 0.960647 0.444424 0.957836 0.449233 0.928866 0.456683 0.941589 0.457208 0.946319 0.453375 0.933669 0.453285 0.954103 0.453514 0.949874 0.457416 0.877353 0.455968 0.882269 0.458025 0.892317 0.457757 0.890577 0.455047 0.886684 0.460112 0.89423 0.460211 0.902677 0.460467 0.90267 0.458019 0.902808 0.455334 0.869597 0.456984 0.865825 0.458435 0.871446 0.458982 0.8752 0.458466 0.877063 0.46 0.880928 0.46006 0.889224 0.462652 0.890358 0.462714 0.892541 0.462593 0.841603 0.409572 0.838159 0.409243 0.834209 0.413908 0.837981 0.414182 0.839885 0.419736 0.846514 0.420792 0.834481 0.428371 0.838869 0.430451 0.84343 0.433385 0.852102 0.422532 0.830666 0.418987 0.834732 0.419195 0.827717 0.426976 0.830662 0.427303 0.875777 0.450429 0.878346 0.448288 0.868619 0.446935 0.865577 0.448677 0.860982 0.459109 0.863516 0.455972 0.868771 0.453598 0.919955 0.462087 0.933215 0.46265 0.936971 0.460171 0.92452 0.45941 0.915797 0.455832 0.913434 0.458571 0.911682 0.460937 0.945768 0.460575 0.941689 0.463136 0.897291 0.462545 0.903757 0.462585 0.930828 0.464538 0.938505 0.464915 0.929084 0.466249 0.936418 0.466469 0.911714 0.462545 0.904992 0.464496 0.91226 0.464434 0.906001 0.466171 0.912549 0.466198 0.920438 0.466178 0.920682 0.464371 0.899694 0.464496 0.896238 0.464476 0.897673 0.46607 0.901142 0.46612 0.933851 0.397545 0.924135 0.397565 0.901567 0.397461 0.902111 0.398787 0.913998 0.398826 0.911927 0.397463 0.885568 0.398789 0.887707 0.397486 0.939027 0.397536 0.902897 0.401138 0.916139 0.401275 0.904075 0.404332 0.918631 0.404656 0.883077 0.401373 0.880245 0.404983 0.905419 0.428922 0.912942 0.429219 0.912006 0.425106 0.905474 0.425025 0.910791 0.422281 0.905844 0.421559 0.904305 0.436885 0.911907 0.438227 0.913047 0.433844 0.905052 0.432984 0.903203 0.443238 0.908124 0.443775 0.909903 0.441649 0.903445 0.440313 0.90285 0.452456 0.918742 0.45246 0.929033 0.449192 0.935553 0.444785 0.939489 0.439171 0.940895 0.433027 0.939916 0.426757 0.936762 0.420698 0.931211 0.415109 0.90461 0.407951 0.921344 0.40965 0.876099 0.410269 0.865754 0.416146 0.858856 0.422274 0.85408 0.42925 0.845714 0.439016 0.8487 0.443676 0.855252 0.440105 0.853622 0.434905 0.852614 0.447663 0.858958 0.44511 0.858176 0.451853 0.889824 0.45148 0.858947 0.427844 0.863033 0.422095 0.869857 0.416948 0.858451 0.439034 0.857612 0.433475 0.903128 0.410252 0.915613 0.4122 0.910336 0.415321 0.91773 0.418674 0.921258 0.417307 0.91279 0.413538 0.924944 0.416332 0.879341 0.412694 0.930972 0.4215 0.922517 0.423241 0.926792 0.422268 0.92506 0.428584 0.929895 0.42793 0.93442 0.427304 0.935453 0.433435 0.925801 0.434263 0.930838 0.433902 0.924243 0.439743 0.929152 0.439726 0.933786 0.439455 0.922618 0.448568 0.913071 0.450609 0.91472 0.447235 0.9073 0.44856 0.909883 0.449686 0.918464 0.448158 0.90106 0.450464 0.929479 0.444749 0.920523 0.44435 0.924927 0.444695 0.861743 0.443993 0.907779 0.418347 0.914012 0.420577 0.917709 0.42432 0.919641 0.429082 0.919962 0.434273 0.918588 0.43924 0.904848 0.446138 0.911088 0.445577 0.915514 0.4432 0.890897 0.408138 0.891059 0.410492 0.89188 0.404459 0.892481 0.401195 0.892744 0.398811 0.892774 0.397499 0.852987 0.39915 0.859402 0.397672 0.847027 0.401638 0.84144 0.40503 0.836758 0.409301 0.826856 0.427241 0.893304 0.464316 0.894343 0.465793 0.894093 0.464377 0.895401 0.465971 0.893628 0.467665 0.890751 0.471053 0.897653 0.467915 0.895086 0.467874 0.893376 0.47055 0.896513 0.470318 0.906138 0.467954 0.901291 0.467913 0.900442 0.470186 0.905385 0.470181 0.912382 0.468058 0.911527 0.470316 0.918635 0.470453 0.91977 0.468076 0.926488 0.470872 0.927835 0.468189 0.935282 0.468257 0.935209 0.471328 0.877915 0.500707 0.878197 0.500625 0.878935 0.505269 0.878376 0.50543 0.87849 0.500327 0.879515 0.504678 0.878776 0.499827 0.880077 0.503685 0.879041 0.499148 0.880596 0.502336 0.879273 0.498323 0.88105 0.500691 0.879461 0.49739 0.881414 0.498833 0.879595 0.496393 0.881685 0.496848 0.879673 0.495381 0.881831 0.494834 0.879688 0.4944 0.881855 0.492886 0.879641 0.493495 0.881754 0.491093 0.879517 0.492692 0.881496 0.489502 0.879256 0.49199 0.880966 0.488128 0.878724 0.491679 0.879976 0.487255 0.880441 0.487544 0.878985 0.491764 0.880259 0.509816 0.879427 0.510054 0.881118 0.508941 0.881951 0.507469 0.882719 0.50547 0.883385 0.503037 0.883918 0.500283 0.884295 0.497337 0.884501 0.494341 0.884524 0.491438 0.884373 0.488781 0.883999 0.486461 0.88321 0.484429 0.882394 0.483424 0.882124 0.514208 0.881033 0.51452 0.883251 0.513061 0.884343 0.511133 0.885349 0.508513 0.886222 0.505324 0.886921 0.501715 0.887414 0.497854 0.887677 0.493924 0.887702 0.490113 0.887496 0.486645 0.88698 0.48361 0.885938 0.48091 0.884878 0.479558 0.884506 0.51838 0.88317 0.518762 0.885883 0.516979 0.887217 0.514621 0.888447 0.511419 0.889514 0.507521 0.890369 0.503109 0.890971 0.49839 0.891293 0.493586 0.89132 0.488919 0.891054 0.484665 0.890395 0.481066 0.88919 0.477958 0.887817 0.476052 0.887367 0.522273 0.885807 0.522719 0.888975 0.520637 0.890533 0.517885 0.891968 0.514147 0.893214 0.509596 0.894212 0.504446 0.894915 0.498938 0.895291 0.493329 0.895322 0.487882 0.895 0.482915 0.894205 0.478779 0.892842 0.475169 0.891068 0.473073 0.890668 0.525829 0.888906 0.526332 0.892483 0.523982 0.894241 0.520876 0.895861 0.516656 0.897267 0.51152 0.898394 0.505707 0.899187 0.499489 0.899612 0.493158 0.899646 0.487009 0.899286 0.481354 0.898411 0.476638 0.894359 0.528996 0.892421 0.529549 0.896354 0.526965 0.898288 0.52355 0.900069 0.518911 0.901615 0.513263 0.902854 0.506872 0.903726 0.500036 0.904193 0.493075 0.904231 0.486314 0.903834 0.4801 0.902975 0.47504 0.898388 0.531728 0.896302 0.532323 0.900534 0.529543 0.902614 0.525869 0.904531 0.520877 0.906194 0.514801 0.907527 0.507925 0.908466 0.50057 0.908967 0.493081 0.909009 0.485806 0.908572 0.479151 0.907654 0.473824 0.902694 0.533986 0.900491 0.534614 0.90496 0.531679 0.907157 0.527799 0.909181 0.522528 0.910937 0.516111 0.912345 0.50885 0.913336 0.501084 0.913866 0.493175 0.913909 0.485494 0.91346 0.478418 0.912585 0.472851 0.907215 0.535736 0.904927 0.536388 0.909569 0.53334 0.91185 0.529311 0.913952 0.523838 0.915776 0.517175 0.917237 0.509635 0.918266 0.50157 0.918854 0.493342 0.918947 0.485357 0.91844 0.478006 0.91787 0.471971 0.914263 0.537286 0.911914 0.537955 0.916678 0.534827 0.919019 0.530693 0.921175 0.525076 0.923047 0.518239 0.924546 0.510502 0.925585 0.502224 0.926227 0.493754 0.926493 0.485583 0.925762 0.478045 0.924764 0.471485 0.921403 0.537724 0.919062 0.538392 0.92381 0.535275 0.926142 0.531156 0.930338 0.525761 0.93162 0.519674 0.933283 0.512932 0.932692 0.502839 0.933977 0.494768 0.934333 0.486371 0.933206 0.478784 0.931863 0.472204 0.92611 0.537268 0.92382 0.53792 0.928464 0.534872 0.932388 0.530343 0.937335 0.506755 0.941235 0.498334 0.941521 0.487989 0.940371 0.480184 0.938481 0.473907 0.930691 0.536256 0.928485 0.536884 0.934789 0.533043 0.935078 0.534703 0.932989 0.535298 0.938368 0.532576 0.947164 0.489068 0.947066 0.497764 0.946239 0.481893 0.944283 0.476284 0.939209 0.532632 0.937267 0.533185 0.941919 0.530982 0.950689 0.490156 0.950271 0.497772 0.95034 0.48345 0.948203 0.478162 0.943023 0.530074 0.941256 0.530577 0.945589 0.528338 0.95349 0.491089 0.952472 0.498024 0.953154 0.485389 0.951415 0.480527 0.946464 0.527065 0.944898 0.52751 0.948879 0.525086 0.955336 0.498108 0.955494 0.49227 0.955142 0.488211 0.954263 0.484425 0.949389 0.475505 0.954052 0.482326 0.94757 0.475109 0.945693 0.473082 0.943613 0.471998 0.950577 0.521636 0.949187 0.522238 0.951775 0.520708 0.950886 0.519379 0.952605 0.518141 0.95447 0.515316 0.952742 0.516616 0.878125 0.495997 0.943537 0.514246 0.944979 0.511457 0.945299 0.511731 0.944004 0.514141 0.946866 0.510467 0.945612 0.512005 0.946775 0.509925 0.944125 0.524447 0.943125 0.523168 0.943363 0.52176 0.944265 0.522893 0.943213 0.51865 0.9436 0.520352 0.942839 0.519741 0.942465 0.520831 0.942508 0.517563 0.943036 0.516979 0.944472 0.514036 0.943564 0.516394 0.946664 0.509365 0.948503 0.507957 0.948316 0.508687 0.949207 0.508705 0.948096 0.509397 0.949608 0.50791 0.950009 0.507096 0.951195 0.506751 0.950679 0.507606 0.951005 0.508659 0.950161 0.508443 0.951647 0.507843 0.952323 0.510866 0.951744 0.509448 0.952587 0.5089 0.953318 0.510638 0.952296 0.507042 0.953444 0.508317 0.954198 0.510416 0.954069 0.512878 0.953344 0.512779 0.95222 0.51488 0.952538 0.512757 0.952777 0.515115 0.953314 0.515413 0.952001 0.51802 0.951641 0.517475 0.949848 0.518868 0.951263 0.516984 0.950071 0.519673 0.950291 0.520481 0.948367 0.522605 0.94826 0.52146 0.946642 0.521256 0.948152 0.520315 0.946704 0.522693 0.946766 0.524131 0.94537 0.524785 0.945389 0.52319 0.944404 0.521338 0.945409 0.521595 0.948517 0.508521 0.947425 0.509189 0.946164 0.510225 0.943731 0.513771 0.942852 0.515989 0.942484 0.51808 0.944874 0.511783 0.950283 0.508511 0.949456 0.508269 0.942699 0.51973 0.943487 0.520694 0.951552 0.510694 0.95099 0.509314 0.944633 0.521012 0.946034 0.520645 0.951461 0.514432 0.951791 0.512457 0.947604 0.519694 0.949207 0.518265 0.95053 0.516413 0.954352 0.507334 0.955064 0.51004 0.953029 0.50566 0.954691 0.513093 0.953563 0.516187 0.942931 0.511155 0.945738 0.50837 0.941124 0.514785 0.948237 0.525023 0.946042 0.527051 0.950358 0.522206 0.940778 0.525984 0.939919 0.523165 0.942236 0.527579 0.940031 0.519157 0.94836 0.506655 0.95038 0.505668 0.951792 0.505283 0.952106 0.519194 0.94408 0.527997 0.955136 0.505085 0.955458 0.508799 0.953996 0.503048 0.954947 0.51289 0.953571 0.516724 0.940392 0.509704 0.943959 0.505926 0.937487 0.514053 0.946965 0.527152 0.943743 0.529685 0.949863 0.52392 0.936263 0.528363 0.934831 0.524989 0.938515 0.530358 0.93544 0.520327 0.947235 0.504116 0.949823 0.503295 0.952034 0.502955 0.951882 0.52041 0.941028 0.53079 0.956255 0.501869 0.956376 0.507194 0.955436 0.512282 0.95378 0.516679 0.954272 0.512902 0.953969 0.514386 0.955477 0.513065 0.955509 0.511632 0.956562 0.510151 0.957541 0.50583 0.957528 0.506237 0.957401 0.500104 0.957323 0.498901 0.956684 0.496896 0.956413 0.492938 0.956425 0.492794 0.955922 0.48933 0.955605 0.489791 0.952251 0.480529 0.95403 0.483685 0.955302 0.484788 0.955335 0.486204 0.955539 0.486154 0.954877 0.485325 0.956687 0.508947 0.956754 0.495687 0.955045 0.487387 0.877848 0.505182 0.877652 0.500582 0.87737 0.504506 0.877412 0.500243 0.876974 0.503437 0.877218 0.499703 0.87668 0.502023 0.877063 0.498994 0.876501 0.50033 0.876979 0.498142 0.876446 0.498438 0.87696 0.497191 0.876522 0.496436 0.877006 0.496186 0.876728 0.49442 0.877115 0.495174 0.877054 0.492488 0.877281 0.494204 0.877479 0.49073 0.877498 0.49332 0.877999 0.489197 0.877767 0.492546 0.878719 0.487808 0.878144 0.491879 0.879235 0.487423 0.878402 0.491725 0.878643 0.509686 0.877934 0.508686 0.877348 0.507101 0.876912 0.505005 0.876647 0.502497 0.876565 0.499694 0.876669 0.496727 0.876956 0.493734 0.877416 0.490859 0.878045 0.488251 0.878803 0.485988 0.879891 0.48389 0.880652 0.483253 0.880004 0.514038 0.879075 0.512727 0.878307 0.510649 0.877736 0.507903 0.877388 0.504616 0.87728 0.500942 0.877417 0.497054 0.877793 0.493132 0.878389 0.48936 0.879214 0.485947 0.880199 0.482989 0.881623 0.480314 0.882641 0.479405 0.881911 0.518172 0.880775 0.516569 0.879836 0.51403 0.879138 0.510673 0.878713 0.506655 0.878582 0.502165 0.878749 0.497412 0.879208 0.492618 0.879955 0.488021 0.881001 0.483899 0.88231 0.480367 0.883909 0.47731 0.885135 0.475926 0.884336 0.52203 0.883011 0.520159 0.881915 0.517195 0.8811 0.513276 0.880604 0.508586 0.88045 0.503344 0.880646 0.497795 0.881181 0.492199 0.882059 0.48684 0.883257 0.482017 0.884772 0.477872 0.886828 0.474331 0.888116 0.472377 0.887245 0.525554 0.885749 0.523442 0.884512 0.520096 0.883592 0.515673 0.883032 0.510379 0.882858 0.504462 0.883079 0.498199 0.883683 0.491882 0.884656 0.485819 0.885976 0.480334 0.887771 0.475644 0.888962 0.472096 0.890594 0.528694 0.888949 0.526372 0.887589 0.522693 0.886578 0.51783 0.885962 0.512009 0.885771 0.505504 0.886014 0.498617 0.886678 0.491672 0.887734 0.484992 0.889161 0.478945 0.891005 0.474124 0.894335 0.531403 0.892565 0.528905 0.891102 0.524947 0.890014 0.519714 0.889351 0.513452 0.889146 0.506453 0.889407 0.499043 0.890122 0.491571 0.891258 0.484384 0.892815 0.477978 0.894695 0.473363 0.898413 0.533643 0.896544 0.531004 0.894999 0.526825 0.89385 0.5213 0.893151 0.514687 0.892934 0.507295 0.893209 0.499472 0.893965 0.491581 0.895164 0.483992 0.89686 0.477387 0.898865 0.473076 0.902769 0.53538 0.900829 0.53264 0.899224 0.5283 0.898031 0.522562 0.897305 0.515695 0.897079 0.50802 0.897366 0.499895 0.89815 0.491701 0.899396 0.483821 0.901449 0.477074 0.903819 0.472976 0.909699 0.53692 0.907707 0.534109 0.906061 0.529655 0.904836 0.523767 0.904091 0.516721 0.90386 0.508844 0.904153 0.500507 0.904958 0.492099 0.906237 0.484012 0.908008 0.477129 0.910034 0.473198 0.916854 0.53736 0.91487 0.534559 0.91323 0.530122 0.914164 0.524465 0.913164 0.518196 0.913437 0.51134 0.91133 0.50108 0.912131 0.492703 0.913405 0.484646 0.91513 0.47783 0.916994 0.473623 0.92166 0.536911 0.919719 0.534172 0.91917 0.529284 0.917172 0.505296 0.919838 0.496406 0.920904 0.486229 0.92238 0.479225 0.924263 0.474614 0.926405 0.535913 0.924828 0.532245 0.931019 0.534378 0.929686 0.53188 0.92797 0.487724 0.927599 0.495894 0.929366 0.480734 0.931925 0.475167 0.935435 0.53233 0.934387 0.530379 0.933232 0.488977 0.932764 0.496065 0.934736 0.482159 0.937602 0.476887 0.93959 0.529799 0.938848 0.527798 0.937731 0.490249 0.936964 0.496523 0.939215 0.484123 0.942421 0.479379 0.943421 0.526821 0.942722 0.524593 0.94207 0.497013 0.942329 0.491435 0.943599 0.487511 0.946933 0.482758 0.949756 0.480976 0.945342 0.476815 0.940652 0.473783 0.947564 0.521395 0.9466 0.520277 0.951324 0.514898 0.949518 0.517928 0.928377 0.510114 0.926885 0.51291 0.927854 0.512845 0.929178 0.51043 0.92998 0.510746 0.931406 0.509225 0.930823 0.508639 0.92835 0.521984 0.930534 0.523359 0.930891 0.521821 0.928964 0.520607 0.929579 0.519229 0.928441 0.517467 0.927597 0.51852 0.926179 0.516255 0.926753 0.519573 0.927195 0.51571 0.928211 0.515165 0.928823 0.512781 0.932374 0.506682 0.930239 0.508053 0.932657 0.507439 0.93294 0.508196 0.934517 0.507536 0.93451 0.506707 0.936567 0.505592 0.934502 0.505878 0.936317 0.506456 0.936067 0.50732 0.937546 0.507578 0.93807 0.506748 0.938901 0.508422 0.940036 0.50988 0.941088 0.509726 0.939772 0.507879 0.940713 0.507314 0.938594 0.505926 0.942911 0.511998 0.942269 0.509491 0.941755 0.511888 0.940774 0.511818 0.940867 0.513981 0.941724 0.514237 0.941696 0.517149 0.942674 0.514592 0.940898 0.516619 0.940099 0.51609 0.938667 0.517973 0.939267 0.518807 0.937547 0.521739 0.939868 0.519641 0.937153 0.52057 0.936759 0.519402 0.934851 0.520311 0.935057 0.52176 0.932933 0.523788 0.935263 0.523209 0.932985 0.522196 0.933038 0.520604 0.931248 0.520284 0.932573 0.508007 0.934161 0.507367 0.930964 0.509008 0.927841 0.514787 0.928411 0.512543 0.928106 0.516928 0.929515 0.510546 0.935671 0.507169 0.937081 0.507438 0.929093 0.51864 0.93071 0.519671 0.938351 0.508298 0.9394 0.509723 0.932552 0.520045 0.934434 0.519715 0.940079 0.511519 0.940113 0.513519 0.936336 0.518792 0.938116 0.517377 0.939405 0.515521 0.943638 0.508965 0.941943 0.506311 0.939071 0.504531 0.94388 0.51543 0.944335 0.512165 0.927944 0.506963 0.925069 0.509715 0.923231 0.513349 0.935271 0.526189 0.938229 0.524222 0.940839 0.521447 0.923484 0.521848 0.925731 0.524779 0.928789 0.526502 0.922597 0.517761 0.93396 0.504385 0.931029 0.505302 0.936534 0.504088 0.942769 0.518413 0.932116 0.527039 0.945351 0.507568 0.943089 0.503744 0.939896 0.502018 0.945354 0.516015 0.946118 0.511811 0.925289 0.504712 0.920962 0.50815 0.918385 0.51252 0.934537 0.528948 0.938552 0.526478 0.941809 0.523283 0.918305 0.523665 0.921702 0.527196 0.925959 0.529352 0.917212 0.518867 0.933078 0.501722 0.929349 0.502508 0.936447 0.501609 0.943896 0.519878 0.930309 0.529931 0.948005 0.505607 0.944871 0.499392 0.947806 0.516062 0.9491 0.511191 0.953215 0.511264 0.952698 0.512701 0.951135 0.50884 0.950868 0.504414 0.946032 0.497811 0.946155 0.49879 0.9504 0.504692 0.944108 0.496015 0.944681 0.492183 0.945966 0.489086 0.945497 0.488606 0.944291 0.491984 0.951345 0.48426 0.948386 0.485293 0.952907 0.485943 0.952013 0.507755 0.944606 0.494766 0.94856 0.486751 0.889967 0.448966 0.879572 0.4873 0.878531 0.491695 0.881189 0.483034 0.883359 0.479059 0.88597 0.475436 0.826451 0.427416 0.889758 0.472115 0.881748 0.482959 0.884054 0.478968 0.886811 0.475429 0.942835 0.472365 0.877975 0.397658 0.883515 0.397651 0.873951 0.397664 0.870831 0.397671 0.867889 0.397674 0.918562 0.397639 0.925482 0.397634 0.901603 0.397646 0.909465 0.397642 0.891034 0.397645 0.929288 0.397637 0.894812 0.397645 0.931273 0.397662 0.86549 0.397668 0.931235 0.397655 0.882529 0.39765 0.877003 0.397658 0.871595 0.397671 0.868659 0.397671 0.868707 0.397667 0.925845 0.397644 0.918784 0.397657 0.909614 0.397666 0.901249 0.39767 0.890498 0.397656 0.92961 0.397643 0.894099 0.397656 0.867711 0.397671 0.900103 0.397679 0.595916 0.679782 0.593633 0.724091 0.587548 0.772055 0.579229 0.819401 0.570764 0.860428 0.56898 0.893979 0.055194 0.327681 0.056512 0.244825 0.056323 0.176259 0.056343 0.11532 0.057144 0.041836 0.468306 0.320445 0.459246 0.232082 0.470583 0.402538 0.456894 0.171519 0.044392 0.51728 0.04804 0.442488 0.039555 0.560029 0.472222 0.467543 0.655545 0.572596 0.685594 0.967391 0.590033 0.92387 0.595756 0.680499 0.590769 0.76975 0.682275 0.551691 0.647404 0.965201 0.571758 0.851938 0.600135 0.64164 0.623018 0.605621 0.617347 0.944413 0.720327 0.535205 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3

89 0 23 243 1 26 90 2 28 6 3 29 91 4 30 243 1 26 89 0 23 5 5 31 92 6 33 244 7 35 91 4 30 5 5 31 299 8 36 244 7 35 92 6 33 218 9 37 7 10 39 95 11 41 93 12 42 8 13 57 93 12 42 95 11 41 94 14 61 9 15 62 96 16 65 245 17 66 89 0 23 6 3 29 89 0 23 245 17 66 97 18 67 5 5 31 97 18 67 245 17 66 98 19 68 11 20 69 98 19 68 245 17 66 96 16 65 10 21 70 97 18 67 246 22 71 92 6 33 5 5 31 92 6 33 246 22 71 300 23 72 218 9 37 300 23 72 246 22 71 99 24 84 219 25 85 99 24 84 246 22 71 97 18 67 11 20 69 12 26 86 247 27 89 93 12 42 9 15 62 93 12 42 247 27 89 100 28 90 8 13 57 13 29 135 102 30 137 101 31 138 14 32 139 101 31 138 102 30 137 7 10 39 8 13 57 103 33 140 248 34 141 98 19 68 10 21 70 98 19 68 248 34 141 104 35 142 11 20 69 104 35 142 248 34 141 105 36 200 16 37 246 105 36 200 248 34 141 103 33 140 15 38 249 100 28 90 107 39 252 101 31 138 8 13 57 101 31 138 107 39 252 106 40 253 14 32 139 108 41 254 109 42 256 13 29 135 14 32 139 18 43 259 109 42 256 108 41 254 17 44 260 106 40 253 111 45 262 108 41 254 14 32 139 108 41 254 111 45 262 110 46 265 17 44 260 20 47 266 112 48 283 113 49 285 19 50 286 113 49 285 112 48 283 18 43 259 17 44 260 110 46 265 115 51 289 113 49 285 17 44 260 113 49 285 115 51 289 114 52 290 19 50 286 22 53 291 116 54 292 117 55 293 21 56 294 117 55 293 116 54 292 20 47 266 19 50 286 114 52 290 119 57 295 117 55 293 19 50 286 117 55 293 119 57 295 118 58 296 21 56 294 23 59 297 249 60 298 120 61 300 24 62 303 120 61 300 249 60 298 22 53 291 21 56 294 118 58 296 122 63 304 120 61 300 21 56 294 120 61 300 122 63 304 121 64 884 24 62 303 26 65 885 339 66 886 340 67 887 123 68 888 123 68 888 340 67 887 341 69 889 28 70 890 341 69 889 340 67 887 124 71 891 27 72 892 124 71 891 340 67 887 339 66 886 25 73 893 125 74 894 250 75 895 307 76 896 29 77 897 307 76 896 250 75 895 126 78 898 227 79 899 126 78 898 250 75 895 123 68 888 28 70 890 123 68 888 250 75 895 125 74 894 26 65 885 126 78 898 127 80 900 45 81 901 227 79 899 126 78 898 28 70 890 30 82 902 127 80 900 128 83 0 251 84 1 308 85 2 31 86 3 308 85 74 251 84 75 129 87 76 228 88 77 129 87 76 251 84 75 130 89 78 33 90 79 130 89 4 251 84 1 128 83 0 32 91 12 131 92 13 252 93 14 309 94 15 34 95 16 309 94 15 252 93 14 128 83 0 31 86 3 128 83 0 252 93 14 132 96 17 32 91 12 132 96 17 252 93 14 131 92 13 35 97 18 133 98 82 253 99 83 132 96 17 35 97 18 132 96 17 253 99 83 134 100 91 32 91 12 134 100 91 253 99 83 156 101 92 36 102 93 156 101 92 253 99 83 133 98 82 38 103 94 135 104 96 254 105 97 136 106 98 39 107 101 136 106 98 254 105 97 137 108 102 37 109 105 137 108 102 254 105 97 133 98 82 35 97 18 133 98 82 254 105 97 135 104 96 38 103 94 104 35 142 255 110 903 99 24 84 11 20 69 99 24 84 255 110 903 310 111 904 219 25 85 310 111 904 255 110 903 138 112 905 1978 113 906 138 112 905 255 110 903 104 35 142 16 37 246 204 114 5 285 115 6 139 116 7 59 117 8 139 116 7 285 115 6 203 118 9 57 119 10 105 36 200 256 120 907 140 121 908 16 37 246 140 121 908 256 120 907 135 104 909 39 107 910 135 104 909 256 120 907 141 122 911 38 103 912 141 122 911 256 120 907 105 36 200 15 38 249 138 112 905 257 123 913 142 124 914 1978 113 906 142 124 914 257 123 913 154 125 915 229 126 916 154 125 915 257 123 913 140 121 908 39 107 910 140 121 908 257 123 913 138 112 905 16 37 246 143 127 11 284 128 19 202 129 20 60 130 21 203 118 9 284 128 19 143 127 11 57 119 10 144 131 917 56 132 918 2065 133 919 2066 134 920 311 135 921 258 136 922 125 74 894 29 77 897 125 74 894 258 136 922 145 137 923 26 65 885 145 137 80 258 136 81 146 138 95 40 139 99 146 138 95 258 136 81 311 135 100 41 140 103 43 141 924 147 142 925 148 143 926 42 144 927 148 143 926 147 142 925 23 59 297 24 62 303 149 145 928 259 146 929 124 71 891 25 73 893 124 71 891 259 146 929 150 147 976 27 72 892 150 147 976 259 146 929 147 142 925 43 141 924 147 142 925 259 146 929 149 145 928 23 59 297 121 64 884 152 148 978 148 143 926 24 62 303 148 143 926 152 148 978 151 149 980 42 144 927 231 150 981 30 82 902 28 70 890 341 69 889 231 150 981 341 69 889 27 72 892 44 151 982 153 152 104 260 153 106 129 87 76 33 90 79 129 87 76 260 153 106 312 154 107 228 88 77 312 154 107 260 153 106 146 138 95 41 140 103 146 138 95 260 153 106 153 152 104 40 139 99 154 125 110 261 155 111 313 156 112 229 126 113 313 156 112 261 155 111 155 157 114 230 158 115 155 157 114 261 155 111 136 106 98 37 109 105 136 106 98 261 155 111 154 125 110 39 107 101 153 152 104 262 159 108 181 160 109 40 139 99 181 160 116 262 159 117 134 100 91 36 102 93 134 100 91 262 159 117 130 89 4 32 91 12 130 89 78 262 159 108 153 152 104 33 90 79 137 108 102 263 161 118 155 157 114 37 109 105 155 157 114 263 161 118 314 162 119 230 158 115 314 162 119 263 161 118 131 92 13 34 95 16 131 92 13 263 161 118 137 108 102 35 97 18 151 149 980 241 163 983 157 164 985 42 144 927 157 164 985 241 163 983 242 165 987 83 166 1012 159 167 1013 264 168 1016 160 169 1017 44 151 982 160 169 1017 264 168 1016 239 170 1018 81 171 1019 239 170 1018 264 168 1016 238 172 1020 82 173 1023 238 172 1020 264 168 1016 159 167 1013 43 141 924 82 173 1023 238 172 1020 157 164 985 83 166 1012 157 164 985 238 172 1020 43 141 924 42 144 927 160 169 1017 265 174 1036 231 150 981 44 151 982 231 150 981 265 174 1036 232 175 1038 30 82 902 232 175 1038 265 174 1036 237 176 1039 80 177 1040 237 176 1039 265 174 1036 160 169 1017 81 171 1019 94 14 61 163 178 1041 164 179 1042 9 15 62 165 180 1043 266 181 1045 166 182 1046 46 183 1047 166 182 1046 266 181 1045 163 178 1041 94 14 61 90 2 28 288 184 1048 207 185 1049 6 3 29 164 179 1042 167 186 1050 12 26 86 9 15 62 166 182 1046 267 187 1051 168 188 1052 46 183 1047 168 188 1052 267 187 1051 169 189 1053 47 190 1054 169 189 1053 267 187 1051 95 11 41 7 10 39 95 11 41 267 187 1051 166 182 1046 94 14 61 207 185 1049 287 191 1055 96 16 65 6 3 29 96 16 65 287 191 1055 206 192 1056 10 21 70 170 193 22 268 194 2246 171 195 24 63 196 25 171 195 24 268 194 2246 172 197 2247 58 198 27 172 197 1057 268 194 1058 173 199 1059 64 200 1060 173 199 1059 268 194 1058 170 193 1061 62 201 1062 172 197 2247 269 202 2248 174 203 32 58 198 27 174 203 32 269 202 2248 175 204 2249 61 205 34 175 204 1063 269 202 1064 176 206 1065 65 207 1066 176 206 1065 269 202 1064 172 197 1057 64 200 1060 175 204 2249 270 208 2250 177 209 38 61 205 34 177 209 38 270 208 2250 178 210 2251 66 211 40 178 210 1067 270 208 1068 179 212 1069 67 213 1070 179 212 1069 270 208 1068 175 204 1063 65 207 1066 180 214 1071 271 215 1072 149 145 928 25 73 893 149 145 928 271 215 1072 249 60 298 23 59 297 249 60 298 271 215 1072 48 216 1073 22 53 291 150 147 976 159 167 1013 44 151 982 27 72 892 159 167 1013 150 147 976 43 141 924 48 216 1073 272 217 1074 116 54 292 22 53 291 116 54 292 272 217 1074 49 218 1075 20 47 266 49 218 1075 273 219 1076 112 48 283 20 47 266 112 48 283 273 219 1076 50 220 1077 18 43 259 50 220 1077 274 221 1078 109 42 256 18 43 259 109 42 256 274 221 1078 51 222 1079 13 29 135 169 189 1053 275 223 1080 52 224 1081 47 190 1054 51 222 1079 275 223 1080 102 30 137 13 29 135 102 30 137 275 223 1080 169 189 1053 7 10 39 206 192 1056 286 225 1082 103 33 140 10 21 70 103 33 140 286 225 1082 53 226 1083 15 38 249 53 226 1083 276 227 1084 141 122 911 15 38 249 141 122 911 276 227 1084 54 228 1085 38 103 912 156 101 1086 277 229 1087 55 230 1088 36 102 1089 54 228 1085 277 229 1087 156 101 1086 38 103 912 55 230 1088 182 231 1090 181 160 1091 36 102 1089 181 160 1091 182 231 1090 56 132 918 40 139 1092 202 129 20 283 232 43 183 233 44 60 130 21 201 234 45 68 235 46 183 233 44 283 232 43 56 132 918 144 131 917 145 137 923 40 139 1092 144 131 917 321 236 1093 339 66 886 26 65 885 145 137 923 276 227 1084 2069 237 1094 2070 238 1095 54 228 1085 290 239 47 208 240 48 184 241 49 278 242 50 210 243 51 290 239 47 278 242 50 185 244 52 2068 245 1096 2069 237 1094 276 227 1084 53 226 1083 277 229 1087 2071 246 1097 2073 247 1098 55 230 1088 289 248 53 209 249 54 186 250 55 279 251 56 208 240 48 289 248 53 279 251 56 184 241 49 2070 238 1095 2071 246 1097 277 229 1087 54 228 1085 275 223 1080 2075 252 1099 2076 253 1100 52 224 1081 294 254 2265 212 255 58 2053 256 59 280 257 60 214 258 1101 294 254 1102 280 257 1103 187 259 1104 2074 260 1105 2075 252 1099 275 223 1080 51 222 1079 286 225 1082 2072 261 1106 2068 245 1096 53 226 1083 292 262 63 210 243 51 185 244 52 2052 263 64 274 221 1078 2078 264 1107 2074 260 1105 51 222 1079 293 265 1108 214 258 1101 187 259 1104 2055 266 1109 213 267 1110 293 265 1108 2055 266 1109 188 268 1111 2079 269 1112 2078 264 1107 274 221 1078 50 220 1077 273 219 1076 2080 270 1113 2079 269 1112 50 220 1077 295 271 1114 213 267 1110 188 268 1111 2056 272 1115 215 273 1116 295 271 1114 2056 272 1115 189 274 1117 2081 275 1118 2080 270 1113 273 219 1076 49 218 1075 271 215 1072 2084 276 1119 2085 277 1120 48 216 1073 297 278 1121 216 279 1122 190 280 1123 281 281 1124 217 282 87 297 278 73 281 281 2271 191 283 88 2083 284 1125 2084 276 1119 271 215 1072 180 214 1071 272 217 1074 2082 285 1126 2081 275 1118 49 218 1075 296 286 1127 215 273 1116 189 274 1117 2057 287 1128 216 279 1122 296 286 1127 2057 287 1128 190 280 1123 2085 277 1120 2082 285 1126 272 217 1074 48 216 1073 182 231 1090 2064 288 1129 2065 133 919 56 132 918 291 289 120 211 290 121 2051 291 122 2050 292 123 209 249 54 291 289 120 2050 292 123 186 250 55 2073 247 1098 2064 288 1129 182 231 1090 55 230 1088 211 290 121 298 293 124 282 294 125 2051 291 122 298 293 124 323 295 126 322 296 127 282 294 125 70 297 128 192 298 129 139 116 7 57 119 10 59 117 8 139 116 7 192 298 129 71 299 130 69 300 131 193 301 132 143 127 11 60 130 21 70 297 128 57 119 10 143 127 11 193 301 132 73 302 133 194 303 134 170 193 22 63 196 25 62 201 1062 170 193 1061 194 303 1130 74 304 1131 59 117 8 71 299 130 205 305 136 204 114 5 62 201 1062 74 304 1131 195 306 1132 173 199 1059 64 200 1060 173 199 1059 195 306 1132 75 307 1133 64 200 1060 75 307 1133 196 308 1134 176 206 1065 65 207 1066 176 206 1065 196 308 1134 76 309 1135 77 310 1136 197 311 1137 178 210 1067 67 213 1070 66 211 40 178 210 2251 197 311 2267 78 312 143 65 207 1066 76 309 1135 198 313 1138 179 212 1069 77 310 1136 67 213 1070 179 212 1069 198 313 1138 72 314 201 199 315 202 183 233 44 68 235 46 69 300 131 60 130 21 183 233 44 199 315 202 200 316 203 72 314 201 68 235 46 201 234 45 338 317 204 200 316 203 201 234 45 337 318 205 338 317 204 337 318 205 66 211 40 78 312 143 283 232 43 336 319 206 337 318 205 201 234 45 177 209 38 336 319 206 335 320 207 61 205 34 284 128 19 334 321 208 335 320 207 202 129 20 174 203 32 334 321 208 333 322 209 58 198 27 285 115 6 332 323 210 333 322 209 203 118 9 171 195 24 332 323 210 331 324 232 63 196 25 331 324 232 204 114 5 205 305 136 330 325 233 331 324 232 330 325 233 73 302 133 63 196 25 329 326 234 292 262 63 2052 263 64 2054 327 235 2076 253 1100 2077 328 1139 328 329 1140 52 224 1081 52 224 1081 328 329 1140 327 330 1141 47 190 1054 287 191 1055 326 331 1142 327 330 1141 206 192 1056 168 188 1052 326 331 1142 325 332 1143 46 183 1047 288 184 1048 324 333 1144 325 332 1143 207 185 1049 193 301 132 289 248 53 208 240 48 70 297 128 209 249 54 289 248 53 193 301 132 69 300 131 210 243 51 292 262 63 205 305 136 71 299 130 208 240 48 290 239 47 192 298 129 70 297 128 192 298 129 290 239 47 210 243 51 71 299 130 199 315 202 291 289 120 209 249 54 69 300 131 211 290 121 291 289 120 199 315 202 72 314 201 292 262 63 329 326 234 330 325 233 205 305 136 2053 256 59 212 255 58 329 326 234 2054 327 235 195 306 1132 293 265 1108 213 267 1110 75 307 1133 214 258 1101 293 265 1108 195 306 1132 74 304 1131 212 255 58 294 254 2265 194 303 134 73 302 133 194 303 1130 294 254 1102 214 258 1101 74 304 1131 213 267 1110 295 271 1114 196 308 1134 75 307 1133 196 308 1134 295 271 1114 215 273 1116 76 309 1135 215 273 1116 296 286 1127 198 313 1138 76 309 1135 198 313 1138 296 286 1127 216 279 1122 77 310 1136 323 295 126 217 282 87 191 283 88 322 296 127 217 282 87 323 295 126 338 317 204 78 312 143 216 279 1122 297 278 1121 197 311 1137 77 310 1136 197 311 2267 297 278 73 217 282 87 78 312 143 200 316 203 298 293 124 211 290 121 72 314 201 247 27 89 301 334 1145 220 335 1146 100 28 90 221 336 1147 301 334 1145 247 27 89 12 26 86 107 39 252 302 337 1148 222 338 1149 106 40 253 220 335 1146 302 337 1148 107 39 252 100 28 90 111 45 262 303 339 1150 223 340 1151 110 46 265 222 338 1149 303 339 1150 111 45 262 106 40 253 115 51 289 304 341 1152 224 342 1153 114 52 290 223 340 1151 304 341 1152 115 51 289 110 46 265 119 57 295 305 343 1154 225 344 1155 118 58 296 224 342 1153 305 343 1154 119 57 295 114 52 290 122 63 304 306 345 1156 226 346 1157 121 64 884 225 344 1155 306 345 1156 122 63 304 118 58 296 152 148 978 346 347 1158 345 348 1159 151 149 980 152 148 978 121 64 884 226 346 1157 346 347 1158 241 163 983 344 349 1160 343 350 1161 242 165 987 241 163 983 151 149 980 345 348 1159 344 349 1160 167 186 1050 315 351 1162 221 336 1147 12 26 86 232 175 1038 316 352 1163 127 80 900 30 82 902 127 80 900 316 352 1163 162 353 1164 45 81 901 162 353 1164 316 352 1163 235 354 1165 79 355 1166 235 354 1165 316 352 1163 232 175 1038 80 177 1040 234 356 1167 317 357 1168 235 354 1165 80 177 1040 235 354 1165 317 357 1168 233 358 1169 79 355 1166 233 358 1169 317 357 1168 87 359 1170 3 360 1171 87 359 1170 317 357 1168 234 356 1167 2 361 1172 236 362 1173 318 363 1174 237 176 1039 81 171 1019 237 176 1039 318 363 1174 234 356 1167 80 177 1040 234 356 1167 318 363 1174 86 364 1175 2 361 1172 86 364 1175 318 363 1174 236 362 1173 1 365 1176 239 170 1018 319 366 1177 236 362 1173 81 171 1019 236 362 1173 319 366 1177 85 367 1178 1 365 1176 85 367 1178 319 366 1177 161 368 1179 0 369 1180 161 368 1179 319 366 1177 239 170 1018 82 173 1023 0 369 1180 161 368 1179 240 370 1181 4 371 1182 240 370 1181 161 368 1179 82 173 1023 83 166 1012 242 165 987 158 372 1183 240 370 1181 83 166 1012 240 370 1181 158 372 1183 84 373 1184 4 371 1182 343 350 1161 342 374 1185 158 372 1183 242 165 987 158 372 1183 342 374 1185 88 375 1186 84 373 1184 144 131 917 2066 134 920 2067 376 1187 321 236 1093 339 66 886 321 236 1093 180 214 1071 25 73 893 2067 376 1187 2083 284 1125 180 214 1071 321 236 1093 46 183 1047 325 332 1143 324 333 1144 165 180 1043 207 185 1049 325 332 1143 326 331 1142 287 191 1055 47 190 1054 327 330 1141 326 331 1142 168 188 1052 206 192 1056 327 330 1141 328 329 1140 286 225 1082 286 225 1082 328 329 1140 2077 328 1139 2072 261 1106 73 302 133 330 325 233 329 326 234 212 255 58 204 114 5 331 324 232 332 323 210 285 115 6 58 198 27 333 322 209 332 323 210 171 195 24 203 118 9 333 322 209 334 321 208 284 128 19 61 205 34 335 320 207 334 321 208 174 203 32 202 129 20 335 320 207 336 319 206 283 232 43 66 211 40 337 318 205 336 319 206 177 209 38 200 316 203 338 317 204 323 295 126 298 293 124 299 8 36 218 9 37 2022 377 1188 2017 378 1189 218 9 37 300 23 72 2021 379 1190 2022 377 1188 300 23 72 219 25 85 2023 380 1191 2021 379 1190 220 335 1146 301 334 1145 674 381 1192 592 382 1193 301 334 1145 221 336 1147 593 383 1194 674 381 1192 222 338 1149 302 337 1148 675 384 1195 594 385 1196 302 337 1148 220 335 1146 592 382 1193 675 384 1195 223 340 1151 303 339 1150 676 386 1197 595 387 1198 303 339 1150 222 338 1149 594 385 1196 676 386 1197 224 342 1153 304 341 1152 677 388 1199 596 389 1200 304 341 1152 223 340 1151 595 387 1198 677 388 1199 225 344 1155 305 343 1154 678 390 1201 597 391 1202 305 343 1154 224 342 1153 596 389 1200 678 390 1201 226 346 1157 306 345 1156 679 392 1203 598 393 1204 306 345 1156 225 344 1155 597 391 1202 679 392 1203 2036 394 1205 2037 395 1206 680 396 1207 599 397 1208 2037 395 1206 2038 398 1209 600 399 1210 680 396 1207 2038 398 1209 2039 400 1211 608 401 1212 600 399 1210 31 86 3 308 85 2 2019 402 144 2033 403 2261 602 404 148 681 405 149 2019 402 2264 2020 406 2259 34 95 16 309 94 15 2032 407 2262 2031 408 2252 309 94 15 31 86 3 2033 403 2261 2032 407 2262 219 25 85 310 111 904 2024 409 1213 2023 380 1191 684 410 1214 604 411 1215 2025 412 1216 2026 413 1217 2034 414 2258 2035 415 2260 685 416 158 605 417 159 2035 415 1218 2036 394 1205 599 397 1208 685 416 1219 345 348 1159 346 347 1158 1971 418 1220 1970 419 1221 346 347 1158 226 346 1157 598 393 1204 1971 418 1220 2020 406 2259 2016 420 2257 686 421 161 602 404 148 2016 420 2257 2034 414 2258 605 417 159 686 421 161 229 126 113 313 156 112 2028 422 2255 2027 423 2256 313 156 112 230 158 115 2029 424 2254 2028 422 2255 230 158 115 314 162 119 2030 425 2253 2029 424 2254 314 162 119 34 95 16 2031 408 2252 2030 425 2253 343 350 1161 344 349 1160 1969 426 1222 1968 427 1223 344 349 1160 345 348 1159 1970 419 1221 1969 426 1222 2039 400 1211 2040 428 1224 689 429 1225 608 401 1212 2040 428 1224 2041 430 1226 612 431 1227 689 429 1225 221 336 1147 315 351 1162 690 432 1228 593 383 1194 2041 430 1226 2042 433 1229 692 434 1230 612 431 1227 2042 433 1229 2043 435 1231 434 436 1232 692 434 1230 88 375 1186 342 374 1185 1967 437 1233 435 438 1234 342 374 1185 343 350 1161 1968 427 1223 1967 437 1233 436 439 1235 353 440 1236 437 441 1237 622 442 1238 438 443 1239 352 444 1240 436 439 1235 622 442 1238 439 445 1241 352 444 1240 438 443 1239 623 446 1242 440 447 1243 354 448 1244 439 445 1241 623 446 1242 355 449 1245 356 450 1246 441 451 1247 443 452 1248 441 451 1247 357 453 1249 442 454 1250 443 452 1248 444 455 1251 353 440 1236 436 439 1235 624 456 1252 436 439 1235 352 444 1240 445 457 1253 624 456 1252 445 457 1253 359 458 1254 446 459 1255 624 456 1252 446 459 1255 358 460 1256 444 455 1251 624 456 1252 445 457 1253 352 444 1240 439 445 1241 625 461 1257 439 445 1241 354 448 1244 447 462 1258 625 461 1257 447 462 1258 360 463 1259 448 464 1260 625 461 1257 448 464 1260 359 458 1254 445 457 1253 625 461 1257 361 465 1261 357 453 1249 441 451 1247 626 466 1262 441 451 1247 356 450 1246 449 467 1263 626 466 1262 362 468 1264 363 469 1265 450 470 1266 451 471 1267 450 470 1266 356 450 1246 355 449 1245 451 471 1267 452 472 1268 358 460 1256 446 459 1255 627 473 1269 446 459 1255 359 458 1254 453 474 1270 627 473 1269 453 474 1270 365 475 1271 454 476 1272 627 473 1269 454 476 1272 364 477 1273 452 472 1268 627 473 1269 449 467 1263 356 450 1246 450 470 1266 456 478 1274 450 470 1266 363 469 1265 455 479 1275 456 478 1274 457 480 1276 363 469 1265 362 468 1264 458 481 1277 367 482 1278 366 483 1279 457 480 1276 458 481 1277 455 479 1275 363 469 1265 457 480 1276 460 484 1280 457 480 1276 366 483 1279 459 485 1281 460 484 1280 369 486 1282 368 487 1283 462 488 1284 461 489 1285 462 488 1284 366 483 1279 367 482 1278 461 489 1285 459 485 1281 366 483 1279 462 488 1284 464 490 1286 462 488 1284 368 487 1283 463 491 1287 464 490 1286 371 492 1288 370 493 1289 466 494 1290 465 495 1291 466 494 1290 368 487 1283 369 486 1282 465 495 1291 463 491 1287 368 487 1283 466 494 1290 468 496 1292 466 494 1290 370 493 1289 467 497 1293 468 496 1292 372 498 1294 373 499 1295 469 500 1296 628 501 1297 469 500 1296 370 493 1289 371 492 1288 628 501 1297 467 497 1293 370 493 1289 469 500 1296 471 502 1298 469 500 1296 373 499 1295 470 503 1299 471 502 1298 375 504 1300 472 505 1301 1965 506 1302 1964 507 1303 472 505 1301 377 508 1304 1966 509 1305 1965 506 1302 1966 509 1305 376 510 1306 473 511 1307 1965 506 1302 473 511 1307 374 512 1308 1964 507 1303 1965 506 1302 474 513 1309 378 514 1310 475 515 1311 629 516 1312 475 515 1311 379 517 1313 476 518 1314 629 516 1312 476 518 1314 377 508 1304 472 505 1301 629 516 1312 472 505 1301 375 504 1300 474 513 1309 629 516 1312 476 518 1314 379 517 1313 399 519 1315 477 520 1316 476 518 1314 477 520 1316 380 521 1317 377 508 1304 478 522 162 381 523 163 479 524 164 630 525 165 479 524 174 382 526 175 480 527 176 630 525 177 480 527 176 384 528 178 481 529 179 630 525 177 481 529 166 383 530 167 478 522 162 630 525 165 482 531 168 385 532 169 483 533 170 631 534 171 483 533 170 381 523 163 478 522 162 631 534 171 478 522 162 383 530 167 484 535 172 631 534 171 484 535 172 386 536 173 482 531 168 631 534 171 485 537 180 386 536 173 484 535 172 632 538 181 484 535 172 383 530 167 486 539 182 632 538 181 486 539 182 387 540 183 511 541 184 632 538 181 511 541 184 390 542 185 485 537 180 632 538 181 487 543 186 391 544 187 488 545 188 633 546 189 488 545 188 388 547 190 489 548 191 633 546 189 489 548 191 386 536 173 485 537 180 633 546 189 485 537 180 390 542 185 487 543 186 633 546 189 453 474 1270 359 458 1254 448 464 1260 634 549 1318 448 464 1260 360 463 1259 490 550 1319 634 549 1318 490 550 1319 389 551 1320 491 552 1321 634 549 1318 491 552 1321 365 475 1271 453 474 1270 634 549 1318 575 553 236 405 554 237 492 555 238 659 556 239 492 555 238 403 557 240 574 558 241 659 556 239 454 476 1272 365 475 1271 493 559 1322 635 560 1323 493 559 1322 391 544 1324 487 543 1325 635 560 1323 487 543 1325 390 542 1326 494 561 1327 635 560 1323 494 561 1327 364 477 1273 454 476 1272 635 560 1323 491 552 1321 389 551 1320 495 562 1328 636 563 1329 495 562 1328 392 564 1330 508 565 1331 636 563 1329 508 565 1331 391 544 1324 493 559 1322 636 563 1329 493 559 1322 365 475 1271 491 552 1321 636 563 1329 496 566 242 406 567 243 573 568 244 658 569 245 574 558 241 403 557 240 496 566 242 658 569 245 651 570 1332 2087 571 1333 2088 572 1334 552 573 1335 497 574 1336 378 514 1310 474 513 1309 637 575 1337 474 513 1309 375 504 1300 498 576 1338 637 575 1337 498 576 211 394 577 212 499 578 213 637 575 214 499 578 213 395 579 215 497 574 216 637 575 214 397 580 1339 396 581 1340 501 582 1341 500 583 1342 501 582 1341 373 499 1295 372 498 1294 500 583 1342 502 584 1343 374 512 1308 473 511 1307 638 585 1344 473 511 1307 376 510 1306 503 586 1345 638 585 1344 503 586 1345 397 580 1339 500 583 1342 638 585 1344 500 583 1342 372 498 1294 502 584 1343 638 585 1344 470 503 1299 373 499 1295 501 582 1341 505 587 1346 501 582 1341 396 581 1340 504 588 1347 505 587 1346 609 589 1348 1966 509 1305 377 508 1304 380 521 1317 609 589 1348 398 590 1349 376 510 1306 1966 509 1305 506 591 217 384 528 178 480 527 176 639 592 218 480 527 176 382 526 175 507 593 219 639 592 218 507 593 219 395 579 215 499 578 213 639 592 218 499 578 213 394 577 212 506 591 217 639 592 218 508 565 192 392 564 193 509 594 194 640 595 195 509 594 194 400 596 196 510 597 197 640 595 195 510 597 197 388 547 190 488 545 188 640 595 195 488 545 188 391 544 187 508 565 192 640 595 195 506 591 217 394 577 212 538 598 226 641 599 227 538 598 198 387 540 183 486 539 182 641 599 199 486 539 182 383 530 167 481 529 166 641 599 199 481 529 179 384 528 178 506 591 217 641 599 227 489 548 191 388 547 190 510 597 197 642 600 220 510 597 197 400 596 196 512 601 221 642 600 220 512 601 221 385 532 169 482 531 168 642 600 220 482 531 168 386 536 173 489 548 191 642 600 220 504 588 1347 396 581 1340 513 602 1350 620 603 1351 513 602 1350 429 604 1352 621 605 1353 620 603 1351 515 606 1354 398 590 1349 516 607 1355 643 608 1356 516 607 1355 427 609 1357 618 610 1358 643 608 1356 618 610 1358 428 611 1359 617 612 1360 643 608 1356 617 612 1360 397 580 1339 515 606 1354 643 608 1356 428 611 1359 429 604 1352 513 602 1350 617 612 1360 513 602 1350 396 581 1340 397 580 1339 617 612 1360 516 607 1355 398 590 1349 609 589 1348 644 613 1361 609 589 1348 380 521 1317 610 614 1362 644 613 1361 610 614 1362 426 615 1363 616 616 1364 644 613 1361 616 616 1364 427 609 1357 516 607 1355 644 613 1361 442 454 1250 357 453 1249 520 617 1365 519 618 1366 521 619 1367 401 620 1368 522 621 1369 645 622 1370 522 621 1369 442 454 1250 519 618 1366 645 622 1370 437 441 1237 353 440 1236 579 623 1371 661 624 1372 520 617 1365 357 453 1249 361 465 1261 523 625 1373 522 621 1369 401 620 1368 524 626 1374 646 627 1375 524 626 1374 402 628 1376 525 629 1377 646 627 1375 525 629 1377 355 449 1245 443 452 1248 646 627 1375 443 452 1248 442 454 1250 522 621 1369 646 627 1375 579 623 1371 353 440 1236 444 455 1251 660 630 1378 444 455 1251 358 460 1256 578 631 1379 660 630 1378 526 632 2273 409 633 247 527 634 248 647 635 2268 527 634 248 404 636 250 528 637 251 647 635 2268 528 637 1380 410 638 1381 529 639 1382 647 635 1383 529 639 1382 408 640 1384 526 632 1385 647 635 1383 528 637 251 404 636 250 530 641 255 648 642 2269 530 641 255 407 643 257 531 644 258 648 642 2269 531 644 1386 411 645 1387 532 646 1388 648 642 1389 532 646 1388 410 638 1381 528 637 1380 648 642 1389 531 644 258 407 643 257 533 647 261 649 648 2272 533 647 261 412 649 263 534 650 264 649 648 2272 534 650 1390 413 651 1391 535 652 1392 649 648 1393 535 652 1392 411 645 1387 531 644 1386 649 648 1393 393 653 1394 374 512 1308 502 584 1343 537 654 1395 502 584 1343 372 498 1294 628 501 1297 537 654 1395 628 501 1297 371 492 1288 536 655 1396 537 654 1395 503 586 1345 376 510 1306 398 590 1349 515 606 1354 515 606 1354 397 580 1339 503 586 1345 536 655 1396 371 492 1288 465 495 1291 540 656 1397 465 495 1291 369 486 1282 539 657 1398 540 656 1397 539 657 1398 369 486 1282 461 489 1285 542 658 1399 461 489 1285 367 482 1278 541 659 1400 542 658 1399 541 659 1400 367 482 1278 458 481 1277 544 660 1401 458 481 1277 362 468 1264 543 661 1402 544 660 1401 525 629 1377 402 628 1376 545 662 1403 546 663 1404 543 661 1402 362 468 1264 451 471 1267 546 663 1404 451 471 1267 355 449 1245 525 629 1377 546 663 1404 578 631 1379 358 460 1256 452 472 1268 577 664 1405 452 472 1268 364 477 1273 547 665 1406 577 664 1405 547 665 1406 364 477 1273 494 561 1327 549 666 1407 494 561 1327 390 542 1326 548 667 1408 549 666 1407 511 541 1409 387 540 1410 550 668 1411 551 669 1412 548 667 1408 390 542 1326 511 541 1409 551 669 1412 550 668 1411 387 540 1410 538 598 1413 650 670 1414 538 598 1413 394 577 1415 552 573 1335 650 670 1414 573 568 244 406 567 243 553 671 267 657 672 268 572 673 269 657 672 268 553 671 267 414 674 270 552 573 1335 394 577 1415 498 576 1338 651 570 1332 651 570 1332 498 576 1338 375 504 1300 1964 507 1303 1945 675 1416 549 666 1407 548 667 1408 2091 676 1417 2092 677 1418 580 678 271 663 679 272 652 680 273 554 681 274 663 679 272 582 682 275 555 683 276 652 680 273 2093 684 1419 547 665 1406 549 666 1407 2092 677 1418 551 669 1412 550 668 1411 2095 685 1420 2090 686 1421 581 687 277 662 688 278 653 689 279 556 690 280 662 688 278 580 678 271 554 681 274 653 689 279 2091 676 1417 548 667 1408 551 669 1412 2090 686 1421 546 663 1404 545 662 1403 2097 691 1422 2098 692 1423 584 693 281 667 694 282 654 695 2270 557 696 284 667 694 1424 586 697 1425 558 698 1426 654 695 1427 2099 699 1428 543 661 1402 546 663 1404 2098 692 1423 577 664 1405 547 665 1406 2093 684 1419 2094 700 1429 582 682 275 665 701 287 2060 702 288 555 683 276 544 660 1401 543 661 1402 2099 699 1428 2100 703 1430 586 697 1425 666 704 1431 2061 705 1432 558 698 1426 666 704 1431 585 706 1433 559 707 1434 2061 705 1432 2101 708 1435 541 659 1400 544 660 1401 2100 703 1430 542 658 1399 541 659 1400 2101 708 1435 2102 709 1436 585 706 1433 668 710 1437 2062 711 1438 559 707 1434 668 710 1437 587 712 1439 560 713 1440 2062 711 1438 2103 714 1441 539 657 1398 542 658 1399 2102 709 1436 537 654 1395 536 655 1396 2105 715 1442 2106 716 1443 588 717 1444 670 718 1445 655 719 1446 561 720 1447 670 718 2275 589 721 301 562 722 302 655 719 299 2107 723 1448 393 653 1394 537 654 1395 2106 716 1443 540 656 1397 539 657 1398 2103 714 1441 2104 724 1449 587 712 1439 669 725 1450 2063 726 1451 560 713 1440 669 725 1450 588 717 1444 561 720 1447 2063 726 1451 2105 715 1442 536 655 1396 540 656 1397 2104 724 1449 650 670 1414 552 573 1335 2088 572 1334 2089 727 1452 583 728 305 664 729 306 2059 730 307 2058 731 308 664 729 306 581 687 277 556 690 280 2059 730 307 2095 685 1420 550 668 1411 650 670 1414 2089 727 1452 671 732 309 583 728 305 2058 731 308 656 733 310 1947 734 311 671 732 309 656 733 310 1946 735 970 563 736 971 416 737 972 403 557 240 492 555 238 563 736 971 492 555 238 405 554 237 417 738 973 564 739 974 415 740 975 406 567 243 496 566 242 564 739 974 496 566 242 403 557 240 416 737 972 565 741 2274 419 742 977 409 633 247 526 632 2273 565 741 1453 526 632 1385 408 640 1384 420 743 1454 576 744 979 417 738 973 405 554 237 575 553 236 566 745 1455 420 743 1454 408 640 1384 529 639 1382 566 745 1455 529 639 1382 410 638 1381 421 746 1456 567 747 1457 421 746 1456 410 638 1381 532 646 1388 567 747 1457 532 646 1388 411 645 1387 422 748 1458 568 749 1459 423 750 1460 413 651 1391 534 650 1390 568 749 984 534 650 264 412 649 263 424 751 986 569 752 1461 422 748 1458 411 645 1387 535 652 1392 569 752 1461 535 652 1392 413 651 1391 423 750 1460 570 753 988 418 754 989 414 674 270 553 671 267 570 753 988 553 671 267 406 567 243 415 740 975 414 674 270 418 754 989 571 755 990 572 673 269 572 673 269 571 755 990 1963 756 991 1962 757 992 424 751 986 412 649 263 1962 757 992 1963 756 991 657 672 268 572 673 269 1962 757 992 1961 758 993 533 647 261 407 643 257 1960 759 994 1961 758 993 658 569 245 573 568 244 1960 759 994 1959 760 995 530 641 255 404 636 250 1958 761 996 1959 760 995 659 556 239 574 558 241 1958 761 996 1957 762 997 527 634 248 409 633 247 1956 763 998 1957 762 997 576 744 979 575 553 236 1956 763 998 1955 764 999 409 633 247 419 742 977 1955 764 999 1956 763 998 2060 702 288 665 701 287 1954 765 1000 1953 766 1001 2097 691 1422 545 662 1403 1952 767 1462 2096 768 1463 545 662 1403 402 628 1376 1951 769 1464 1952 767 1462 660 630 1378 578 631 1379 1951 769 1464 1950 770 1465 524 626 1374 401 620 1368 1949 771 1466 1950 770 1465 661 624 1372 579 623 1371 1949 771 1466 1948 772 1467 564 739 974 416 737 972 580 678 271 662 688 278 581 687 277 415 740 975 564 739 974 662 688 278 582 682 275 417 738 973 576 744 979 665 701 287 580 678 271 416 737 972 563 736 971 663 679 272 563 736 971 417 738 973 582 682 275 663 679 272 570 753 988 415 740 975 581 687 277 664 729 306 583 728 305 418 754 989 570 753 988 664 729 306 665 701 287 576 744 979 1955 764 999 1954 765 1000 1954 765 1000 584 693 281 557 696 284 1953 766 1001 566 745 1455 421 746 1456 585 706 1433 666 704 1431 586 697 1425 420 743 1454 566 745 1455 666 704 1431 584 693 281 419 742 977 565 741 2274 667 694 282 565 741 1453 420 743 1454 586 697 1425 667 694 1424 585 706 1433 421 746 1456 567 747 1457 668 710 1437 567 747 1457 422 748 1458 587 712 1439 668 710 1437 587 712 1439 422 748 1458 569 752 1461 669 725 1450 569 752 1461 423 750 1460 588 717 1444 669 725 1450 589 721 301 1947 734 311 1946 735 970 562 722 302 589 721 301 424 751 986 1963 756 991 1947 734 311 588 717 1444 423 750 1460 568 749 1459 670 718 1445 568 749 984 424 751 986 589 721 301 670 718 2275 571 755 990 418 754 989 583 728 305 671 732 309 590 773 1468 354 448 1244 440 447 1243 672 774 1469 447 462 1258 354 448 1244 590 773 1468 673 775 1470 591 776 1471 360 463 1259 447 462 1258 673 775 1470 626 466 1262 449 467 1263 592 382 1193 674 381 1192 593 383 1194 361 465 1261 626 466 1262 674 381 1192 456 478 1274 455 479 1275 594 385 1196 675 384 1195 592 382 1193 449 467 1263 456 478 1274 675 384 1195 460 484 1280 459 485 1281 595 387 1198 676 386 1197 594 385 1196 455 479 1275 460 484 1280 676 386 1197 464 490 1286 463 491 1287 596 389 1200 677 388 1199 595 387 1198 459 485 1281 464 490 1286 677 388 1199 468 496 1292 467 497 1293 597 391 1202 678 390 1201 596 389 1200 463 491 1287 468 496 1292 678 390 1201 471 502 1298 470 503 1299 598 393 1204 679 392 1203 597 391 1202 467 497 1293 471 502 1298 679 392 1203 475 515 1311 378 514 1310 599 397 1208 680 396 1207 600 399 1210 379 517 1313 475 515 1311 680 396 1207 399 519 1315 379 517 1313 600 399 1210 608 401 1212 479 524 164 381 523 163 601 777 222 681 405 223 602 404 148 382 526 175 479 524 174 681 405 149 483 533 170 385 532 169 603 778 224 682 779 225 601 777 222 381 523 163 483 533 170 682 779 225 490 550 1319 360 463 1259 591 776 1471 683 780 1472 604 411 1215 389 551 1320 490 550 1319 683 780 1472 495 562 1328 389 551 1320 604 411 1215 684 410 1214 606 781 1473 392 564 1330 495 562 1328 684 410 1214 497 574 216 395 579 215 605 417 159 685 416 158 599 397 1208 378 514 1310 497 574 1336 685 416 1219 505 587 1346 504 588 1347 1970 419 1221 1971 418 1220 505 587 1346 1971 418 1220 598 393 1204 470 503 1299 507 593 219 382 526 175 602 404 148 686 421 161 605 417 159 395 579 215 507 593 219 686 421 161 509 594 194 392 564 193 606 781 228 687 782 229 607 783 230 400 596 196 509 594 194 687 782 229 512 601 221 400 596 196 607 783 230 688 784 231 603 778 224 385 532 169 512 601 221 688 784 231 620 603 1351 621 605 1353 1968 427 1223 1969 426 1222 620 603 1351 1969 426 1222 1970 419 1221 504 588 1347 518 785 1474 399 519 1315 608 401 1212 689 429 1225 612 431 1227 425 786 1475 518 785 1474 689 429 1225 523 625 1373 361 465 1261 593 383 1194 690 432 1228 610 614 1362 380 521 1317 477 520 1316 691 787 1476 477 520 1316 399 519 1315 518 785 1474 691 787 1476 518 785 1474 425 786 1475 614 788 1477 691 787 1476 614 788 1477 426 615 1363 610 614 1362 691 787 1476 611 789 1478 425 786 1475 612 431 1227 692 434 1230 434 436 1232 350 790 1479 611 789 1478 692 434 1230 613 791 1480 426 615 1363 614 788 1477 693 792 1481 614 788 1477 425 786 1475 611 789 1478 693 792 1481 611 789 1478 350 790 1479 433 793 1482 693 792 1481 433 793 1482 349 794 1483 613 791 1480 693 792 1481 615 795 1484 427 609 1357 616 616 1364 694 796 1485 616 616 1364 426 615 1363 613 791 1480 694 796 1485 613 791 1480 349 794 1483 432 797 1486 694 796 1485 432 797 1486 348 798 1487 615 795 1484 694 796 1485 618 610 1358 427 609 1357 615 795 1484 695 799 1488 615 795 1484 348 798 1487 431 800 1489 695 799 1488 431 800 1489 347 801 1490 517 802 1491 695 799 1488 517 802 1491 428 611 1359 618 610 1358 695 799 1488 347 801 1490 351 803 1492 619 804 1493 517 802 1491 619 804 1493 429 604 1352 428 611 1359 517 802 1491 621 605 1353 429 604 1352 619 804 1493 514 805 1494 619 804 1493 351 803 1492 430 806 1495 514 805 1494 1968 427 1223 621 605 1353 514 805 1494 1967 437 1233 514 805 1494 430 806 1495 435 438 1234 1967 437 1233 696 807 1496 697 808 1497 710 809 1498 709 810 1499 697 808 1497 698 811 1500 711 812 1501 710 809 1498 698 811 1500 699 813 1502 712 814 1503 711 812 1501 699 813 1502 700 815 1504 713 816 1505 712 814 1503 700 815 1504 701 817 1506 714 818 1507 713 816 1505 701 817 1506 702 819 1508 715 820 1509 714 818 1507 702 819 1508 703 821 1510 716 822 1511 715 820 1509 703 821 1510 704 823 1512 717 824 1513 716 822 1511 704 823 1512 705 825 1514 718 826 1515 717 824 1513 705 825 1514 706 827 1516 719 828 1517 718 826 1515 706 827 1516 707 829 1518 720 830 1519 719 828 1517 707 829 1518 1331 831 1520 721 832 1521 720 830 1519 708 833 1522 722 834 1523 1979 835 1524 1980 836 1525 709 810 1499 710 809 1498 724 837 1526 723 838 1527 710 809 1498 711 812 1501 725 839 1528 724 837 1526 711 812 1501 712 814 1503 726 840 1529 725 839 1528 712 814 1503 713 816 1505 727 841 1530 726 840 1529 713 816 1505 714 818 1507 728 842 1531 727 841 1530 714 818 1507 715 820 1509 729 843 1532 728 842 1531 715 820 1509 716 822 1511 730 844 1533 729 843 1532 716 822 1511 717 824 1513 731 845 1534 730 844 1533 717 824 1513 718 826 1515 732 846 1535 731 845 1534 718 826 1515 719 828 1517 733 847 1536 732 846 1535 719 828 1517 720 830 1519 734 848 1537 733 847 1536 1333 849 1538 721 832 1521 1979 835 1524 1982 850 1539 723 838 1527 724 837 1526 737 851 1540 736 852 1541 724 837 1526 725 839 1528 738 853 1542 737 851 1540 725 839 1528 726 840 1529 739 854 1543 738 853 1542 726 840 1529 727 841 1530 740 855 1544 739 854 1543 727 841 1530 728 842 1531 741 856 1545 740 855 1544 728 842 1531 729 843 1532 742 857 1546 741 856 1545 729 843 1532 730 844 1533 743 858 1547 742 857 1546 730 844 1533 731 845 1534 744 859 1548 743 858 1547 731 845 1534 732 846 1535 745 860 1549 744 859 1548 732 846 1535 733 847 1536 746 861 1550 745 860 1549 733 847 1536 734 848 1537 747 862 1551 746 861 1550 1334 863 1552 1333 849 1538 1982 850 1539 1983 864 1553 736 852 1541 737 851 1540 750 865 1554 749 866 1555 737 851 1540 738 853 1542 751 867 1556 750 865 1554 738 853 1542 739 854 1543 752 868 1557 751 867 1556 739 854 1543 740 855 1544 753 869 1558 752 868 1557 740 855 1544 741 856 1545 754 870 1559 753 869 1558 741 856 1545 742 857 1546 755 871 1560 754 870 1559 742 857 1546 743 858 1547 756 872 1561 755 871 1560 743 858 1547 744 859 1548 757 873 1562 756 872 1561 744 859 1548 745 860 1549 758 874 1563 757 873 1562 745 860 1549 746 861 1550 759 875 1564 758 874 1563 746 861 1550 747 862 1551 760 876 1565 759 875 1564 1335 877 1566 1334 863 1552 1983 864 1553 1984 878 1567 749 866 1555 750 865 1554 763 879 1568 762 880 1569 750 865 1554 751 867 1556 764 881 1570 763 879 1568 751 867 1556 752 868 1557 765 882 1571 764 881 1570 752 868 1557 753 869 1558 766 883 1572 765 882 1571 753 869 1558 754 870 1559 767 884 1573 766 883 1572 754 870 1559 755 871 1560 768 885 1574 767 884 1573 755 871 1560 756 872 1561 769 886 1575 768 885 1574 756 872 1561 757 873 1562 770 887 1576 769 886 1575 757 873 1562 758 874 1563 771 888 1577 770 887 1576 758 874 1563 759 875 1564 772 889 1578 771 888 1577 759 875 1564 760 876 1565 773 890 1579 772 889 1578 1336 891 1580 1335 877 1566 1984 878 1567 1981 892 1581 762 880 1569 763 879 1568 776 893 1582 775 894 1583 763 879 1568 764 881 1570 777 895 1584 776 893 1582 764 881 1570 765 882 1571 778 896 1585 777 895 1584 765 882 1571 766 883 1572 779 897 1586 778 896 1585 766 883 1572 767 884 1573 780 898 1587 779 897 1586 767 884 1573 768 885 1574 781 899 1588 780 898 1587 768 885 1574 769 886 1575 782 900 1589 781 899 1588 769 886 1575 770 887 1576 783 901 1590 782 900 1589 770 887 1576 771 888 1577 784 902 1591 783 901 1590 771 888 1577 772 889 1578 785 903 1592 784 902 1591 772 889 1578 773 890 1579 786 904 1593 785 903 1592 2 361 1172 1336 891 1580 1981 892 1581 87 359 1170 775 894 1583 776 893 1582 788 905 1594 787 906 1595 776 893 1582 777 895 1584 789 907 1596 788 905 1594 777 895 1584 778 896 1585 790 908 1597 789 907 1596 778 896 1585 779 897 1586 791 909 1598 790 908 1597 779 897 1586 780 898 1587 792 910 1599 791 909 1598 780 898 1587 781 899 1588 793 911 1600 792 910 1599 781 899 1588 782 900 1589 794 912 1601 793 911 1600 782 900 1589 783 901 1590 795 913 1602 794 912 1601 783 901 1590 784 902 1591 796 914 1603 795 913 1602 784 902 1591 785 903 1592 797 915 1604 796 914 1603 785 903 1592 786 904 1593 798 916 1605 797 915 1604 787 906 1595 788 905 1594 800 917 1606 799 918 1607 788 905 1594 789 907 1596 801 919 1608 800 917 1606 789 907 1596 790 908 1597 802 920 1609 801 919 1608 790 908 1597 791 909 1598 803 921 1610 802 920 1609 791 909 1598 792 910 1599 804 922 1611 803 921 1610 792 910 1599 793 911 1600 805 923 1612 804 922 1611 793 911 1600 794 912 1601 806 924 1613 805 923 1612 794 912 1601 795 913 1602 807 925 1614 806 924 1613 795 913 1602 796 914 1603 808 926 1615 807 925 1614 796 914 1603 797 915 1604 809 927 1616 808 926 1615 797 915 1604 798 916 1605 810 928 1617 809 927 1616 799 918 1607 800 917 1606 812 929 1618 811 930 1619 800 917 1606 801 919 1608 813 931 1620 812 929 1618 801 919 1608 802 920 1609 814 932 1621 813 931 1620 802 920 1609 803 921 1610 815 933 1622 814 932 1621 803 921 1610 804 922 1611 816 934 1623 815 933 1622 804 922 1611 805 923 1612 817 935 1624 816 934 1623 805 923 1612 806 924 1613 818 936 1625 817 935 1624 806 924 1613 807 925 1614 819 937 1626 818 936 1625 807 925 1614 808 926 1615 820 938 1627 819 937 1626 808 926 1615 809 927 1616 821 939 1628 820 938 1627 809 927 1616 810 928 1617 822 940 1629 821 939 1628 811 930 1619 812 929 1618 824 941 1630 823 942 1631 812 929 1618 813 931 1620 825 943 1632 824 941 1630 813 931 1620 814 932 1621 826 944 1633 825 943 1632 814 932 1621 815 933 1622 827 945 1634 826 944 1633 815 933 1622 816 934 1623 828 946 1635 827 945 1634 816 934 1623 817 935 1624 829 947 1636 828 946 1635 817 935 1624 818 936 1625 830 948 1637 829 947 1636 818 936 1625 819 937 1626 831 949 1638 830 948 1637 819 937 1626 820 938 1627 832 950 1639 831 949 1638 820 938 1627 821 939 1628 833 951 1640 832 950 1639 821 939 1628 822 940 1629 834 952 1641 833 951 1640 823 942 1631 824 941 1630 835 953 1642 846 954 1643 824 941 1630 825 943 1632 836 955 1644 835 953 1642 825 943 1632 826 944 1633 837 956 1645 836 955 1644 826 944 1633 827 945 1634 838 957 1646 837 956 1645 827 945 1634 828 946 1635 839 958 1647 838 957 1646 828 946 1635 829 947 1636 840 959 1648 839 958 1647 829 947 1636 830 948 1637 841 960 1649 840 959 1648 830 948 1637 831 949 1638 842 961 1650 841 960 1649 831 949 1638 832 950 1639 843 962 1651 842 961 1650 832 950 1639 833 951 1640 844 963 1652 843 962 1651 833 951 1640 834 952 1641 845 964 1653 844 963 1652 846 954 1643 835 953 1642 848 965 1654 847 966 1655 835 953 1642 836 955 1644 849 967 1656 848 965 1654 836 955 1644 837 956 1645 850 968 1657 849 967 1656 837 956 1645 838 957 1646 851 969 1658 850 968 1657 838 957 1646 839 958 1647 852 970 1659 851 969 1658 839 958 1647 840 959 1648 853 971 1660 852 970 1659 840 959 1648 841 960 1649 854 972 1661 853 971 1660 841 960 1649 842 961 1650 855 973 1662 854 972 1661 842 961 1650 843 962 1651 856 974 1663 855 973 1662 843 962 1651 844 963 1652 857 975 1664 856 974 1663 844 963 1652 845 964 1653 858 976 1665 857 975 1664 847 966 1655 848 965 1654 860 977 1666 859 978 1667 848 965 1654 849 967 1656 861 979 1668 860 977 1666 849 967 1656 850 968 1657 862 980 1669 861 979 1668 853 971 1660 854 972 1661 863 981 1670 854 972 1661 855 973 1662 864 982 1671 863 981 1670 855 973 1662 856 974 1663 865 983 1672 864 982 1671 856 974 1663 857 975 1664 866 984 1673 865 983 1672 857 975 1664 858 976 1665 867 985 1674 866 984 1673 859 978 1667 860 977 1666 869 986 1675 868 987 1676 860 977 1666 861 979 1668 870 988 1677 869 986 1675 868 987 1676 869 986 1675 872 989 1678 871 990 1679 869 986 1675 870 988 1677 873 991 1680 872 989 1678 875 992 1681 874 993 1682 864 982 1671 865 983 1672 865 983 1672 866 984 1673 876 994 1683 875 992 1681 866 984 1673 867 985 1674 877 995 1684 876 994 1683 871 990 1679 872 989 1678 879 996 1685 878 997 1686 872 989 1678 873 991 1680 880 998 1687 879 996 1685 882 999 1688 881 1000 1689 874 993 1682 875 992 1681 875 992 1681 876 994 1683 883 1001 1690 882 999 1688 876 994 1683 877 995 1684 884 1002 1691 883 1001 1690 878 997 1686 879 996 1685 886 1003 1692 885 1004 1693 879 996 1685 880 998 1687 887 1005 1694 886 1003 1692 889 1006 1695 888 1007 1696 881 1000 1689 882 999 1688 882 999 1688 883 1001 1690 890 1008 1697 889 1006 1695 883 1001 1690 884 1002 1691 891 1009 1698 890 1008 1697 885 1004 1693 886 1003 1692 893 1010 1699 892 1011 1700 886 1003 1692 887 1005 1694 894 1012 1701 893 1010 1699 1313 1013 1702 888 1007 1696 889 1006 1695 895 1014 1703 889 1006 1695 890 1008 1697 896 1015 1704 895 1014 1703 890 1008 1697 891 1009 1698 1314 1016 1705 896 1015 1704 891 1009 1698 1337 1017 1706 897 1018 1707 1314 1016 1705 1985 1019 1708 1337 1017 1706 320 1020 1709 1986 1021 1710 892 1011 1700 893 1010 1699 899 1022 1711 898 1023 1712 893 1010 1699 894 1012 1701 900 1024 1713 899 1022 1711 1312 1025 1714 1311 1026 1715 906 1027 1716 905 1028 1717 697 808 1497 696 807 1496 907 1029 1718 698 811 1500 697 808 1497 907 1029 1718 699 813 1502 698 811 1500 907 1029 1718 700 815 1504 699 813 1502 907 1029 1718 701 817 1506 700 815 1504 907 1029 1718 702 819 1508 701 817 1506 907 1029 1718 703 821 1510 702 819 1508 907 1029 1718 704 823 1512 703 821 1510 907 1029 1718 705 825 1514 704 823 1512 907 1029 1718 706 827 1516 705 825 1514 907 1029 1718 707 829 1518 706 827 1516 907 1029 1718 707 829 1518 907 1029 1718 1331 831 1520 708 833 1522 1980 836 1525 907 1029 1718 941 1030 312 980 1031 313 1044 1032 314 1007 1033 315 1007 1033 315 1028 1034 316 956 1035 317 941 1030 312 942 1036 318 958 1037 319 1028 1034 316 1007 1033 315 1007 1033 315 1044 1032 314 981 1038 320 942 1036 318 943 1039 321 979 1040 322 1043 1041 323 1008 1042 324 1008 1042 324 1029 1043 325 955 1044 326 943 1039 321 941 1030 312 956 1035 317 1029 1043 325 1008 1042 324 1008 1042 324 1043 1041 323 980 1031 313 941 1030 312 944 1045 327 978 1046 328 1042 1047 329 1009 1048 330 1009 1048 330 1027 1049 331 953 1050 332 944 1045 327 943 1039 321 955 1044 326 1027 1049 331 1009 1048 330 1009 1048 330 1042 1047 329 979 1040 322 943 1039 321 945 1051 333 977 1052 334 1041 1053 335 1010 1054 336 1010 1054 336 1030 1055 337 960 1056 338 945 1051 333 944 1045 327 953 1050 332 1030 1055 337 1010 1054 336 1010 1054 336 1041 1053 335 978 1046 328 944 1045 327 1011 1057 339 1032 1058 340 964 1059 341 946 1060 342 945 1051 333 960 1056 338 1032 1058 340 1011 1057 339 1011 1057 339 946 1060 342 1066 1061 343 1067 1062 344 947 1063 345 976 1064 346 1040 1065 347 1012 1066 348 1012 1066 348 1034 1067 349 968 1068 350 947 1063 345 946 1060 342 964 1059 341 1034 1067 349 1012 1066 348 1012 1066 348 1040 1065 347 1066 1061 343 946 1060 342 948 1069 351 975 1070 352 1039 1071 353 1013 1072 354 1013 1072 354 1036 1073 355 971 1074 356 948 1069 351 947 1063 345 968 1068 350 1036 1073 355 1013 1072 354 1013 1072 354 1039 1071 353 976 1064 346 947 1063 345 949 1075 357 973 1076 358 1038 1077 359 1014 1078 360 1014 1078 360 1035 1079 361 967 1080 362 949 1075 357 948 1069 351 971 1074 356 1035 1079 361 1014 1078 360 1014 1078 360 1038 1077 359 975 1070 352 948 1069 351 950 1081 363 974 1082 364 1037 1083 365 1015 1084 366 1015 1084 366 1033 1085 367 963 1086 368 950 1081 363 949 1075 357 967 1080 362 1033 1085 367 1015 1084 366 1015 1084 366 1037 1083 365 973 1076 358 949 1075 357 942 1036 318 981 1038 320 1045 1087 369 1016 1088 370 1016 1088 370 1031 1089 371 958 1037 319 942 1036 318 950 1081 363 963 1086 368 1031 1089 371 1016 1088 370 1016 1088 370 1045 1087 369 974 1082 364 950 1081 363 1044 1032 314 1038 1077 359 973 1076 358 981 1038 320 986 1090 1719 1048 1091 1720 1907 1092 1721 1906 1093 1722 923 1094 1723 1017 1095 1724 1907 1092 1721 1908 1096 1725 990 1097 1726 1050 1098 1727 1911 1099 1728 1913 1100 1729 925 1101 1730 1018 1102 1731 1911 1099 1728 1909 1103 1732 909 1104 1733 1051 1105 1734 1905 1106 1735 1909 1103 1732 951 1107 1736 1019 1108 1737 1905 1106 1735 1906 1093 1722 908 1109 1738 1052 1110 1739 1910 1111 1740 1908 1096 1725 924 1112 1741 1020 1113 1742 1910 1111 1740 1912 1114 1743 910 1115 1744 1053 1116 1745 1914 1117 1746 1912 1114 1743 926 1118 1747 1021 1119 1748 1914 1117 1746 1916 1120 1749 927 1121 1750 1022 1122 1751 1918 1123 1752 1920 1124 1753 982 1125 1754 1046 1126 1755 1918 1123 1752 1916 1120 1749 984 1127 1756 1047 1128 1757 1922 1129 1758 1920 1124 1753 929 1130 1759 1023 1131 1760 1922 1129 1758 1924 1132 1761 911 1133 1762 1054 1134 1763 1923 1135 1764 1924 1132 1761 930 1136 1765 1024 1137 1766 1923 1135 1764 1921 1138 1767 988 1139 1768 1049 1140 1769 1919 1141 1770 1921 1138 1767 928 1142 1771 1025 1143 1772 1919 1141 1770 1917 1144 1773 912 1145 1774 1055 1146 1775 1915 1147 1776 1917 1144 1773 952 1148 1777 1026 1149 1778 1915 1147 1776 1913 1100 1729 953 1050 332 1027 1049 331 954 1150 969 914 1151 963 954 1152 969 1027 1049 331 955 1044 326 913 1153 967 956 1035 317 1028 1034 316 957 1154 968 916 1155 965 957 1156 968 1028 1034 316 958 1037 319 915 1157 962 955 1044 326 1029 1043 325 959 1158 966 913 1159 967 959 1160 966 1029 1043 325 956 1035 317 916 1161 965 960 1056 338 1030 1055 337 961 1162 964 917 1163 959 961 1164 964 1030 1055 337 953 1050 332 914 1165 963 958 1037 319 1031 1089 371 962 1166 961 915 1167 962 962 1168 961 1031 1089 371 963 1086 368 918 1169 958 964 1059 341 1032 1058 340 965 1170 960 919 1171 955 965 1172 960 1032 1058 340 960 1056 338 917 1173 959 963 1086 368 1033 1085 367 966 1174 957 918 1175 958 966 1176 957 1033 1085 367 967 1080 362 920 1177 954 968 1068 350 1034 1067 349 969 1178 956 921 1179 950 969 1180 956 1034 1067 349 964 1059 341 919 1181 955 967 1080 362 1035 1079 361 970 1182 953 920 1183 954 970 1184 953 1035 1079 361 971 1074 356 922 1185 952 971 1074 356 1036 1073 355 972 1186 951 922 1187 952 972 1188 951 1036 1073 355 968 1068 350 921 1189 950 914 1190 1779 954 1191 1780 1020 1113 1742 924 1112 1741 923 1094 1723 1020 1113 1742 954 1192 1780 913 1193 1781 916 1194 1782 957 1195 1783 1019 1108 1737 951 1107 1736 925 1101 1730 1019 1108 1737 957 1196 1783 915 1197 1784 923 1094 1723 913 1198 1781 959 1199 1785 1017 1095 1724 916 1200 1782 951 1107 1736 1017 1095 1724 959 1201 1785 917 1202 1786 961 1203 1787 1021 1119 1748 926 1118 1747 914 1204 1779 924 1112 1741 1021 1119 1748 961 1205 1787 925 1101 1730 915 1206 1784 962 1207 1788 1018 1102 1731 952 1148 1777 1018 1102 1731 962 1208 1788 918 1209 1789 919 1210 1790 965 1211 1791 1022 1122 1751 927 1121 1750 917 1212 1786 926 1118 1747 1022 1122 1751 965 1213 1791 952 1148 1777 918 1214 1789 966 1215 1792 1026 1149 1778 928 1142 1771 1026 1149 1778 966 1216 1792 920 1217 1793 921 1218 1794 969 1219 1795 1023 1131 1760 929 1130 1759 919 1220 1790 927 1121 1750 1023 1131 1760 969 1221 1795 928 1142 1771 920 1222 1793 970 1223 1796 1025 1143 1772 930 1136 1765 1025 1143 1772 970 1224 1796 922 1225 1797 930 1136 1765 922 1226 1797 972 1227 1798 1024 1137 1766 921 1228 1794 929 1130 1759 1024 1137 1766 972 1229 1798 984 1127 1756 1046 1126 1755 996 1230 1799 932 1231 1800 996 1230 1799 1046 1126 1755 982 1125 1754 931 1232 1801 911 1133 1762 1047 1128 1757 983 1233 1802 933 1234 1803 983 1233 1802 1047 1128 1757 984 1127 1756 932 1231 1800 908 1109 1738 1048 1091 1720 985 1235 1804 935 1236 1805 985 1235 1804 1048 1091 1720 986 1090 1719 934 1237 1806 912 1145 1774 1049 1140 1769 987 1238 1807 937 1239 1808 987 1238 1807 1049 1140 1769 988 1139 1768 936 1240 1809 909 1104 1733 1050 1098 1727 989 1241 1810 939 1242 1811 989 1241 1810 1050 1098 1727 990 1097 1726 938 1243 1812 986 1090 1719 1051 1105 1734 991 1244 1813 934 1237 1806 991 1244 1813 1051 1105 1734 909 1104 1733 939 1242 1811 910 1115 1744 1052 1110 1739 992 1245 1814 940 1246 1815 992 1245 1814 1052 1110 1739 908 1109 1738 935 1236 1805 982 1125 1754 1053 1116 1745 993 1247 1816 931 1232 1801 993 1247 1816 1053 1116 1745 910 1115 1744 940 1246 1815 988 1139 1768 1054 1134 1763 994 1248 1817 936 1240 1809 994 1248 1817 1054 1134 1763 911 1133 1762 933 1234 1803 990 1097 1726 1055 1146 1775 995 1249 1818 938 1243 1812 995 1249 1818 1055 1146 1775 912 1145 1774 937 1239 1808 996 1230 1799 1056 1250 1819 997 1251 1820 932 1231 1800 998 1252 1821 1056 1250 1819 996 1230 1799 931 1232 1801 983 1233 1802 1057 1253 1822 999 1254 1823 933 1234 1803 997 1251 1820 1057 1253 1822 983 1233 1802 932 1231 1800 985 1235 1804 1058 1255 1824 1000 1256 1825 935 1236 1805 1001 1257 1826 1058 1255 1824 985 1235 1804 934 1237 1806 987 1238 1807 1059 1258 1827 1002 1259 1828 937 1239 1808 1003 1260 1829 1059 1258 1827 987 1238 1807 936 1240 1809 989 1241 1810 1060 1261 1830 1004 1262 1831 939 1242 1811 1005 1263 1832 1060 1261 1830 989 1241 1810 938 1243 1812 991 1244 1813 1061 1264 1833 1001 1257 1826 934 1237 1806 1004 1262 1831 1061 1264 1833 991 1244 1813 939 1242 1811 992 1245 1814 1062 1265 1834 1006 1266 1835 940 1246 1815 1000 1256 1825 1062 1265 1834 992 1245 1814 935 1236 1805 993 1247 1816 1063 1267 1836 998 1252 1821 931 1232 1801 1006 1266 1835 1063 1267 1836 993 1247 1816 940 1246 1815 994 1248 1817 1064 1268 1837 1003 1260 1829 936 1240 1809 999 1254 1823 1064 1268 1837 994 1248 1817 933 1234 1803 995 1249 1818 1065 1269 1838 1005 1263 1832 938 1243 1812 1002 1259 1828 1065 1269 1838 995 1249 1818 937 1239 1808 973 1076 358 1037 1083 365 974 1082 364 1045 1087 369 981 1038 320 980 1031 313 1043 1041 323 1039 1071 353 975 1070 352 1044 1032 314 980 1031 313 975 1070 352 1038 1077 359 1043 1041 323 979 1040 322 976 1064 346 1039 1071 353 978 1046 328 1041 1053 335 977 1052 334 1067 1062 344 1066 1061 343 979 1040 322 1042 1047 329 1040 1065 347 976 1064 346 1011 1057 339 1067 1062 344 977 1052 334 945 1051 333 978 1046 328 1066 1061 343 1040 1065 347 1042 1047 329 997 1251 1820 1056 1250 1819 904 1270 1839 903 1271 1840 1056 1250 1819 998 1252 1821 1313 1013 1702 904 1270 1839 999 1254 1823 1057 1253 1822 902 1272 1841 901 1273 1842 1000 1256 1825 1058 1255 1824 863 981 1670 864 982 1671 1058 1255 1824 1001 1257 1826 853 971 1660 863 981 1670 1002 1259 1828 1059 1258 1827 887 1005 1694 880 998 1687 1059 1258 1827 1003 1260 1829 894 1012 1701 887 1005 1694 1004 1262 1831 1060 1261 1830 862 980 1669 851 969 1658 1060 1261 1830 1005 1263 1832 870 988 1677 862 980 1669 1001 1257 1826 1061 1264 1833 852 970 1659 853 971 1660 1061 1264 1833 1004 1262 1831 851 969 1658 852 970 1659 1006 1266 1835 1062 1265 1834 874 993 1682 881 1000 1689 1062 1265 1834 1000 1256 1825 864 982 1671 874 993 1682 1063 1267 1836 1006 1266 1835 881 1000 1689 888 1007 1696 1003 1260 1829 1064 1268 1837 900 1024 1713 894 1012 1701 1064 1268 1837 999 1254 1823 901 1273 1842 900 1024 1713 1005 1263 1832 1065 1269 1838 873 991 1680 870 988 1677 1065 1269 1838 1002 1259 1828 880 998 1687 873 991 1680 1057 1253 1822 997 1251 1820 903 1271 1840 902 1272 1841 870 988 1677 861 979 1668 862 980 1669 862 980 1669 850 968 1657 851 969 1658 1063 1267 1836 888 1007 1696 1313 1013 1702 998 1252 1821 1116 1274 372 1237 1275 373 1117 1276 374 1151 1277 375 1237 1275 373 1152 1278 376 1117 1276 374 1153 1279 377 1238 1280 378 1092 1281 379 1070 1282 380 1308 1283 381 1238 1280 378 1153 1279 377 1309 1284 382 1153 1279 377 1239 1285 383 1310 1286 384 1309 1284 382 1110 1287 385 1287 1288 386 1239 1285 383 1093 1289 387 1093 1289 387 1239 1285 383 1153 1279 377 1070 1282 380 1219 1290 388 1118 1291 389 1154 1292 390 1297 1293 391 1113 1294 392 1115 1295 393 1297 1293 391 1154 1292 390 1120 1296 394 1112 1297 395 1150 1298 396 1155 1299 397 1071 1300 398 1155 1299 397 1150 1301 396 1069 1302 399 1154 1292 390 1240 1303 400 1156 1304 401 1113 1305 392 1156 1306 401 1240 1303 400 1277 1307 402 1114 1308 403 1277 1307 402 1240 1303 400 1157 1309 404 1222 1310 405 1157 1309 404 1240 1303 400 1154 1292 390 1118 1291 389 1218 1311 406 1121 1312 407 1158 1313 408 1274 1314 409 1219 1290 388 1274 1314 409 1158 1313 408 1118 1291 389 1159 1315 410 1241 1316 411 1160 1317 412 1123 1318 413 1160 1317 412 1241 1316 411 1245 1319 414 1124 1320 415 1245 1319 414 1241 1316 411 1161 1321 416 1161 1321 416 1241 1316 411 1159 1315 410 1122 1322 417 1162 1323 418 1242 1324 419 1119 1325 420 1120 1296 394 1220 1326 421 1242 1324 419 1162 1323 418 1125 1327 422 1162 1323 418 1243 1328 423 1163 1329 424 1125 1327 422 1163 1329 424 1243 1328 423 1094 1330 425 1072 1331 426 1094 1330 425 1243 1328 423 1155 1299 397 1071 1300 398 1155 1299 397 1243 1328 423 1162 1323 418 1120 1296 394 1278 1332 427 1244 1333 428 1164 1334 429 1223 1335 430 1164 1334 429 1244 1333 428 1158 1313 408 1121 1312 407 1158 1313 408 1244 1333 428 1157 1309 404 1118 1291 389 1157 1309 404 1244 1333 428 1278 1332 427 1222 1310 405 1124 1320 415 1245 1319 414 1165 1336 431 1126 1337 432 1165 1336 431 1245 1319 414 1166 1338 433 1208 1339 434 1129 1340 435 1167 1341 436 1128 1342 437 1167 1341 436 1129 1340 435 1296 1343 438 1209 1344 439 1168 1345 440 1246 1346 441 1095 1347 442 1073 1348 443 1095 1347 442 1246 1346 441 1266 1349 444 1074 1350 445 1266 1349 444 1246 1346 441 1167 1341 436 1209 1344 439 1167 1341 436 1246 1346 441 1168 1345 440 1128 1342 437 1228 1351 446 1247 1352 447 1170 1353 448 1131 1354 449 1170 1353 448 1247 1352 447 1169 1355 450 1130 1356 451 1171 1357 452 1248 1358 453 1172 1359 454 1132 1360 455 1172 1359 454 1248 1358 453 1237 1275 373 1116 1274 372 1171 1357 452 1301 1361 456 1174 1362 457 1248 1358 453 1237 1275 373 1248 1358 453 1173 1363 458 1152 1278 376 1173 1363 458 1248 1358 453 1174 1362 457 1133 1364 459 1175 1365 460 1249 1366 461 1307 1367 462 1306 1368 463 1307 1367 462 1249 1366 461 1238 1280 378 1308 1283 381 1238 1280 378 1249 1366 461 1096 1369 464 1092 1281 379 1096 1369 464 1249 1366 461 1175 1365 460 1075 1370 465 1218 1311 406 1273 1371 466 1176 1372 467 1121 1312 407 1134 1373 468 1135 1374 469 1176 1372 467 1273 1371 466 1177 1375 470 1250 1376 471 1178 1377 472 1136 1378 473 1178 1377 472 1250 1376 471 1179 1379 474 1137 1380 475 1179 1379 474 1250 1376 471 1171 1357 452 1132 1360 455 1180 1381 476 1251 1382 477 1177 1375 470 1136 1378 473 1181 1383 478 1235 1384 479 1174 1362 457 1301 1361 456 1181 1383 478 1251 1382 477 1182 1385 480 1126 1337 432 1182 1385 480 1251 1382 477 1180 1381 476 1138 1386 481 1183 1387 482 1252 1388 483 1179 1379 474 1132 1360 455 1179 1379 474 1252 1388 483 1184 1389 484 1137 1380 475 1184 1389 484 1252 1388 483 1286 1390 485 1232 1391 486 1286 1390 485 1252 1388 483 1183 1387 482 1233 1392 487 1139 1393 488 1217 1394 489 1272 1395 490 1185 1396 491 1216 1397 492 1140 1398 493 1185 1396 491 1272 1395 490 1186 1399 494 1253 1400 495 1187 1401 496 1142 1402 497 1187 1401 496 1253 1400 495 1188 1403 498 1144 1404 499 1188 1403 498 1253 1400 495 1189 1405 500 1143 1406 501 1189 1405 500 1253 1400 495 1186 1399 494 1141 1407 502 1190 1408 503 1254 1409 504 1191 1410 505 1145 1411 506 1191 1410 505 1254 1409 504 1192 1412 507 1130 1356 451 1192 1412 507 1254 1409 504 1186 1399 494 1142 1402 497 1186 1399 494 1254 1409 504 1190 1408 503 1141 1407 502 1193 1413 508 1255 1414 509 1281 1415 510 1225 1416 511 1281 1415 510 1255 1414 509 1194 1417 512 1226 1418 513 1194 1417 512 1255 1414 509 1185 1396 491 1140 1398 493 1185 1396 491 1255 1414 509 1193 1413 508 1139 1393 488 1195 1419 514 1256 1420 515 1188 1403 498 1143 1406 501 1188 1403 498 1256 1420 515 1196 1421 516 1144 1404 499 1196 1421 516 1256 1420 515 1284 1422 517 1230 1423 518 1284 1422 517 1256 1420 515 1195 1419 514 1231 1424 519 1216 1397 492 1271 1425 520 1194 1417 512 1140 1398 493 1227 1426 521 1226 1418 513 1194 1417 512 1271 1425 520 1197 1427 522 1257 1428 523 1283 1429 524 1229 1430 525 1283 1429 524 1257 1428 523 1196 1421 516 1230 1423 518 1196 1421 516 1257 1428 523 1187 1401 496 1144 1404 499 1187 1401 496 1257 1428 523 1197 1427 522 1142 1402 497 1198 1431 526 1258 1432 527 1220 1326 421 1125 1327 422 1221 1433 528 1258 1432 527 1198 1431 526 1146 1434 529 1200 1435 530 1259 1436 531 1199 1437 532 1147 1438 533 1174 1362 457 1260 1439 534 1201 1440 535 1133 1364 459 1302 1441 536 1304 1442 537 1305 1443 538 1201 1440 535 1198 1431 526 1261 1444 539 1203 1445 540 1146 1434 529 1203 1445 540 1261 1444 539 1097 1446 541 1076 1447 542 1097 1446 541 1261 1444 539 1163 1329 424 1072 1331 426 1163 1329 424 1261 1444 539 1198 1431 526 1125 1327 422 1305 1443 538 1262 1448 543 1175 1365 460 1306 1368 463 1175 1365 460 1262 1448 543 1098 1449 544 1075 1370 465 1098 1449 544 1262 1448 543 1204 1450 545 1077 1451 546 1204 1450 545 1262 1448 543 1305 1443 538 1304 1442 537 1148 1452 547 1276 1453 548 1221 1433 528 1146 1434 529 1199 1437 532 1206 1454 549 1205 1455 550 1147 1438 533 1265 1456 551 1303 1457 552 1304 1442 537 1302 1441 536 1078 1458 553 1263 1459 554 1203 1445 540 1076 1447 542 1203 1445 540 1263 1459 554 1148 1452 547 1146 1434 529 1204 1450 545 1264 1460 555 1099 1461 556 1077 1451 546 1303 1457 552 1264 1460 555 1204 1450 545 1304 1442 537 1206 1454 549 1129 1340 435 1208 1339 434 1205 1455 550 1074 1350 445 1266 1349 444 1263 1459 554 1078 1458 553 1263 1459 554 1266 1349 444 1209 1344 439 1148 1452 547 1279 1462 557 1267 1463 558 1210 1464 559 1224 1465 560 1210 1464 559 1267 1463 558 1176 1372 467 1135 1374 469 1176 1372 467 1267 1463 558 1164 1334 429 1121 1312 407 1164 1334 429 1267 1463 558 1279 1462 557 1223 1335 430 1285 1466 561 1268 1467 562 1184 1389 484 1232 1391 486 1184 1389 484 1268 1467 562 1211 1468 563 1137 1380 475 1211 1468 563 1268 1467 562 1195 1419 514 1143 1406 501 1195 1419 514 1268 1467 562 1285 1466 561 1231 1424 519 1149 1469 564 1269 1470 565 1212 1471 566 1145 1411 506 1212 1471 566 1269 1470 565 1213 1472 567 1138 1386 481 1134 1373 468 1300 1473 568 1214 1474 569 1135 1374 469 1139 1393 488 1214 1474 569 1300 1473 568 1217 1394 489 1215 1475 570 1270 1476 571 1189 1405 500 1141 1407 502 1189 1405 500 1270 1476 571 1211 1468 563 1143 1406 501 1211 1468 563 1270 1476 571 1178 1377 472 1137 1380 475 1178 1377 472 1270 1476 571 1215 1475 570 1136 1378 473 1227 1426 521 1271 1425 520 1247 1352 447 1228 1351 446 1247 1352 447 1271 1425 520 1216 1397 492 1169 1355 450 1216 1397 492 1272 1395 490 1293 1477 572 1169 1355 450 1293 1477 572 1272 1395 490 1217 1394 489 1149 1469 564 1134 1373 468 1273 1371 466 1290 1478 573 1213 1472 567 1290 1478 573 1273 1371 466 1218 1311 406 1124 1320 415 1218 1311 406 1274 1314 409 1160 1317 412 1124 1320 415 1160 1317 412 1274 1314 409 1219 1290 388 1123 1318 413 1115 1479 393 1275 1480 574 1159 1315 410 1123 1318 413 1330 1481 575 1161 1321 416 1122 1322 417 1259 1436 531 1258 1432 527 1221 1433 528 1199 1437 532 1221 1433 528 1276 1453 548 1206 1454 549 1199 1437 532 1276 1453 548 1296 1343 438 1129 1340 435 1206 1454 549 1114 1482 403 1277 1307 402 1100 1483 576 1068 1484 577 1100 1483 576 1277 1307 402 1222 1310 405 1079 1485 578 1222 1310 405 1278 1332 427 1101 1486 579 1079 1485 578 1101 1486 579 1278 1332 427 1223 1335 430 1080 1487 580 1223 1335 430 1279 1462 557 1102 1488 581 1080 1487 580 1102 1488 581 1279 1462 557 1224 1465 560 1081 1489 582 1224 1465 560 1280 1490 583 1103 1491 584 1081 1489 582 1103 1491 584 1280 1490 583 1225 1416 511 1082 1492 585 1225 1416 511 1281 1415 510 1104 1493 586 1082 1492 585 1104 1493 586 1281 1415 510 1226 1418 513 1083 1494 587 1083 1494 587 1226 1418 513 1227 1426 521 1084 1495 588 1084 1495 588 1227 1426 521 1228 1351 446 1085 1496 589 1131 1354 449 1282 1497 590 1105 1498 591 1087 1499 592 1105 1498 591 1282 1497 590 1229 1430 525 1086 1500 593 1106 1501 594 1283 1429 524 1230 1423 518 1088 1502 595 1229 1430 525 1283 1429 524 1106 1501 594 1086 1500 593 1230 1423 518 1284 1422 517 1107 1503 596 1088 1502 595 1107 1503 596 1284 1422 517 1231 1424 519 1089 1504 597 1108 1505 598 1285 1466 561 1232 1391 486 1090 1506 599 1231 1424 519 1285 1466 561 1108 1505 598 1089 1504 597 1232 1391 486 1286 1390 485 1109 1507 600 1090 1506 599 1109 1507 600 1286 1390 485 1233 1392 487 1091 1508 601 1233 1392 487 1287 1288 386 1110 1287 385 1091 1508 601 1168 1345 440 1288 1509 602 1234 1510 603 1128 1342 437 1234 1510 603 1288 1509 602 1264 1460 555 1303 1457 552 1264 1460 555 1288 1509 602 1111 1511 604 1099 1461 556 1111 1511 604 1288 1509 602 1168 1345 440 1073 1348 443 1085 1496 589 1228 1351 446 1131 1354 449 1087 1499 592 1200 1435 530 1289 1512 605 1235 1384 479 1127 1513 606 1235 1384 479 1289 1512 605 1260 1439 534 1174 1362 457 1260 1439 534 1289 1512 605 1236 1514 607 1202 1515 608 1236 1514 607 1289 1512 605 1200 1435 530 1147 1438 533 1213 1472 567 1290 1478 573 1182 1385 480 1138 1386 481 1126 1337 432 1182 1385 480 1290 1478 573 1124 1320 415 1205 1455 550 1291 1516 609 1236 1514 607 1147 1438 533 1236 1514 607 1291 1516 609 1207 1517 610 1202 1515 608 1215 1475 570 1292 1518 611 1180 1381 476 1136 1378 473 1180 1381 476 1292 1518 611 1212 1471 566 1138 1386 481 1212 1471 566 1292 1518 611 1190 1408 503 1145 1411 506 1190 1408 503 1292 1518 611 1215 1475 570 1141 1407 502 1208 1339 434 1294 1519 612 1291 1516 609 1205 1455 550 1291 1516 609 1294 1519 612 1265 1456 551 1207 1517 610 1169 1355 450 1293 1477 572 1191 1410 505 1130 1356 451 1191 1410 505 1293 1477 572 1149 1469 564 1145 1411 506 1234 1510 603 1294 1519 612 1208 1339 434 1128 1342 437 1282 1497 590 1295 1520 613 1197 1427 522 1229 1430 525 1197 1427 522 1295 1520 613 1192 1412 507 1142 1402 497 1192 1412 507 1295 1520 613 1170 1353 448 1130 1356 451 1170 1353 448 1295 1520 613 1282 1497 590 1131 1354 449 1209 1344 439 1296 1343 438 1276 1453 548 1148 1452 547 1219 1290 388 1297 1293 391 1115 1521 393 1123 1318 413 1235 1384 479 1181 1383 478 1126 1337 432 1165 1336 431 1127 1513 606 1183 1387 482 1298 1522 614 1287 1288 386 1233 1392 487 1287 1288 386 1298 1522 614 1239 1285 383 1239 1285 383 1298 1522 614 1310 1286 384 1172 1359 454 1298 1522 614 1183 1387 482 1132 1360 455 1210 1464 559 1299 1523 615 1280 1490 583 1224 1465 560 1280 1490 583 1299 1523 615 1193 1413 508 1225 1416 511 1193 1413 508 1299 1523 615 1214 1474 569 1139 1393 488 1214 1474 569 1299 1523 615 1210 1464 559 1135 1374 469 1217 1394 489 1300 1473 568 1269 1470 565 1149 1469 564 1269 1470 565 1300 1473 568 1134 1373 468 1213 1472 567 1301 1361 456 1177 1375 470 1251 1382 477 1181 1383 478 1171 1357 452 1250 1376 471 1177 1375 470 1301 1361 456 1202 1515 608 1207 1517 610 1265 1456 551 1302 1441 536 1201 1440 535 1260 1439 534 1202 1515 608 1302 1441 536 1265 1456 551 1294 1519 612 1234 1510 603 1303 1457 552 1201 1440 535 1305 1443 538 1306 1368 463 1133 1364 459 1307 1367 462 1173 1363 458 1133 1364 459 1306 1368 463 1173 1363 458 1307 1367 462 1308 1283 381 1152 1278 376 1152 1278 376 1308 1283 381 1309 1284 382 1117 1276 374 1310 1286 384 1116 1274 372 1117 1276 374 1309 1284 382 1298 1522 614 1172 1359 454 1116 1274 372 1310 1286 384 1068 1524 1843 1319 1525 1844 1318 1526 1845 1114 1527 1846 902 1272 1841 1321 1528 1847 1318 1526 1845 906 1027 1716 902 1272 1841 906 1027 1716 1311 1026 1715 901 1273 1842 1311 1026 1715 899 1022 1711 900 1024 1713 901 1273 1842 898 1023 1712 899 1022 1711 1311 1026 1715 1312 1025 1714 1113 1529 1848 1322 1530 1849 1323 1531 1850 1115 1532 1851 1313 1013 1702 1324 1533 1852 1323 1531 1850 904 1270 1839 1316 1534 1853 1325 1535 1854 1326 1536 1855 1317 1537 1856 1315 1538 1857 1320 1539 1858 1332 1540 1859 897 1018 1707 903 1271 1840 1322 1530 1849 1321 1528 1847 902 1272 1841 895 1014 1703 1325 1535 1854 1324 1533 1852 1313 1013 1702 1159 1315 410 1275 1541 574 1316 1542 616 1122 1322 417 1120 1296 394 1119 1325 420 1317 1543 617 1112 1544 395 1314 1016 1705 1327 1545 1860 1326 1536 1855 896 1015 1704 1317 1546 617 1119 1325 420 1122 1322 417 1316 1547 616 906 1027 1716 1318 1526 1845 1319 1525 1844 905 1028 1717 1150 1548 1861 1332 1540 1859 1320 1539 1858 1069 1549 1862 1114 1550 1846 1318 1526 1845 1321 1528 1847 1156 1551 1863 1156 1552 1863 1321 1528 1847 1322 1530 1849 1113 1553 1848 904 1270 1839 1323 1531 1850 1322 1530 1849 903 1271 1840 1115 1554 1851 1323 1531 1850 1324 1533 1852 1275 1555 1864 1275 1556 1864 1324 1533 1852 1325 1535 1854 1316 1557 1853 896 1015 1704 1326 1536 1855 1325 1535 1854 895 1014 1703 1317 1558 1856 1326 1536 1855 1327 1545 1860 1112 1559 1865 1112 1560 1865 1327 1545 1860 1332 1540 1859 1150 1561 1861 1328 1562 618 1259 1436 531 1200 1435 530 1127 1513 606 1220 1326 421 1258 1432 527 1259 1436 531 1328 1562 618 1329 1563 619 1242 1324 419 1220 1326 421 1328 1562 618 1166 1338 433 1328 1562 618 1127 1513 606 1165 1336 431 1330 1481 575 1329 1563 619 1328 1562 618 1166 1338 433 1119 1325 420 1329 1563 619 1330 1481 575 1122 1322 417 1119 1325 420 1242 1324 419 1329 1563 619 1161 1321 416 1330 1481 575 1166 1338 433 1245 1319 414 1314 1016 1705 897 1018 1707 1332 1540 1859 1327 1545 1860 720 830 1519 721 832 1521 1333 849 1538 734 848 1537 734 848 1537 1333 849 1538 1334 863 1552 747 862 1551 747 862 1551 1334 863 1552 1335 877 1566 760 876 1565 760 876 1565 1335 877 1566 1336 891 1580 773 890 1579 773 890 1579 1336 891 1580 2 361 1172 786 904 1593 786 904 1593 2 361 1172 86 364 1175 798 916 1605 884 1002 1691 320 1020 1709 1337 1017 1706 891 1009 1698 696 807 1496 709 810 1499 1349 1564 1866 1338 1565 1867 1338 1565 1867 1349 1564 1866 1350 1566 1868 1339 1567 1869 1339 1567 1869 1350 1566 1868 1351 1568 1870 1340 1569 1871 1340 1569 1871 1351 1568 1870 1352 1570 1872 1341 1571 1873 1341 1571 1873 1352 1570 1872 1353 1572 1874 1342 1573 1875 1342 1573 1875 1353 1572 1874 1354 1574 1876 1343 1575 1877 1343 1575 1877 1354 1574 1876 1355 1576 1878 1344 1577 1879 1344 1577 1879 1355 1576 1878 1356 1578 1880 1345 1579 1881 1345 1579 1881 1356 1578 1880 1357 1580 1882 1346 1581 1883 1346 1581 1883 1357 1580 1882 1358 1582 1884 1347 1583 1885 1347 1583 1885 1358 1582 1884 1359 1584 1886 1348 1585 1887 1348 1585 1887 1359 1584 1886 1360 1586 1888 1897 1587 1889 1897 1587 1889 1360 1586 1888 1972 1588 1890 1973 1589 1891 709 810 1499 723 838 1527 1361 1590 1892 1349 1564 1866 1349 1564 1866 1361 1590 1892 1362 1591 1893 1350 1566 1868 1350 1566 1868 1362 1591 1893 1363 1592 1894 1351 1568 1870 1351 1568 1870 1363 1592 1894 1364 1593 1895 1352 1570 1872 1352 1570 1872 1364 1593 1895 1365 1594 1896 1353 1572 1874 1353 1572 1874 1365 1594 1896 1366 1595 1897 1354 1574 1876 1354 1574 1876 1366 1595 1897 1367 1596 1898 1355 1576 1878 1355 1576 1878 1367 1596 1898 1368 1597 1899 1356 1578 1880 1356 1578 1880 1368 1597 1899 1369 1598 1900 1357 1580 1882 1357 1580 1882 1369 1598 1900 1370 1599 1901 1358 1582 1884 1358 1582 1884 1370 1599 1901 1371 1600 1902 1359 1584 1886 1360 1586 1888 1899 1601 1903 1975 1602 1904 1972 1588 1890 723 838 1527 736 852 1541 1372 1603 1905 1361 1590 1892 1361 1590 1892 1372 1603 1905 1373 1604 1906 1362 1591 1893 1362 1591 1893 1373 1604 1906 1374 1605 1907 1363 1592 1894 1363 1592 1894 1374 1605 1907 1375 1606 1908 1364 1593 1895 1364 1593 1895 1375 1606 1908 1376 1607 1909 1365 1594 1896 1365 1594 1896 1376 1607 1909 1377 1608 1910 1366 1595 1897 1366 1595 1897 1377 1608 1910 1378 1609 1911 1367 1596 1898 1367 1596 1898 1378 1609 1911 1379 1610 1912 1368 1597 1899 1368 1597 1899 1379 1610 1912 1380 1611 1913 1369 1598 1900 1369 1598 1900 1380 1611 1913 1381 1612 1914 1370 1599 1901 1370 1599 1901 1381 1612 1914 1382 1613 1915 1371 1600 1902 1899 1601 1903 1900 1614 1916 1976 1615 1917 1975 1602 1904 736 852 1541 749 866 1555 1383 1616 1918 1372 1603 1905 1372 1603 1905 1383 1616 1918 1384 1617 1919 1373 1604 1906 1373 1604 1906 1384 1617 1919 1385 1618 1920 1374 1605 1907 1374 1605 1907 1385 1618 1920 1386 1619 1921 1375 1606 1908 1375 1606 1908 1386 1619 1921 1387 1620 1922 1376 1607 1909 1376 1607 1909 1387 1620 1922 1388 1621 1923 1377 1608 1910 1377 1608 1910 1388 1621 1923 1389 1622 1924 1378 1609 1911 1378 1609 1911 1389 1622 1924 1390 1623 1925 1379 1610 1912 1379 1610 1912 1390 1623 1925 1391 1624 1926 1380 1611 1913 1380 1611 1913 1391 1624 1926 1392 1625 1927 1381 1612 1914 1381 1612 1914 1392 1625 1927 1393 1626 1928 1382 1613 1915 1900 1614 1916 1901 1627 1929 1977 1628 1930 1976 1615 1917 749 866 1555 762 880 1569 1394 1629 1931 1383 1616 1918 1383 1616 1918 1394 1629 1931 1395 1630 1932 1384 1617 1919 1384 1617 1919 1395 1630 1932 1396 1631 1933 1385 1618 1920 1385 1618 1920 1396 1631 1933 1397 1632 1934 1386 1619 1921 1386 1619 1921 1397 1632 1934 1398 1633 1935 1387 1620 1922 1387 1620 1922 1398 1633 1935 1399 1634 1936 1388 1621 1923 1388 1621 1923 1399 1634 1936 1400 1635 1937 1389 1622 1924 1389 1622 1924 1400 1635 1937 1401 1636 1938 1390 1623 1925 1390 1623 1925 1401 1636 1938 1402 1637 1939 1391 1624 1926 1391 1624 1926 1402 1637 1939 1403 1638 1940 1392 1625 1927 1392 1625 1927 1403 1638 1940 1404 1639 1941 1393 1626 1928 1901 1627 1929 1902 1640 1942 1974 1641 1943 1977 1628 1930 762 880 1569 775 894 1583 1405 1642 1944 1394 1629 1931 1394 1629 1931 1405 1642 1944 1406 1643 1945 1395 1630 1932 1395 1630 1932 1406 1643 1945 1407 1644 1946 1396 1631 1933 1396 1631 1933 1407 1644 1946 1408 1645 1947 1397 1632 1934 1397 1632 1934 1408 1645 1947 1409 1646 1948 1398 1633 1935 1398 1633 1935 1409 1646 1948 1410 1647 1949 1399 1634 1936 1399 1634 1936 1410 1647 1949 1411 1648 1950 1400 1635 1937 1400 1635 1937 1411 1648 1950 1412 1649 1951 1401 1636 1938 1401 1636 1938 1412 1649 1951 1413 1650 1952 1402 1637 1939 1402 1637 1939 1413 1650 1952 1414 1651 1953 1403 1638 1940 1403 1638 1940 1414 1651 1953 1415 1652 1954 1404 1639 1941 2043 435 1231 2044 1653 1955 1974 1641 1943 434 436 1232 775 894 1583 787 906 1595 1416 1654 1956 1405 1642 1944 1405 1642 1944 1416 1654 1956 1417 1655 1957 1406 1643 1945 1406 1643 1945 1417 1655 1957 1418 1656 1958 1407 1644 1946 1407 1644 1946 1418 1656 1958 1419 1657 1959 1408 1645 1947 1408 1645 1947 1419 1657 1959 1420 1658 1960 1409 1646 1948 1409 1646 1948 1420 1658 1960 1421 1659 1961 1410 1647 1949 1410 1647 1949 1421 1659 1961 1422 1660 1962 1411 1648 1950 1411 1648 1950 1422 1660 1962 1423 1661 1963 1412 1649 1951 1412 1649 1951 1423 1661 1963 1424 1662 1964 1413 1650 1952 1413 1650 1952 1424 1662 1964 1425 1663 1965 1414 1651 1953 1414 1651 1953 1425 1663 1965 1426 1664 1966 1415 1652 1954 787 906 1595 799 918 1607 1427 1665 1967 1416 1654 1956 1416 1654 1956 1427 1665 1967 1428 1666 1968 1417 1655 1957 1417 1655 1957 1428 1666 1968 1429 1667 1969 1418 1656 1958 1418 1656 1958 1429 1667 1969 1430 1668 1970 1419 1657 1959 1419 1657 1959 1430 1668 1970 1431 1669 1971 1420 1658 1960 1420 1658 1960 1431 1669 1971 1432 1670 1972 1421 1659 1961 1421 1659 1961 1432 1670 1972 1433 1671 1973 1422 1660 1962 1422 1660 1962 1433 1671 1973 1434 1672 1974 1423 1661 1963 1423 1661 1963 1434 1672 1974 1435 1673 1975 1424 1662 1964 1424 1662 1964 1435 1673 1975 1436 1674 1976 1425 1663 1965 1425 1663 1965 1436 1674 1976 1437 1675 1977 1426 1664 1966 799 918 1607 811 930 1619 1438 1676 1978 1427 1665 1967 1427 1665 1967 1438 1676 1978 1439 1677 1979 1428 1666 1968 1428 1666 1968 1439 1677 1979 1440 1678 1980 1429 1667 1969 1429 1667 1969 1440 1678 1980 1441 1679 1981 1430 1668 1970 1430 1668 1970 1441 1679 1981 1442 1680 1982 1431 1669 1971 1431 1669 1971 1442 1680 1982 1443 1681 1983 1432 1670 1972 1432 1670 1972 1443 1681 1983 1444 1682 1984 1433 1671 1973 1433 1671 1973 1444 1682 1984 1445 1683 1985 1434 1672 1974 1434 1672 1974 1445 1683 1985 1446 1684 1986 1435 1673 1975 1435 1673 1975 1446 1684 1986 1447 1685 1987 1436 1674 1976 1436 1674 1976 1447 1685 1987 1448 1686 1988 1437 1675 1977 811 930 1619 823 942 1631 1449 1687 1989 1438 1676 1978 1438 1676 1978 1449 1687 1989 1450 1688 1990 1439 1677 1979 1439 1677 1979 1450 1688 1990 1451 1689 1991 1440 1678 1980 1440 1678 1980 1451 1689 1991 1452 1690 1992 1441 1679 1981 1441 1679 1981 1452 1690 1992 1453 1691 1993 1442 1680 1982 1442 1680 1982 1453 1691 1993 1454 1692 1994 1443 1681 1983 1443 1681 1983 1454 1692 1994 1455 1693 1995 1444 1682 1984 1444 1682 1984 1455 1693 1995 1456 1694 1996 1445 1683 1985 1445 1683 1985 1456 1694 1996 1457 1695 1997 1446 1684 1986 1446 1684 1986 1457 1695 1997 1458 1696 1998 1447 1685 1987 1447 1685 1987 1458 1696 1998 1459 1697 1999 1448 1686 1988 823 942 1631 846 954 1643 1460 1698 2000 1449 1687 1989 1449 1687 1989 1460 1698 2000 1461 1699 2001 1450 1688 1990 1450 1688 1990 1461 1699 2001 1462 1700 2002 1451 1689 1991 1451 1689 1991 1462 1700 2002 1463 1701 2003 1452 1690 1992 1452 1690 1992 1463 1701 2003 1464 1702 2004 1453 1691 1993 1453 1691 1993 1464 1702 2004 1465 1703 2005 1454 1692 1994 1454 1692 1994 1465 1703 2005 1466 1704 2006 1455 1693 1995 1455 1693 1995 1466 1704 2006 1467 1705 2007 1456 1694 1996 1456 1694 1996 1467 1705 2007 1468 1706 2008 1457 1695 1997 1457 1695 1997 1468 1706 2008 1469 1707 2009 1458 1696 1998 1458 1696 1998 1469 1707 2009 1470 1708 2010 1459 1697 1999 846 954 1643 847 966 1655 1471 1709 2011 1460 1698 2000 1460 1698 2000 1471 1709 2011 1472 1710 2012 1461 1699 2001 1461 1699 2001 1472 1710 2012 1473 1711 2013 1462 1700 2002 1462 1700 2002 1473 1711 2013 1474 1712 2014 1463 1701 2003 1463 1701 2003 1474 1712 2014 1475 1713 2015 1464 1702 2004 1464 1702 2004 1475 1713 2015 1476 1714 2016 1465 1703 2005 1465 1703 2005 1476 1714 2016 1477 1715 2017 1466 1704 2006 1466 1704 2006 1477 1715 2017 1478 1716 2018 1467 1705 2007 1467 1705 2007 1478 1716 2018 1479 1717 2019 1468 1706 2008 1468 1706 2008 1479 1717 2019 1480 1718 2020 1469 1707 2009 1469 1707 2009 1480 1718 2020 1481 1719 2021 1470 1708 2010 847 966 1655 859 978 1667 1482 1720 2022 1471 1709 2011 1471 1709 2011 1482 1720 2022 1483 1721 2023 1472 1710 2012 1472 1710 2012 1483 1721 2023 1484 1722 2024 1473 1711 2013 1476 1714 2016 1485 1723 2025 1477 1715 2017 1477 1715 2017 1485 1723 2025 1488 1724 2026 1478 1716 2018 1478 1716 2018 1488 1724 2026 1489 1725 2027 1479 1717 2019 1479 1717 2019 1489 1725 2027 1490 1726 2028 1480 1718 2020 1480 1718 2020 1490 1726 2028 1491 1727 2029 1481 1719 2021 859 978 1667 868 987 1676 1486 1728 2030 1482 1720 2022 1482 1720 2022 1486 1728 2030 1487 1729 2031 1483 1721 2023 868 987 1676 871 990 1679 1492 1730 2032 1486 1728 2030 1486 1728 2030 1492 1730 2032 1493 1731 2033 1487 1729 2031 1495 1732 2034 1489 1725 2027 1488 1724 2026 1494 1733 2035 1489 1725 2027 1495 1732 2034 1496 1734 2036 1490 1726 2028 1490 1726 2028 1496 1734 2036 1497 1735 2037 1491 1727 2029 871 990 1679 878 997 1686 1498 1736 2038 1492 1730 2032 1492 1730 2032 1498 1736 2038 1499 1737 2039 1493 1731 2033 1501 1738 2040 1495 1732 2034 1494 1733 2035 1500 1739 2041 1495 1732 2034 1501 1738 2040 1502 1740 2042 1496 1734 2036 1496 1734 2036 1502 1740 2042 1503 1741 2043 1497 1735 2037 878 997 1686 885 1004 1693 1504 1742 2044 1498 1736 2038 1498 1736 2038 1504 1742 2044 1505 1743 2045 1499 1737 2039 1507 1744 2046 1501 1738 2040 1500 1739 2041 1506 1745 2047 1501 1738 2040 1507 1744 2046 1508 1746 2048 1502 1740 2042 1502 1740 2042 1508 1746 2048 1509 1747 2049 1503 1741 2043 885 1004 1693 892 1011 1700 1510 1748 2050 1504 1742 2044 1504 1742 2044 1510 1748 2050 1511 1749 2051 1505 1743 2045 1882 1750 2052 1512 1751 2053 1507 1744 2046 1506 1745 2047 1507 1744 2046 1512 1751 2053 1513 1752 2054 1508 1746 2048 1508 1746 2048 1513 1752 2054 1883 1753 2055 1509 1747 2049 1509 1747 2049 1883 1753 2055 1514 1754 2056 1904 1755 2057 1904 1755 2057 1985 1019 1708 1986 1021 1710 1903 1756 2058 892 1011 1700 898 1023 1712 1515 1757 2059 1510 1748 2050 1510 1748 2050 1515 1757 2059 1516 1758 2060 1511 1749 2051 1312 1025 1714 905 1028 1717 1521 1759 2061 1881 1760 2062 1338 1565 1867 907 1029 1718 696 807 1496 1339 1567 1869 907 1029 1718 1338 1565 1867 1340 1569 1871 907 1029 1718 1339 1567 1869 1341 1571 1873 907 1029 1718 1340 1569 1871 1342 1573 1875 907 1029 1718 1341 1571 1873 1343 1575 1877 907 1029 1718 1342 1573 1875 1344 1577 1879 907 1029 1718 1343 1575 1877 1345 1579 1881 907 1029 1718 1344 1577 1879 1346 1581 1883 907 1029 1718 1345 1579 1881 1347 1583 1885 907 1029 1718 1346 1581 1883 1348 1585 1887 907 1029 1718 1347 1583 1885 1348 1585 1887 1897 1587 1889 907 1029 1718 1973 1589 1891 907 1029 1718 1897 1587 1889 1555 1761 692 1621 1762 693 1658 1763 694 1594 1764 695 1621 1762 693 1555 1761 692 1570 1765 696 1642 1766 697 1556 1767 698 1621 1762 693 1642 1766 697 1572 1768 699 1621 1762 693 1556 1767 698 1595 1769 700 1658 1763 694 1557 1770 701 1622 1771 702 1657 1772 703 1593 1773 704 1622 1771 702 1557 1770 701 1569 1774 705 1643 1775 706 1555 1761 692 1622 1771 702 1643 1775 706 1570 1765 696 1622 1771 702 1555 1761 692 1594 1764 695 1657 1772 703 1558 1776 707 1623 1777 708 1656 1778 709 1592 1779 710 1623 1777 708 1558 1776 707 1567 1780 711 1641 1781 712 1557 1770 701 1623 1777 708 1641 1781 712 1569 1774 705 1623 1777 708 1557 1770 701 1593 1773 704 1656 1778 709 1559 1782 713 1624 1783 714 1655 1784 715 1591 1785 716 1624 1783 714 1559 1782 713 1574 1786 717 1644 1787 718 1558 1776 707 1624 1783 714 1644 1787 718 1567 1780 711 1624 1783 714 1558 1776 707 1592 1779 710 1655 1784 715 1625 1788 719 1560 1789 720 1578 1790 721 1646 1791 722 1559 1782 713 1625 1788 719 1646 1791 722 1574 1786 717 1625 1788 719 1681 1792 723 1680 1793 724 1560 1789 720 1561 1794 725 1626 1795 726 1654 1796 727 1590 1797 728 1626 1795 726 1561 1794 725 1582 1798 729 1648 1799 730 1560 1789 720 1626 1795 726 1648 1799 730 1578 1790 721 1626 1795 726 1560 1789 720 1680 1793 724 1654 1796 727 1562 1800 731 1627 1801 732 1653 1802 733 1589 1803 734 1627 1801 732 1562 1800 731 1585 1804 735 1650 1805 736 1561 1794 725 1627 1801 732 1650 1805 736 1582 1798 729 1627 1801 732 1561 1794 725 1590 1797 728 1653 1802 733 1563 1806 737 1628 1807 738 1652 1808 739 1587 1809 740 1628 1807 738 1563 1806 737 1581 1810 741 1649 1811 742 1562 1800 731 1628 1807 738 1649 1811 742 1585 1804 735 1628 1807 738 1562 1800 731 1589 1803 734 1652 1808 739 1564 1812 743 1629 1813 744 1651 1814 745 1588 1815 746 1629 1813 744 1564 1812 743 1577 1816 747 1647 1817 748 1563 1806 737 1629 1813 744 1647 1817 748 1581 1810 741 1629 1813 744 1563 1806 737 1587 1809 740 1651 1814 745 1556 1767 698 1630 1818 749 1659 1819 750 1595 1769 700 1630 1818 749 1556 1767 698 1572 1768 699 1645 1820 752 1564 1812 743 1630 1818 749 1645 1820 752 1577 1816 747 1630 1818 749 1564 1812 743 1588 1815 746 1659 1819 750 1658 1763 694 1595 1769 700 1587 1809 740 1652 1808 739 1662 1821 2063 1600 1822 2064 1927 1823 2065 1926 1824 2066 1631 1825 2067 1537 1826 2068 1925 1827 2069 1926 1824 2066 1664 1828 2070 1604 1829 2071 1934 1830 2072 1932 1831 2073 1632 1832 2074 1539 1833 2075 1930 1834 2076 1932 1831 2073 1665 1835 2077 1523 1836 2078 1930 1834 2076 1928 1837 2079 1633 1838 2080 1565 1839 2081 1927 1823 2065 1928 1837 2079 1666 1840 2082 1522 1841 2083 1925 1827 2069 1929 1842 2084 1634 1843 2085 1538 1844 2086 1931 1845 2087 1929 1842 2084 1667 1846 2088 1524 1847 2089 1931 1845 2087 1933 1848 2090 1635 1849 2091 1540 1850 2092 1935 1851 2093 1933 1848 2090 1636 1852 2094 1541 1853 2095 1939 1854 2096 1937 1855 2097 1660 1856 2098 1596 1857 2099 1935 1851 2093 1937 1855 2097 1661 1858 2100 1598 1859 2101 1939 1854 2096 1941 1860 2102 1637 1861 2103 1543 1862 2104 1943 1863 2105 1941 1860 2102 1668 1864 2106 1525 1865 2107 1943 1863 2105 1944 1866 2108 1638 1867 2109 1544 1868 2110 1942 1869 2111 1944 1866 2108 1663 1870 2112 1602 1871 2113 1942 1869 2111 1940 1872 2114 1639 1873 2115 1542 1874 2116 1938 1875 2117 1940 1872 2114 1669 1876 2118 1526 1877 2119 1938 1875 2117 1936 1878 2120 1640 1879 2121 1566 1880 2122 1934 1830 2072 1936 1878 2120 1567 1780 711 1528 1881 944 1568 1882 949 1641 1781 712 1568 1883 949 1527 1884 947 1569 1774 705 1641 1781 712 1570 1765 696 1530 1885 946 1571 1886 948 1642 1766 697 1571 1887 948 1529 1888 942 1572 1768 699 1642 1766 697 1569 1774 705 1527 1889 947 1573 1890 945 1643 1775 706 1573 1891 945 1530 1892 946 1570 1765 696 1643 1775 706 1574 1786 717 1531 1893 940 1575 1894 943 1644 1787 718 1575 1895 943 1528 1896 944 1567 1780 711 1644 1787 718 1572 1768 699 1529 1897 942 1576 1898 941 1645 1820 752 1576 1899 941 1532 1900 938 1577 1816 747 1645 1820 752 1578 1790 721 1533 1901 936 1579 1902 939 1646 1791 722 1579 1903 939 1531 1904 940 1574 1786 717 1646 1791 722 1577 1816 747 1532 1905 938 1580 1906 937 1647 1817 748 1580 1907 937 1534 1908 934 1581 1810 741 1647 1817 748 1582 1798 729 1535 1909 931 1583 1910 935 1648 1799 730 1583 1911 935 1533 1912 936 1578 1790 721 1648 1799 730 1581 1810 741 1534 1913 934 1584 1914 933 1649 1811 742 1584 1915 933 1536 1916 932 1585 1804 735 1649 1811 742 1585 1804 735 1536 1917 932 1586 1918 930 1650 1805 736 1586 1919 930 1535 1920 931 1582 1798 729 1650 1805 736 1568 1921 2123 1528 1922 2124 1538 1844 2086 1634 1843 2085 1568 1923 2123 1634 1843 2085 1537 1826 2068 1527 1924 2125 1571 1925 2126 1530 1926 2127 1565 1839 2081 1633 1838 2080 1571 1927 2126 1633 1838 2080 1539 1833 2075 1529 1928 2128 1573 1929 2129 1527 1930 2125 1537 1826 2068 1631 1825 2067 1573 1931 2129 1631 1825 2067 1565 1839 2081 1530 1932 2127 1575 1933 2130 1531 1934 2131 1540 1850 2092 1635 1849 2091 1575 1935 2130 1635 1849 2091 1538 1844 2086 1528 1936 2124 1576 1937 2132 1529 1938 2128 1539 1833 2075 1632 1832 2074 1576 1939 2132 1632 1832 2074 1566 1880 2122 1532 1940 2133 1579 1941 2134 1533 1942 2135 1541 1853 2095 1636 1852 2094 1579 1943 2134 1636 1852 2094 1540 1850 2092 1531 1944 2131 1580 1945 2136 1532 1946 2133 1566 1880 2122 1640 1879 2121 1580 1947 2136 1640 1879 2121 1542 1874 2116 1534 1948 2137 1583 1949 2138 1535 1950 2139 1543 1862 2104 1637 1861 2103 1583 1951 2138 1637 1861 2103 1541 1853 2095 1533 1952 2135 1584 1953 2140 1534 1954 2137 1542 1874 2116 1639 1873 2115 1584 1955 2140 1639 1873 2115 1544 1868 2110 1536 1956 2141 1586 1957 2142 1536 1958 2141 1544 1868 2110 1638 1867 2109 1586 1959 2142 1638 1867 2109 1543 1862 2104 1535 1960 2139 1598 1859 2101 1546 1961 2143 1610 1962 2144 1660 1856 2098 1610 1962 2144 1545 1963 2145 1596 1857 2099 1660 1856 2098 1525 1865 2107 1547 1964 2146 1597 1965 2147 1661 1858 2100 1597 1965 2147 1546 1961 2143 1598 1859 2101 1661 1858 2100 1522 1841 2083 1549 1966 2148 1599 1967 2149 1662 1821 2063 1599 1967 2149 1548 1968 2150 1600 1822 2064 1662 1821 2063 1526 1877 2119 1551 1969 2151 1601 1970 2152 1663 1870 2112 1601 1970 2152 1550 1971 2153 1602 1871 2113 1663 1870 2112 1523 1836 2078 1553 1972 2154 1603 1973 2155 1664 1828 2070 1603 1973 2155 1552 1974 2156 1604 1829 2071 1664 1828 2070 1600 1822 2064 1548 1968 2150 1605 1975 2157 1665 1835 2077 1605 1975 2157 1553 1972 2154 1523 1836 2078 1665 1835 2077 1524 1847 2089 1554 1976 2158 1606 1977 2159 1666 1840 2082 1606 1977 2159 1549 1966 2148 1522 1841 2083 1666 1840 2082 1596 1857 2099 1545 1963 2145 1607 1978 2160 1667 1846 2088 1607 1978 2160 1554 1976 2158 1524 1847 2089 1667 1846 2088 1602 1871 2113 1550 1971 2153 1608 1979 2161 1668 1864 2106 1608 1979 2161 1547 1964 2146 1525 1865 2107 1668 1864 2106 1604 1829 2071 1552 1974 2156 1609 1980 2162 1669 1876 2118 1609 1980 2162 1551 1969 2151 1526 1877 2119 1669 1876 2118 1610 1962 2144 1546 1961 2143 1611 1981 2163 1670 1982 2164 1612 1983 2165 1545 1963 2145 1610 1962 2144 1670 1982 2164 1597 1965 2147 1547 1964 2146 1613 1984 2166 1671 1985 2167 1611 1981 2163 1546 1961 2143 1597 1965 2147 1671 1985 2167 1599 1967 2149 1549 1966 2148 1614 1986 2168 1672 1987 2169 1615 1988 2170 1548 1968 2150 1599 1967 2149 1672 1987 2169 1601 1970 2152 1551 1969 2151 1616 1989 2171 1673 1990 2172 1617 1991 2173 1550 1971 2153 1601 1970 2152 1673 1990 2172 1603 1973 2155 1553 1972 2154 1618 1992 2174 1674 1993 2175 1619 1994 2176 1552 1974 2156 1603 1973 2155 1674 1993 2175 1605 1975 2157 1548 1968 2150 1615 1988 2170 1675 1995 2177 1618 1992 2174 1553 1972 2154 1605 1975 2157 1675 1995 2177 1606 1977 2159 1554 1976 2158 1620 1996 2178 1676 1997 2179 1614 1986 2168 1549 1966 2148 1606 1977 2159 1676 1997 2179 1607 1978 2160 1545 1963 2145 1612 1983 2165 1677 1998 2180 1620 1996 2178 1554 1976 2158 1607 1978 2160 1677 1998 2180 1608 1979 2161 1550 1971 2153 1617 1991 2173 1678 1999 2181 1613 1984 2166 1547 1964 2146 1608 1979 2161 1678 1999 2181 1609 1980 2162 1552 1974 2156 1619 1994 2176 1679 2000 2182 1616 1989 2171 1551 1969 2151 1609 1980 2162 1679 2000 2182 1587 1809 740 1595 1769 700 1659 1819 750 1588 1815 746 1651 1814 745 1594 1764 695 1589 1803 734 1653 1802 733 1657 1772 703 1658 1763 694 1652 1808 739 1589 1803 734 1594 1764 695 1657 1772 703 1653 1802 733 1590 1797 728 1593 1773 704 1592 1779 710 1680 1793 724 1681 1792 723 1591 1785 716 1655 1784 715 1593 1773 704 1590 1797 728 1654 1796 727 1656 1778 709 1625 1788 719 1559 1782 713 1591 1785 716 1681 1792 723 1592 1779 710 1656 1778 709 1654 1796 727 1680 1793 724 1611 1981 2163 1519 2001 2183 1520 2002 2184 1670 1982 2164 1670 1982 2164 1520 2002 2184 1882 1750 2052 1612 1983 2165 1613 1984 2166 1517 2003 2185 1518 2004 2186 1671 1985 2167 1614 1986 2168 1488 1724 2026 1485 1723 2025 1672 1987 2169 1672 1987 2169 1485 1723 2025 1476 1714 2016 1615 1988 2170 1616 1989 2171 1499 1737 2039 1505 1743 2045 1673 1990 2172 1673 1990 2172 1505 1743 2045 1511 1749 2051 1617 1991 2173 1618 1992 2174 1474 1712 2014 1484 1722 2024 1674 1993 2175 1674 1993 2175 1484 1722 2024 1487 1729 2031 1619 1994 2176 1615 1988 2170 1476 1714 2016 1475 1713 2015 1675 1995 2177 1675 1995 2177 1475 1713 2015 1474 1712 2014 1618 1992 2174 1620 1996 2178 1500 1739 2041 1494 1733 2035 1676 1997 2179 1676 1997 2179 1494 1733 2035 1488 1724 2026 1614 1986 2168 1677 1998 2180 1506 1745 2047 1500 1739 2041 1620 1996 2178 1617 1991 2173 1511 1749 2051 1516 1758 2060 1678 1999 2181 1678 1999 2181 1516 1758 2060 1517 2003 2185 1613 1984 2166 1619 1994 2176 1487 1729 2031 1493 1731 2033 1679 2000 2182 1679 2000 2182 1493 1731 2033 1499 1737 2039 1616 1989 2171 1671 1985 2167 1518 2004 2186 1519 2001 2183 1611 1981 2163 1487 1729 2031 1484 1722 2024 1483 1721 2023 1484 1722 2024 1474 1712 2014 1473 1711 2013 1677 1998 2180 1612 1983 2165 1882 1750 2052 1506 1745 2047 1807 2005 620 1687 2006 621 1721 2007 622 1721 2007 622 1687 2006 621 1722 2008 623 1807 2005 620 1723 2009 624 1070 1282 380 1092 1281 379 1808 2010 625 1878 2011 626 1879 2012 627 1723 2009 624 1808 2010 625 1723 2009 624 1879 2012 627 1880 2013 628 1809 2014 629 1110 1287 385 1093 1289 387 1809 2014 629 1857 2015 630 1093 1289 387 1070 1282 380 1723 2009 624 1809 2014 629 1789 2016 631 1867 2017 632 1724 2018 633 1688 2019 634 1683 2020 635 1724 2018 633 1867 2017 632 1685 2021 636 1690 2022 637 1725 2023 638 1720 2024 639 1682 2025 640 1071 1300 398 1069 2026 399 1720 2027 639 1725 2023 638 1724 2018 633 1683 2028 635 1726 2029 641 1810 2030 642 1726 2031 641 1684 2032 643 1847 2033 644 1810 2030 642 1847 2033 644 1792 2034 645 1727 2035 646 1810 2030 642 1727 2035 646 1688 2019 634 1724 2018 633 1810 2030 642 1788 2036 647 1844 2037 648 1728 2038 649 1691 2039 650 1789 2016 631 1688 2019 634 1728 2038 649 1844 2037 648 1729 2040 651 1693 2041 652 1730 2042 653 1811 2043 654 1730 2042 653 1694 2044 655 1815 2045 656 1811 2043 654 1815 2045 656 1731 2046 657 1811 2043 654 1731 2046 657 1692 2047 658 1729 2040 651 1811 2043 654 1732 2048 659 1690 2022 637 1689 2049 660 1812 2050 661 1790 2051 662 1695 2052 663 1732 2048 659 1812 2050 661 1732 2048 659 1695 2052 663 1733 2053 664 1813 2054 665 1733 2053 664 1072 1331 426 1094 1330 425 1813 2054 665 1094 1330 425 1071 1300 398 1725 2023 638 1813 2054 665 1725 2023 638 1690 2022 637 1732 2048 659 1813 2054 665 1848 2055 666 1793 2056 667 1734 2057 668 1814 2058 669 1734 2057 668 1691 2039 650 1728 2038 649 1814 2058 669 1728 2038 649 1688 2019 634 1727 2035 646 1814 2058 669 1727 2035 646 1792 2034 645 1848 2055 666 1814 2058 669 1694 2044 655 1696 2059 670 1735 2060 671 1815 2045 656 1735 2060 671 1736 2061 672 1815 2045 656 1778 2062 673 1698 2063 674 1737 2064 675 1699 2065 676 1737 2064 675 1779 2066 677 1866 2067 678 1699 2065 676 1738 2068 679 1073 1348 443 1095 1347 442 1816 2069 680 1095 1347 442 1074 1350 445 1836 2070 681 1816 2069 680 1836 2070 681 1779 2066 677 1737 2064 675 1816 2069 680 1737 2064 675 1698 2063 674 1738 2068 679 1816 2069 680 1798 2071 682 1701 2072 683 1740 2073 684 1817 2074 685 1740 2073 684 1700 2075 686 1739 2076 687 1817 2074 685 1741 2077 688 1702 2078 689 1742 2079 690 1818 2080 691 1742 2079 690 1686 2081 751 1807 2005 620 1818 2080 691 1741 2077 688 1818 2080 691 1744 2082 753 1871 2083 754 1807 2005 620 1722 2008 623 1743 2084 755 1818 2080 691 1743 2084 755 1703 2085 756 1744 2082 753 1818 2080 691 1745 2086 757 1876 2087 758 1877 2088 759 1819 2089 760 1877 2088 759 1878 2011 626 1808 2010 625 1819 2089 760 1808 2010 625 1092 1281 379 1096 1369 464 1819 2089 760 1096 1369 464 1075 1370 465 1745 2086 757 1819 2089 760 1788 2036 647 1691 2039 650 1746 2090 761 1843 2091 762 1704 2092 763 1843 2091 762 1746 2090 761 1705 2093 764 1747 2094 765 1706 2095 766 1748 2096 767 1820 2097 768 1748 2096 767 1707 2098 769 1749 2099 770 1820 2097 768 1749 2099 770 1702 2078 689 1741 2077 688 1820 2097 768 1750 2100 771 1706 2095 766 1747 2094 765 1821 2101 772 1751 2102 773 1871 2083 754 1744 2082 753 1805 2103 774 1751 2102 773 1696 2059 670 1752 2104 775 1821 2101 772 1752 2104 775 1708 2105 776 1750 2100 771 1821 2101 772 1753 2106 777 1702 2078 689 1749 2099 770 1822 2107 778 1749 2099 770 1707 2098 769 1754 2108 779 1822 2107 778 1754 2108 779 1802 2109 780 1856 2110 781 1822 2107 778 1856 2110 781 1803 2111 782 1753 2106 777 1822 2107 778 1709 2112 783 1755 2113 784 1842 2114 785 1787 2115 786 1786 2116 787 1842 2114 785 1755 2113 784 1710 2117 788 1756 2118 789 1712 2119 790 1757 2120 791 1823 2121 792 1757 2120 791 1714 2122 793 1758 2123 794 1823 2121 792 1758 2123 794 1713 2124 795 1759 2125 796 1823 2121 792 1759 2125 796 1711 2126 797 1756 2118 789 1823 2121 792 1760 2127 798 1715 2128 799 1761 2129 800 1824 2130 801 1761 2129 800 1700 2075 686 1762 2131 802 1824 2130 801 1762 2131 802 1712 2119 790 1756 2118 789 1824 2130 801 1756 2118 789 1711 2126 797 1760 2127 798 1824 2130 801 1763 2132 803 1795 2133 804 1851 2134 805 1825 2135 806 1851 2134 805 1796 2136 807 1764 2137 808 1825 2135 806 1764 2137 808 1710 2117 788 1755 2113 784 1825 2135 806 1755 2113 784 1709 2112 783 1763 2132 803 1825 2135 806 1765 2138 809 1713 2124 795 1758 2123 794 1826 2139 810 1758 2123 794 1714 2122 793 1766 2140 811 1826 2139 810 1766 2140 811 1800 2141 812 1854 2142 813 1826 2139 810 1854 2142 813 1801 2143 814 1765 2138 809 1826 2139 810 1786 2116 787 1710 2117 788 1764 2137 808 1841 2144 815 1797 2145 816 1841 2144 815 1764 2137 808 1796 2136 807 1767 2146 817 1799 2147 818 1853 2148 819 1827 2149 820 1853 2148 819 1800 2141 812 1766 2140 811 1827 2149 820 1766 2140 811 1714 2122 793 1757 2120 791 1827 2149 820 1757 2120 791 1712 2119 790 1767 2146 817 1827 2149 820 1768 2150 821 1695 2052 663 1790 2051 662 1828 2151 822 1791 2152 823 1716 2153 824 1768 2150 821 1828 2151 822 1770 2154 825 1717 2155 826 1769 2156 827 1829 2157 828 1744 2082 753 1703 2085 756 1771 2158 829 1830 2159 830 1872 2160 831 1771 2158 829 1875 2161 832 1874 2162 833 1768 2150 821 1716 2153 824 1773 2163 834 1831 2164 835 1773 2163 834 1076 1447 542 1097 1446 541 1831 2164 835 1097 1446 541 1072 1331 426 1733 2053 664 1831 2164 835 1733 2053 664 1695 2052 663 1768 2150 821 1831 2164 835 1875 2161 832 1876 2087 758 1745 2086 757 1832 2165 836 1745 2086 757 1075 1370 465 1098 1449 544 1832 2165 836 1098 1449 544 1077 1451 546 1774 2166 837 1832 2165 836 1774 2166 837 1874 2162 833 1875 2161 832 1832 2165 836 1718 2167 838 1716 2153 824 1791 2152 823 1846 2168 839 1769 2156 827 1717 2155 826 1775 2169 840 1776 2170 841 1835 2171 842 1872 2160 831 1874 2162 833 1873 2172 843 1078 1458 553 1076 1447 542 1773 2163 834 1833 2173 844 1773 2163 834 1716 2153 824 1718 2167 838 1833 2173 844 1774 2166 837 1077 1451 546 1099 1461 556 1834 2174 845 1873 2172 843 1874 2162 833 1774 2166 837 1834 2174 845 1776 2170 841 1775 2169 840 1778 2062 673 1699 2065 676 1074 1350 445 1078 1458 553 1833 2173 844 1836 2070 681 1833 2173 844 1718 2167 838 1779 2066 677 1836 2070 681 1849 2175 846 1794 2176 847 1780 2177 848 1837 2178 849 1780 2177 848 1705 2093 764 1746 2090 761 1837 2178 849 1746 2090 761 1691 2039 650 1734 2057 668 1837 2178 849 1734 2057 668 1793 2056 667 1849 2175 846 1837 2178 849 1855 2179 850 1802 2109 780 1754 2108 779 1838 2180 851 1754 2108 779 1707 2098 769 1781 2181 852 1838 2180 851 1781 2181 852 1713 2124 795 1765 2138 809 1838 2180 851 1765 2138 809 1801 2143 814 1855 2179 850 1838 2180 851 1719 2182 853 1715 2128 799 1782 2183 854 1839 2184 855 1782 2183 854 1708 2105 776 1783 2185 856 1839 2184 855 1704 2092 763 1705 2093 764 1784 2186 857 1870 2187 858 1709 2112 783 1787 2115 786 1870 2187 858 1784 2186 857 1785 2188 859 1711 2126 797 1759 2125 796 1840 2189 860 1759 2125 796 1713 2124 795 1781 2181 852 1840 2189 860 1781 2181 852 1707 2098 769 1748 2096 767 1840 2189 860 1748 2096 767 1706 2095 766 1785 2188 859 1840 2189 860 1797 2145 816 1798 2071 682 1817 2074 685 1841 2144 815 1817 2074 685 1739 2076 687 1786 2116 787 1841 2144 815 1786 2116 787 1739 2076 687 1863 2190 861 1842 2114 785 1863 2190 861 1719 2182 853 1787 2115 786 1842 2114 785 1704 2092 763 1783 2185 856 1860 2191 862 1843 2091 762 1860 2191 862 1694 2044 655 1788 2036 647 1843 2091 762 1788 2036 647 1694 2044 655 1730 2042 653 1844 2037 648 1730 2042 653 1693 2041 652 1789 2016 631 1844 2037 648 1685 2192 636 1693 2041 652 1729 2040 651 1845 2193 863 1896 2194 864 1692 2047 658 1731 2046 657 1829 2157 828 1769 2156 827 1791 2152 823 1828 2151 822 1791 2152 823 1769 2156 827 1776 2170 841 1846 2168 839 1846 2168 839 1776 2170 841 1699 2065 676 1866 2067 678 1684 2195 643 1068 2196 577 1100 1483 576 1847 2033 644 1100 1483 576 1079 1485 578 1792 2034 645 1847 2033 644 1792 2034 645 1079 1485 578 1101 1486 579 1848 2055 666 1101 1486 579 1080 1487 580 1793 2056 667 1848 2055 666 1793 2056 667 1080 1487 580 1102 1488 581 1849 2175 846 1102 1488 581 1081 1489 582 1794 2176 847 1849 2175 846 1794 2176 847 1081 1489 582 1103 1491 584 1850 2197 865 1103 1491 584 1082 1492 585 1795 2133 804 1850 2197 865 1795 2133 804 1082 1492 585 1104 1493 586 1851 2134 805 1104 1493 586 1083 1494 587 1796 2136 807 1851 2134 805 1083 1494 587 1084 1495 588 1797 2145 816 1796 2136 807 1084 1495 588 1085 1496 589 1798 2071 682 1797 2145 816 1701 2072 683 1087 1499 592 1105 1498 591 1852 2198 866 1105 1498 591 1086 1500 593 1799 2147 818 1852 2198 866 1106 1501 594 1088 1502 595 1800 2141 812 1853 2148 819 1799 2147 818 1086 1500 593 1106 1501 594 1853 2148 819 1800 2141 812 1088 1502 595 1107 1503 596 1854 2142 813 1107 1503 596 1089 1504 597 1801 2143 814 1854 2142 813 1108 1505 598 1090 1506 599 1802 2109 780 1855 2179 850 1801 2143 814 1089 1504 597 1108 1505 598 1855 2179 850 1802 2109 780 1090 1506 599 1109 1507 600 1856 2110 781 1109 1507 600 1091 1508 601 1803 2111 782 1856 2110 781 1803 2111 782 1091 1508 601 1110 1287 385 1857 2015 630 1738 2068 679 1698 2063 674 1804 2199 867 1858 2200 868 1804 2199 867 1873 2172 843 1834 2174 845 1858 2200 868 1834 2174 845 1099 1461 556 1111 1511 604 1858 2200 868 1111 1511 604 1073 1348 443 1738 2068 679 1858 2200 868 1085 1496 589 1087 1499 592 1701 2072 683 1798 2071 682 1770 2154 825 1697 2201 869 1805 2103 774 1859 2202 870 1805 2103 774 1744 2082 753 1830 2159 830 1859 2202 870 1830 2159 830 1772 2203 871 1806 2204 872 1859 2202 870 1806 2204 872 1717 2155 826 1770 2154 825 1859 2202 870 1783 2185 856 1708 2105 776 1752 2104 775 1860 2191 862 1696 2059 670 1694 2044 655 1860 2191 862 1752 2104 775 1775 2169 840 1717 2155 826 1806 2204 872 1861 2205 873 1806 2204 872 1772 2203 871 1777 2206 874 1861 2205 873 1785 2188 859 1706 2095 766 1750 2100 771 1862 2207 875 1750 2100 771 1708 2105 776 1782 2183 854 1862 2207 875 1782 2183 854 1715 2128 799 1760 2127 798 1862 2207 875 1760 2127 798 1711 2126 797 1785 2188 859 1862 2207 875 1778 2062 673 1775 2169 840 1861 2205 873 1864 2208 876 1861 2205 873 1777 2206 874 1835 2171 842 1864 2208 876 1739 2076 687 1700 2075 686 1761 2129 800 1863 2190 861 1761 2129 800 1715 2128 799 1719 2182 853 1863 2190 861 1804 2199 867 1698 2063 674 1778 2062 673 1864 2208 876 1852 2198 866 1799 2147 818 1767 2146 817 1865 2209 877 1767 2146 817 1712 2119 790 1762 2131 802 1865 2209 877 1762 2131 802 1700 2075 686 1740 2073 684 1865 2209 877 1740 2073 684 1701 2072 683 1852 2198 866 1865 2209 877 1779 2066 677 1718 2167 838 1846 2168 839 1866 2067 678 1789 2016 631 1693 2041 652 1685 2210 636 1867 2017 632 1805 2103 774 1697 2201 869 1735 2060 671 1696 2059 670 1751 2102 773 1753 2106 777 1803 2111 782 1857 2015 630 1868 2211 878 1857 2015 630 1809 2014 629 1868 2211 878 1809 2014 629 1880 2013 628 1868 2211 878 1742 2079 690 1702 2078 689 1753 2106 777 1868 2211 878 1780 2177 848 1794 2176 847 1850 2197 865 1869 2212 879 1850 2197 865 1795 2133 804 1763 2132 803 1869 2212 879 1763 2132 803 1709 2112 783 1784 2186 857 1869 2212 879 1784 2186 857 1705 2093 764 1780 2177 848 1869 2212 879 1787 2115 786 1719 2182 853 1839 2184 855 1870 2187 858 1839 2184 855 1783 2185 856 1704 2092 763 1870 2187 858 1871 2083 754 1751 2102 773 1821 2101 772 1747 2094 765 1741 2077 688 1871 2083 754 1747 2094 765 1820 2097 768 1772 2203 871 1872 2160 831 1835 2171 842 1777 2206 874 1771 2158 829 1872 2160 831 1772 2203 871 1830 2159 830 1835 2171 842 1873 2172 843 1804 2199 867 1864 2208 876 1771 2158 829 1703 2085 756 1876 2087 758 1875 2161 832 1877 2088 759 1876 2087 758 1703 2085 756 1743 2084 755 1743 2084 755 1722 2008 623 1878 2011 626 1877 2088 759 1722 2008 623 1687 2006 621 1879 2012 627 1878 2011 626 1880 2013 628 1879 2012 627 1687 2006 621 1686 2081 751 1868 2211 878 1880 2013 628 1686 2081 751 1742 2079 690 1068 2213 1843 1684 2214 2187 1886 2215 2188 1319 1525 1844 1518 2004 2186 1521 1759 2061 1886 2215 2188 1887 2216 2189 1518 2004 2186 1517 2003 2185 1881 1760 2062 1521 1759 2061 1881 1760 2062 1517 2003 2185 1516 1758 2060 1515 1757 2059 898 1023 1712 1312 1025 1714 1881 1760 2062 1515 1757 2059 1683 2217 2190 1685 2218 2191 1889 2219 2192 1888 2220 2193 1882 1750 2052 1520 2002 2184 1889 2219 2192 1890 2221 2194 1884 2222 2195 1885 2223 2196 1892 2224 2197 1891 2225 2198 1315 1538 1857 1514 1754 2056 1898 2226 2199 1320 1539 1858 1519 2001 2183 1518 2004 2186 1887 2216 2189 1888 2220 2193 1512 1751 2053 1882 1750 2052 1890 2221 2194 1891 2225 2198 1729 2040 651 1692 2047 658 1884 2227 880 1845 2228 863 1690 2022 637 1682 2229 640 1885 2230 881 1689 2049 660 1883 1753 2055 1513 1752 2054 1892 2224 2197 1893 2231 2200 1885 2232 881 1884 2233 880 1692 2047 658 1689 2049 660 1521 1759 2061 905 1028 1717 1319 1525 1844 1886 2215 2188 1720 2234 2201 1069 2235 1862 1320 1539 1858 1898 2226 2199 1684 2236 2187 1726 2237 2202 1887 2216 2189 1886 2215 2188 1726 2238 2202 1683 2239 2190 1888 2220 2193 1887 2216 2189 1520 2002 2184 1519 2001 2183 1888 2220 2193 1889 2219 2192 1685 2240 2191 1845 2241 2203 1890 2221 2194 1889 2219 2192 1845 2242 2203 1884 2243 2195 1891 2225 2198 1890 2221 2194 1513 1752 2054 1512 1751 2053 1891 2225 2198 1892 2224 2197 1885 2244 2196 1682 2245 2204 1893 2231 2200 1892 2224 2197 1682 2246 2204 1720 2247 2201 1898 2226 2199 1893 2231 2200 1894 2248 882 1697 2201 869 1770 2154 825 1829 2157 828 1790 2051 662 1894 2248 882 1829 2157 828 1828 2151 822 1895 2249 883 1894 2248 882 1790 2051 662 1812 2050 661 1736 2061 672 1735 2060 671 1697 2201 869 1894 2248 882 1896 2194 864 1736 2061 672 1894 2248 882 1895 2249 883 1689 2049 660 1692 2047 658 1896 2194 864 1895 2249 883 1689 2049 660 1895 2249 883 1812 2050 661 1731 2046 657 1815 2045 656 1736 2061 672 1896 2194 864 1883 1753 2055 1893 2231 2200 1898 2226 2199 1514 1754 2056 1359 1584 1886 1371 1600 1902 1899 1601 1903 1360 1586 1888 1371 1600 1902 1382 1613 1915 1900 1614 1916 1899 1601 1903 1382 1613 1915 1393 1626 1928 1901 1627 1929 1900 1614 1916 1393 1626 1928 1404 1639 1941 1902 1640 1942 1901 1627 1929 1404 1639 1941 1415 1652 1954 350 790 1479 1902 1640 1942 1415 1652 1954 1426 1664 1966 433 793 1482 350 790 1479 1497 1735 2037 1903 1756 2058 430 806 1495 1503 1741 2043 1509 1747 2049 1904 1755 2057 1903 1756 2058 1051 1105 1734 986 1090 1719 1906 1093 1722 1905 1106 1735 1048 1091 1720 908 1109 1738 1908 1096 1725 1907 1092 1721 1017 1095 1724 951 1107 1736 1906 1093 1722 1907 1092 1721 1019 1108 1737 925 1101 1730 1909 1103 1732 1905 1106 1735 1020 1113 1742 923 1094 1723 1908 1096 1725 1910 1111 1740 1050 1098 1727 909 1104 1733 1909 1103 1732 1911 1099 1728 1052 1110 1739 910 1115 1744 1912 1114 1743 1910 1111 1740 1018 1102 1731 952 1148 1777 1913 1100 1729 1911 1099 1728 1021 1119 1748 924 1112 1741 1912 1114 1743 1914 1117 1746 1055 1146 1775 990 1097 1726 1913 1100 1729 1915 1147 1776 1053 1116 1745 982 1125 1754 1916 1120 1749 1914 1117 1746 1026 1149 1778 928 1142 1771 1917 1144 1773 1915 1147 1776 1022 1122 1751 926 1118 1747 1916 1120 1749 1918 1123 1752 1049 1140 1769 912 1145 1774 1917 1144 1773 1919 1141 1770 1046 1126 1755 984 1127 1756 1920 1124 1753 1918 1123 1752 1025 1143 1772 930 1136 1765 1921 1138 1767 1919 1141 1770 1023 1131 1760 927 1121 1750 1920 1124 1753 1922 1129 1758 1054 1134 1763 988 1139 1768 1921 1138 1767 1923 1135 1764 1047 1128 1757 911 1133 1762 1924 1132 1761 1922 1129 1758 1024 1137 1766 929 1130 1759 1924 1132 1761 1923 1135 1764 1522 1841 2083 1662 1821 2063 1926 1824 2066 1925 1827 2069 1600 1822 2064 1665 1835 2077 1928 1837 2079 1927 1823 2065 1565 1839 2081 1631 1825 2067 1926 1824 2066 1927 1823 2065 1537 1826 2068 1634 1843 2085 1929 1842 2084 1925 1827 2069 1539 1833 2075 1633 1838 2080 1928 1837 2079 1930 1834 2076 1524 1847 2089 1666 1840 2082 1929 1842 2084 1931 1845 2087 1523 1836 2078 1664 1828 2070 1932 1831 2073 1930 1834 2076 1538 1844 2086 1635 1849 2091 1933 1848 2090 1931 1845 2087 1566 1880 2122 1632 1832 2074 1932 1831 2073 1934 1830 2072 1596 1857 2099 1667 1846 2088 1933 1848 2090 1935 1851 2093 1604 1829 2071 1669 1876 2118 1936 1878 2120 1934 1830 2072 1540 1850 2092 1636 1852 2094 1937 1855 2097 1935 1851 2093 1542 1874 2116 1640 1879 2121 1936 1878 2120 1938 1875 2117 1598 1859 2101 1660 1856 2098 1937 1855 2097 1939 1854 2096 1526 1877 2119 1663 1870 2112 1940 1872 2114 1938 1875 2117 1541 1853 2095 1637 1861 2103 1941 1860 2102 1939 1854 2096 1544 1868 2110 1639 1873 2115 1940 1872 2114 1942 1869 2111 1525 1865 2107 1661 1858 2100 1941 1860 2102 1943 1863 2105 1602 1871 2113 1668 1864 2106 1944 1866 2108 1942 1869 2111 1543 1862 2104 1638 1867 2109 1944 1866 2108 1943 1863 2105 651 570 1332 1945 675 1416 2086 2250 2205 2087 571 1333 1964 507 1303 374 512 1308 393 653 1394 1945 675 1416 2086 2250 2205 1945 675 1416 393 653 1394 2107 723 1448 401 620 1368 521 619 1367 1948 772 1467 1949 771 1466 579 623 1371 660 630 1378 1950 770 1465 1949 771 1466 402 628 1376 524 626 1374 1950 770 1465 1951 769 1464 578 631 1379 577 664 1405 1952 767 1462 1951 769 1464 577 664 1405 2094 700 1429 2096 768 1463 1952 767 1462 419 742 977 584 693 281 1954 765 1000 1955 764 999 575 553 236 659 556 239 1957 762 997 1956 763 998 404 636 250 527 634 248 1957 762 997 1958 761 996 574 558 241 658 569 245 1959 760 995 1958 761 996 407 643 257 530 641 255 1959 760 995 1960 759 994 573 568 244 657 672 268 1961 758 993 1960 759 994 412 649 263 533 647 261 1961 758 993 1962 757 992 571 755 990 671 732 309 1947 734 311 1963 756 991 1470 1708 2010 1481 1719 2021 347 801 1490 431 800 1489 1459 1697 1999 1470 1708 2010 431 800 1489 348 798 1487 1448 1686 1988 1459 1697 1999 348 798 1487 432 797 1486 1437 1675 1977 1448 1686 1988 432 797 1486 349 794 1483 1491 1727 2029 351 803 1492 347 801 1490 1481 1719 2021 1497 1735 2037 430 806 1495 351 803 1492 1491 1727 2029 435 438 1234 430 806 1495 1903 1756 2058 1986 1021 1710 435 438 1234 1986 1021 1710 320 1020 1709 88 375 1186 433 793 1482 1426 1664 1966 1437 1675 1977 349 794 1483 2048 2251 2206 2049 2252 2207 1973 1589 1891 1972 1588 1890 1902 1640 1942 350 790 1479 434 436 1232 1974 1641 1943 2047 2253 2208 2048 2251 2206 1972 1588 1890 1975 1602 1904 2046 2254 2209 2047 2253 2208 1975 1602 1904 1976 1615 1917 2045 2255 2210 2046 2254 2209 1976 1615 1917 1977 1628 1930 2044 1653 1955 2045 2255 2210 1977 1628 1930 1974 1641 1943 606 781 1473 684 410 1214 2026 413 1217 2027 423 2211 310 111 904 1978 113 906 2025 412 1216 2024 409 1213 867 985 1674 858 976 1665 4 371 1182 84 373 1184 858 976 1665 845 964 1653 0 369 1180 4 371 1182 721 832 1521 1331 831 1520 1980 836 1525 1979 835 1524 774 2256 2212 3 360 1171 87 359 1170 1981 892 1581 722 834 1523 735 2257 2213 1982 850 1539 1979 835 1524 735 2257 2213 748 2258 2214 1983 864 1553 1982 850 1539 748 2258 2214 761 2259 2215 1984 878 1567 1983 864 1553 761 2259 2215 774 2256 2212 1981 892 1581 1984 878 1567 810 928 1617 798 916 1605 86 364 1175 1 365 1176 1 365 1176 85 367 1178 822 940 1629 810 928 1617 834 952 1641 822 940 1629 85 367 1178 0 369 1180 845 964 1653 834 952 1641 0 369 1180 88 375 1186 320 1020 1709 2015 2260 2216 2015 2260 2216 84 373 1184 88 375 1186 1904 1755 2057 1514 1754 2056 1315 1538 1857 1985 1019 1708 1337 1017 1706 1985 1019 1708 1315 1538 1857 897 1018 1707 90 2 28 243 1 26 1987 2261 2217 1988 2262 2218 243 1 26 91 4 30 1989 2263 2219 1987 2261 2217 91 4 30 244 7 35 1990 2264 2220 1989 2263 2219 244 7 35 299 8 36 1991 2265 2221 1990 2264 2220 164 179 1042 163 178 1041 1992 2266 2222 1993 2267 2223 266 181 1045 165 180 1043 1994 2268 2224 1995 2269 2225 163 178 1041 266 181 1045 1995 2269 2225 1992 2266 2222 288 184 1048 90 2 28 1988 2262 2218 1996 2270 2226 167 186 1050 164 179 1042 1993 2267 2223 1997 2271 2227 324 333 1144 288 184 1048 1996 2270 2226 1998 2272 2228 315 351 1162 167 186 1050 1997 2271 2227 1999 2273 2229 165 180 1043 324 333 1144 1998 2272 2228 1994 2268 2224 1991 2265 2221 299 8 36 2017 378 1189 2018 2274 2230 690 432 1228 315 351 1162 1999 2273 2229 2001 2275 2231 622 442 1238 437 441 1237 2002 2276 2232 2003 2277 2233 438 443 1239 622 442 1238 2003 2277 2233 2004 2278 2234 623 446 1242 438 443 1239 2004 2278 2234 2005 2279 2235 440 447 1243 623 446 1242 2005 2279 2235 2006 2280 2236 519 618 1366 520 617 1365 2007 2281 2237 2008 2282 2238 521 619 1367 645 622 1370 2009 2283 2239 2010 2284 2240 645 622 1370 519 618 1366 2008 2282 2238 2009 2283 2239 437 441 1237 661 624 1372 2011 2285 2241 2002 2276 2232 520 617 1365 523 625 1373 2012 2286 2242 2007 2281 2237 661 624 1372 1948 772 1467 2013 2287 2243 2011 2285 2241 672 774 1469 440 447 1243 2006 2280 2236 2000 2288 2244 523 625 1373 690 432 1228 2001 2275 2231 2012 2286 2242 1948 772 1467 521 619 1367 2010 2284 2240 2013 2287 2243 1988 2262 2218 1987 2261 2217 2014 2289 2245 1987 2261 2217 1989 2263 2219 2014 2289 2245 1989 2263 2219 1990 2264 2220 2014 2289 2245 1990 2264 2220 1991 2265 2221 2014 2289 2245 1993 2267 2223 1992 2266 2222 2014 2289 2245 1995 2269 2225 1994 2268 2224 2014 2289 2245 1992 2266 2222 1995 2269 2225 2014 2289 2245 1996 2270 2226 1988 2262 2218 2014 2289 2245 1997 2271 2227 1993 2267 2223 2014 2289 2245 1998 2272 2228 1996 2270 2226 2014 2289 2245 1999 2273 2229 1997 2271 2227 2014 2289 2245 1994 2268 2224 1998 2272 2228 2014 2289 2245 1991 2265 2221 2018 2274 2230 2000 2288 2244 2014 2289 2245 2001 2275 2231 1999 2273 2229 2014 2289 2245 2003 2277 2233 2002 2276 2232 2014 2289 2245 2004 2278 2234 2003 2277 2233 2014 2289 2245 2005 2279 2235 2004 2278 2234 2014 2289 2245 2006 2280 2236 2005 2279 2235 2014 2289 2245 2008 2282 2238 2007 2281 2237 2014 2289 2245 2010 2284 2240 2009 2283 2239 2014 2289 2245 2009 2283 2239 2008 2282 2238 2014 2289 2245 2002 2276 2232 2011 2285 2241 2014 2289 2245 2007 2281 2237 2012 2286 2242 2014 2289 2245 2011 2285 2241 2013 2287 2243 2014 2289 2245 2000 2288 2244 2006 2280 2236 2014 2289 2245 2012 2286 2242 2001 2275 2231 2014 2289 2245 2013 2287 2243 2010 2284 2240 2014 2289 2245 2015 2260 2216 320 1020 1709 884 1002 1691 877 995 1684 877 995 1684 867 985 1674 84 373 1184 2015 2260 2216 1497 1735 2037 1503 1741 2043 1903 1756 2058 672 774 1469 2000 2288 2244 2018 2274 2230 2017 378 1189 308 85 74 228 88 77 2020 406 151 2019 402 150 673 775 1470 590 773 1468 2022 377 1188 2021 379 1190 590 773 1468 672 774 1469 2017 378 1189 2022 377 1188 591 776 1471 673 775 1470 2021 379 1190 2023 380 1191 683 780 1472 591 776 1471 2023 380 1191 2024 409 1213 604 411 1215 683 780 1472 2024 409 1213 2025 412 1216 1978 113 906 142 124 914 2026 413 1217 2025 412 1216 142 124 914 229 126 916 2027 423 2211 2026 413 1217 687 782 229 606 781 228 2027 423 153 2028 422 152 607 783 230 687 782 229 2028 422 152 2029 424 154 688 784 231 607 783 230 2029 424 154 2030 425 155 603 778 224 688 784 231 2030 425 155 2031 408 147 682 779 225 603 778 224 2031 408 147 2032 407 146 601 777 222 682 779 225 2032 407 146 2033 403 145 681 405 223 601 777 222 2033 403 145 2019 402 2263 2020 406 151 228 88 77 312 154 107 2016 420 160 312 154 107 41 140 103 2034 414 156 2016 420 160 41 140 103 311 135 100 2035 415 157 2034 414 156 311 135 921 29 77 897 2036 394 1205 2035 415 1218 29 77 897 307 76 896 2037 395 1206 2036 394 1205 307 76 896 227 79 899 2038 398 1209 2037 395 1206 227 79 899 45 81 901 2039 400 1211 2038 398 1209 45 81 901 162 353 1164 2040 428 1224 2039 400 1211 162 353 1164 79 355 1166 2041 430 1226 2040 428 1224 79 355 1166 233 358 1169 2042 433 1229 2041 430 1226 233 358 1169 3 360 1171 2043 435 1231 2042 433 1229 3 360 1171 774 2256 2212 2044 1653 1955 2043 435 1231 774 2256 2212 761 2259 2215 2045 2255 2210 2044 1653 1955 761 2259 2215 748 2258 2214 2046 2254 2209 2045 2255 2210 748 2258 2214 735 2257 2213 2047 2253 2208 2046 2254 2209 735 2257 2213 722 834 1523 2048 2251 2206 2047 2253 2208 722 834 1523 708 833 1522 2049 2252 2207 2048 2251 2206 907 1029 1718 2049 2252 2207 708 833 1522 1973 1589 1891 2049 2252 2207 907 1029 1718 907 1029 1718 1980 836 1525 1331 831 1520 2050 292 123 2051 291 122 2065 133 1002 2064 288 1003 282 294 125 322 296 127 2067 376 1004 2066 134 1005 2051 291 122 282 294 125 2066 134 1005 2065 133 1002 185 244 52 278 242 50 2069 237 1006 2068 245 1007 184 241 49 279 251 56 2071 246 1008 2070 238 1009 278 242 50 184 241 49 2070 238 1009 2069 237 1006 2052 263 64 185 244 52 2068 245 1007 2072 261 1010 186 250 55 2050 292 123 2064 288 1003 2073 247 1011 279 251 56 186 250 55 2073 247 1011 2071 246 1008 187 259 1104 280 257 1103 2075 252 1099 2074 260 1105 2053 256 59 2054 327 235 2077 328 1014 2076 253 1015 280 257 60 2053 256 59 2076 253 1015 2075 252 2276 2055 266 1109 187 259 1104 2074 260 1105 2078 264 1107 2054 327 235 2052 263 64 2072 261 1010 2077 328 1014 188 268 1111 2055 266 1109 2078 264 1107 2079 269 1112 2056 272 1115 188 268 1111 2079 269 1112 2080 270 1113 189 274 1117 2056 272 1115 2080 270 1113 2081 275 1118 2057 287 1128 189 274 1117 2081 275 1118 2082 285 1126 191 283 88 281 281 2271 2084 276 1021 2083 284 1022 190 280 1123 2057 287 1128 2082 285 1126 2085 277 1120 281 281 1124 190 280 1123 2085 277 1120 2084 276 1119 322 296 127 191 283 88 2083 284 1022 2067 376 1004 1946 735 970 656 733 310 2087 571 1024 2086 2250 1025 2058 731 308 2059 730 307 2089 727 1026 2088 572 1027 656 733 310 2058 731 308 2088 572 1027 2087 571 1024 653 689 279 554 681 274 2091 676 1028 2090 686 1029 652 680 273 555 683 276 2093 684 1030 2092 677 1031 554 681 274 652 680 273 2092 677 1031 2091 676 1028 555 683 276 2060 702 288 2094 700 1032 2093 684 1030 2059 730 307 556 690 280 2095 685 1033 2089 727 1026 556 690 280 653 689 279 2090 686 1029 2095 685 1033 1953 766 1001 557 696 284 2097 691 1034 2096 768 1035 654 695 1427 558 698 1426 2099 699 1428 2098 692 1423 557 696 284 654 695 2270 2098 692 1037 2097 691 1034 558 698 1426 2061 705 1432 2100 703 1430 2099 699 1428 2060 702 288 1953 766 1001 2096 768 1035 2094 700 1032 2061 705 1432 559 707 1434 2101 708 1435 2100 703 1430 559 707 1434 2062 711 1438 2102 709 1436 2101 708 1435 2062 711 1438 560 713 1440 2103 714 1441 2102 709 1436 560 713 1440 2063 726 1451 2104 724 1449 2103 714 1441 2063 726 1451 561 720 1447 2105 715 1442 2104 724 1449 655 719 299 562 722 302 2107 723 1044 2106 716 2266 561 720 1447 655 719 1446 2106 716 1443 2105 715 1442 562 722 302 1946 735 970 2086 2250 1025 2107 723 1044 1686 2081 751 1687 2006 621 1807 2005 620 1117 1276 374 1237 1275 373 1151 1277 375

0 0 1 0 0 1 0 0 1 0 0 0 400.113 463.264 -431.078 0 0 1 0 0 1 0 -223.2 1 0 0 -38.4 148.654 183.672 -292.179 0 0 1 -12.8709 0 1 0 -191.679 1 0 0 -45.6358
pycollada-0.4/collada/tests/data/duck_triangles.dae000077500000000000000000012177201200577111600224650ustar00rootroot00000000000000 gcorson Maya 8.0 | ColladaMaya v3.02 | FCollada v3.2 Collada Maya Export Options: bakeTransforms=0;exportPolygonMeshes=1;bakeLighting=0;isSampling=0; curveConstrainSampling=0;exportCameraAsLookat=0; exportLights=1;exportCameras=1;exportJointsAndSkin=1; exportAnimations=1;exportTriangles=1;exportInvisibleNodes=0; exportNormals=1;exportTexCoords=1;exportVertexColors=1;exportTangents=0; exportTexTangents=0;exportConstraints=1;exportPhysics=0;exportXRefs=1; dereferenceXRefs=0;cameraXFov=0;cameraYFov=1 Copyright 2006 Sony Computer Entertainment Inc. Licensed under the SCEA Shared Source License, Version 1.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://research.scea.com/scea_shared_source_license.html Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. file:///C:/vs2005/sample_data/Complete_Packages/SCEA_Private/Maya_MoonLander/Moonlander/untitled 2006-08-23T22:29:59Z 2007-02-21T22:52:44Z Y_UP 37.8492 1.5 1 10000 1 1 1 ./duckCM.tga file2 A8R8G8B8 file2-surface LINEAR_MIPMAP_LINEAR LINEAR 0 0 0 1 0 0 0 1 0 0 0 1 0.3 0 0 0 1 0.5 0 0 0 1 1 1 35.0226 89.3874 23.3732 19.5676 89.7173 22.4879 9.22909 91.5427 17.1037 4.33048 88.7008 4.57726 45.0571 89.4178 19.824 -30.5196 11.6272 25.1326 -15.6992 11.4278 34.2321 51.8411 17.7055 36.5602 65.7206 18.372 27.0862 56.0117 11.4345 22.6963 -23.2343 18.1488 41.0429 -40.9218 18.6322 29.6382 62.4487 11.3989 12.9806 60.2326 28.1944 39.5949 71.2984 29.0359 29.3335 -32.9737 29.6914 43.477 -48.95 28.9358 31.4102 73.8118 41.7425 29.8584 65.2513 41.3955 39.884 72.6597 55.003 29.2468 64.6263 55.4849 38.2648 66.5829 66.4165 27.9218 55.5179 67.734 35.7358 43.4971 75.6992 31.8699 56.934 75.0037 25.7495 14.7601 73.8701 35.1574 -12.1248 73.9991 28.9191 14.7016 78.8465 28.8886 -3.37962 78.0576 23.1953 -24.7824 78.2304 7.65121 4.94216 81.4267 15.8195 -54.7257 89.9761 8.84491 -53.6566 74.7375 26.9735 -44.1714 77.8938 26.1268 -64.7587 73.8997 7.15297 -61.5691 65.6958 25.2253 -42.9296 61.2502 39.4496 -64.9663 57.2673 21.7398 -48.9596 49.2561 39.8218 -58.3698 43.9468 28.036 -31.7993 70.8398 33.4366 -33.1153 82.3349 8.62471 48.2452 81.0789 22.327 34.1225 80.5718 26.6473 15.5527 81.3807 24.423 0.65596 81.0723 3.99376 15.1798 11.41 36.4164 17.2973 17.3674 43.2976 43.8649 67.7941 39.8677 55.9835 56.1625 42.7808 56.4187 41.7648 44.4371 46.9566 29.0085 44.2399 18.041 21.337 45.4158 -24.2634 29.7596 46.4694 -37.1346 44.6474 44.4312 -35.8668 57.8953 42.7333 -24.1626 66.8013 39.6298 -14.2645 43.4767 51.8892 10.1522 43.8267 53.9252 -10.3735 36.316 51.8336 -14.5047 52.2745 51.0455 9.35439 52.1796 53.5056 24.5685 36.9247 52.4691 11.2191 35.6243 52.5988 27.0248 44.5585 52.8835 25.4374 55.0852 52.0724 9.23132 59.258 51.2115 21.2751 61.6417 50.3945 -11.0645 57.3325 50.3033 -22.8339 53.8174 48.6047 -22.3883 43.3299 49.8488 -13.3437 34.4469 50.7719 -15.0193 59.7488 48.0109 12.3031 31.6369 51.4681 28.2 34.9703 51.4911 34.9314 44.1559 51.2583 33.7281 55.8993 50.0475 24.8495 63.37 48.6114 9.96162 62.8873 48.4038 6.73344 84.5266 2.83788 10.2211 84.9641 13.1445 19.05 85.0093 20.4734 35.2584 84.9759 22.0089 44.8651 85.199 18.7578 54.1484 90.1992 13.1393 25.84 89.3162 23.5593 14.5318 90.4728 20.5795 5.99276 89.5698 10.1098 59.1034 90.0324 3.37689 -23.9364 11.5353 30.6125 -11.459 10.0413 29.8243 -24.5326 10.1147 22.2069 -35.1528 11.6836 17.7191 61.5472 14.2726 25.2082 43.6854 11.43 30.0164 47.7677 14.1162 33.6212 -19.459 14.309 37.9267 -36.067 14.5054 27.6816 -32.9292 18.5574 36.7248 -46.1733 18.6604 20.5246 73.3418 18.3468 14.9194 68.8732 23.4107 28.4208 55.7803 22.4988 38.5465 -27.0171 23.4671 43.0366 -45.2302 23.6628 30.9246 -41.0731 29.3325 39.4763 79.4615 29.1894 16.0672 76.9844 23.4678 15.5749 72.8865 35.1223 29.8369 63.2406 34.5574 39.8307 81.8608 42.114 16.7292 80.9318 35.3877 16.409 66.0817 48.5555 39.2449 73.9987 48.5347 29.6857 80.1688 55.1853 16.948 81.5894 48.8387 16.9628 61.1927 62.0057 37.295 70.17 61.0152 28.6395 74.8647 66.3268 16.601 77.7874 61.0196 16.7611 61.7637 71.037 26.8557 67.1835 75.4493 16.6366 71.6321 71.1772 16.667 -7.40039 76.1581 26.3759 14.8335 76.3145 32.0471 -20.947 75.0059 21.3995 -9.30957 78.0917 17.6635 2.33308 81.2658 10.7014 -55.3055 81.4823 20.1865 -44.1025 82.8784 21.08 -48.3998 77.2606 26.9595 -63.8341 69.8359 17.705 -58.2579 70.6396 26.4175 -58.1459 60.4109 31.5845 -50.1918 68.7831 33.097 -53.5557 46.1592 34.9928 -63.069 52.729 24.0553 -63.6495 60.7883 23.3658 -54.4261 28.5392 21.6382 -12.4228 39.2454 51.9419 -52.1766 34.1006 30.9987 -39.3582 37.1753 42.8245 -63.2047 33.3562 7.77354 -14.9689 48.0973 51.5712 -13.2184 68.1588 38.5488 -20.841 71.9312 31.5875 -34.0814 73.6573 23.1685 39.0864 77.6536 29.4959 52.286 78.2905 24.2985 28.6752 75.0467 34.74 24.5284 79.4248 29.0977 58.2456 81.6454 14.9372 62.5867 78.8584 16.1198 -40.058 73.3058 29.0169 -62.4832 42.7738 19.6053 -66.2542 57.7677 16.0138 -46.3972 55.562 40.3341 46.1403 83.2928 20.059 52.8472 87.516 12.3304 24.3957 81.2413 26.4145 17.5457 83.2299 21.6568 35.0308 86.9496 21.9178 5.66061 83.0193 2.97282 39.2717 10.0042 25.9897 49.7414 9.99683 19.7068 14.6156 10.0124 31.7958 28.2119 11.4278 34.5791 55.179 10.0309 11.4214 16.1259 13.9798 40.2177 33.0793 17.7336 41.3765 18.9195 36.2041 52.5892 10.6044 39.6524 53.4314 18.2523 44.3116 53.7955 25.9535 39.9994 52.7745 9.73549 48.0914 53.8815 16.9236 53.6009 53.2898 26.8721 49.8693 52.6952 9.12603 55.8675 52.7181 15.9783 60.8706 50.8542 23.2428 59.2083 51.1997 15.2006 70.9348 38.4909 -38.0814 66.6122 37.6368 -31.4745 63.2943 41.295 -12.9337 55.4359 50.6592 -29.8093 42.9681 46.5354 -18.6612 31.1764 47.8255 -30.266 55.8423 44.7033 36.2897 31.2217 48.0605 46.511 42.7776 47.7899 45.6636 56.4673 46.2574 32.8524 66.1703 44.2955 12.3579 67.2602 43.2175 -19.149 38.1518 50.4005 -23.6628 48.8825 49.2194 21.1045 32.7401 51.4785 32.4268 38.9651 51.46 35.2465 50.0413 50.7771 17.9201 63.7837 48.4371 30.018 60.597 49.2453 -20.4236 57.6424 48.1257 -7.11345 60.5511 48.2081 -5.54756 57.4675 50.6459 -6.2067 51.4293 52.475 -5.95461 43.3855 53.166 -4.66971 35.7333 52.2177 -5.70251 32.445 51.1085 -8.3205 17.8723 43.3717 -2.69678 11.3425 36.4653 -27.2981 42.8866 48.0687 -27.8897 55.043 46.5161 -16.4436 32.2248 49.3054 -18.5848 62.3861 45.599 13.6265 28.0639 49.9986 41.3922 43.4352 49.4685 32.3868 32.7171 49.8711 40.4699 56.3449 48.0345 28.9733 65.0389 46.3945 11.0523 65.6624 45.6909 -37.9272 11.78 6.99728 -50.2675 18.389 7.36354 75.8256 18.3928 2.93945 64.2756 11.6576 2.65993 82.8128 29.1368 2.93945 85.8726 42.1384 2.93945 84.9147 55.2091 3.25752 79.936 66.2007 3.25752 72.9207 75.6569 3.11665 -13.2799 78.2816 6.78078 -42.4217 91.5301 9.02211 -66.2519 42.375 7.59116 -67.9758 58.5114 6.99802 8.76422 81.5601 20.2429 8.65004 83.1534 13.7124 6.16626 86.3527 3.3376 10.3479 87.4003 13.9949 7.91973 84.7475 8.18356 19.5238 87.0994 20.6484 13.8638 85.0248 17.2846 35.1961 83.043 23.5111 26.055 84.941 22.3278 44.4291 87.1742 18.6599 55.1672 83.7325 13.2216 53.3737 85.5572 12.3674 -18.7264 10.108 26.6814 -28.5504 10.1785 15.7995 -28.6467 14.412 33.9793 -40.9463 14.6426 19.2219 68.6182 14.2022 14.0757 -36.9819 23.7436 38.5844 48.5084 72.1529 33.9029 -14.7042 76.6096 19.7209 -49.515 83.8778 20.7678 -60.3339 76.3635 19.0618 -54.5522 64.8765 32.9243 -60.8158 55.9957 28.5728 -50.6442 23.4975 21.2438 -45.1383 35.1824 39.0803 -57.747 33.5446 21.51 -27.5531 73.6877 22.8942 26.6207 76.9559 31.9144 -39.393 77.9086 22.2647 -65.5928 51.6658 17.2594 -44.8336 71.3336 32.1213 -65.569 63.5509 16.5565 25.3055 83.1594 23.781 12.1192 83.2358 18.075 25.9631 10.0257 30.0393 30.5288 14.0969 38.2233 18.4628 39.992 53.2994 17.691 48.9863 53.8221 16.1429 57.6002 52.3171 32.2615 71.41 37.9727 51.4408 62.676 41.4618 57.6406 48.9151 43.8433 52.9177 35.0586 44.5773 36.217 23.1483 43.9056 -31.7681 36.6178 45.7769 -37.83 51.5724 43.6927 -25.9576 36.5644 47.2776 -31.2662 49.6491 45.6583 26.7542 27.5116 48.1161 23.2102 67.8126 43.5534 -9.81152 64.5785 42.5347 -5.73514 54.6841 51.8166 -6.34459 47.5345 53.0926 -5.18279 39.3551 52.8687 -13.0679 23.5531 45.6457 -5.21985 14.0791 40.2548 -0.679352 10.0168 31.8299 -28.752 49.271 47.2864 -23.8534 36.6519 48.7626 -24.6964 59.5316 45.8889 -7.15942 29.3978 49.7079 38.1551 37.5127 49.7814 23.9612 29.5453 49.9126 42.2701 49.9123 48.8776 35.8278 61.6884 47.1419 20.5055 66.243 45.9037 -8.95663 63.2617 45.5834 -31.1142 10.1703 6.38486 -44.1714 14.6552 7.27827 70.6407 14.3913 2.92833 79.9353 23.413 2.93945 84.5803 35.3544 2.93945 85.9631 48.8595 3.25752 82.8254 61.0226 3.25826 76.7546 71.3433 3.2553 -19.2017 77.8115 7.33611 -48.5489 92.2656 9.06511 -60.1596 84.4057 8.28143 -55.757 23.043 7.73055 -29.2013 79.6561 8.08569 -37.1064 88.1752 8.91461 -68.0046 51.5783 7.15372 -66.9147 65.618 7.07735 57.0756 10.1525 2.28551 6.64003 83.0734 8.64102 7.67061 86.759 8.63805 14.3983 87.2706 17.8748 26.21 86.9437 22.1654 62.3057 92.5874 2.9313 1.3848 69.2606 38.5873 1.56273 65.4519 43.0262 1.32251 64.1537 45.6605 4.95551 9.99831 32.3904 4.63076 11.3477 37.0599 4.48174 13.922 40.9628 4.08211 17.3859 43.9419 3.02928 21.4474 45.8963 3.07525 28.2293 49.9356 3.11009 31.6361 51.3265 3.03002 35.4574 52.4675 2.61333 39.4033 53.3009 2.11362 43.4389 53.8266 1.75772 47.519 53.7873 1.63762 51.3863 53.3032 1.70287 54.8295 52.4802 1.76736 58.0161 51.0099 1.52196 61.5001 48.3586 1.93642 72.8387 33.8763 3.64763 75.9142 30.548 5.31806 78.4269 26.9639 58.5778 87.5953 2.23361 59.1501 85.8263 2.11721 61.5583 84.2063 2.51758 64.9644 82.1214 2.892 69.0133 79.1475 3.00989 32.7991 89.7151 -30.4233 18.3501 89.4171 -27.9721 8.67525 89.5668 -20.9938 2.39314 90.3705 -9.85685 41.3633 90.1718 -28.7054 -31.106 11.4775 -32.9686 -16.1893 11.413 -41.8242 -37.8441 11.7199 -17.9362 51.1145 17.827 -43.7764 65.4167 18.372 -34.6672 55.5386 11.4663 -30.2365 -22.7101 18.3816 -48.1723 -41.2258 18.6322 -37.22 -49.9064 18.1281 -19.4546 62.0944 11.4196 -20.5393 59.314 28.4606 -46.5397 70.9277 29.0352 -36.8544 -33.1991 29.873 -50.7109 -49.3615 28.878 -39.0246 73.4812 41.7559 -37.3453 64.6226 41.5905 -46.5931 72.9066 55.0971 -37.0309 63.9264 55.2231 -45.5736 67.308 66.4328 -36.116 55.8026 66.7664 -44.1694 43.9561 74.6649 -39.815 57.8297 75.238 -34.1393 15.5401 73.1894 -42.5115 -12.2174 73.8819 -36.4385 15.3978 78.7998 -35.5147 -2.0421 78.412 -29.475 -24.7876 76.5792 -19.7267 -12.534 78.2897 -17.6678 4.34457 81.1227 -24.1642 -55.8163 87.2424 -22.0756 -43.7036 88.3494 -22.3158 -54.1303 74.7924 -34.6324 -44.4888 77.8752 -33.6648 -65.5053 72.5896 -18.5049 -61.9613 65.7536 -32.9553 -43.4634 60.448 -47.4894 -65.1954 57.0723 -29.5143 -59.2654 27.9119 -20.2361 -49.2087 49.1998 -47.3723 -58.9689 43.7199 -35.5858 -66.3446 42.1948 -19.4391 15.5861 70.0443 -46.0785 -33.1287 69.3852 -41.4713 -34.4892 80.0254 -21.5618 48.699 81.1865 -30.8689 34.2382 80.5703 -34.2498 16.5759 81.1153 -31.895 0.727875 81.1872 -12.4148 -68.018 58.2133 -17.8183 14.7802 11.3848 -44.0174 16.9221 17.4452 -50.8066 -13.0864 43.3447 -58.8481 10.4495 43.9097 -61.0858 -9.32663 36.6667 -59.0505 -14.22 51.903 -58.0496 9.45597 51.998 -60.0277 24.246 37.0634 -60.5519 11.3896 35.7436 -60.2776 26.5918 44.6467 -61.0071 25.4626 54.4929 -59.5273 9.00666 58.9948 -57.2808 21.3366 60.5555 -57.2059 -11.1972 57.2725 -56.9708 -22.2438 53.1256 -56.0203 -20.3457 43.0689 -57.3067 -12.1122 35.0371 -58.1689 -14.9222 59.3774 -55.2218 12.2904 31.7184 -59.1973 27.7581 35.2002 -59.4961 33.8971 44.4969 -59.5273 32.7486 55.5991 -57.9969 24.5692 62.5262 -55.8246 9.69026 62.3164 -55.2589 6.31009 84.6215 -9.59067 9.94086 84.9232 -20.0693 19.0219 85.0345 -27.4843 34.7653 85.0426 -29.4209 44.1941 85.119 -26.7866 50.8728 90.6708 -23.6459 25.0482 89.5646 -29.954 12.9607 89.423 -24.9078 5.25504 89.8204 -16.202 3.24726 88.5844 -2.72431 56.928 89.7848 -10.5352 -24.3405 11.4359 -38.3603 -12.0514 9.99387 -37.4698 -25.119 9.92937 -30.186 -35.4745 11.6324 -25.6774 -30.9667 10.1577 -16.9998 61 14.303 -32.6913 42.9826 11.5093 -37.4209 46.9722 14.2133 -40.7944 -19.5197 14.3549 -45.3897 -36.488 14.4595 -35.3605 -33.1887 18.5722 -44.2309 -44.1233 14.4447 -18.6976 -46.6619 18.3928 -28.2843 73.0378 18.3468 -22.5011 68.5692 23.4107 -36.0025 54.8395 22.7093 -45.7182 -26.8814 23.6917 -50.1401 -45.535 23.6628 -38.5063 -41.3718 29.3444 -46.7703 79.1575 29.1894 -23.6481 76.6804 23.4678 -23.1566 72.5633 35.1268 -37.3883 62.517 34.8109 -46.6606 81.5568 42.114 -24.311 80.6278 35.3877 -23.9899 65.2083 48.5511 -46.1149 73.84 48.5629 -37.3 80.6871 55.3477 -24.807 81.674 48.8988 -24.6283 60.7961 61.4452 -45.0316 70.7794 61.119 -36.7907 75.5475 66.5218 -24.6246 78.6126 61.265 -24.804 62.9885 71.049 -35.1951 66.8647 75.4648 -24.4251 71.4756 71.2009 -24.4489 -6.85692 76.1307 -33.2993 15.3904 76.124 -38.9186 -20.6749 74.9933 -28.8188 -18.659 77.1776 -18.9697 -8.319 78.3549 -24.2702 1.96458 81.2562 -18.3514 -55.843 81.314 -28.5504 -49.6254 89.3466 -22.4648 -44.4451 82.6048 -28.9686 -48.6808 77.2324 -34.5316 -64.3131 69.6573 -25.8984 -61.7107 81.899 -20.9783 -58.7835 70.7123 -34.1097 -58.4469 60.3879 -39.1736 -50.5077 68.7809 -40.6817 -54.183 45.9931 -42.2824 -63.8549 52.5711 -32.0063 -63.9335 60.729 -31.1655 -54.957 22.8131 -19.9766 -55.152 28.2115 -29.5499 -11.2032 39.4137 -59.029 -53.076 34.2815 -38.5249 -39.7533 37.3377 -50.1979 -63.1283 33.463 -20.1464 -14.2141 47.7244 -58.4915 -30.0695 77.3155 -20.5683 -21.5757 71.2928 -39.3886 -34.2579 73.9026 -30.84 39.2161 77.6454 -37.0836 52.7939 78.4766 -32.8685 29.7051 73.7336 -42.0511 25.218 79.3136 -35.8083 57.9394 81.7173 -23.2211 62.3879 78.9177 -24.2442 -40.3947 73.317 -36.5831 -38.6256 84.6334 -22.1512 -63.1328 42.5522 -27.8513 -68.0395 51.255 -18.387 -66.6864 57.5891 -24.6884 -46.719 55.3544 -48.0974 -67.0838 65.1042 -17.911 46.0958 83.2499 -28.6417 50.9529 87.3143 -20.6038 25.2513 81.0708 -33.3601 17.9216 83.2039 -29.0153 34.0372 87.1164 -29.0287 5.17719 83.0067 -10.4967 38.7965 10.0502 -33.6129 49.3922 10.0272 -27.3241 14.187 9.93604 -39.5629 27.7425 11.4278 -42.1534 55.0359 10.0176 -19.0023 15.6372 13.9546 -47.8631 32.7953 17.7996 -48.8099 18.8513 36.2745 -60.5645 10.861 39.7903 -60.8997 18.3879 44.3219 -61.3282 25.5709 40.1514 -60.9249 9.98461 48.0417 -60.7803 17.172 53.0256 -60.1664 26.7053 49.7018 -60.6231 9.02446 55.628 -58.8755 15.9709 59.969 -57.3289 23.2776 58.2326 -58.209 44.1377 66.4765 -47.442 32.9162 70.0487 -45.5996 -39.1943 64.8054 -45.7138 55.5401 55.5242 -49.7715 51.248 61.6595 -48.7462 56.0065 41.9561 -51.2803 57.0734 48.8091 -50.5693 46.5132 29.225 -51.505 52.5663 35.3329 -51.6029 17.5056 21.4015 -53.1414 35.7529 23.258 -51.4249 -24.8654 30.3579 -52.8774 -37.595 44.6801 -51.7631 -32.3879 37.056 -52.6379 -36.3175 56.5451 -50.6094 -38.0947 50.8613 -51.419 -25.0582 65.9138 -47.2878 -13.0315 55.2283 -57.5699 -29.5994 42.7331 -54.0504 -17.7196 32.1054 -55.3997 -31.0452 54.9518 -52.1567 14.4814 25.6447 -55.9766 35.6595 31.6265 -55.6473 45.0786 43.2372 -55.4835 44.2682 56.1306 -54.0718 32.613 65.3459 -51.8098 12.2638 66.6664 -50.3239 -16.8788 38.5536 -57.7812 -22.2779 48.1633 -56.692 20.9614 32.7638 -59.3975 31.7892 39.2914 -59.6303 34.2463 50.1711 -58.9927 17.7651 63.1379 -55.4049 29.3959 59.9275 -56.7944 -19.9928 57.0804 -55.4805 -7.23875 60.3598 -55.204 -5.65804 57.5512 -57.0761 -6.0065 51.3551 -59.049 -5.22208 43.4715 -59.8809 -3.96387 36.0409 -59.508 -5.15608 32.8988 -58.5686 -13.5854 23.9342 -52.6112 -9.06415 18.1577 -50.5723 -3.25877 11.387 -43.9714 -26.2193 42.6871 -55.6006 -28.5919 54.4558 -53.8865 -15.0875 33.3422 -56.7928 -18.825 61.9909 -52.8915 13.3618 27.7844 -57.7174 39.8055 43.952 -57.5439 31.8122 33.1212 -57.6826 38.9151 56.1492 -56.0878 28.5307 64.3375 -53.8731 10.8825 65.2576 -52.8604 -38.7872 11.7814 -10.3899 -51.3804 18.2081 -11.1306 75.9308 18.2734 -10.619 64.3713 11.5264 -10.1319 82.6956 29.1294 -10.748 85.6139 42.137 -11.5317 84.7924 55.3455 -12.4133 79.6343 66.3979 -12.9219 71.6684 75.6332 -12.7061 -25.2621 79.1542 -11.2952 -14.3624 78.3676 -10.5812 -55.4174 91.1379 -15.1558 -43.1913 92.0224 -14.9719 -65.5402 74.7902 -11.1558 -61.0434 28.0454 -11.3123 -32.6111 84.6875 -12.5304 -67.2833 42.4839 -10.9141 -68.8802 58.6841 -10.4374 0.543259 81.1205 -6.22162 9.52418 81.0708 -28.7966 8.37571 83.1824 -21.1125 5.53085 86.6678 -9.24443 6.35532 84.3783 -3.72153 9.91936 86.9399 -19.9543 7.46301 84.8157 -15.1358 19.1716 86.9829 -27.1848 13.7244 84.9789 -24.2465 35.0315 83.0667 -31.2656 26.1633 85.0641 -29.3275 42.8321 87.2394 -26.5835 54.4673 83.6613 -21.5529 52.1903 85.3592 -20.4029 -19.1772 9.97014 -34.5627 -29.0093 10.0524 -23.9684 -28.9966 14.3787 -41.6404 -41.4341 14.4313 -27.1351 68.2653 14.2141 -21.6559 -37.1724 23.751 -45.8917 49.1935 70.9503 -42.3484 -14.5648 76.6133 -27.0075 -49.8916 83.6109 -28.9872 -61.1227 76.1114 -27.2671 -55.0601 65.0337 -40.5186 -61.3029 55.8348 -36.2984 -51.2017 23.1727 -29.0783 -45.8464 35.4359 -46.3143 -58.6945 33.6906 -29.4149 -27.3062 73.8878 -30.3291 27.1279 76.7275 -38.8845 -39.6428 78.0687 -29.8339 -66.1326 51.3373 -25.8257 -45.1368 71.2869 -39.6934 -65.8464 63.4174 -25.0094 25.8474 83.1357 -30.877 12.1451 83.2039 -25.5855 25.4849 9.93826 -37.9992 30.078 14.1043 -45.7664 18.448 40.0625 -61.2347 17.9876 48.7616 -61.0605 16.2348 56.7727 -58.8674 -32.2767 62.0154 -49.2051 -13.9368 67.8282 -45.9206 -24.8684 37.0434 -54.8511 -31.525 48.8313 -53.174 26.4258 27.5071 -55.6637 23.2554 67.017 -50.8845 -10.1563 64.4547 -50.0444 -5.75739 54.7064 -58.2557 -5.8419 47.5145 -59.5984 -4.37907 39.5768 -59.8409 -5.9761 14.2111 -47.5917 -0.926239 9.96272 -39.5747 -28.5177 48.5533 -54.7769 -21.6936 37.4949 -56.2842 -25.4638 59.1765 -53.191 -6.8028 30.1029 -57.2111 37.0326 38.1125 -57.7227 23.7499 29.4563 -57.6722 40.6137 50.1599 -57.0286 34.858 61.1842 -54.92 20.4387 65.7863 -53.1414 -9.18353 63.1068 -52.8225 -31.7926 10.1666 -9.9777 -45.2866 14.5017 -10.8326 70.7816 14.2259 -10.5137 79.9368 23.3648 -10.642 84.3683 35.367 -11.0661 85.8037 48.9262 -12.0255 82.7112 61.2146 -12.6921 76.0168 71.4278 -13.3949 -20.2604 77.9924 -11.2248 -49.3845 92.9811 -15.3182 -60.8729 85.6046 -14.2238 -56.4851 22.8762 -11.2211 -64.3531 34.2467 -11.1677 -29.1309 81.0871 -11.445 -37.3177 89.3021 -14.5323 -69.0093 51.6317 -10.622 -67.6547 66.1837 -10.4878 5.71547 83.0356 -4.42811 57.0919 10.0917 -9.5929 6.03725 83.0742 -16.133 5.45968 86.1214 -3.26036 7.12048 86.8962 -15.0149 13.8867 86.9385 -24.0596 25.9809 87.0964 -28.959 -11.6043 122.781 8.68477 -11.2981 122.692 9.69681 -10.977 122.366 10.6888 -10.6656 121.82 11.586 -10.3765 121.078 12.3445 -10.1237 120.175 12.9302 -9.91827 119.156 13.3142 -9.77222 118.067 13.4803 -9.68768 116.96 13.4188 -9.67062 115.887 13.1341 -9.72327 114.899 12.6358 -9.85822 114.021 11.8907 -10.7227 112.914 8.71887 -11.1023 127.944 8.41562 -10.4921 127.767 10.4464 -9.85971 127.122 12.423 -9.24655 126.037 14.2114 -8.68082 124.561 15.7276 -8.18628 122.764 16.8946 -7.78964 120.733 17.6635 -7.49306 118.563 17.9719 -7.3344 116.363 17.8451 -7.30846 114.233 17.2735 -7.41818 112.273 16.2733 -7.69992 110.534 14.786 -8.2775 109.033 12.4727 -9.35776 108.08 8.5424 -9.95609 132.998 7.96262 -9.04932 132.737 10.981 -8.11142 131.781 13.9103 -7.20317 130.173 16.5602 -6.3661 127.988 18.8075 -5.64024 125.328 20.5468 -5.05821 122.318 21.6961 -4.64821 119.099 22.2025 -4.42282 115.824 22.0238 -4.39761 112.65 21.1845 -4.56294 109.746 19.6875 -4.97073 107.211 17.3891 -7.42485 103.383 8.21767 -8.20483 137.879 7.33685 -7.0141 137.537 11.2983 -5.78555 136.284 15.1374 -4.59557 134.176 18.611 -3.49826 131.313 21.5559 -2.54626 127.827 23.8351 -1.78407 123.883 25.3417 -1.24654 119.664 26.006 -0.958862 115.367 25.7954 -0.932175 111.202 24.7018 -1.15683 107.411 22.6977 -1.71957 104.094 19.6809 -4.90993 99.0215 7.7476 -5.87453 142.516 6.54797 -4.41762 142.098 11.3954 -2.91623 140.566 16.0879 -1.46082 137.989 20.3341 -0.119568 134.489 23.9337 1.04373 130.229 26.72 1.97571 125.407 28.5617 2.63261 120.249 29.3728 2.98405 114.998 29.1163 3.01297 109.897 27.8025 2.72233 105.248 25.381 2.00388 101.315 21.4907 -1.90344 95.1527 7.08847 -2.99854 146.84 5.6071 -1.29695 146.353 11.2694 0.45578 144.564 16.7478 2.15439 141.556 21.7035 3.72029 137.47 25.9059 5.07858 132.497 29.1585 6.16626 126.869 31.3079 6.93364 120.848 32.2555 7.3429 114.718 31.9552 7.37701 108.764 30.4219 7.02557 103.335 27.5927 6.15958 98.8146 22.9217 1.31064 91.5316 5.92221 0.38089 150.789 4.52833 2.30194 150.239 10.9231 4.28081 148.22 17.1066 6.19814 144.825 22.7007 7.96496 140.213 27.4444 9.49823 134.6 31.1152 10.7268 128.246 33.5419 11.592 121.45 34.611 12.0547 114.531 34.2722 12.0932 107.81 32.5417 11.6995 101.628 29.4492 10.7461 96.4739 24.1724 4.21408 154.305 3.32648 6.32714 153.7 10.3604 8.50323 151.481 17.1593 10.6111 147.749 23.3102 12.5537 142.677 28.5254 14.2397 136.505 32.5617 15.5905 129.519 35.2301 16.5418 122.048 36.4053 17.0504 114.439 36.0331 17.0919 107.05 34.1306 16.6589 100.258 30.74 15.7233 94.7279 25.791 8.4454 157.338 2.02082 10.7201 156.687 9.59079 13.0608 154.299 16.9057 15.3288 150.283 23.5229 17.4189 144.827 29.1348 19.2332 138.186 33.4774 20.6856 130.67 36.3481 21.7103 122.631 37.6123 22.2575 114.445 37.2119 22.3019 106.495 35.1648 21.8259 99.2209 31.4888 20.825 93.3985 26.5962 13.0133 159.842 0.628418 15.4163 159.154 8.62471 17.8875 156.633 16.3489 20.283 152.392 23.3369 22.4903 146.631 29.2623 24.4054 139.618 33.8481 25.9394 131.682 36.879 27.0211 123.193 38.2151 27.5987 114.549 37.7917 27.6461 106.153 35.6297 27.1561 98.4202 31.8069 26.2026 92.3353 26.7949 17.8512 161.781 -0.829224 20.3468 161.067 7.47549 22.9136 158.449 15.497 25.4011 154.045 22.7534 27.6929 148.063 28.9072 29.6814 140.78 33.6686 31.2747 132.539 36.8168 32.3972 123.724 38.2032 33.0378 114.732 37.7776 33.1394 106.004 35.5511 32.5863 97.9694 31.5919 31.965 91.3737 26.2299 28.0317 162.761 5.43213 30.6652 160.074 13.6627 33.218 155.556 21.1096 35.5698 149.416 27.4236 37.6109 141.943 32.3103 39.2458 133.487 35.5408 40.3779 124.44 36.8931 41.0778 115.182 36.3645 41.3685 106.251 34.3441 40.5714 98.0124 30.0964 39.483 90.8428 24.5869 25.47 163.494 -3.09354 33.2647 163.97 -5.38011 35.8181 163.241 3.11665 38.442 160.564 11.3176 40.9852 156.062 18.737 45.5605 150.164 24.1539 46.9596 143.512 28.5313 48.7731 136.143 30.9839 48.1273 125.112 34.1698 49.5294 116.289 34.2469 49.9179 107.113 32.426 48.6893 98.8206 27.8254 47.2243 91.628 22.178 38.4532 163.455 -6.88224 40.9503 162.742 1.42916 43.5171 160.123 9.45065 47.7967 155.173 17.3906 53.1913 129.392 30.4605 57.4434 120.187 30.353 57.7555 108.881 29.1971 56.501 100.349 24.8901 54.4406 93.4897 18.651 43.5401 162.322 -8.34137 45.9453 161.636 -0.335434 50.4154 158.124 9.95186 48.4521 160.589 -9.73451 50.7305 159.939 -2.15119 54.3182 157.614 6.23138 63.8033 119.565 25.3861 63.9101 110.06 24.7226 62.901 102.219 20.9027 60.7679 96.0876 14.7059 53.1171 158.28 -11.0416 55.2347 157.675 -3.99215 58.19 155.872 2.80748 67.2969 119.573 21.0355 67.7537 111.25 20.0049 67.3733 103.92 17.1459 65.043 98.1407 11.5222 57.4671 155.429 -12.245 59.394 154.879 -5.83163 62.1915 152.982 0.103493 69.6977 119.848 16.5973 70.8076 112.269 15.649 70.4413 106.039 12.8968 68.5447 100.725 8.19913 61.4382 152.077 -13.326 63.1457 151.59 -7.6422 65.78 149.427 -2.04368 72.9933 113.56 10.1899 72.6093 109.123 7.23009 71.4208 102.692 -5.93692 66.1158 146.314 -14.556 67.6306 145.656 -8.87371 68.937 144.641 -4.73136 71.1249 140.238 -3.87204 72.9303 135.432 -3.25369 73.955 129.872 0.956131 73.8222 124.051 6.88754 69.9913 140.169 -15.5436 71.876 138.749 -9.69077 -11.3759 117.634 8.77818 63.3644 132.244 19.7795 58.7861 144.777 19.4836 67.0122 129.764 16.8798 70.6155 138.855 5.83472 63.4756 148.383 9.49515 62.8195 133.184 17.464 65.3848 131.323 15.0306 58.8061 141.77 16.8434 60.1659 137.06 18.4575 67.3103 131.311 12.1873 59.8997 144.627 13.2097 68.6945 133.697 9.63008 62.6779 144.573 10.0134 68.5944 137.783 7.94185 66.1373 141.972 8.0323 63.5846 133.449 17.7798 66.1373 131.523 15.497 59.6002 142.393 17.3936 68.0977 131.472 12.4801 69.5345 133.885 9.64862 63.3399 145.241 10.1906 69.4233 138.273 7.76169 66.8358 142.631 7.99524 70.3049 128.194 12.73 72.5233 132.983 6.70811 70.8876 139.701 3.88477 57.3232 138.168 24.4749 62.3546 131.157 22.7541 67.3926 146.279 4.41341 62.6852 151.575 8.16354 58.5355 152.152 14.7897 56.0087 147.327 21.699 67.4163 128.203 18.5732 61.7689 138.738 16.9517 60.1192 142.066 15.9826 64.1066 135.62 16.4201 65.946 133.39 14.7222 67.2903 132.939 12.8657 68.2793 135.009 11.4955 67.7633 138.355 10.7993 65.6517 141.685 10.9157 62.861 143.967 11.7343 60.6115 144.197 13.6175 60.9733 137.35 18.8824 60.8999 145.33 13.6701 65.4233 132.097 14.9091 64.194 132.052 16.3667 63.0381 133.984 17.1452 60.5626 137.576 18.0038 59.2072 139.485 18.0623 59.179 141.815 16.5439 61.4122 134.887 18.1943 67.2154 132.019 12.4453 66.4087 131.047 13.613 59.0411 143.572 15.1678 60.1096 144.464 13.3409 68.5151 134.306 10.3248 68.0821 132.189 10.829 61.149 144.974 11.4258 62.7831 144.363 10.5976 68.2882 138.059 8.96576 68.9548 135.624 8.61655 64.3898 143.534 8.86493 66.015 141.892 9.0614 67.5801 139.948 7.72906 62.5229 143.343 13.2497 61.0674 143.946 13.8533 64.8184 141.126 13.1519 66.8854 138.187 12.9695 67.3889 133.651 13.1986 66.7994 134.635 14.1328 65.5909 137.242 14.9847 63.4504 140.109 15.2998 61.4471 142.587 14.915 69.5049 129.705 12.5735 72.1177 136.32 4.77299 71.5801 133.393 8.20432 59.2932 134.201 23.8217 59.9546 137.579 21.2023 65.0801 149.359 5.97188 67.3192 144.395 6.27661 56.9459 150.409 18.5398 60.5959 148.729 14.5628 56.1303 142.947 23.7928 65.2135 129.283 20.9902 68.9562 127.783 15.7988 69.2988 142.988 3.69571 60.547 152.61 11.1863 71.7477 130.025 9.56706 72.9533 131.626 4.33482 71.3592 125.34 12.6099 70.8958 140.288 0.80043 60.4142 128.485 25.3476 53.3566 137.368 28.099 60.1785 154.454 5.65604 66.8521 148.152 1.54631 50.4599 149.321 23.457 54.4777 155.19 14.0957 66.8083 125.61 19.6379 60.7657 140.445 16.6648 62.9418 137.1 16.8738 65.1157 134.361 15.6497 66.6044 132.832 13.8036 67.9094 133.728 12.0538 68.246 136.622 11.0736 66.8721 140.078 10.7355 64.2593 143.015 11.2634 61.6205 144.401 12.4393 60.0361 143.345 14.9402 62.2167 135.13 18.5205 60.0235 144.253 15.7061 59.9835 139.927 18.519 64.9258 132.28 16.7923 67.1776 131.236 14.0179 68.9044 132.335 10.9928 69.7696 135.952 8.50682 68.3794 140.573 7.55853 64.9874 144.212 8.9287 61.9957 145.611 11.7513 64.3364 132.866 16.125 59.6128 139.75 17.5893 61.7458 135.583 17.8214 66.3694 131.791 13.6738 59.3318 143.457 15.0788 67.9657 132.894 11.3154 61.3218 144.772 11.7684 68.6738 136.094 9.51442 64.4194 143.374 9.69681 67.3615 140.039 8.78485 61.7844 144.005 13.1407 63.6091 142.365 13.2305 65.9438 139.693 13.0347 67.4912 136.673 12.9257 66.9492 133.714 13.8169 66.3464 135.861 14.5969 64.5685 138.672 15.2167 62.3546 141.447 15.1878 60.8028 143.341 14.6881 70.7571 131.099 10.3129 71.4393 136.084 6.66586 61.5272 134.531 20.6551 65.2209 146.715 7.63861 59.5052 147.331 17.3142 58.8328 141.204 20.8056 65.3699 130.706 18.6303 68.3045 129.387 14.7556 69.1838 141.704 5.63008 61.9527 149.098 11.8158 72.6026 127.566 8.47568 72.3965 136.097 1.70497 56.5247 132.614 27.6949 63.6929 151.685 3.08774 52.022 153.009 18.9305 51.1249 144.226 26.8356 63.9865 126.508 22.5154 69.2202 125.238 16.535 69.0541 144.317 0.692924 57.2187 155.661 9.56113 67.741 135.282 12.8723 67.7907 134.283 12.7419 71.6609 136.111 -15.9358 72.3201 105.969 -15.2641 74.0417 117.157 -16.1597 75.2065 106.525 -16.2769 79.8634 107.308 -17.6552 91.3867 109.457 -21.1013 88.3001 106.164 -20.0804 79.2991 114.295 -17.6596 83.595 107.064 -18.7273 84.1132 113.461 -18.9875 85.3967 106.488 -19.2404 74.3568 135.883 -16.7173 78.9611 134.305 -18.0244 82.9529 133.126 -19.1618 84.9244 134.248 -19.7638 86.99 136.683 -20.4237 90.4947 139.433 -21.5114 93.7133 139.447 -22.4507 94.9967 133.968 -22.6969 95.4994 138.023 -22.9393 92.0955 130.536 -21.7701 88.3638 126.832 -20.5942 85.6599 124.96 -19.7608 81.4537 123.062 -18.4885 74.8654 115.813 -16.3999 75.0456 119.162 -16.437 77.3477 106.901 -16.9108 90.4702 107.067 -20.7351 76.8324 114.944 -16.9597 81.866 106.977 -18.232 81.8267 113.709 -18.3173 87.5994 113.172 -20.0641 72.8517 136.463 -16.4526 76.6211 135.168 -17.3616 81.0749 133.56 -18.6235 84.1259 133.478 -19.5125 85.7941 135.222 -20.0404 95.5972 136.005 -22.9201 93.7963 132.209 -22.3054 90.1255 128.604 -21.1495 87.0197 125.694 -20.1745 83.7714 124.169 -19.1907 77.8207 121.529 -17.3927 90.9181 111.196 -21.0087 72.5032 108.223 -2.09484 75.2258 128.38 -2.75545 73.0089 134.723 -11.6266 74.987 120.808 6.20024 75.9205 117.527 -9.42607 74.9633 116.553 -9.73895 78.1707 127.11 -4.45851 76.4373 109.876 3.38505 75.8359 108.157 -4.45555 81.7666 127.621 -5.91393 76.6804 114.045 7.19746 76.6345 120.205 6.07716 82.3917 119.936 3.28125 80.7256 108.785 -7.12913 83.5075 117.685 2.46864 82.9974 115.277 1.76725 92.4261 111.042 -14.8022 90.3783 110.634 -9.15768 95.4037 129.402 -7.5814 96.0984 136.789 -17.4832 82.3405 119.579 -9.26593 80.8413 115.369 -9.65369 85.2625 124.587 -1.81087 84.8272 129.21 -7.48057 85.7451 117.806 -3.52579 86.8232 121.414 -9.52765 85.9097 118.886 0.325172 87.199 131.776 -9.16064 88.7516 134.416 -11.1099 90.1003 121.341 -5.78863 94.2515 126.991 -9.62626 89.9564 123.624 -10.2795 92.7753 126.838 -11.8772 90.8128 122.536 -2.9371 84.8317 108.856 -9.63812 86.0135 114.746 -2.76731 86.5792 108.162 -11.0609 90.7371 125.097 -2.53673 73.043 106.875 -10.3143 75.0849 116.366 -9.04127 75.9716 116.037 -9.92357 74.6763 117.226 -13.3023 76.6107 127.495 -3.81347 75.8715 107.338 -10.9986 74.2945 131.787 -6.83849 77.6673 130.92 -7.97213 79.9509 127.383 -5.12654 76.4239 117.364 7.49699 79.6098 120.36 4.88643 79.5468 114.305 5.90663 78.3479 108.471 -5.80049 80.1169 108.117 -13.6233 81.3351 130.611 -9.06203 83.483 116.149 2.62879 83.0011 114.026 3.50368 91.761 108.672 -14.126 92.1266 109.889 -18.0081 93.8845 131.645 -7.45462 96.1799 134.037 -11.4887 81.9698 117.706 -6.57603 78.9833 118.659 -9.33636 78.2737 115.773 -9.7916 81.6235 116.026 -5.37269 79.8693 114.493 -14.8934 83.5372 128.01 -6.78511 83.5372 116.896 -3.09725 86.2686 119.313 -6.65833 84.7701 120.477 -9.37344 85.7155 117.814 -1.09836 82.8336 116.065 -0.2435 84.0376 118.31 1.24899 82.4806 122.05 -11.5955 87.1182 124.405 -12.0018 88.0999 133.229 -10.2009 92.2897 123.818 -7.20253 93.4241 126.82 -10.8934 91.5661 125.3 -11.0513 89.9394 122.25 -7.90022 90.4806 121.459 -4.05592 93.4426 125.358 -4.55564 95.0537 127.861 -8.4207 86.6067 133.598 -11.5288 88.5707 135.852 -12.9256 89.8207 126.465 -12.6372 92.9117 128.817 -13.9117 95.0404 130.344 -13.2941 82.9299 109.011 -8.36213 85.6702 113.376 -2.09262 83.9642 114.927 -0.734322 83.2265 115.122 -10.3417 85.751 115.129 -7.31301 84.1511 107.994 -14.6242 84.6693 113.83 -16.0203 88.6597 113.95 -5.64331 88.16 112.314 -5.20661 87.6284 114.616 -8.44739 91.1709 112.257 -10.1186 89.261 107.896 -12.7825 84.4929 131.425 -10.2884 88.4714 122.412 -9.79086 88.4424 120.148 -1.065 85.9995 121.323 0.560211 86.1099 130.434 -8.26055 87.8345 118.872 -4.42515 91.1968 133.419 -9.01013 88.8191 128.275 -4.56676 81.5976 122.873 0.828606 76.9644 122.205 2.94316 81.4612 110.902 -0.296883 85.7392 110.723 -3.63627 75.9894 134.176 -12.4407 80.1251 132.842 -13.5803 83.9442 132.485 -14.6398 85.946 134.022 -15.3694 88.0213 136.327 -16.4059 91.3103 138.582 -16.933 94.3976 138.399 -17.1755 95.3962 132.764 -17.8798 92.8436 130.018 -17.5358 89.2928 126.974 -16.3569 86.4413 124.91 -15.6051 82.4754 123.01 -14.5108 91.896 112.486 -14.9156 82.8751 115.658 -0.544518 86.2805 115.188 -4.50003 76.1644 116.572 -8.83145 75.4185 115.882 -13.8516 76.0488 119.438 -12.6624 75.6543 131.457 -7.41829 79.4986 117.656 6.72963 79.0322 110.008 1.65974 78.0128 107.635 -12.0211 79.5268 130.758 -8.47779 82.1877 117.111 4.66623 91.3177 107.267 -17.6789 94.3523 135.804 -11.3701 79.199 116.397 -7.74822 77.416 115.064 -14.3959 84.1318 118.571 -6.36101 83.3881 117.034 -0.32283 85.0712 123.225 -11.8706 91.807 124.332 -9.03386 92.9703 124.047 -5.59067 87.5542 134.782 -12.3095 91.394 127.808 -13.2948 94.0891 129.464 -13.8324 83.6906 111.07 -2.07482 83.6929 113.909 0.096817 83.6402 115.586 -6.22978 82.2292 108.145 -14.0185 82.2626 114.108 -15.3812 85.9475 107.439 -15.3597 88.2578 113.456 -17.1125 88.2163 114.084 -11.2463 88.9763 106.666 -16.7455 83.1168 130.614 -9.81607 88.5233 125.332 -12.2287 88.5596 122.718 -0.990116 88.1236 120.568 -7.14322 91.5424 136.545 -12.2591 90.1959 130.708 -6.46555 83.1835 123.375 -0.566017 79.5957 122.783 1.99635 74.3672 117.295 7.88031 87.5631 110.072 -6.37584 74.1744 134.769 -11.9588 77.8467 133.564 -12.9456 82.0565 132.388 -14.1586 85.1416 133.114 -14.9897 86.8728 135.108 -15.8513 96.088 134.721 -17.6366 94.3716 131.254 -17.9443 90.9752 128.478 -16.8885 87.8886 125.817 -15.9581 84.6456 124.017 -15.1551 78.798 121.528 -13.6567 91.6357 111.58 -17.9377 84.2971 115.519 -2.50114 83.7426 120.625 1.77541 88.5833 114.451 -6.97195 88.0828 118.976 -2.26166 92.4098 128.085 -4.46593 90.9233 113.198 -10.8133 95.8359 131.912 -12.44 88.8584 109.104 -9.27186 75.6269 121.857 3.65715 78.5266 120.452 -11.3783 85.7325 132.479 -10.7807 87.2109 126.227 -3.03349 82.3865 115.792 -3.39975 85.5323 114.683 -10.7629 88.5351 113.906 -14.361 85.1809 114.135 -13.5766 82.7372 114.618 -13.0324 80.3171 114.815 -12.4815 77.8096 115.265 -12.0804 75.7054 115.895 -11.7089 74.7512 116.96 -11.2522 75.744 118.732 -10.8711 69.843 141.836 -9.30819 67.9679 143.189 -15.0231 72.8213 119.941 10.9157 71.6506 104.986 0.684029 69.456 100.727 -14.47 73.995 114.29 6.9995 73.1142 110.85 3.56299 72.9748 136.288 -10.6843 71.3295 137.732 -15.8765 71.3963 104.177 -15.1099 74.1581 133.103 -5.27631 75.2109 128.825 -1.40012 75.073 122.123 6.21136 74.2901 118.616 8.83824 74.0083 114.133 7.99301 73.4597 110.347 4.91832 72.8198 106.93 -0.967873 82.4554 113.29 2.18171 79.572 111.521 3.2642 80.1607 112.304 4.14649 -10.1429 113.254 10.7089 72.7842 105.382 -7.25814 -5.83078 104.99 14.0223 -2.85619 101.143 15.3198 0.690811 97.9167 16.3207 4.67302 94.8688 16.9057 66.3361 95.2358 0.153168 -11.892 122.645 7.67271 -12.1529 122.274 6.67995 -12.3643 121.685 5.78059 -12.534 120.909 5.0184 -12.626 119.978 4.42898 -12.646 118.938 4.04047 -12.5956 117.84 3.87142 -12.4777 116.734 3.92851 -12.2953 115.674 4.20803 -12.0595 114.707 4.70033 -11.7659 113.862 5.43361 -11.6777 127.672 6.3856 -12.1989 126.934 4.40896 -12.6304 125.765 2.6199 -12.9514 124.219 1.10294 -13.1465 122.369 -0.071487 -13.2072 120.301 -0.848503 -13.1242 118.113 -1.18808 -12.8996 115.91 -1.07389 -12.5437 113.798 -0.511894 -12.0803 111.876 0.468269 -11.5131 110.201 1.90664 -10.7279 108.684 4.35558 -10.8109 132.596 4.94501 -11.5843 131.502 2.01563 -12.2226 129.769 -0.634972 -12.6979 127.479 -2.88298 -12.987 124.738 -4.62311 -13.0768 121.674 -5.77454 -12.9633 118.431 -6.28242 -12.6504 115.16 -6.12376 -12.1492 112.018 -5.30077 -11.4627 109.168 -3.83942 -10.636 106.694 -1.7434 -9.32736 137.352 3.37615 -10.3401 135.919 -0.462959 -11.1772 133.648 -3.93729 -11.8 130.646 -6.88298 -12.1796 127.054 -9.1636 -12.2968 123.039 -10.6717 -12.1477 118.789 -11.3375 -11.7385 114.502 -11.1299 -11.0883 110.379 -10.0578 -10.1881 106.649 -8.12857 -9.11383 103.415 -5.39493 -7.24765 141.871 1.70126 -8.48584 140.119 -2.99197 -9.509 137.344 -7.23812 -10.2704 133.674 -10.8392 -10.7339 129.283 -13.627 -10.8777 124.375 -15.4702 -10.6953 119.179 -16.2843 -10.1948 113.94 -16.03 -9.38 108.916 -14.6924 -8.24042 104.41 -12.2576 -6.81169 100.55 -8.6587 -4.60298 146.087 -0.054435 -6.04802 144.042 -5.53284 -7.24321 140.802 -10.4893 -8.13144 136.519 -14.6932 -8.67267 131.393 -17.9473 -8.84024 125.664 -20.0997 -8.62744 119.599 -21.0494 -8.04318 113.482 -20.7529 -7.08603 107.625 -19.1759 -5.77963 102.353 -16.3577 -4.12698 97.8226 -12.2769 -1.43115 149.939 -1.86574 -3.0623 147.631 -8.04924 -4.41095 143.974 -13.6441 -5.41411 139.139 -18.3892 -6.02504 133.353 -22.0622 -6.21411 126.886 -24.4919 -5.97388 120.04 -25.564 -5.31401 113.136 -25.2289 -4.25377 106.509 -23.4776 -2.81467 100.514 -20.3577 -0.857285 95.3878 -15.9247 2.22112 153.371 -3.70596 0.427597 150.832 -10.5049 -1.05525 146.812 -16.6565 -2.15849 141.496 -21.8739 -2.82948 135.134 -25.9124 -3.03783 128.024 -28.5838 -2.77313 120.497 -29.7627 -2.04877 112.906 -29.3942 -0.897324 105.606 -27.4954 0.658188 98.9955 -24.1115 2.66969 93.7269 -19.7623 6.30045 156.332 -5.54841 4.37052 153.602 -12.8633 2.77497 149.275 -19.4821 1.58868 143.556 -25.0954 0.866531 136.711 -29.4409 0.642624 129.061 -32.3147 0.926575 120.963 -33.5833 1.70657 112.796 -33.1866 2.9455 104.941 -31.144 4.64336 97.9398 -27.491 6.69341 92.8958 -23.465 10.7483 158.78 -7.36639 8.71009 155.896 -15.0906 7.02557 151.328 -22.08 5.77182 145.289 -28.0077 5.00963 138.061 -32.5957 4.77312 129.983 -35.6311 5.07339 121.431 -36.9701 5.89712 112.807 -36.5512 7.20499 104.513 -34.3944 9.05486 97.2925 -30.556 11.2406 92.5807 -26.9734 15.4979 160.678 -9.13321 13.3818 157.684 -17.1547 11.6321 152.94 -24.4125 10.3309 146.669 -30.5671 9.53901 139.163 -35.3323 9.29359 130.775 -38.4834 9.60574 121.895 -39.8743 10.4606 112.939 -39.4398 11.8189 104.326 -37.2 14.0588 96.9514 -33.3467 16.6434 92.4725 -29.9718 23.0545 162.362 -11.6177 20.8829 159.289 -19.8483 19.0871 154.421 -27.2967 17.7525 147.986 -33.6129 16.9392 140.284 -38.5019 16.6871 131.675 -41.736 17.0074 122.563 -43.1632 17.8853 113.373 -42.7169 19.2791 104.535 -40.4185 21.2106 97.0107 -36.2628 23.42 92.7149 -32.4103 30.8573 162.843 -13.8754 28.6938 159.781 -22.0763 26.9055 154.931 -29.4973 27.9242 148.749 -36.2635 26.8335 141.896 -40.4148 27.1308 134.403 -43.1558 24.8332 123.19 -45.306 25.7073 114.033 -44.8611 27.096 105.227 -42.5709 28.977 97.7766 -38.3173 31.01 93.1798 -33.7501 36.0984 162.352 -15.1936 33.9816 159.358 -23.2144 33.3826 154.015 -31.9877 31.2043 127.797 -45.1888 41.2721 161.261 -16.3458 39.5527 157.252 -27.2589 34.1114 118.081 -46.7154 35.274 106.958 -44.7195 36.8836 99.3018 -39.4702 38.9366 94.263 -33.7738 46.3034 159.583 -17.3163 44.8502 156.854 -26.2038 42.5748 117.521 -46.6924 42.9789 108.591 -45.2964 44.501 100.951 -40.6187 47.291 94.8665 -33.4268 51.1197 157.345 -18.0904 49.9772 155.213 -25.3275 48.2059 117.708 -45.7612 48.7168 109.961 -44.0908 50.3568 102.509 -40.027 53.4827 96.7468 -32.9174 55.6498 154.578 -18.6568 54.8409 152.392 -25.0769 52.7864 118.209 -43.2581 53.6228 111.351 -41.2941 55.2413 104.656 -38.0407 58.7364 99.47 -31.8202 59.8286 151.323 -19.0083 59.0656 148.888 -25.0487 58.6371 112.647 -37.2162 60.0213 108.358 -34.3455 66.7364 101.215 -23.2055 64.3461 145.393 -20.1264 63.2939 144.171 -24.2324 64.6093 139.563 -25.8976 66.0209 134.24 -27.224 64.8265 128.137 -31.0498 61.4092 121.344 -36.0211 68.4454 138.292 -21.5291 45.453 130.809 -41.5454 41.6524 143.401 -39.21 50.101 128.433 -40.9145 59.0129 137.957 -33.7931 50.9314 147.376 -33.4765 46.2433 131.854 -39.2708 49.7303 130.061 -38.4737 43.1271 140.511 -36.8678 43.4601 135.718 -38.774 52.9147 130.138 -37.0872 45.9668 143.509 -34.5197 55.443 132.636 -35.7653 50.0284 143.557 -33.3201 56.2208 136.784 -34.4582 54.0432 141.001 -33.4001 46.726 132.091 -39.9847 50.1181 130.245 -39.3182 43.4927 141.099 -37.7857 53.4219 130.291 -37.7879 56.1362 132.807 -36.2509 50.4828 144.208 -33.8546 57.0422 137.29 -34.817 54.643 141.653 -33.7723 55.0842 126.961 -39.0439 60.0643 131.807 -35.2485 60.3282 138.873 -32.42 37.8104 136.599 -42.3736 42.95 129.62 -43.6504 57.0126 145.449 -31.2322 50.941 150.632 -32.0693 43.8723 150.975 -35.442 38.0876 145.889 -39.6926 49.5108 126.802 -42.685 45.605 137.439 -38.4211 44.6923 140.828 -36.8618 47.893 134.316 -39.1277 50.3776 132.134 -38.6198 52.5225 131.75 -37.7278 54.0743 133.869 -37.1666 53.9713 137.248 -36.4482 52.0865 140.596 -35.554 49.2647 142.875 -34.8407 46.3531 143.052 -35.2278 43.9086 135.978 -39.5785 46.5533 144.179 -35.4761 49.8356 130.846 -38.4441 47.9983 130.76 -39.0142 46.6052 132.656 -39.1566 44.0339 136.249 -38.6168 42.8387 138.17 -38.0111 43.6017 140.564 -36.8188 44.6634 133.535 -39.1929 52.6931 130.851 -37.3023 51.3763 129.845 -37.8198 44.2029 142.382 -35.6615 46.0758 143.337 -34.7362 54.9106 133.214 -36.2776 54.299 131.078 -36.3859 47.9753 143.917 -33.7041 49.8059 143.321 -33.8591 55.4037 137.025 -35.1736 56.1837 134.599 -35.1328 52.1021 142.547 -33.2281 53.387 140.878 -34.1972 55.4482 138.973 -33.8331 48.1733 142.19 -35.9091 46.6141 142.785 -35.6607 50.1892 139.952 -36.9649 52.0658 136.997 -37.7961 52.4194 132.447 -38.0845 51.4089 133.398 -38.5931 49.903 135.983 -38.7555 47.893 138.861 -37.994 46.3798 141.377 -36.6995 54.5637 128.486 -38.5583 60.8235 135.305 -33.5811 58.5718 132.382 -36.0552 39.8159 132.627 -42.8845 41.7955 136.119 -41.0087 54.1663 148.483 -31.4153 55.9539 143.477 -32.6654 40.5373 149.092 -37.6693 45.7748 147.539 -36.2109 37.1201 141.421 -41.3319 46.3145 127.804 -43.6823 52.3171 126.477 -40.9857 59.1168 142.133 -31.5495 47.4993 151.562 -33.5084 58.2159 128.907 -37.3334 61.9319 130.28 -33.5996 55.9843 124.214 -39.8068 61.9357 139.512 -29.8517 40.0547 127.159 -44.8752 32.5262 135.693 -43.2641 50.1396 153.648 -28.7343 58.0699 147.457 -28.6001 32.4395 147.874 -38.275 40.7865 154.09 -32.8062 48.5485 123.891 -44.2502 44.8917 139.171 -37.7145 46.6541 135.791 -38.9245 49.1683 133.076 -38.9875 51.4356 131.609 -38.169 53.4767 132.569 -37.389 54.253 135.498 -36.8633 53.2321 138.983 -35.9892 50.709 141.926 -35.1558 47.8345 143.294 -34.7866 45.1675 142.152 -35.9951 45.1713 133.754 -39.9113 44.7331 143.025 -36.6728 43.2421 138.583 -38.8326 48.3979 130.967 -39.812 51.8085 130.009 -38.6079 54.898 131.214 -36.9842 56.9414 134.926 -35.5317 56.2052 139.595 -34.146 52.5633 143.214 -33.6329 48.5055 144.528 -34.4611 48.2504 131.567 -38.9341 43.4311 138.451 -37.8428 45.1446 134.246 -39.058 51.3088 130.573 -37.8872 44.498 142.267 -35.7379 53.9312 131.767 -36.7632 47.939 143.698 -34.0771 55.4586 135.033 -35.7586 51.6817 142.351 -33.9384 54.6942 139.021 -34.6087 47.6009 142.867 -35.4487 49.1112 141.201 -36.4341 51.2183 138.511 -37.4098 52.6196 135.479 -38.0192 51.7129 132.488 -38.381 50.7646 134.609 -38.7822 48.8984 137.414 -38.4633 47.013 140.215 -37.3683 45.949 142.148 -36.1946 56.8747 130.003 -37.3653 59.271 135.122 -34.8148 43.4222 133.063 -41.3875 53.4219 145.768 -32.7803 43.3933 146.037 -37.8806 41.0259 139.775 -40.1938 47.7811 129.312 -41.5937 52.3542 128.12 -39.7631 57.9468 140.752 -33.0391 48.3905 148.009 -34.6435 59.466 126.101 -36.8574 62.769 134.918 -31.1499 35.337 130.917 -44.7544 54.5184 150.949 -28.3414 36.1436 151.734 -35.4628 31.2473 142.63 -41.2578 44.4825 124.75 -45.068 52.223 123.767 -42.08 60.3461 143.735 -29.0309 45.5294 154.723 -30.4826 52.8762 134.088 -38.0496 52.9993 133.095 -37.9288 65.4323 107.528 -26.9171 67.9487 126.833 -28.5074 70.5081 134.319 -20.2732 62.6749 119.616 -35.7438 72.6589 117.278 -23.098 72.2444 116.442 -22.3254 71.3889 125.795 -28.3703 65.5901 109.029 -33.5959 69.3603 107.637 -26.6398 75.0515 126.757 -29.2103 63.5342 113.12 -36.9642 64.2148 119.206 -36.4696 70.5985 118.958 -37.1681 74.9121 108.319 -27.0453 71.9998 116.742 -36.9872 71.9612 114.391 -36.0381 88.8094 110.578 -26.9527 84.1169 110.131 -30.6072 87.2695 128.749 -35.4465 93.0867 136.547 -27.8016 77.576 118.913 -26.6205 76.2215 114.981 -25.3972 75.678 123.817 -34.645 78.3012 128.686 -29.8368 77.0845 117.097 -33.174 81.2906 120.822 -28.8656 75.1464 118.021 -36.546 81.172 131.293 -29.8079 83.4949 133.994 -29.1154 81.9364 120.685 -33.7567 87.4282 126.444 -33.002 84.2007 123.162 -29.9962 87.3956 126.405 -30.3062 80.9881 121.747 -36.5927 79.7217 108.446 -27.144 76.8458 113.737 -33.7746 81.9683 107.792 -26.8548 80.6767 124.289 -36.9998 70.1714 106.645 -20.1493 72.022 116.241 -22.9037 72.8888 115.884 -22.6383 73.3892 117.141 -19.0068 69.7533 125.895 -28.1175 72.9185 107.101 -21.1147 69.1965 130.484 -24.8144 72.6997 129.897 -25.4795 73.1742 126.294 -28.81 63.1531 116.358 -37.3542 67.3688 119.359 -37.0517 66.7935 113.286 -37.5877 72.197 107.977 -26.8719 77.8994 107.939 -21.2215 76.3201 129.88 -26.4826 71.9026 115.225 -37.0598 71.0463 113.066 -37.4483 87.9791 108.369 -27.0824 90.3568 109.787 -24.1197 85.8919 131.003 -34.834 89.9668 133.538 -32.7744 75.3807 117.261 -28.6335 74.2589 118.273 -24.8974 74.5081 115.555 -23.9173 74.7186 115.201 -29.2771 78.273 114.414 -20.2702 76.9377 127.337 -29.5447 74.9877 116.19 -32.3036 79.228 118.61 -30.8741 79.7455 119.59 -27.752 75.7618 117.015 -35.1966 72.8947 115.268 -34.2906 73.0867 117.445 -36.2917 78.8617 122.15 -25.111 82.7305 124.079 -27.0743 82.4725 132.777 -29.4795 84.5114 123.193 -33.8509 87.4141 126.338 -31.4821 85.952 124.849 -30.2847 82.9247 121.687 -31.9314 81.3232 120.724 -35.4257 84.0399 124.603 -36.7655 87.4445 127.25 -34.4856 81.9223 133.222 -27.574 84.3016 135.509 -27.551 85.3181 126.104 -28.0604 88.5803 128.469 -28.7521 90.0231 129.941 -30.4819 77.43 108.57 -27.2025 76.3149 112.625 -34.143 74.121 114.113 -34.4307 78.5236 114.752 -26.0741 79.2235 114.861 -29.7308 81.84 107.809 -22.5419 82.8432 113.477 -21.7471 80.6945 113.198 -32.7484 80.1006 111.667 -32.8137 81.4167 114.445 -29.7768 85.2891 111.653 -30.1957 85.1586 107.567 -26.8363 79.5016 131.024 -27.3879 82.7149 121.901 -29.5647 78.0128 119.311 -36.7914 75.0649 120.445 -36.8974 79.7863 129.926 -29.9221 79.3229 118.187 -33.5803 84.4402 132.877 -32.1553 80.111 127.576 -34.3959 71.2569 121.989 -34.7844 66.2834 120.958 -33.9154 71.8315 110.129 -33.2852 77.2358 110.04 -32.7655 73.4782 133.884 -21.131 77.6228 132.464 -22.2276 81.3655 132.277 -23.4746 83.426 133.82 -24.0033 85.7036 136.141 -24.3458 88.7308 138.375 -25.7679 91.4667 138.163 -27.2159 92.7583 132.552 -26.9171 90.4562 129.827 -25.7152 86.8669 126.78 -24.6669 84.0844 124.721 -23.6771 80.1888 122.834 -22.3988 88.4224 111.98 -26.642 73.0971 114.872 -34.0422 78.0365 114.257 -32.4652 72.6559 116.366 -23.6348 74.0565 115.738 -18.8756 74.3546 119.371 -20.3332 70.6786 130.252 -24.9797 66.3234 116.559 -38.424 68.7427 109.182 -33.5877 75.2695 107.415 -21.4172 74.5162 129.923 -26.0103 69.7229 116.044 -38.0771 89.5331 107.124 -23.792 88.3401 135.32 -31.9677 74.1388 115.95 -26.0645 75.9612 114.948 -19.4391 77.1416 118.114 -30.0044 73.3922 116.231 -34.5642 80.9955 123.121 -26.1556 85.0815 123.793 -32.0715 84.2148 123.344 -35.5836 83.1264 134.427 -27.4776 86.9811 127.454 -28.4118 89.522 129.098 -29.4795 74.6652 110.346 -32.9938 73.4634 113.087 -34.946 76.8228 114.888 -29.5521 79.8915 107.956 -22.0252 80.6122 114.073 -21.0487 83.7573 107.262 -22.8645 86.4999 113.195 -22.8837 83.3651 113.698 -27.6845 87.0649 106.513 -23.293 78.1729 130.027 -26.8719 84.0191 124.97 -27.6585 78.0395 121.874 -37.0279 80.9955 119.953 -31.531 86.4391 136.135 -29.7404 82.2626 130.071 -33.6418 73.3188 122.63 -34.5204 68.9993 121.598 -34.5597 61.1201 116.288 -36.4563 80.2549 109.485 -31.4116 71.6743 134.356 -20.764 75.3384 133.298 -21.6337 79.5527 132.054 -22.774 82.5547 132.906 -23.8513 84.4528 134.914 -24.1434 93.1861 134.488 -27.5777 91.9487 131.059 -26.2461 88.5515 128.283 -25.1888 85.4827 125.624 -24.1983 82.3397 123.833 -23.052 76.6708 121.456 -21.1288 89.869 111.457 -23.9848 75.2791 114.471 -33.131 72.5418 119.712 -36.6595 81.3907 113.876 -31.5584 78.3679 118.196 -35.5399 83.0864 127.336 -36.4037 85.4308 112.541 -29.518 90.2145 131.46 -31.6971 82.9166 108.627 -29.6277 64.7835 120.521 -33.7531 75.2428 120.861 -23.2937 80.7976 132.083 -27.6852 77.9572 125.484 -34.7339 74.1796 115.013 -31.4161 80.9021 114.638 -26.7177 85.1483 113.312 -25.263 82.0676 114.019 -24.0982 79.6802 114.358 -23.3746 77.3173 114.669 -22.6413 75.2124 115.161 -21.7041 73.588 115.837 -21.0027 72.7523 116.861 -20.956 73.4137 118.581 -21.8902 66.4762 141.604 -20.8641 58.3546 118.743 -38.2809 63.6573 103.164 -29.6181 61.2017 113.464 -35.2759 62.603 110.079 -31.8602 69.9438 135.891 -21.1621 68.2393 131.67 -26.2038 67.4378 127.136 -29.5202 62.8091 120.687 -35.9907 60.5767 117.653 -37.3935 60.7761 113.247 -36.1998 62.0921 109.556 -33.1525 65.2417 105.935 -28.1842 71.3073 112.394 -36.0092 68.3164 110.617 -35.2945 68.3445 111.331 -36.3747 -11.3552 113.133 6.63324 68.4684 104.805 -22.5375 -9.45044 104.401 1.95409 -7.56053 100.492 -0.627556 -5.0686 97.2087 -3.46945 -1.8849 93.9531 -6.38548 56.808 93.3547 -23.3279 61.9223 96.6682 -23.3508 59.4081 140.566 19.6623 60.4639 137.464 20.042 61.8763 134.831 19.5882 63.4845 132.857 18.7674 59.1931 143.585 18.4382 65.1653 131.503 17.6961 59.7648 145.792 16.5098 66.574 130.654 16.1776 60.7479 147.03 14.1165 67.7426 130.322 14.3856 61.9742 147.354 11.7839 68.7983 130.581 12.5261 63.4081 146.812 9.84286 69.823 131.736 10.6896 65.1046 145.464 8.28365 70.6207 133.636 8.99838 67.079 143.51 7.13741 70.6489 135.976 7.7083 68.7916 141.109 6.6273 70.0306 138.529 6.87865 46.0899 131.451 -40.7647 44.2964 133.408 -40.6498 42.8521 136.048 -40.2939 42.1344 139.179 -39.5132 48.0895 130.139 -40.7032 42.5725 142.25 -38.4974 50.1107 129.339 -40.116 44.0636 144.531 -37.2763 52.0814 129.065 -39.1855 46.164 145.859 -35.8431 53.992 129.384 -38.172 48.4484 146.268 -34.5523 55.8478 130.62 -37.1918 50.7075 145.792 -33.6656 57.2832 132.639 -36.2405 52.9926 144.492 -33.2066 58.0113 135.002 -35.2811 55.2984 142.565 -33.2185 57.9772 137.569 -34.3714 57.0771 140.172 -33.5929 1.38182 68.9774 -45.9569 1.47894 65.0285 -50.2728 1.09637 63.909 -52.87 4.59888 9.97681 -40.0908 4.56625 11.4122 -44.5415 4.27933 14.0176 -48.351 3.6239 17.5846 -51.2515 2.5518 21.6054 -53.3934 2.81797 25.9316 -56.0077 3.01964 28.3271 -57.5284 3.3214 31.8267 -58.9081 3.45486 35.6754 -59.9047 3.14198 39.6169 -60.4303 2.63558 43.6332 -60.5215 2.15143 47.625 -60.2798 1.8074 51.4352 -59.6459 1.64281 54.9177 -58.6553 1.54494 58.1214 -57.1999 1.24614 61.2169 -55.2299 2.20258 72.8765 -41.2252 4.0999 75.8378 -37.4454 6.18702 78.5203 -33.435 56.4936 87.4619 -10.08 57.7629 85.6098 -10.3506 59.9983 84.0135 -10.7406 63.4852 82.0057 -11.5406 67.5801 79.1089 -12.265 -10.1652 108.262 6.21582 -11.0734 112.965 7.57632 -0.481384 91.8178 -0.502998 -8.62003 103.705 4.73889 -6.45135 99.499 2.95057 -3.73181 95.6969 0.985786 -60.1092 28.2359 7.92776 -8.84988 108.395 10.4182 -10.438 113.006 9.67531 2.73864 92.5778 10.975 -6.7205 103.892 10.9765 -4.01207 99.6658 11.3213 -0.806137 95.8341 11.3643 64.3527 94.8043 -12.5052 60.0369 91.4033 -11.0824 -11.539 10.151 19.9241 -5.49863 10.1436 21.8177 -15.9268 10.1577 16.38 -19.33 10.1651 11.6357 -22.5381 10.1681 4.40154 32.719 10.1303 18.5309 40.266 10.1244 13.6679 14.2263 10.1377 23.0462 22.7994 10.1333 21.7028 2.70157 10.137 23.1159 44.4157 10.1281 7.56966 6.82094 10.137 23.6438 46.5807 10.1555 0.804138 -22.7316 10.1651 -8.79883 46.5392 10.1481 -8.35619 -6.5737 10.1422 -30.0845 -12.5993 10.151 -28.2717 -18.4966 10.1644 -25.6115 -21.6988 10.1659 -20.5282 -21.6462 10.1607 -14.2928 40.6619 10.1362 -21.951 32.9614 10.1496 -27.1618 22.9625 10.1599 -31.832 13.8408 10.1637 -33.647 2.11658 10.1488 -32.443 44.7679 10.1347 -15.5147 6.04318 10.1488 -32.526 12.5907 10.1733 -3.80531 59.1887 91.8044 8.95242 -37.1383 88.9529 -2.97714 -31.8022 10.0858 -1.97102 -25.1531 10.1622 -2.2068 -48.967 94.3801 -3.43312 -42.7435 92.7505 -3.24479 -45.2458 14.541 -1.9814 -38.8006 11.688 -1.94433 -51.5643 18.2037 -2.1067 -56.8395 22.9229 -2.04294 -61.3273 28.167 -2.00068 -64.683 34.1592 -1.92802 -67.7244 42.676 -1.88947 -69.2985 52.0358 -1.98363 -69.0782 59.0674 -1.98585 -68.0128 66.587 -1.96361 -66.3149 75.4782 -2.11857 -61.6254 86.6775 -2.9586 -55.4464 92.4777 -3.38715 -32.8632 83.5116 -1.95249 -29.1664 80.3716 -1.67964 -25.0219 78.6923 -1.82199 -19.731 77.9019 -1.94433 -13.8211 78.3245 -1.89985 0.599609 81.0967 -1.11393 5.68803 83.0274 -0.72765 6.50954 84.4391 -0.967133 5.72511 86.2104 -0.331726 3.73808 88.5303 1.10886 0.442429 91.5093 2.82008 -2.82133 95.1602 4.04714 -5.66766 99.1208 5.2742 -8.03503 103.465 6.34038 -9.79816 108.128 7.22415 -10.9333 112.931 8.02786 -26.7479 60.7542 43.6698 -20.1774 63.8423 42.5992 -8.42801 27.4619 48.2347 14.9477 25.7121 48.3904 3.09452 25.896 48.4757 42.6645 36.5214 48.0598 47.7344 49.638 47.1827 40.5551 62.2549 45.2372 -20.4769 63.1994 -50.3046 -27.628 60.1306 -51.1217 -8.33606 28.1588 -55.7549 41.6947 37.0493 -55.6696 46.1069 49.7648 -54.9594 39.661 61.5616 -52.9449 -28.2701 61.5994 42.6785 -21.096 64.5792 41.7131 -10.6093 65.5757 41.2676 1.58052 66.8139 41.2357 -20.6037 30.6107 47.064 -27.9498 36.4747 46.6355 -32.0076 43.3195 45.7562 -33.3289 50.1288 44.8568 -9.84192 26.1273 47.153 -32.1367 56.4888 43.8329 40.1118 30.266 46.5139 29.9349 25.9004 46.5236 16.4046 23.9305 47.0581 3.12344 24.0639 47.2805 46.8217 35.817 46.5762 50.7757 42.2756 46.3478 52.0569 49.3051 45.7651 50.1277 56.399 44.7582 45.0638 62.5551 43.5645 13.7088 68.7742 41.1082 26.4851 69.2584 41.2994 37.1171 66.9377 42.3456 1.53827 66.2289 -48.7276 -11.1349 65.489 -48.6957 -21.7418 64.0098 -49.2903 -29.2399 60.7943 -50.2557 -33.7448 49.2984 -52.3954 -32.2894 43.1438 -53.1362 -27.8334 36.8602 -53.862 -20.3917 31.2343 -54.2831 -10.0503 26.5855 -54.5085 -32.8298 55.3737 -51.4331 2.729 24.1781 -54.8289 15.8893 23.9164 -54.731 29.5034 26.0458 -54.0829 39.6795 30.5618 -53.8806 46.253 36.21 -53.7901 50.0128 42.5536 -53.5439 51.139 49.2547 -52.9597 49.321 55.8341 -52.0848 44.6241 61.6202 -51.0127 37.1431 65.7944 -49.8316 26.732 68.0261 -48.7847 13.6339 67.8667 -48.6371 -0.192109 -0.934569 0.299458 -0.06315 -0.993623 0.093407 -0.038767 -0.993005 0.111528 -0.11695 -0.921313 0.370816 -0.085264 -0.993927 0.06957 -0.25821 -0.942076 0.214058 -0.305238 -0.944237 0.123473 -0.103012 -0.993873 0.04007 -0.109849 -0.993698 0.02232 -0.319871 -0.945464 0.061492 0.322015 -0.653105 0.68539 0.238016 -0.809438 0.536805 0.39559 -0.829362 0.394547 0.547107 -0.665777 0.50736 0.149283 -0.925897 0.34703 0.227375 -0.943129 0.242504 -0.182106 -0.7902 0.585167 -0.310544 -0.820667 0.479654 -0.418246 -0.841388 0.342252 -0.407245 -0.671943 0.618582 -0.544891 -0.711903 0.443045 -0.234371 -0.618101 0.750347 -0.474249 -0.857348 0.200104 -0.472515 -0.875412 0.101901 -0.601129 -0.750567 0.274396 -0.593419 -0.791427 0.146617 0.282256 -0.953514 0.105559 0.497204 -0.845385 0.195227 0.680184 -0.678639 0.277127 0.475425 -0.378716 0.794069 0.394699 -0.508097 0.765539 0.651796 -0.507567 0.563506 0.728714 -0.35445 0.585953 -0.280085 -0.456993 0.844222 -0.472084 -0.52749 0.706322 -0.629949 -0.5896 0.505505 -0.525528 -0.402813 0.749375 -0.688269 -0.483465 0.540877 -0.345696 -0.333643 0.877027 0.797494 -0.502759 0.333521 0.868857 -0.332163 0.36709 0.779236 -0.208323 0.591094 0.556733 -0.232343 0.797537 0.611419 -0.086952 0.786515 0.805975 -0.07802 0.586786 0.901017 -0.198547 0.385677 0.912954 -0.073233 0.401437 0.587309 0.31693 0.74473 0.626298 0.112282 0.771455 0.807598 0.10215 0.580819 0.767563 0.296279 0.568389 0.905959 0.097128 0.412074 0.868972 0.273148 0.412646 0.369046 0.664292 0.650016 0.498279 0.502362 0.706648 0.692864 0.459155 0.555982 0.584348 0.597963 0.548615 0.813067 0.415121 0.408163 0.751114 0.515121 0.41289 0.19627 0.766932 0.610977 0.270011 0.7156 0.644213 0.477417 0.672112 0.565984 0.38089 0.730939 0.56626 0.665617 0.613839 0.424448 0.5601 0.712938 0.42191 -0.142237 0.892596 0.427833 -0.115435 0.801937 0.586149 -0.145778 0.823148 0.548795 -0.183731 0.901347 0.392196 -0.170598 0.892172 0.418242 -0.198923 0.94046 0.275618 -0.083913 0.784617 0.614276 -0.104776 0.836925 0.537195 -0.07128 0.762805 0.642687 -0.083732 0.95816 0.273711 -0.152017 0.963903 0.218593 -0.043758 0.995476 0.084341 0.11433 0.983142 0.142691 -0.188565 0.971095 0.146345 -0.153667 0.986837 0.050398 -0.277878 0.955105 0.102752 -0.278528 0.959779 0.035299 -0.266228 0.943946 0.195163 -0.494465 0.642119 0.585822 -0.123678 0.744163 0.656449 -0.094312 0.919596 0.381378 -0.521981 0.776809 0.352284 0.287464 0.72515 0.625717 0.35104 0.866307 0.355363 -0.085399 0.659129 0.747166 0.224013 0.689809 0.688464 -0.41145 0.564912 0.715251 -0.896437 0.304297 0.322186 -0.755967 0.475931 0.449448 -0.804069 0.52634 0.276477 -0.929837 0.307416 0.202235 -0.651421 0.428251 0.626301 -0.812838 0.261118 0.520685 -0.700828 0.14352 0.698743 -0.528973 0.340042 0.777534 -0.323564 0.505566 0.799819 -0.384671 0.217738 0.897005 -0.26768 0.410295 0.871783 -0.51729 -0.021456 0.855541 -0.703157 -0.1848 0.686599 -0.802326 -0.033833 0.595927 -0.877917 -0.14451 0.456484 -0.806047 -0.267053 0.528176 -0.89323 0.116397 0.434273 -0.92976 -0.00252 0.368157 -0.693473 -0.636086 0.338364 -0.705373 -0.68381 0.186692 -0.75587 -0.532488 0.380943 -0.796546 -0.566484 0.211211 -0.077417 -0.240522 0.967551 -0.089798 -0.134723 0.986806 -0.168487 -0.121841 0.978145 -0.138523 -0.221426 0.965289 -0.113525 -0.038943 0.992772 -0.195995 -0.017488 0.980449 -0.602195 -0.290799 0.743503 -0.742439 -0.374894 0.555193 -0.432918 -0.200289 0.878901 -0.818103 -0.413906 0.399236 -0.879805 -0.419705 0.22314 -0.8832 -0.285146 0.372357 -0.940384 -0.263381 0.215195 -0.205308 0.092751 0.974293 -0.12459 0.080228 0.988959 -0.122228 0.178941 0.976238 -0.196017 0.189929 0.962031 -0.04789 0.778827 0.625407 -0.065661 0.712179 0.698921 -0.086279 0.666075 0.740878 -0.054107 0.736647 0.674109 0.32735 0.918436 0.222077 0.038245 0.947019 0.318892 -0.067436 0.912058 0.404479 0.299059 0.868082 0.396229 0.020777 0.864061 0.502958 0.601008 0.74983 0.276665 0.10013 0.787789 0.607752 0.137884 0.80072 0.582954 0.293157 0.782715 0.549014 0.251535 0.793724 0.553834 0.033793 0.760625 0.648311 0.012829 0.792843 0.609291 -0.001462 0.805911 0.592035 0.470195 0.782277 0.408607 0.406592 0.824118 0.394351 -0.228092 0.919665 0.319673 -0.149194 0.877198 0.45636 0.221981 0.775644 0.590848 0.477153 0.718896 0.505483 0.642223 0.702693 0.306223 -0.941954 -0.151996 0.299365 -0.977272 -0.097629 0.18817 -0.969667 0.027366 0.242894 -0.984274 0.065087 0.16422 -0.081923 0.660823 0.746057 -0.143863 0.635643 0.75846 -0.950758 0.179022 0.253002 -0.969441 0.180582 0.166057 0.433741 0.791171 0.431182 0.286611 0.730746 0.619568 0.635928 0.49935 0.588427 0.410194 0.41588 0.811655 -0.030936 0.832088 0.553781 -0.063268 0.738092 0.671727 -0.236437 0.785277 0.572222 -0.098454 0.365739 0.925495 -0.356861 0.365039 0.859882 0.116456 0.704283 0.700303 0.160354 0.369389 0.915335 -0.380395 0.81813 0.431235 -0.491132 0.823545 0.283836 -0.59916 0.341103 0.724332 -0.798743 0.301719 0.520552 0.047573 -0.992573 0.111966 0.069354 -0.994739 0.075398 0.015592 -0.990695 0.135202 0.028503 -0.991144 0.129693 0.0864 -0.911356 0.402449 0.046371 -0.905885 0.420977 -0.018844 -0.991895 0.125654 -0.057065 -0.909815 0.411073 0.087743 -0.99576 0.027619 0.126144 -0.779499 0.613571 0.067151 -0.760559 0.645787 0.153713 -0.607983 0.778928 0.075394 -0.57677 0.81342 -0.085238 -0.760064 0.644234 -0.102578 -0.566247 0.817827 0.045094 -0.227711 0.972684 0.047131 -0.133922 0.98987 0.005657 -0.158915 0.987276 0.006376 -0.238835 0.971039 0.058631 -0.040878 0.997442 0.002975 -0.056704 0.998387 0.127635 -0.116289 0.98498 0.152279 -0.014755 0.988227 0.100619 -0.20516 0.973543 0.059288 0.068169 0.995911 -0.006745 0.055506 0.998436 0.05032 0.180626 0.982264 -0.021925 0.163036 0.986376 0.163736 0.099069 0.981517 0.156175 0.220652 0.962768 0.020684 0.317842 0.947918 -0.050294 0.316731 0.947181 -0.025411 0.533931 0.845146 -0.086911 0.5228 0.848014 0.127716 0.356862 0.925385 0.071441 0.516034 0.853584 -0.061054 0.766638 0.63917 0.078289 0.741306 0.666586 0.208508 0.671416 0.711144 0.313289 0.499706 0.807554 0.378689 0.310587 0.871855 0.400342 0.118619 0.908656 0.381543 -0.070384 0.921668 0.331083 -0.22771 0.915714 0.260306 -0.364971 0.893889 0.178111 -0.473128 0.862802 0.071351 -0.485088 0.87155 -0.127917 -0.411323 0.902469 -0.217134 -0.272275 0.9374 -0.28612 -0.114565 0.95132 -0.297833 0.014133 0.954513 -0.259212 0.153056 0.953616 -0.214461 0.319798 0.922895 -0.151901 0.528641 0.835144 -0.103669 0.295387 0.949736 -0.165776 0.313209 0.935104 -0.083675 0.492895 0.866056 -0.119834 0.470121 0.874429 -0.087588 0.774585 0.626376 -0.256922 -0.123444 0.958516 -0.282852 0.013185 0.959073 -0.378724 -0.276752 0.883163 -0.438423 -0.070607 0.895991 -0.437651 -0.063548 0.896897 -0.390678 -0.27619 0.878117 -0.251518 -0.431278 0.866451 -0.276371 -0.456203 0.845871 -0.19905 -0.303218 0.9319 -0.274611 0.135247 0.951996 -0.249887 0.293965 0.922573 -0.442099 0.099565 0.891423 -0.416837 0.295755 0.859521 -0.412837 0.32408 0.851198 -0.438351 0.113033 0.891668 0.156401 -0.497394 0.85331 0.061408 -0.535686 0.842181 0.119454 -0.452018 0.883974 0.032667 -0.468626 0.882793 0.050048 -0.559259 0.827481 0.150699 -0.524664 0.837865 0.208739 -0.361482 0.908713 0.238743 -0.413555 0.878621 0.232419 -0.391651 0.890276 -0.125806 -0.451337 0.883441 -0.128663 -0.465603 0.875591 -0.150994 -0.530967 0.833832 0.284031 -0.235212 0.929517 0.269401 -0.199777 0.942079 0.293517 -0.238502 0.925724 0.286186 -0.032306 0.957629 0.310905 -0.056264 0.948774 0.312743 -0.062252 0.947795 0.322676 0.120164 0.938851 0.286685 0.125421 0.94978 0.312932 0.123775 0.941676 0.279716 0.294166 0.913907 0.303905 0.313656 0.89959 0.309104 0.311381 0.898608 0.037576 0.808415 0.587412 0.169817 0.698638 0.69503 -0.000992 0.780213 0.625514 0.138259 0.681294 0.718834 0.161529 0.715447 0.679738 0.018778 0.826522 0.562592 -0.09996 0.801388 0.589733 -0.098648 0.85295 0.512587 -0.076807 0.814801 0.574631 0.262922 0.511395 0.818137 0.242579 0.49202 0.836105 0.262895 0.521513 0.811733 -0.185749 0.495789 0.848346 -0.322481 0.52883 0.785076 -0.160242 0.722224 0.672841 -0.146317 0.772841 0.617501 -0.312096 0.577251 0.754571 -0.076559 0.797941 0.597853 -0.071594 0.840171 0.537576 -0.107376 0.806238 0.581766 -0.112987 0.848782 0.51653 -0.287568 -0.01818 0.957588 -0.246849 -0.15606 0.956405 -0.173556 -0.290795 0.940913 -0.283237 0.22681 0.931844 -0.297529 0.100463 0.949412 0.014537 -0.330354 0.943745 0.072188 -0.329168 0.941508 0.150177 -0.268878 0.951394 -0.091484 -0.341365 0.935468 0.211928 -0.141481 0.96699 0.233591 -0.009434 0.972289 0.24083 0.120366 0.963075 0.233787 0.260424 0.936762 0.102888 0.613185 0.78321 -0.030399 0.694019 0.719314 -0.098708 0.675427 0.730791 0.204918 0.428836 0.879834 -0.132475 0.557408 0.819602 -0.232943 0.388015 0.89173 -0.075386 0.634728 0.769049 -0.09685 0.652599 0.751489 -0.092397 0.509504 0.855493 -0.081276 0.316551 0.945087 -0.068265 0.172012 0.982727 -0.054553 0.065325 0.996372 -0.043341 -0.055449 0.99752 -0.033383 -0.160096 0.986537 -0.028874 -0.24536 0.969002 -0.033304 -0.336054 0.941254 -0.042357 -0.467717 0.882863 -0.046567 -0.556118 0.829798 -0.037674 -0.519487 0.853647 -0.022566 -0.457423 0.888963 -0.012961 -0.556886 0.830488 -0.007732 -0.753873 0.656974 -0.003792 -0.90729 0.420489 -0.001149 -0.991208 0.132304 0.512335 -0.857386 0.049017 0.70555 -0.704425 0.077354 0.297092 -0.954566 0.023258 0.84286 -0.528889 0.09931 0.930258 -0.348816 0.113782 0.968103 -0.21837 0.122848 0.986591 -0.093131 0.134031 0.985676 0.081564 0.147617 0.95281 0.259757 0.157095 0.894834 0.417704 0.157465 0.844113 0.514896 0.149516 0.774064 0.618654 0.134508 0.673761 0.729252 0.119321 0.59429 0.795832 0.116061 0.5205 0.84585 0.116695 0.525074 0.841884 0.124616 0.765546 0.621669 0.16573 0.097097 -0.995263 0.004896 -0.565407 0.809464 0.158374 -0.611313 0.789337 0.056957 -0.920895 0.236324 0.310006 -0.979363 0.144989 0.140806 -0.738247 -0.362498 0.568846 -0.830423 -0.418752 0.367485 -0.844491 -0.498578 0.195588 -0.637358 -0.672695 0.37584 -0.668066 -0.709833 0.223216 -0.553902 -0.635855 0.537476 -0.346188 -0.291036 0.891881 -0.564224 -0.330618 0.756534 -0.436173 -0.617389 0.654663 -0.266348 -0.628612 0.730688 -0.097978 -0.251576 0.962865 -0.086895 -0.643915 0.760146 0.176816 -0.222898 0.958672 0.120695 -0.699248 0.704617 0.465192 -0.190422 0.864486 0.373032 -0.681742 0.629345 0.749171 -0.141411 0.647105 0.57208 -0.682024 0.455597 0.984143 0.023025 0.175875 0.738366 -0.656556 0.154109 -0.095635 0.76965 0.631263 -0.315057 -0.948903 0.017974 -0.110306 -0.993886 0.004918 -0.457702 -0.888528 0.032039 -0.589111 -0.807168 0.037792 0.510058 -0.858624 -0.051043 0.70623 -0.703125 -0.082786 0.294439 -0.955391 -0.023102 0.843862 -0.525198 -0.109834 0.928966 -0.346434 -0.130403 0.964683 -0.219414 -0.145751 0.981881 -0.104853 -0.157847 0.98501 0.058597 -0.162241 0.95819 0.238399 -0.158234 0.897823 0.414043 -0.149942 0.829346 0.538002 -0.150797 0.747675 0.644543 -0.159833 0.659153 0.734437 -0.161615 0.265044 0.963485 0.038059 0.039034 0.999086 0.017437 0.018622 0.997848 -0.062875 0.244836 0.962544 -0.116463 -0.130658 0.991351 0.012349 -0.138096 0.990164 -0.022449 -0.273293 0.96189 0.008822 -0.274255 0.961657 0.000421 -0.053579 0.998129 0.029453 -0.515915 0.855204 0.049583 0.344116 0.89883 -0.271457 -0.055876 0.956544 -0.286182 0.365283 0.930753 0.01632 -0.828131 0.557888 0.054409 -0.952772 0.299578 0.049783 -0.711727 -0.701459 0.037422 -0.905755 -0.418034 -0.069676 -0.8121 -0.578723 -0.074656 -0.818385 -0.573492 0.036778 -0.910268 -0.412077 0.040054 0.709552 0.701423 0.067393 0.515618 0.854187 0.067105 0.52626 0.835416 -0.158524 0.711562 0.67733 -0.186822 0.587221 0.793907 -0.157743 0.504751 0.849895 -0.151344 0.655685 0.754174 0.036026 0.627882 0.742251 -0.234154 -0.995755 -0.076042 0.051857 -0.966252 -0.253074 0.048064 -0.995208 0.084624 0.048994 -0.98245 0.180559 0.046801 0.500696 0.849415 -0.166726 0.699452 0.674292 -0.236847 -0.644888 0.764208 0.010314 -0.658085 0.75262 0.022063 -0.996997 0.052783 0.056672 -0.999004 0.031144 0.031952 0.095211 -0.995451 -0.003478 -0.828476 -0.551185 0.099113 -0.83354 -0.552229 0.015914 -0.680841 -0.722996 0.117184 -0.70438 -0.709823 0.000289 0.942473 0.130036 -0.307954 0.760792 -0.603232 -0.239387 -0.191598 -0.926128 -0.324926 -0.11404 -0.910397 -0.397707 -0.034523 -0.992382 -0.118262 -0.056307 -0.993628 -0.097639 -0.08229 -0.99447 -0.065257 -0.263919 -0.93806 -0.224478 -0.301453 -0.945273 -0.124839 -0.10268 -0.994176 -0.032728 -0.109842 -0.993816 -0.016268 -0.306215 -0.95011 -0.059356 0.319117 -0.647606 -0.691933 0.534285 -0.666968 -0.519319 0.385251 -0.83007 -0.403195 0.239592 -0.805165 -0.542499 0.228594 -0.939199 -0.256224 0.158278 -0.918607 -0.362089 -0.178484 -0.75672 -0.628902 -0.309497 -0.797477 -0.51792 -0.420841 -0.831771 -0.362009 -0.538657 -0.700909 -0.467519 -0.394197 -0.64598 -0.653696 -0.222745 -0.580396 -0.783278 -0.463953 -0.858375 -0.218951 -0.461429 -0.880375 -0.109649 -0.599801 -0.782405 -0.167575 -0.59309 -0.744341 -0.306921 0.280118 -0.952342 -0.120743 0.489162 -0.845976 -0.212238 0.674722 -0.67782 -0.292079 0.467443 -0.364911 -0.805194 0.712309 -0.345361 -0.611018 0.641575 -0.494023 -0.586791 0.39121 -0.489528 -0.779305 -0.257887 -0.431057 -0.864687 -0.450347 -0.520374 -0.725533 -0.610796 -0.588414 -0.529809 -0.665056 -0.488467 -0.56489 -0.505193 -0.408993 -0.759938 -0.312897 -0.314982 -0.896037 0.796286 -0.495922 -0.346396 0.865739 -0.328626 -0.377493 0.760432 -0.204661 -0.616326 0.545204 -0.224716 -0.807623 0.593644 -0.079984 -0.800743 0.783915 -0.086134 -0.614865 0.896384 -0.199742 -0.395726 0.906271 -0.095045 -0.411874 0.551478 0.253954 -0.794594 0.749758 0.226635 -0.62169 0.783116 0.056593 -0.619295 0.5969 0.085909 -0.797703 0.90526 0.04554 -0.42241 0.880719 0.218398 -0.420282 0.336343 0.599609 -0.726183 0.572035 0.582293 -0.577677 0.679985 0.408785 -0.6087 0.461982 0.425407 -0.778204 0.822759 0.398489 -0.405308 0.73865 0.550111 -0.389581 0.158279 0.713924 -0.6821 0.37644 0.723509 -0.578643 0.467127 0.676077 -0.569835 0.228363 0.685665 -0.691168 0.648361 0.657528 -0.383777 0.564637 0.73282 -0.379684 -0.132948 0.895471 -0.424801 -0.16783 0.911023 -0.376656 -0.12755 0.841928 -0.524298 -0.095044 0.810733 -0.577649 -0.191234 0.937857 -0.289574 -0.161097 0.88789 -0.430929 -0.099619 0.831047 -0.547207 -0.068866 0.782563 -0.618751 -0.042804 0.75673 -0.652324 -0.106611 0.95728 -0.268792 0.061832 0.967519 -0.24512 -0.090989 0.984179 -0.152028 -0.171442 0.958937 -0.225938 -0.170146 0.982001 -0.081999 -0.195635 0.967138 -0.16239 -0.282706 0.95847 -0.037576 -0.282545 0.952356 -0.114834 -0.262642 0.936921 -0.230646 -0.457702 0.605028 -0.651498 -0.494691 0.715297 -0.493589 -0.076223 0.822259 -0.563986 -0.087936 0.702019 -0.706709 0.319664 0.765998 -0.557729 0.294833 0.694844 -0.655946 0.224172 0.682804 -0.695361 -0.063717 0.649517 -0.757673 -0.387084 0.558006 -0.734027 -0.896043 0.261582 -0.358722 -0.944002 0.274393 -0.183216 -0.810194 0.488173 -0.324457 -0.742944 0.435424 -0.508371 -0.645648 0.412332 -0.642745 -0.811086 0.243382 -0.531887 -0.699157 0.136155 -0.701885 -0.530892 0.331786 -0.77979 -0.30426 0.511436 -0.803654 -0.248492 0.408629 -0.878222 -0.387347 0.198969 -0.900208 -0.511763 -0.033699 -0.858465 -0.688173 -0.178311 -0.703294 -0.790784 -0.260454 -0.553917 -0.872048 -0.112083 -0.476413 -0.794394 -0.013341 -0.607256 -0.920109 0.042291 -0.389372 -0.884532 0.127633 -0.44868 -0.676964 -0.636735 -0.369174 -0.702442 -0.678564 -0.214769 -0.78028 -0.57775 -0.239514 -0.733839 -0.540713 -0.41123 -0.092147 -0.181509 -0.979062 -0.144369 -0.166467 -0.975421 -0.159435 -0.079334 -0.984015 -0.094565 -0.065989 -0.993329 -0.168501 -0.000101 -0.985701 -0.104493 0.01153 -0.994459 -0.726284 -0.369697 -0.579514 -0.588438 -0.292192 -0.753899 -0.407291 -0.20071 -0.890971 -0.869486 -0.42871 -0.245363 -0.799739 -0.41079 -0.4378 -0.938755 -0.260153 -0.225963 -0.869609 -0.274794 -0.410206 -0.170534 0.079532 -0.982137 -0.161151 0.169743 -0.972223 -0.090409 0.181448 -0.979236 -0.10396 0.092065 -0.990311 -0.061474 0.779505 -0.623373 -0.054952 0.743789 -0.666152 -0.103099 0.66864 -0.736404 -0.089248 0.714186 -0.694242 0.313646 0.879357 -0.358269 0.027421 0.941997 -0.334499 -0.080622 0.891857 -0.445073 0.022338 0.831019 -0.555795 0.289168 0.850636 -0.43909 0.556005 0.699289 -0.449281 0.050624 0.773712 -0.631511 0.231632 0.808083 -0.541616 0.288863 0.771715 -0.566581 0.103245 0.744807 -0.659244 0.031939 0.724546 -0.688486 0.003268 0.749951 -0.661485 -0.026171 0.792703 -0.609046 0.482137 0.794981 -0.36817 0.398207 0.851469 -0.34122 -0.221077 0.901734 -0.371484 -0.143622 0.850839 -0.505417 0.234374 0.743588 -0.626216 0.46128 0.703836 -0.540218 0.562017 0.649813 -0.511741 -0.977474 -0.09123 -0.19032 -0.936551 -0.12725 -0.326619 -0.984003 0.070682 -0.163533 -0.961337 0.050417 -0.270718 -0.12138 0.620783 -0.774529 -0.05521 0.647511 -0.760053 -0.944461 0.162933 -0.285388 -0.972855 0.171501 -0.15537 0.237565 0.800499 -0.55024 0.395586 0.847721 -0.353385 0.35269 0.570432 -0.741766 0.568049 0.652016 -0.502191 -0.054488 0.806873 -0.588206 -0.221404 0.774347 -0.592762 -0.082141 0.728443 -0.680164 -0.34248 0.449493 -0.825023 -0.1184 0.432945 -0.893611 0.102358 0.477975 -0.872389 0.062161 0.735187 -0.675008 -0.351621 0.822971 -0.446186 -0.453177 0.839825 -0.298872 -0.753559 0.408132 -0.515341 -0.56556 0.457673 -0.686059 0.070662 -0.994095 -0.082354 0.053046 -0.991548 -0.1184 0.013209 -0.990078 -0.139895 0.042006 -0.899343 -0.435221 0.096965 -0.90473 -0.414802 0.032991 -0.99044 -0.133938 -0.056118 -0.897897 -0.436614 -0.016738 -0.990736 -0.134764 0.086464 -0.995644 -0.034877 0.061043 -0.750045 -0.658564 0.137198 -0.774505 -0.61751 0.069229 -0.578014 -0.813085 0.165722 -0.607498 -0.776841 -0.08926 -0.735213 -0.671934 -0.114239 -0.544747 -0.830783 0.019911 -0.230638 -0.972836 -0.030593 -0.214954 -0.976145 -0.045955 -0.097756 -0.994149 0.002659 -0.095509 -0.995425 -0.052141 0.011297 -0.998576 0.002127 0.01818 -0.999832 0.120697 0.01473 -0.99258 0.113372 -0.110702 -0.987366 0.096736 -0.223211 -0.969958 -0.055442 0.119889 -0.991238 -0.003618 0.136061 -0.990694 -0.057352 0.236947 -0.969828 -0.01353 0.263616 -0.964533 0.087309 0.294367 -0.951696 0.113304 0.153076 -0.981697 -0.061332 0.359879 -0.930981 -0.028754 0.371752 -0.927887 -0.069217 0.479884 -0.874597 -0.04309 0.485197 -0.873342 0.017067 0.479437 -0.87741 0.052641 0.398131 -0.915817 -0.034654 0.760876 -0.647972 0.07156 0.732098 -0.67743 0.191934 0.634425 -0.748777 0.303753 0.458556 -0.835141 0.384402 0.282027 -0.879031 0.419845 0.110042 -0.9009 0.406427 -0.062856 -0.911518 0.353955 -0.220425 -0.908916 0.281504 -0.354287 -0.89176 0.067511 -0.500136 -0.863311 0.193668 -0.469971 -0.861174 -0.14958 -0.414815 -0.897527 -0.228363 -0.298833 -0.926579 -0.288297 -0.161724 -0.943785 -0.298702 -0.022525 -0.954081 -0.190826 0.301532 -0.934165 -0.246409 0.126265 -0.960906 -0.15017 0.520238 -0.840715 -0.129702 0.309072 -0.942153 -0.066417 0.305119 -0.949995 -0.055085 0.462192 -0.885067 -0.090042 0.449004 -0.888981 -0.071733 0.766958 -0.637675 -0.283007 -0.028509 -0.958694 -0.281863 -0.191917 -0.940065 -0.351312 -0.084797 -0.932411 -0.309888 -0.241843 -0.919501 -0.329877 -0.256795 -0.908426 -0.371873 -0.083592 -0.924512 -0.244245 -0.370528 -0.896133 -0.261882 -0.399787 -0.878401 -0.239012 -0.350966 -0.905371 -0.228514 0.26963 -0.935457 -0.253264 0.114721 -0.960571 -0.387754 0.261515 -0.883887 -0.38213 0.068912 -0.921536 -0.395833 0.087229 -0.914171 -0.400411 0.295266 -0.867461 0.059717 -0.537384 -0.841221 0.170799 -0.490618 -0.854471 0.023673 -0.491984 -0.870282 0.138029 -0.482666 -0.864859 0.172547 -0.546798 -0.819292 0.048051 -0.585369 -0.809342 0.24535 -0.391127 -0.88703 0.271557 -0.425603 -0.863203 0.253362 -0.383231 -0.888224 -0.16392 -0.464478 -0.870282 -0.156074 -0.43633 -0.886147 -0.174103 -0.495914 -0.85074 0.311338 -0.234144 -0.921002 0.314452 -0.22765 -0.921573 0.331844 -0.253055 -0.908759 0.334948 -0.047443 -0.941041 0.358791 -0.06942 -0.930833 0.352034 -0.064094 -0.93379 0.370008 0.120956 -0.921121 0.325861 0.13785 -0.935314 0.365501 0.126808 -0.922133 0.293842 0.331419 -0.896559 0.345775 0.339247 -0.874843 0.349666 0.318511 -0.88107 0.181191 0.722006 -0.667741 0.050427 0.826013 -0.561391 0.124911 0.682336 -0.720288 -8.3e-005 0.771418 -0.636329 0.029371 0.862647 -0.504953 0.172441 0.753171 -0.634821 -0.088449 0.796983 -0.597491 -0.084759 0.878493 -0.470177 -0.056365 0.816918 -0.573992 0.28721 0.527283 -0.799677 0.229314 0.522426 -0.821271 0.28443 0.557632 -0.779838 -0.184783 0.47937 -0.857939 -0.159072 0.705689 -0.690434 -0.306838 0.513915 -0.801088 -0.313651 0.56677 -0.761837 -0.157757 0.765176 -0.624195 -0.073978 0.778021 -0.623867 -0.070331 0.835642 -0.544753 -0.087799 0.795672 -0.599331 -0.090591 0.859197 -0.503561 -0.232887 -0.144487 -0.961711 -0.244705 -0.029472 -0.96915 -0.189644 -0.261806 -0.946305 -0.251478 0.075314 -0.964928 -0.245154 0.195506 -0.949567 0.069738 -0.345456 -0.93584 -0.006898 -0.32309 -0.946343 0.169707 -0.300933 -0.938424 -0.116208 -0.315517 -0.941778 0.239122 -0.166926 -0.956533 0.255866 -0.011563 -0.966643 0.242809 0.152646 -0.957989 0.202267 0.315072 -0.927264 -0.032641 0.607102 -0.793953 0.060458 0.564272 -0.823372 -0.076278 0.598808 -0.797252 0.144831 0.45396 -0.879173 -0.202967 0.364176 -0.908945 -0.116061 0.523868 -0.843856 -0.061288 0.585836 -0.808109 -0.069247 0.590821 -0.803825 -0.06147 0.471147 -0.87991 -0.062087 0.339494 -0.938557 -0.069753 0.213116 -0.974534 -0.075711 0.106988 -0.991373 -0.074759 0.010224 -0.997149 -0.065915 -0.084862 -0.99421 -0.056359 -0.195476 -0.979088 -0.058264 -0.312594 -0.948098 -0.069962 -0.465689 -0.882179 -0.071195 -0.557949 -0.826815 -0.045754 -0.47841 -0.876944 -0.060646 -0.52652 -0.847997 -0.029989 -0.553187 -0.832517 -0.018388 -0.737572 -0.675018 -0.009087 -0.897441 -0.441041 -0.00158 -0.989993 -0.141109 -0.308322 -0.951065 -0.020322 -0.110713 -0.99381 -0.009215 -0.455221 -0.889796 -0.032191 -0.596471 -0.800898 -0.052761 -0.511407 0.823202 -0.246578 -0.952243 0.291325 -0.09145 -0.828387 0.538442 -0.154449 -0.712918 -0.697663 -0.070811 -0.964192 -0.256036 -0.069136 -0.99426 -0.077609 -0.073642 -0.993521 0.085088 -0.075342 -0.980403 0.180699 -0.07847 -0.618484 0.785248 -0.029371 -0.985065 0.143698 -0.094851 -0.540296 0.826158 -0.159823 -0.899944 0.302263 -0.314224 -0.858864 -0.489238 -0.15165 -0.711588 -0.680949 -0.173063 -0.767866 -0.270651 -0.580629 -0.848883 -0.383401 -0.36387 -0.671939 -0.656576 -0.342645 -0.602072 -0.614193 -0.510173 -0.382168 -0.137855 -0.913752 -0.607476 -0.181274 -0.773377 -0.492091 -0.563373 -0.66367 -0.327921 -0.53701 -0.777231 -0.13782 -0.132667 -0.981532 -0.138241 -0.548212 -0.824835 0.069946 -0.573914 -0.815923 0.11889 -0.117351 -0.985948 0.269629 -0.627654 -0.730309 0.418909 -0.085153 -0.904027 0.751138 0.018205 -0.659894 0.495888 -0.698066 -0.516526 -0.95931 0.034968 0.280182 -0.952229 0.032635 0.303636 -0.93144 0.167086 0.323268 -0.946666 0.171861 0.272557 -0.944846 0.025037 0.326557 -0.91551 0.150958 0.372899 -0.937578 0.012119 0.347564 -0.899986 0.12397 0.417919 -0.930687 -0.005661 0.365772 -0.885622 0.08696 0.456193 -0.924746 -0.02703 0.379623 -0.873384 0.042333 0.485189 -0.919713 -0.051956 0.389139 -0.863691 -0.010116 0.503919 -0.915891 -0.078133 0.39375 -0.857075 -0.064545 0.511132 -0.913924 -0.104134 0.392301 -0.854193 -0.116994 0.506623 -0.913686 -0.130204 0.385001 -0.854276 -0.170718 0.490986 -0.915221 -0.154787 0.372036 -0.856986 -0.224754 0.463745 -0.918574 -0.175545 0.354127 -0.862661 -0.271395 0.426803 -0.924357 -0.190998 0.330279 -0.874699 -0.302741 0.378484 -0.93489 -0.202027 0.291831 -0.900162 -0.32556 0.289342 -0.890596 -0.319641 0.323525 -0.930807 -0.199874 0.306022 -0.896 0.289458 0.336747 -0.918721 0.296141 0.261252 -0.872107 0.26593 0.410745 -0.848724 0.226438 0.477905 -0.827137 0.172709 0.534805 -0.80861 0.10747 0.578446 -0.794368 0.032855 0.606547 -0.785336 -0.046853 0.617294 -0.781515 -0.12666 0.610894 -0.781913 -0.208771 0.58739 -0.785856 -0.293485 0.544332 -0.793937 -0.361184 0.489091 -0.811021 -0.403504 0.423592 -0.835242 -0.430573 0.342022 -0.847345 0.403795 0.3449 -0.876998 0.412515 0.246384 -0.816114 0.373023 0.441375 -0.785473 0.321444 0.528872 -0.757102 0.251755 0.60284 -0.732492 0.167285 0.659903 -0.71285 0.071993 0.697612 -0.699448 -0.030237 0.714044 -0.693366 -0.135002 0.707826 -0.694705 -0.244186 0.676579 -0.700161 -0.36004 0.616559 -0.706167 -0.453566 0.543697 -0.723583 -0.510419 0.464651 -0.757493 -0.546167 0.357639 -0.786239 0.510828 0.347683 -0.822283 0.521471 0.227858 -0.748188 0.473296 0.464978 -0.710816 0.41044 0.571208 -0.676265 0.32557 0.66081 -0.646313 0.222825 0.729815 -0.622397 0.107069 0.775344 -0.605751 -0.016281 0.795488 -0.597541 -0.142104 0.789146 -0.599072 -0.273389 0.752576 -0.605625 -0.422009 0.67463 -0.607323 -0.542234 0.580639 -0.62045 -0.60942 0.493609 -0.663091 -0.648882 0.373178 -0.713977 0.609147 0.34522 -0.755821 0.6215 0.206088 -0.669772 0.565403 0.481378 -0.626414 0.492206 0.604433 -0.58635 0.393512 0.708055 -0.551603 0.274208 0.787746 -0.523909 0.140003 0.84019 -0.504656 -0.002861 0.863316 -0.494725 -0.148092 0.856339 -0.496885 -0.296649 0.81554 -0.511217 -0.470298 0.719359 -0.523448 -0.603062 0.601929 -0.54514 -0.6692 0.504969 -0.589688 -0.712391 0.380483 -0.632092 0.697412 0.337752 -0.679083 0.71125 0.181575 -0.582478 0.648166 0.490511 -0.533908 0.565768 0.62837 -0.489063 0.454778 0.744308 -0.450216 0.320826 0.833293 -0.419311 0.170384 0.891711 -0.397828 0.010371 0.917402 -0.386738 -0.152189 0.909545 -0.388906 -0.314579 0.865905 -0.416834 -0.497637 0.760662 -0.460989 -0.625959 0.629018 -0.542107 0.774681 0.32556 -0.593506 0.78981 0.15476 -0.487909 0.720672 0.492521 -0.434921 0.630341 0.64305 -0.3861 0.508756 0.769476 -0.343913 0.362223 0.866325 -0.310381 0.197869 0.929791 -0.287052 0.023243 0.957633 -0.274984 -0.154056 0.949026 -0.274153 -0.330443 0.903132 -0.301736 -0.514601 0.802584 -0.360883 -0.638403 0.679857 -0.445437 0.840329 0.308923 -0.50045 0.856542 0.126038 -0.387543 0.782319 0.487634 -0.331043 0.685354 0.648614 -0.279115 0.554987 0.783636 -0.234323 0.398047 0.886934 -0.198766 0.222238 0.954517 -0.174032 0.035606 0.984096 -0.161146 -0.153806 0.974872 -0.161623 -0.341915 0.925728 -0.183322 -0.527132 0.829774 -0.220903 -0.657095 0.720714 -0.343523 0.893833 0.288192 -0.401399 0.910874 0.095845 -0.282773 0.832684 0.476106 -0.223681 0.730476 0.645269 -0.169508 0.593188 0.787016 -0.122852 0.428085 0.895349 -0.085869 0.24334 0.966133 -0.060478 0.047525 0.997037 -0.048298 -0.151042 0.987347 -0.051169 -0.346801 0.936542 -0.071334 -0.536879 0.840638 -0.087789 -0.68823 0.720162 -0.21986 0.940431 0.259327 -0.28005 0.958152 0.059303 -0.156918 0.876718 0.454689 -0.095926 0.770248 0.630489 -0.040164 0.627316 0.777728 0.007734 0.455603 0.890149 0.046891 0.262808 0.963708 0.076503 0.059129 0.995315 0.087975 -0.141662 0.985998 0.082632 -0.346525 0.934394 0.066735 -0.543112 0.837004 0.044893 -0.70688 0.705907 -0.074449 0.972485 0.220751 -0.13589 0.990587 0.016451 -0.0105 0.907325 0.420298 0.052421 0.798072 0.600278 0.112271 0.651463 0.750327 0.17284 0.475296 0.862682 0.224622 0.286559 0.931359 0.237263 0.088989 0.967361 0.218281 -0.113 0.969322 0.208533 -0.342413 0.916116 0.208343 -0.548433 0.809824 0.177566 -0.726111 0.664254 0.072457 0.981536 0.17702 0.011184 0.999581 -0.026697 0.13045 0.91774 0.375149 0.17379 0.810665 0.559124 0.202259 0.677497 0.70717 0.281823 0.466274 0.838549 0.389486 0.279956 0.877454 0.38011 0.146887 0.913204 0.357385 -0.040932 0.93306 0.345941 -0.321259 0.881543 0.34413 -0.559385 0.754098 0.331752 -0.740685 0.584232 0.196145 0.971318 0.134422 0.140044 0.988072 -0.064045 0.22226 0.915547 0.335221 0.215212 0.826522 0.520139 0.485045 0.203691 0.850436 0.549186 0.085396 0.831326 0.51886 -0.274121 0.809717 0.494351 -0.559544 0.665228 0.486216 -0.716967 0.499552 0.288962 0.953069 0.090338 0.249176 0.963756 -0.09532 0.279421 0.910567 0.304618 0.388152 0.921065 0.031265 0.355698 0.926134 -0.125519 0.404067 0.903782 0.141097 0.68549 -0.217008 0.69499 0.702569 0.095581 0.705167 0.629523 -0.529053 0.569037 0.593718 -0.693079 0.408828 0.496683 0.867503 -0.027267 0.458279 0.875316 -0.154276 0.528047 0.848543 0.03378 0.806768 -0.152023 0.570977 0.808457 0.086821 0.582116 0.751952 -0.463847 0.468417 0.679141 -0.659907 0.321388 0.597185 0.799146 -0.068811 0.555473 0.811556 -0.181181 0.641605 0.76683 -0.017718 0.890943 -0.106367 0.441483 0.8665 0.068021 0.494522 0.874776 -0.373384 0.30879 0.812876 -0.546789 0.200637 0.713003 0.692155 -0.112017 0.675208 0.706006 -0.213658 0.760001 0.64795 -0.050575 0.881663 0.086627 0.463859 0.915057 -0.143088 0.377089 0.91943 -0.337729 0.201463 0.893271 -0.433495 0.118948 0.740476 -0.66906 0.063675 0.859379 -0.511092 0.015908 0.647012 -0.745143 -0.161672 0.622061 -0.770384 0.139818 0.519697 -0.840964 -0.150645 0.82048 0.555122 -0.136569 0.782459 0.574043 -0.241314 0.857424 0.511442 -0.057009 0.806681 0.536729 -0.247364 0.862468 0.496193 -0.099707 0.878972 0.473396 -0.057475 0.818208 0.516312 -0.252897 -0.95504 -0.087036 0.283414 0.458007 0.336509 0.822795 0.548647 0.436829 0.712858 0.498793 0.508214 0.702085 0.40895 0.438856 0.800103 0.458788 0.419381 0.783347 0.488579 0.295919 0.820806 0.338496 0.547557 0.765246 0.40128 0.540787 0.739273 0.447903 0.573978 0.685516 0.572577 0.090453 0.814846 0.659971 0.242585 0.711049 0.600793 0.356629 0.715446 0.507798 0.222804 0.832165 0.525407 0.175386 0.832579 0.592642 0.076696 0.801806 0.696495 -0.160757 0.699323 0.747071 -0.060562 0.66198 0.716368 0.089686 0.691935 0.643654 -0.044528 0.76402 0.679875 -0.004061 0.733317 0.751902 -0.071444 0.655392 0.836517 -0.293072 0.462977 0.828132 -0.230473 0.510959 0.762807 -0.199352 0.61513 0.753672 -0.259258 0.603957 0.803598 -0.130297 0.580735 0.857252 -0.175255 0.484153 0.916775 -0.199713 0.345889 0.913851 -0.163134 0.371839 0.958882 -0.051876 0.279022 0.954667 -0.015331 0.297282 0.878559 0.023718 0.477045 0.887732 -0.142315 0.437811 0.881622 0.374121 0.287709 0.786275 0.361357 0.501191 0.845764 0.203036 0.493417 0.938392 0.191581 0.287606 0.964699 0.141352 0.222208 0.919874 0.344658 0.187198 0.735833 0.601185 0.31165 0.66518 0.53777 0.518014 0.724119 0.464664 0.509645 0.811286 0.503396 0.297333 0.847399 0.503007 0.169996 0.757311 0.630422 0.170435 0.55095 0.766953 0.328993 0.550236 0.662384 0.508417 0.604139 0.603421 0.520479 0.650213 0.6874 0.32358 0.647232 0.739853 0.183595 0.52066 0.823219 0.226328 0.232539 0.84106 0.48841 0.333081 0.772484 0.540672 0.4542 0.75815 0.467879 0.390892 0.846896 0.360515 0.372475 0.869089 0.325495 0.285053 0.827495 0.483733 0.339781 0.673393 0.656575 0.238562 0.704887 0.668 0.320797 0.691569 0.647164 0.829927 0.324203 0.453996 0.78816 0.413058 0.456275 0.818961 0.437724 0.37108 0.868606 0.367447 0.332424 0.594766 0.761672 -0.257117 0.732865 0.586033 -0.345649 0.753901 0.533838 0.38295 0.862991 0.204761 0.461865 0.867214 0.193679 0.458725 0.940858 -0.000486 0.3388 0.908483 -0.022324 0.417326 0.966409 -0.169051 -0.193584 0.923393 -0.383468 0.01723 0.951149 0.102662 0.291162 0.867316 0.198019 0.456675 0.856872 0.261318 0.444391 0.920131 0.262219 0.290862 0.845974 0.375555 -0.378531 0.934245 0.115443 -0.337429 0.724297 0.540152 0.42852 0.705159 0.593618 0.387773 0.719293 0.595991 0.356949 0.405662 0.913937 -0.012545 0.486535 0.862055 -0.141935 0.71787 0.605721 0.343167 0.730039 0.584407 0.354276 0.725686 0.562032 0.396862 0.693853 0.591752 0.410363 0.217331 0.868422 0.445659 0.312452 0.932842 0.179389 0.629841 0.545507 0.552922 0.214362 0.527633 0.821981 0.173015 0.7023 0.690536 0.57713 0.459556 0.675077 0.602476 0.389152 0.696838 0.688167 0.493994 0.531411 0.689409 0.382203 0.615335 0.751692 0.33439 0.568456 0.797599 0.361585 0.482797 0.671211 0.364963 0.645196 0.411128 0.319273 0.853838 0.313319 0.402291 0.860228 0.718031 0.380064 0.58308 0.802641 0.402836 0.439876 0.786668 0.41629 0.455912 0.7261 0.396288 0.561903 0.493842 0.121551 0.861014 0.469657 0.240907 0.849345 0.710366 0.36318 0.602894 0.767343 0.380847 0.515888 0.773688 0.31236 0.551215 0.718919 0.257235 0.645744 0.615801 -0.251493 0.746687 0.530844 -0.044491 0.846301 0.775459 0.113009 0.621203 0.81328 0.246247 0.527199 0.846491 0.212923 0.487972 0.849483 0.012404 0.52747 0.842402 -0.47405 0.256193 0.735809 -0.426295 0.526173 0.762121 0.060604 0.644592 0.762121 0.060604 0.644592 0.670388 0.105094 0.734531 0.670388 0.105094 0.734531 0.53593 0.35712 0.765013 0.53593 0.35712 0.765013 0.519593 0.470857 0.712963 0.519593 0.470857 0.712963 0.592721 0.147272 0.791829 0.592721 0.147272 0.791829 0.539402 0.227876 0.810628 0.539402 0.227876 0.810628 0.838046 -0.041961 0.543984 0.838046 -0.041961 0.543984 0.805134 0.024108 0.592603 0.805134 0.024108 0.592603 0.458987 0.56981 0.681651 0.458987 0.56981 0.681651 0.36131 0.737053 0.571146 0.36131 0.737053 0.571146 0.930114 -0.106536 0.351481 0.930114 -0.106536 0.351481 0.880661 -0.11099 0.460561 0.880661 -0.11099 0.460561 0.320732 0.857422 0.402441 0.320732 0.857422 0.402441 0.44726 0.859353 0.247932 0.44726 0.859353 0.247932 0.95182 0.231775 0.200795 0.95182 0.231775 0.200795 0.964167 0.021103 0.264456 0.964167 0.021103 0.264456 0.579093 0.8006 0.153919 0.579093 0.8006 0.153919 0.697437 0.705567 0.12553 0.697437 0.705567 0.12553 0.814036 0.566095 0.129927 0.814036 0.566095 0.129927 0.890074 0.43096 0.148464 0.890074 0.43096 0.148464 0.029208 0.881474 -0.471328 0.029208 0.881474 -0.471328 0.096449 0.728365 -0.678368 0.096449 0.728365 -0.678368 0.4685 0.04873 -0.882118 0.4685 0.04873 -0.882118 0.638087 -0.253445 -0.727056 0.638087 -0.253445 -0.727056 0.178322 0.511529 -0.840559 0.178322 0.511529 -0.840559 0.316697 0.307225 -0.897394 0.316697 0.307225 -0.897394 -0.229597 0.97301 0.023188 -0.229597 0.97301 0.023188 -0.099111 0.961282 -0.257125 -0.099111 0.961282 -0.257125 0.690989 -0.552351 -0.466307 0.690989 -0.552351 -0.466307 0.614728 -0.774975 -0.146708 0.614728 -0.774975 -0.146708 -0.213285 0.674612 0.706689 -0.213285 0.674612 0.706689 -0.277125 0.880387 0.384865 -0.277125 0.880387 0.384865 0.522099 -0.831492 0.189823 0.522099 -0.831492 0.189823 0.41303 -0.701304 0.581016 0.41303 -0.701304 0.581016 0.016451 0.304495 0.952372 0.016451 0.304495 0.952372 -0.102423 0.482133 0.87009 -0.102423 0.482133 0.87009 0.321342 -0.449506 0.833477 0.321342 -0.449506 0.833477 0.240502 -0.251619 0.937468 0.240502 -0.251619 0.937468 0.177609 -0.048219 0.982919 0.177609 -0.048219 0.982919 0.113264 0.143803 0.983103 0.113264 0.143803 0.983103 0.856752 0.237426 0.457827 0.923385 0.210649 0.320917 0.807841 0.342573 0.479622 0.926355 0.306361 0.219111 0.893024 0.401372 0.203491 0.707489 0.350542 0.613661 0.690028 0.404138 0.600445 0.701459 0.296818 0.647962 0.79174 0.518629 0.322757 0.756722 0.567339 0.324806 0.829456 0.472735 0.297531 0.598529 0.538416 0.593188 0.611969 0.432342 0.662249 0.636119 0.597396 0.488334 0.661695 0.3349 0.670821 0.723255 0.374582 0.580165 0.790325 0.34767 0.504491 0.811959 0.371822 0.449969 0.863778 0.442517 0.24097 0.701135 0.600411 0.384599 0.932766 0.160597 0.322732 0.970845 0.170441 0.168552 0.883636 0.175716 0.433947 0.958137 0.275993 0.076165 0.918477 0.391142 0.058382 0.596042 0.268924 0.756581 0.631692 0.23949 0.737299 0.526233 0.296752 0.79688 0.713347 0.696389 0.078601 0.607873 0.785114 0.118686 0.815341 0.574919 0.068466 0.317442 0.747572 0.583409 0.328784 0.607429 0.72314 0.382484 0.824581 0.416859 0.421264 0.422347 0.802596 0.694449 0.183029 0.695875 0.790988 0.142639 0.594973 0.851498 0.154648 0.501034 0.88206 0.467139 0.061249 0.494106 0.834447 0.244044 0.898388 0.239427 0.368203 0.928433 0.290662 0.231361 0.927907 0.362185 0.088373 0.90613 0.422899 -0.009252 0.502343 -0.531378 -0.68212 0.481433 0.034979 -0.875785 0.821621 0.007587 -0.569984 0.601173 0.059321 -0.796914 0.288385 0.93379 -0.211824 0.988457 0.045901 -0.144378 0.606647 0.786641 -0.114787 0.631147 0.75431 -0.180748 0.972584 0.01879 -0.231792 0.50542 0.85821 -0.089584 0.979429 0.125423 -0.158074 0.681238 -0.704485 -0.199036 0.649817 -0.670326 -0.358331 0.486326 -0.865845 -0.117473 0.446328 -0.866561 -0.223303 0.749936 -0.639396 -0.169616 0.164446 0.814374 0.556554 0.230868 0.7458 0.624886 0.513037 0.656869 0.552553 0.434017 0.729299 0.528916 0.753221 0.48407 0.445347 0.753221 0.48407 0.445347 0.124146 -0.973254 0.193296 0.136691 -0.979344 0.149 0.136691 -0.979344 0.149 0.184839 -0.973906 0.131688 0.16227 -0.986484 -0.022769 0.212195 -0.968006 0.133929 0.212195 -0.968006 0.133929 0.404326 0.749489 0.524201 0.579587 0.654669 0.485269 0.579587 0.654669 0.485269 0.267339 0.835446 0.480167 0.245983 0.889628 0.38478 0.267339 0.835446 0.480167 0.316456 0.757992 0.570354 0.349573 0.870764 0.345787 0.299173 0.736411 0.60679 0.210334 0.763548 0.610536 0.173912 0.765408 0.619601 0.197207 0.7873 0.584182 0.208134 0.150701 0.966421 0.45413 0.145812 0.878922 0.34138 0.606573 0.718004 0.193961 0.656473 0.728987 0.702212 0.014831 0.711813 0.629702 0.408791 0.660579 0.464374 -0.299888 0.833321 0.195845 -0.470873 0.860188 0.247334 -0.957018 0.151467 0.40013 -0.846054 0.352263 0.156142 -0.842984 0.51478 0.487382 -0.796965 0.356799 0.24234 -0.955279 0.169453 0.220077 -0.968074 0.119991 0.144759 -0.978459 0.147185 0.183204 -0.982603 -0.03045 0.067622 -0.997704 0.003667 0.333609 0.885237 0.324131 0.26257 0.786829 0.558531 0.249027 0.818022 0.518484 0.310909 0.905688 0.288211 0.981618 -0.064667 0.179569 0.953472 -0.110057 0.280676 0.829047 -0.397145 0.393645 0.92859 0.156172 0.336647 0.777747 -0.421784 0.466056 0.769156 -0.579058 0.270354 0.995933 0.044395 0.078399 0.452986 -0.772336 0.445309 0.25562 -0.911562 0.322045 0.985612 -0.013881 -0.168452 0.7241 -0.689125 0.028032 0.669094 -0.721471 -0.178308 0.959852 -0.03757 -0.277979 0.142983 -0.970854 0.192352 0.080246 -0.996775 0.00032 0.399717 0.880195 0.255896 0.376418 0.74386 0.552252 0.932941 0.251988 0.257146 0.923519 0.376658 0.072404 0.341071 0.563945 0.752088 0.901143 0.06264 0.428972 0.473307 -0.704975 -0.528197 0.53861 0.034196 -0.841861 0.284747 -0.650038 -0.704536 0.28859 -0.717857 -0.633559 0.66476 -0.69131 -0.283167 0.687122 0.601648 -0.407288 0.19454 0.943367 -0.268726 0.142669 0.967481 -0.20887 0.158097 0.977372 -0.140534 0.267227 0.956959 -0.113221 0.206618 0.964826 -0.16254 0.111176 0.975912 -0.187714 0.29006 0.951394 -0.103509 0.197728 0.977642 -0.071559 0.133329 0.730763 0.669484 -0.021072 0.776457 0.629818 -0.048861 0.692427 0.719831 -0.267381 0.736738 0.621067 0.502201 -0.841758 -0.198082 0.347489 -0.823244 -0.44891 0.323269 -0.832159 -0.450565 0.365532 -0.909977 -0.195774 0.278989 -0.744812 -0.606152 0.310543 -0.724294 -0.615598 0.470573 -0.845704 0.251686 0.639991 -0.751749 0.159014 0.847528 -0.526779 -0.064814 0.931762 0.360605 -0.042234 0.731131 -0.37377 0.57074 0.545828 -0.440059 0.713036 0.28654 -0.807827 -0.515083 0.336227 -0.798398 -0.499512 0.390344 -0.778946 -0.490791 0.394888 -0.900382 -0.182694 0.453746 -0.877199 -0.156959 0.356802 -0.910855 -0.207449 -0.344161 0.695104 0.631176 -0.149439 0.640429 0.753338 -0.149043 0.665502 0.731364 -0.349826 0.693839 0.629452 -0.136209 0.702366 0.698663 -0.323407 0.705435 0.63069 0.682989 -0.682468 -0.260315 0.59895 -0.703991 -0.381648 0.629914 -0.656157 -0.415531 0.77097 -0.571238 -0.281588 0.426971 -0.693708 -0.580055 0.470882 -0.685627 -0.555145 0.547183 -0.735019 -0.400422 0.403878 -0.692278 -0.598025 0.639219 -0.729933 -0.242067 0.756317 -0.646196 0.102054 0.818345 -0.573567 0.036491 0.814869 -0.159464 0.557279 0.753505 -0.300809 0.584589 0.916322 -0.395282 -0.064085 -0.552229 0.717565 0.424433 -0.549898 0.723485 0.417351 -0.689114 0.695621 0.20306 -0.692124 0.693865 0.198787 -0.449937 0.772191 0.44864 -0.582332 0.776773 0.23982 0.4591 -0.736156 -0.497294 0.428557 -0.75507 -0.496193 0.470093 -0.756298 -0.455001 0.604445 -0.773438 -0.190894 0.573109 -0.784752 -0.236031 0.620477 -0.767507 -0.161065 -0.154659 0.830449 0.535196 -0.208047 0.933434 0.292262 0.839948 -0.488026 -0.237313 0.649751 -0.668884 -0.361136 0.686328 -0.685198 -0.243841 0.870409 -0.456272 -0.184943 0.113928 -0.971144 0.209524 0.420169 -0.778433 0.466369 0.36716 -0.763202 0.531711 -0.02591 -0.968892 0.246125 0.735247 0.502746 0.454597 0.760736 -0.231899 0.60622 0.709739 -0.164748 0.68493 0.677088 0.518341 0.522374 0.150157 0.985896 -0.073902 0.110758 0.979195 -0.170028 0.14924 0.977328 -0.150193 0.102024 0.980668 -0.166976 0.092901 0.976521 -0.194362 0.035026 -0.981694 0.187218 -0.094184 -0.972517 0.212932 -0.040179 -0.998571 0.035247 -0.134425 -0.988935 0.062742 0.104938 0.981244 -0.161707 0.151335 0.986059 -0.069173 0.069929 0.986197 -0.150086 0.095076 0.992657 -0.074781 -0.031932 -0.959846 0.278703 0.3959 -0.771292 0.498369 0.753955 -0.269659 0.599029 0.811465 0.345679 0.471202 0.245701 0.963498 -0.106314 0.226774 0.963215 -0.144187 -0.201856 -0.975954 0.082263 -0.144695 -0.963786 0.22401 0.238399 0.953876 -0.182445 0.263237 0.957272 -0.119739 0.137189 0.954008 0.266548 0.004047 0.860303 0.509766 -0.324412 0.82325 0.46585 -0.221133 0.946632 0.234497 0.552688 -0.819889 -0.14939 0.435697 -0.752668 -0.493618 0.365249 -0.701895 -0.611504 0.358271 0.298744 0.88453 0.369064 0.261778 0.891776 0.680582 -0.368671 0.633159 0.35026 0.27383 0.895732 -0.101362 0.652868 0.750659 -0.31403 0.712829 0.627104 0.528306 -0.819128 -0.223433 0.448996 -0.780542 -0.434921 0.341896 0.423686 0.838807 0.504935 0.340193 0.79329 0.181522 0.411952 0.892942 0.181522 0.411952 0.892942 0.465736 -0.606641 0.644264 -0.0363 0.939717 0.340021 0.06455 0.996125 -0.059741 -0.0363 0.939717 0.340021 0.286421 0.951044 -0.116095 0.288616 0.950349 -0.116354 0.275757 0.953921 -0.118292 0.150003 0.985457 -0.079833 -0.160278 0.98687 0.019962 -0.557805 0.804225 0.205125 -0.528811 0.837981 0.134713 -0.689987 0.699784 0.184985 -0.704052 0.684413 0.189445 -0.639015 0.750411 0.168948 -0.301208 0.951297 0.065638 0.321965 0.939617 -0.116016 0.978366 -0.179418 -0.103002 0.950511 -0.146462 -0.274005 0.864752 0.428163 -0.262451 0.86448 -0.440579 -0.242001 0.720676 -0.665351 -0.194768 0.631835 -0.756962 -0.166709 0.640249 -0.749264 -0.169365 0.627443 -0.760901 -0.165364 0.541996 -0.828837 -0.138816 0.434754 -0.894291 -0.105989 0.396475 -0.913174 -0.094449 0.3782 -0.921198 -0.091428 0.733887 0.635327 -0.240355 0.720343 0.687761 -0.089944 0.744559 0.62451 -0.235838 0.345736 0.9286 0.13479 0.993133 0.093733 0.070012 0.356159 0.925036 0.132136 0.187307 0.978163 -0.09007 0.502357 0.858922 0.099456 0.251333 0.962401 -0.103033 0.65335 -0.735934 0.17758 0.65112 0.755621 0.071276 0.96166 -0.25776 -0.093651 0.209729 0.846026 0.490157 0.369985 -0.806261 -0.461579 -0.486759 0.759504 0.431532 0.951681 0.185976 -0.24437 0.902737 0.332183 -0.273352 0.941165 0.315326 -0.121568 0.951681 0.185976 -0.24437 0.956675 0.290442 0.020395 0.999368 -0.03479 -0.007251 0.964422 0.229761 0.130768 0.952504 0.13236 0.274258 0.999368 -0.03479 -0.007251 0.940577 -0.003262 0.339566 0.985356 -0.047323 -0.163812 0.973149 -0.138935 0.183517 0.98634 -0.163979 0.015638 0.985356 -0.047323 -0.163812 0.800077 -0.569905 -0.187309 0.874318 -0.431977 -0.221278 0.945305 -0.32607 -0.008707 0.031586 -0.183913 0.982435 0.031586 -0.183913 0.982435 -0.030751 -0.950601 0.30889 -0.030751 -0.950601 0.30889 0.985137 -0.170059 0.024169 -0.138803 -0.672288 0.727161 -0.138803 -0.672288 0.727161 0.909257 -0.407951 -0.082632 0.909257 -0.407951 -0.082632 0.975975 0.172973 -0.132486 0.975975 0.172973 -0.132486 0.980139 0.18814 -0.062699 0.980139 0.18814 -0.062699 0.977763 -0.075286 0.195733 0.977763 -0.075286 0.195733 0.989301 -0.108793 0.097195 0.989301 -0.108793 0.097195 0.977445 0.124096 -0.170885 0.977445 0.124096 -0.170885 0.998153 0.056019 0.023506 0.998153 0.056019 0.023506 0.796335 -0.523715 0.302611 0.474101 -0.734714 0.485204 -0.961031 0.165053 0.221757 -0.966015 0.031778 0.256527 -0.974186 0.146597 0.171671 -0.972365 0.022683 0.232362 -0.984794 0.118521 0.127015 -0.97678 0.011602 0.213931 -0.992779 0.080892 0.088578 -0.980405 -0.006081 0.1969 -0.997692 0.034776 0.058321 -0.983084 -0.030932 0.180525 -0.999084 -0.01652 0.039467 -0.983546 -0.055798 0.171824 -0.996955 -0.071034 0.03217 -0.982323 -0.081459 0.168542 -0.991355 -0.12588 0.037019 -0.979425 -0.107879 0.170556 -0.982538 -0.178319 0.053122 -0.975168 -0.132497 0.177459 -0.97118 -0.224992 0.078667 -0.9699 -0.153567 0.188972 -0.957807 -0.263848 0.113978 -0.963903 -0.170188 0.204763 -0.939615 -0.29636 0.171153 -0.955655 -0.183417 0.230396 -0.916192 -0.318352 0.243403 -0.943673 -0.194814 0.26745 -0.940074 0.285894 0.18581 -0.959445 0.258862 0.111609 -0.975323 0.216319 0.04416 -0.986978 0.160325 -0.013014 -0.993968 0.093475 -0.057363 -0.996059 0.018754 -0.086686 -0.993227 -0.06055 -0.099163 -0.985628 -0.140582 -0.09367 -0.972899 -0.220345 -0.070116 -0.955697 -0.29262 -0.031897 -0.933885 -0.356815 0.023271 -0.904554 -0.412768 0.106793 -0.874187 -0.443341 0.198105 -0.904883 0.399162 0.14784 -0.930066 0.363832 0.051015 -0.950616 0.308169 -0.036885 -0.965592 0.235032 -0.111317 -0.974471 0.147814 -0.168987 -0.976979 0.05078 -0.207202 -0.973161 -0.05162 -0.224262 -0.963025 -0.155851 -0.219756 -0.94516 -0.263631 -0.192798 -0.918341 -0.367435 -0.147108 -0.884469 -0.46033 -0.076225 -0.846414 -0.531736 0.028979 -0.81683 -0.561478 0.132408 -0.856198 0.505244 0.107954 -0.886734 0.462178 -0.009715 -0.911564 0.394322 -0.116455 -0.92955 0.305236 -0.206801 -0.940103 0.199203 -0.276631 -0.942966 0.081326 -0.322801 -0.938215 -0.042948 -0.343377 -0.925514 -0.170798 -0.338011 -0.90304 -0.303133 -0.304351 -0.869126 -0.43109 -0.242446 -0.825613 -0.542663 -0.154533 -0.78679 -0.615366 -0.04782 -0.763783 -0.641746 0.069265 -0.795208 0.602633 0.06691 -0.830597 0.552504 -0.069627 -0.85928 0.473551 -0.193358 -0.879991 0.369951 -0.297914 -0.892055 0.246859 -0.378547 -0.895219 0.110198 -0.431786 -0.889617 -0.03377 -0.455457 -0.87547 -0.181874 -0.447743 -0.852671 -0.3311 -0.404135 -0.819795 -0.473097 -0.322669 -0.773161 -0.597383 -0.21297 -0.732323 -0.672114 -0.109388 -0.703802 -0.710148 0.018793 -0.723285 0.690084 0.025367 -0.762965 0.633675 -0.127835 -0.79508 0.544841 -0.266451 -0.818228 0.428382 -0.383395 -0.831653 0.290204 -0.47343 -0.835118 0.137002 -0.532737 -0.828804 -0.024239 -0.559013 -0.813771 -0.188224 -0.549862 -0.79107 -0.350428 -0.501406 -0.757687 -0.507139 -0.410755 -0.712161 -0.640658 -0.287028 -0.672656 -0.725938 0.143347 -0.641851 0.766661 -0.016075 -0.68527 0.704796 -0.183489 -0.720395 0.607414 -0.334782 -0.745674 0.479891 -0.46225 -0.760327 0.328783 -0.560182 -0.764125 0.161453 -0.624537 -0.757252 -0.014499 -0.652962 -0.740618 -0.191819 -0.643964 -0.713493 -0.368156 -0.596145 -0.67319 -0.539525 -0.505696 -0.633594 -0.66652 -0.392824 -0.552217 0.831757 -0.056883 -0.598779 0.765354 -0.236001 -0.636491 0.660838 -0.397708 -0.663675 0.524103 -0.533716 -0.679467 0.362301 -0.638015 -0.683616 0.18334 -0.706439 -0.676308 -0.004709 -0.736604 -0.658096 -0.193709 -0.72759 -0.624976 -0.385418 -0.678866 -0.57331 -0.567527 -0.590956 -0.539712 -0.669892 -0.509859 -0.455829 0.884817 -0.096532 -0.504906 0.814845 -0.284776 -0.544771 0.704701 -0.454557 -0.573584 0.560728 -0.597148 -0.59041 0.390539 -0.706325 -0.594941 0.202476 -0.777849 -0.58738 0.005005 -0.809296 -0.568315 -0.193377 -0.799765 -0.531724 -0.399254 -0.746904 -0.472063 -0.588647 -0.65624 -0.438252 -0.663694 -0.606173 -0.336649 0.931055 -0.140727 -0.387856 0.858178 -0.336301 -0.429627 0.743452 -0.512543 -0.459974 0.593597 -0.660353 -0.477869 0.416607 -0.773356 -0.482921 0.221168 -0.847273 -0.475295 0.016124 -0.879678 -0.455543 -0.189817 -0.869741 -0.417917 -0.406061 -0.812687 -0.353552 -0.60422 -0.714086 -0.307968 -0.666598 -0.678825 -0.193714 0.962913 -0.187815 -0.246267 0.8884 -0.387424 -0.288613 0.77069 -0.568101 -0.317008 0.616998 -0.720292 -0.324374 0.435579 -0.839674 -0.320365 0.248902 -0.91401 -0.326185 0.041175 -0.944409 -0.317893 -0.181748 -0.930544 -0.279515 -0.404386 -0.870829 -0.213288 -0.614544 -0.759503 -0.156721 -0.682515 -0.713871 -0.046463 0.971992 -0.230375 -0.103325 0.898972 -0.425645 -0.164362 0.783516 -0.59924 -0.218293 0.643744 -0.733446 -0.220032 0.426957 -0.877094 -0.163378 0.257767 -0.952294 -0.189104 0.091231 -0.97771 -0.196106 -0.137994 -0.970824 -0.15848 -0.395997 -0.904473 -0.068774 -0.626707 -0.776214 0.011498 -0.702817 -0.711278 0.080842 0.962059 -0.260588 -0.004368 0.897342 -0.441313 -0.108637 0.80053 -0.589364 -0.077282 0.160772 -0.983961 -0.047366 -0.005136 -0.998864 -0.055321 -0.376835 -0.924627 0.024205 -0.64051 -0.767568 0.122657 -0.746286 -0.654227 0.182989 0.944565 -0.272601 0.060296 0.892968 -0.446064 0.298773 0.913904 -0.274797 0.253313 0.891687 -0.375137 0.114854 -0.338324 -0.933994 0.102232 0.013353 -0.994671 0.151765 -0.614693 -0.774028 0.247572 -0.789545 -0.561539 0.422501 0.861523 -0.281553 0.416333 0.839555 -0.34902 0.37199 -0.274879 -0.886603 0.353485 0.017625 -0.935274 0.378321 -0.507369 -0.774242 0.386435 -0.730111 -0.563565 0.530382 0.793788 -0.297652 0.540498 0.759214 -0.362568 0.588887 -0.200332 -0.782994 0.56861 0.014756 -0.822475 0.582449 -0.344028 -0.736476 0.575726 -0.569224 -0.586961 0.65241 0.687716 -0.318445 0.658927 0.642592 -0.391012 0.527988 0.032741 -0.848621 0.572271 -0.222348 -0.789346 0.647447 -0.270239 -0.712589 0.71954 -0.352064 -0.598592 0.761452 -0.51329 -0.395884 0.588683 -0.724004 -0.359542 0.425419 -0.825843 -0.370137 0.75829 0.548346 -0.35258 0.752446 0.495489 -0.433954 0.762878 0.455469 -0.458873 0.774527 0.480972 -0.410821 -0.059483 0.299655 -0.952191 -0.090596 0.399221 -0.912368 0.036545 0.471124 -0.881309 0.07364 0.399264 -0.913874 -0.030114 0.266255 -0.963432 -0.038844 0.381241 -0.923659 -0.13284 0.509742 -0.85001 -0.066453 0.503298 -0.861554 0.001768 0.538105 -0.842876 0.050754 0.065758 -0.996544 -0.019181 0.193572 -0.980899 0.117727 0.320417 -0.939933 0.173089 0.209675 -0.962329 0.073986 0.047418 -0.996131 -0.002861 0.154045 -0.98806 0.22268 -0.189591 -0.956279 0.142047 -0.070696 -0.987332 0.235945 0.061061 -0.969846 0.284019 -0.085242 -0.955022 0.284187 -0.119522 -0.95129 0.18495 -0.046926 -0.981627 0.469944 -0.314762 -0.824668 0.324898 -0.286474 -0.901318 0.327435 -0.220891 -0.918691 0.436096 -0.251459 -0.864054 0.473624 -0.209127 -0.855538 0.371679 -0.174482 -0.911817 0.593781 -0.220328 -0.773873 0.64569 -0.038921 -0.762607 0.659388 -0.074842 -0.748068 0.577338 -0.188497 -0.794449 0.520053 -0.164818 -0.838081 0.486574 -0.003404 -0.873633 0.583694 0.350278 -0.732535 0.633952 0.167061 -0.755112 0.445809 0.172583 -0.878333 0.388775 0.329865 -0.860258 0.670839 0.324639 -0.666772 0.692093 0.11947 -0.711852 0.445222 0.577844 -0.684013 0.517686 0.479897 -0.708308 0.330597 0.433029 -0.838565 0.275479 0.50654 -0.817024 0.53871 0.612813 -0.578145 0.616696 0.484403 -0.620516 0.278003 0.744964 -0.606418 0.365453 0.664551 -0.651779 0.221829 0.57283 -0.789087 0.182217 0.632878 -0.752504 0.306851 0.80584 -0.506422 0.437533 0.722967 -0.534681 -0.077112 0.816166 -0.572649 0.125172 0.825515 -0.550324 0.121846 0.731498 -0.670868 -0.019603 0.743964 -0.667932 -0.030227 0.802231 -0.596248 0.128031 0.849287 -0.512171 -0.166759 0.672289 -0.721262 -0.074919 0.639876 -0.764817 -0.086363 0.65898 -0.747185 0.419268 0.406688 -0.811677 0.45283 0.31045 -0.835802 0.550354 0.354523 -0.755926 0.488995 0.426269 -0.761038 0.798505 0.589542 -0.121777 0.629664 0.764854 -0.136094 0.428097 0.516657 -0.741484 0.481992 0.162651 -0.860946 0.476625 0.173666 -0.861782 0.541781 -0.051837 -0.83892 0.610962 -0.026965 -0.7912 0.77405 -0.395398 -0.494477 0.920958 -0.172543 -0.349378 0.643893 0.078074 -0.761122 0.480736 0.233816 -0.845117 0.483133 0.167149 -0.859444 0.616661 0.240115 -0.749715 0.967736 0.117908 -0.222674 0.913198 0.379905 -0.147451 0.390578 0.591083 -0.705741 0.382839 0.535126 -0.753044 0.414139 0.577573 -0.70349 0.47634 0.860797 -0.179246 0.340392 0.907818 -0.24495 0.421549 0.584377 -0.693397 0.405414 0.540989 -0.736865 0.431518 0.576007 -0.694268 0.364935 0.56563 -0.739517 0.160295 0.921034 -0.354968 -0.063838 0.850342 -0.522343 0.231853 0.516573 -0.824255 -0.234963 0.674542 -0.699847 -0.263787 0.488611 -0.831671 0.143761 0.349005 -0.926028 0.121957 0.430188 -0.894463 0.244238 0.368175 -0.897104 0.286839 0.465666 -0.837185 0.431825 0.308888 -0.847417 0.349106 0.306214 -0.88564 0.242828 0.317447 -0.916658 -0.193183 0.358321 -0.913393 -0.108882 0.280328 -0.953709 0.308743 0.342271 -0.887428 0.400235 0.380025 -0.833902 0.437071 0.358464 -0.824907 0.306876 0.362809 -0.879885 -0.062544 0.201463 -0.977497 -0.04802 0.0781 -0.995788 0.266858 0.326827 -0.906626 0.350138 0.278047 -0.894479 0.354862 0.347322 -0.868009 0.255429 0.219947 -0.941477 -0.006971 -0.087812 -0.996113 0.120653 -0.291438 -0.94895 0.318338 0.07641 -0.944893 0.448609 0.180967 -0.875215 0.399034 0.212972 -0.89186 0.432397 -0.02109 -0.901437 0.342686 -0.457883 -0.820311 0.578434 -0.49519 -0.648229 0.296419 -0.000702 -0.955058 0.296419 -0.000702 -0.955058 0.172523 0.052896 -0.983584 0.172523 0.052896 -0.983584 0.039158 0.322577 -0.945733 0.039158 0.322577 -0.945733 0.047516 0.433082 -0.900101 0.047516 0.433082 -0.900101 0.073663 0.121903 -0.989805 0.073663 0.121903 -0.989805 0.020637 0.212144 -0.977021 0.020637 0.212144 -0.977021 0.424054 -0.091556 -0.900997 0.424054 -0.091556 -0.900997 0.357272 -0.03225 -0.933444 0.357272 -0.03225 -0.933444 0.012525 0.534209 -0.84526 0.012525 0.534209 -0.84526 -0.011494 0.7071 -0.707021 -0.011494 0.7071 -0.707021 0.597526 -0.131026 -0.791072 0.597526 -0.131026 -0.791072 0.505826 -0.146625 -0.850083 0.505826 -0.146625 -0.850083 0.043082 0.835064 -0.548463 0.043082 0.835064 -0.548463 0.232892 0.841802 -0.486962 0.232892 0.841802 -0.486962 0.692441 0.211038 -0.689919 0.692441 0.211038 -0.689919 0.670034 -0.002279 -0.742327 0.670034 -0.002279 -0.742327 0.395537 0.785831 -0.475416 0.395537 0.785831 -0.475416 0.511415 0.69064 -0.511342 0.511415 0.69064 -0.511342 0.608864 0.549501 -0.572131 0.608864 0.549501 -0.572131 0.665886 0.412472 -0.621662 0.665886 0.412472 -0.621662 0.267718 0.900516 0.342634 0.267718 0.900516 0.342634 0.434491 0.763425 0.477912 0.434491 0.763425 0.477912 0.869912 0.076138 0.487294 0.869912 0.076138 0.487294 0.932155 -0.229683 0.279881 0.932155 -0.229683 0.279881 0.602872 0.538559 0.588642 0.602872 0.538559 0.588642 0.752279 0.323048 0.574209 0.752279 0.323048 0.574209 -0.213672 0.974192 0.072768 -0.213672 0.974192 0.072768 0.039021 0.973056 0.227243 0.039021 0.973056 0.227243 0.840289 -0.540248 0.045233 0.840289 -0.540248 0.045233 0.606818 -0.775669 -0.17352 0.606818 -0.775669 -0.17352 -0.573632 0.648601 -0.500262 -0.573632 0.648601 -0.500262 -0.459052 0.865899 -0.198721 -0.459052 0.865899 -0.198721 0.348772 -0.845309 -0.404736 0.348772 -0.845309 -0.404736 0.044107 -0.731158 -0.680781 0.044107 -0.731158 -0.680781 -0.526631 0.262875 -0.808429 -0.526631 0.262875 -0.808429 -0.572583 0.444835 -0.688673 -0.572583 0.444835 -0.688673 -0.171813 -0.489749 -0.854767 -0.171813 -0.489749 -0.854767 -0.298216 -0.294897 -0.907801 -0.298216 -0.294897 -0.907801 -0.378075 -0.092709 -0.921121 -0.378075 -0.092709 -0.921121 -0.44719 0.096281 -0.889242 -0.44719 0.096281 -0.889242 0.612429 0.206829 -0.762989 0.464886 0.248405 -0.849809 0.407407 0.351958 -0.842701 0.648197 0.357749 -0.672202 0.671753 0.259933 -0.693674 0.260779 0.444292 -0.857088 0.266283 0.359019 -0.894538 0.239549 0.282383 -0.928911 0.456076 0.54318 -0.704947 0.484975 0.494828 -0.721072 0.523431 0.452679 -0.721874 0.154432 0.395601 -0.905345 0.17883 0.504716 -0.84456 0.266157 0.567731 -0.779001 0.193307 0.300033 -0.934138 0.427534 0.439385 -0.790035 0.307666 0.464115 -0.830626 0.465664 0.419078 -0.779442 0.586011 0.418412 -0.693919 0.376686 0.574397 -0.726757 0.72401 0.167928 -0.669036 0.615211 0.144276 -0.775048 0.538442 0.194451 -0.81992 0.755996 0.352652 -0.551458 0.765047 0.251817 -0.592698 0.104303 0.251884 -0.96212 0.084593 0.265317 -0.960443 0.005837 0.281933 -0.959416 0.438714 0.77153 -0.460728 0.549094 0.684577 -0.479427 0.639111 0.567102 -0.51955 -0.119349 0.571474 -0.811895 -0.055497 0.717664 -0.694175 0.087893 0.80095 -0.592244 -0.082255 0.383999 -0.919662 0.371981 0.25099 -0.893663 0.168173 0.254214 -0.952414 0.515832 0.244885 -0.820943 0.711746 0.448691 -0.540457 0.274747 0.816832 -0.507247 0.645705 0.281916 -0.70964 0.539281 0.220414 -0.812769 0.769022 0.394085 -0.503292 0.726749 0.338639 -0.597628 0.910687 0.132665 0.391214 0.999599 0.019627 0.020427 0.95412 0.024299 0.298438 0.445708 0.894704 -0.029136 0.965917 0.00636 -0.258774 0.63813 0.749781 -0.174984 0.564478 0.808758 -0.165152 0.955888 0.074409 -0.28415 0.833027 -0.550995 -0.049699 0.747769 -0.638876 -0.180774 0.496269 -0.862279 -0.100952 -0.207933 0.848115 -0.487303 0.067624 0.763984 -0.641681 0.12728 0.626188 -0.769213 -0.218784 0.728379 -0.649305 0.477035 0.407812 -0.778542 0.477035 0.407812 -0.778542 0.017333 -0.981177 -0.192329 0.100697 -0.980826 -0.166857 0.066985 -0.985016 -0.158922 0.066985 -0.985016 -0.158922 0.113176 -0.977596 -0.177477 0.113176 -0.977596 -0.177477 0.260639 0.584649 -0.768279 0.260639 0.584649 -0.768279 0.016554 0.67435 -0.738226 -0.106362 0.750404 -0.652366 -0.106362 0.750404 -0.652366 -0.052394 0.836039 -0.546163 0.073173 0.824552 -0.561034 -0.11046 0.686583 -0.718611 -0.155032 0.743111 -0.650962 -0.209657 0.806439 -0.552901 -0.277141 0.74834 -0.602644 -0.254322 0.755762 -0.603444 -0.358109 0.092557 -0.929081 -0.250923 0.673348 -0.695442 -0.112663 0.603179 -0.789609 -0.09202 0.089713 -0.991708 0.154625 0.382352 -0.910988 0.205405 -0.026468 -0.978319 -0.072607 -0.353019 -0.932795 -0.315135 -0.516218 -0.796372 0.137801 -0.96591 -0.219155 -0.147037 -0.862058 -0.485012 0.15353 -0.866566 -0.474859 0.229098 -0.817711 -0.528075 0.125194 -0.964684 -0.231758 0.055128 -0.985656 -0.159509 0.133227 -0.975043 -0.1776 0.08158 0.845691 -0.5274 0.078804 0.875247 -0.477213 -0.135909 0.78308 -0.606889 -0.14307 0.731129 -0.667069 0.652262 -0.134271 -0.746006 0.728452 -0.084587 -0.679855 0.489926 -0.423017 -0.762253 0.604152 0.140091 -0.784458 0.789901 0.036981 -0.612119 0.511155 -0.597093 -0.618224 0.41548 -0.442463 -0.794735 0.053874 -0.927755 -0.369281 0.152238 -0.796477 -0.58519 0.917433 -0.01634 -0.397554 0.60325 -0.699086 -0.383887 0.029478 -0.980033 -0.196639 0.188278 0.863211 -0.468421 0.734878 0.361526 -0.573806 0.645074 0.228829 -0.729052 0.011092 0.714503 -0.699544 0.528285 0.032629 -0.84844 -0.123905 0.526586 -0.841044 0.709036 -0.679127 0.189881 0.54884 -0.680148 0.485977 0.696633 -0.536154 0.476698 0.937025 0.142119 0.319041 0.883729 -0.390989 0.257199 0.771856 0.621298 -0.135006 0.80244 -0.582305 -0.130427 0.360455 0.931906 0.040288 0.246781 0.968966 0.014261 0.199409 0.979909 0.003657 0.20259 0.97835 0.042279 0.297397 0.954751 0.002279 0.296878 0.953346 -0.054732 -0.448272 0.750301 -0.485901 -0.299256 0.711329 -0.635969 -0.449932 0.662013 -0.599417 -0.604373 0.702658 -0.375506 0.543677 -0.837776 -0.05046 0.41825 -0.908309 0.006481 0.525642 -0.828016 0.195167 0.513327 -0.837473 0.187441 0.632445 -0.690176 0.351668 0.562937 -0.723503 0.399556 0.270888 -0.860723 -0.431018 0.466072 -0.760826 -0.451575 0.785817 -0.470274 -0.401664 0.806986 0.379916 -0.452147 0.311722 -0.406116 -0.859011 0.08011 -0.476468 -0.875534 0.492226 -0.783275 0.379728 0.564196 -0.75938 0.324076 0.615425 -0.747397 0.250297 0.467281 -0.880804 -0.076373 0.423525 -0.905139 -0.036738 0.388235 -0.921287 -0.022439 -0.638353 0.671458 -0.376365 -0.642083 0.670375 -0.371923 -0.527289 0.635121 -0.564436 -0.53912 0.609156 -0.581618 -0.499354 0.673213 -0.545371 -0.620665 0.681581 -0.387585 0.724403 -0.679107 -0.118553 0.808578 -0.568186 -0.152862 0.76273 -0.645516 0.039393 0.719046 -0.694329 0.029644 0.704086 -0.666952 0.243799 0.68063 -0.673335 0.288725 0.675478 -0.668555 0.311069 0.688796 -0.721756 0.068031 0.678689 -0.726051 -0.110594 0.590821 -0.659388 -0.464906 0.324614 -0.335183 -0.884465 0.389368 -0.193616 -0.900503 0.677507 -0.584788 -0.446103 0.811911 -0.403641 -0.421752 -0.702864 0.705439 -0.091315 -0.699069 0.693346 0.174852 -0.698884 0.694843 0.169571 -0.697074 0.711711 -0.08692 -0.629707 0.772938 0.077689 -0.630257 0.757744 -0.169115 0.665495 -0.718329 0.202779 0.637554 -0.7383 0.220087 0.650398 -0.741869 0.163133 0.619906 -0.781037 -0.075482 0.62189 -0.772088 -0.130895 0.619404 -0.767547 -0.164959 -0.428525 0.808484 -0.403384 -0.344282 0.922494 -0.174568 0.841854 -0.487833 -0.230867 0.838993 -0.458769 -0.292613 0.718357 -0.682624 -0.134116 0.750372 -0.66081 -0.016469 -0.004385 -0.980634 -0.195802 0.11327 -0.803082 -0.585003 0.033162 -0.790045 -0.612151 -0.142029 -0.978203 -0.151482 0.398848 0.500353 -0.768484 0.284867 0.522124 -0.803889 0.240759 -0.182234 -0.953324 0.326055 -0.256882 -0.90978 0.106126 0.992625 0.058596 0.101925 0.991712 -0.078227 0.185058 0.981762 0.043548 0.161241 0.98316 0.086007 0.203627 0.976108 0.075821 -0.181266 -0.979622 -0.086502 -0.058418 -0.989239 -0.134139 0.18691 0.981774 0.034418 0.16088 0.98655 0.028917 -0.164751 -0.970502 -0.176023 0.075477 -0.797038 -0.599194 0.41959 0.332341 -0.844685 0.322606 -0.288805 -0.901397 0.338129 0.937695 -0.079978 0.299596 0.953203 -0.040569 -0.230271 -0.970692 -0.068787 0.273756 0.960659 -0.046809 -0.093554 0.935084 -0.341855 -0.357811 0.927392 -0.109158 -0.580229 0.784645 -0.218327 -0.370232 0.823908 -0.429073 0.555442 -0.82035 -0.136052 0.648256 -0.730721 0.214037 0.665073 -0.670138 0.329534 -0.177345 0.255741 -0.950339 0.237945 -0.404121 -0.883215 -0.171659 0.218398 -0.960643 -0.191232 0.22974 -0.95428 -0.611039 0.688951 -0.389844 -0.497376 0.621066 -0.605717 0.578572 -0.812132 -0.075471 0.636769 -0.760919 0.124606 -0.168096 0.382717 -0.908445 -0.01579 0.29859 -0.954251 -0.354497 0.372019 -0.857866 -0.354497 0.372019 -0.857866 0.030753 -0.642052 -0.766044 -0.28865 0.899627 -0.327645 -0.28865 0.899627 -0.327645 -0.590748 0.801531 0.092551 0.882451 -0.187177 -0.431561 0.631213 0.690214 -0.3538 0.716773 0.651128 -0.249539 0.810085 0.079366 -0.580916 0.218435 0.918014 -0.330963 0.140919 0.983259 -0.115515 0.178425 0.905077 -0.386006 0.364259 0.817074 -0.446884 0.299785 0.939825 -0.163886 0.464631 -0.750462 -0.470027 0.536199 0.720631 -0.439525 0.864301 -0.265631 -0.427112 -0.127859 0.902899 -0.410396 0.648779 -0.746777 0.14632 -0.65206 0.746179 -0.134292 0.932257 0.179954 -0.313868 0.932257 0.179954 -0.313868 0.85443 0.301563 -0.423095 0.797829 0.26596 -0.541049 0.873116 -0.177098 -0.454207 0.873116 -0.177098 -0.454207 0.649289 0.072699 -0.757059 0.753442 0.191783 -0.628923 0.6043 -0.0704 -0.793641 0.921298 -0.001363 -0.388856 0.921298 -0.001363 -0.388856 0.805464 -0.09727 -0.584608 0.710857 -0.181827 -0.679427 0.859553 -0.250977 -0.445172 -0.504833 -0.252405 -0.825491 -0.504833 -0.252405 -0.825491 -0.176988 -0.95937 -0.219738 -0.176988 -0.95937 -0.219738 0.838581 -0.043777 -0.543014 -0.50884 -0.695521 -0.507279 -0.50884 -0.695521 -0.507279 0.843621 -0.371969 -0.387224 0.843621 -0.371969 -0.387224 0.897769 0.154532 -0.41247 0.897769 0.154532 -0.41247 0.883068 0.157461 -0.442037 0.883068 0.157461 -0.442037 0.71598 -0.20424 -0.667576 0.71598 -0.20424 -0.667576 0.84052 -0.139279 -0.523572 0.84052 -0.139279 -0.523572 0.889164 0.201883 -0.410647 0.889164 0.201883 -0.410647 0.844759 0.094819 -0.526679 0.844759 0.094819 -0.526679 0.516769 -0.546521 -0.658988 0.137687 -0.761356 -0.633545 -0.073521 0.769689 -0.634171 -0.902895 -0.325759 0.280467 -0.936415 -0.200727 0.287811 -0.858832 -0.448083 0.248252 -0.80054 -0.564124 0.202238 -0.740856 -0.649577 0.170825 -0.640499 -0.727822 0.245023 -0.852262 -0.443442 0.277505 -0.785146 -0.561254 0.261802 -0.709343 -0.657204 0.254784 0.578683 -0.759785 0.2964 -0.000115 -0.99999 -0.004589 -0.00051 -0.999977 -0.006811 -3.4e-005 -0.999995 -0.003095 -0.0006 -0.999998 -0.001658 0.001309 -0.999998 0.001288 -0.003465 -0.999976 -0.006061 -0.004195 -0.999979 -0.004981 -0.000633 -0.99997 -0.007748 -0.001948 -0.999974 -0.00693 -6e-006 -0.999971 -0.007673 -0.00264 -0.99998 -0.005704 -6.6e-005 -0.999967 -0.008151 -0.00142 -0.999996 -0.002481 0.003645 -0.999993 4.6e-005 -0.002686 -0.999991 0.003221 0.002724 -0.999944 0.010221 0.004946 -0.999932 0.010546 0.006765 -0.99992 0.010688 0.004595 -0.999966 0.006817 0.001146 -0.999997 0.002298 -0.004822 -0.999982 0.003527 -0.003588 -0.999964 0.00771 -0.00298 -0.999888 0.014663 -0.001243 -0.999863 0.016531 0.001848 -0.999933 0.011451 -0.004415 -0.999984 0.003674 0.001118 -0.999907 0.013595 0.001334 -0.999999 -0.000699 -0.00033 -1 -0.000292 0.245158 0.423975 0.25011 0.468112 0.150442 0.543685 0.148569 0.498875 0.302841 0.416173 0.345064 0.636086 0.339502 0.673242 0.260986 0.672117 0.283208 0.642063 0.331126 0.714598 0.241009 0.71553 0.233372 0.762934 0.302959 0.373132 0.224027 0.289653 0.23558 0.359702 0.143764 0.429085 0.134156 0.320572 0.298228 0.319321 0.288073 0.263566 0.326898 0.757163 0.328393 0.797118 0.23841 0.805793 0.60087 0.640918 0.866606 0.398924 0.510699 0.676291 0.517366 0.634965 0.871384 0.397619 0.505796 0.719121 0.878048 0.397558 0.87416 0.398826 0.86606 0.397625 0.86057 0.399008 0.501279 0.762876 0.856321 0.39906 0.497144 0.804816 0.862375 0.397683 0.860024 0.397676 0.853776 0.399148 0.494669 0.842655 0.936097 0.40457 0.495808 0.877438 0.932361 0.401286 0.944998 0.401429 0.333511 0.830512 0.255441 0.838224 0.335539 0.859065 0.275714 0.857682 0.13703 0.645509 0.099669 0.709478 0.072436 0.710311 0.114209 0.64461 0.217381 0.600094 0.193334 0.589335 0.083907 0.774978 0.093256 0.834193 0.067488 0.842396 0.056643 0.778851 0.948825 0.405179 0.543475 0.557405 0.5578 0.533271 0.685834 0.551732 0.928618 0.398828 0.939922 0.398832 0.318062 0.571086 0.304302 0.551225 0.870712 0.401462 0.862287 0.401557 0.855482 0.401642 0.85836 0.405349 0.85103 0.405417 0.86725 0.404976 0.851008 0.401767 0.84805 0.401779 0.618068 0.949096 0.595914 0.442419 0.701364 0.36472 0.704143 0.312403 0.595493 0.387203 0.757075 0.288915 0.749567 0.262372 0.79867 0.019963 0.720188 0.090411 0.342229 0.232442 0.353643 0.285267 0.846214 0.405443 0.84246 0.405195 0.945825 0.3988 0.51556 0.94314 0.529717 0.959537 0.951482 0.401365 0.955814 0.405156 0.355112 0.336459 0.416748 0.23909 0.409212 0.301844 0.412385 0.174765 0.722678 0.141004 0.371257 0.129527 0.316583 0.183819 0.278107 0.146712 0.815355 0.094326 0.586596 0.164171 0.31201 0.090946 0.272238 0.213152 0.591566 0.221736 0.775513 0.183818 0.258385 0.177707 0.714664 0.225413 0.594393 0.311859 0.803506 0.201004 0.853165 0.100422 0.240207 0.064107 0.220228 0.127313 0.134162 0.116701 0.137886 0.045291 0.20962 0.176711 0.132836 0.176022 0.393776 0.367451 0.346805 0.380154 0.21424 0.228892 0.133514 0.241035 0.127886 0.880246 0.194162 0.909528 0.176891 0.924466 0.105635 0.892789 0.298575 0.918513 0.289302 0.932026 0.41004 0.927663 0.412647 0.940987 0.152917 0.714025 0.188039 0.660899 0.251002 0.622891 0.148083 0.821618 0.139091 0.770988 0.529124 0.59406 0.624566 0.605374 0.943792 0.414167 0.33386 0.602351 0.939709 0.408955 0.951716 0.40979 0.95394 0.414936 0.863781 0.409841 0.854643 0.410095 0.847079 0.410021 0.50373 0.914675 0.043999 0.560029 0.039161 0.51728 0.035514 0.442488 0.02836 0.327681 0.57657 0.399149 0.579657 0.45714 0.483058 0.467543 0.484696 0.402538 0.027211 0.11532 0.026409 0.041836 0.027231 0.176259 0.027041 0.244825 0.496033 0.232082 0.498386 0.171519 0.545104 0.178866 0.55478 0.242428 0.486973 0.320445 0.572701 0.32584 0.253473 0.42034 0.198325 0.471074 0.201641 0.514357 0.257191 0.464291 0.304409 0.414784 0.305266 0.371658 0.230885 0.286168 0.167912 0.306331 0.188981 0.401339 0.242536 0.354324 0.300813 0.31779 0.290984 0.262458 0.644363 0.422582 0.643061 0.366324 0.70337 0.314326 0.703499 0.366966 0.745969 0.26707 0.75382 0.293297 0.343946 0.231017 0.355397 0.284532 0.356783 0.335152 0.414764 0.29281 0.419941 0.236001 0.413771 0.173263 0.370421 0.125545 0.313385 0.086563 0.282902 0.142155 0.319456 0.18046 0.261679 0.175104 0.275739 0.211488 0.247515 0.05956 0.175872 0.043369 0.166908 0.113803 0.230266 0.122298 0.162066 0.173298 0.220575 0.173418 0.399643 0.347472 0.348371 0.378515 0.850892 0.415208 0.23283 0.882474 0.174218 0.860862 0.318561 0.890705 0.412205 0.900441 0.414872 0.864697 0.414169 0.832004 0.413463 0.796679 0.414763 0.757 0.418623 0.715141 0.424042 0.67374 0.797949 0.022112 0.816816 0.093012 0.720595 0.147032 0.715991 0.092651 0.636546 0.210325 0.627672 0.148444 0.772502 0.189202 0.711355 0.231084 0.641706 0.289174 0.223314 0.226619 0.162858 0.235961 0.139391 0.505963 0.140772 0.546375 0.105327 0.324975 0.131454 0.436403 0.855305 0.0942 0.800674 0.205793 0.103269 0.042003 0.100779 0.11305 0.099208 0.173793 0.099637 0.242841 0.428561 0.633258 0.429426 0.594048 0.429051 0.559095 0.429259 0.535162 0.35272 0.639241 0.294558 0.645659 0.274212 0.673847 0.348213 0.675519 0.253789 0.714174 0.339072 0.715472 0.241562 0.759109 0.241492 0.801977 0.330569 0.796358 0.332348 0.756954 0.843668 0.414845 0.519216 0.636196 0.513483 0.677706 0.858319 0.415536 0.509018 0.719971 0.595108 0.724198 0.959154 0.409842 0.961426 0.415077 0.955396 0.420505 0.503982 0.762367 0.946551 0.419988 0.498249 0.80295 0.581926 0.813498 0.948394 0.426244 0.956245 0.426562 0.493564 0.840197 0.962774 0.420748 0.49337 0.874734 0.5689 0.884732 0.963626 0.426902 0.947821 0.439136 0.254385 0.836095 0.333265 0.830744 0.334347 0.859927 0.274272 0.857068 0.111374 0.707428 0.160452 0.654158 0.126019 0.649524 0.074711 0.707898 0.232092 0.611555 0.203545 0.598866 0.085639 0.828171 0.086444 0.767612 0.053832 0.770468 0.05904 0.833261 0.5406 0.554531 0.653253 0.57169 0.949156 0.432796 0.552741 0.532581 0.956416 0.432776 0.955188 0.438695 0.321928 0.578317 0.3053 0.558373 0.963377 0.433055 0.962074 0.438861 0.939469 0.450342 0.944673 0.445101 0.952905 0.444195 0.949616 0.449137 0.959891 0.444199 0.95721 0.449055 0.928445 0.45763 0.933041 0.454385 0.647892 0.957038 0.945196 0.453364 0.513713 0.938992 0.528694 0.953445 0.940767 0.456994 0.954246 0.453493 0.191556 0.905473 0.119561 0.876603 0.09609 0.886393 0.173642 0.917872 0.296111 0.916924 0.285563 0.930752 0.407594 0.925155 0.699705 0.808301 0.767751 0.813767 0.770203 0.857847 0.710393 0.859091 0.67046 0.86001 0.652167 0.800156 0.732575 0.902022 0.706983 0.910753 0.776574 0.894725 0.709069 0.706824 0.772884 0.721001 0.769128 0.766819 0.69961 0.756109 0.650715 0.739559 0.665169 0.685443 0.747389 0.629544 0.781976 0.645207 0.777571 0.679447 0.726035 0.663915 0.69251 0.641696 0.7256 0.608173 0.800842 0.598447 0.800844 0.613722 0.782354 0.62203 0.77064 0.606739 0.761516 0.586356 0.801211 0.57812 0.833474 0.606525 0.843418 0.585771 0.884582 0.608278 0.861681 0.62927 0.826927 0.645008 0.821482 0.621769 0.901508 0.709495 0.841154 0.721344 0.835351 0.679466 0.88519 0.664947 0.920582 0.64464 0.946246 0.692573 0.905321 0.811872 0.840491 0.814502 0.842749 0.767471 0.908491 0.759591 0.957769 0.748636 0.953229 0.808266 0.87648 0.901039 0.832824 0.894364 0.83647 0.858222 0.893987 0.860506 0.934495 0.863509 0.904941 0.908789 0.811165 0.93926 0.808557 0.928096 0.833115 0.918674 0.850764 0.928355 0.866017 0.939324 0.815782 0.955298 0.781351 0.919619 0.767445 0.930389 0.756778 0.947206 0.874321 0.260529 0.87457 0.258357 0.870642 0.262514 0.870232 0.260129 0.875205 0.262091 0.87418 0.274349 0.878088 0.275377 0.879128 0.284194 0.875282 0.284248 0.876451 0.268146 0.87176 0.26763 0.879196 0.270887 0.875496 0.265391 0.893101 0.28442 0.892287 0.271326 0.879947 0.284131 0.862255 0.219399 0.877309 0.242158 0.869772 0.241647 0.855575 0.218438 0.862432 0.239621 0.84944 0.210845 0.867315 0.244511 0.849901 0.240235 0.863194 0.266321 0.876212 0.265675 0.880423 0.283451 0.866718 0.283089 0.870498 0.254293 0.863904 0.253791 0.870234 0.270504 0.864805 0.270607 0.879852 0.25405 0.878645 0.27023 0.884908 0.221559 0.894641 0.243235 0.885819 0.242521 0.87478 0.219802 0.853855 0.205189 0.868038 0.204565 0.870975 0.210424 0.856654 0.209577 0.882303 0.208527 0.885027 0.21281 0.869343 0.207181 0.855354 0.205901 0.879862 0.246326 0.872817 0.221463 0.859409 0.2185 0.885826 0.225344 0.891813 0.248223 0.886742 0.266822 0.897889 0.269881 0.890434 0.283337 0.902191 0.283202 0.887267 0.269985 0.888486 0.253806 0.897003 0.253871 0.897865 0.269734 0.890567 0.21382 0.890889 0.214313 0.887336 0.211472 0.940502 0.247339 0.935827 0.245027 0.948386 0.259727 0.952135 0.261243 0.929477 0.246937 0.935892 0.257903 0.955141 0.271935 0.951237 0.271687 0.951697 0.282445 0.956107 0.282705 0.939971 0.271031 0.941535 0.28252 0.963745 0.266939 0.955791 0.248173 0.96377 0.246708 0.971434 0.266214 0.948554 0.235961 0.955224 0.234835 0.896396 0.245174 0.886107 0.251776 0.887306 0.25714 0.901578 0.253513 0.893935 0.234459 0.893306 0.241625 0.88488 0.259333 0.895682 0.256287 0.898524 0.274248 0.887363 0.275119 0.885952 0.26722 0.897217 0.265981 0.888292 0.284017 0.899782 0.283788 0.893557 0.224473 0.903384 0.244263 0.904117 0.226402 0.909834 0.245212 0.898452 0.232315 0.90536 0.242289 0.914901 0.24109 0.908475 0.23147 0.912117 0.251402 0.92111 0.249824 0.905103 0.223634 0.894105 0.223477 0.891627 0.223783 0.892209 0.224715 0.894785 0.217728 0.904032 0.218825 0.905292 0.26092 0.916745 0.259188 0.925679 0.257542 0.919312 0.270264 0.927598 0.269904 0.909165 0.270372 0.922229 0.248254 0.923018 0.231732 0.931448 0.236491 0.927474 0.250713 0.939132 0.243721 0.931475 0.252998 0.941395 0.236759 0.941774 0.24318 0.951181 0.24757 0.953028 0.242625 0.943442 0.249961 0.949719 0.251412 0.932269 0.241398 0.935522 0.24909 0.930136 0.234395 0.929446 0.228394 0.942151 0.230847 0.942787 0.227016 0.929372 0.224433 0.954848 0.237908 0.922857 0.256527 0.927955 0.258098 0.929776 0.270263 0.925166 0.269641 0.93313 0.259066 0.935431 0.270899 0.938091 0.256867 0.945703 0.257403 0.953024 0.257866 0.948714 0.269472 0.957575 0.269677 0.940805 0.269454 0.944953 0.253898 0.950208 0.269278 0.961307 0.253711 0.957956 0.256418 0.964661 0.269455 0.96896 0.268209 0.902892 0.249987 0.897745 0.228849 0.908596 0.231834 0.912735 0.252197 0.897122 0.224227 0.89485 0.22181 0.90624 0.226903 0.908607 0.228742 0.903082 0.242361 0.906809 0.256103 0.917237 0.255133 0.919494 0.264606 0.908311 0.265315 0.907454 0.269025 0.916487 0.269043 0.911531 0.283044 0.919593 0.2829 0.909419 0.273405 0.911476 0.28336 0.920571 0.273041 0.922157 0.283218 0.922114 0.255039 0.920062 0.238863 0.921052 0.234472 0.923775 0.23538 0.929369 0.253983 0.934895 0.263753 0.927988 0.282737 0.92516 0.269608 0.937386 0.272947 0.938515 0.283177 0.906903 0.269654 0.905634 0.25451 0.912156 0.254648 0.915624 0.269303 0.934262 0.269581 0.931993 0.256855 0.928513 0.24901 0.928512 0.223212 0.917128 0.220406 0.916725 0.220767 0.9041 0.217973 0.914088 0.228391 0.916363 0.246441 0.918617 0.23227 0.923487 0.240784 0.938248 0.22777 0.892821 0.216321 0.844542 0.206031 0.874322 0.212263 0.870581 0.286403 0.864795 0.285932 0.877377 0.285736 0.887924 0.285532 0.898823 0.285311 0.908672 0.285115 0.917425 0.284957 0.921216 0.269224 0.922914 0.284906 0.926665 0.284912 0.930758 0.284928 0.936388 0.28496 0.952837 0.284936 0.967867 0.284724 0.971593 0.266723 0.976556 0.284338 0.976161 0.284497 0.973686 0.284223 0.968029 0.284169 0.960033 0.284154 0.950775 0.284138 0.942494 0.284121 0.936182 0.284123 0.929809 0.284158 0.920968 0.284223 0.910111 0.284292 0.952943 0.272204 0.950019 0.262148 0.953976 0.282879 0.900909 0.229617 0.889642 0.217102 0.912068 0.234085 0.913562 0.243735 0.925227 0.239763 0.92311 0.245509 0.916786 0.225007 0.940372 0.24984 0.963568 0.250138 0.888081 0.264217 0.918118 0.254988 0.844126 0.209259 0.844951 0.221286 0.886769 0.216308 0.872985 0.215718 0.879346 0.309871 0.875833 0.306046 0.875654 0.308144 0.879007 0.306407 0.876295 0.294136 0.878977 0.293033 0.879812 0.300399 0.876175 0.301094 0.880254 0.30345 0.882198 0.297454 0.893175 0.297687 0.865817 0.349629 0.859181 0.350621 0.872916 0.327332 0.880252 0.326495 0.865713 0.330422 0.852822 0.359205 0.869257 0.322943 0.877097 0.301439 0.864055 0.301093 0.852819 0.327816 0.866118 0.317194 0.872679 0.31623 0.865658 0.301152 0.871305 0.301562 0.879516 0.300927 0.881998 0.315802 0.888262 0.347411 0.878301 0.348969 0.888479 0.326114 0.897047 0.325511 0.857019 0.363938 0.860381 0.359999 0.874655 0.358691 0.872015 0.364197 0.888629 0.3558 0.886097 0.359632 0.872907 0.361011 0.858128 0.36229 0.881706 0.320824 0.862423 0.349295 0.875903 0.346079 0.888714 0.341972 0.893556 0.318638 0.898554 0.296744 0.887564 0.300041 0.888147 0.300674 0.898715 0.300283 0.89883 0.31539 0.89048 0.315686 0.894383 0.353795 0.894065 0.354129 0.890921 0.356254 0.942171 0.318343 0.9529 0.304272 0.949521 0.305533 0.937705 0.320863 0.937122 0.30759 0.931259 0.318903 0.955735 0.293528 0.951772 0.293299 0.940544 0.294181 0.964624 0.302435 0.972337 0.302695 0.965634 0.321964 0.957594 0.320997 0.957663 0.333351 0.950951 0.332759 0.897685 0.323309 0.904388 0.314564 0.887892 0.312338 0.888936 0.316243 0.699423 0.809253 0.710111 0.860044 0.769921 0.8588 0.767468 0.81472 0.651885 0.801109 0.669688 0.860514 0.732293 0.902975 0.706453 0.911484 0.776292 0.895678 0.708787 0.707777 0.699329 0.757062 0.768846 0.767772 0.772602 0.721954 0.664887 0.686395 0.650433 0.740512 0.747107 0.630497 0.725753 0.664868 0.777288 0.6804 0.781693 0.64616 0.725318 0.609127 0.692228 0.642648 0.80056 0.5994 0.770358 0.607692 0.782072 0.622983 0.800562 0.614675 0.800928 0.579073 0.761234 0.587309 0.833192 0.607478 0.861399 0.630223 0.8843 0.609231 0.843136 0.586725 0.8212 0.622722 0.826645 0.645961 0.901226 0.710448 0.884907 0.6659 0.835069 0.680418 0.840872 0.722297 0.945964 0.693526 0.920299 0.645594 0.905039 0.812825 0.908209 0.760544 0.842467 0.768423 0.840209 0.815454 0.952947 0.809219 0.957487 0.749588 0.876198 0.901993 0.893705 0.861459 0.836187 0.859175 0.832541 0.895317 0.904659 0.909742 0.934213 0.864462 0.810883 0.940213 0.850482 0.929308 0.832833 0.919627 0.808275 0.929049 0.815494 0.955807 0.865735 0.940277 0.767163 0.931342 0.781069 0.920572 0.878641 0.308129 0.757688 0.947696 0.89571 0.326063 0.896265 0.333541 0.887647 0.308911 0.896958 0.311973 0.898883 0.293285 0.897963 0.301935 0.887703 0.301029 0.887878 0.29293 0.905567 0.324686 0.896731 0.344468 0.906991 0.342485 0.911791 0.324251 0.900908 0.335596 0.911043 0.336295 0.917143 0.326675 0.907054 0.325968 0.923285 0.31808 0.915184 0.316034 0.908088 0.344187 0.897103 0.344536 0.894607 0.344154 0.895142 0.343144 0.898106 0.350443 0.90726 0.349181 0.907871 0.308374 0.918398 0.309598 0.927049 0.310818 0.928305 0.298442 0.920004 0.298182 0.909927 0.298243 0.924036 0.321254 0.929162 0.318872 0.933826 0.332572 0.925629 0.337191 0.941158 0.32555 0.933051 0.316658 0.943727 0.330971 0.955075 0.325269 0.952983 0.320359 0.943791 0.324629 0.951332 0.316568 0.945126 0.31796 0.937248 0.318798 0.934373 0.326359 0.932584 0.333273 0.932192 0.3393 0.932318 0.343421 0.945607 0.340893 0.944776 0.336887 0.957129 0.33006 0.924262 0.313255 0.925922 0.300164 0.930502 0.299579 0.929283 0.311724 0.936126 0.298969 0.93441 0.310774 0.939442 0.311396 0.947027 0.310849 0.954323 0.310334 0.958291 0.298597 0.94944 0.298819 0.941532 0.298832 0.946483 0.315703 0.950981 0.300512 0.962811 0.314479 0.969751 0.300159 0.965388 0.298807 0.959326 0.311738 0.904541 0.316598 0.900452 0.33816 0.911146 0.334819 0.914268 0.314088 0.900043 0.343367 0.910827 0.338483 0.909045 0.340214 0.897918 0.345703 0.907714 0.311836 0.905082 0.324826 0.918749 0.311513 0.909052 0.30192 0.920236 0.301846 0.91718 0.297035 0.908155 0.297332 0.909931 0.29344 0.92041 0.293444 0.923496 0.310879 0.922253 0.327378 0.925923 0.331262 0.923469 0.332076 0.930583 0.312153 0.934974 0.302503 0.925817 0.29614 0.93758 0.293425 0.907706 0.300101 0.916398 0.300537 0.913653 0.315103 0.907277 0.314776 0.934984 0.298714 0.933344 0.311407 0.930312 0.318902 0.931529 0.345055 0.919853 0.347075 0.920283 0.347817 0.907379 0.350402 0.918259 0.323025 0.916863 0.340467 0.921166 0.335346 0.925584 0.327014 0.941044 0.340685 0.896265 0.352186 0.847118 0.363087 0.877923 0.355511 0.921992 0.300554 0.972463 0.301867 0.950828 0.303658 0.953466 0.293583 0.892951 0.350759 0.90326 0.337983 0.915596 0.322974 0.91417 0.333036 0.927312 0.326701 0.92504 0.320904 0.919699 0.342662 0.941871 0.316003 0.965254 0.318221 0.889956 0.306147 0.919598 0.314755 0.845891 0.359181 0.847322 0.346695 0.890112 0.35133 0.87636 0.352039 0.950166 0.457401 0.877438 0.456074 0.890333 0.455013 0.891902 0.457826 0.881771 0.45805 0.893433 0.460126 0.885457 0.459788 0.90216 0.458193 0.902038 0.46051 0.902093 0.455956 0.869348 0.456995 0.875073 0.458463 0.870949 0.459563 0.865831 0.459946 0.88002 0.459819 0.876379 0.459992 0.890696 0.462723 0.889158 0.462546 0.893089 0.46287 0.842115 0.409869 0.837426 0.409453 0.838646 0.414482 0.833434 0.414204 0.847163 0.42056 0.840709 0.41957 0.839445 0.430603 0.83503 0.428579 0.852464 0.422383 0.843659 0.433436 0.835601 0.419062 0.830596 0.418889 0.831257 0.427506 0.827802 0.427141 0.876435 0.450731 0.866399 0.449489 0.869211 0.447456 0.878828 0.448367 0.861778 0.461251 0.86329 0.45579 0.869445 0.454182 0.919848 0.462088 0.9244 0.459418 0.936505 0.460001 0.932799 0.462552 0.914853 0.457033 0.912969 0.45878 0.983064 0.742705 0.970242 0.681277 0.978343 0.807461 0.961861 0.871181 0.925 0.920764 0.93957 0.629718 0.896636 0.591965 0.87816 0.953598 0.820182 0.969676 0.849136 0.56846 0.801508 0.561342 0.753635 0.961316 0.693916 0.922274 0.756457 0.570463 0.715065 0.59271 0.62759 0.729278 0.628526 0.797321 0.647916 0.672373 0.648988 0.865355 0.678001 0.627321 0.970524 0.680324 0.983346 0.741752 0.978626 0.806509 0.962143 0.870229 0.925282 0.919811 0.896919 0.591012 0.939853 0.628765 0.878442 0.952645 0.819304 0.969461 0.80179 0.560389 0.849419 0.567507 0.753465 0.960832 0.694447 0.921544 0.715348 0.591757 0.756739 0.569509 0.628808 0.796368 0.627873 0.728326 0.648199 0.671421 0.648584 0.866073 0.678283 0.626368 0.411737 0.936637 0.212659 0.665019 0.175067 0.711347 0.264355 0.628942 0.154113 0.763611 0.154483 0.81452 0.911051 0.461039 0.528987 0.594894 0.945951 0.460521 0.339791 0.607004 0.94197 0.46307 0.896594 0.462992 0.902819 0.462828 0.939147 0.46498 0.588358 0.917245 0.930869 0.464578 0.500784 0.908814 0.937502 0.466649 0.178893 0.855096 0.23388 0.878659 0.317203 0.888741 0.409219 0.897533 0.412456 0.865776 0.413517 0.832907 0.415303 0.797177 0.41903 0.758087 0.424284 0.717135 0.429773 0.675932 0.433166 0.635493 0.431719 0.596003 0.42845 0.560105 0.426262 0.535529 0.166927 0.932027 0.089131 0.90146 0.412839 0.954955 0.280654 0.94225 0.092604 0.643694 0.172265 0.583534 0.034269 0.783775 0.048602 0.713913 0.288973 0.53753 0.047197 0.849027 0.9297 0.466322 0.910929 0.462701 0.429574 0.516361 0.573602 0.514995 0.911763 0.464455 0.904647 0.46452 0.91245 0.466086 0.906026 0.466148 0.920833 0.464349 0.682918 0.980037 0.544365 0.975068 0.92089 0.466118 0.274953 0.94136 0.412382 0.948959 0.078614 0.893197 0.159929 0.926191 0.045546 0.712112 0.029763 0.775258 0.174568 0.589926 0.093871 0.647648 0.286715 0.542233 0.039682 0.837587 0.568016 0.514851 0.425296 0.517534 0.89967 0.464526 0.715649 0.536695 0.89649 0.46445 0.90127 0.466162 0.89793 0.466107 0.92457 0.397524 0.934172 0.397517 0.90196 0.397532 0.543555 0.96576 0.912366 0.397543 0.914428 0.398827 0.902477 0.39881 0.887934 0.397535 0.886084 0.398748 0.939158 0.397548 0.916553 0.401268 0.903345 0.401161 0.918892 0.404595 0.904419 0.40426 0.88377 0.401252 0.880927 0.404722 0.905294 0.428912 0.905488 0.424961 0.912357 0.424967 0.91334 0.429138 0.905906 0.421495 0.911087 0.422154 0.904076 0.437412 0.90478 0.43319 0.913199 0.433998 0.911884 0.43877 0.90321 0.444063 0.903361 0.441071 0.909872 0.442542 0.908067 0.444769 0.902496 0.453271 0.918142 0.453706 0.928783 0.450398 0.93573 0.445715 0.939896 0.439756 0.941415 0.433124 0.940295 0.426582 0.937084 0.420446 0.931618 0.414911 0.921769 0.409549 0.905101 0.407893 0.876573 0.40992 0.866307 0.415598 0.859425 0.421874 0.854503 0.429219 0.846009 0.439206 0.853866 0.435555 0.855666 0.44134 0.849189 0.44441 0.859693 0.44628 0.853635 0.449316 0.859396 0.453185 0.889827 0.45174 0.862926 0.421743 0.859205 0.428005 0.869662 0.416377 0.857993 0.434235 0.859086 0.440054 0.916008 0.412068 0.903601 0.410265 0.918257 0.418305 0.91053 0.415402 0.913091 0.413541 0.921836 0.416936 0.92534 0.416062 0.879532 0.412275 0.931494 0.42114 0.923547 0.422692 0.927682 0.421785 0.926515 0.428111 0.931209 0.427509 0.93512 0.42705 0.936295 0.433481 0.92732 0.434037 0.932331 0.433786 0.925669 0.439922 0.930432 0.440034 0.934525 0.439972 0.912845 0.451737 0.922595 0.449614 0.907361 0.448978 0.915126 0.447877 0.918684 0.448912 0.909842 0.450414 0.901128 0.451294 0.929882 0.445604 0.921412 0.444811 0.925747 0.445329 0.862632 0.44473 0.90791 0.418325 0.914417 0.420366 0.918293 0.424021 0.92059 0.42877 0.920879 0.434155 0.919487 0.439514 0.911345 0.446349 0.90499 0.446728 0.916084 0.443813 0.891421 0.410387 0.891335 0.407994 0.8923 0.404278 0.892667 0.401108 0.892803 0.398753 0.893101 0.397518 0.953337 0.401538 0.958091 0.405199 0.9475 0.399036 0.96186 0.409791 0.964499 0.415028 0.96612 0.420717 0.967305 0.426924 0.967388 0.433074 0.966427 0.438883 0.96451 0.444202 0.961861 0.44894 0.958944 0.453645 0.955428 0.457592 0.951844 0.460785 0.948132 0.463506 0.945008 0.465414 0.9428 0.466896 0.940897 0.39766 0.894646 0.464377 0.893748 0.464327 0.895819 0.465909 0.894732 0.465707 0.898046 0.468336 0.895591 0.467749 0.894211 0.467377 0.894053 0.470321 0.892528 0.469525 0.89702 0.472125 0.906461 0.46806 0.901761 0.468217 0.901883 0.471147 0.906501 0.470456 0.912592 0.467918 0.912253 0.470089 0.920682 0.467923 0.920674 0.470154 0.9293 0.468129 0.929876 0.470181 0.93702 0.468441 0.938213 0.470896 0.942275 0.468514 0.942757 0.470744 0.890006 0.4495 0.852976 0.399065 0.859393 0.397599 0.847065 0.401675 0.84127 0.405026 0.953466 0.401386 0.958188 0.405089 0.947588 0.398916 0.961862 0.409747 0.964391 0.415022 0.965926 0.420729 0.967068 0.426923 0.967242 0.433135 0.966314 0.439008 0.964406 0.444378 0.961584 0.44912 0.958267 0.453722 0.954279 0.457569 0.865611 0.460368 0.870463 0.459645 0.869977 0.459728 0.865391 0.460791 0.875883 0.460032 0.875386 0.460071 0.889107 0.462568 0.889055 0.46259 0.836433 0.409343 0.829542 0.419704 0.832578 0.41403 0.832317 0.414141 0.82924 0.419624 0.86181 0.461905 0.861843 0.46256 0.95053 0.46075 0.946775 0.4634 0.943577 0.465237 0.941527 0.466697 0.893773 0.464335 0.893798 0.464342 0.894526 0.465626 0.894385 0.465571 0.940912 0.397604 0.893807 0.467247 0.893563 0.467166 0.891985 0.469369 0.891535 0.469419 0.940364 0.468392 0.940762 0.470517 0.866236 0.398834 0.873711 0.398813 0.877506 0.397514 0.870971 0.397493 0.865522 0.397455 0.860032 0.398872 0.856026 0.399014 0.861954 0.397568 0.860159 0.397664 0.853853 0.399094 0.935431 0.404681 0.948546 0.405179 0.944496 0.401457 0.931632 0.401375 0.939488 0.398861 0.927974 0.398901 0.870657 0.401504 0.861966 0.401526 0.855096 0.4016 0.850751 0.405417 0.858121 0.405363 0.867731 0.405188 0.850561 0.401575 0.848094 0.401586 0.842791 0.404957 0.845766 0.405198 0.9455 0.398818 0.951158 0.401375 0.955535 0.405156 0.94295 0.41441 0.9536 0.414936 0.951437 0.40979 0.938847 0.409148 0.863906 0.410047 0.854469 0.410101 0.8468 0.410021 0.843291 0.414792 0.850618 0.415218 0.858112 0.415702 0.958875 0.409842 0.961147 0.415077 0.9551 0.420509 0.945887 0.42022 0.947818 0.426423 0.955942 0.426574 0.962495 0.420748 0.963347 0.426902 0.947179 0.438896 0.955415 0.438781 0.95627 0.432802 0.948355 0.432791 0.963455 0.433109 0.96255 0.43901 0.93973 0.449457 0.950281 0.449152 0.953464 0.44429 0.944309 0.444589 0.960647 0.444424 0.957836 0.449233 0.928866 0.456683 0.941589 0.457208 0.946319 0.453375 0.933669 0.453285 0.954103 0.453514 0.949874 0.457416 0.877353 0.455968 0.882269 0.458025 0.892317 0.457757 0.890577 0.455047 0.886684 0.460112 0.89423 0.460211 0.902677 0.460467 0.90267 0.458019 0.902808 0.455334 0.869597 0.456984 0.865825 0.458435 0.871446 0.458982 0.8752 0.458466 0.877063 0.46 0.880928 0.46006 0.889224 0.462652 0.890358 0.462714 0.892541 0.462593 0.841603 0.409572 0.838159 0.409243 0.834209 0.413908 0.837981 0.414182 0.839885 0.419736 0.846514 0.420792 0.834481 0.428371 0.838869 0.430451 0.84343 0.433385 0.852102 0.422532 0.830666 0.418987 0.834732 0.419195 0.827717 0.426976 0.830662 0.427303 0.875777 0.450429 0.878346 0.448288 0.868619 0.446935 0.865577 0.448677 0.860982 0.459109 0.863516 0.455972 0.868771 0.453598 0.919955 0.462087 0.933215 0.46265 0.936971 0.460171 0.92452 0.45941 0.915797 0.455832 0.913434 0.458571 0.911682 0.460937 0.945768 0.460575 0.941689 0.463136 0.897291 0.462545 0.903757 0.462585 0.930828 0.464538 0.938505 0.464915 0.929084 0.466249 0.936418 0.466469 0.911714 0.462545 0.904992 0.464496 0.91226 0.464434 0.906001 0.466171 0.912549 0.466198 0.920438 0.466178 0.920682 0.464371 0.899694 0.464496 0.896238 0.464476 0.897673 0.46607 0.901142 0.46612 0.933851 0.397545 0.924135 0.397565 0.901567 0.397461 0.902111 0.398787 0.913998 0.398826 0.911927 0.397463 0.885568 0.398789 0.887707 0.397486 0.939027 0.397536 0.902897 0.401138 0.916139 0.401275 0.904075 0.404332 0.918631 0.404656 0.883077 0.401373 0.880245 0.404983 0.905419 0.428922 0.912942 0.429219 0.912006 0.425106 0.905474 0.425025 0.910791 0.422281 0.905844 0.421559 0.904305 0.436885 0.911907 0.438227 0.913047 0.433844 0.905052 0.432984 0.903203 0.443238 0.908124 0.443775 0.909903 0.441649 0.903445 0.440313 0.90285 0.452456 0.918742 0.45246 0.929033 0.449192 0.935553 0.444785 0.939489 0.439171 0.940895 0.433027 0.939916 0.426757 0.936762 0.420698 0.931211 0.415109 0.90461 0.407951 0.921344 0.40965 0.876099 0.410269 0.865754 0.416146 0.858856 0.422274 0.85408 0.42925 0.845714 0.439016 0.8487 0.443676 0.855252 0.440105 0.853622 0.434905 0.852614 0.447663 0.858958 0.44511 0.858176 0.451853 0.889824 0.45148 0.858947 0.427844 0.863033 0.422095 0.869857 0.416948 0.858451 0.439034 0.857612 0.433475 0.903128 0.410252 0.915613 0.4122 0.910336 0.415321 0.91773 0.418674 0.921258 0.417307 0.91279 0.413538 0.924944 0.416332 0.879341 0.412694 0.930972 0.4215 0.922517 0.423241 0.926792 0.422268 0.92506 0.428584 0.929895 0.42793 0.93442 0.427304 0.935453 0.433435 0.925801 0.434263 0.930838 0.433902 0.924243 0.439743 0.929152 0.439726 0.933786 0.439455 0.922618 0.448568 0.913071 0.450609 0.91472 0.447235 0.9073 0.44856 0.909883 0.449686 0.918464 0.448158 0.90106 0.450464 0.929479 0.444749 0.920523 0.44435 0.924927 0.444695 0.861743 0.443993 0.907779 0.418347 0.914012 0.420577 0.917709 0.42432 0.919641 0.429082 0.919962 0.434273 0.918588 0.43924 0.904848 0.446138 0.911088 0.445577 0.915514 0.4432 0.890897 0.408138 0.891059 0.410492 0.89188 0.404459 0.892481 0.401195 0.892744 0.398811 0.892774 0.397499 0.852987 0.39915 0.859402 0.397672 0.847027 0.401638 0.84144 0.40503 0.836758 0.409301 0.826856 0.427241 0.893304 0.464316 0.894343 0.465793 0.894093 0.464377 0.895401 0.465971 0.893628 0.467665 0.890751 0.471053 0.897653 0.467915 0.895086 0.467874 0.893376 0.47055 0.896513 0.470318 0.906138 0.467954 0.901291 0.467913 0.900442 0.470186 0.905385 0.470181 0.912382 0.468058 0.911527 0.470316 0.918635 0.470453 0.91977 0.468076 0.926488 0.470872 0.927835 0.468189 0.935282 0.468257 0.935209 0.471328 0.877915 0.500707 0.878197 0.500625 0.878935 0.505269 0.878376 0.50543 0.87849 0.500327 0.879515 0.504678 0.878776 0.499827 0.880077 0.503685 0.879041 0.499148 0.880596 0.502336 0.879273 0.498323 0.88105 0.500691 0.879461 0.49739 0.881414 0.498833 0.879595 0.496393 0.881685 0.496848 0.879673 0.495381 0.881831 0.494834 0.879688 0.4944 0.881855 0.492886 0.879641 0.493495 0.881754 0.491093 0.879517 0.492692 0.881496 0.489502 0.879256 0.49199 0.880966 0.488128 0.878724 0.491679 0.879976 0.487255 0.880441 0.487544 0.878985 0.491764 0.880259 0.509816 0.879427 0.510054 0.881118 0.508941 0.881951 0.507469 0.882719 0.50547 0.883385 0.503037 0.883918 0.500283 0.884295 0.497337 0.884501 0.494341 0.884524 0.491438 0.884373 0.488781 0.883999 0.486461 0.88321 0.484429 0.882394 0.483424 0.882124 0.514208 0.881033 0.51452 0.883251 0.513061 0.884343 0.511133 0.885349 0.508513 0.886222 0.505324 0.886921 0.501715 0.887414 0.497854 0.887677 0.493924 0.887702 0.490113 0.887496 0.486645 0.88698 0.48361 0.885938 0.48091 0.884878 0.479558 0.884506 0.51838 0.88317 0.518762 0.885883 0.516979 0.887217 0.514621 0.888447 0.511419 0.889514 0.507521 0.890369 0.503109 0.890971 0.49839 0.891293 0.493586 0.89132 0.488919 0.891054 0.484665 0.890395 0.481066 0.88919 0.477958 0.887817 0.476052 0.887367 0.522273 0.885807 0.522719 0.888975 0.520637 0.890533 0.517885 0.891968 0.514147 0.893214 0.509596 0.894212 0.504446 0.894915 0.498938 0.895291 0.493329 0.895322 0.487882 0.895 0.482915 0.894205 0.478779 0.892842 0.475169 0.891068 0.473073 0.890668 0.525829 0.888906 0.526332 0.892483 0.523982 0.894241 0.520876 0.895861 0.516656 0.897267 0.51152 0.898394 0.505707 0.899187 0.499489 0.899612 0.493158 0.899646 0.487009 0.899286 0.481354 0.898411 0.476638 0.894359 0.528996 0.892421 0.529549 0.896354 0.526965 0.898288 0.52355 0.900069 0.518911 0.901615 0.513263 0.902854 0.506872 0.903726 0.500036 0.904193 0.493075 0.904231 0.486314 0.903834 0.4801 0.902975 0.47504 0.898388 0.531728 0.896302 0.532323 0.900534 0.529543 0.902614 0.525869 0.904531 0.520877 0.906194 0.514801 0.907527 0.507925 0.908466 0.50057 0.908967 0.493081 0.909009 0.485806 0.908572 0.479151 0.907654 0.473824 0.902694 0.533986 0.900491 0.534614 0.90496 0.531679 0.907157 0.527799 0.909181 0.522528 0.910937 0.516111 0.912345 0.50885 0.913336 0.501084 0.913866 0.493175 0.913909 0.485494 0.91346 0.478418 0.912585 0.472851 0.907215 0.535736 0.904927 0.536388 0.909569 0.53334 0.91185 0.529311 0.913952 0.523838 0.915776 0.517175 0.917237 0.509635 0.918266 0.50157 0.918854 0.493342 0.918947 0.485357 0.91844 0.478006 0.91787 0.471971 0.914263 0.537286 0.911914 0.537955 0.916678 0.534827 0.919019 0.530693 0.921175 0.525076 0.923047 0.518239 0.924546 0.510502 0.925585 0.502224 0.926227 0.493754 0.926493 0.485583 0.925762 0.478045 0.924764 0.471485 0.921403 0.537724 0.919062 0.538392 0.92381 0.535275 0.926142 0.531156 0.930338 0.525761 0.93162 0.519674 0.933283 0.512932 0.932692 0.502839 0.933977 0.494768 0.934333 0.486371 0.933206 0.478784 0.931863 0.472204 0.92611 0.537268 0.92382 0.53792 0.928464 0.534872 0.932388 0.530343 0.937335 0.506755 0.941235 0.498334 0.941521 0.487989 0.940371 0.480184 0.938481 0.473907 0.930691 0.536256 0.928485 0.536884 0.934789 0.533043 0.935078 0.534703 0.932989 0.535298 0.938368 0.532576 0.947164 0.489068 0.947066 0.497764 0.946239 0.481893 0.944283 0.476284 0.939209 0.532632 0.937267 0.533185 0.941919 0.530982 0.950689 0.490156 0.950271 0.497772 0.95034 0.48345 0.948203 0.478162 0.943023 0.530074 0.941256 0.530577 0.945589 0.528338 0.95349 0.491089 0.952472 0.498024 0.953154 0.485389 0.951415 0.480527 0.946464 0.527065 0.944898 0.52751 0.948879 0.525086 0.955336 0.498108 0.955494 0.49227 0.955142 0.488211 0.954263 0.484425 0.949389 0.475505 0.954052 0.482326 0.94757 0.475109 0.945693 0.473082 0.943613 0.471998 0.950577 0.521636 0.949187 0.522238 0.951775 0.520708 0.950886 0.519379 0.952605 0.518141 0.95447 0.515316 0.952742 0.516616 0.878125 0.495997 0.943537 0.514246 0.944979 0.511457 0.945299 0.511731 0.944004 0.514141 0.946866 0.510467 0.945612 0.512005 0.946775 0.509925 0.944125 0.524447 0.943125 0.523168 0.943363 0.52176 0.944265 0.522893 0.943213 0.51865 0.9436 0.520352 0.942839 0.519741 0.942465 0.520831 0.942508 0.517563 0.943036 0.516979 0.944472 0.514036 0.943564 0.516394 0.946664 0.509365 0.948503 0.507957 0.948316 0.508687 0.949207 0.508705 0.948096 0.509397 0.949608 0.50791 0.950009 0.507096 0.951195 0.506751 0.950679 0.507606 0.951005 0.508659 0.950161 0.508443 0.951647 0.507843 0.952323 0.510866 0.951744 0.509448 0.952587 0.5089 0.953318 0.510638 0.952296 0.507042 0.953444 0.508317 0.954198 0.510416 0.954069 0.512878 0.953344 0.512779 0.95222 0.51488 0.952538 0.512757 0.952777 0.515115 0.953314 0.515413 0.952001 0.51802 0.951641 0.517475 0.949848 0.518868 0.951263 0.516984 0.950071 0.519673 0.950291 0.520481 0.948367 0.522605 0.94826 0.52146 0.946642 0.521256 0.948152 0.520315 0.946704 0.522693 0.946766 0.524131 0.94537 0.524785 0.945389 0.52319 0.944404 0.521338 0.945409 0.521595 0.948517 0.508521 0.947425 0.509189 0.946164 0.510225 0.943731 0.513771 0.942852 0.515989 0.942484 0.51808 0.944874 0.511783 0.950283 0.508511 0.949456 0.508269 0.942699 0.51973 0.943487 0.520694 0.951552 0.510694 0.95099 0.509314 0.944633 0.521012 0.946034 0.520645 0.951461 0.514432 0.951791 0.512457 0.947604 0.519694 0.949207 0.518265 0.95053 0.516413 0.954352 0.507334 0.955064 0.51004 0.953029 0.50566 0.954691 0.513093 0.953563 0.516187 0.942931 0.511155 0.945738 0.50837 0.941124 0.514785 0.948237 0.525023 0.946042 0.527051 0.950358 0.522206 0.940778 0.525984 0.939919 0.523165 0.942236 0.527579 0.940031 0.519157 0.94836 0.506655 0.95038 0.505668 0.951792 0.505283 0.952106 0.519194 0.94408 0.527997 0.955136 0.505085 0.955458 0.508799 0.953996 0.503048 0.954947 0.51289 0.953571 0.516724 0.940392 0.509704 0.943959 0.505926 0.937487 0.514053 0.946965 0.527152 0.943743 0.529685 0.949863 0.52392 0.936263 0.528363 0.934831 0.524989 0.938515 0.530358 0.93544 0.520327 0.947235 0.504116 0.949823 0.503295 0.952034 0.502955 0.951882 0.52041 0.941028 0.53079 0.956255 0.501869 0.956376 0.507194 0.955436 0.512282 0.95378 0.516679 0.954272 0.512902 0.953969 0.514386 0.955477 0.513065 0.955509 0.511632 0.956562 0.510151 0.957541 0.50583 0.957528 0.506237 0.957401 0.500104 0.957323 0.498901 0.956684 0.496896 0.956413 0.492938 0.956425 0.492794 0.955922 0.48933 0.955605 0.489791 0.952251 0.480529 0.95403 0.483685 0.955302 0.484788 0.955335 0.486204 0.955539 0.486154 0.954877 0.485325 0.956687 0.508947 0.956754 0.495687 0.955045 0.487387 0.877848 0.505182 0.877652 0.500582 0.87737 0.504506 0.877412 0.500243 0.876974 0.503437 0.877218 0.499703 0.87668 0.502023 0.877063 0.498994 0.876501 0.50033 0.876979 0.498142 0.876446 0.498438 0.87696 0.497191 0.876522 0.496436 0.877006 0.496186 0.876728 0.49442 0.877115 0.495174 0.877054 0.492488 0.877281 0.494204 0.877479 0.49073 0.877498 0.49332 0.877999 0.489197 0.877767 0.492546 0.878719 0.487808 0.878144 0.491879 0.879235 0.487423 0.878402 0.491725 0.878643 0.509686 0.877934 0.508686 0.877348 0.507101 0.876912 0.505005 0.876647 0.502497 0.876565 0.499694 0.876669 0.496727 0.876956 0.493734 0.877416 0.490859 0.878045 0.488251 0.878803 0.485988 0.879891 0.48389 0.880652 0.483253 0.880004 0.514038 0.879075 0.512727 0.878307 0.510649 0.877736 0.507903 0.877388 0.504616 0.87728 0.500942 0.877417 0.497054 0.877793 0.493132 0.878389 0.48936 0.879214 0.485947 0.880199 0.482989 0.881623 0.480314 0.882641 0.479405 0.881911 0.518172 0.880775 0.516569 0.879836 0.51403 0.879138 0.510673 0.878713 0.506655 0.878582 0.502165 0.878749 0.497412 0.879208 0.492618 0.879955 0.488021 0.881001 0.483899 0.88231 0.480367 0.883909 0.47731 0.885135 0.475926 0.884336 0.52203 0.883011 0.520159 0.881915 0.517195 0.8811 0.513276 0.880604 0.508586 0.88045 0.503344 0.880646 0.497795 0.881181 0.492199 0.882059 0.48684 0.883257 0.482017 0.884772 0.477872 0.886828 0.474331 0.888116 0.472377 0.887245 0.525554 0.885749 0.523442 0.884512 0.520096 0.883592 0.515673 0.883032 0.510379 0.882858 0.504462 0.883079 0.498199 0.883683 0.491882 0.884656 0.485819 0.885976 0.480334 0.887771 0.475644 0.888962 0.472096 0.890594 0.528694 0.888949 0.526372 0.887589 0.522693 0.886578 0.51783 0.885962 0.512009 0.885771 0.505504 0.886014 0.498617 0.886678 0.491672 0.887734 0.484992 0.889161 0.478945 0.891005 0.474124 0.894335 0.531403 0.892565 0.528905 0.891102 0.524947 0.890014 0.519714 0.889351 0.513452 0.889146 0.506453 0.889407 0.499043 0.890122 0.491571 0.891258 0.484384 0.892815 0.477978 0.894695 0.473363 0.898413 0.533643 0.896544 0.531004 0.894999 0.526825 0.89385 0.5213 0.893151 0.514687 0.892934 0.507295 0.893209 0.499472 0.893965 0.491581 0.895164 0.483992 0.89686 0.477387 0.898865 0.473076 0.902769 0.53538 0.900829 0.53264 0.899224 0.5283 0.898031 0.522562 0.897305 0.515695 0.897079 0.50802 0.897366 0.499895 0.89815 0.491701 0.899396 0.483821 0.901449 0.477074 0.903819 0.472976 0.909699 0.53692 0.907707 0.534109 0.906061 0.529655 0.904836 0.523767 0.904091 0.516721 0.90386 0.508844 0.904153 0.500507 0.904958 0.492099 0.906237 0.484012 0.908008 0.477129 0.910034 0.473198 0.916854 0.53736 0.91487 0.534559 0.91323 0.530122 0.914164 0.524465 0.913164 0.518196 0.913437 0.51134 0.91133 0.50108 0.912131 0.492703 0.913405 0.484646 0.91513 0.47783 0.916994 0.473623 0.92166 0.536911 0.919719 0.534172 0.91917 0.529284 0.917172 0.505296 0.919838 0.496406 0.920904 0.486229 0.92238 0.479225 0.924263 0.474614 0.926405 0.535913 0.924828 0.532245 0.931019 0.534378 0.929686 0.53188 0.92797 0.487724 0.927599 0.495894 0.929366 0.480734 0.931925 0.475167 0.935435 0.53233 0.934387 0.530379 0.933232 0.488977 0.932764 0.496065 0.934736 0.482159 0.937602 0.476887 0.93959 0.529799 0.938848 0.527798 0.937731 0.490249 0.936964 0.496523 0.939215 0.484123 0.942421 0.479379 0.943421 0.526821 0.942722 0.524593 0.94207 0.497013 0.942329 0.491435 0.943599 0.487511 0.946933 0.482758 0.949756 0.480976 0.945342 0.476815 0.940652 0.473783 0.947564 0.521395 0.9466 0.520277 0.951324 0.514898 0.949518 0.517928 0.928377 0.510114 0.926885 0.51291 0.927854 0.512845 0.929178 0.51043 0.92998 0.510746 0.931406 0.509225 0.930823 0.508639 0.92835 0.521984 0.930534 0.523359 0.930891 0.521821 0.928964 0.520607 0.929579 0.519229 0.928441 0.517467 0.927597 0.51852 0.926179 0.516255 0.926753 0.519573 0.927195 0.51571 0.928211 0.515165 0.928823 0.512781 0.932374 0.506682 0.930239 0.508053 0.932657 0.507439 0.93294 0.508196 0.934517 0.507536 0.93451 0.506707 0.936567 0.505592 0.934502 0.505878 0.936317 0.506456 0.936067 0.50732 0.937546 0.507578 0.93807 0.506748 0.938901 0.508422 0.940036 0.50988 0.941088 0.509726 0.939772 0.507879 0.940713 0.507314 0.938594 0.505926 0.942911 0.511998 0.942269 0.509491 0.941755 0.511888 0.940774 0.511818 0.940867 0.513981 0.941724 0.514237 0.941696 0.517149 0.942674 0.514592 0.940898 0.516619 0.940099 0.51609 0.938667 0.517973 0.939267 0.518807 0.937547 0.521739 0.939868 0.519641 0.937153 0.52057 0.936759 0.519402 0.934851 0.520311 0.935057 0.52176 0.932933 0.523788 0.935263 0.523209 0.932985 0.522196 0.933038 0.520604 0.931248 0.520284 0.932573 0.508007 0.934161 0.507367 0.930964 0.509008 0.927841 0.514787 0.928411 0.512543 0.928106 0.516928 0.929515 0.510546 0.935671 0.507169 0.937081 0.507438 0.929093 0.51864 0.93071 0.519671 0.938351 0.508298 0.9394 0.509723 0.932552 0.520045 0.934434 0.519715 0.940079 0.511519 0.940113 0.513519 0.936336 0.518792 0.938116 0.517377 0.939405 0.515521 0.943638 0.508965 0.941943 0.506311 0.939071 0.504531 0.94388 0.51543 0.944335 0.512165 0.927944 0.506963 0.925069 0.509715 0.923231 0.513349 0.935271 0.526189 0.938229 0.524222 0.940839 0.521447 0.923484 0.521848 0.925731 0.524779 0.928789 0.526502 0.922597 0.517761 0.93396 0.504385 0.931029 0.505302 0.936534 0.504088 0.942769 0.518413 0.932116 0.527039 0.945351 0.507568 0.943089 0.503744 0.939896 0.502018 0.945354 0.516015 0.946118 0.511811 0.925289 0.504712 0.920962 0.50815 0.918385 0.51252 0.934537 0.528948 0.938552 0.526478 0.941809 0.523283 0.918305 0.523665 0.921702 0.527196 0.925959 0.529352 0.917212 0.518867 0.933078 0.501722 0.929349 0.502508 0.936447 0.501609 0.943896 0.519878 0.930309 0.529931 0.948005 0.505607 0.944871 0.499392 0.947806 0.516062 0.9491 0.511191 0.953215 0.511264 0.952698 0.512701 0.951135 0.50884 0.950868 0.504414 0.946032 0.497811 0.946155 0.49879 0.9504 0.504692 0.944108 0.496015 0.944681 0.492183 0.945966 0.489086 0.945497 0.488606 0.944291 0.491984 0.951345 0.48426 0.948386 0.485293 0.952907 0.485943 0.952013 0.507755 0.944606 0.494766 0.94856 0.486751 0.889967 0.448966 0.879572 0.4873 0.878531 0.491695 0.881189 0.483034 0.883359 0.479059 0.88597 0.475436 0.826451 0.427416 0.889758 0.472115 0.881748 0.482959 0.884054 0.478968 0.886811 0.475429 0.942835 0.472365 0.877975 0.397658 0.883515 0.397651 0.873951 0.397664 0.870831 0.397671 0.867889 0.397674 0.918562 0.397639 0.925482 0.397634 0.901603 0.397646 0.909465 0.397642 0.891034 0.397645 0.929288 0.397637 0.894812 0.397645 0.931273 0.397662 0.86549 0.397668 0.931235 0.397655 0.882529 0.39765 0.877003 0.397658 0.871595 0.397671 0.868659 0.397671 0.868707 0.397667 0.925845 0.397644 0.918784 0.397657 0.909614 0.397666 0.901249 0.39767 0.890498 0.397656 0.92961 0.397643 0.894099 0.397656 0.867711 0.397671 0.900103 0.397679 0.595916 0.679782 0.593633 0.724091 0.587548 0.772055 0.579229 0.819401 0.570764 0.860428 0.56898 0.893979 0.055194 0.327681 0.056512 0.244825 0.056323 0.176259 0.056343 0.11532 0.057144 0.041836 0.468306 0.320445 0.459246 0.232082 0.470583 0.402538 0.456894 0.171519 0.044392 0.51728 0.04804 0.442488 0.039555 0.560029 0.472222 0.467543 0.655545 0.572596 0.685594 0.967391 0.590033 0.92387 0.595756 0.680499 0.590769 0.76975 0.682275 0.551691 0.647404 0.965201 0.571758 0.851938 0.600135 0.64164 0.623018 0.605621 0.617347 0.944413 0.720327 0.535205

89 0 23 243 1 26 6 3 29 6 3 29 243 1 26 90 2 28 243 1 26 89 0 23 91 4 30 91 4 30 89 0 23 5 5 31 92 6 33 244 7 35 5 5 31 5 5 31 244 7 35 91 4 30 244 7 35 92 6 33 299 8 36 299 8 36 92 6 33 218 9 37 95 11 41 93 12 42 7 10 39 7 10 39 93 12 42 8 13 57 93 12 42 95 11 41 9 15 62 9 15 62 95 11 41 94 14 61 245 17 66 89 0 23 96 16 65 96 16 65 89 0 23 6 3 29 89 0 23 245 17 66 5 5 31 5 5 31 245 17 66 97 18 67 245 17 66 98 19 68 97 18 67 97 18 67 98 19 68 11 20 69 98 19 68 245 17 66 10 21 70 10 21 70 245 17 66 96 16 65 246 22 71 92 6 33 97 18 67 97 18 67 92 6 33 5 5 31 92 6 33 246 22 71 218 9 37 218 9 37 246 22 71 300 23 72 246 22 71 99 24 84 300 23 72 300 23 72 99 24 84 219 25 85 99 24 84 246 22 71 11 20 69 11 20 69 246 22 71 97 18 67 247 27 89 93 12 42 12 26 86 12 26 86 93 12 42 9 15 62 93 12 42 247 27 89 8 13 57 8 13 57 247 27 89 100 28 90 102 30 137 101 31 138 13 29 135 13 29 135 101 31 138 14 32 139 101 31 138 102 30 137 8 13 57 8 13 57 102 30 137 7 10 39 248 34 141 98 19 68 103 33 140 103 33 140 98 19 68 10 21 70 98 19 68 248 34 141 11 20 69 11 20 69 248 34 141 104 35 142 248 34 141 105 36 200 104 35 142 104 35 142 105 36 200 16 37 246 105 36 200 248 34 141 15 38 249 15 38 249 248 34 141 103 33 140 107 39 252 101 31 138 100 28 90 100 28 90 101 31 138 8 13 57 101 31 138 107 39 252 14 32 139 14 32 139 107 39 252 106 40 253 108 41 254 109 42 256 14 32 139 14 32 139 109 42 256 13 29 135 109 42 256 108 41 254 18 43 259 18 43 259 108 41 254 17 44 260 111 45 262 108 41 254 106 40 253 106 40 253 108 41 254 14 32 139 108 41 254 111 45 262 17 44 260 17 44 260 111 45 262 110 46 265 20 47 266 112 48 283 19 50 286 19 50 286 112 48 283 113 49 285 113 49 285 112 48 283 17 44 260 17 44 260 112 48 283 18 43 259 115 51 289 113 49 285 110 46 265 110 46 265 113 49 285 17 44 260 115 51 289 114 52 290 113 49 285 113 49 285 114 52 290 19 50 286 22 53 291 116 54 292 21 56 294 21 56 294 116 54 292 117 55 293 116 54 292 20 47 266 117 55 293 117 55 293 20 47 266 19 50 286 114 52 290 119 57 295 19 50 286 19 50 286 119 57 295 117 55 293 119 57 295 118 58 296 117 55 293 117 55 293 118 58 296 21 56 294 23 59 297 249 60 298 24 62 303 24 62 303 249 60 298 120 61 300 249 60 298 22 53 291 120 61 300 120 61 300 22 53 291 21 56 294 118 58 296 122 63 304 21 56 294 21 56 294 122 63 304 120 61 300 122 63 304 121 64 884 120 61 300 120 61 300 121 64 884 24 62 303 26 65 885 339 66 886 123 68 888 123 68 888 339 66 886 340 67 887 123 68 888 340 67 887 28 70 890 28 70 890 340 67 887 341 69 889 340 67 887 124 71 891 341 69 889 341 69 889 124 71 891 27 72 892 124 71 891 340 67 887 25 73 893 25 73 893 340 67 887 339 66 886 250 75 895 307 76 896 125 74 894 125 74 894 307 76 896 29 77 897 307 76 896 250 75 895 227 79 899 227 79 899 250 75 895 126 78 898 250 75 895 123 68 888 126 78 898 126 78 898 123 68 888 28 70 890 123 68 888 250 75 895 26 65 885 26 65 885 250 75 895 125 74 894 126 78 898 127 80 900 227 79 899 227 79 899 127 80 900 45 81 901 126 78 898 28 70 890 127 80 900 127 80 900 28 70 890 30 82 902 128 83 0 251 84 1 31 86 3 31 86 3 251 84 1 308 85 2 308 85 74 251 84 75 228 88 77 228 88 77 251 84 75 129 87 76 251 84 75 130 89 78 129 87 76 129 87 76 130 89 78 33 90 79 251 84 1 128 83 0 130 89 4 130 89 4 128 83 0 32 91 12 131 92 13 252 93 14 34 95 16 34 95 16 252 93 14 309 94 15 252 93 14 128 83 0 309 94 15 309 94 15 128 83 0 31 86 3 128 83 0 252 93 14 32 91 12 32 91 12 252 93 14 132 96 17 252 93 14 131 92 13 132 96 17 132 96 17 131 92 13 35 97 18 133 98 82 253 99 83 35 97 18 35 97 18 253 99 83 132 96 17 253 99 83 134 100 91 132 96 17 132 96 17 134 100 91 32 91 12 134 100 91 253 99 83 36 102 93 36 102 93 253 99 83 156 101 92 253 99 83 133 98 82 156 101 92 156 101 92 133 98 82 38 103 94 135 104 96 254 105 97 39 107 101 39 107 101 254 105 97 136 106 98 136 106 98 254 105 97 37 109 105 37 109 105 254 105 97 137 108 102 254 105 97 133 98 82 137 108 102 137 108 102 133 98 82 35 97 18 254 105 97 135 104 96 133 98 82 133 98 82 135 104 96 38 103 94 255 110 903 99 24 84 104 35 142 104 35 142 99 24 84 11 20 69 99 24 84 255 110 903 219 25 85 219 25 85 255 110 903 310 111 904 255 110 903 138 112 905 310 111 904 310 111 904 138 112 905 1978 113 906 138 112 905 255 110 903 16 37 246 16 37 246 255 110 903 104 35 142 204 114 5 285 115 6 59 117 8 59 117 8 285 115 6 139 116 7 285 115 6 203 118 9 139 116 7 139 116 7 203 118 9 57 119 10 105 36 200 256 120 907 16 37 246 16 37 246 256 120 907 140 121 908 256 120 907 135 104 909 140 121 908 140 121 908 135 104 909 39 107 910 135 104 909 256 120 907 38 103 912 38 103 912 256 120 907 141 122 911 256 120 907 105 36 200 141 122 911 141 122 911 105 36 200 15 38 249 138 112 905 257 123 913 1978 113 906 1978 113 906 257 123 913 142 124 914 257 123 913 154 125 915 142 124 914 142 124 914 154 125 915 229 126 916 154 125 915 257 123 913 39 107 910 39 107 910 257 123 913 140 121 908 257 123 913 138 112 905 140 121 908 140 121 908 138 112 905 16 37 246 284 128 19 202 129 20 143 127 11 143 127 11 202 129 20 60 130 21 203 118 9 284 128 19 57 119 10 57 119 10 284 128 19 143 127 11 56 132 918 2065 133 919 144 131 917 144 131 917 2065 133 919 2066 134 920 311 135 921 258 136 922 29 77 897 29 77 897 258 136 922 125 74 894 258 136 922 145 137 923 125 74 894 125 74 894 145 137 923 26 65 885 145 137 80 258 136 81 40 139 99 40 139 99 258 136 81 146 138 95 258 136 81 311 135 100 146 138 95 146 138 95 311 135 100 41 140 103 43 141 924 147 142 925 42 144 927 42 144 927 147 142 925 148 143 926 147 142 925 23 59 297 148 143 926 148 143 926 23 59 297 24 62 303 149 145 928 259 146 929 25 73 893 25 73 893 259 146 929 124 71 891 259 146 929 150 147 976 124 71 891 124 71 891 150 147 976 27 72 892 150 147 976 259 146 929 43 141 924 43 141 924 259 146 929 147 142 925 259 146 929 149 145 928 147 142 925 147 142 925 149 145 928 23 59 297 121 64 884 152 148 978 24 62 303 24 62 303 152 148 978 148 143 926 152 148 978 151 149 980 148 143 926 148 143 926 151 149 980 42 144 927 231 150 981 30 82 902 341 69 889 341 69 889 30 82 902 28 70 890 341 69 889 27 72 892 231 150 981 231 150 981 27 72 892 44 151 982 153 152 104 260 153 106 33 90 79 33 90 79 260 153 106 129 87 76 260 153 106 312 154 107 129 87 76 129 87 76 312 154 107 228 88 77 312 154 107 260 153 106 41 140 103 41 140 103 260 153 106 146 138 95 260 153 106 153 152 104 146 138 95 146 138 95 153 152 104 40 139 99 154 125 110 261 155 111 229 126 113 229 126 113 261 155 111 313 156 112 261 155 111 155 157 114 313 156 112 313 156 112 155 157 114 230 158 115 155 157 114 261 155 111 37 109 105 37 109 105 261 155 111 136 106 98 261 155 111 154 125 110 136 106 98 136 106 98 154 125 110 39 107 101 262 159 108 181 160 109 153 152 104 153 152 104 181 160 109 40 139 99 181 160 116 262 159 117 36 102 93 36 102 93 262 159 117 134 100 91 262 159 117 130 89 4 134 100 91 134 100 91 130 89 4 32 91 12 130 89 78 262 159 108 33 90 79 33 90 79 262 159 108 153 152 104 137 108 102 263 161 118 37 109 105 37 109 105 263 161 118 155 157 114 155 157 114 263 161 118 230 158 115 230 158 115 263 161 118 314 162 119 263 161 118 131 92 13 314 162 119 314 162 119 131 92 13 34 95 16 131 92 13 263 161 118 35 97 18 35 97 18 263 161 118 137 108 102 151 149 980 241 163 983 42 144 927 42 144 927 241 163 983 157 164 985 241 163 983 242 165 987 157 164 985 157 164 985 242 165 987 83 166 1012 264 168 1016 160 169 1017 159 167 1013 159 167 1013 160 169 1017 44 151 982 160 169 1017 264 168 1016 81 171 1019 81 171 1019 264 168 1016 239 170 1018 264 168 1016 238 172 1020 239 170 1018 239 170 1018 238 172 1020 82 173 1023 238 172 1020 264 168 1016 43 141 924 43 141 924 264 168 1016 159 167 1013 82 173 1023 238 172 1020 83 166 1012 83 166 1012 238 172 1020 157 164 985 157 164 985 238 172 1020 42 144 927 42 144 927 238 172 1020 43 141 924 160 169 1017 265 174 1036 44 151 982 44 151 982 265 174 1036 231 150 981 265 174 1036 232 175 1038 231 150 981 231 150 981 232 175 1038 30 82 902 232 175 1038 265 174 1036 80 177 1040 80 177 1040 265 174 1036 237 176 1039 265 174 1036 160 169 1017 237 176 1039 237 176 1039 160 169 1017 81 171 1019 163 178 1041 164 179 1042 94 14 61 94 14 61 164 179 1042 9 15 62 165 180 1043 266 181 1045 46 183 1047 46 183 1047 266 181 1045 166 182 1046 266 181 1045 163 178 1041 166 182 1046 166 182 1046 163 178 1041 94 14 61 288 184 1048 207 185 1049 90 2 28 90 2 28 207 185 1049 6 3 29 164 179 1042 167 186 1050 9 15 62 9 15 62 167 186 1050 12 26 86 267 187 1051 168 188 1052 166 182 1046 166 182 1046 168 188 1052 46 183 1047 168 188 1052 267 187 1051 47 190 1054 47 190 1054 267 187 1051 169 189 1053 267 187 1051 95 11 41 169 189 1053 169 189 1053 95 11 41 7 10 39 95 11 41 267 187 1051 94 14 61 94 14 61 267 187 1051 166 182 1046 207 185 1049 287 191 1055 6 3 29 6 3 29 287 191 1055 96 16 65 287 191 1055 206 192 1056 96 16 65 96 16 65 206 192 1056 10 21 70 170 193 22 268 194 2246 63 196 25 63 196 25 268 194 2246 171 195 24 268 194 2246 172 197 2247 171 195 24 171 195 24 172 197 2247 58 198 27 268 194 1058 173 199 1059 172 197 1057 172 197 1057 173 199 1059 64 200 1060 173 199 1059 268 194 1058 62 201 1062 62 201 1062 268 194 1058 170 193 1061 172 197 2247 269 202 2248 58 198 27 58 198 27 269 202 2248 174 203 32 174 203 32 269 202 2248 61 205 34 61 205 34 269 202 2248 175 204 2249 175 204 1063 269 202 1064 65 207 1066 65 207 1066 269 202 1064 176 206 1065 269 202 1064 172 197 1057 176 206 1065 176 206 1065 172 197 1057 64 200 1060 270 208 2250 177 209 38 175 204 2249 175 204 2249 177 209 38 61 205 34 177 209 38 270 208 2250 66 211 40 66 211 40 270 208 2250 178 210 2251 178 210 1067 270 208 1068 67 213 1070 67 213 1070 270 208 1068 179 212 1069 270 208 1068 175 204 1063 179 212 1069 179 212 1069 175 204 1063 65 207 1066 271 215 1072 149 145 928 180 214 1071 180 214 1071 149 145 928 25 73 893 149 145 928 271 215 1072 23 59 297 23 59 297 271 215 1072 249 60 298 271 215 1072 48 216 1073 249 60 298 249 60 298 48 216 1073 22 53 291 150 147 976 159 167 1013 27 72 892 27 72 892 159 167 1013 44 151 982 159 167 1013 150 147 976 43 141 924 48 216 1073 272 217 1074 22 53 291 22 53 291 272 217 1074 116 54 292 272 217 1074 49 218 1075 116 54 292 116 54 292 49 218 1075 20 47 266 49 218 1075 273 219 1076 20 47 266 20 47 266 273 219 1076 112 48 283 112 48 283 273 219 1076 18 43 259 18 43 259 273 219 1076 50 220 1077 274 221 1078 109 42 256 50 220 1077 50 220 1077 109 42 256 18 43 259 109 42 256 274 221 1078 13 29 135 13 29 135 274 221 1078 51 222 1079 275 223 1080 52 224 1081 169 189 1053 169 189 1053 52 224 1081 47 190 1054 275 223 1080 102 30 137 51 222 1079 51 222 1079 102 30 137 13 29 135 102 30 137 275 223 1080 7 10 39 7 10 39 275 223 1080 169 189 1053 206 192 1056 286 225 1082 10 21 70 10 21 70 286 225 1082 103 33 140 286 225 1082 53 226 1083 103 33 140 103 33 140 53 226 1083 15 38 249 53 226 1083 276 227 1084 15 38 249 15 38 249 276 227 1084 141 122 911 276 227 1084 54 228 1085 141 122 911 141 122 911 54 228 1085 38 103 912 277 229 1087 55 230 1088 156 101 1086 156 101 1086 55 230 1088 36 102 1089 54 228 1085 277 229 1087 38 103 912 38 103 912 277 229 1087 156 101 1086 182 231 1090 181 160 1091 55 230 1088 55 230 1088 181 160 1091 36 102 1089 181 160 1091 182 231 1090 40 139 1092 40 139 1092 182 231 1090 56 132 918 283 232 43 183 233 44 202 129 20 202 129 20 183 233 44 60 130 21 201 234 45 68 235 46 283 232 43 283 232 43 68 235 46 183 233 44 144 131 917 145 137 923 56 132 918 56 132 918 145 137 923 40 139 1092 321 236 1093 339 66 886 144 131 917 339 66 886 26 65 885 144 131 917 144 131 917 26 65 885 145 137 923 2069 237 1094 2070 238 1095 276 227 1084 276 227 1084 2070 238 1095 54 228 1085 290 239 47 208 240 48 278 242 50 278 242 50 208 240 48 184 241 49 210 243 51 290 239 47 185 244 52 185 244 52 290 239 47 278 242 50 2068 245 1096 2069 237 1094 53 226 1083 53 226 1083 2069 237 1094 276 227 1084 2071 246 1097 2073 247 1098 277 229 1087 277 229 1087 2073 247 1098 55 230 1088 289 248 53 209 249 54 279 251 56 279 251 56 209 249 54 186 250 55 208 240 48 289 248 53 184 241 49 184 241 49 289 248 53 279 251 56 2070 238 1095 2071 246 1097 54 228 1085 54 228 1085 2071 246 1097 277 229 1087 275 223 1080 2075 252 1099 52 224 1081 52 224 1081 2075 252 1099 2076 253 1100 212 255 58 2053 256 59 294 254 2265 294 254 2265 2053 256 59 280 257 60 294 254 1102 280 257 1103 214 258 1101 214 258 1101 280 257 1103 187 259 1104 2075 252 1099 275 223 1080 2074 260 1105 2074 260 1105 275 223 1080 51 222 1079 2072 261 1106 2068 245 1096 286 225 1082 286 225 1082 2068 245 1096 53 226 1083 292 262 63 210 243 51 2052 263 64 2052 263 64 210 243 51 185 244 52 274 221 1078 2078 264 1107 51 222 1079 51 222 1079 2078 264 1107 2074 260 1105 214 258 1101 187 259 1104 293 265 1108 293 265 1108 187 259 1104 2055 266 1109 293 265 1108 2055 266 1109 213 267 1110 213 267 1110 2055 266 1109 188 268 1111 2078 264 1107 274 221 1078 2079 269 1112 2079 269 1112 274 221 1078 50 220 1077 273 219 1076 2080 270 1113 50 220 1077 50 220 1077 2080 270 1113 2079 269 1112 213 267 1110 188 268 1111 295 271 1114 295 271 1114 188 268 1111 2056 272 1115 215 273 1116 295 271 1114 189 274 1117 189 274 1117 295 271 1114 2056 272 1115 2081 275 1118 2080 270 1113 49 218 1075 49 218 1075 2080 270 1113 273 219 1076 2084 276 1119 2085 277 1120 271 215 1072 271 215 1072 2085 277 1120 48 216 1073 297 278 1121 216 279 1122 281 281 1124 281 281 1124 216 279 1122 190 280 1123 217 282 87 297 278 73 191 283 88 191 283 88 297 278 73 281 281 2271 2083 284 1125 2084 276 1119 180 214 1071 180 214 1071 2084 276 1119 271 215 1072 2082 285 1126 2081 275 1118 272 217 1074 272 217 1074 2081 275 1118 49 218 1075 296 286 1127 215 273 1116 2057 287 1128 2057 287 1128 215 273 1116 189 274 1117 216 279 1122 296 286 1127 190 280 1123 190 280 1123 296 286 1127 2057 287 1128 2085 277 1120 2082 285 1126 48 216 1073 48 216 1073 2082 285 1126 272 217 1074 182 231 1090 2064 288 1129 56 132 918 56 132 918 2064 288 1129 2065 133 919 211 290 121 2051 291 122 291 289 120 291 289 120 2051 291 122 2050 292 123 291 289 120 2050 292 123 209 249 54 209 249 54 2050 292 123 186 250 55 2064 288 1129 182 231 1090 2073 247 1098 2073 247 1098 182 231 1090 55 230 1088 298 293 124 282 294 125 211 290 121 211 290 121 282 294 125 2051 291 122 323 295 126 322 296 127 298 293 124 298 293 124 322 296 127 282 294 125 70 297 128 192 298 129 57 119 10 57 119 10 192 298 129 139 116 7 59 117 8 139 116 7 71 299 130 71 299 130 139 116 7 192 298 129 69 300 131 193 301 132 60 130 21 60 130 21 193 301 132 143 127 11 57 119 10 143 127 11 70 297 128 70 297 128 143 127 11 193 301 132 194 303 134 170 193 22 73 302 133 73 302 133 170 193 22 63 196 25 170 193 1061 194 303 1130 62 201 1062 62 201 1062 194 303 1130 74 304 1131 71 299 130 205 305 136 59 117 8 59 117 8 205 305 136 204 114 5 62 201 1062 74 304 1131 173 199 1059 173 199 1059 74 304 1131 195 306 1132 173 199 1059 195 306 1132 64 200 1060 64 200 1060 195 306 1132 75 307 1133 64 200 1060 75 307 1133 176 206 1065 176 206 1065 75 307 1133 196 308 1134 65 207 1066 176 206 1065 76 309 1135 76 309 1135 176 206 1065 196 308 1134 77 310 1136 197 311 1137 67 213 1070 67 213 1070 197 311 1137 178 210 1067 66 211 40 178 210 2251 78 312 143 78 312 143 178 210 2251 197 311 2267 76 309 1135 198 313 1138 65 207 1066 65 207 1066 198 313 1138 179 212 1069 67 213 1070 179 212 1069 77 310 1136 77 310 1136 179 212 1069 198 313 1138 199 315 202 183 233 44 72 314 201 72 314 201 183 233 44 68 235 46 69 300 131 60 130 21 199 315 202 199 315 202 60 130 21 183 233 44 72 314 201 68 235 46 200 316 203 200 316 203 68 235 46 201 234 45 200 316 203 201 234 45 338 317 204 338 317 204 201 234 45 337 318 205 337 318 205 66 211 40 338 317 204 338 317 204 66 211 40 78 312 143 283 232 43 336 319 206 201 234 45 201 234 45 336 319 206 337 318 205 177 209 38 336 319 206 61 205 34 61 205 34 336 319 206 335 320 207 334 321 208 335 320 207 284 128 19 284 128 19 335 320 207 202 129 20 334 321 208 333 322 209 174 203 32 174 203 32 333 322 209 58 198 27 332 323 210 333 322 209 285 115 6 285 115 6 333 322 209 203 118 9 332 323 210 331 324 232 171 195 24 171 195 24 331 324 232 63 196 25 331 324 232 204 114 5 330 325 233 330 325 233 204 114 5 205 305 136 331 324 232 330 325 233 63 196 25 63 196 25 330 325 233 73 302 133 329 326 234 292 262 63 2054 327 235 2054 327 235 292 262 63 2052 263 64 2077 328 1139 328 329 1140 2076 253 1100 2076 253 1100 328 329 1140 52 224 1081 328 329 1140 327 330 1141 52 224 1081 52 224 1081 327 330 1141 47 190 1054 326 331 1142 327 330 1141 287 191 1055 287 191 1055 327 330 1141 206 192 1056 168 188 1052 326 331 1142 46 183 1047 46 183 1047 326 331 1142 325 332 1143 324 333 1144 325 332 1143 288 184 1048 288 184 1048 325 332 1143 207 185 1049 289 248 53 208 240 48 193 301 132 193 301 132 208 240 48 70 297 128 209 249 54 289 248 53 69 300 131 69 300 131 289 248 53 193 301 132 210 243 51 292 262 63 71 299 130 71 299 130 292 262 63 205 305 136 208 240 48 290 239 47 70 297 128 70 297 128 290 239 47 192 298 129 290 239 47 210 243 51 192 298 129 192 298 129 210 243 51 71 299 130 199 315 202 291 289 120 69 300 131 69 300 131 291 289 120 209 249 54 291 289 120 199 315 202 211 290 121 211 290 121 199 315 202 72 314 201 292 262 63 329 326 234 205 305 136 205 305 136 329 326 234 330 325 233 2053 256 59 212 255 58 2054 327 235 2054 327 235 212 255 58 329 326 234 195 306 1132 293 265 1108 75 307 1133 75 307 1133 293 265 1108 213 267 1110 293 265 1108 195 306 1132 214 258 1101 214 258 1101 195 306 1132 74 304 1131 294 254 2265 194 303 134 212 255 58 212 255 58 194 303 134 73 302 133 194 303 1130 294 254 1102 74 304 1131 74 304 1131 294 254 1102 214 258 1101 295 271 1114 196 308 1134 213 267 1110 213 267 1110 196 308 1134 75 307 1133 295 271 1114 215 273 1116 196 308 1134 196 308 1134 215 273 1116 76 309 1135 215 273 1116 296 286 1127 76 309 1135 76 309 1135 296 286 1127 198 313 1138 296 286 1127 216 279 1122 198 313 1138 198 313 1138 216 279 1122 77 310 1136 323 295 126 217 282 87 322 296 127 322 296 127 217 282 87 191 283 88 217 282 87 323 295 126 78 312 143 78 312 143 323 295 126 338 317 204 216 279 1122 297 278 1121 77 310 1136 77 310 1136 297 278 1121 197 311 1137 297 278 73 217 282 87 197 311 2267 197 311 2267 217 282 87 78 312 143 200 316 203 298 293 124 72 314 201 72 314 201 298 293 124 211 290 121 247 27 89 301 334 1145 100 28 90 100 28 90 301 334 1145 220 335 1146 301 334 1145 247 27 89 221 336 1147 221 336 1147 247 27 89 12 26 86 107 39 252 302 337 1148 106 40 253 106 40 253 302 337 1148 222 338 1149 302 337 1148 107 39 252 220 335 1146 220 335 1146 107 39 252 100 28 90 111 45 262 303 339 1150 110 46 265 110 46 265 303 339 1150 223 340 1151 303 339 1150 111 45 262 222 338 1149 222 338 1149 111 45 262 106 40 253 304 341 1152 224 342 1153 115 51 289 115 51 289 224 342 1153 114 52 290 223 340 1151 304 341 1152 110 46 265 110 46 265 304 341 1152 115 51 289 305 343 1154 225 344 1155 119 57 295 119 57 295 225 344 1155 118 58 296 224 342 1153 305 343 1154 114 52 290 114 52 290 305 343 1154 119 57 295 306 345 1156 226 346 1157 122 63 304 122 63 304 226 346 1157 121 64 884 225 344 1155 306 345 1156 118 58 296 118 58 296 306 345 1156 122 63 304 346 347 1158 345 348 1159 152 148 978 152 148 978 345 348 1159 151 149 980 152 148 978 121 64 884 346 347 1158 346 347 1158 121 64 884 226 346 1157 344 349 1160 343 350 1161 241 163 983 241 163 983 343 350 1161 242 165 987 241 163 983 151 149 980 344 349 1160 344 349 1160 151 149 980 345 348 1159 167 186 1050 315 351 1162 12 26 86 12 26 86 315 351 1162 221 336 1147 316 352 1163 127 80 900 232 175 1038 232 175 1038 127 80 900 30 82 902 127 80 900 316 352 1163 45 81 901 45 81 901 316 352 1163 162 353 1164 316 352 1163 235 354 1165 162 353 1164 162 353 1164 235 354 1165 79 355 1166 316 352 1163 232 175 1038 235 354 1165 235 354 1165 232 175 1038 80 177 1040 234 356 1167 317 357 1168 80 177 1040 80 177 1040 317 357 1168 235 354 1165 317 357 1168 233 358 1169 235 354 1165 235 354 1165 233 358 1169 79 355 1166 233 358 1169 317 357 1168 3 360 1171 3 360 1171 317 357 1168 87 359 1170 317 357 1168 234 356 1167 87 359 1170 87 359 1170 234 356 1167 2 361 1172 236 362 1173 318 363 1174 81 171 1019 81 171 1019 318 363 1174 237 176 1039 318 363 1174 234 356 1167 237 176 1039 237 176 1039 234 356 1167 80 177 1040 234 356 1167 318 363 1174 2 361 1172 2 361 1172 318 363 1174 86 364 1175 318 363 1174 236 362 1173 86 364 1175 86 364 1175 236 362 1173 1 365 1176 319 366 1177 236 362 1173 239 170 1018 239 170 1018 236 362 1173 81 171 1019 236 362 1173 319 366 1177 1 365 1176 1 365 1176 319 366 1177 85 367 1178 85 367 1178 319 366 1177 0 369 1180 0 369 1180 319 366 1177 161 368 1179 319 366 1177 239 170 1018 161 368 1179 161 368 1179 239 170 1018 82 173 1023 0 369 1180 161 368 1179 4 371 1182 4 371 1182 161 368 1179 240 370 1181 161 368 1179 82 173 1023 240 370 1181 240 370 1181 82 173 1023 83 166 1012 242 165 987 158 372 1183 83 166 1012 83 166 1012 158 372 1183 240 370 1181 240 370 1181 158 372 1183 4 371 1182 4 371 1182 158 372 1183 84 373 1184 343 350 1161 342 374 1185 242 165 987 242 165 987 342 374 1185 158 372 1183 342 374 1185 88 375 1186 158 372 1183 158 372 1183 88 375 1186 84 373 1184 144 131 917 2066 134 920 321 236 1093 321 236 1093 2066 134 920 2067 376 1187 321 236 1093 180 214 1071 339 66 886 339 66 886 180 214 1071 25 73 893 2067 376 1187 2083 284 1125 321 236 1093 321 236 1093 2083 284 1125 180 214 1071 325 332 1143 324 333 1144 46 183 1047 46 183 1047 324 333 1144 165 180 1043 325 332 1143 326 331 1142 207 185 1049 207 185 1049 326 331 1142 287 191 1055 47 190 1054 327 330 1141 168 188 1052 168 188 1052 327 330 1141 326 331 1142 327 330 1141 328 329 1140 206 192 1056 206 192 1056 328 329 1140 286 225 1082 286 225 1082 328 329 1140 2072 261 1106 2072 261 1106 328 329 1140 2077 328 1139 330 325 233 329 326 234 73 302 133 73 302 133 329 326 234 212 255 58 331 324 232 332 323 210 204 114 5 204 114 5 332 323 210 285 115 6 333 322 209 332 323 210 58 198 27 58 198 27 332 323 210 171 195 24 333 322 209 334 321 208 203 118 9 203 118 9 334 321 208 284 128 19 61 205 34 335 320 207 174 203 32 174 203 32 335 320 207 334 321 208 202 129 20 335 320 207 283 232 43 283 232 43 335 320 207 336 319 206 66 211 40 337 318 205 177 209 38 177 209 38 337 318 205 336 319 206 338 317 204 323 295 126 200 316 203 200 316 203 323 295 126 298 293 124 299 8 36 218 9 37 2017 378 1189 2017 378 1189 218 9 37 2022 377 1188 218 9 37 300 23 72 2022 377 1188 2022 377 1188 300 23 72 2021 379 1190 300 23 72 219 25 85 2021 379 1190 2021 379 1190 219 25 85 2023 380 1191 301 334 1145 674 381 1192 220 335 1146 220 335 1146 674 381 1192 592 382 1193 221 336 1147 593 383 1194 301 334 1145 301 334 1145 593 383 1194 674 381 1192 302 337 1148 675 384 1195 222 338 1149 222 338 1149 675 384 1195 594 385 1196 302 337 1148 220 335 1146 675 384 1195 675 384 1195 220 335 1146 592 382 1193 303 339 1150 676 386 1197 223 340 1151 223 340 1151 676 386 1197 595 387 1198 222 338 1149 594 385 1196 303 339 1150 303 339 1150 594 385 1196 676 386 1197 304 341 1152 677 388 1199 224 342 1153 224 342 1153 677 388 1199 596 389 1200 223 340 1151 595 387 1198 304 341 1152 304 341 1152 595 387 1198 677 388 1199 305 343 1154 678 390 1201 225 344 1155 225 344 1155 678 390 1201 597 391 1202 224 342 1153 596 389 1200 305 343 1154 305 343 1154 596 389 1200 678 390 1201 226 346 1157 306 345 1156 598 393 1204 598 393 1204 306 345 1156 679 392 1203 225 344 1155 597 391 1202 306 345 1156 306 345 1156 597 391 1202 679 392 1203 2037 395 1206 680 396 1207 2036 394 1205 2036 394 1205 680 396 1207 599 397 1208 2038 398 1209 600 399 1210 2037 395 1206 2037 395 1206 600 399 1210 680 396 1207 2039 400 1211 608 401 1212 2038 398 1209 2038 398 1209 608 401 1212 600 399 1210 31 86 3 308 85 2 2033 403 2261 2033 403 2261 308 85 2 2019 402 144 681 405 149 2019 402 2264 602 404 148 602 404 148 2019 402 2264 2020 406 2259 34 95 16 309 94 15 2031 408 2252 2031 408 2252 309 94 15 2032 407 2262 309 94 15 31 86 3 2032 407 2262 2032 407 2262 31 86 3 2033 403 2261 219 25 85 310 111 904 2023 380 1191 2023 380 1191 310 111 904 2024 409 1213 604 411 1215 2025 412 1216 684 410 1214 684 410 1214 2025 412 1216 2026 413 1217 2035 415 2260 685 416 158 2034 414 2258 2034 414 2258 685 416 158 605 417 159 2036 394 1205 599 397 1208 2035 415 1218 2035 415 1218 599 397 1208 685 416 1219 346 347 1158 1971 418 1220 345 348 1159 345 348 1159 1971 418 1220 1970 419 1221 226 346 1157 598 393 1204 346 347 1158 346 347 1158 598 393 1204 1971 418 1220 2016 420 2257 686 421 161 2020 406 2259 2020 406 2259 686 421 161 602 404 148 2034 414 2258 605 417 159 2016 420 2257 2016 420 2257 605 417 159 686 421 161 229 126 113 313 156 112 2027 423 2256 2027 423 2256 313 156 112 2028 422 2255 313 156 112 230 158 115 2028 422 2255 2028 422 2255 230 158 115 2029 424 2254 230 158 115 314 162 119 2029 424 2254 2029 424 2254 314 162 119 2030 425 2253 314 162 119 34 95 16 2030 425 2253 2030 425 2253 34 95 16 2031 408 2252 344 349 1160 1969 426 1222 343 350 1161 343 350 1161 1969 426 1222 1968 427 1223 345 348 1159 1970 419 1221 344 349 1160 344 349 1160 1970 419 1221 1969 426 1222 2040 428 1224 689 429 1225 2039 400 1211 2039 400 1211 689 429 1225 608 401 1212 2041 430 1226 612 431 1227 2040 428 1224 2040 428 1224 612 431 1227 689 429 1225 315 351 1162 690 432 1228 221 336 1147 221 336 1147 690 432 1228 593 383 1194 2042 433 1229 692 434 1230 2041 430 1226 2041 430 1226 692 434 1230 612 431 1227 2043 435 1231 434 436 1232 2042 433 1229 2042 433 1229 434 436 1232 692 434 1230 88 375 1186 342 374 1185 435 438 1234 435 438 1234 342 374 1185 1967 437 1233 342 374 1185 343 350 1161 1967 437 1233 1967 437 1233 343 350 1161 1968 427 1223 436 439 1235 353 440 1236 622 442 1238 622 442 1238 353 440 1236 437 441 1237 352 444 1240 436 439 1235 438 443 1239 438 443 1239 436 439 1235 622 442 1238 439 445 1241 352 444 1240 623 446 1242 623 446 1242 352 444 1240 438 443 1239 354 448 1244 439 445 1241 440 447 1243 440 447 1243 439 445 1241 623 446 1242 356 450 1246 441 451 1247 355 449 1245 355 449 1245 441 451 1247 443 452 1248 441 451 1247 357 453 1249 443 452 1248 443 452 1248 357 453 1249 442 454 1250 353 440 1236 436 439 1235 444 455 1251 444 455 1251 436 439 1235 624 456 1252 436 439 1235 352 444 1240 624 456 1252 624 456 1252 352 444 1240 445 457 1253 359 458 1254 446 459 1255 445 457 1253 445 457 1253 446 459 1255 624 456 1252 446 459 1255 358 460 1256 624 456 1252 624 456 1252 358 460 1256 444 455 1251 352 444 1240 439 445 1241 445 457 1253 445 457 1253 439 445 1241 625 461 1257 439 445 1241 354 448 1244 625 461 1257 625 461 1257 354 448 1244 447 462 1258 360 463 1259 448 464 1260 447 462 1258 447 462 1258 448 464 1260 625 461 1257 448 464 1260 359 458 1254 625 461 1257 625 461 1257 359 458 1254 445 457 1253 357 453 1249 441 451 1247 361 465 1261 361 465 1261 441 451 1247 626 466 1262 441 451 1247 356 450 1246 626 466 1262 626 466 1262 356 450 1246 449 467 1263 363 469 1265 450 470 1266 362 468 1264 362 468 1264 450 470 1266 451 471 1267 450 470 1266 356 450 1246 451 471 1267 451 471 1267 356 450 1246 355 449 1245 358 460 1256 446 459 1255 452 472 1268 452 472 1268 446 459 1255 627 473 1269 446 459 1255 359 458 1254 627 473 1269 627 473 1269 359 458 1254 453 474 1270 365 475 1271 454 476 1272 453 474 1270 453 474 1270 454 476 1272 627 473 1269 454 476 1272 364 477 1273 627 473 1269 627 473 1269 364 477 1273 452 472 1268 356 450 1246 450 470 1266 449 467 1263 449 467 1263 450 470 1266 456 478 1274 450 470 1266 363 469 1265 456 478 1274 456 478 1274 363 469 1265 455 479 1275 457 480 1276 363 469 1265 458 481 1277 458 481 1277 363 469 1265 362 468 1264 366 483 1279 457 480 1276 367 482 1278 367 482 1278 457 480 1276 458 481 1277 363 469 1265 457 480 1276 455 479 1275 455 479 1275 457 480 1276 460 484 1280 457 480 1276 366 483 1279 460 484 1280 460 484 1280 366 483 1279 459 485 1281 369 486 1282 368 487 1283 461 489 1285 461 489 1285 368 487 1283 462 488 1284 462 488 1284 366 483 1279 461 489 1285 461 489 1285 366 483 1279 367 482 1278 366 483 1279 462 488 1284 459 485 1281 459 485 1281 462 488 1284 464 490 1286 368 487 1283 463 491 1287 462 488 1284 462 488 1284 463 491 1287 464 490 1286 371 492 1288 370 493 1289 465 495 1291 465 495 1291 370 493 1289 466 494 1290 368 487 1283 369 486 1282 466 494 1290 466 494 1290 369 486 1282 465 495 1291 463 491 1287 368 487 1283 468 496 1292 468 496 1292 368 487 1283 466 494 1290 370 493 1289 467 497 1293 466 494 1290 466 494 1290 467 497 1293 468 496 1292 372 498 1294 373 499 1295 628 501 1297 628 501 1297 373 499 1295 469 500 1296 370 493 1289 371 492 1288 469 500 1296 469 500 1296 371 492 1288 628 501 1297 467 497 1293 370 493 1289 471 502 1298 471 502 1298 370 493 1289 469 500 1296 373 499 1295 470 503 1299 469 500 1296 469 500 1296 470 503 1299 471 502 1298 375 504 1300 472 505 1301 1964 507 1303 1964 507 1303 472 505 1301 1965 506 1302 472 505 1301 377 508 1304 1965 506 1302 1965 506 1302 377 508 1304 1966 509 1305 376 510 1306 473 511 1307 1966 509 1305 1966 509 1305 473 511 1307 1965 506 1302 473 511 1307 374 512 1308 1965 506 1302 1965 506 1302 374 512 1308 1964 507 1303 378 514 1310 475 515 1311 474 513 1309 474 513 1309 475 515 1311 629 516 1312 475 515 1311 379 517 1313 629 516 1312 629 516 1312 379 517 1313 476 518 1314 377 508 1304 472 505 1301 476 518 1314 476 518 1314 472 505 1301 629 516 1312 472 505 1301 375 504 1300 629 516 1312 629 516 1312 375 504 1300 474 513 1309 476 518 1314 379 517 1313 477 520 1316 477 520 1316 379 517 1313 399 519 1315 476 518 1314 477 520 1316 377 508 1304 377 508 1304 477 520 1316 380 521 1317 478 522 162 381 523 163 630 525 165 630 525 165 381 523 163 479 524 164 479 524 174 382 526 175 630 525 177 630 525 177 382 526 175 480 527 176 384 528 178 481 529 179 480 527 176 480 527 176 481 529 179 630 525 177 383 530 167 478 522 162 481 529 166 481 529 166 478 522 162 630 525 165 482 531 168 385 532 169 631 534 171 631 534 171 385 532 169 483 533 170 381 523 163 478 522 162 483 533 170 483 533 170 478 522 162 631 534 171 478 522 162 383 530 167 631 534 171 631 534 171 383 530 167 484 535 172 386 536 173 482 531 168 484 535 172 484 535 172 482 531 168 631 534 171 485 537 180 386 536 173 632 538 181 632 538 181 386 536 173 484 535 172 383 530 167 486 539 182 484 535 172 484 535 172 486 539 182 632 538 181 486 539 182 387 540 183 632 538 181 632 538 181 387 540 183 511 541 184 390 542 185 485 537 180 511 541 184 511 541 184 485 537 180 632 538 181 487 543 186 391 544 187 633 546 189 633 546 189 391 544 187 488 545 188 488 545 188 388 547 190 633 546 189 633 546 189 388 547 190 489 548 191 386 536 173 485 537 180 489 548 191 489 548 191 485 537 180 633 546 189 390 542 185 487 543 186 485 537 180 485 537 180 487 543 186 633 546 189 359 458 1254 448 464 1260 453 474 1270 453 474 1270 448 464 1260 634 549 1318 448 464 1260 360 463 1259 634 549 1318 634 549 1318 360 463 1259 490 550 1319 389 551 1320 491 552 1321 490 550 1319 490 550 1319 491 552 1321 634 549 1318 491 552 1321 365 475 1271 634 549 1318 634 549 1318 365 475 1271 453 474 1270 575 553 236 405 554 237 659 556 239 659 556 239 405 554 237 492 555 238 403 557 240 574 558 241 492 555 238 492 555 238 574 558 241 659 556 239 454 476 1272 365 475 1271 635 560 1323 635 560 1323 365 475 1271 493 559 1322 391 544 1324 487 543 1325 493 559 1322 493 559 1322 487 543 1325 635 560 1323 487 543 1325 390 542 1326 635 560 1323 635 560 1323 390 542 1326 494 561 1327 364 477 1273 454 476 1272 494 561 1327 494 561 1327 454 476 1272 635 560 1323 491 552 1321 389 551 1320 636 563 1329 636 563 1329 389 551 1320 495 562 1328 392 564 1330 508 565 1331 495 562 1328 495 562 1328 508 565 1331 636 563 1329 508 565 1331 391 544 1324 636 563 1329 636 563 1329 391 544 1324 493 559 1322 365 475 1271 491 552 1321 493 559 1322 493 559 1322 491 552 1321 636 563 1329 406 567 243 573 568 244 496 566 242 496 566 242 573 568 244 658 569 245 574 558 241 403 557 240 658 569 245 658 569 245 403 557 240 496 566 242 2087 571 1333 2088 572 1334 651 570 1332 651 570 1332 2088 572 1334 552 573 1335 497 574 1336 378 514 1310 637 575 1337 637 575 1337 378 514 1310 474 513 1309 375 504 1300 498 576 1338 474 513 1309 474 513 1309 498 576 1338 637 575 1337 498 576 211 394 577 212 637 575 214 637 575 214 394 577 212 499 578 213 395 579 215 497 574 216 499 578 213 499 578 213 497 574 216 637 575 214 397 580 1339 396 581 1340 500 583 1342 500 583 1342 396 581 1340 501 582 1341 373 499 1295 372 498 1294 501 582 1341 501 582 1341 372 498 1294 500 583 1342 502 584 1343 374 512 1308 638 585 1344 638 585 1344 374 512 1308 473 511 1307 376 510 1306 503 586 1345 473 511 1307 473 511 1307 503 586 1345 638 585 1344 503 586 1345 397 580 1339 638 585 1344 638 585 1344 397 580 1339 500 583 1342 372 498 1294 502 584 1343 500 583 1342 500 583 1342 502 584 1343 638 585 1344 470 503 1299 373 499 1295 505 587 1346 505 587 1346 373 499 1295 501 582 1341 396 581 1340 504 588 1347 501 582 1341 501 582 1341 504 588 1347 505 587 1346 609 589 1348 1966 509 1305 380 521 1317 380 521 1317 1966 509 1305 377 508 1304 398 590 1349 376 510 1306 609 589 1348 609 589 1348 376 510 1306 1966 509 1305 506 591 217 384 528 178 639 592 218 639 592 218 384 528 178 480 527 176 382 526 175 507 593 219 480 527 176 480 527 176 507 593 219 639 592 218 507 593 219 395 579 215 639 592 218 639 592 218 395 579 215 499 578 213 394 577 212 506 591 217 499 578 213 499 578 213 506 591 217 639 592 218 508 565 192 392 564 193 640 595 195 640 595 195 392 564 193 509 594 194 400 596 196 510 597 197 509 594 194 509 594 194 510 597 197 640 595 195 510 597 197 388 547 190 640 595 195 640 595 195 388 547 190 488 545 188 391 544 187 508 565 192 488 545 188 488 545 188 508 565 192 640 595 195 506 591 217 394 577 212 641 599 227 641 599 227 394 577 212 538 598 226 387 540 183 486 539 182 538 598 198 538 598 198 486 539 182 641 599 199 383 530 167 481 529 166 486 539 182 486 539 182 481 529 166 641 599 199 481 529 179 384 528 178 641 599 227 641 599 227 384 528 178 506 591 217 388 547 190 510 597 197 489 548 191 489 548 191 510 597 197 642 600 220 510 597 197 400 596 196 642 600 220 642 600 220 400 596 196 512 601 221 385 532 169 482 531 168 512 601 221 512 601 221 482 531 168 642 600 220 482 531 168 386 536 173 642 600 220 642 600 220 386 536 173 489 548 191 504 588 1347 396 581 1340 620 603 1351 620 603 1351 396 581 1340 513 602 1350 429 604 1352 621 605 1353 513 602 1350 513 602 1350 621 605 1353 620 603 1351 398 590 1349 516 607 1355 515 606 1354 515 606 1354 516 607 1355 643 608 1356 516 607 1355 427 609 1357 643 608 1356 643 608 1356 427 609 1357 618 610 1358 618 610 1358 428 611 1359 643 608 1356 643 608 1356 428 611 1359 617 612 1360 617 612 1360 397 580 1339 643 608 1356 643 608 1356 397 580 1339 515 606 1354 428 611 1359 429 604 1352 617 612 1360 617 612 1360 429 604 1352 513 602 1350 396 581 1340 397 580 1339 513 602 1350 513 602 1350 397 580 1339 617 612 1360 516 607 1355 398 590 1349 644 613 1361 644 613 1361 398 590 1349 609 589 1348 380 521 1317 610 614 1362 609 589 1348 609 589 1348 610 614 1362 644 613 1361 610 614 1362 426 615 1363 644 613 1361 644 613 1361 426 615 1363 616 616 1364 427 609 1357 516 607 1355 616 616 1364 616 616 1364 516 607 1355 644 613 1361 357 453 1249 520 617 1365 442 454 1250 442 454 1250 520 617 1365 519 618 1366 521 619 1367 401 620 1368 645 622 1370 645 622 1370 401 620 1368 522 621 1369 442 454 1250 519 618 1366 522 621 1369 522 621 1369 519 618 1366 645 622 1370 353 440 1236 579 623 1371 437 441 1237 437 441 1237 579 623 1371 661 624 1372 520 617 1365 357 453 1249 523 625 1373 523 625 1373 357 453 1249 361 465 1261 401 620 1368 524 626 1374 522 621 1369 522 621 1369 524 626 1374 646 627 1375 524 626 1374 402 628 1376 646 627 1375 646 627 1375 402 628 1376 525 629 1377 355 449 1245 443 452 1248 525 629 1377 525 629 1377 443 452 1248 646 627 1375 443 452 1248 442 454 1250 646 627 1375 646 627 1375 442 454 1250 522 621 1369 579 623 1371 353 440 1236 660 630 1378 660 630 1378 353 440 1236 444 455 1251 358 460 1256 578 631 1379 444 455 1251 444 455 1251 578 631 1379 660 630 1378 526 632 2273 409 633 247 647 635 2268 647 635 2268 409 633 247 527 634 248 404 636 250 528 637 251 527 634 248 527 634 248 528 637 251 647 635 2268 410 638 1381 529 639 1382 528 637 1380 528 637 1380 529 639 1382 647 635 1383 529 639 1382 408 640 1384 647 635 1383 647 635 1383 408 640 1384 526 632 1385 528 637 251 404 636 250 648 642 2269 648 642 2269 404 636 250 530 641 255 407 643 257 531 644 258 530 641 255 530 641 255 531 644 258 648 642 2269 531 644 1386 411 645 1387 648 642 1389 648 642 1389 411 645 1387 532 646 1388 532 646 1388 410 638 1381 648 642 1389 648 642 1389 410 638 1381 528 637 1380 531 644 258 407 643 257 649 648 2272 649 648 2272 407 643 257 533 647 261 533 647 261 412 649 263 649 648 2272 649 648 2272 412 649 263 534 650 264 534 650 1390 413 651 1391 649 648 1393 649 648 1393 413 651 1391 535 652 1392 411 645 1387 531 644 1386 535 652 1392 535 652 1392 531 644 1386 649 648 1393 374 512 1308 502 584 1343 393 653 1394 393 653 1394 502 584 1343 537 654 1395 502 584 1343 372 498 1294 537 654 1395 537 654 1395 372 498 1294 628 501 1297 371 492 1288 536 655 1396 628 501 1297 628 501 1297 536 655 1396 537 654 1395 376 510 1306 398 590 1349 503 586 1345 503 586 1345 398 590 1349 515 606 1354 515 606 1354 397 580 1339 503 586 1345 536 655 1396 371 492 1288 540 656 1397 540 656 1397 371 492 1288 465 495 1291 369 486 1282 539 657 1398 465 495 1291 465 495 1291 539 657 1398 540 656 1397 539 657 1398 369 486 1282 542 658 1399 542 658 1399 369 486 1282 461 489 1285 461 489 1285 367 482 1278 542 658 1399 542 658 1399 367 482 1278 541 659 1400 367 482 1278 458 481 1277 541 659 1400 541 659 1400 458 481 1277 544 660 1401 458 481 1277 362 468 1264 544 660 1401 544 660 1401 362 468 1264 543 661 1402 402 628 1376 545 662 1403 525 629 1377 525 629 1377 545 662 1403 546 663 1404 362 468 1264 451 471 1267 543 661 1402 543 661 1402 451 471 1267 546 663 1404 451 471 1267 355 449 1245 546 663 1404 546 663 1404 355 449 1245 525 629 1377 578 631 1379 358 460 1256 577 664 1405 577 664 1405 358 460 1256 452 472 1268 364 477 1273 547 665 1406 452 472 1268 452 472 1268 547 665 1406 577 664 1405 547 665 1406 364 477 1273 549 666 1407 549 666 1407 364 477 1273 494 561 1327 390 542 1326 548 667 1408 494 561 1327 494 561 1327 548 667 1408 549 666 1407 387 540 1410 550 668 1411 511 541 1409 511 541 1409 550 668 1411 551 669 1412 548 667 1408 390 542 1326 551 669 1412 551 669 1412 390 542 1326 511 541 1409 387 540 1410 538 598 1413 550 668 1411 550 668 1411 538 598 1413 650 670 1414 538 598 1413 394 577 1415 650 670 1414 650 670 1414 394 577 1415 552 573 1335 406 567 243 553 671 267 573 568 244 573 568 244 553 671 267 657 672 268 572 673 269 657 672 268 414 674 270 414 674 270 657 672 268 553 671 267 394 577 1415 498 576 1338 552 573 1335 552 573 1335 498 576 1338 651 570 1332 1945 675 1416 651 570 1332 1964 507 1303 651 570 1332 498 576 1338 1964 507 1303 498 576 1338 375 504 1300 1964 507 1303 548 667 1408 2091 676 1417 549 666 1407 549 666 1407 2091 676 1417 2092 677 1418 663 679 272 652 680 273 580 678 271 580 678 271 652 680 273 554 681 274 582 682 275 555 683 276 663 679 272 663 679 272 555 683 276 652 680 273 2093 684 1419 547 665 1406 2092 677 1418 2092 677 1418 547 665 1406 549 666 1407 550 668 1411 2095 685 1420 551 669 1412 551 669 1412 2095 685 1420 2090 686 1421 662 688 278 653 689 279 581 687 277 581 687 277 653 689 279 556 690 280 580 678 271 554 681 274 662 688 278 662 688 278 554 681 274 653 689 279 2091 676 1417 548 667 1408 2090 686 1421 2090 686 1421 548 667 1408 551 669 1412 546 663 1404 545 662 1403 2098 692 1423 2098 692 1423 545 662 1403 2097 691 1422 584 693 281 667 694 282 557 696 284 557 696 284 667 694 282 654 695 2270 667 694 1424 586 697 1425 654 695 1427 654 695 1427 586 697 1425 558 698 1426 543 661 1402 546 663 1404 2099 699 1428 2099 699 1428 546 663 1404 2098 692 1423 547 665 1406 2093 684 1419 577 664 1405 577 664 1405 2093 684 1419 2094 700 1429 665 701 287 2060 702 288 582 682 275 582 682 275 2060 702 288 555 683 276 544 660 1401 543 661 1402 2100 703 1430 2100 703 1430 543 661 1402 2099 699 1428 586 697 1425 666 704 1431 558 698 1426 558 698 1426 666 704 1431 2061 705 1432 666 704 1431 585 706 1433 2061 705 1432 2061 705 1432 585 706 1433 559 707 1434 541 659 1400 544 660 1401 2101 708 1435 2101 708 1435 544 660 1401 2100 703 1430 542 658 1399 541 659 1400 2102 709 1436 2102 709 1436 541 659 1400 2101 708 1435 585 706 1433 668 710 1437 559 707 1434 559 707 1434 668 710 1437 2062 711 1438 587 712 1439 560 713 1440 668 710 1437 668 710 1437 560 713 1440 2062 711 1438 2103 714 1441 539 657 1398 2102 709 1436 2102 709 1436 539 657 1398 542 658 1399 536 655 1396 2105 715 1442 537 654 1395 537 654 1395 2105 715 1442 2106 716 1443 670 718 1445 655 719 1446 588 717 1444 588 717 1444 655 719 1446 561 720 1447 589 721 301 562 722 302 670 718 2275 670 718 2275 562 722 302 655 719 299 2107 723 1448 393 653 1394 2106 716 1443 2106 716 1443 393 653 1394 537 654 1395 539 657 1398 2103 714 1441 540 656 1397 540 656 1397 2103 714 1441 2104 724 1449 669 725 1450 2063 726 1451 587 712 1439 587 712 1439 2063 726 1451 560 713 1440 588 717 1444 561 720 1447 669 725 1450 669 725 1450 561 720 1447 2063 726 1451 2105 715 1442 536 655 1396 2104 724 1449 2104 724 1449 536 655 1396 540 656 1397 650 670 1414 552 573 1335 2089 727 1452 2089 727 1452 552 573 1335 2088 572 1334 583 728 305 664 729 306 2058 731 308 2058 731 308 664 729 306 2059 730 307 664 729 306 581 687 277 2059 730 307 2059 730 307 581 687 277 556 690 280 550 668 1411 650 670 1414 2095 685 1420 2095 685 1420 650 670 1414 2089 727 1452 671 732 309 583 728 305 656 733 310 656 733 310 583 728 305 2058 731 308 1947 734 311 671 732 309 1946 735 970 1946 735 970 671 732 309 656 733 310 416 737 972 403 557 240 563 736 971 563 736 971 403 557 240 492 555 238 563 736 971 492 555 238 417 738 973 417 738 973 492 555 238 405 554 237 415 740 975 406 567 243 564 739 974 564 739 974 406 567 243 496 566 242 564 739 974 496 566 242 416 737 972 416 737 972 496 566 242 403 557 240 565 741 2274 419 742 977 526 632 2273 526 632 2273 419 742 977 409 633 247 526 632 1385 408 640 1384 565 741 1453 565 741 1453 408 640 1384 420 743 1454 417 738 973 405 554 237 576 744 979 576 744 979 405 554 237 575 553 236 566 745 1455 420 743 1454 529 639 1382 529 639 1382 420 743 1454 408 640 1384 529 639 1382 410 638 1381 566 745 1455 566 745 1455 410 638 1381 421 746 1456 567 747 1457 421 746 1456 532 646 1388 532 646 1388 421 746 1456 410 638 1381 567 747 1457 532 646 1388 422 748 1458 422 748 1458 532 646 1388 411 645 1387 423 750 1460 413 651 1391 568 749 1459 568 749 1459 413 651 1391 534 650 1390 568 749 984 534 650 264 424 751 986 424 751 986 534 650 264 412 649 263 422 748 1458 411 645 1387 569 752 1461 569 752 1461 411 645 1387 535 652 1392 569 752 1461 535 652 1392 423 750 1460 423 750 1460 535 652 1392 413 651 1391 570 753 988 418 754 989 553 671 267 553 671 267 418 754 989 414 674 270 553 671 267 406 567 243 570 753 988 570 753 988 406 567 243 415 740 975 418 754 989 571 755 990 414 674 270 414 674 270 571 755 990 572 673 269 571 755 990 1963 756 991 572 673 269 572 673 269 1963 756 991 1962 757 992 424 751 986 412 649 263 1963 756 991 1963 756 991 412 649 263 1962 757 992 657 672 268 572 673 269 1961 758 993 1961 758 993 572 673 269 1962 757 992 407 643 257 1960 759 994 533 647 261 533 647 261 1960 759 994 1961 758 993 573 568 244 1960 759 994 658 569 245 658 569 245 1960 759 994 1959 760 995 404 636 250 1958 761 996 530 641 255 530 641 255 1958 761 996 1959 760 995 574 558 241 1958 761 996 659 556 239 659 556 239 1958 761 996 1957 762 997 409 633 247 1956 763 998 527 634 248 527 634 248 1956 763 998 1957 762 997 576 744 979 575 553 236 1955 764 999 1955 764 999 575 553 236 1956 763 998 419 742 977 1955 764 999 409 633 247 409 633 247 1955 764 999 1956 763 998 2060 702 288 665 701 287 1953 766 1001 1953 766 1001 665 701 287 1954 765 1000 545 662 1403 1952 767 1462 2097 691 1422 2097 691 1422 1952 767 1462 2096 768 1463 402 628 1376 1951 769 1464 545 662 1403 545 662 1403 1951 769 1464 1952 767 1462 578 631 1379 1951 769 1464 660 630 1378 660 630 1378 1951 769 1464 1950 770 1465 524 626 1374 401 620 1368 1950 770 1465 1950 770 1465 401 620 1368 1949 771 1466 579 623 1371 1949 771 1466 661 624 1372 661 624 1372 1949 771 1466 1948 772 1467 416 737 972 580 678 271 564 739 974 564 739 974 580 678 271 662 688 278 581 687 277 415 740 975 662 688 278 662 688 278 415 740 975 564 739 974 582 682 275 417 738 973 665 701 287 665 701 287 417 738 973 576 744 979 580 678 271 416 737 972 663 679 272 663 679 272 416 737 972 563 736 971 417 738 973 582 682 275 563 736 971 563 736 971 582 682 275 663 679 272 570 753 988 415 740 975 664 729 306 664 729 306 415 740 975 581 687 277 418 754 989 570 753 988 583 728 305 583 728 305 570 753 988 664 729 306 665 701 287 576 744 979 1954 765 1000 1954 765 1000 576 744 979 1955 764 999 1954 765 1000 584 693 281 1953 766 1001 1953 766 1001 584 693 281 557 696 284 566 745 1455 421 746 1456 666 704 1431 666 704 1431 421 746 1456 585 706 1433 420 743 1454 566 745 1455 586 697 1425 586 697 1425 566 745 1455 666 704 1431 419 742 977 565 741 2274 584 693 281 584 693 281 565 741 2274 667 694 282 565 741 1453 420 743 1454 667 694 1424 667 694 1424 420 743 1454 586 697 1425 421 746 1456 567 747 1457 585 706 1433 585 706 1433 567 747 1457 668 710 1437 422 748 1458 587 712 1439 567 747 1457 567 747 1457 587 712 1439 668 710 1437 587 712 1439 422 748 1458 669 725 1450 669 725 1450 422 748 1458 569 752 1461 423 750 1460 588 717 1444 569 752 1461 569 752 1461 588 717 1444 669 725 1450 1947 734 311 1946 735 970 589 721 301 589 721 301 1946 735 970 562 722 302 589 721 301 424 751 986 1947 734 311 1947 734 311 424 751 986 1963 756 991 588 717 1444 423 750 1460 670 718 1445 670 718 1445 423 750 1460 568 749 1459 424 751 986 589 721 301 568 749 984 568 749 984 589 721 301 670 718 2275 571 755 990 418 754 989 671 732 309 671 732 309 418 754 989 583 728 305 590 773 1468 354 448 1244 672 774 1469 672 774 1469 354 448 1244 440 447 1243 354 448 1244 590 773 1468 447 462 1258 447 462 1258 590 773 1468 673 775 1470 591 776 1471 360 463 1259 673 775 1470 673 775 1470 360 463 1259 447 462 1258 626 466 1262 449 467 1263 674 381 1192 674 381 1192 449 467 1263 592 382 1193 361 465 1261 626 466 1262 593 383 1194 593 383 1194 626 466 1262 674 381 1192 456 478 1274 455 479 1275 675 384 1195 675 384 1195 455 479 1275 594 385 1196 449 467 1263 456 478 1274 592 382 1193 592 382 1193 456 478 1274 675 384 1195 459 485 1281 595 387 1198 460 484 1280 460 484 1280 595 387 1198 676 386 1197 455 479 1275 460 484 1280 594 385 1196 594 385 1196 460 484 1280 676 386 1197 463 491 1287 596 389 1200 464 490 1286 464 490 1286 596 389 1200 677 388 1199 595 387 1198 459 485 1281 677 388 1199 677 388 1199 459 485 1281 464 490 1286 467 497 1293 597 391 1202 468 496 1292 468 496 1292 597 391 1202 678 390 1201 596 389 1200 463 491 1287 678 390 1201 678 390 1201 463 491 1287 468 496 1292 470 503 1299 598 393 1204 471 502 1298 471 502 1298 598 393 1204 679 392 1203 597 391 1202 467 497 1293 679 392 1203 679 392 1203 467 497 1293 471 502 1298 475 515 1311 378 514 1310 680 396 1207 680 396 1207 378 514 1310 599 397 1208 379 517 1313 475 515 1311 600 399 1210 600 399 1210 475 515 1311 680 396 1207 379 517 1313 600 399 1210 399 519 1315 399 519 1315 600 399 1210 608 401 1212 381 523 163 601 777 222 479 524 164 479 524 164 601 777 222 681 405 223 602 404 148 382 526 175 681 405 149 681 405 149 382 526 175 479 524 174 385 532 169 603 778 224 483 533 170 483 533 170 603 778 224 682 779 225 601 777 222 381 523 163 682 779 225 682 779 225 381 523 163 483 533 170 360 463 1259 591 776 1471 490 550 1319 490 550 1319 591 776 1471 683 780 1472 604 411 1215 389 551 1320 683 780 1472 683 780 1472 389 551 1320 490 550 1319 389 551 1320 604 411 1215 495 562 1328 495 562 1328 604 411 1215 684 410 1214 606 781 1473 392 564 1330 684 410 1214 684 410 1214 392 564 1330 495 562 1328 395 579 215 605 417 159 497 574 216 497 574 216 605 417 159 685 416 158 599 397 1208 378 514 1310 685 416 1219 685 416 1219 378 514 1310 497 574 1336 504 588 1347 1970 419 1221 505 587 1346 505 587 1346 1970 419 1221 1971 418 1220 505 587 1346 1971 418 1220 470 503 1299 470 503 1299 1971 418 1220 598 393 1204 507 593 219 382 526 175 686 421 161 686 421 161 382 526 175 602 404 148 395 579 215 507 593 219 605 417 159 605 417 159 507 593 219 686 421 161 392 564 193 606 781 228 509 594 194 509 594 194 606 781 228 687 782 229 607 783 230 400 596 196 687 782 229 687 782 229 400 596 196 509 594 194 400 596 196 607 783 230 512 601 221 512 601 221 607 783 230 688 784 231 603 778 224 385 532 169 688 784 231 688 784 231 385 532 169 512 601 221 621 605 1353 1968 427 1223 620 603 1351 620 603 1351 1968 427 1223 1969 426 1222 620 603 1351 1969 426 1222 504 588 1347 504 588 1347 1969 426 1222 1970 419 1221 399 519 1315 608 401 1212 518 785 1474 518 785 1474 608 401 1212 689 429 1225 612 431 1227 425 786 1475 689 429 1225 689 429 1225 425 786 1475 518 785 1474 523 625 1373 361 465 1261 690 432 1228 690 432 1228 361 465 1261 593 383 1194 380 521 1317 477 520 1316 610 614 1362 610 614 1362 477 520 1316 691 787 1476 477 520 1316 399 519 1315 691 787 1476 691 787 1476 399 519 1315 518 785 1474 425 786 1475 614 788 1477 518 785 1474 518 785 1474 614 788 1477 691 787 1476 614 788 1477 426 615 1363 691 787 1476 691 787 1476 426 615 1363 610 614 1362 425 786 1475 612 431 1227 611 789 1478 611 789 1478 612 431 1227 692 434 1230 350 790 1479 611 789 1478 434 436 1232 434 436 1232 611 789 1478 692 434 1230 426 615 1363 614 788 1477 613 791 1480 613 791 1480 614 788 1477 693 792 1481 614 788 1477 425 786 1475 693 792 1481 693 792 1481 425 786 1475 611 789 1478 350 790 1479 433 793 1482 611 789 1478 611 789 1478 433 793 1482 693 792 1481 349 794 1483 613 791 1480 433 793 1482 433 793 1482 613 791 1480 693 792 1481 615 795 1484 427 609 1357 694 796 1485 694 796 1485 427 609 1357 616 616 1364 616 616 1364 426 615 1363 694 796 1485 694 796 1485 426 615 1363 613 791 1480 349 794 1483 432 797 1486 613 791 1480 613 791 1480 432 797 1486 694 796 1485 432 797 1486 348 798 1487 694 796 1485 694 796 1485 348 798 1487 615 795 1484 618 610 1358 427 609 1357 695 799 1488 695 799 1488 427 609 1357 615 795 1484 348 798 1487 431 800 1489 615 795 1484 615 795 1484 431 800 1489 695 799 1488 431 800 1489 347 801 1490 695 799 1488 695 799 1488 347 801 1490 517 802 1491 428 611 1359 618 610 1358 517 802 1491 517 802 1491 618 610 1358 695 799 1488 347 801 1490 351 803 1492 517 802 1491 517 802 1491 351 803 1492 619 804 1493 429 604 1352 428 611 1359 619 804 1493 619 804 1493 428 611 1359 517 802 1491 621 605 1353 429 604 1352 514 805 1494 514 805 1494 429 604 1352 619 804 1493 351 803 1492 430 806 1495 619 804 1493 619 804 1493 430 806 1495 514 805 1494 1968 427 1223 621 605 1353 1967 437 1233 1967 437 1233 621 605 1353 514 805 1494 430 806 1495 435 438 1234 514 805 1494 514 805 1494 435 438 1234 1967 437 1233 697 808 1497 710 809 1498 696 807 1496 696 807 1496 710 809 1498 709 810 1499 698 811 1500 711 812 1501 697 808 1497 697 808 1497 711 812 1501 710 809 1498 699 813 1502 712 814 1503 698 811 1500 698 811 1500 712 814 1503 711 812 1501 700 815 1504 713 816 1505 699 813 1502 699 813 1502 713 816 1505 712 814 1503 701 817 1506 714 818 1507 700 815 1504 700 815 1504 714 818 1507 713 816 1505 702 819 1508 715 820 1509 701 817 1506 701 817 1506 715 820 1509 714 818 1507 703 821 1510 716 822 1511 702 819 1508 702 819 1508 716 822 1511 715 820 1509 704 823 1512 717 824 1513 703 821 1510 703 821 1510 717 824 1513 716 822 1511 704 823 1512 705 825 1514 717 824 1513 717 824 1513 705 825 1514 718 826 1515 705 825 1514 706 827 1516 718 826 1515 718 826 1515 706 827 1516 719 828 1517 707 829 1518 720 830 1519 706 827 1516 706 827 1516 720 830 1519 719 828 1517 1331 831 1520 721 832 1521 707 829 1518 707 829 1518 721 832 1521 720 830 1519 708 833 1522 722 834 1523 1980 836 1525 1980 836 1525 722 834 1523 1979 835 1524 710 809 1498 724 837 1526 709 810 1499 709 810 1499 724 837 1526 723 838 1527 711 812 1501 725 839 1528 710 809 1498 710 809 1498 725 839 1528 724 837 1526 712 814 1503 726 840 1529 711 812 1501 711 812 1501 726 840 1529 725 839 1528 713 816 1505 727 841 1530 712 814 1503 712 814 1503 727 841 1530 726 840 1529 714 818 1507 728 842 1531 713 816 1505 713 816 1505 728 842 1531 727 841 1530 715 820 1509 729 843 1532 714 818 1507 714 818 1507 729 843 1532 728 842 1531 716 822 1511 730 844 1533 715 820 1509 715 820 1509 730 844 1533 729 843 1532 717 824 1513 731 845 1534 716 822 1511 716 822 1511 731 845 1534 730 844 1533 717 824 1513 718 826 1515 731 845 1534 731 845 1534 718 826 1515 732 846 1535 718 826 1515 719 828 1517 732 846 1535 732 846 1535 719 828 1517 733 847 1536 720 830 1519 734 848 1537 719 828 1517 719 828 1517 734 848 1537 733 847 1536 1333 849 1538 721 832 1521 1982 850 1539 1982 850 1539 721 832 1521 1979 835 1524 724 837 1526 737 851 1540 723 838 1527 723 838 1527 737 851 1540 736 852 1541 725 839 1528 738 853 1542 724 837 1526 724 837 1526 738 853 1542 737 851 1540 726 840 1529 739 854 1543 725 839 1528 725 839 1528 739 854 1543 738 853 1542 727 841 1530 740 855 1544 726 840 1529 726 840 1529 740 855 1544 739 854 1543 728 842 1531 741 856 1545 727 841 1530 727 841 1530 741 856 1545 740 855 1544 729 843 1532 742 857 1546 728 842 1531 728 842 1531 742 857 1546 741 856 1545 730 844 1533 743 858 1547 729 843 1532 729 843 1532 743 858 1547 742 857 1546 731 845 1534 744 859 1548 730 844 1533 730 844 1533 744 859 1548 743 858 1547 731 845 1534 732 846 1535 744 859 1548 744 859 1548 732 846 1535 745 860 1549 733 847 1536 746 861 1550 732 846 1535 732 846 1535 746 861 1550 745 860 1549 734 848 1537 747 862 1551 733 847 1536 733 847 1536 747 862 1551 746 861 1550 1334 863 1552 1333 849 1538 1983 864 1553 1983 864 1553 1333 849 1538 1982 850 1539 736 852 1541 737 851 1540 749 866 1555 749 866 1555 737 851 1540 750 865 1554 738 853 1542 751 867 1556 737 851 1540 737 851 1540 751 867 1556 750 865 1554 739 854 1543 752 868 1557 738 853 1542 738 853 1542 752 868 1557 751 867 1556 740 855 1544 753 869 1558 739 854 1543 739 854 1543 753 869 1558 752 868 1557 741 856 1545 754 870 1559 740 855 1544 740 855 1544 754 870 1559 753 869 1558 742 857 1546 755 871 1560 741 856 1545 741 856 1545 755 871 1560 754 870 1559 743 858 1547 756 872 1561 742 857 1546 742 857 1546 756 872 1561 755 871 1560 744 859 1548 757 873 1562 743 858 1547 743 858 1547 757 873 1562 756 872 1561 744 859 1548 745 860 1549 757 873 1562 757 873 1562 745 860 1549 758 874 1563 746 861 1550 759 875 1564 745 860 1549 745 860 1549 759 875 1564 758 874 1563 747 862 1551 760 876 1565 746 861 1550 746 861 1550 760 876 1565 759 875 1564 1335 877 1566 1334 863 1552 1984 878 1567 1984 878 1567 1334 863 1552 1983 864 1553 749 866 1555 750 865 1554 762 880 1569 762 880 1569 750 865 1554 763 879 1568 751 867 1556 764 881 1570 750 865 1554 750 865 1554 764 881 1570 763 879 1568 752 868 1557 765 882 1571 751 867 1556 751 867 1556 765 882 1571 764 881 1570 753 869 1558 766 883 1572 752 868 1557 752 868 1557 766 883 1572 765 882 1571 754 870 1559 767 884 1573 753 869 1558 753 869 1558 767 884 1573 766 883 1572 755 871 1560 768 885 1574 754 870 1559 754 870 1559 768 885 1574 767 884 1573 756 872 1561 769 886 1575 755 871 1560 755 871 1560 769 886 1575 768 885 1574 757 873 1562 770 887 1576 756 872 1561 756 872 1561 770 887 1576 769 886 1575 757 873 1562 758 874 1563 770 887 1576 770 887 1576 758 874 1563 771 888 1577 759 875 1564 772 889 1578 758 874 1563 758 874 1563 772 889 1578 771 888 1577 760 876 1565 773 890 1579 759 875 1564 759 875 1564 773 890 1579 772 889 1578 1336 891 1580 1335 877 1566 1981 892 1581 1981 892 1581 1335 877 1566 1984 878 1567 762 880 1569 763 879 1568 775 894 1583 775 894 1583 763 879 1568 776 893 1582 764 881 1570 777 895 1584 763 879 1568 763 879 1568 777 895 1584 776 893 1582 765 882 1571 778 896 1585 764 881 1570 764 881 1570 778 896 1585 777 895 1584 766 883 1572 779 897 1586 765 882 1571 765 882 1571 779 897 1586 778 896 1585 767 884 1573 780 898 1587 766 883 1572 766 883 1572 780 898 1587 779 897 1586 768 885 1574 781 899 1588 767 884 1573 767 884 1573 781 899 1588 780 898 1587 769 886 1575 782 900 1589 768 885 1574 768 885 1574 782 900 1589 781 899 1588 770 887 1576 783 901 1590 769 886 1575 769 886 1575 783 901 1590 782 900 1589 770 887 1576 771 888 1577 783 901 1590 783 901 1590 771 888 1577 784 902 1591 771 888 1577 772 889 1578 784 902 1591 784 902 1591 772 889 1578 785 903 1592 773 890 1579 786 904 1593 772 889 1578 772 889 1578 786 904 1593 785 903 1592 2 361 1172 1336 891 1580 87 359 1170 87 359 1170 1336 891 1580 1981 892 1581 775 894 1583 776 893 1582 787 906 1595 787 906 1595 776 893 1582 788 905 1594 777 895 1584 789 907 1596 776 893 1582 776 893 1582 789 907 1596 788 905 1594 778 896 1585 790 908 1597 777 895 1584 777 895 1584 790 908 1597 789 907 1596 779 897 1586 791 909 1598 778 896 1585 778 896 1585 791 909 1598 790 908 1597 780 898 1587 792 910 1599 779 897 1586 779 897 1586 792 910 1599 791 909 1598 781 899 1588 793 911 1600 780 898 1587 780 898 1587 793 911 1600 792 910 1599 782 900 1589 794 912 1601 781 899 1588 781 899 1588 794 912 1601 793 911 1600 783 901 1590 795 913 1602 782 900 1589 782 900 1589 795 913 1602 794 912 1601 783 901 1590 784 902 1591 795 913 1602 795 913 1602 784 902 1591 796 914 1603 784 902 1591 785 903 1592 796 914 1603 796 914 1603 785 903 1592 797 915 1604 786 904 1593 798 916 1605 785 903 1592 785 903 1592 798 916 1605 797 915 1604 787 906 1595 788 905 1594 799 918 1607 799 918 1607 788 905 1594 800 917 1606 789 907 1596 801 919 1608 788 905 1594 788 905 1594 801 919 1608 800 917 1606 790 908 1597 802 920 1609 789 907 1596 789 907 1596 802 920 1609 801 919 1608 791 909 1598 803 921 1610 790 908 1597 790 908 1597 803 921 1610 802 920 1609 792 910 1599 804 922 1611 791 909 1598 791 909 1598 804 922 1611 803 921 1610 793 911 1600 805 923 1612 792 910 1599 792 910 1599 805 923 1612 804 922 1611 794 912 1601 806 924 1613 793 911 1600 793 911 1600 806 924 1613 805 923 1612 795 913 1602 807 925 1614 794 912 1601 794 912 1601 807 925 1614 806 924 1613 795 913 1602 796 914 1603 807 925 1614 807 925 1614 796 914 1603 808 926 1615 796 914 1603 797 915 1604 808 926 1615 808 926 1615 797 915 1604 809 927 1616 798 916 1605 810 928 1617 797 915 1604 797 915 1604 810 928 1617 809 927 1616 799 918 1607 800 917 1606 811 930 1619 811 930 1619 800 917 1606 812 929 1618 801 919 1608 813 931 1620 800 917 1606 800 917 1606 813 931 1620 812 929 1618 802 920 1609 814 932 1621 801 919 1608 801 919 1608 814 932 1621 813 931 1620 803 921 1610 815 933 1622 802 920 1609 802 920 1609 815 933 1622 814 932 1621 804 922 1611 816 934 1623 803 921 1610 803 921 1610 816 934 1623 815 933 1622 805 923 1612 817 935 1624 804 922 1611 804 922 1611 817 935 1624 816 934 1623 806 924 1613 818 936 1625 805 923 1612 805 923 1612 818 936 1625 817 935 1624 807 925 1614 819 937 1626 806 924 1613 806 924 1613 819 937 1626 818 936 1625 807 925 1614 808 926 1615 819 937 1626 819 937 1626 808 926 1615 820 938 1627 808 926 1615 809 927 1616 820 938 1627 820 938 1627 809 927 1616 821 939 1628 810 928 1617 822 940 1629 809 927 1616 809 927 1616 822 940 1629 821 939 1628 811 930 1619 812 929 1618 823 942 1631 823 942 1631 812 929 1618 824 941 1630 813 931 1620 825 943 1632 812 929 1618 812 929 1618 825 943 1632 824 941 1630 814 932 1621 826 944 1633 813 931 1620 813 931 1620 826 944 1633 825 943 1632 815 933 1622 827 945 1634 814 932 1621 814 932 1621 827 945 1634 826 944 1633 816 934 1623 828 946 1635 815 933 1622 815 933 1622 828 946 1635 827 945 1634 817 935 1624 829 947 1636 816 934 1623 816 934 1623 829 947 1636 828 946 1635 818 936 1625 830 948 1637 817 935 1624 817 935 1624 830 948 1637 829 947 1636 818 936 1625 819 937 1626 830 948 1637 830 948 1637 819 937 1626 831 949 1638 819 937 1626 820 938 1627 831 949 1638 831 949 1638 820 938 1627 832 950 1639 820 938 1627 821 939 1628 832 950 1639 832 950 1639 821 939 1628 833 951 1640 821 939 1628 822 940 1629 833 951 1640 833 951 1640 822 940 1629 834 952 1641 823 942 1631 824 941 1630 846 954 1643 846 954 1643 824 941 1630 835 953 1642 825 943 1632 836 955 1644 824 941 1630 824 941 1630 836 955 1644 835 953 1642 826 944 1633 837 956 1645 825 943 1632 825 943 1632 837 956 1645 836 955 1644 827 945 1634 838 957 1646 826 944 1633 826 944 1633 838 957 1646 837 956 1645 828 946 1635 839 958 1647 827 945 1634 827 945 1634 839 958 1647 838 957 1646 829 947 1636 840 959 1648 828 946 1635 828 946 1635 840 959 1648 839 958 1647 830 948 1637 841 960 1649 829 947 1636 829 947 1636 841 960 1649 840 959 1648 830 948 1637 831 949 1638 841 960 1649 841 960 1649 831 949 1638 842 961 1650 831 949 1638 832 950 1639 842 961 1650 842 961 1650 832 950 1639 843 962 1651 833 951 1640 844 963 1652 832 950 1639 832 950 1639 844 963 1652 843 962 1651 833 951 1640 834 952 1641 844 963 1652 844 963 1652 834 952 1641 845 964 1653 846 954 1643 835 953 1642 847 966 1655 847 966 1655 835 953 1642 848 965 1654 835 953 1642 836 955 1644 848 965 1654 848 965 1654 836 955 1644 849 967 1656 836 955 1644 837 956 1645 849 967 1656 849 967 1656 837 956 1645 850 968 1657 837 956 1645 838 957 1646 850 968 1657 850 968 1657 838 957 1646 851 969 1658 839 958 1647 852 970 1659 838 957 1646 838 957 1646 852 970 1659 851 969 1658 840 959 1648 853 971 1660 839 958 1647 839 958 1647 853 971 1660 852 970 1659 841 960 1649 854 972 1661 840 959 1648 840 959 1648 854 972 1661 853 971 1660 841 960 1649 842 961 1650 854 972 1661 854 972 1661 842 961 1650 855 973 1662 843 962 1651 856 974 1663 842 961 1650 842 961 1650 856 974 1663 855 973 1662 844 963 1652 857 975 1664 843 962 1651 843 962 1651 857 975 1664 856 974 1663 845 964 1653 858 976 1665 844 963 1652 844 963 1652 858 976 1665 857 975 1664 847 966 1655 848 965 1654 859 978 1667 859 978 1667 848 965 1654 860 977 1666 848 965 1654 849 967 1656 860 977 1666 860 977 1666 849 967 1656 861 979 1668 849 967 1656 850 968 1657 861 979 1668 861 979 1668 850 968 1657 862 980 1669 853 971 1660 854 972 1661 863 981 1670 855 973 1662 864 982 1671 854 972 1661 854 972 1661 864 982 1671 863 981 1670 856 974 1663 865 983 1672 855 973 1662 855 973 1662 865 983 1672 864 982 1671 857 975 1664 866 984 1673 856 974 1663 856 974 1663 866 984 1673 865 983 1672 858 976 1665 867 985 1674 857 975 1664 857 975 1664 867 985 1674 866 984 1673 859 978 1667 860 977 1666 868 987 1676 868 987 1676 860 977 1666 869 986 1675 860 977 1666 861 979 1668 869 986 1675 869 986 1675 861 979 1668 870 988 1677 868 987 1676 869 986 1675 871 990 1679 871 990 1679 869 986 1675 872 989 1678 870 988 1677 873 991 1680 869 986 1675 869 986 1675 873 991 1680 872 989 1678 875 992 1681 874 993 1682 865 983 1672 865 983 1672 874 993 1682 864 982 1671 866 984 1673 876 994 1683 865 983 1672 865 983 1672 876 994 1683 875 992 1681 867 985 1674 877 995 1684 866 984 1673 866 984 1673 877 995 1684 876 994 1683 871 990 1679 872 989 1678 878 997 1686 878 997 1686 872 989 1678 879 996 1685 873 991 1680 880 998 1687 872 989 1678 872 989 1678 880 998 1687 879 996 1685 881 1000 1689 874 993 1682 882 999 1688 882 999 1688 874 993 1682 875 992 1681 875 992 1681 876 994 1683 882 999 1688 882 999 1688 876 994 1683 883 1001 1690 877 995 1684 884 1002 1691 876 994 1683 876 994 1683 884 1002 1691 883 1001 1690 878 997 1686 879 996 1685 885 1004 1693 885 1004 1693 879 996 1685 886 1003 1692 879 996 1685 880 998 1687 886 1003 1692 886 1003 1692 880 998 1687 887 1005 1694 889 1006 1695 888 1007 1696 882 999 1688 882 999 1688 888 1007 1696 881 1000 1689 882 999 1688 883 1001 1690 889 1006 1695 889 1006 1695 883 1001 1690 890 1008 1697 884 1002 1691 891 1009 1698 883 1001 1690 883 1001 1690 891 1009 1698 890 1008 1697 885 1004 1693 886 1003 1692 892 1011 1700 892 1011 1700 886 1003 1692 893 1010 1699 886 1003 1692 887 1005 1694 893 1010 1699 893 1010 1699 887 1005 1694 894 1012 1701 888 1007 1696 889 1006 1695 1313 1013 1702 1313 1013 1702 889 1006 1695 895 1014 1703 889 1006 1695 890 1008 1697 895 1014 1703 895 1014 1703 890 1008 1697 896 1015 1704 890 1008 1697 891 1009 1698 896 1015 1704 896 1015 1704 891 1009 1698 1314 1016 1705 891 1009 1698 1337 1017 1706 1314 1016 1705 1314 1016 1705 1337 1017 1706 897 1018 1707 1985 1019 1708 1337 1017 1706 1986 1021 1710 1986 1021 1710 1337 1017 1706 320 1020 1709 892 1011 1700 893 1010 1699 898 1023 1712 898 1023 1712 893 1010 1699 899 1022 1711 893 1010 1699 894 1012 1701 899 1022 1711 899 1022 1711 894 1012 1701 900 1024 1713 1312 1025 1714 1311 1026 1715 905 1028 1717 905 1028 1717 1311 1026 1715 906 1027 1716 697 808 1497 696 807 1496 907 1029 1718 698 811 1500 697 808 1497 907 1029 1718 699 813 1502 698 811 1500 907 1029 1718 700 815 1504 699 813 1502 907 1029 1718 701 817 1506 700 815 1504 907 1029 1718 702 819 1508 701 817 1506 907 1029 1718 703 821 1510 702 819 1508 907 1029 1718 704 823 1512 703 821 1510 907 1029 1718 705 825 1514 704 823 1512 907 1029 1718 706 827 1516 705 825 1514 907 1029 1718 707 829 1518 706 827 1516 907 1029 1718 707 829 1518 907 1029 1718 1331 831 1520 708 833 1522 1980 836 1525 907 1029 1718 941 1030 312 980 1031 313 1007 1033 315 1007 1033 315 980 1031 313 1044 1032 314 1007 1033 315 1028 1034 316 941 1030 312 941 1030 312 1028 1034 316 956 1035 317 942 1036 318 958 1037 319 1007 1033 315 1007 1033 315 958 1037 319 1028 1034 316 1007 1033 315 1044 1032 314 942 1036 318 942 1036 318 1044 1032 314 981 1038 320 943 1039 321 979 1040 322 1008 1042 324 1008 1042 324 979 1040 322 1043 1041 323 1008 1042 324 1029 1043 325 943 1039 321 943 1039 321 1029 1043 325 955 1044 326 941 1030 312 956 1035 317 1008 1042 324 1008 1042 324 956 1035 317 1029 1043 325 1008 1042 324 1043 1041 323 941 1030 312 941 1030 312 1043 1041 323 980 1031 313 944 1045 327 978 1046 328 1009 1048 330 1009 1048 330 978 1046 328 1042 1047 329 1009 1048 330 1027 1049 331 944 1045 327 944 1045 327 1027 1049 331 953 1050 332 943 1039 321 955 1044 326 1009 1048 330 1009 1048 330 955 1044 326 1027 1049 331 1009 1048 330 1042 1047 329 943 1039 321 943 1039 321 1042 1047 329 979 1040 322 977 1052 334 1041 1053 335 945 1051 333 945 1051 333 1041 1053 335 1010 1054 336 1010 1054 336 1030 1055 337 945 1051 333 945 1051 333 1030 1055 337 960 1056 338 944 1045 327 953 1050 332 1010 1054 336 1010 1054 336 953 1050 332 1030 1055 337 1010 1054 336 1041 1053 335 944 1045 327 944 1045 327 1041 1053 335 978 1046 328 1032 1058 340 964 1059 341 1011 1057 339 1011 1057 339 964 1059 341 946 1060 342 960 1056 338 1032 1058 340 945 1051 333 945 1051 333 1032 1058 340 1011 1057 339 1011 1057 339 946 1060 342 1067 1062 344 1067 1062 344 946 1060 342 1066 1061 343 976 1064 346 1040 1065 347 947 1063 345 947 1063 345 1040 1065 347 1012 1066 348 1034 1067 349 968 1068 350 1012 1066 348 1012 1066 348 968 1068 350 947 1063 345 964 1059 341 1034 1067 349 946 1060 342 946 1060 342 1034 1067 349 1012 1066 348 1040 1065 347 1066 1061 343 1012 1066 348 1012 1066 348 1066 1061 343 946 1060 342 975 1070 352 1039 1071 353 948 1069 351 948 1069 351 1039 1071 353 1013 1072 354 1036 1073 355 971 1074 356 1013 1072 354 1013 1072 354 971 1074 356 948 1069 351 968 1068 350 1036 1073 355 947 1063 345 947 1063 345 1036 1073 355 1013 1072 354 1039 1071 353 976 1064 346 1013 1072 354 1013 1072 354 976 1064 346 947 1063 345 973 1076 358 1038 1077 359 949 1075 357 949 1075 357 1038 1077 359 1014 1078 360 1035 1079 361 967 1080 362 1014 1078 360 1014 1078 360 967 1080 362 949 1075 357 971 1074 356 1035 1079 361 948 1069 351 948 1069 351 1035 1079 361 1014 1078 360 1038 1077 359 975 1070 352 1014 1078 360 1014 1078 360 975 1070 352 948 1069 351 974 1082 364 1037 1083 365 950 1081 363 950 1081 363 1037 1083 365 1015 1084 366 1033 1085 367 963 1086 368 1015 1084 366 1015 1084 366 963 1086 368 950 1081 363 967 1080 362 1033 1085 367 949 1075 357 949 1075 357 1033 1085 367 1015 1084 366 1037 1083 365 973 1076 358 1015 1084 366 1015 1084 366 973 1076 358 949 1075 357 942 1036 318 981 1038 320 1016 1088 370 1016 1088 370 981 1038 320 1045 1087 369 1016 1088 370 1031 1089 371 942 1036 318 942 1036 318 1031 1089 371 958 1037 319 950 1081 363 963 1086 368 1016 1088 370 1016 1088 370 963 1086 368 1031 1089 371 1016 1088 370 1045 1087 369 950 1081 363 950 1081 363 1045 1087 369 974 1082 364 1038 1077 359 973 1076 358 1044 1032 314 1044 1032 314 973 1076 358 981 1038 320 986 1090 1719 1048 1091 1720 1906 1093 1722 1906 1093 1722 1048 1091 1720 1907 1092 1721 923 1094 1723 1017 1095 1724 1908 1096 1725 1908 1096 1725 1017 1095 1724 1907 1092 1721 990 1097 1726 1050 1098 1727 1913 1100 1729 1913 1100 1729 1050 1098 1727 1911 1099 1728 925 1101 1730 1018 1102 1731 1909 1103 1732 1909 1103 1732 1018 1102 1731 1911 1099 1728 909 1104 1733 1051 1105 1734 1909 1103 1732 1909 1103 1732 1051 1105 1734 1905 1106 1735 951 1107 1736 1019 1108 1737 1906 1093 1722 1906 1093 1722 1019 1108 1737 1905 1106 1735 1052 1110 1739 1910 1111 1740 908 1109 1738 908 1109 1738 1910 1111 1740 1908 1096 1725 924 1112 1741 1020 1113 1742 1912 1114 1743 1912 1114 1743 1020 1113 1742 1910 1111 1740 910 1115 1744 1053 1116 1745 1912 1114 1743 1912 1114 1743 1053 1116 1745 1914 1117 1746 1021 1119 1748 1914 1117 1746 926 1118 1747 926 1118 1747 1914 1117 1746 1916 1120 1749 1022 1122 1751 1918 1123 1752 927 1121 1750 927 1121 1750 1918 1123 1752 1920 1124 1753 1046 1126 1755 1918 1123 1752 982 1125 1754 982 1125 1754 1918 1123 1752 1916 1120 1749 1047 1128 1757 1922 1129 1758 984 1127 1756 984 1127 1756 1922 1129 1758 1920 1124 1753 1023 1131 1760 1922 1129 1758 929 1130 1759 929 1130 1759 1922 1129 1758 1924 1132 1761 1054 1134 1763 1923 1135 1764 911 1133 1762 911 1133 1762 1923 1135 1764 1924 1132 1761 1024 1137 1766 1923 1135 1764 930 1136 1765 930 1136 1765 1923 1135 1764 1921 1138 1767 1049 1140 1769 1919 1141 1770 988 1139 1768 988 1139 1768 1919 1141 1770 1921 1138 1767 1025 1143 1772 1919 1141 1770 928 1142 1771 928 1142 1771 1919 1141 1770 1917 1144 1773 1055 1146 1775 1915 1147 1776 912 1145 1774 912 1145 1774 1915 1147 1776 1917 1144 1773 1026 1149 1778 1915 1147 1776 952 1148 1777 952 1148 1777 1915 1147 1776 1913 1100 1729 1027 1049 331 954 1150 969 953 1050 332 953 1050 332 954 1150 969 914 1151 963 954 1152 969 1027 1049 331 913 1153 967 913 1153 967 1027 1049 331 955 1044 326 1028 1034 316 957 1154 968 956 1035 317 956 1035 317 957 1154 968 916 1155 965 957 1156 968 1028 1034 316 915 1157 962 915 1157 962 1028 1034 316 958 1037 319 1029 1043 325 959 1158 966 955 1044 326 955 1044 326 959 1158 966 913 1159 967 959 1160 966 1029 1043 325 916 1161 965 916 1161 965 1029 1043 325 956 1035 317 1030 1055 337 961 1162 964 960 1056 338 960 1056 338 961 1162 964 917 1163 959 961 1164 964 1030 1055 337 914 1165 963 914 1165 963 1030 1055 337 953 1050 332 1031 1089 371 962 1166 961 958 1037 319 958 1037 319 962 1166 961 915 1167 962 962 1168 961 1031 1089 371 918 1169 958 918 1169 958 1031 1089 371 963 1086 368 964 1059 341 1032 1058 340 919 1171 955 919 1171 955 1032 1058 340 965 1170 960 1032 1058 340 960 1056 338 965 1172 960 965 1172 960 960 1056 338 917 1173 959 963 1086 368 1033 1085 367 918 1175 958 918 1175 958 1033 1085 367 966 1174 957 1033 1085 367 967 1080 362 966 1176 957 966 1176 957 967 1080 362 920 1177 954 968 1068 350 1034 1067 349 921 1179 950 921 1179 950 1034 1067 349 969 1178 956 1034 1067 349 964 1059 341 969 1180 956 969 1180 956 964 1059 341 919 1181 955 967 1080 362 1035 1079 361 920 1183 954 920 1183 954 1035 1079 361 970 1182 953 1035 1079 361 971 1074 356 970 1184 953 970 1184 953 971 1074 356 922 1185 952 971 1074 356 1036 1073 355 922 1187 952 922 1187 952 1036 1073 355 972 1186 951 1036 1073 355 968 1068 350 972 1188 951 972 1188 951 968 1068 350 921 1189 950 954 1191 1780 1020 1113 1742 914 1190 1779 914 1190 1779 1020 1113 1742 924 1112 1741 1020 1113 1742 954 1192 1780 923 1094 1723 923 1094 1723 954 1192 1780 913 1193 1781 957 1195 1783 1019 1108 1737 916 1194 1782 916 1194 1782 1019 1108 1737 951 1107 1736 925 1101 1730 1019 1108 1737 915 1197 1784 915 1197 1784 1019 1108 1737 957 1196 1783 923 1094 1723 913 1198 1781 1017 1095 1724 1017 1095 1724 913 1198 1781 959 1199 1785 916 1200 1782 951 1107 1736 959 1201 1785 959 1201 1785 951 1107 1736 1017 1095 1724 961 1203 1787 1021 1119 1748 917 1202 1786 917 1202 1786 1021 1119 1748 926 1118 1747 914 1204 1779 924 1112 1741 961 1205 1787 961 1205 1787 924 1112 1741 1021 1119 1748 915 1206 1784 962 1207 1788 925 1101 1730 925 1101 1730 962 1207 1788 1018 1102 1731 952 1148 1777 1018 1102 1731 918 1209 1789 918 1209 1789 1018 1102 1731 962 1208 1788 965 1211 1791 1022 1122 1751 919 1210 1790 919 1210 1790 1022 1122 1751 927 1121 1750 917 1212 1786 926 1118 1747 965 1213 1791 965 1213 1791 926 1118 1747 1022 1122 1751 918 1214 1789 966 1215 1792 952 1148 1777 952 1148 1777 966 1215 1792 1026 1149 1778 928 1142 1771 1026 1149 1778 920 1217 1793 920 1217 1793 1026 1149 1778 966 1216 1792 969 1219 1795 1023 1131 1760 921 1218 1794 921 1218 1794 1023 1131 1760 929 1130 1759 919 1220 1790 927 1121 1750 969 1221 1795 969 1221 1795 927 1121 1750 1023 1131 1760 920 1222 1793 970 1223 1796 928 1142 1771 928 1142 1771 970 1223 1796 1025 1143 1772 930 1136 1765 1025 1143 1772 922 1225 1797 922 1225 1797 1025 1143 1772 970 1224 1796 930 1136 1765 922 1226 1797 1024 1137 1766 1024 1137 1766 922 1226 1797 972 1227 1798 921 1228 1794 929 1130 1759 972 1229 1798 972 1229 1798 929 1130 1759 1024 1137 1766 1046 1126 1755 996 1230 1799 984 1127 1756 984 1127 1756 996 1230 1799 932 1231 1800 1046 1126 1755 982 1125 1754 996 1230 1799 996 1230 1799 982 1125 1754 931 1232 1801 1047 1128 1757 983 1233 1802 911 1133 1762 911 1133 1762 983 1233 1802 933 1234 1803 983 1233 1802 1047 1128 1757 932 1231 1800 932 1231 1800 1047 1128 1757 984 1127 1756 908 1109 1738 1048 1091 1720 935 1236 1805 935 1236 1805 1048 1091 1720 985 1235 1804 1048 1091 1720 986 1090 1719 985 1235 1804 985 1235 1804 986 1090 1719 934 1237 1806 1049 1140 1769 987 1238 1807 912 1145 1774 912 1145 1774 987 1238 1807 937 1239 1808 987 1238 1807 1049 1140 1769 936 1240 1809 936 1240 1809 1049 1140 1769 988 1139 1768 909 1104 1733 1050 1098 1727 939 1242 1811 939 1242 1811 1050 1098 1727 989 1241 1810 989 1241 1810 1050 1098 1727 938 1243 1812 938 1243 1812 1050 1098 1727 990 1097 1726 986 1090 1719 1051 1105 1734 934 1237 1806 934 1237 1806 1051 1105 1734 991 1244 1813 1051 1105 1734 909 1104 1733 991 1244 1813 991 1244 1813 909 1104 1733 939 1242 1811 910 1115 1744 1052 1110 1739 940 1246 1815 940 1246 1815 1052 1110 1739 992 1245 1814 1052 1110 1739 908 1109 1738 992 1245 1814 992 1245 1814 908 1109 1738 935 1236 1805 982 1125 1754 1053 1116 1745 931 1232 1801 931 1232 1801 1053 1116 1745 993 1247 1816 1053 1116 1745 910 1115 1744 993 1247 1816 993 1247 1816 910 1115 1744 940 1246 1815 1054 1134 1763 994 1248 1817 988 1139 1768 988 1139 1768 994 1248 1817 936 1240 1809 994 1248 1817 1054 1134 1763 933 1234 1803 933 1234 1803 1054 1134 1763 911 1133 1762 1055 1146 1775 995 1249 1818 990 1097 1726 990 1097 1726 995 1249 1818 938 1243 1812 995 1249 1818 1055 1146 1775 937 1239 1808 937 1239 1808 1055 1146 1775 912 1145 1774 1056 1250 1819 997 1251 1820 996 1230 1799 996 1230 1799 997 1251 1820 932 1231 1800 998 1252 1821 1056 1250 1819 931 1232 1801 931 1232 1801 1056 1250 1819 996 1230 1799 983 1233 1802 1057 1253 1822 933 1234 1803 933 1234 1803 1057 1253 1822 999 1254 1823 1057 1253 1822 983 1233 1802 997 1251 1820 997 1251 1820 983 1233 1802 932 1231 1800 1058 1255 1824 1000 1256 1825 985 1235 1804 985 1235 1804 1000 1256 1825 935 1236 1805 1001 1257 1826 1058 1255 1824 934 1237 1806 934 1237 1806 1058 1255 1824 985 1235 1804 987 1238 1807 1059 1258 1827 937 1239 1808 937 1239 1808 1059 1258 1827 1002 1259 1828 1059 1258 1827 987 1238 1807 1003 1260 1829 1003 1260 1829 987 1238 1807 936 1240 1809 989 1241 1810 1060 1261 1830 939 1242 1811 939 1242 1811 1060 1261 1830 1004 1262 1831 1060 1261 1830 989 1241 1810 1005 1263 1832 1005 1263 1832 989 1241 1810 938 1243 1812 1061 1264 1833 1001 1257 1826 991 1244 1813 991 1244 1813 1001 1257 1826 934 1237 1806 1004 1262 1831 1061 1264 1833 939 1242 1811 939 1242 1811 1061 1264 1833 991 1244 1813 1062 1265 1834 1006 1266 1835 992 1245 1814 992 1245 1814 1006 1266 1835 940 1246 1815 1000 1256 1825 1062 1265 1834 935 1236 1805 935 1236 1805 1062 1265 1834 992 1245 1814 1063 1267 1836 998 1252 1821 993 1247 1816 993 1247 1816 998 1252 1821 931 1232 1801 1006 1266 1835 1063 1267 1836 940 1246 1815 940 1246 1815 1063 1267 1836 993 1247 1816 994 1248 1817 1064 1268 1837 936 1240 1809 936 1240 1809 1064 1268 1837 1003 1260 1829 1064 1268 1837 994 1248 1817 999 1254 1823 999 1254 1823 994 1248 1817 933 1234 1803 995 1249 1818 1065 1269 1838 938 1243 1812 938 1243 1812 1065 1269 1838 1005 1263 1832 1065 1269 1838 995 1249 1818 1002 1259 1828 1002 1259 1828 995 1249 1818 937 1239 1808 1037 1083 365 974 1082 364 973 1076 358 973 1076 358 974 1082 364 981 1038 320 974 1082 364 1045 1087 369 981 1038 320 980 1031 313 1043 1041 323 975 1070 352 975 1070 352 1043 1041 323 1039 1071 353 1044 1032 314 980 1031 313 1038 1077 359 1038 1077 359 980 1031 313 975 1070 352 1043 1041 323 979 1040 322 1039 1071 353 1039 1071 353 979 1040 322 976 1064 346 1041 1053 335 977 1052 334 978 1046 328 1066 1061 343 978 1046 328 1067 1062 344 978 1046 328 977 1052 334 1067 1062 344 1042 1047 329 1040 1065 347 979 1040 322 979 1040 322 1040 1065 347 976 1064 346 1067 1062 344 977 1052 334 1011 1057 339 1011 1057 339 977 1052 334 945 1051 333 978 1046 328 1066 1061 343 1042 1047 329 1042 1047 329 1066 1061 343 1040 1065 347 997 1251 1820 1056 1250 1819 903 1271 1840 903 1271 1840 1056 1250 1819 904 1270 1839 1056 1250 1819 998 1252 1821 904 1270 1839 904 1270 1839 998 1252 1821 1313 1013 1702 1057 1253 1822 902 1272 1841 999 1254 1823 999 1254 1823 902 1272 1841 901 1273 1842 1058 1255 1824 863 981 1670 1000 1256 1825 1000 1256 1825 863 981 1670 864 982 1671 1058 1255 1824 1001 1257 1826 863 981 1670 863 981 1670 1001 1257 1826 853 971 1660 1059 1258 1827 887 1005 1694 1002 1259 1828 1002 1259 1828 887 1005 1694 880 998 1687 1003 1260 1829 894 1012 1701 1059 1258 1827 1059 1258 1827 894 1012 1701 887 1005 1694 1004 1262 1831 1060 1261 1830 851 969 1658 851 969 1658 1060 1261 1830 862 980 1669 1060 1261 1830 1005 1263 1832 862 980 1669 862 980 1669 1005 1263 1832 870 988 1677 1061 1264 1833 852 970 1659 1001 1257 1826 1001 1257 1826 852 970 1659 853 971 1660 1061 1264 1833 1004 1262 1831 852 970 1659 852 970 1659 1004 1262 1831 851 969 1658 1006 1266 1835 1062 1265 1834 881 1000 1689 881 1000 1689 1062 1265 1834 874 993 1682 1062 1265 1834 1000 1256 1825 874 993 1682 874 993 1682 1000 1256 1825 864 982 1671 1063 1267 1836 1006 1266 1835 888 1007 1696 888 1007 1696 1006 1266 1835 881 1000 1689 1003 1260 1829 1064 1268 1837 894 1012 1701 894 1012 1701 1064 1268 1837 900 1024 1713 999 1254 1823 901 1273 1842 1064 1268 1837 1064 1268 1837 901 1273 1842 900 1024 1713 1005 1263 1832 1065 1269 1838 870 988 1677 870 988 1677 1065 1269 1838 873 991 1680 1065 1269 1838 1002 1259 1828 873 991 1680 873 991 1680 1002 1259 1828 880 998 1687 997 1251 1820 903 1271 1840 1057 1253 1822 1057 1253 1822 903 1271 1840 902 1272 1841 870 988 1677 861 979 1668 862 980 1669 862 980 1669 850 968 1657 851 969 1658 1063 1267 1836 888 1007 1696 998 1252 1821 998 1252 1821 888 1007 1696 1313 1013 1702 1116 1274 372 1237 1275 373 1117 1276 374 1237 1275 373 1152 1278 376 1151 1277 375 1151 1277 375 1152 1278 376 1117 1276 374 1153 1279 377 1238 1280 378 1070 1282 380 1070 1282 380 1238 1280 378 1092 1281 379 1238 1280 378 1153 1279 377 1308 1283 381 1308 1283 381 1153 1279 377 1309 1284 382 1239 1285 383 1310 1286 384 1153 1279 377 1153 1279 377 1310 1286 384 1309 1284 382 1110 1287 385 1287 1288 386 1093 1289 387 1093 1289 387 1287 1288 386 1239 1285 383 1239 1285 383 1153 1279 377 1093 1289 387 1093 1289 387 1153 1279 377 1070 1282 380 1118 1291 389 1154 1292 390 1219 1290 388 1219 1290 388 1154 1292 390 1297 1293 391 1115 1295 393 1297 1293 391 1113 1294 392 1113 1294 392 1297 1293 391 1154 1292 390 1112 1297 395 1150 1298 396 1120 1296 394 1120 1296 394 1150 1298 396 1155 1299 397 1071 1300 398 1155 1299 397 1069 1302 399 1069 1302 399 1155 1299 397 1150 1301 396 1154 1292 390 1240 1303 400 1113 1305 392 1113 1305 392 1240 1303 400 1156 1304 401 1240 1303 400 1277 1307 402 1156 1306 401 1156 1306 401 1277 1307 402 1114 1308 403 1277 1307 402 1240 1303 400 1222 1310 405 1222 1310 405 1240 1303 400 1157 1309 404 1240 1303 400 1154 1292 390 1157 1309 404 1157 1309 404 1154 1292 390 1118 1291 389 1121 1312 407 1158 1313 408 1218 1311 406 1218 1311 406 1158 1313 408 1274 1314 409 1219 1290 388 1274 1314 409 1118 1291 389 1118 1291 389 1274 1314 409 1158 1313 408 1159 1315 410 1241 1316 411 1123 1318 413 1123 1318 413 1241 1316 411 1160 1317 412 1241 1316 411 1245 1319 414 1160 1317 412 1160 1317 412 1245 1319 414 1124 1320 415 1245 1319 414 1241 1316 411 1161 1321 416 1161 1321 416 1241 1316 411 1122 1322 417 1122 1322 417 1241 1316 411 1159 1315 410 1162 1323 418 1242 1324 419 1120 1296 394 1120 1296 394 1242 1324 419 1119 1325 420 1242 1324 419 1162 1323 418 1220 1326 421 1220 1326 421 1162 1323 418 1125 1327 422 1162 1323 418 1243 1328 423 1125 1327 422 1125 1327 422 1243 1328 423 1163 1329 424 1243 1328 423 1094 1330 425 1163 1329 424 1163 1329 424 1094 1330 425 1072 1331 426 1094 1330 425 1243 1328 423 1071 1300 398 1071 1300 398 1243 1328 423 1155 1299 397 1243 1328 423 1162 1323 418 1155 1299 397 1155 1299 397 1162 1323 418 1120 1296 394 1278 1332 427 1244 1333 428 1223 1335 430 1223 1335 430 1244 1333 428 1164 1334 429 1164 1334 429 1244 1333 428 1121 1312 407 1121 1312 407 1244 1333 428 1158 1313 408 1244 1333 428 1157 1309 404 1158 1313 408 1158 1313 408 1157 1309 404 1118 1291 389 1244 1333 428 1278 1332 427 1157 1309 404 1157 1309 404 1278 1332 427 1222 1310 405 1124 1320 415 1245 1319 414 1126 1337 432 1126 1337 432 1245 1319 414 1165 1336 431 1165 1336 431 1245 1319 414 1166 1338 433 1129 1340 435 1167 1341 436 1208 1339 434 1208 1339 434 1167 1341 436 1128 1342 437 1167 1341 436 1129 1340 435 1209 1344 439 1209 1344 439 1129 1340 435 1296 1343 438 1168 1345 440 1246 1346 441 1073 1348 443 1073 1348 443 1246 1346 441 1095 1347 442 1095 1347 442 1246 1346 441 1074 1350 445 1074 1350 445 1246 1346 441 1266 1349 444 1246 1346 441 1167 1341 436 1266 1349 444 1266 1349 444 1167 1341 436 1209 1344 439 1246 1346 441 1168 1345 440 1167 1341 436 1167 1341 436 1168 1345 440 1128 1342 437 1228 1351 446 1247 1352 447 1131 1354 449 1131 1354 449 1247 1352 447 1170 1353 448 1247 1352 447 1169 1355 450 1170 1353 448 1170 1353 448 1169 1355 450 1130 1356 451 1248 1358 453 1172 1359 454 1171 1357 452 1171 1357 452 1172 1359 454 1132 1360 455 1248 1358 453 1237 1275 373 1172 1359 454 1172 1359 454 1237 1275 373 1116 1274 372 1301 1361 456 1174 1362 457 1171 1357 452 1171 1357 452 1174 1362 457 1248 1358 453 1248 1358 453 1173 1363 458 1237 1275 373 1237 1275 373 1173 1363 458 1152 1278 376 1173 1363 458 1248 1358 453 1133 1364 459 1133 1364 459 1248 1358 453 1174 1362 457 1175 1365 460 1249 1366 461 1306 1368 463 1306 1368 463 1249 1366 461 1307 1367 462 1249 1366 461 1238 1280 378 1307 1367 462 1307 1367 462 1238 1280 378 1308 1283 381 1238 1280 378 1249 1366 461 1092 1281 379 1092 1281 379 1249 1366 461 1096 1369 464 1249 1366 461 1175 1365 460 1096 1369 464 1096 1369 464 1175 1365 460 1075 1370 465 1218 1311 406 1273 1371 466 1121 1312 407 1121 1312 407 1273 1371 466 1176 1372 467 1135 1374 469 1176 1372 467 1134 1373 468 1134 1373 468 1176 1372 467 1273 1371 466 1177 1375 470 1250 1376 471 1136 1378 473 1136 1378 473 1250 1376 471 1178 1377 472 1250 1376 471 1179 1379 474 1178 1377 472 1178 1377 472 1179 1379 474 1137 1380 475 1179 1379 474 1250 1376 471 1132 1360 455 1132 1360 455 1250 1376 471 1171 1357 452 1251 1382 477 1177 1375 470 1180 1381 476 1180 1381 476 1177 1375 470 1136 1378 473 1174 1362 457 1301 1361 456 1235 1384 479 1181 1383 478 1235 1384 479 1301 1361 456 1181 1383 478 1251 1382 477 1126 1337 432 1126 1337 432 1251 1382 477 1182 1385 480 1251 1382 477 1180 1381 476 1182 1385 480 1182 1385 480 1180 1381 476 1138 1386 481 1252 1388 483 1179 1379 474 1183 1387 482 1183 1387 482 1179 1379 474 1132 1360 455 1179 1379 474 1252 1388 483 1137 1380 475 1137 1380 475 1252 1388 483 1184 1389 484 1252 1388 483 1286 1390 485 1184 1389 484 1184 1389 484 1286 1390 485 1232 1391 486 1286 1390 485 1252 1388 483 1233 1392 487 1233 1392 487 1252 1388 483 1183 1387 482 1217 1394 489 1272 1395 490 1139 1393 488 1139 1393 488 1272 1395 490 1185 1396 491 1140 1398 493 1185 1396 491 1216 1397 492 1216 1397 492 1185 1396 491 1272 1395 490 1186 1399 494 1253 1400 495 1142 1402 497 1142 1402 497 1253 1400 495 1187 1401 496 1253 1400 495 1188 1403 498 1187 1401 496 1187 1401 496 1188 1403 498 1144 1404 499 1188 1403 498 1253 1400 495 1143 1406 501 1143 1406 501 1253 1400 495 1189 1405 500 1253 1400 495 1186 1399 494 1189 1405 500 1189 1405 500 1186 1399 494 1141 1407 502 1190 1408 503 1254 1409 504 1145 1411 506 1145 1411 506 1254 1409 504 1191 1410 505 1254 1409 504 1192 1412 507 1191 1410 505 1191 1410 505 1192 1412 507 1130 1356 451 1254 1409 504 1186 1399 494 1192 1412 507 1192 1412 507 1186 1399 494 1142 1402 497 1186 1399 494 1254 1409 504 1141 1407 502 1141 1407 502 1254 1409 504 1190 1408 503 1193 1413 508 1255 1414 509 1225 1416 511 1225 1416 511 1255 1414 509 1281 1415 510 1255 1414 509 1194 1417 512 1281 1415 510 1281 1415 510 1194 1417 512 1226 1418 513 1194 1417 512 1255 1414 509 1140 1398 493 1140 1398 493 1255 1414 509 1185 1396 491 1255 1414 509 1193 1413 508 1185 1396 491 1185 1396 491 1193 1413 508 1139 1393 488 1256 1420 515 1188 1403 498 1195 1419 514 1195 1419 514 1188 1403 498 1143 1406 501 1188 1403 498 1256 1420 515 1144 1404 499 1144 1404 499 1256 1420 515 1196 1421 516 1256 1420 515 1284 1422 517 1196 1421 516 1196 1421 516 1284 1422 517 1230 1423 518 1284 1422 517 1256 1420 515 1231 1424 519 1231 1424 519 1256 1420 515 1195 1419 514 1216 1397 492 1271 1425 520 1140 1398 493 1140 1398 493 1271 1425 520 1194 1417 512 1227 1426 521 1226 1418 513 1271 1425 520 1271 1425 520 1226 1418 513 1194 1417 512 1257 1428 523 1283 1429 524 1197 1427 522 1197 1427 522 1283 1429 524 1229 1430 525 1283 1429 524 1257 1428 523 1230 1423 518 1230 1423 518 1257 1428 523 1196 1421 516 1196 1421 516 1257 1428 523 1144 1404 499 1144 1404 499 1257 1428 523 1187 1401 496 1257 1428 523 1197 1427 522 1187 1401 496 1187 1401 496 1197 1427 522 1142 1402 497 1198 1431 526 1258 1432 527 1125 1327 422 1125 1327 422 1258 1432 527 1220 1326 421 1258 1432 527 1198 1431 526 1221 1433 528 1221 1433 528 1198 1431 526 1146 1434 529 1259 1436 531 1199 1437 532 1200 1435 530 1200 1435 530 1199 1437 532 1147 1438 533 1174 1362 457 1260 1439 534 1133 1364 459 1133 1364 459 1260 1439 534 1201 1440 535 1304 1442 537 1305 1443 538 1302 1441 536 1302 1441 536 1305 1443 538 1201 1440 535 1198 1431 526 1261 1444 539 1146 1434 529 1146 1434 529 1261 1444 539 1203 1445 540 1261 1444 539 1097 1446 541 1203 1445 540 1203 1445 540 1097 1446 541 1076 1447 542 1097 1446 541 1261 1444 539 1072 1331 426 1072 1331 426 1261 1444 539 1163 1329 424 1261 1444 539 1198 1431 526 1163 1329 424 1163 1329 424 1198 1431 526 1125 1327 422 1262 1448 543 1175 1365 460 1305 1443 538 1305 1443 538 1175 1365 460 1306 1368 463 1175 1365 460 1262 1448 543 1075 1370 465 1075 1370 465 1262 1448 543 1098 1449 544 1262 1448 543 1204 1450 545 1098 1449 544 1098 1449 544 1204 1450 545 1077 1451 546 1204 1450 545 1262 1448 543 1304 1442 537 1304 1442 537 1262 1448 543 1305 1443 538 1148 1452 547 1276 1453 548 1146 1434 529 1146 1434 529 1276 1453 548 1221 1433 528 1199 1437 532 1206 1454 549 1147 1438 533 1147 1438 533 1206 1454 549 1205 1455 550 1303 1457 552 1304 1442 537 1265 1456 551 1265 1456 551 1304 1442 537 1302 1441 536 1078 1458 553 1263 1459 554 1076 1447 542 1076 1447 542 1263 1459 554 1203 1445 540 1263 1459 554 1148 1452 547 1203 1445 540 1203 1445 540 1148 1452 547 1146 1434 529 1204 1450 545 1264 1460 555 1077 1451 546 1077 1451 546 1264 1460 555 1099 1461 556 1264 1460 555 1204 1450 545 1303 1457 552 1303 1457 552 1204 1450 545 1304 1442 537 1206 1454 549 1129 1340 435 1205 1455 550 1205 1455 550 1129 1340 435 1208 1339 434 1074 1350 445 1266 1349 444 1078 1458 553 1078 1458 553 1266 1349 444 1263 1459 554 1266 1349 444 1209 1344 439 1263 1459 554 1263 1459 554 1209 1344 439 1148 1452 547 1267 1463 558 1210 1464 559 1279 1462 557 1279 1462 557 1210 1464 559 1224 1465 560 1210 1464 559 1267 1463 558 1135 1374 469 1135 1374 469 1267 1463 558 1176 1372 467 1267 1463 558 1164 1334 429 1176 1372 467 1176 1372 467 1164 1334 429 1121 1312 407 1164 1334 429 1267 1463 558 1223 1335 430 1223 1335 430 1267 1463 558 1279 1462 557 1285 1466 561 1268 1467 562 1232 1391 486 1232 1391 486 1268 1467 562 1184 1389 484 1268 1467 562 1211 1468 563 1184 1389 484 1184 1389 484 1211 1468 563 1137 1380 475 1211 1468 563 1268 1467 562 1143 1406 501 1143 1406 501 1268 1467 562 1195 1419 514 1268 1467 562 1285 1466 561 1195 1419 514 1195 1419 514 1285 1466 561 1231 1424 519 1149 1469 564 1269 1470 565 1145 1411 506 1145 1411 506 1269 1470 565 1212 1471 566 1269 1470 565 1213 1472 567 1212 1471 566 1212 1471 566 1213 1472 567 1138 1386 481 1134 1373 468 1300 1473 568 1135 1374 469 1135 1374 469 1300 1473 568 1214 1474 569 1139 1393 488 1214 1474 569 1217 1394 489 1217 1394 489 1214 1474 569 1300 1473 568 1215 1475 570 1270 1476 571 1141 1407 502 1141 1407 502 1270 1476 571 1189 1405 500 1270 1476 571 1211 1468 563 1189 1405 500 1189 1405 500 1211 1468 563 1143 1406 501 1211 1468 563 1270 1476 571 1137 1380 475 1137 1380 475 1270 1476 571 1178 1377 472 1270 1476 571 1215 1475 570 1178 1377 472 1178 1377 472 1215 1475 570 1136 1378 473 1227 1426 521 1271 1425 520 1228 1351 446 1228 1351 446 1271 1425 520 1247 1352 447 1271 1425 520 1216 1397 492 1247 1352 447 1247 1352 447 1216 1397 492 1169 1355 450 1216 1397 492 1272 1395 490 1169 1355 450 1169 1355 450 1272 1395 490 1293 1477 572 1272 1395 490 1217 1394 489 1293 1477 572 1293 1477 572 1217 1394 489 1149 1469 564 1134 1373 468 1273 1371 466 1213 1472 567 1213 1472 567 1273 1371 466 1290 1478 573 1273 1371 466 1218 1311 406 1290 1478 573 1290 1478 573 1218 1311 406 1124 1320 415 1218 1311 406 1274 1314 409 1124 1320 415 1124 1320 415 1274 1314 409 1160 1317 412 1274 1314 409 1219 1290 388 1160 1317 412 1160 1317 412 1219 1290 388 1123 1318 413 1275 1480 574 1159 1315 410 1115 1479 393 1115 1479 393 1159 1315 410 1123 1318 413 1330 1481 575 1161 1321 416 1122 1322 417 1259 1436 531 1258 1432 527 1199 1437 532 1199 1437 532 1258 1432 527 1221 1433 528 1276 1453 548 1206 1454 549 1221 1433 528 1221 1433 528 1206 1454 549 1199 1437 532 1296 1343 438 1129 1340 435 1276 1453 548 1276 1453 548 1129 1340 435 1206 1454 549 1114 1482 403 1277 1307 402 1068 1484 577 1068 1484 577 1277 1307 402 1100 1483 576 1100 1483 576 1277 1307 402 1079 1485 578 1079 1485 578 1277 1307 402 1222 1310 405 1278 1332 427 1101 1486 579 1222 1310 405 1222 1310 405 1101 1486 579 1079 1485 578 1101 1486 579 1278 1332 427 1080 1487 580 1080 1487 580 1278 1332 427 1223 1335 430 1279 1462 557 1102 1488 581 1223 1335 430 1223 1335 430 1102 1488 581 1080 1487 580 1279 1462 557 1224 1465 560 1102 1488 581 1102 1488 581 1224 1465 560 1081 1489 582 1224 1465 560 1280 1490 583 1081 1489 582 1081 1489 582 1280 1490 583 1103 1491 584 1280 1490 583 1225 1416 511 1103 1491 584 1103 1491 584 1225 1416 511 1082 1492 585 1225 1416 511 1281 1415 510 1082 1492 585 1082 1492 585 1281 1415 510 1104 1493 586 1281 1415 510 1226 1418 513 1104 1493 586 1104 1493 586 1226 1418 513 1083 1494 587 1226 1418 513 1227 1426 521 1083 1494 587 1083 1494 587 1227 1426 521 1084 1495 588 1227 1426 521 1228 1351 446 1084 1495 588 1084 1495 588 1228 1351 446 1085 1496 589 1282 1497 590 1105 1498 591 1131 1354 449 1131 1354 449 1105 1498 591 1087 1499 592 1105 1498 591 1282 1497 590 1086 1500 593 1086 1500 593 1282 1497 590 1229 1430 525 1106 1501 594 1283 1429 524 1088 1502 595 1088 1502 595 1283 1429 524 1230 1423 518 1283 1429 524 1106 1501 594 1229 1430 525 1229 1430 525 1106 1501 594 1086 1500 593 1284 1422 517 1107 1503 596 1230 1423 518 1230 1423 518 1107 1503 596 1088 1502 595 1107 1503 596 1284 1422 517 1089 1504 597 1089 1504 597 1284 1422 517 1231 1424 519 1108 1505 598 1285 1466 561 1090 1506 599 1090 1506 599 1285 1466 561 1232 1391 486 1285 1466 561 1108 1505 598 1231 1424 519 1231 1424 519 1108 1505 598 1089 1504 597 1286 1390 485 1109 1507 600 1232 1391 486 1232 1391 486 1109 1507 600 1090 1506 599 1109 1507 600 1286 1390 485 1091 1508 601 1091 1508 601 1286 1390 485 1233 1392 487 1287 1288 386 1110 1287 385 1233 1392 487 1233 1392 487 1110 1287 385 1091 1508 601 1168 1345 440 1288 1509 602 1128 1342 437 1128 1342 437 1288 1509 602 1234 1510 603 1288 1509 602 1264 1460 555 1234 1510 603 1234 1510 603 1264 1460 555 1303 1457 552 1264 1460 555 1288 1509 602 1099 1461 556 1099 1461 556 1288 1509 602 1111 1511 604 1288 1509 602 1168 1345 440 1111 1511 604 1111 1511 604 1168 1345 440 1073 1348 443 1085 1496 589 1228 1351 446 1087 1499 592 1087 1499 592 1228 1351 446 1131 1354 449 1289 1512 605 1235 1384 479 1200 1435 530 1200 1435 530 1235 1384 479 1127 1513 606 1235 1384 479 1289 1512 605 1174 1362 457 1174 1362 457 1289 1512 605 1260 1439 534 1289 1512 605 1236 1514 607 1260 1439 534 1260 1439 534 1236 1514 607 1202 1515 608 1236 1514 607 1289 1512 605 1147 1438 533 1147 1438 533 1289 1512 605 1200 1435 530 1213 1472 567 1290 1478 573 1138 1386 481 1138 1386 481 1290 1478 573 1182 1385 480 1182 1385 480 1290 1478 573 1126 1337 432 1126 1337 432 1290 1478 573 1124 1320 415 1291 1516 609 1236 1514 607 1205 1455 550 1205 1455 550 1236 1514 607 1147 1438 533 1236 1514 607 1291 1516 609 1202 1515 608 1202 1515 608 1291 1516 609 1207 1517 610 1215 1475 570 1292 1518 611 1136 1378 473 1136 1378 473 1292 1518 611 1180 1381 476 1180 1381 476 1292 1518 611 1138 1386 481 1138 1386 481 1292 1518 611 1212 1471 566 1292 1518 611 1190 1408 503 1212 1471 566 1212 1471 566 1190 1408 503 1145 1411 506 1292 1518 611 1215 1475 570 1190 1408 503 1190 1408 503 1215 1475 570 1141 1407 502 1294 1519 612 1291 1516 609 1208 1339 434 1208 1339 434 1291 1516 609 1205 1455 550 1291 1516 609 1294 1519 612 1207 1517 610 1207 1517 610 1294 1519 612 1265 1456 551 1169 1355 450 1293 1477 572 1130 1356 451 1130 1356 451 1293 1477 572 1191 1410 505 1293 1477 572 1149 1469 564 1191 1410 505 1191 1410 505 1149 1469 564 1145 1411 506 1234 1510 603 1294 1519 612 1128 1342 437 1128 1342 437 1294 1519 612 1208 1339 434 1282 1497 590 1295 1520 613 1229 1430 525 1229 1430 525 1295 1520 613 1197 1427 522 1295 1520 613 1192 1412 507 1197 1427 522 1197 1427 522 1192 1412 507 1142 1402 497 1192 1412 507 1295 1520 613 1130 1356 451 1130 1356 451 1295 1520 613 1170 1353 448 1295 1520 613 1282 1497 590 1170 1353 448 1170 1353 448 1282 1497 590 1131 1354 449 1209 1344 439 1296 1343 438 1148 1452 547 1148 1452 547 1296 1343 438 1276 1453 548 1219 1290 388 1297 1293 391 1123 1318 413 1123 1318 413 1297 1293 391 1115 1521 393 1126 1337 432 1165 1336 431 1181 1383 478 1165 1336 431 1127 1513 606 1181 1383 478 1235 1384 479 1181 1383 478 1127 1513 606 1298 1522 614 1287 1288 386 1183 1387 482 1183 1387 482 1287 1288 386 1233 1392 487 1287 1288 386 1298 1522 614 1239 1285 383 1239 1285 383 1298 1522 614 1310 1286 384 1172 1359 454 1298 1522 614 1132 1360 455 1132 1360 455 1298 1522 614 1183 1387 482 1210 1464 559 1299 1523 615 1224 1465 560 1224 1465 560 1299 1523 615 1280 1490 583 1299 1523 615 1193 1413 508 1280 1490 583 1280 1490 583 1193 1413 508 1225 1416 511 1193 1413 508 1299 1523 615 1139 1393 488 1139 1393 488 1299 1523 615 1214 1474 569 1299 1523 615 1210 1464 559 1214 1474 569 1214 1474 569 1210 1464 559 1135 1374 469 1217 1394 489 1300 1473 568 1149 1469 564 1149 1469 564 1300 1473 568 1269 1470 565 1300 1473 568 1134 1373 468 1269 1470 565 1269 1470 565 1134 1373 468 1213 1472 567 1301 1361 456 1177 1375 470 1181 1383 478 1181 1383 478 1177 1375 470 1251 1382 477 1250 1376 471 1177 1375 470 1171 1357 452 1171 1357 452 1177 1375 470 1301 1361 456 1202 1515 608 1207 1517 610 1302 1441 536 1302 1441 536 1207 1517 610 1265 1456 551 1260 1439 534 1202 1515 608 1201 1440 535 1201 1440 535 1202 1515 608 1302 1441 536 1265 1456 551 1294 1519 612 1303 1457 552 1303 1457 552 1294 1519 612 1234 1510 603 1305 1443 538 1306 1368 463 1201 1440 535 1201 1440 535 1306 1368 463 1133 1364 459 1307 1367 462 1173 1363 458 1306 1368 463 1306 1368 463 1173 1363 458 1133 1364 459 1173 1363 458 1307 1367 462 1152 1278 376 1152 1278 376 1307 1367 462 1308 1283 381 1308 1283 381 1309 1284 382 1152 1278 376 1152 1278 376 1309 1284 382 1117 1276 374 1310 1286 384 1116 1274 372 1309 1284 382 1309 1284 382 1116 1274 372 1117 1276 374 1298 1522 614 1172 1359 454 1310 1286 384 1310 1286 384 1172 1359 454 1116 1274 372 1319 1525 1844 1318 1526 1845 1068 1524 1843 1068 1524 1843 1318 1526 1845 1114 1527 1846 1321 1528 1847 1318 1526 1845 902 1272 1841 902 1272 1841 1318 1526 1845 906 1027 1716 902 1272 1841 906 1027 1716 901 1273 1842 901 1273 1842 906 1027 1716 1311 1026 1715 899 1022 1711 900 1024 1713 1311 1026 1715 1311 1026 1715 900 1024 1713 901 1273 1842 898 1023 1712 899 1022 1711 1312 1025 1714 1312 1025 1714 899 1022 1711 1311 1026 1715 1322 1530 1849 1323 1531 1850 1113 1529 1848 1113 1529 1848 1323 1531 1850 1115 1532 1851 1324 1533 1852 1323 1531 1850 1313 1013 1702 1313 1013 1702 1323 1531 1850 904 1270 1839 1325 1535 1854 1326 1536 1855 1316 1534 1853 1316 1534 1853 1326 1536 1855 1317 1537 1856 1320 1539 1858 1332 1540 1859 1315 1538 1857 1315 1538 1857 1332 1540 1859 897 1018 1707 1322 1530 1849 1321 1528 1847 903 1271 1840 903 1271 1840 1321 1528 1847 902 1272 1841 1325 1535 1854 1324 1533 1852 895 1014 1703 895 1014 1703 1324 1533 1852 1313 1013 1702 1275 1541 574 1316 1542 616 1159 1315 410 1159 1315 410 1316 1542 616 1122 1322 417 1120 1296 394 1119 1325 420 1112 1544 395 1112 1544 395 1119 1325 420 1317 1543 617 1327 1545 1860 1326 1536 1855 1314 1016 1705 1314 1016 1705 1326 1536 1855 896 1015 1704 1119 1325 420 1122 1322 417 1317 1546 617 1317 1546 617 1122 1322 417 1316 1547 616 1318 1526 1845 1319 1525 1844 906 1027 1716 906 1027 1716 1319 1525 1844 905 1028 1717 1332 1540 1859 1320 1539 1858 1150 1548 1861 1150 1548 1861 1320 1539 1858 1069 1549 1862 1114 1550 1846 1318 1526 1845 1156 1551 1863 1156 1551 1863 1318 1526 1845 1321 1528 1847 1156 1552 1863 1321 1528 1847 1113 1553 1848 1113 1553 1848 1321 1528 1847 1322 1530 1849 904 1270 1839 1323 1531 1850 903 1271 1840 903 1271 1840 1323 1531 1850 1322 1530 1849 1323 1531 1850 1324 1533 1852 1115 1554 1851 1115 1554 1851 1324 1533 1852 1275 1555 1864 1324 1533 1852 1325 1535 1854 1275 1556 1864 1275 1556 1864 1325 1535 1854 1316 1557 1853 1326 1536 1855 1325 1535 1854 896 1015 1704 896 1015 1704 1325 1535 1854 895 1014 1703 1326 1536 1855 1327 1545 1860 1317 1558 1856 1317 1558 1856 1327 1545 1860 1112 1559 1865 1327 1545 1860 1332 1540 1859 1112 1560 1865 1112 1560 1865 1332 1540 1859 1150 1561 1861 1328 1562 618 1259 1436 531 1127 1513 606 1127 1513 606 1259 1436 531 1200 1435 530 1258 1432 527 1259 1436 531 1220 1326 421 1220 1326 421 1259 1436 531 1328 1562 618 1242 1324 419 1220 1326 421 1329 1563 619 1329 1563 619 1220 1326 421 1328 1562 618 1328 1562 618 1127 1513 606 1166 1338 433 1166 1338 433 1127 1513 606 1165 1336 431 1329 1563 619 1328 1562 618 1330 1481 575 1330 1481 575 1328 1562 618 1166 1338 433 1329 1563 619 1330 1481 575 1119 1325 420 1119 1325 420 1330 1481 575 1122 1322 417 1119 1325 420 1242 1324 419 1329 1563 619 1330 1481 575 1166 1338 433 1161 1321 416 1161 1321 416 1166 1338 433 1245 1319 414 1314 1016 1705 897 1018 1707 1327 1545 1860 1327 1545 1860 897 1018 1707 1332 1540 1859 721 832 1521 1333 849 1538 720 830 1519 720 830 1519 1333 849 1538 734 848 1537 1333 849 1538 1334 863 1552 734 848 1537 734 848 1537 1334 863 1552 747 862 1551 1334 863 1552 1335 877 1566 747 862 1551 747 862 1551 1335 877 1566 760 876 1565 1335 877 1566 1336 891 1580 760 876 1565 760 876 1565 1336 891 1580 773 890 1579 773 890 1579 1336 891 1580 786 904 1593 786 904 1593 1336 891 1580 2 361 1172 2 361 1172 86 364 1175 786 904 1593 786 904 1593 86 364 1175 798 916 1605 884 1002 1691 320 1020 1709 891 1009 1698 891 1009 1698 320 1020 1709 1337 1017 1706 709 810 1499 1349 1564 1866 696 807 1496 696 807 1496 1349 1564 1866 1338 1565 1867 1349 1564 1866 1350 1566 1868 1338 1565 1867 1338 1565 1867 1350 1566 1868 1339 1567 1869 1350 1566 1868 1351 1568 1870 1339 1567 1869 1339 1567 1869 1351 1568 1870 1340 1569 1871 1351 1568 1870 1352 1570 1872 1340 1569 1871 1340 1569 1871 1352 1570 1872 1341 1571 1873 1352 1570 1872 1353 1572 1874 1341 1571 1873 1341 1571 1873 1353 1572 1874 1342 1573 1875 1353 1572 1874 1354 1574 1876 1342 1573 1875 1342 1573 1875 1354 1574 1876 1343 1575 1877 1354 1574 1876 1355 1576 1878 1343 1575 1877 1343 1575 1877 1355 1576 1878 1344 1577 1879 1355 1576 1878 1356 1578 1880 1344 1577 1879 1344 1577 1879 1356 1578 1880 1345 1579 1881 1345 1579 1881 1356 1578 1880 1346 1581 1883 1346 1581 1883 1356 1578 1880 1357 1580 1882 1346 1581 1883 1357 1580 1882 1347 1583 1885 1347 1583 1885 1357 1580 1882 1358 1582 1884 1358 1582 1884 1359 1584 1886 1347 1583 1885 1347 1583 1885 1359 1584 1886 1348 1585 1887 1359 1584 1886 1360 1586 1888 1348 1585 1887 1348 1585 1887 1360 1586 1888 1897 1587 1889 1360 1586 1888 1972 1588 1890 1897 1587 1889 1897 1587 1889 1972 1588 1890 1973 1589 1891 723 838 1527 1361 1590 1892 709 810 1499 709 810 1499 1361 1590 1892 1349 1564 1866 1361 1590 1892 1362 1591 1893 1349 1564 1866 1349 1564 1866 1362 1591 1893 1350 1566 1868 1362 1591 1893 1363 1592 1894 1350 1566 1868 1350 1566 1868 1363 1592 1894 1351 1568 1870 1363 1592 1894 1364 1593 1895 1351 1568 1870 1351 1568 1870 1364 1593 1895 1352 1570 1872 1364 1593 1895 1365 1594 1896 1352 1570 1872 1352 1570 1872 1365 1594 1896 1353 1572 1874 1365 1594 1896 1366 1595 1897 1353 1572 1874 1353 1572 1874 1366 1595 1897 1354 1574 1876 1366 1595 1897 1367 1596 1898 1354 1574 1876 1354 1574 1876 1367 1596 1898 1355 1576 1878 1367 1596 1898 1368 1597 1899 1355 1576 1878 1355 1576 1878 1368 1597 1899 1356 1578 1880 1356 1578 1880 1368 1597 1899 1357 1580 1882 1357 1580 1882 1368 1597 1899 1369 1598 1900 1357 1580 1882 1369 1598 1900 1358 1582 1884 1358 1582 1884 1369 1598 1900 1370 1599 1901 1370 1599 1901 1371 1600 1902 1358 1582 1884 1358 1582 1884 1371 1600 1902 1359 1584 1886 1899 1601 1903 1975 1602 1904 1360 1586 1888 1360 1586 1888 1975 1602 1904 1972 1588 1890 736 852 1541 1372 1603 1905 723 838 1527 723 838 1527 1372 1603 1905 1361 1590 1892 1372 1603 1905 1373 1604 1906 1361 1590 1892 1361 1590 1892 1373 1604 1906 1362 1591 1893 1373 1604 1906 1374 1605 1907 1362 1591 1893 1362 1591 1893 1374 1605 1907 1363 1592 1894 1374 1605 1907 1375 1606 1908 1363 1592 1894 1363 1592 1894 1375 1606 1908 1364 1593 1895 1375 1606 1908 1376 1607 1909 1364 1593 1895 1364 1593 1895 1376 1607 1909 1365 1594 1896 1376 1607 1909 1377 1608 1910 1365 1594 1896 1365 1594 1896 1377 1608 1910 1366 1595 1897 1377 1608 1910 1378 1609 1911 1366 1595 1897 1366 1595 1897 1378 1609 1911 1367 1596 1898 1378 1609 1911 1379 1610 1912 1367 1596 1898 1367 1596 1898 1379 1610 1912 1368 1597 1899 1368 1597 1899 1379 1610 1912 1369 1598 1900 1369 1598 1900 1379 1610 1912 1380 1611 1913 1369 1598 1900 1380 1611 1913 1370 1599 1901 1370 1599 1901 1380 1611 1913 1381 1612 1914 1370 1599 1901 1381 1612 1914 1371 1600 1902 1371 1600 1902 1381 1612 1914 1382 1613 1915 1900 1614 1916 1976 1615 1917 1899 1601 1903 1899 1601 1903 1976 1615 1917 1975 1602 1904 736 852 1541 749 866 1555 1372 1603 1905 1372 1603 1905 749 866 1555 1383 1616 1918 1383 1616 1918 1384 1617 1919 1372 1603 1905 1372 1603 1905 1384 1617 1919 1373 1604 1906 1384 1617 1919 1385 1618 1920 1373 1604 1906 1373 1604 1906 1385 1618 1920 1374 1605 1907 1385 1618 1920 1386 1619 1921 1374 1605 1907 1374 1605 1907 1386 1619 1921 1375 1606 1908 1386 1619 1921 1387 1620 1922 1375 1606 1908 1375 1606 1908 1387 1620 1922 1376 1607 1909 1387 1620 1922 1388 1621 1923 1376 1607 1909 1376 1607 1909 1388 1621 1923 1377 1608 1910 1388 1621 1923 1389 1622 1924 1377 1608 1910 1377 1608 1910 1389 1622 1924 1378 1609 1911 1389 1622 1924 1390 1623 1925 1378 1609 1911 1378 1609 1911 1390 1623 1925 1379 1610 1912 1379 1610 1912 1390 1623 1925 1380 1611 1913 1380 1611 1913 1390 1623 1925 1391 1624 1926 1391 1624 1926 1392 1625 1927 1380 1611 1913 1380 1611 1913 1392 1625 1927 1381 1612 1914 1381 1612 1914 1392 1625 1927 1382 1613 1915 1382 1613 1915 1392 1625 1927 1393 1626 1928 1901 1627 1929 1977 1628 1930 1900 1614 1916 1900 1614 1916 1977 1628 1930 1976 1615 1917 749 866 1555 762 880 1569 1383 1616 1918 1383 1616 1918 762 880 1569 1394 1629 1931 1394 1629 1931 1395 1630 1932 1383 1616 1918 1383 1616 1918 1395 1630 1932 1384 1617 1919 1395 1630 1932 1396 1631 1933 1384 1617 1919 1384 1617 1919 1396 1631 1933 1385 1618 1920 1396 1631 1933 1397 1632 1934 1385 1618 1920 1385 1618 1920 1397 1632 1934 1386 1619 1921 1397 1632 1934 1398 1633 1935 1386 1619 1921 1386 1619 1921 1398 1633 1935 1387 1620 1922 1398 1633 1935 1399 1634 1936 1387 1620 1922 1387 1620 1922 1399 1634 1936 1388 1621 1923 1399 1634 1936 1400 1635 1937 1388 1621 1923 1388 1621 1923 1400 1635 1937 1389 1622 1924 1400 1635 1937 1401 1636 1938 1389 1622 1924 1389 1622 1924 1401 1636 1938 1390 1623 1925 1390 1623 1925 1401 1636 1938 1391 1624 1926 1391 1624 1926 1401 1636 1938 1402 1637 1939 1402 1637 1939 1403 1638 1940 1391 1624 1926 1391 1624 1926 1403 1638 1940 1392 1625 1927 1403 1638 1940 1404 1639 1941 1392 1625 1927 1392 1625 1927 1404 1639 1941 1393 1626 1928 1902 1640 1942 1974 1641 1943 1901 1627 1929 1901 1627 1929 1974 1641 1943 1977 1628 1930 762 880 1569 775 894 1583 1394 1629 1931 1394 1629 1931 775 894 1583 1405 1642 1944 1405 1642 1944 1406 1643 1945 1394 1629 1931 1394 1629 1931 1406 1643 1945 1395 1630 1932 1406 1643 1945 1407 1644 1946 1395 1630 1932 1395 1630 1932 1407 1644 1946 1396 1631 1933 1407 1644 1946 1408 1645 1947 1396 1631 1933 1396 1631 1933 1408 1645 1947 1397 1632 1934 1408 1645 1947 1409 1646 1948 1397 1632 1934 1397 1632 1934 1409 1646 1948 1398 1633 1935 1409 1646 1948 1410 1647 1949 1398 1633 1935 1398 1633 1935 1410 1647 1949 1399 1634 1936 1410 1647 1949 1411 1648 1950 1399 1634 1936 1399 1634 1936 1411 1648 1950 1400 1635 1937 1411 1648 1950 1412 1649 1951 1400 1635 1937 1400 1635 1937 1412 1649 1951 1401 1636 1938 1401 1636 1938 1412 1649 1951 1402 1637 1939 1402 1637 1939 1412 1649 1951 1413 1650 1952 1413 1650 1952 1414 1651 1953 1402 1637 1939 1402 1637 1939 1414 1651 1953 1403 1638 1940 1414 1651 1953 1415 1652 1954 1403 1638 1940 1403 1638 1940 1415 1652 1954 1404 1639 1941 2044 1653 1955 1974 1641 1943 2043 435 1231 2043 435 1231 1974 1641 1943 434 436 1232 775 894 1583 787 906 1595 1405 1642 1944 1405 1642 1944 787 906 1595 1416 1654 1956 1416 1654 1956 1417 1655 1957 1405 1642 1944 1405 1642 1944 1417 1655 1957 1406 1643 1945 1417 1655 1957 1418 1656 1958 1406 1643 1945 1406 1643 1945 1418 1656 1958 1407 1644 1946 1418 1656 1958 1419 1657 1959 1407 1644 1946 1407 1644 1946 1419 1657 1959 1408 1645 1947 1419 1657 1959 1420 1658 1960 1408 1645 1947 1408 1645 1947 1420 1658 1960 1409 1646 1948 1420 1658 1960 1421 1659 1961 1409 1646 1948 1409 1646 1948 1421 1659 1961 1410 1647 1949 1421 1659 1961 1422 1660 1962 1410 1647 1949 1410 1647 1949 1422 1660 1962 1411 1648 1950 1422 1660 1962 1423 1661 1963 1411 1648 1950 1411 1648 1950 1423 1661 1963 1412 1649 1951 1412 1649 1951 1423 1661 1963 1413 1650 1952 1413 1650 1952 1423 1661 1963 1424 1662 1964 1413 1650 1952 1424 1662 1964 1414 1651 1953 1414 1651 1953 1424 1662 1964 1425 1663 1965 1425 1663 1965 1426 1664 1966 1414 1651 1953 1414 1651 1953 1426 1664 1966 1415 1652 1954 787 906 1595 799 918 1607 1416 1654 1956 1416 1654 1956 799 918 1607 1427 1665 1967 1427 1665 1967 1428 1666 1968 1416 1654 1956 1416 1654 1956 1428 1666 1968 1417 1655 1957 1428 1666 1968 1429 1667 1969 1417 1655 1957 1417 1655 1957 1429 1667 1969 1418 1656 1958 1429 1667 1969 1430 1668 1970 1418 1656 1958 1418 1656 1958 1430 1668 1970 1419 1657 1959 1430 1668 1970 1431 1669 1971 1419 1657 1959 1419 1657 1959 1431 1669 1971 1420 1658 1960 1431 1669 1971 1432 1670 1972 1420 1658 1960 1420 1658 1960 1432 1670 1972 1421 1659 1961 1432 1670 1972 1433 1671 1973 1421 1659 1961 1421 1659 1961 1433 1671 1973 1422 1660 1962 1433 1671 1973 1434 1672 1974 1422 1660 1962 1422 1660 1962 1434 1672 1974 1423 1661 1963 1423 1661 1963 1434 1672 1974 1424 1662 1964 1424 1662 1964 1434 1672 1974 1435 1673 1975 1435 1673 1975 1436 1674 1976 1424 1662 1964 1424 1662 1964 1436 1674 1976 1425 1663 1965 1436 1674 1976 1437 1675 1977 1425 1663 1965 1425 1663 1965 1437 1675 1977 1426 1664 1966 799 918 1607 811 930 1619 1427 1665 1967 1427 1665 1967 811 930 1619 1438 1676 1978 1438 1676 1978 1439 1677 1979 1427 1665 1967 1427 1665 1967 1439 1677 1979 1428 1666 1968 1439 1677 1979 1440 1678 1980 1428 1666 1968 1428 1666 1968 1440 1678 1980 1429 1667 1969 1440 1678 1980 1441 1679 1981 1429 1667 1969 1429 1667 1969 1441 1679 1981 1430 1668 1970 1441 1679 1981 1442 1680 1982 1430 1668 1970 1430 1668 1970 1442 1680 1982 1431 1669 1971 1442 1680 1982 1443 1681 1983 1431 1669 1971 1431 1669 1971 1443 1681 1983 1432 1670 1972 1443 1681 1983 1444 1682 1984 1432 1670 1972 1432 1670 1972 1444 1682 1984 1433 1671 1973 1444 1682 1984 1445 1683 1985 1433 1671 1973 1433 1671 1973 1445 1683 1985 1434 1672 1974 1434 1672 1974 1445 1683 1985 1435 1673 1975 1435 1673 1975 1445 1683 1985 1446 1684 1986 1446 1684 1986 1447 1685 1987 1435 1673 1975 1435 1673 1975 1447 1685 1987 1436 1674 1976 1447 1685 1987 1448 1686 1988 1436 1674 1976 1436 1674 1976 1448 1686 1988 1437 1675 1977 811 930 1619 823 942 1631 1438 1676 1978 1438 1676 1978 823 942 1631 1449 1687 1989 1449 1687 1989 1450 1688 1990 1438 1676 1978 1438 1676 1978 1450 1688 1990 1439 1677 1979 1450 1688 1990 1451 1689 1991 1439 1677 1979 1439 1677 1979 1451 1689 1991 1440 1678 1980 1451 1689 1991 1452 1690 1992 1440 1678 1980 1440 1678 1980 1452 1690 1992 1441 1679 1981 1452 1690 1992 1453 1691 1993 1441 1679 1981 1441 1679 1981 1453 1691 1993 1442 1680 1982 1453 1691 1993 1454 1692 1994 1442 1680 1982 1442 1680 1982 1454 1692 1994 1443 1681 1983 1454 1692 1994 1455 1693 1995 1443 1681 1983 1443 1681 1983 1455 1693 1995 1444 1682 1984 1455 1693 1995 1456 1694 1996 1444 1682 1984 1444 1682 1984 1456 1694 1996 1445 1683 1985 1445 1683 1985 1456 1694 1996 1446 1684 1986 1446 1684 1986 1456 1694 1996 1457 1695 1997 1446 1684 1986 1457 1695 1997 1447 1685 1987 1447 1685 1987 1457 1695 1997 1458 1696 1998 1447 1685 1987 1458 1696 1998 1448 1686 1988 1448 1686 1988 1458 1696 1998 1459 1697 1999 823 942 1631 846 954 1643 1449 1687 1989 1449 1687 1989 846 954 1643 1460 1698 2000 1460 1698 2000 1461 1699 2001 1449 1687 1989 1449 1687 1989 1461 1699 2001 1450 1688 1990 1461 1699 2001 1462 1700 2002 1450 1688 1990 1450 1688 1990 1462 1700 2002 1451 1689 1991 1462 1700 2002 1463 1701 2003 1451 1689 1991 1451 1689 1991 1463 1701 2003 1452 1690 1992 1463 1701 2003 1464 1702 2004 1452 1690 1992 1452 1690 1992 1464 1702 2004 1453 1691 1993 1464 1702 2004 1465 1703 2005 1453 1691 1993 1453 1691 1993 1465 1703 2005 1454 1692 1994 1465 1703 2005 1466 1704 2006 1454 1692 1994 1454 1692 1994 1466 1704 2006 1455 1693 1995 1455 1693 1995 1466 1704 2006 1456 1694 1996 1456 1694 1996 1466 1704 2006 1467 1705 2007 1456 1694 1996 1467 1705 2007 1457 1695 1997 1457 1695 1997 1467 1705 2007 1468 1706 2008 1457 1695 1997 1468 1706 2008 1458 1696 1998 1458 1696 1998 1468 1706 2008 1469 1707 2009 1458 1696 1998 1469 1707 2009 1459 1697 1999 1459 1697 1999 1469 1707 2009 1470 1708 2010 846 954 1643 847 966 1655 1460 1698 2000 1460 1698 2000 847 966 1655 1471 1709 2011 1460 1698 2000 1471 1709 2011 1461 1699 2001 1461 1699 2001 1471 1709 2011 1472 1710 2012 1461 1699 2001 1472 1710 2012 1462 1700 2002 1462 1700 2002 1472 1710 2012 1473 1711 2013 1462 1700 2002 1473 1711 2013 1463 1701 2003 1463 1701 2003 1473 1711 2013 1474 1712 2014 1474 1712 2014 1475 1713 2015 1463 1701 2003 1463 1701 2003 1475 1713 2015 1464 1702 2004 1475 1713 2015 1476 1714 2016 1464 1702 2004 1464 1702 2004 1476 1714 2016 1465 1703 2005 1476 1714 2016 1477 1715 2017 1465 1703 2005 1465 1703 2005 1477 1715 2017 1466 1704 2006 1466 1704 2006 1477 1715 2017 1467 1705 2007 1467 1705 2007 1477 1715 2017 1478 1716 2018 1467 1705 2007 1478 1716 2018 1468 1706 2008 1468 1706 2008 1478 1716 2018 1479 1717 2019 1468 1706 2008 1479 1717 2019 1469 1707 2009 1469 1707 2009 1479 1717 2019 1480 1718 2020 1469 1707 2009 1480 1718 2020 1470 1708 2010 1470 1708 2010 1480 1718 2020 1481 1719 2021 847 966 1655 859 978 1667 1471 1709 2011 1471 1709 2011 859 978 1667 1482 1720 2022 1471 1709 2011 1482 1720 2022 1472 1710 2012 1472 1710 2012 1482 1720 2022 1483 1721 2023 1472 1710 2012 1483 1721 2023 1473 1711 2013 1473 1711 2013 1483 1721 2023 1484 1722 2024 1476 1714 2016 1485 1723 2025 1477 1715 2017 1485 1723 2025 1488 1724 2026 1477 1715 2017 1477 1715 2017 1488 1724 2026 1478 1716 2018 1488 1724 2026 1489 1725 2027 1478 1716 2018 1478 1716 2018 1489 1725 2027 1479 1717 2019 1489 1725 2027 1490 1726 2028 1479 1717 2019 1479 1717 2019 1490 1726 2028 1480 1718 2020 1480 1718 2020 1490 1726 2028 1481 1719 2021 1481 1719 2021 1490 1726 2028 1491 1727 2029 859 978 1667 868 987 1676 1482 1720 2022 1482 1720 2022 868 987 1676 1486 1728 2030 1482 1720 2022 1486 1728 2030 1483 1721 2023 1483 1721 2023 1486 1728 2030 1487 1729 2031 868 987 1676 871 990 1679 1486 1728 2030 1486 1728 2030 871 990 1679 1492 1730 2032 1492 1730 2032 1493 1731 2033 1486 1728 2030 1486 1728 2030 1493 1731 2033 1487 1729 2031 1495 1732 2034 1489 1725 2027 1494 1733 2035 1494 1733 2035 1489 1725 2027 1488 1724 2026 1495 1732 2034 1496 1734 2036 1489 1725 2027 1489 1725 2027 1496 1734 2036 1490 1726 2028 1490 1726 2028 1496 1734 2036 1491 1727 2029 1491 1727 2029 1496 1734 2036 1497 1735 2037 871 990 1679 878 997 1686 1492 1730 2032 1492 1730 2032 878 997 1686 1498 1736 2038 1498 1736 2038 1499 1737 2039 1492 1730 2032 1492 1730 2032 1499 1737 2039 1493 1731 2033 1495 1732 2034 1494 1733 2035 1501 1738 2040 1501 1738 2040 1494 1733 2035 1500 1739 2041 1495 1732 2034 1501 1738 2040 1496 1734 2036 1496 1734 2036 1501 1738 2040 1502 1740 2042 1496 1734 2036 1502 1740 2042 1497 1735 2037 1497 1735 2037 1502 1740 2042 1503 1741 2043 878 997 1686 885 1004 1693 1498 1736 2038 1498 1736 2038 885 1004 1693 1504 1742 2044 1498 1736 2038 1504 1742 2044 1499 1737 2039 1499 1737 2039 1504 1742 2044 1505 1743 2045 1507 1744 2046 1501 1738 2040 1506 1745 2047 1506 1745 2047 1501 1738 2040 1500 1739 2041 1501 1738 2040 1507 1744 2046 1502 1740 2042 1502 1740 2042 1507 1744 2046 1508 1746 2048 1502 1740 2042 1508 1746 2048 1503 1741 2043 1503 1741 2043 1508 1746 2048 1509 1747 2049 885 1004 1693 892 1011 1700 1504 1742 2044 1504 1742 2044 892 1011 1700 1510 1748 2050 1504 1742 2044 1510 1748 2050 1505 1743 2045 1505 1743 2045 1510 1748 2050 1511 1749 2051 1512 1751 2053 1507 1744 2046 1882 1750 2052 1882 1750 2052 1507 1744 2046 1506 1745 2047 1507 1744 2046 1512 1751 2053 1508 1746 2048 1508 1746 2048 1512 1751 2053 1513 1752 2054 1508 1746 2048 1513 1752 2054 1509 1747 2049 1509 1747 2049 1513 1752 2054 1883 1753 2055 1509 1747 2049 1883 1753 2055 1904 1755 2057 1904 1755 2057 1883 1753 2055 1514 1754 2056 1904 1755 2057 1985 1019 1708 1903 1756 2058 1903 1756 2058 1985 1019 1708 1986 1021 1710 892 1011 1700 898 1023 1712 1510 1748 2050 1510 1748 2050 898 1023 1712 1515 1757 2059 1510 1748 2050 1515 1757 2059 1511 1749 2051 1511 1749 2051 1515 1757 2059 1516 1758 2060 1312 1025 1714 905 1028 1717 1881 1760 2062 1881 1760 2062 905 1028 1717 1521 1759 2061 1338 1565 1867 907 1029 1718 696 807 1496 1339 1567 1869 907 1029 1718 1338 1565 1867 1340 1569 1871 907 1029 1718 1339 1567 1869 1341 1571 1873 907 1029 1718 1340 1569 1871 1342 1573 1875 907 1029 1718 1341 1571 1873 1343 1575 1877 907 1029 1718 1342 1573 1875 1344 1577 1879 907 1029 1718 1343 1575 1877 1345 1579 1881 907 1029 1718 1344 1577 1879 1346 1581 1883 907 1029 1718 1345 1579 1881 1347 1583 1885 907 1029 1718 1346 1581 1883 1348 1585 1887 907 1029 1718 1347 1583 1885 1348 1585 1887 1897 1587 1889 907 1029 1718 1973 1589 1891 907 1029 1718 1897 1587 1889 1555 1761 692 1621 1762 693 1594 1764 695 1594 1764 695 1621 1762 693 1658 1763 694 1621 1762 693 1555 1761 692 1642 1766 697 1642 1766 697 1555 1761 692 1570 1765 696 1556 1767 698 1621 1762 693 1572 1768 699 1572 1768 699 1621 1762 693 1642 1766 697 1621 1762 693 1556 1767 698 1658 1763 694 1658 1763 694 1556 1767 698 1595 1769 700 1557 1770 701 1622 1771 702 1593 1773 704 1593 1773 704 1622 1771 702 1657 1772 703 1622 1771 702 1557 1770 701 1643 1775 706 1643 1775 706 1557 1770 701 1569 1774 705 1555 1761 692 1622 1771 702 1570 1765 696 1570 1765 696 1622 1771 702 1643 1775 706 1622 1771 702 1555 1761 692 1657 1772 703 1657 1772 703 1555 1761 692 1594 1764 695 1558 1776 707 1623 1777 708 1592 1779 710 1592 1779 710 1623 1777 708 1656 1778 709 1623 1777 708 1558 1776 707 1641 1781 712 1641 1781 712 1558 1776 707 1567 1780 711 1557 1770 701 1623 1777 708 1569 1774 705 1569 1774 705 1623 1777 708 1641 1781 712 1623 1777 708 1557 1770 701 1656 1778 709 1656 1778 709 1557 1770 701 1593 1773 704 1624 1783 714 1655 1784 715 1559 1782 713 1559 1782 713 1655 1784 715 1591 1785 716 1624 1783 714 1559 1782 713 1644 1787 718 1644 1787 718 1559 1782 713 1574 1786 717 1558 1776 707 1624 1783 714 1567 1780 711 1567 1780 711 1624 1783 714 1644 1787 718 1624 1783 714 1558 1776 707 1655 1784 715 1655 1784 715 1558 1776 707 1592 1779 710 1560 1789 720 1578 1790 721 1625 1788 719 1625 1788 719 1578 1790 721 1646 1791 722 1625 1788 719 1646 1791 722 1559 1782 713 1559 1782 713 1646 1791 722 1574 1786 717 1625 1788 719 1681 1792 723 1560 1789 720 1560 1789 720 1681 1792 723 1680 1793 724 1626 1795 726 1654 1796 727 1561 1794 725 1561 1794 725 1654 1796 727 1590 1797 728 1561 1794 725 1582 1798 729 1626 1795 726 1626 1795 726 1582 1798 729 1648 1799 730 1626 1795 726 1648 1799 730 1560 1789 720 1560 1789 720 1648 1799 730 1578 1790 721 1560 1789 720 1680 1793 724 1626 1795 726 1626 1795 726 1680 1793 724 1654 1796 727 1627 1801 732 1653 1802 733 1562 1800 731 1562 1800 731 1653 1802 733 1589 1803 734 1562 1800 731 1585 1804 735 1627 1801 732 1627 1801 732 1585 1804 735 1650 1805 736 1627 1801 732 1650 1805 736 1561 1794 725 1561 1794 725 1650 1805 736 1582 1798 729 1561 1794 725 1590 1797 728 1627 1801 732 1627 1801 732 1590 1797 728 1653 1802 733 1628 1807 738 1652 1808 739 1563 1806 737 1563 1806 737 1652 1808 739 1587 1809 740 1563 1806 737 1581 1810 741 1628 1807 738 1628 1807 738 1581 1810 741 1649 1811 742 1628 1807 738 1649 1811 742 1562 1800 731 1562 1800 731 1649 1811 742 1585 1804 735 1562 1800 731 1589 1803 734 1628 1807 738 1628 1807 738 1589 1803 734 1652 1808 739 1629 1813 744 1651 1814 745 1564 1812 743 1564 1812 743 1651 1814 745 1588 1815 746 1564 1812 743 1577 1816 747 1629 1813 744 1629 1813 744 1577 1816 747 1647 1817 748 1629 1813 744 1647 1817 748 1563 1806 737 1563 1806 737 1647 1817 748 1581 1810 741 1563 1806 737 1587 1809 740 1629 1813 744 1629 1813 744 1587 1809 740 1651 1814 745 1556 1767 698 1630 1818 749 1595 1769 700 1595 1769 700 1630 1818 749 1659 1819 750 1630 1818 749 1556 1767 698 1645 1820 752 1645 1820 752 1556 1767 698 1572 1768 699 1564 1812 743 1630 1818 749 1577 1816 747 1577 1816 747 1630 1818 749 1645 1820 752 1630 1818 749 1564 1812 743 1659 1819 750 1659 1819 750 1564 1812 743 1588 1815 746 1595 1769 700 1587 1809 740 1658 1763 694 1658 1763 694 1587 1809 740 1652 1808 739 1600 1822 2064 1927 1823 2065 1662 1821 2063 1662 1821 2063 1927 1823 2065 1926 1824 2066 1537 1826 2068 1925 1827 2069 1631 1825 2067 1631 1825 2067 1925 1827 2069 1926 1824 2066 1604 1829 2071 1934 1830 2072 1664 1828 2070 1664 1828 2070 1934 1830 2072 1932 1831 2073 1539 1833 2075 1930 1834 2076 1632 1832 2074 1632 1832 2074 1930 1834 2076 1932 1831 2073 1523 1836 2078 1930 1834 2076 1665 1835 2077 1665 1835 2077 1930 1834 2076 1928 1837 2079 1565 1839 2081 1927 1823 2065 1633 1838 2080 1633 1838 2080 1927 1823 2065 1928 1837 2079 1666 1840 2082 1522 1841 2083 1929 1842 2084 1929 1842 2084 1522 1841 2083 1925 1827 2069 1538 1844 2086 1931 1845 2087 1634 1843 2085 1634 1843 2085 1931 1845 2087 1929 1842 2084 1524 1847 2089 1931 1845 2087 1667 1846 2088 1667 1846 2088 1931 1845 2087 1933 1848 2090 1635 1849 2091 1540 1850 2092 1933 1848 2090 1933 1848 2090 1540 1850 2092 1935 1851 2093 1636 1852 2094 1541 1853 2095 1937 1855 2097 1937 1855 2097 1541 1853 2095 1939 1854 2096 1660 1856 2098 1596 1857 2099 1937 1855 2097 1937 1855 2097 1596 1857 2099 1935 1851 2093 1661 1858 2100 1598 1859 2101 1941 1860 2102 1941 1860 2102 1598 1859 2101 1939 1854 2096 1637 1861 2103 1543 1862 2104 1941 1860 2102 1941 1860 2102 1543 1862 2104 1943 1863 2105 1668 1864 2106 1525 1865 2107 1944 1866 2108 1944 1866 2108 1525 1865 2107 1943 1863 2105 1638 1867 2109 1544 1868 2110 1944 1866 2108 1944 1866 2108 1544 1868 2110 1942 1869 2111 1663 1870 2112 1602 1871 2113 1940 1872 2114 1940 1872 2114 1602 1871 2113 1942 1869 2111 1639 1873 2115 1542 1874 2116 1940 1872 2114 1940 1872 2114 1542 1874 2116 1938 1875 2117 1669 1876 2118 1526 1877 2119 1936 1878 2120 1936 1878 2120 1526 1877 2119 1938 1875 2117 1640 1879 2121 1566 1880 2122 1936 1878 2120 1936 1878 2120 1566 1880 2122 1934 1830 2072 1528 1881 944 1568 1882 949 1567 1780 711 1567 1780 711 1568 1882 949 1641 1781 712 1568 1883 949 1527 1884 947 1641 1781 712 1641 1781 712 1527 1884 947 1569 1774 705 1530 1885 946 1571 1886 948 1570 1765 696 1570 1765 696 1571 1886 948 1642 1766 697 1571 1887 948 1529 1888 942 1642 1766 697 1642 1766 697 1529 1888 942 1572 1768 699 1527 1889 947 1573 1890 945 1569 1774 705 1569 1774 705 1573 1890 945 1643 1775 706 1573 1891 945 1530 1892 946 1643 1775 706 1643 1775 706 1530 1892 946 1570 1765 696 1531 1893 940 1575 1894 943 1574 1786 717 1574 1786 717 1575 1894 943 1644 1787 718 1575 1895 943 1528 1896 944 1644 1787 718 1644 1787 718 1528 1896 944 1567 1780 711 1529 1897 942 1576 1898 941 1572 1768 699 1572 1768 699 1576 1898 941 1645 1820 752 1576 1899 941 1532 1900 938 1645 1820 752 1645 1820 752 1532 1900 938 1577 1816 747 1578 1790 721 1533 1901 936 1646 1791 722 1646 1791 722 1533 1901 936 1579 1902 939 1531 1904 940 1574 1786 717 1579 1903 939 1579 1903 939 1574 1786 717 1646 1791 722 1577 1816 747 1532 1905 938 1647 1817 748 1647 1817 748 1532 1905 938 1580 1906 937 1534 1908 934 1581 1810 741 1580 1907 937 1580 1907 937 1581 1810 741 1647 1817 748 1582 1798 729 1535 1909 931 1648 1799 730 1648 1799 730 1535 1909 931 1583 1910 935 1533 1912 936 1578 1790 721 1583 1911 935 1583 1911 935 1578 1790 721 1648 1799 730 1581 1810 741 1534 1913 934 1649 1811 742 1649 1811 742 1534 1913 934 1584 1914 933 1536 1916 932 1585 1804 735 1584 1915 933 1584 1915 933 1585 1804 735 1649 1811 742 1585 1804 735 1536 1917 932 1650 1805 736 1650 1805 736 1536 1917 932 1586 1918 930 1535 1920 931 1582 1798 729 1586 1919 930 1586 1919 930 1582 1798 729 1650 1805 736 1568 1921 2123 1528 1922 2124 1634 1843 2085 1634 1843 2085 1528 1922 2124 1538 1844 2086 1634 1843 2085 1537 1826 2068 1568 1923 2123 1568 1923 2123 1537 1826 2068 1527 1924 2125 1571 1925 2126 1530 1926 2127 1633 1838 2080 1633 1838 2080 1530 1926 2127 1565 1839 2081 1571 1927 2126 1633 1838 2080 1529 1928 2128 1529 1928 2128 1633 1838 2080 1539 1833 2075 1573 1929 2129 1527 1930 2125 1631 1825 2067 1631 1825 2067 1527 1930 2125 1537 1826 2068 1631 1825 2067 1565 1839 2081 1573 1931 2129 1573 1931 2129 1565 1839 2081 1530 1932 2127 1575 1933 2130 1531 1934 2131 1635 1849 2091 1635 1849 2091 1531 1934 2131 1540 1850 2092 1635 1849 2091 1538 1844 2086 1575 1935 2130 1575 1935 2130 1538 1844 2086 1528 1936 2124 1529 1938 2128 1539 1833 2075 1576 1937 2132 1576 1937 2132 1539 1833 2075 1632 1832 2074 1576 1939 2132 1632 1832 2074 1532 1940 2133 1532 1940 2133 1632 1832 2074 1566 1880 2122 1579 1941 2134 1533 1942 2135 1636 1852 2094 1636 1852 2094 1533 1942 2135 1541 1853 2095 1636 1852 2094 1540 1850 2092 1579 1943 2134 1579 1943 2134 1540 1850 2092 1531 1944 2131 1532 1946 2133 1566 1880 2122 1580 1945 2136 1580 1945 2136 1566 1880 2122 1640 1879 2121 1580 1947 2136 1640 1879 2121 1534 1948 2137 1534 1948 2137 1640 1879 2121 1542 1874 2116 1583 1949 2138 1535 1950 2139 1637 1861 2103 1637 1861 2103 1535 1950 2139 1543 1862 2104 1637 1861 2103 1541 1853 2095 1583 1951 2138 1583 1951 2138 1541 1853 2095 1533 1952 2135 1534 1954 2137 1542 1874 2116 1584 1953 2140 1584 1953 2140 1542 1874 2116 1639 1873 2115 1584 1955 2140 1639 1873 2115 1536 1956 2141 1536 1956 2141 1639 1873 2115 1544 1868 2110 1586 1957 2142 1536 1958 2141 1638 1867 2109 1638 1867 2109 1536 1958 2141 1544 1868 2110 1638 1867 2109 1543 1862 2104 1586 1959 2142 1586 1959 2142 1543 1862 2104 1535 1960 2139 1546 1961 2143 1610 1962 2144 1598 1859 2101 1598 1859 2101 1610 1962 2144 1660 1856 2098 1545 1963 2145 1596 1857 2099 1610 1962 2144 1610 1962 2144 1596 1857 2099 1660 1856 2098 1547 1964 2146 1597 1965 2147 1525 1865 2107 1525 1865 2107 1597 1965 2147 1661 1858 2100 1597 1965 2147 1546 1961 2143 1661 1858 2100 1661 1858 2100 1546 1961 2143 1598 1859 2101 1522 1841 2083 1549 1966 2148 1662 1821 2063 1662 1821 2063 1549 1966 2148 1599 1967 2149 1548 1968 2150 1600 1822 2064 1599 1967 2149 1599 1967 2149 1600 1822 2064 1662 1821 2063 1551 1969 2151 1601 1970 2152 1526 1877 2119 1526 1877 2119 1601 1970 2152 1663 1870 2112 1601 1970 2152 1550 1971 2153 1663 1870 2112 1663 1870 2112 1550 1971 2153 1602 1871 2113 1523 1836 2078 1553 1972 2154 1664 1828 2070 1664 1828 2070 1553 1972 2154 1603 1973 2155 1603 1973 2155 1552 1974 2156 1664 1828 2070 1664 1828 2070 1552 1974 2156 1604 1829 2071 1600 1822 2064 1548 1968 2150 1665 1835 2077 1665 1835 2077 1548 1968 2150 1605 1975 2157 1553 1972 2154 1523 1836 2078 1605 1975 2157 1605 1975 2157 1523 1836 2078 1665 1835 2077 1524 1847 2089 1554 1976 2158 1666 1840 2082 1666 1840 2082 1554 1976 2158 1606 1977 2159 1549 1966 2148 1522 1841 2083 1606 1977 2159 1606 1977 2159 1522 1841 2083 1666 1840 2082 1596 1857 2099 1545 1963 2145 1667 1846 2088 1667 1846 2088 1545 1963 2145 1607 1978 2160 1554 1976 2158 1524 1847 2089 1607 1978 2160 1607 1978 2160 1524 1847 2089 1667 1846 2088 1550 1971 2153 1608 1979 2161 1602 1871 2113 1602 1871 2113 1608 1979 2161 1668 1864 2106 1608 1979 2161 1547 1964 2146 1668 1864 2106 1668 1864 2106 1547 1964 2146 1525 1865 2107 1552 1974 2156 1609 1980 2162 1604 1829 2071 1604 1829 2071 1609 1980 2162 1669 1876 2118 1609 1980 2162 1551 1969 2151 1669 1876 2118 1669 1876 2118 1551 1969 2151 1526 1877 2119 1546 1961 2143 1611 1981 2163 1610 1962 2144 1610 1962 2144 1611 1981 2163 1670 1982 2164 1612 1983 2165 1545 1963 2145 1670 1982 2164 1670 1982 2164 1545 1963 2145 1610 1962 2144 1597 1965 2147 1547 1964 2146 1671 1985 2167 1671 1985 2167 1547 1964 2146 1613 1984 2166 1546 1961 2143 1597 1965 2147 1611 1981 2163 1611 1981 2163 1597 1965 2147 1671 1985 2167 1549 1966 2148 1614 1986 2168 1599 1967 2149 1599 1967 2149 1614 1986 2168 1672 1987 2169 1615 1988 2170 1548 1968 2150 1672 1987 2169 1672 1987 2169 1548 1968 2150 1599 1967 2149 1601 1970 2152 1551 1969 2151 1673 1990 2172 1673 1990 2172 1551 1969 2151 1616 1989 2171 1550 1971 2153 1601 1970 2152 1617 1991 2173 1617 1991 2173 1601 1970 2152 1673 1990 2172 1603 1973 2155 1553 1972 2154 1674 1993 2175 1674 1993 2175 1553 1972 2154 1618 1992 2174 1552 1974 2156 1603 1973 2155 1619 1994 2176 1619 1994 2176 1603 1973 2155 1674 1993 2175 1548 1968 2150 1615 1988 2170 1605 1975 2157 1605 1975 2157 1615 1988 2170 1675 1995 2177 1618 1992 2174 1553 1972 2154 1675 1995 2177 1675 1995 2177 1553 1972 2154 1605 1975 2157 1554 1976 2158 1620 1996 2178 1606 1977 2159 1606 1977 2159 1620 1996 2178 1676 1997 2179 1614 1986 2168 1549 1966 2148 1676 1997 2179 1676 1997 2179 1549 1966 2148 1606 1977 2159 1545 1963 2145 1612 1983 2165 1607 1978 2160 1607 1978 2160 1612 1983 2165 1677 1998 2180 1620 1996 2178 1554 1976 2158 1677 1998 2180 1677 1998 2180 1554 1976 2158 1607 1978 2160 1608 1979 2161 1550 1971 2153 1678 1999 2181 1678 1999 2181 1550 1971 2153 1617 1991 2173 1547 1964 2146 1608 1979 2161 1613 1984 2166 1613 1984 2166 1608 1979 2161 1678 1999 2181 1609 1980 2162 1552 1974 2156 1679 2000 2182 1679 2000 2182 1552 1974 2156 1619 1994 2176 1551 1969 2151 1609 1980 2162 1616 1989 2171 1616 1989 2171 1609 1980 2162 1679 2000 2182 1651 1814 745 1587 1809 740 1588 1815 746 1587 1809 740 1595 1769 700 1588 1815 746 1595 1769 700 1659 1819 750 1588 1815 746 1594 1764 695 1589 1803 734 1657 1772 703 1657 1772 703 1589 1803 734 1653 1802 733 1658 1763 694 1652 1808 739 1594 1764 695 1594 1764 695 1652 1808 739 1589 1803 734 1657 1772 703 1653 1802 733 1593 1773 704 1593 1773 704 1653 1802 733 1590 1797 728 1655 1784 715 1592 1779 710 1591 1785 716 1680 1793 724 1681 1792 723 1592 1779 710 1592 1779 710 1681 1792 723 1591 1785 716 1590 1797 728 1654 1796 727 1593 1773 704 1593 1773 704 1654 1796 727 1656 1778 709 1559 1782 713 1591 1785 716 1625 1788 719 1625 1788 719 1591 1785 716 1681 1792 723 1592 1779 710 1656 1778 709 1680 1793 724 1680 1793 724 1656 1778 709 1654 1796 727 1611 1981 2163 1519 2001 2183 1670 1982 2164 1670 1982 2164 1519 2001 2183 1520 2002 2184 1670 1982 2164 1520 2002 2184 1612 1983 2165 1612 1983 2165 1520 2002 2184 1882 1750 2052 1517 2003 2185 1518 2004 2186 1613 1984 2166 1613 1984 2166 1518 2004 2186 1671 1985 2167 1488 1724 2026 1485 1723 2025 1614 1986 2168 1614 1986 2168 1485 1723 2025 1672 1987 2169 1672 1987 2169 1485 1723 2025 1615 1988 2170 1615 1988 2170 1485 1723 2025 1476 1714 2016 1499 1737 2039 1505 1743 2045 1616 1989 2171 1616 1989 2171 1505 1743 2045 1673 1990 2172 1505 1743 2045 1511 1749 2051 1673 1990 2172 1673 1990 2172 1511 1749 2051 1617 1991 2173 1618 1992 2174 1474 1712 2014 1674 1993 2175 1674 1993 2175 1474 1712 2014 1484 1722 2024 1674 1993 2175 1484 1722 2024 1619 1994 2176 1619 1994 2176 1484 1722 2024 1487 1729 2031 1476 1714 2016 1475 1713 2015 1615 1988 2170 1615 1988 2170 1475 1713 2015 1675 1995 2177 1675 1995 2177 1475 1713 2015 1618 1992 2174 1618 1992 2174 1475 1713 2015 1474 1712 2014 1620 1996 2178 1500 1739 2041 1676 1997 2179 1676 1997 2179 1500 1739 2041 1494 1733 2035 1676 1997 2179 1494 1733 2035 1614 1986 2168 1614 1986 2168 1494 1733 2035 1488 1724 2026 1677 1998 2180 1506 1745 2047 1620 1996 2178 1620 1996 2178 1506 1745 2047 1500 1739 2041 1617 1991 2173 1511 1749 2051 1678 1999 2181 1678 1999 2181 1511 1749 2051 1516 1758 2060 1516 1758 2060 1517 2003 2185 1678 1999 2181 1678 1999 2181 1517 2003 2185 1613 1984 2166 1619 1994 2176 1487 1729 2031 1679 2000 2182 1679 2000 2182 1487 1729 2031 1493 1731 2033 1679 2000 2182 1493 1731 2033 1616 1989 2171 1616 1989 2171 1493 1731 2033 1499 1737 2039 1518 2004 2186 1519 2001 2183 1671 1985 2167 1671 1985 2167 1519 2001 2183 1611 1981 2163 1487 1729 2031 1484 1722 2024 1483 1721 2023 1484 1722 2024 1474 1712 2014 1473 1711 2013 1677 1998 2180 1612 1983 2165 1506 1745 2047 1506 1745 2047 1612 1983 2165 1882 1750 2052 1807 2005 620 1687 2006 621 1721 2007 622 1687 2006 621 1722 2008 623 1721 2007 622 1721 2007 622 1722 2008 623 1807 2005 620 1723 2009 624 1070 1282 380 1808 2010 625 1808 2010 625 1070 1282 380 1092 1281 379 1879 2012 627 1723 2009 624 1878 2011 626 1878 2011 626 1723 2009 624 1808 2010 625 1723 2009 624 1879 2012 627 1809 2014 629 1809 2014 629 1879 2012 627 1880 2013 628 1093 1289 387 1809 2014 629 1110 1287 385 1110 1287 385 1809 2014 629 1857 2015 630 1070 1282 380 1723 2009 624 1093 1289 387 1093 1289 387 1723 2009 624 1809 2014 629 1867 2017 632 1724 2018 633 1789 2016 631 1789 2016 631 1724 2018 633 1688 2019 634 1724 2018 633 1867 2017 632 1683 2020 635 1683 2020 635 1867 2017 632 1685 2021 636 1725 2023 638 1720 2024 639 1690 2022 637 1690 2022 637 1720 2024 639 1682 2025 640 1071 1300 398 1069 2026 399 1725 2023 638 1725 2023 638 1069 2026 399 1720 2027 639 1724 2018 633 1683 2028 635 1810 2030 642 1810 2030 642 1683 2028 635 1726 2029 641 1684 2032 643 1847 2033 644 1726 2031 641 1726 2031 641 1847 2033 644 1810 2030 642 1847 2033 644 1792 2034 645 1810 2030 642 1810 2030 642 1792 2034 645 1727 2035 646 1688 2019 634 1724 2018 633 1727 2035 646 1727 2035 646 1724 2018 633 1810 2030 642 1844 2037 648 1728 2038 649 1788 2036 647 1788 2036 647 1728 2038 649 1691 2039 650 1789 2016 631 1688 2019 634 1844 2037 648 1844 2037 648 1688 2019 634 1728 2038 649 1729 2040 651 1693 2041 652 1811 2043 654 1811 2043 654 1693 2041 652 1730 2042 653 1694 2044 655 1815 2045 656 1730 2042 653 1730 2042 653 1815 2045 656 1811 2043 654 1815 2045 656 1731 2046 657 1811 2043 654 1731 2046 657 1692 2047 658 1811 2043 654 1811 2043 654 1692 2047 658 1729 2040 651 1732 2048 659 1690 2022 637 1812 2050 661 1812 2050 661 1690 2022 637 1689 2049 660 1695 2052 663 1732 2048 659 1790 2051 662 1790 2051 662 1732 2048 659 1812 2050 661 1732 2048 659 1695 2052 663 1813 2054 665 1813 2054 665 1695 2052 663 1733 2053 664 1072 1331 426 1094 1330 425 1733 2053 664 1733 2053 664 1094 1330 425 1813 2054 665 1094 1330 425 1071 1300 398 1813 2054 665 1813 2054 665 1071 1300 398 1725 2023 638 1690 2022 637 1732 2048 659 1725 2023 638 1725 2023 638 1732 2048 659 1813 2054 665 1848 2055 666 1793 2056 667 1814 2058 669 1814 2058 669 1793 2056 667 1734 2057 668 1734 2057 668 1691 2039 650 1814 2058 669 1814 2058 669 1691 2039 650 1728 2038 649 1688 2019 634 1727 2035 646 1728 2038 649 1728 2038 649 1727 2035 646 1814 2058 669 1792 2034 645 1848 2055 666 1727 2035 646 1727 2035 646 1848 2055 666 1814 2058 669 1694 2044 655 1696 2059 670 1815 2045 656 1815 2045 656 1696 2059 670 1735 2060 671 1735 2060 671 1736 2061 672 1815 2045 656 1698 2063 674 1737 2064 675 1778 2062 673 1778 2062 673 1737 2064 675 1699 2065 676 1737 2064 675 1779 2066 677 1699 2065 676 1699 2065 676 1779 2066 677 1866 2067 678 1738 2068 679 1073 1348 443 1816 2069 680 1816 2069 680 1073 1348 443 1095 1347 442 1095 1347 442 1074 1350 445 1816 2069 680 1816 2069 680 1074 1350 445 1836 2070 681 1779 2066 677 1737 2064 675 1836 2070 681 1836 2070 681 1737 2064 675 1816 2069 680 1698 2063 674 1738 2068 679 1737 2064 675 1737 2064 675 1738 2068 679 1816 2069 680 1798 2071 682 1701 2072 683 1817 2074 685 1817 2074 685 1701 2072 683 1740 2073 684 1700 2075 686 1739 2076 687 1740 2073 684 1740 2073 684 1739 2076 687 1817 2074 685 1702 2078 689 1742 2079 690 1741 2077 688 1741 2077 688 1742 2079 690 1818 2080 691 1686 2081 751 1807 2005 620 1742 2079 690 1742 2079 690 1807 2005 620 1818 2080 691 1818 2080 691 1744 2082 753 1741 2077 688 1741 2077 688 1744 2082 753 1871 2083 754 1722 2008 623 1743 2084 755 1807 2005 620 1807 2005 620 1743 2084 755 1818 2080 691 1743 2084 755 1703 2085 756 1818 2080 691 1818 2080 691 1703 2085 756 1744 2082 753 1876 2087 758 1877 2088 759 1745 2086 757 1745 2086 757 1877 2088 759 1819 2089 760 1877 2088 759 1878 2011 626 1819 2089 760 1819 2089 760 1878 2011 626 1808 2010 625 1808 2010 625 1092 1281 379 1819 2089 760 1819 2089 760 1092 1281 379 1096 1369 464 1075 1370 465 1745 2086 757 1096 1369 464 1096 1369 464 1745 2086 757 1819 2089 760 1788 2036 647 1691 2039 650 1843 2091 762 1843 2091 762 1691 2039 650 1746 2090 761 1843 2091 762 1746 2090 761 1704 2092 763 1704 2092 763 1746 2090 761 1705 2093 764 1747 2094 765 1706 2095 766 1820 2097 768 1820 2097 768 1706 2095 766 1748 2096 767 1707 2098 769 1749 2099 770 1748 2096 767 1748 2096 767 1749 2099 770 1820 2097 768 1749 2099 770 1702 2078 689 1820 2097 768 1820 2097 768 1702 2078 689 1741 2077 688 1706 2095 766 1747 2094 765 1750 2100 771 1750 2100 771 1747 2094 765 1821 2101 772 1744 2082 753 1805 2103 774 1871 2083 754 1751 2102 773 1871 2083 754 1805 2103 774 1751 2102 773 1696 2059 670 1821 2101 772 1821 2101 772 1696 2059 670 1752 2104 775 1708 2105 776 1750 2100 771 1752 2104 775 1752 2104 775 1750 2100 771 1821 2101 772 1702 2078 689 1749 2099 770 1753 2106 777 1753 2106 777 1749 2099 770 1822 2107 778 1749 2099 770 1707 2098 769 1822 2107 778 1822 2107 778 1707 2098 769 1754 2108 779 1802 2109 780 1856 2110 781 1754 2108 779 1754 2108 779 1856 2110 781 1822 2107 778 1856 2110 781 1803 2111 782 1822 2107 778 1822 2107 778 1803 2111 782 1753 2106 777 1755 2113 784 1842 2114 785 1709 2112 783 1709 2112 783 1842 2114 785 1787 2115 786 1842 2114 785 1755 2113 784 1786 2116 787 1786 2116 787 1755 2113 784 1710 2117 788 1756 2118 789 1712 2119 790 1823 2121 792 1823 2121 792 1712 2119 790 1757 2120 791 1714 2122 793 1758 2123 794 1757 2120 791 1757 2120 791 1758 2123 794 1823 2121 792 1758 2123 794 1713 2124 795 1823 2121 792 1823 2121 792 1713 2124 795 1759 2125 796 1711 2126 797 1756 2118 789 1759 2125 796 1759 2125 796 1756 2118 789 1823 2121 792 1760 2127 798 1715 2128 799 1824 2130 801 1824 2130 801 1715 2128 799 1761 2129 800 1700 2075 686 1762 2131 802 1761 2129 800 1761 2129 800 1762 2131 802 1824 2130 801 1712 2119 790 1756 2118 789 1762 2131 802 1762 2131 802 1756 2118 789 1824 2130 801 1756 2118 789 1711 2126 797 1824 2130 801 1824 2130 801 1711 2126 797 1760 2127 798 1763 2132 803 1795 2133 804 1825 2135 806 1825 2135 806 1795 2133 804 1851 2134 805 1796 2136 807 1764 2137 808 1851 2134 805 1851 2134 805 1764 2137 808 1825 2135 806 1764 2137 808 1710 2117 788 1825 2135 806 1825 2135 806 1710 2117 788 1755 2113 784 1709 2112 783 1763 2132 803 1755 2113 784 1755 2113 784 1763 2132 803 1825 2135 806 1713 2124 795 1758 2123 794 1765 2138 809 1765 2138 809 1758 2123 794 1826 2139 810 1758 2123 794 1714 2122 793 1826 2139 810 1826 2139 810 1714 2122 793 1766 2140 811 1800 2141 812 1854 2142 813 1766 2140 811 1766 2140 811 1854 2142 813 1826 2139 810 1854 2142 813 1801 2143 814 1826 2139 810 1826 2139 810 1801 2143 814 1765 2138 809 1786 2116 787 1710 2117 788 1841 2144 815 1841 2144 815 1710 2117 788 1764 2137 808 1797 2145 816 1841 2144 815 1796 2136 807 1796 2136 807 1841 2144 815 1764 2137 808 1799 2147 818 1853 2148 819 1767 2146 817 1767 2146 817 1853 2148 819 1827 2149 820 1853 2148 819 1800 2141 812 1827 2149 820 1827 2149 820 1800 2141 812 1766 2140 811 1766 2140 811 1714 2122 793 1827 2149 820 1827 2149 820 1714 2122 793 1757 2120 791 1712 2119 790 1767 2146 817 1757 2120 791 1757 2120 791 1767 2146 817 1827 2149 820 1768 2150 821 1695 2052 663 1828 2151 822 1828 2151 822 1695 2052 663 1790 2051 662 1716 2153 824 1768 2150 821 1791 2152 823 1791 2152 823 1768 2150 821 1828 2151 822 1717 2155 826 1769 2156 827 1770 2154 825 1770 2154 825 1769 2156 827 1829 2157 828 1744 2082 753 1703 2085 756 1830 2159 830 1830 2159 830 1703 2085 756 1771 2158 829 1771 2158 829 1875 2161 832 1872 2160 831 1872 2160 831 1875 2161 832 1874 2162 833 1768 2150 821 1716 2153 824 1831 2164 835 1831 2164 835 1716 2153 824 1773 2163 834 1076 1447 542 1097 1446 541 1773 2163 834 1773 2163 834 1097 1446 541 1831 2164 835 1097 1446 541 1072 1331 426 1831 2164 835 1831 2164 835 1072 1331 426 1733 2053 664 1695 2052 663 1768 2150 821 1733 2053 664 1733 2053 664 1768 2150 821 1831 2164 835 1876 2087 758 1745 2086 757 1875 2161 832 1875 2161 832 1745 2086 757 1832 2165 836 1745 2086 757 1075 1370 465 1832 2165 836 1832 2165 836 1075 1370 465 1098 1449 544 1077 1451 546 1774 2166 837 1098 1449 544 1098 1449 544 1774 2166 837 1832 2165 836 1774 2166 837 1874 2162 833 1832 2165 836 1832 2165 836 1874 2162 833 1875 2161 832 1718 2167 838 1716 2153 824 1846 2168 839 1846 2168 839 1716 2153 824 1791 2152 823 1769 2156 827 1717 2155 826 1776 2170 841 1776 2170 841 1717 2155 826 1775 2169 840 1872 2160 831 1874 2162 833 1835 2171 842 1835 2171 842 1874 2162 833 1873 2172 843 1078 1458 553 1076 1447 542 1833 2173 844 1833 2173 844 1076 1447 542 1773 2163 834 1716 2153 824 1718 2167 838 1773 2163 834 1773 2163 834 1718 2167 838 1833 2173 844 1774 2166 837 1077 1451 546 1834 2174 845 1834 2174 845 1077 1451 546 1099 1461 556 1874 2162 833 1774 2166 837 1873 2172 843 1873 2172 843 1774 2166 837 1834 2174 845 1776 2170 841 1775 2169 840 1699 2065 676 1699 2065 676 1775 2169 840 1778 2062 673 1074 1350 445 1078 1458 553 1836 2070 681 1836 2070 681 1078 1458 553 1833 2173 844 1718 2167 838 1779 2066 677 1833 2173 844 1833 2173 844 1779 2066 677 1836 2070 681 1794 2176 847 1780 2177 848 1849 2175 846 1849 2175 846 1780 2177 848 1837 2178 849 1780 2177 848 1705 2093 764 1837 2178 849 1837 2178 849 1705 2093 764 1746 2090 761 1691 2039 650 1734 2057 668 1746 2090 761 1746 2090 761 1734 2057 668 1837 2178 849 1734 2057 668 1793 2056 667 1837 2178 849 1837 2178 849 1793 2056 667 1849 2175 846 1855 2179 850 1802 2109 780 1838 2180 851 1838 2180 851 1802 2109 780 1754 2108 779 1707 2098 769 1781 2181 852 1754 2108 779 1754 2108 779 1781 2181 852 1838 2180 851 1781 2181 852 1713 2124 795 1838 2180 851 1838 2180 851 1713 2124 795 1765 2138 809 1801 2143 814 1855 2179 850 1765 2138 809 1765 2138 809 1855 2179 850 1838 2180 851 1719 2182 853 1715 2128 799 1839 2184 855 1839 2184 855 1715 2128 799 1782 2183 854 1708 2105 776 1783 2185 856 1782 2183 854 1782 2183 854 1783 2185 856 1839 2184 855 1704 2092 763 1705 2093 764 1870 2187 858 1870 2187 858 1705 2093 764 1784 2186 857 1709 2112 783 1787 2115 786 1784 2186 857 1784 2186 857 1787 2115 786 1870 2187 858 1785 2188 859 1711 2126 797 1840 2189 860 1840 2189 860 1711 2126 797 1759 2125 796 1713 2124 795 1781 2181 852 1759 2125 796 1759 2125 796 1781 2181 852 1840 2189 860 1781 2181 852 1707 2098 769 1840 2189 860 1840 2189 860 1707 2098 769 1748 2096 767 1706 2095 766 1785 2188 859 1748 2096 767 1748 2096 767 1785 2188 859 1840 2189 860 1797 2145 816 1798 2071 682 1841 2144 815 1841 2144 815 1798 2071 682 1817 2074 685 1739 2076 687 1786 2116 787 1817 2074 685 1817 2074 685 1786 2116 787 1841 2144 815 1786 2116 787 1739 2076 687 1842 2114 785 1842 2114 785 1739 2076 687 1863 2190 861 1719 2182 853 1787 2115 786 1863 2190 861 1863 2190 861 1787 2115 786 1842 2114 785 1704 2092 763 1783 2185 856 1843 2091 762 1843 2091 762 1783 2185 856 1860 2191 862 1694 2044 655 1788 2036 647 1860 2191 862 1860 2191 862 1788 2036 647 1843 2091 762 1788 2036 647 1694 2044 655 1844 2037 648 1844 2037 648 1694 2044 655 1730 2042 653 1693 2041 652 1789 2016 631 1730 2042 653 1730 2042 653 1789 2016 631 1844 2037 648 1693 2041 652 1729 2040 651 1685 2192 636 1685 2192 636 1729 2040 651 1845 2193 863 1896 2194 864 1692 2047 658 1731 2046 657 1829 2157 828 1769 2156 827 1828 2151 822 1828 2151 822 1769 2156 827 1791 2152 823 1769 2156 827 1776 2170 841 1791 2152 823 1791 2152 823 1776 2170 841 1846 2168 839 1776 2170 841 1699 2065 676 1846 2168 839 1846 2168 839 1699 2065 676 1866 2067 678 1068 2196 577 1100 1483 576 1684 2195 643 1684 2195 643 1100 1483 576 1847 2033 644 1100 1483 576 1079 1485 578 1847 2033 644 1847 2033 644 1079 1485 578 1792 2034 645 1079 1485 578 1101 1486 579 1792 2034 645 1792 2034 645 1101 1486 579 1848 2055 666 1101 1486 579 1080 1487 580 1848 2055 666 1848 2055 666 1080 1487 580 1793 2056 667 1080 1487 580 1102 1488 581 1793 2056 667 1793 2056 667 1102 1488 581 1849 2175 846 1081 1489 582 1794 2176 847 1102 1488 581 1102 1488 581 1794 2176 847 1849 2175 846 1794 2176 847 1081 1489 582 1850 2197 865 1850 2197 865 1081 1489 582 1103 1491 584 1082 1492 585 1795 2133 804 1103 1491 584 1103 1491 584 1795 2133 804 1850 2197 865 1795 2133 804 1082 1492 585 1851 2134 805 1851 2134 805 1082 1492 585 1104 1493 586 1083 1494 587 1796 2136 807 1104 1493 586 1104 1493 586 1796 2136 807 1851 2134 805 1084 1495 588 1797 2145 816 1083 1494 587 1083 1494 587 1797 2145 816 1796 2136 807 1085 1496 589 1798 2071 682 1084 1495 588 1084 1495 588 1798 2071 682 1797 2145 816 1087 1499 592 1105 1498 591 1701 2072 683 1701 2072 683 1105 1498 591 1852 2198 866 1105 1498 591 1086 1500 593 1852 2198 866 1852 2198 866 1086 1500 593 1799 2147 818 1106 1501 594 1088 1502 595 1853 2148 819 1853 2148 819 1088 1502 595 1800 2141 812 1086 1500 593 1106 1501 594 1799 2147 818 1799 2147 818 1106 1501 594 1853 2148 819 1088 1502 595 1107 1503 596 1800 2141 812 1800 2141 812 1107 1503 596 1854 2142 813 1107 1503 596 1089 1504 597 1854 2142 813 1854 2142 813 1089 1504 597 1801 2143 814 1108 1505 598 1090 1506 599 1855 2179 850 1855 2179 850 1090 1506 599 1802 2109 780 1089 1504 597 1108 1505 598 1801 2143 814 1801 2143 814 1108 1505 598 1855 2179 850 1090 1506 599 1109 1507 600 1802 2109 780 1802 2109 780 1109 1507 600 1856 2110 781 1109 1507 600 1091 1508 601 1856 2110 781 1856 2110 781 1091 1508 601 1803 2111 782 1091 1508 601 1110 1287 385 1803 2111 782 1803 2111 782 1110 1287 385 1857 2015 630 1738 2068 679 1698 2063 674 1858 2200 868 1858 2200 868 1698 2063 674 1804 2199 867 1873 2172 843 1834 2174 845 1804 2199 867 1804 2199 867 1834 2174 845 1858 2200 868 1834 2174 845 1099 1461 556 1858 2200 868 1858 2200 868 1099 1461 556 1111 1511 604 1073 1348 443 1738 2068 679 1111 1511 604 1111 1511 604 1738 2068 679 1858 2200 868 1085 1496 589 1087 1499 592 1798 2071 682 1798 2071 682 1087 1499 592 1701 2072 683 1697 2201 869 1805 2103 774 1770 2154 825 1770 2154 825 1805 2103 774 1859 2202 870 1805 2103 774 1744 2082 753 1859 2202 870 1859 2202 870 1744 2082 753 1830 2159 830 1772 2203 871 1806 2204 872 1830 2159 830 1830 2159 830 1806 2204 872 1859 2202 870 1806 2204 872 1717 2155 826 1859 2202 870 1859 2202 870 1717 2155 826 1770 2154 825 1783 2185 856 1708 2105 776 1860 2191 862 1860 2191 862 1708 2105 776 1752 2104 775 1694 2044 655 1860 2191 862 1696 2059 670 1696 2059 670 1860 2191 862 1752 2104 775 1717 2155 826 1806 2204 872 1775 2169 840 1775 2169 840 1806 2204 872 1861 2205 873 1806 2204 872 1772 2203 871 1861 2205 873 1861 2205 873 1772 2203 871 1777 2206 874 1785 2188 859 1706 2095 766 1862 2207 875 1862 2207 875 1706 2095 766 1750 2100 771 1750 2100 771 1708 2105 776 1862 2207 875 1862 2207 875 1708 2105 776 1782 2183 854 1715 2128 799 1760 2127 798 1782 2183 854 1782 2183 854 1760 2127 798 1862 2207 875 1711 2126 797 1785 2188 859 1760 2127 798 1760 2127 798 1785 2188 859 1862 2207 875 1775 2169 840 1861 2205 873 1778 2062 673 1778 2062 673 1861 2205 873 1864 2208 876 1777 2206 874 1835 2171 842 1861 2205 873 1861 2205 873 1835 2171 842 1864 2208 876 1739 2076 687 1700 2075 686 1863 2190 861 1863 2190 861 1700 2075 686 1761 2129 800 1715 2128 799 1719 2182 853 1761 2129 800 1761 2129 800 1719 2182 853 1863 2190 861 1804 2199 867 1698 2063 674 1864 2208 876 1864 2208 876 1698 2063 674 1778 2062 673 1852 2198 866 1799 2147 818 1865 2209 877 1865 2209 877 1799 2147 818 1767 2146 817 1712 2119 790 1762 2131 802 1767 2146 817 1767 2146 817 1762 2131 802 1865 2209 877 1762 2131 802 1700 2075 686 1865 2209 877 1865 2209 877 1700 2075 686 1740 2073 684 1701 2072 683 1852 2198 866 1740 2073 684 1740 2073 684 1852 2198 866 1865 2209 877 1779 2066 677 1718 2167 838 1866 2067 678 1866 2067 678 1718 2167 838 1846 2168 839 1789 2016 631 1693 2041 652 1867 2017 632 1867 2017 632 1693 2041 652 1685 2210 636 1696 2059 670 1751 2102 773 1735 2060 671 1735 2060 671 1751 2102 773 1697 2201 869 1805 2103 774 1697 2201 869 1751 2102 773 1803 2111 782 1857 2015 630 1753 2106 777 1753 2106 777 1857 2015 630 1868 2211 878 1857 2015 630 1809 2014 629 1868 2211 878 1809 2014 629 1880 2013 628 1868 2211 878 1742 2079 690 1702 2078 689 1868 2211 878 1868 2211 878 1702 2078 689 1753 2106 777 1780 2177 848 1794 2176 847 1869 2212 879 1869 2212 879 1794 2176 847 1850 2197 865 1795 2133 804 1763 2132 803 1850 2197 865 1850 2197 865 1763 2132 803 1869 2212 879 1763 2132 803 1709 2112 783 1869 2212 879 1869 2212 879 1709 2112 783 1784 2186 857 1705 2093 764 1780 2177 848 1784 2186 857 1784 2186 857 1780 2177 848 1869 2212 879 1787 2115 786 1719 2182 853 1870 2187 858 1870 2187 858 1719 2182 853 1839 2184 855 1783 2185 856 1704 2092 763 1839 2184 855 1839 2184 855 1704 2092 763 1870 2187 858 1871 2083 754 1751 2102 773 1747 2094 765 1747 2094 765 1751 2102 773 1821 2101 772 1871 2083 754 1747 2094 765 1741 2077 688 1741 2077 688 1747 2094 765 1820 2097 768 1772 2203 871 1872 2160 831 1777 2206 874 1777 2206 874 1872 2160 831 1835 2171 842 1872 2160 831 1772 2203 871 1771 2158 829 1771 2158 829 1772 2203 871 1830 2159 830 1835 2171 842 1873 2172 843 1864 2208 876 1864 2208 876 1873 2172 843 1804 2199 867 1703 2085 756 1876 2087 758 1771 2158 829 1771 2158 829 1876 2087 758 1875 2161 832 1877 2088 759 1876 2087 758 1743 2084 755 1743 2084 755 1876 2087 758 1703 2085 756 1743 2084 755 1722 2008 623 1877 2088 759 1877 2088 759 1722 2008 623 1878 2011 626 1687 2006 621 1879 2012 627 1722 2008 623 1722 2008 623 1879 2012 627 1878 2011 626 1880 2013 628 1879 2012 627 1686 2081 751 1686 2081 751 1879 2012 627 1687 2006 621 1868 2211 878 1880 2013 628 1742 2079 690 1742 2079 690 1880 2013 628 1686 2081 751 1684 2214 2187 1886 2215 2188 1068 2213 1843 1068 2213 1843 1886 2215 2188 1319 1525 1844 1521 1759 2061 1886 2215 2188 1518 2004 2186 1518 2004 2186 1886 2215 2188 1887 2216 2189 1518 2004 2186 1517 2003 2185 1521 1759 2061 1521 1759 2061 1517 2003 2185 1881 1760 2062 1517 2003 2185 1516 1758 2060 1881 1760 2062 1881 1760 2062 1516 1758 2060 1515 1757 2059 898 1023 1712 1312 1025 1714 1515 1757 2059 1515 1757 2059 1312 1025 1714 1881 1760 2062 1683 2217 2190 1685 2218 2191 1888 2220 2193 1888 2220 2193 1685 2218 2191 1889 2219 2192 1882 1750 2052 1520 2002 2184 1890 2221 2194 1890 2221 2194 1520 2002 2184 1889 2219 2192 1885 2223 2196 1892 2224 2197 1884 2222 2195 1884 2222 2195 1892 2224 2197 1891 2225 2198 1514 1754 2056 1898 2226 2199 1315 1538 1857 1315 1538 1857 1898 2226 2199 1320 1539 1858 1518 2004 2186 1887 2216 2189 1519 2001 2183 1519 2001 2183 1887 2216 2189 1888 2220 2193 1882 1750 2052 1890 2221 2194 1512 1751 2053 1512 1751 2053 1890 2221 2194 1891 2225 2198 1729 2040 651 1692 2047 658 1845 2228 863 1845 2228 863 1692 2047 658 1884 2227 880 1690 2022 637 1682 2229 640 1689 2049 660 1689 2049 660 1682 2229 640 1885 2230 881 1513 1752 2054 1892 2224 2197 1883 1753 2055 1883 1753 2055 1892 2224 2197 1893 2231 2200 1884 2233 880 1692 2047 658 1885 2232 881 1885 2232 881 1692 2047 658 1689 2049 660 905 1028 1717 1319 1525 1844 1521 1759 2061 1521 1759 2061 1319 1525 1844 1886 2215 2188 1069 2235 1862 1320 1539 1858 1720 2234 2201 1720 2234 2201 1320 1539 1858 1898 2226 2199 1684 2236 2187 1726 2237 2202 1886 2215 2188 1886 2215 2188 1726 2237 2202 1887 2216 2189 1726 2238 2202 1683 2239 2190 1887 2216 2189 1887 2216 2189 1683 2239 2190 1888 2220 2193 1520 2002 2184 1519 2001 2183 1889 2219 2192 1889 2219 2192 1519 2001 2183 1888 2220 2193 1845 2241 2203 1890 2221 2194 1685 2240 2191 1685 2240 2191 1890 2221 2194 1889 2219 2192 1884 2243 2195 1891 2225 2198 1845 2242 2203 1845 2242 2203 1891 2225 2198 1890 2221 2194 1512 1751 2053 1891 2225 2198 1513 1752 2054 1513 1752 2054 1891 2225 2198 1892 2224 2197 1682 2245 2204 1893 2231 2200 1885 2244 2196 1885 2244 2196 1893 2231 2200 1892 2224 2197 1720 2247 2201 1898 2226 2199 1682 2246 2204 1682 2246 2204 1898 2226 2199 1893 2231 2200 1894 2248 882 1697 2201 869 1829 2157 828 1829 2157 828 1697 2201 869 1770 2154 825 1894 2248 882 1829 2157 828 1790 2051 662 1790 2051 662 1829 2157 828 1828 2151 822 1894 2248 882 1790 2051 662 1895 2249 883 1895 2249 883 1790 2051 662 1812 2050 661 1735 2060 671 1697 2201 869 1736 2061 672 1736 2061 672 1697 2201 869 1894 2248 882 1736 2061 672 1894 2248 882 1896 2194 864 1896 2194 864 1894 2248 882 1895 2249 883 1692 2047 658 1896 2194 864 1689 2049 660 1689 2049 660 1896 2194 864 1895 2249 883 1689 2049 660 1895 2249 883 1812 2050 661 1815 2045 656 1736 2061 672 1731 2046 657 1731 2046 657 1736 2061 672 1896 2194 864 1883 1753 2055 1893 2231 2200 1514 1754 2056 1514 1754 2056 1893 2231 2200 1898 2226 2199 1371 1600 1902 1899 1601 1903 1359 1584 1886 1359 1584 1886 1899 1601 1903 1360 1586 1888 1382 1613 1915 1900 1614 1916 1371 1600 1902 1371 1600 1902 1900 1614 1916 1899 1601 1903 1393 1626 1928 1901 1627 1929 1382 1613 1915 1382 1613 1915 1901 1627 1929 1900 1614 1916 1404 1639 1941 1902 1640 1942 1393 1626 1928 1393 1626 1928 1902 1640 1942 1901 1627 1929 1404 1639 1941 1415 1652 1954 1902 1640 1942 1902 1640 1942 1415 1652 1954 350 790 1479 1426 1664 1966 433 793 1482 1415 1652 1954 1415 1652 1954 433 793 1482 350 790 1479 1497 1735 2037 1903 1756 2058 430 806 1495 1503 1741 2043 1509 1747 2049 1903 1756 2058 1903 1756 2058 1509 1747 2049 1904 1755 2057 1051 1105 1734 986 1090 1719 1905 1106 1735 1905 1106 1735 986 1090 1719 1906 1093 1722 1048 1091 1720 908 1109 1738 1907 1092 1721 1907 1092 1721 908 1109 1738 1908 1096 1725 1017 1095 1724 951 1107 1736 1907 1092 1721 1907 1092 1721 951 1107 1736 1906 1093 1722 1019 1108 1737 925 1101 1730 1905 1106 1735 1905 1106 1735 925 1101 1730 1909 1103 1732 1020 1113 1742 923 1094 1723 1910 1111 1740 1910 1111 1740 923 1094 1723 1908 1096 1725 1050 1098 1727 909 1104 1733 1911 1099 1728 1911 1099 1728 909 1104 1733 1909 1103 1732 1052 1110 1739 910 1115 1744 1910 1111 1740 1910 1111 1740 910 1115 1744 1912 1114 1743 1018 1102 1731 952 1148 1777 1911 1099 1728 1911 1099 1728 952 1148 1777 1913 1100 1729 1021 1119 1748 924 1112 1741 1914 1117 1746 1914 1117 1746 924 1112 1741 1912 1114 1743 990 1097 1726 1913 1100 1729 1055 1146 1775 1055 1146 1775 1913 1100 1729 1915 1147 1776 982 1125 1754 1916 1120 1749 1053 1116 1745 1053 1116 1745 1916 1120 1749 1914 1117 1746 928 1142 1771 1917 1144 1773 1026 1149 1778 1026 1149 1778 1917 1144 1773 1915 1147 1776 926 1118 1747 1916 1120 1749 1022 1122 1751 1022 1122 1751 1916 1120 1749 1918 1123 1752 912 1145 1774 1917 1144 1773 1049 1140 1769 1049 1140 1769 1917 1144 1773 1919 1141 1770 984 1127 1756 1920 1124 1753 1046 1126 1755 1046 1126 1755 1920 1124 1753 1918 1123 1752 930 1136 1765 1921 1138 1767 1025 1143 1772 1025 1143 1772 1921 1138 1767 1919 1141 1770 927 1121 1750 1920 1124 1753 1023 1131 1760 1023 1131 1760 1920 1124 1753 1922 1129 1758 988 1139 1768 1921 1138 1767 1054 1134 1763 1054 1134 1763 1921 1138 1767 1923 1135 1764 911 1133 1762 1924 1132 1761 1047 1128 1757 1047 1128 1757 1924 1132 1761 1922 1129 1758 929 1130 1759 1924 1132 1761 1024 1137 1766 1024 1137 1766 1924 1132 1761 1923 1135 1764 1662 1821 2063 1926 1824 2066 1522 1841 2083 1522 1841 2083 1926 1824 2066 1925 1827 2069 1665 1835 2077 1928 1837 2079 1600 1822 2064 1600 1822 2064 1928 1837 2079 1927 1823 2065 1631 1825 2067 1926 1824 2066 1565 1839 2081 1565 1839 2081 1926 1824 2066 1927 1823 2065 1634 1843 2085 1929 1842 2084 1537 1826 2068 1537 1826 2068 1929 1842 2084 1925 1827 2069 1633 1838 2080 1928 1837 2079 1539 1833 2075 1539 1833 2075 1928 1837 2079 1930 1834 2076 1666 1840 2082 1929 1842 2084 1524 1847 2089 1524 1847 2089 1929 1842 2084 1931 1845 2087 1664 1828 2070 1932 1831 2073 1523 1836 2078 1523 1836 2078 1932 1831 2073 1930 1834 2076 1635 1849 2091 1933 1848 2090 1538 1844 2086 1538 1844 2086 1933 1848 2090 1931 1845 2087 1632 1832 2074 1932 1831 2073 1566 1880 2122 1566 1880 2122 1932 1831 2073 1934 1830 2072 1596 1857 2099 1667 1846 2088 1935 1851 2093 1935 1851 2093 1667 1846 2088 1933 1848 2090 1604 1829 2071 1669 1876 2118 1934 1830 2072 1934 1830 2072 1669 1876 2118 1936 1878 2120 1540 1850 2092 1636 1852 2094 1935 1851 2093 1935 1851 2093 1636 1852 2094 1937 1855 2097 1542 1874 2116 1640 1879 2121 1938 1875 2117 1938 1875 2117 1640 1879 2121 1936 1878 2120 1598 1859 2101 1660 1856 2098 1939 1854 2096 1939 1854 2096 1660 1856 2098 1937 1855 2097 1526 1877 2119 1663 1870 2112 1938 1875 2117 1938 1875 2117 1663 1870 2112 1940 1872 2114 1541 1853 2095 1637 1861 2103 1939 1854 2096 1939 1854 2096 1637 1861 2103 1941 1860 2102 1544 1868 2110 1639 1873 2115 1942 1869 2111 1942 1869 2111 1639 1873 2115 1940 1872 2114 1525 1865 2107 1661 1858 2100 1943 1863 2105 1943 1863 2105 1661 1858 2100 1941 1860 2102 1602 1871 2113 1668 1864 2106 1942 1869 2111 1942 1869 2111 1668 1864 2106 1944 1866 2108 1543 1862 2104 1638 1867 2109 1943 1863 2105 1943 1863 2105 1638 1867 2109 1944 1866 2108 651 570 1332 1945 675 1416 2087 571 1333 2087 571 1333 1945 675 1416 2086 2250 2205 374 512 1308 393 653 1394 1964 507 1303 1964 507 1303 393 653 1394 1945 675 1416 2086 2250 2205 1945 675 1416 2107 723 1448 2107 723 1448 1945 675 1416 393 653 1394 401 620 1368 521 619 1367 1949 771 1466 1949 771 1466 521 619 1367 1948 772 1467 660 630 1378 1950 770 1465 579 623 1371 579 623 1371 1950 770 1465 1949 771 1466 402 628 1376 524 626 1374 1951 769 1464 1951 769 1464 524 626 1374 1950 770 1465 577 664 1405 1952 767 1462 578 631 1379 578 631 1379 1952 767 1462 1951 769 1464 577 664 1405 2094 700 1429 1952 767 1462 1952 767 1462 2094 700 1429 2096 768 1463 584 693 281 1954 765 1000 419 742 977 419 742 977 1954 765 1000 1955 764 999 659 556 239 1957 762 997 575 553 236 575 553 236 1957 762 997 1956 763 998 527 634 248 1957 762 997 404 636 250 404 636 250 1957 762 997 1958 761 996 658 569 245 1959 760 995 574 558 241 574 558 241 1959 760 995 1958 761 996 530 641 255 1959 760 995 407 643 257 407 643 257 1959 760 995 1960 759 994 573 568 244 657 672 268 1960 759 994 1960 759 994 657 672 268 1961 758 993 412 649 263 533 647 261 1962 757 992 1962 757 992 533 647 261 1961 758 993 671 732 309 1947 734 311 571 755 990 571 755 990 1947 734 311 1963 756 991 1470 1708 2010 1481 1719 2021 431 800 1489 431 800 1489 1481 1719 2021 347 801 1490 1459 1697 1999 1470 1708 2010 348 798 1487 348 798 1487 1470 1708 2010 431 800 1489 1448 1686 1988 1459 1697 1999 432 797 1486 432 797 1486 1459 1697 1999 348 798 1487 1437 1675 1977 1448 1686 1988 349 794 1483 349 794 1483 1448 1686 1988 432 797 1486 351 803 1492 347 801 1490 1491 1727 2029 1491 1727 2029 347 801 1490 1481 1719 2021 430 806 1495 351 803 1492 1497 1735 2037 1497 1735 2037 351 803 1492 1491 1727 2029 430 806 1495 1903 1756 2058 435 438 1234 435 438 1234 1903 1756 2058 1986 1021 1710 435 438 1234 1986 1021 1710 88 375 1186 88 375 1186 1986 1021 1710 320 1020 1709 433 793 1482 1426 1664 1966 349 794 1483 349 794 1483 1426 1664 1966 1437 1675 1977 2049 2252 2207 1973 1589 1891 2048 2251 2206 2048 2251 2206 1973 1589 1891 1972 1588 1890 350 790 1479 434 436 1232 1902 1640 1942 1902 1640 1942 434 436 1232 1974 1641 1943 2047 2253 2208 2048 2251 2206 1975 1602 1904 1975 1602 1904 2048 2251 2206 1972 1588 1890 2046 2254 2209 2047 2253 2208 1976 1615 1917 1976 1615 1917 2047 2253 2208 1975 1602 1904 2046 2254 2209 1976 1615 1917 2045 2255 2210 2045 2255 2210 1976 1615 1917 1977 1628 1930 2044 1653 1955 2045 2255 2210 1974 1641 1943 1974 1641 1943 2045 2255 2210 1977 1628 1930 684 410 1214 2026 413 1217 606 781 1473 606 781 1473 2026 413 1217 2027 423 2211 310 111 904 1978 113 906 2024 409 1213 2024 409 1213 1978 113 906 2025 412 1216 858 976 1665 4 371 1182 867 985 1674 867 985 1674 4 371 1182 84 373 1184 858 976 1665 845 964 1653 4 371 1182 4 371 1182 845 964 1653 0 369 1180 721 832 1521 1331 831 1520 1979 835 1524 1979 835 1524 1331 831 1520 1980 836 1525 3 360 1171 87 359 1170 774 2256 2212 774 2256 2212 87 359 1170 1981 892 1581 735 2257 2213 1982 850 1539 722 834 1523 722 834 1523 1982 850 1539 1979 835 1524 748 2258 2214 1983 864 1553 735 2257 2213 735 2257 2213 1983 864 1553 1982 850 1539 761 2259 2215 1984 878 1567 748 2258 2214 748 2258 2214 1984 878 1567 1983 864 1553 774 2256 2212 1981 892 1581 761 2259 2215 761 2259 2215 1981 892 1581 1984 878 1567 810 928 1617 798 916 1605 1 365 1176 1 365 1176 798 916 1605 86 364 1175 1 365 1176 85 367 1178 810 928 1617 810 928 1617 85 367 1178 822 940 1629 822 940 1629 85 367 1178 834 952 1641 834 952 1641 85 367 1178 0 369 1180 845 964 1653 834 952 1641 0 369 1180 88 375 1186 320 1020 1709 2015 2260 2216 2015 2260 2216 84 373 1184 88 375 1186 1514 1754 2056 1315 1538 1857 1904 1755 2057 1904 1755 2057 1315 1538 1857 1985 1019 1708 1337 1017 1706 1985 1019 1708 897 1018 1707 897 1018 1707 1985 1019 1708 1315 1538 1857 243 1 26 1987 2261 2217 90 2 28 90 2 28 1987 2261 2217 1988 2262 2218 91 4 30 1989 2263 2219 243 1 26 243 1 26 1989 2263 2219 1987 2261 2217 244 7 35 1990 2264 2220 91 4 30 91 4 30 1990 2264 2220 1989 2263 2219 299 8 36 1991 2265 2221 244 7 35 244 7 35 1991 2265 2221 1990 2264 2220 164 179 1042 163 178 1041 1993 2267 2223 1993 2267 2223 163 178 1041 1992 2266 2222 266 181 1045 165 180 1043 1995 2269 2225 1995 2269 2225 165 180 1043 1994 2268 2224 163 178 1041 266 181 1045 1992 2266 2222 1992 2266 2222 266 181 1045 1995 2269 2225 90 2 28 1988 2262 2218 288 184 1048 288 184 1048 1988 2262 2218 1996 2270 2226 167 186 1050 164 179 1042 1997 2271 2227 1997 2271 2227 164 179 1042 1993 2267 2223 288 184 1048 1996 2270 2226 324 333 1144 324 333 1144 1996 2270 2226 1998 2272 2228 315 351 1162 167 186 1050 1999 2273 2229 1999 2273 2229 167 186 1050 1997 2271 2227 324 333 1144 1998 2272 2228 165 180 1043 165 180 1043 1998 2272 2228 1994 2268 2224 1991 2265 2221 299 8 36 2018 2274 2230 2018 2274 2230 299 8 36 2017 378 1189 315 351 1162 1999 2273 2229 690 432 1228 690 432 1228 1999 2273 2229 2001 2275 2231 622 442 1238 437 441 1237 2003 2277 2233 2003 2277 2233 437 441 1237 2002 2276 2232 438 443 1239 622 442 1238 2004 2278 2234 2004 2278 2234 622 442 1238 2003 2277 2233 623 446 1242 438 443 1239 2005 2279 2235 2005 2279 2235 438 443 1239 2004 2278 2234 623 446 1242 2005 2279 2235 440 447 1243 440 447 1243 2005 2279 2235 2006 2280 2236 520 617 1365 2007 2281 2237 519 618 1366 519 618 1366 2007 2281 2237 2008 2282 2238 645 622 1370 2009 2283 2239 521 619 1367 521 619 1367 2009 2283 2239 2010 2284 2240 519 618 1366 2008 2282 2238 645 622 1370 645 622 1370 2008 2282 2238 2009 2283 2239 437 441 1237 661 624 1372 2002 2276 2232 2002 2276 2232 661 624 1372 2011 2285 2241 523 625 1373 2012 2286 2242 520 617 1365 520 617 1365 2012 2286 2242 2007 2281 2237 661 624 1372 1948 772 1467 2011 2285 2241 2011 2285 2241 1948 772 1467 2013 2287 2243 440 447 1243 2006 2280 2236 672 774 1469 672 774 1469 2006 2280 2236 2000 2288 2244 690 432 1228 2001 2275 2231 523 625 1373 523 625 1373 2001 2275 2231 2012 2286 2242 1948 772 1467 521 619 1367 2013 2287 2243 2013 2287 2243 521 619 1367 2010 2284 2240 1988 2262 2218 1987 2261 2217 2014 2289 2245 1987 2261 2217 1989 2263 2219 2014 2289 2245 1989 2263 2219 1990 2264 2220 2014 2289 2245 1990 2264 2220 1991 2265 2221 2014 2289 2245 1993 2267 2223 1992 2266 2222 2014 2289 2245 1995 2269 2225 1994 2268 2224 2014 2289 2245 1992 2266 2222 1995 2269 2225 2014 2289 2245 1996 2270 2226 1988 2262 2218 2014 2289 2245 1997 2271 2227 1993 2267 2223 2014 2289 2245 1998 2272 2228 1996 2270 2226 2014 2289 2245 1999 2273 2229 1997 2271 2227 2014 2289 2245 1994 2268 2224 1998 2272 2228 2014 2289 2245 1991 2265 2221 2018 2274 2230 2014 2289 2245 2018 2274 2230 2000 2288 2244 2014 2289 2245 2001 2275 2231 1999 2273 2229 2014 2289 2245 2003 2277 2233 2002 2276 2232 2014 2289 2245 2004 2278 2234 2003 2277 2233 2014 2289 2245 2005 2279 2235 2004 2278 2234 2014 2289 2245 2006 2280 2236 2005 2279 2235 2014 2289 2245 2008 2282 2238 2007 2281 2237 2014 2289 2245 2010 2284 2240 2009 2283 2239 2014 2289 2245 2009 2283 2239 2008 2282 2238 2014 2289 2245 2002 2276 2232 2011 2285 2241 2014 2289 2245 2007 2281 2237 2012 2286 2242 2014 2289 2245 2011 2285 2241 2013 2287 2243 2014 2289 2245 2000 2288 2244 2006 2280 2236 2014 2289 2245 2012 2286 2242 2001 2275 2231 2014 2289 2245 2013 2287 2243 2010 2284 2240 2014 2289 2245 320 1020 1709 884 1002 1691 2015 2260 2216 2015 2260 2216 884 1002 1691 877 995 1684 867 985 1674 84 373 1184 877 995 1684 877 995 1684 84 373 1184 2015 2260 2216 1497 1735 2037 1503 1741 2043 1903 1756 2058 2000 2288 2244 2018 2274 2230 672 774 1469 672 774 1469 2018 2274 2230 2017 378 1189 228 88 77 2020 406 151 308 85 74 308 85 74 2020 406 151 2019 402 150 673 775 1470 590 773 1468 2021 379 1190 2021 379 1190 590 773 1468 2022 377 1188 590 773 1468 672 774 1469 2022 377 1188 2022 377 1188 672 774 1469 2017 378 1189 591 776 1471 673 775 1470 2023 380 1191 2023 380 1191 673 775 1470 2021 379 1190 591 776 1471 2023 380 1191 683 780 1472 683 780 1472 2023 380 1191 2024 409 1213 683 780 1472 2024 409 1213 604 411 1215 604 411 1215 2024 409 1213 2025 412 1216 1978 113 906 142 124 914 2025 412 1216 2025 412 1216 142 124 914 2026 413 1217 142 124 914 229 126 916 2026 413 1217 2026 413 1217 229 126 916 2027 423 2211 606 781 228 2027 423 153 687 782 229 687 782 229 2027 423 153 2028 422 152 687 782 229 2028 422 152 607 783 230 607 783 230 2028 422 152 2029 424 154 607 783 230 2029 424 154 688 784 231 688 784 231 2029 424 154 2030 425 155 688 784 231 2030 425 155 603 778 224 603 778 224 2030 425 155 2031 408 147 682 779 225 603 778 224 2032 407 146 2032 407 146 603 778 224 2031 408 147 601 777 222 682 779 225 2033 403 145 2033 403 145 682 779 225 2032 407 146 601 777 222 2033 403 145 681 405 223 681 405 223 2033 403 145 2019 402 2263 2020 406 151 228 88 77 2016 420 160 2016 420 160 228 88 77 312 154 107 41 140 103 2034 414 156 312 154 107 312 154 107 2034 414 156 2016 420 160 311 135 100 2035 415 157 41 140 103 41 140 103 2035 415 157 2034 414 156 311 135 921 29 77 897 2035 415 1218 2035 415 1218 29 77 897 2036 394 1205 307 76 896 2037 395 1206 29 77 897 29 77 897 2037 395 1206 2036 394 1205 227 79 899 2038 398 1209 307 76 896 307 76 896 2038 398 1209 2037 395 1206 227 79 899 45 81 901 2038 398 1209 2038 398 1209 45 81 901 2039 400 1211 45 81 901 162 353 1164 2039 400 1211 2039 400 1211 162 353 1164 2040 428 1224 162 353 1164 79 355 1166 2040 428 1224 2040 428 1224 79 355 1166 2041 430 1226 233 358 1169 2042 433 1229 79 355 1166 79 355 1166 2042 433 1229 2041 430 1226 3 360 1171 2043 435 1231 233 358 1169 233 358 1169 2043 435 1231 2042 433 1229 774 2256 2212 2044 1653 1955 3 360 1171 3 360 1171 2044 1653 1955 2043 435 1231 761 2259 2215 2045 2255 2210 774 2256 2212 774 2256 2212 2045 2255 2210 2044 1653 1955 761 2259 2215 748 2258 2214 2045 2255 2210 2045 2255 2210 748 2258 2214 2046 2254 2209 748 2258 2214 735 2257 2213 2046 2254 2209 2046 2254 2209 735 2257 2213 2047 2253 2208 735 2257 2213 722 834 1523 2047 2253 2208 2047 2253 2208 722 834 1523 2048 2251 2206 722 834 1523 708 833 1522 2048 2251 2206 2048 2251 2206 708 833 1522 2049 2252 2207 907 1029 1718 2049 2252 2207 708 833 1522 1973 1589 1891 2049 2252 2207 907 1029 1718 907 1029 1718 1980 836 1525 1331 831 1520 2051 291 122 2065 133 1002 2050 292 123 2050 292 123 2065 133 1002 2064 288 1003 322 296 127 2067 376 1004 282 294 125 282 294 125 2067 376 1004 2066 134 1005 282 294 125 2066 134 1005 2051 291 122 2051 291 122 2066 134 1005 2065 133 1002 185 244 52 278 242 50 2068 245 1007 2068 245 1007 278 242 50 2069 237 1006 184 241 49 279 251 56 2070 238 1009 2070 238 1009 279 251 56 2071 246 1008 278 242 50 184 241 49 2069 237 1006 2069 237 1006 184 241 49 2070 238 1009 2052 263 64 185 244 52 2072 261 1010 2072 261 1010 185 244 52 2068 245 1007 2050 292 123 2064 288 1003 186 250 55 186 250 55 2064 288 1003 2073 247 1011 279 251 56 186 250 55 2071 246 1008 2071 246 1008 186 250 55 2073 247 1011 280 257 1103 2075 252 1099 187 259 1104 187 259 1104 2075 252 1099 2074 260 1105 2054 327 235 2077 328 1014 2053 256 59 2053 256 59 2077 328 1014 2076 253 1015 2053 256 59 2076 253 1015 280 257 60 280 257 60 2076 253 1015 2075 252 2276 187 259 1104 2074 260 1105 2055 266 1109 2055 266 1109 2074 260 1105 2078 264 1107 2054 327 235 2052 263 64 2077 328 1014 2077 328 1014 2052 263 64 2072 261 1010 2055 266 1109 2078 264 1107 188 268 1111 188 268 1111 2078 264 1107 2079 269 1112 188 268 1111 2079 269 1112 2056 272 1115 2056 272 1115 2079 269 1112 2080 270 1113 189 274 1117 2056 272 1115 2081 275 1118 2081 275 1118 2056 272 1115 2080 270 1113 2057 287 1128 189 274 1117 2082 285 1126 2082 285 1126 189 274 1117 2081 275 1118 191 283 88 281 281 2271 2083 284 1022 2083 284 1022 281 281 2271 2084 276 1021 190 280 1123 2057 287 1128 2085 277 1120 2085 277 1120 2057 287 1128 2082 285 1126 281 281 1124 190 280 1123 2084 276 1119 2084 276 1119 190 280 1123 2085 277 1120 322 296 127 191 283 88 2067 376 1004 2067 376 1004 191 283 88 2083 284 1022 1946 735 970 656 733 310 2086 2250 1025 2086 2250 1025 656 733 310 2087 571 1024 2058 731 308 2059 730 307 2088 572 1027 2088 572 1027 2059 730 307 2089 727 1026 656 733 310 2058 731 308 2087 571 1024 2087 571 1024 2058 731 308 2088 572 1027 554 681 274 2091 676 1028 653 689 279 653 689 279 2091 676 1028 2090 686 1029 555 683 276 2093 684 1030 652 680 273 652 680 273 2093 684 1030 2092 677 1031 652 680 273 2092 677 1031 554 681 274 554 681 274 2092 677 1031 2091 676 1028 2060 702 288 2094 700 1032 555 683 276 555 683 276 2094 700 1032 2093 684 1030 2059 730 307 556 690 280 2089 727 1026 2089 727 1026 556 690 280 2095 685 1033 653 689 279 2090 686 1029 556 690 280 556 690 280 2090 686 1029 2095 685 1033 1953 766 1001 557 696 284 2096 768 1035 2096 768 1035 557 696 284 2097 691 1034 654 695 1427 558 698 1426 2098 692 1423 2098 692 1423 558 698 1426 2099 699 1428 557 696 284 654 695 2270 2097 691 1034 2097 691 1034 654 695 2270 2098 692 1037 558 698 1426 2061 705 1432 2099 699 1428 2099 699 1428 2061 705 1432 2100 703 1430 1953 766 1001 2096 768 1035 2060 702 288 2060 702 288 2096 768 1035 2094 700 1032 2061 705 1432 559 707 1434 2100 703 1430 2100 703 1430 559 707 1434 2101 708 1435 559 707 1434 2062 711 1438 2101 708 1435 2101 708 1435 2062 711 1438 2102 709 1436 560 713 1440 2103 714 1441 2062 711 1438 2062 711 1438 2103 714 1441 2102 709 1436 2063 726 1451 2104 724 1449 560 713 1440 560 713 1440 2104 724 1449 2103 714 1441 561 720 1447 2105 715 1442 2063 726 1451 2063 726 1451 2105 715 1442 2104 724 1449 562 722 302 2107 723 1044 655 719 299 655 719 299 2107 723 1044 2106 716 2266 655 719 1446 2106 716 1443 561 720 1447 561 720 1447 2106 716 1443 2105 715 1442 1946 735 970 2086 2250 1025 562 722 302 562 722 302 2086 2250 1025 2107 723 1044 1686 2081 751 1687 2006 621 1807 2005 620 1117 1276 374 1237 1275 373 1151 1277 375

0 0 1 0 0 1 0 0 1 0 0 0 400.113 463.264 -431.078 0 0 1 0 0 1 0 -223.2 1 0 0 -38.4 148.654 183.672 -292.179 0 0 1 -12.8709 0 1 0 -191.679 1 0 0 -45.6358
pycollada-0.4/collada/tests/test_asset.py000066400000000000000000000100061200577111600206130ustar00rootroot00000000000000import datetime import collada from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestAsset(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_asset_contributor(self): contributor = collada.asset.Contributor() self.assertIsNone(contributor.author) self.assertIsNone(contributor.authoring_tool) self.assertIsNone(contributor.comments) self.assertIsNone(contributor.copyright) self.assertIsNone(contributor.source_data) contributor.save() contributor = collada.asset.Contributor.load(self.dummy, {}, fromstring(tostring(contributor.xmlnode))) self.assertIsNone(contributor.author) self.assertIsNone(contributor.authoring_tool) self.assertIsNone(contributor.comments) self.assertIsNone(contributor.copyright) self.assertIsNone(contributor.source_data) contributor.author = "author1" contributor.authoring_tool = "tool2" contributor.comments = "comments3" contributor.copyright = "copyright4" contributor.source_data = "data5" contributor.save() contributor = collada.asset.Contributor.load(self.dummy, {}, fromstring(tostring(contributor.xmlnode))) self.assertEqual(contributor.author, "author1") self.assertEqual(contributor.authoring_tool, "tool2") self.assertEqual(contributor.comments, "comments3") self.assertEqual(contributor.copyright, "copyright4") self.assertEqual(contributor.source_data, "data5") def test_asset(self): asset = collada.asset.Asset() self.assertIsNone(asset.title) self.assertIsNone(asset.subject) self.assertIsNone(asset.revision) self.assertIsNone(asset.keywords) self.assertIsNone(asset.unitname) self.assertIsNone(asset.unitmeter) self.assertEqual(asset.contributors, []) self.assertEqual(asset.upaxis, collada.asset.UP_AXIS.Y_UP) self.assertIsInstance(asset.created, datetime.datetime) self.assertIsInstance(asset.modified, datetime.datetime) asset.save() asset = collada.asset.Asset.load(self.dummy, {}, fromstring(tostring(asset.xmlnode))) self.assertIsNone(asset.title) self.assertIsNone(asset.subject) self.assertIsNone(asset.revision) self.assertIsNone(asset.keywords) self.assertIsNone(asset.unitname) self.assertIsNone(asset.unitmeter) self.assertEqual(asset.contributors, []) self.assertEqual(asset.upaxis, collada.asset.UP_AXIS.Y_UP) self.assertIsInstance(asset.created, datetime.datetime) self.assertIsInstance(asset.modified, datetime.datetime) asset.title = 'title1' asset.subject = 'subject2' asset.revision = 'revision3' asset.keywords = 'keywords4' asset.unitname = 'feet' asset.unitmeter = 3.1 contrib1 = collada.asset.Contributor(author="jeff") contrib2 = collada.asset.Contributor(author="bob") asset.contributors = [contrib1, contrib2] asset.upaxis = collada.asset.UP_AXIS.Z_UP time1 = datetime.datetime.now() asset.created = time1 time2 = datetime.datetime.now() + datetime.timedelta(hours=5) asset.modified = time2 asset.save() asset = collada.asset.Asset.load(self.dummy, {}, fromstring(tostring(asset.xmlnode))) self.assertEqual(asset.title, 'title1') self.assertEqual(asset.subject, 'subject2') self.assertEqual(asset.revision, 'revision3') self.assertEqual(asset.keywords, 'keywords4') self.assertEqual(asset.unitname, 'feet') self.assertEqual(asset.unitmeter, 3.1) self.assertEqual(asset.upaxis, collada.asset.UP_AXIS.Z_UP) self.assertEqual(asset.created, time1) self.assertEqual(asset.modified, time2) self.assertEqual(len(asset.contributors), 2) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_camera.py000066400000000000000000000161521200577111600207340ustar00rootroot00000000000000import collada from collada.common import DaeMalformedError from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestCamera(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_perspective_camera_xfov_yfov_aspect_ratio(self): #test invalid xfov,yfov,aspect_ratio combinations with self.assertRaises(DaeMalformedError): cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=None, yfov=None, aspect_ratio=None) with self.assertRaises(DaeMalformedError): cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=0.2, yfov=30, aspect_ratio=50) with self.assertRaises(DaeMalformedError): cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=None, yfov=None, aspect_ratio=50) #xfov alone cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=30, yfov=None, aspect_ratio=None) self.assertEqual(cam.xfov, 30) self.assertIsNone(cam.yfov) self.assertIsNone(cam.aspect_ratio) #yfov alone cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=None, yfov=50, aspect_ratio=None) self.assertIsNone(cam.xfov) self.assertEqual(cam.yfov, 50) self.assertIsNone(cam.aspect_ratio) #xfov + yfov cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=30, yfov=50, aspect_ratio=None) self.assertEqual(cam.xfov, 30) self.assertEqual(cam.yfov, 50) self.assertIsNone(cam.aspect_ratio) #xfov + aspect_ratio cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=30, yfov=None, aspect_ratio=1) self.assertEqual(cam.xfov, 30) self.assertIsNone(cam.yfov) self.assertEqual(cam.aspect_ratio, 1) #yfov + aspect_ratio cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=None, yfov=50, aspect_ratio=1) self.assertIsNone(cam.xfov) self.assertEqual(cam.yfov, 50) self.assertEqual(cam.aspect_ratio, 1) def test_perspective_camera_saving(self): cam = collada.camera.PerspectiveCamera("mycam", 1, 1000, xfov=30) self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xfov, 30) self.assertEqual(cam.yfov, None) self.assertEqual(cam.aspect_ratio, None) cam.save() self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xfov, 30) self.assertEqual(cam.yfov, None) self.assertEqual(cam.aspect_ratio, None) cam = collada.camera.PerspectiveCamera.load(self.dummy, {}, fromstring(tostring(cam.xmlnode))) self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xfov, 30) self.assertEqual(cam.yfov, None) self.assertEqual(cam.aspect_ratio, None) cam.id = "yourcam" cam.znear = 5 cam.zfar = 500 cam.xfov = None cam.yfov = 50 cam.aspect_ratio = 1.3 cam.save() cam = collada.camera.PerspectiveCamera.load(self.dummy, {}, fromstring(tostring(cam.xmlnode))) self.assertEqual(cam.id, "yourcam") self.assertEqual(cam.znear, 5) self.assertEqual(cam.zfar, 500) self.assertEqual(cam.xfov, None) self.assertEqual(cam.yfov, 50) self.assertEqual(cam.aspect_ratio, 1.3) cam.xfov = 20 with self.assertRaises(DaeMalformedError): cam.save() def test_orthographic_camera_xmag_ymag_aspect_ratio(self): #test invalid xmag,ymag,aspect_ratio combinations with self.assertRaises(DaeMalformedError): cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=None, ymag=None, aspect_ratio=None) with self.assertRaises(DaeMalformedError): cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=0.2, ymag=30, aspect_ratio=50) with self.assertRaises(DaeMalformedError): cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=None, ymag=None, aspect_ratio=50) #xmag alone cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=30, ymag=None, aspect_ratio=None) self.assertEqual(cam.xmag, 30) self.assertIsNone(cam.ymag) self.assertIsNone(cam.aspect_ratio) #ymag alone cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=None, ymag=50, aspect_ratio=None) self.assertIsNone(cam.xmag) self.assertEqual(cam.ymag, 50) self.assertIsNone(cam.aspect_ratio) #xmag + ymag cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=30, ymag=50, aspect_ratio=None) self.assertEqual(cam.xmag, 30) self.assertEqual(cam.ymag, 50) self.assertIsNone(cam.aspect_ratio) #xmag + aspect_ratio cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=30, ymag=None, aspect_ratio=1) self.assertEqual(cam.xmag, 30) self.assertIsNone(cam.ymag) self.assertEqual(cam.aspect_ratio, 1) #ymag + aspect_ratio cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=None, ymag=50, aspect_ratio=1) self.assertIsNone(cam.xmag) self.assertEqual(cam.ymag, 50) self.assertEqual(cam.aspect_ratio, 1) def test_orthographic_camera_saving(self): cam = collada.camera.OrthographicCamera("mycam", 1, 1000, xmag=30) self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xmag, 30) self.assertEqual(cam.ymag, None) self.assertEqual(cam.aspect_ratio, None) cam.save() self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xmag, 30) self.assertEqual(cam.ymag, None) self.assertEqual(cam.aspect_ratio, None) cam = collada.camera.OrthographicCamera.load(self.dummy, {}, fromstring(tostring(cam.xmlnode))) self.assertEqual(cam.id, "mycam") self.assertEqual(cam.znear, 1) self.assertEqual(cam.zfar, 1000) self.assertEqual(cam.xmag, 30) self.assertEqual(cam.ymag, None) self.assertEqual(cam.aspect_ratio, None) cam.id = "yourcam" cam.znear = 5 cam.zfar = 500 cam.xmag = None cam.ymag = 50 cam.aspect_ratio = 1.3 cam.save() cam = collada.camera.OrthographicCamera.load(self.dummy, {}, fromstring(tostring(cam.xmlnode))) self.assertEqual(cam.id, "yourcam") self.assertEqual(cam.znear, 5) self.assertEqual(cam.zfar, 500) self.assertEqual(cam.xmag, None) self.assertEqual(cam.ymag, 50) self.assertEqual(cam.aspect_ratio, 1.3) cam.xmag = 20 with self.assertRaises(DaeMalformedError): cam.save() if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_collada.py000066400000000000000000000365361200577111600211130ustar00rootroot00000000000000import os import numpy import dateutil.parser import collada from collada.util import unittest, BytesIO from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestCollada(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) self.datadir = os.path.join(os.path.dirname(os.path.realpath( __file__ )), "data") def test_collada_duck_tris(self): f = os.path.join(self.datadir, "duck_triangles.dae") mesh = collada.Collada(f, validate_output=True) self.assertEqual(mesh.assetInfo.contributors[0].author, 'gcorson') self.assertEqual(mesh.assetInfo.contributors[0].authoring_tool, 'Maya 8.0 | ColladaMaya v3.02 | FCollada v3.2') self.assertEqual(mesh.assetInfo.contributors[0].source_data, 'file:///C:/vs2005/sample_data/Complete_Packages/SCEA_Private/Maya_MoonLander/Moonlander/untitled') self.assertEqual(len(mesh.assetInfo.contributors[0].copyright), 595) self.assertEqual(len(mesh.assetInfo.contributors[0].comments), 449) self.assertEqual(mesh.assetInfo.unitmeter, 0.01) self.assertEqual(mesh.assetInfo.unitname, 'centimeter') self.assertEqual(mesh.assetInfo.upaxis, collada.asset.UP_AXIS.Y_UP) self.assertIsNone(mesh.assetInfo.title) self.assertIsNone(mesh.assetInfo.subject) self.assertIsNone(mesh.assetInfo.revision) self.assertIsNone(mesh.assetInfo.keywords) self.assertEqual(mesh.assetInfo.created, dateutil.parser.parse('2006-08-23T22:29:59Z')) self.assertEqual(mesh.assetInfo.modified, dateutil.parser.parse('2007-02-21T22:52:44Z')) self.assertEqual(mesh.scene.id, 'VisualSceneNode') self.assertIn('LOD3spShape-lib', mesh.geometries) self.assertIn('directionalLightShape1-lib', mesh.lights) self.assertIn('cameraShape1', mesh.cameras) self.assertIn('file2', mesh.images) self.assertIn('blinn3-fx', mesh.effects) self.assertIn('blinn3', mesh.materials) self.assertEqual(len(mesh.nodes), 0) self.assertIn('VisualSceneNode', mesh.scenes) self.assertIsNotNone(str(list(mesh.scene.objects('geometry')))) self.assertIsNotNone(str(list(mesh.scene.objects('light')))) self.assertIsNotNone(str(list(mesh.scene.objects('camera')))) s = BytesIO() mesh.write(s) out = s.getvalue() t = BytesIO(out) mesh = collada.Collada(t, validate_output=True) self.assertEqual(mesh.assetInfo.contributors[0].author, 'gcorson') self.assertEqual(mesh.assetInfo.contributors[0].authoring_tool, 'Maya 8.0 | ColladaMaya v3.02 | FCollada v3.2') self.assertEqual(mesh.assetInfo.contributors[0].source_data, 'file:///C:/vs2005/sample_data/Complete_Packages/SCEA_Private/Maya_MoonLander/Moonlander/untitled') self.assertEqual(len(mesh.assetInfo.contributors[0].copyright), 595) self.assertEqual(len(mesh.assetInfo.contributors[0].comments), 449) self.assertEqual(mesh.assetInfo.unitmeter, 0.01) self.assertEqual(mesh.assetInfo.unitname, 'centimeter') self.assertEqual(mesh.assetInfo.upaxis, collada.asset.UP_AXIS.Y_UP) self.assertIsNone(mesh.assetInfo.title) self.assertIsNone(mesh.assetInfo.subject) self.assertIsNone(mesh.assetInfo.revision) self.assertIsNone(mesh.assetInfo.keywords) self.assertEqual(mesh.assetInfo.created, dateutil.parser.parse('2006-08-23T22:29:59Z')) self.assertEqual(mesh.assetInfo.modified, dateutil.parser.parse('2007-02-21T22:52:44Z')) self.assertEqual(mesh.scene.id, 'VisualSceneNode') self.assertIn('LOD3spShape-lib', mesh.geometries) self.assertIn('directionalLightShape1-lib', mesh.lights) self.assertIn('cameraShape1', mesh.cameras) self.assertIn('file2', mesh.images) self.assertIn('blinn3-fx', mesh.effects) self.assertIn('blinn3', mesh.materials) self.assertEqual(len(mesh.nodes), 0) self.assertIn('VisualSceneNode', mesh.scenes) self.assertIsNotNone(str(list(mesh.scene.objects('geometry')))) self.assertIsNotNone(str(list(mesh.scene.objects('light')))) self.assertIsNotNone(str(list(mesh.scene.objects('camera')))) def test_collada_duck_poly(self): f = os.path.join(self.datadir, "duck_polylist.dae") mesh = collada.Collada(f, validate_output=True) self.assertEqual(mesh.scene.id, 'VisualSceneNode') self.assertIn('LOD3spShape-lib', mesh.geometries) self.assertIn('directionalLightShape1-lib', mesh.lights) self.assertIn('cameraShape1', mesh.cameras) self.assertIn('file2', mesh.images) self.assertIn('blinn3-fx', mesh.effects) self.assertIn('blinn3', mesh.materials) self.assertEqual(len(mesh.nodes), 0) self.assertIn('VisualSceneNode', mesh.scenes) s = BytesIO() mesh.write(s) out = s.getvalue() t = BytesIO(out) mesh = collada.Collada(t, validate_output=True) self.assertEqual(mesh.scene.id, 'VisualSceneNode') self.assertIn('LOD3spShape-lib', mesh.geometries) self.assertIn('directionalLightShape1-lib', mesh.lights) self.assertIn('cameraShape1', mesh.cameras) self.assertIn('file2', mesh.images) self.assertIn('blinn3-fx', mesh.effects) self.assertIn('blinn3', mesh.materials) self.assertEqual(len(mesh.nodes), 0) self.assertIn('VisualSceneNode', mesh.scenes) def test_collada_duck_zip(self): f = os.path.join(self.datadir, "duck.zip") mesh = collada.Collada(f, validate_output=True) self.assertEqual(mesh.scene.id, 'VisualSceneNode') self.assertIn('LOD3spShape-lib', mesh.geometries) self.assertIn('directionalLightShape1-lib', mesh.lights) self.assertIn('cameraShape1', mesh.cameras) self.assertIn('file2', mesh.images) self.assertIn('blinn3-fx', mesh.effects) self.assertIn('blinn3', mesh.materials) self.assertEqual(len(mesh.nodes), 0) self.assertIn('VisualSceneNode', mesh.scenes) def test_collada_saving(self): mesh = collada.Collada(validate_output=True) self.assertEqual(len(mesh.geometries), 0) self.assertEqual(len(mesh.controllers), 0) self.assertEqual(len(mesh.lights), 0) self.assertEqual(len(mesh.cameras), 0) self.assertEqual(len(mesh.images), 0) self.assertEqual(len(mesh.effects), 0) self.assertEqual(len(mesh.materials), 0) self.assertEqual(len(mesh.nodes), 0) self.assertEqual(len(mesh.scenes), 0) self.assertEqual(mesh.scene, None) self.assertIsNotNone(str(mesh)) floatsource = collada.source.FloatSource("myfloatsource", numpy.array([0.1,0.2,0.3]), ('X', 'Y', 'Z')) geometry1 = collada.geometry.Geometry(mesh, "geometry1", "mygeometry1", {"myfloatsource":floatsource}) mesh.geometries.append(geometry1) linefloats = [1,1,-1, 1,-1,-1, -1,-0.9999998,-1, -0.9999997,1,-1, 1,0.9999995,1, 0.9999994,-1.000001,1] linefloatsrc = collada.source.FloatSource("mylinevertsource", numpy.array(linefloats), ('X', 'Y', 'Z')) geometry2 = collada.geometry.Geometry(mesh, "geometry2", "mygeometry2", [linefloatsrc]) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#mylinevertsource") indices = numpy.array([0,1, 1,2, 2,3, 3,4, 4,5]) lineset1 = geometry2.createLineSet(indices, input_list, "mymaterial2") geometry2.primitives.append(lineset1) mesh.geometries.append(geometry2) ambientlight = collada.light.AmbientLight("myambientlight", (1,1,1)) pointlight = collada.light.PointLight("mypointlight", (1,1,1)) mesh.lights.append(ambientlight) mesh.lights.append(pointlight) camera1 = collada.camera.PerspectiveCamera("mycam1", 45.0, 0.01, 1000.0) camera2 = collada.camera.PerspectiveCamera("mycam2", 45.0, 0.01, 1000.0) mesh.cameras.append(camera1) mesh.cameras.append(camera2) cimage1 = collada.material.CImage("mycimage1", "./whatever.tga", mesh) cimage2 = collada.material.CImage("mycimage2", "./whatever.tga", mesh) mesh.images.append(cimage1) mesh.images.append(cimage2) effect1 = collada.material.Effect("myeffect1", [], "phong") effect2 = collada.material.Effect("myeffect2", [], "phong") mesh.effects.append(effect1) mesh.effects.append(effect2) mat1 = collada.material.Material("mymaterial1", "mymat1", effect1) mat2 = collada.material.Material("mymaterial2", "mymat2", effect2) mesh.materials.append(mat1) mesh.materials.append(mat2) rotate = collada.scene.RotateTransform(0.1, 0.2, 0.3, 90) scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) mynode1 = collada.scene.Node('mynode1', children=[], transforms=[rotate, scale]) mynode2 = collada.scene.Node('mynode2', children=[], transforms=[]) mesh.nodes.append(mynode1) mesh.nodes.append(mynode2) geomnode = collada.scene.GeometryNode(geometry2) mynode3 = collada.scene.Node('mynode3', children=[geomnode], transforms=[]) mynode4 = collada.scene.Node('mynode4', children=[], transforms=[]) scene1 = collada.scene.Scene('myscene1', [mynode3]) scene2 = collada.scene.Scene('myscene2', [mynode4]) mesh.scenes.append(scene1) mesh.scenes.append(scene2) mesh.scene = scene1 out = BytesIO() mesh.write(out) toload = BytesIO(out.getvalue()) loaded_mesh = collada.Collada(toload, validate_output=True) self.assertEqual(len(loaded_mesh.geometries), 2) self.assertEqual(len(loaded_mesh.controllers), 0) self.assertEqual(len(loaded_mesh.lights), 2) self.assertEqual(len(loaded_mesh.cameras), 2) self.assertEqual(len(loaded_mesh.images), 2) self.assertEqual(len(loaded_mesh.effects), 2) self.assertEqual(len(loaded_mesh.materials), 2) self.assertEqual(len(loaded_mesh.nodes), 2) self.assertEqual(len(loaded_mesh.scenes), 2) self.assertEqual(loaded_mesh.scene.id, scene1.id) self.assertIn('geometry1', loaded_mesh.geometries) self.assertIn('geometry2', loaded_mesh.geometries) self.assertIn('mypointlight', loaded_mesh.lights) self.assertIn('myambientlight', loaded_mesh.lights) self.assertIn('mycam1', loaded_mesh.cameras) self.assertIn('mycam2', loaded_mesh.cameras) self.assertIn('mycimage1', loaded_mesh.images) self.assertIn('mycimage2', loaded_mesh.images) self.assertIn('myeffect1', loaded_mesh.effects) self.assertIn('myeffect2', loaded_mesh.effects) self.assertIn('mymaterial1', loaded_mesh.materials) self.assertIn('mymaterial2', loaded_mesh.materials) self.assertIn('mynode1', loaded_mesh.nodes) self.assertIn('mynode2', loaded_mesh.nodes) self.assertIn('myscene1', loaded_mesh.scenes) self.assertIn('myscene2', loaded_mesh.scenes) linefloatsrc2 = collada.source.FloatSource("mylinevertsource2", numpy.array(linefloats), ('X', 'Y', 'Z')) geometry3 = collada.geometry.Geometry(mesh, "geometry3", "mygeometry3", [linefloatsrc2]) loaded_mesh.geometries.pop(0) loaded_mesh.geometries.append(geometry3) dirlight = collada.light.DirectionalLight("mydirlight", (1,1,1)) loaded_mesh.lights.pop(0) loaded_mesh.lights.append(dirlight) camera3 = collada.camera.PerspectiveCamera("mycam3", 45.0, 0.01, 1000.0) loaded_mesh.cameras.pop(0) loaded_mesh.cameras.append(camera3) cimage3 = collada.material.CImage("mycimage3", "./whatever.tga", loaded_mesh) loaded_mesh.images.pop(0) loaded_mesh.images.append(cimage3) effect3 = collada.material.Effect("myeffect3", [], "phong") loaded_mesh.effects.pop(0) loaded_mesh.effects.append(effect3) mat3 = collada.material.Material("mymaterial3", "mymat3", effect3) loaded_mesh.materials.pop(0) loaded_mesh.materials.append(mat3) mynode5 = collada.scene.Node('mynode5', children=[], transforms=[]) loaded_mesh.nodes.pop(0) loaded_mesh.nodes.append(mynode5) mynode6 = collada.scene.Node('mynode6', children=[], transforms=[]) scene3 = collada.scene.Scene('myscene3', [mynode6]) loaded_mesh.scenes.pop(0) loaded_mesh.scenes.append(scene3) loaded_mesh.scene = scene3 loaded_mesh.save() strdata = tostring(loaded_mesh.xmlnode.getroot()) indata = BytesIO(strdata) loaded_mesh2 = collada.Collada(indata, validate_output=True) self.assertEqual(loaded_mesh2.scene.id, scene3.id) self.assertIn('geometry3', loaded_mesh2.geometries) self.assertIn('geometry2', loaded_mesh2.geometries) self.assertIn('mydirlight', loaded_mesh2.lights) self.assertIn('mypointlight', loaded_mesh2.lights) self.assertIn('mycam3', loaded_mesh2.cameras) self.assertIn('mycam2', loaded_mesh2.cameras) self.assertIn('mycimage3', loaded_mesh2.images) self.assertIn('mycimage2', loaded_mesh2.images) self.assertIn('myeffect3', loaded_mesh2.effects) self.assertIn('myeffect2', loaded_mesh2.effects) self.assertIn('mymaterial3', loaded_mesh2.materials) self.assertIn('mymaterial2', loaded_mesh2.materials) self.assertIn('mynode5', loaded_mesh2.nodes) self.assertIn('mynode2', loaded_mesh2.nodes) self.assertIn('myscene3', loaded_mesh2.scenes) self.assertIn('myscene2', loaded_mesh2.scenes) def test_collada_attribute_replace(self): mesh = collada.Collada(validate_output=True) self.assertIsInstance(mesh.geometries, collada.util.IndexedList) self.assertIsInstance(mesh.controllers, collada.util.IndexedList) self.assertIsInstance(mesh.animations, collada.util.IndexedList) self.assertIsInstance(mesh.lights, collada.util.IndexedList) self.assertIsInstance(mesh.cameras, collada.util.IndexedList) self.assertIsInstance(mesh.images, collada.util.IndexedList) self.assertIsInstance(mesh.effects, collada.util.IndexedList) self.assertIsInstance(mesh.materials, collada.util.IndexedList) self.assertIsInstance(mesh.nodes, collada.util.IndexedList) self.assertIsInstance(mesh.scenes, collada.util.IndexedList) mesh.geometries = [] mesh.controllers = [] mesh.animations = [] mesh.lights = [] mesh.cameras = [] mesh.images = [] mesh.effects = [] mesh.materials = [] mesh.nodes = [] mesh.scenes = [] self.assertIsInstance(mesh.geometries, collada.util.IndexedList) self.assertIsInstance(mesh.controllers, collada.util.IndexedList) self.assertIsInstance(mesh.animations, collada.util.IndexedList) self.assertIsInstance(mesh.lights, collada.util.IndexedList) self.assertIsInstance(mesh.cameras, collada.util.IndexedList) self.assertIsInstance(mesh.images, collada.util.IndexedList) self.assertIsInstance(mesh.effects, collada.util.IndexedList) self.assertIsInstance(mesh.materials, collada.util.IndexedList) self.assertIsInstance(mesh.nodes, collada.util.IndexedList) self.assertIsInstance(mesh.scenes, collada.util.IndexedList) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_geometry.py000066400000000000000000000220141200577111600213310ustar00rootroot00000000000000import numpy import collada from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestGeometry(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_empty_geometry_saving(self): floatsource = collada.source.FloatSource("myfloatsource", numpy.array([0.1,0.2,0.3]), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mygeometry", {"myfloatsource":floatsource}) self.assertEqual(geometry.id, "geometry0") self.assertEqual(geometry.name, "mygeometry") self.assertEqual(len(geometry.primitives), 0) self.assertDictEqual(geometry.sourceById, {"myfloatsource":floatsource}) self.assertIsNotNone(str(geometry)) geometry.id = "geometry1" geometry.name = "yourgeometry" othersource1 = collada.source.FloatSource("yourfloatsource", numpy.array([0.4,0.5,0.6]), ('X', 'Y', 'Z')) othersource2 = collada.source.FloatSource("hisfloatsource", numpy.array([0.7,0.8,0.9]), ('X', 'Y', 'Z')) geometry.sourceById[othersource1.id] = othersource1 geometry.sourceById[othersource2.id] = othersource2 del geometry.sourceById[floatsource.id] geometry.save() loaded_geometry = collada.geometry.Geometry.load(collada, {}, fromstring(tostring(geometry.xmlnode))) self.assertEqual(loaded_geometry.id, "geometry1") self.assertEqual(loaded_geometry.name, "yourgeometry") self.assertEqual(len(loaded_geometry.primitives), 0) self.assertIn(othersource1.id, loaded_geometry.sourceById) self.assertIn(othersource2.id, loaded_geometry.sourceById) self.assertNotIn(floatsource.id, loaded_geometry.sourceById) def test_geometry_lineset_adding(self): linefloats = [1,1,-1, 1,-1,-1, -1,-0.9999998,-1, -0.9999997,1,-1, 1,0.9999995,1, 0.9999994,-1.000001,1] linefloatsrc = collada.source.FloatSource("mylinevertsource", numpy.array(linefloats), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mygeometry", [linefloatsrc]) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#mylinevertsource") indices = numpy.array([0,1, 1,2, 2,3, 3,4, 4,5]) lineset1 = geometry.createLineSet(indices, input_list, "mymaterial") lineset2 = geometry.createLineSet(indices, input_list, "mymaterial") geometry.primitives.append(lineset1) geometry.primitives.append(lineset2) self.assertEqual(len(geometry.primitives), 2) self.assertIsNotNone(str(lineset1)) self.assertIsNotNone(str(input_list)) geometry.save() loaded_geometry = collada.geometry.Geometry.load(self.dummy, {}, fromstring(tostring(geometry.xmlnode))) self.assertEqual(len(loaded_geometry.primitives), 2) loaded_geometry.primitives.pop(0) lineset3 = loaded_geometry.createLineSet(indices, input_list, "mymaterial") loaded_lineset = collada.lineset.LineSet.load(self.dummy, geometry.sourceById, fromstring(tostring(lineset3.xmlnode))) self.assertEqual(len(loaded_lineset), 5) loaded_geometry.primitives.append(lineset3) loaded_geometry.save() loaded_geometry2 = collada.geometry.Geometry.load(self.dummy, {}, fromstring(tostring(loaded_geometry.xmlnode))) self.assertEqual(len(loaded_geometry2.primitives), 2) self.assertEqual(loaded_geometry2.primitives[0].material, lineset2.material) self.assertEqual(loaded_geometry2.primitives[1].material, lineset3.material) def test_geometry_triangleset_adding(self): vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,-50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1] vert_src = collada.source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) normal_src = collada.source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) self.assertEqual(len(vert_src), 8) self.assertEqual(len(normal_src), 24) geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mycube", [vert_src, normal_src], []) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#cubeverts-array") input_list.addInput(1, 'NORMAL', "#cubenormals-array") indices = numpy.array([0,0,2,1,3,2,0,0,3,2,1,3,0,4,1,5,5,6,0,4,5,6,4,7,6,8,7,9,3,10,6,8,3,10,2,11,0,12, 4,13,6,14,0,12,6,14,2,15,3,16,7,17,5,18,3,16,5,18,1,19,5,20,7,21,6,22,5,20,6,22,4,23]) triangleset = geometry.createTriangleSet(indices, input_list, "cubematerial") self.assertIsNotNone(str(triangleset)) geometry.primitives.append(triangleset) geometry.save() loaded_triangleset = collada.triangleset.TriangleSet.load(self.dummy, geometry.sourceById, fromstring(tostring(triangleset.xmlnode))) self.assertEqual(len(loaded_triangleset), 12) loaded_geometry = collada.geometry.Geometry.load(self.dummy, {}, fromstring(tostring(geometry.xmlnode))) self.assertEqual(len(loaded_geometry.primitives), 1) self.assertEqual(len(loaded_geometry.primitives[0]), 12) def test_geometry_polylist_adding(self): vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,-50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1] vert_src = collada.source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) normal_src = collada.source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mycube", [vert_src, normal_src], []) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#cubeverts-array") input_list.addInput(1, 'NORMAL', "#cubenormals-array") vcounts = numpy.array([4,4,4,4,4,4]) indices = numpy.array([0,0,2,1,3,2,1,3,0,4,1,5,5,6,4,7,6,8,7,9,3,10,2,11,0,12,4,13,6,14,2, 15,3,16,7,17,5,18,1,19,5,20,7,21,6,22,4,23]) polylist = geometry.createPolylist(indices, vcounts, input_list, "cubematerial") self.assertIsNotNone(str(polylist)) loaded_polylist = collada.polylist.Polylist.load(self.dummy, geometry.sourceById, fromstring(tostring(polylist.xmlnode))) self.assertEqual(len(loaded_polylist), 6) geometry.primitives.append(polylist) geometry.save() loaded_geometry = collada.geometry.Geometry.load(self.dummy, {}, fromstring(tostring(geometry.xmlnode))) self.assertEqual(len(loaded_geometry.primitives), 1) self.assertEqual(len(loaded_geometry.primitives[0]), 6) def test_geometry_polygons_adding(self): vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,-50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1] vert_src = collada.source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) normal_src = collada.source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mycube", [vert_src, normal_src], []) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#cubeverts-array") input_list.addInput(1, 'NORMAL', "#cubenormals-array") indices = [] indices.append(numpy.array([0,0,2,1,3,2,1,3], dtype=numpy.int32)) indices.append(numpy.array([0,4,1,5,5,6,4,7], dtype=numpy.int32)) indices.append(numpy.array([6,8,7,9,3,10,2,11], dtype=numpy.int32)) indices.append(numpy.array([0,12,4,13,6,14,2,15], dtype=numpy.int32)) indices.append(numpy.array([3,16,7,17,5,18,1,19], dtype=numpy.int32)) indices.append(numpy.array([5,20,7,21,6,22,4,23], dtype=numpy.int32)) polygons = geometry.createPolygons(indices, input_list, "cubematerial") self.assertIsNotNone(str(polygons)) loaded_polygons = collada.polygons.Polygons.load(self.dummy, geometry.sourceById, fromstring(tostring(polygons.xmlnode))) self.assertEqual(len(loaded_polygons), 6) geometry.primitives.append(polygons) geometry.save() loaded_geometry = collada.geometry.Geometry.load(self.dummy, {}, fromstring(tostring(geometry.xmlnode))) self.assertEqual(len(loaded_geometry.primitives), 1) self.assertEqual(len(loaded_geometry.primitives[0]), 6) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_iteration.py000066400000000000000000000140661200577111600215040ustar00rootroot00000000000000import numpy from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring import collada from collada.util import unittest class TestIteration(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_triangle_iterator_vert_normals(self): mesh = collada.Collada(validate_output=True) vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,-50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1] vert_src = collada.source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) normal_src = collada.source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(mesh, "geometry0", "mycube", [vert_src, normal_src], []) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#cubeverts-array") input_list.addInput(1, 'NORMAL', "#cubenormals-array") indices = numpy.array([0,0,2,1,3,2,0,0,3,2,1,3,0,4,1,5,5,6,0,4,5,6,4,7,6,8,7,9,3,10,6,8,3,10,2,11,0,12, 4,13,6,14,0,12,6,14,2,15,3,16,7,17,5,18,3,16,5,18,1,19,5,20,7,21,6,22,5,20,6,22,4,23]) triangleset = geometry.createTriangleSet(indices, input_list, "cubematerial") geometry.primitives.append(triangleset) mesh.geometries.append(geometry) geomnode = collada.scene.GeometryNode(geometry, []) mynode = collada.scene.Node('mynode6', children=[geomnode], transforms=[]) scene = collada.scene.Scene('myscene', [mynode]) mesh.scenes.append(scene) mesh.scene = scene mesh.save() geoms = list(mesh.scene.objects('geometry')) self.assertEqual(len(geoms), 1) prims = list(geoms[0].primitives()) self.assertEqual(len(prims), 1) tris = list(prims[0]) self.assertEqual(len(tris), 12) self.assertEqual(list(tris[0].vertices[0]), [-50.0, 50.0, 50.0]) self.assertEqual(list(tris[0].vertices[1]), [-50.0, -50.0, 50.0]) self.assertEqual(list(tris[0].vertices[2]), [50.0, -50.0, 50.0]) self.assertEqual(list(tris[0].normals[0]), [0.0, 0.0, 1.0]) self.assertEqual(list(tris[0].normals[1]), [0.0, 0.0, 1.0]) self.assertEqual(list(tris[0].normals[2]), [0.0, 0.0, 1.0]) self.assertEqual(tris[0].texcoords, []) self.assertEqual(tris[0].material, None) self.assertEqual(list(tris[0].indices), [0, 2, 3]) self.assertEqual(list(tris[0].normal_indices), [0, 1, 2]) self.assertEqual(tris[0].texcoord_indices, []) def test_polylist_iterator_vert_normals(self): mesh = collada.Collada(validate_output=True) vert_floats = [-50,50,50,50,50,50,-50,-50,50,50,-50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1,0,0,-1,0,0,-1,0,0,-1] vert_src = collada.source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) normal_src = collada.source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) geometry = collada.geometry.Geometry(mesh, "geometry0", "mycube", [vert_src, normal_src], []) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#cubeverts-array") input_list.addInput(1, 'NORMAL', "#cubenormals-array") vcounts = numpy.array([4,4,4,4,4,4]) indices = numpy.array([0,0,2,1,3,2,1,3,0,4,1,5,5,6,4,7,6,8,7,9,3,10,2,11,0,12,4,13,6,14,2, 15,3,16,7,17,5,18,1,19,5,20,7,21,6,22,4,23]) polylist = geometry.createPolylist(indices, vcounts, input_list, "cubematerial") geometry.primitives.append(polylist) mesh.geometries.append(geometry) geomnode = collada.scene.GeometryNode(geometry, []) mynode = collada.scene.Node('mynode6', children=[geomnode], transforms=[]) scene = collada.scene.Scene('myscene', [mynode]) mesh.scenes.append(scene) mesh.scene = scene mesh.save() geoms = list(mesh.scene.objects('geometry')) self.assertEqual(len(geoms), 1) prims = list(geoms[0].primitives()) self.assertEqual(len(prims), 1) poly = list(prims[0]) self.assertEqual(len(poly), 6) self.assertEqual(list(poly[0].vertices[0]), [-50.0, 50.0, 50.0]) self.assertEqual(list(poly[0].vertices[1]), [-50.0, -50.0, 50.0]) self.assertEqual(list(poly[0].vertices[2]), [50.0, -50.0, 50.0]) self.assertEqual(list(poly[0].normals[0]), [0.0, 0.0, 1.0]) self.assertEqual(list(poly[0].normals[1]), [0.0, 0.0, 1.0]) self.assertEqual(list(poly[0].normals[2]), [0.0, 0.0, 1.0]) self.assertEqual(poly[0].texcoords, []) self.assertEqual(poly[0].material, None) self.assertEqual(list(poly[0].indices), [0, 2, 3, 1]) self.assertEqual(list(poly[0].normal_indices), [0, 1, 2, 3]) self.assertEqual(poly[0].texcoord_indices, []) tris = list(poly[0].triangles()) self.assertEqual(list(tris[0].vertices[0]), [-50.0, 50.0, 50.0]) self.assertEqual(list(tris[0].vertices[1]), [-50.0, -50.0, 50.0]) self.assertEqual(list(tris[0].vertices[2]), [50.0, -50.0, 50.0]) self.assertEqual(list(tris[0].normals[0]), [0.0, 0.0, 1.0]) self.assertEqual(list(tris[0].normals[1]), [0.0, 0.0, 1.0]) self.assertEqual(list(tris[0].normals[2]), [0.0, 0.0, 1.0]) self.assertEqual(tris[0].texcoords, []) self.assertEqual(tris[0].material, None) self.assertEqual(list(tris[0].indices), [0, 2, 3]) self.assertEqual(list(tris[0].normal_indices), [0, 1, 2]) self.assertEqual(tris[0].texcoord_indices, []) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_light.py000066400000000000000000000116361200577111600206150ustar00rootroot00000000000000import collada from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestLight(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_directional_light_saving(self): dirlight = collada.light.DirectionalLight("mydirlight", (1,1,1)) self.assertEqual(dirlight.id, "mydirlight") self.assertTupleEqual(dirlight.color, (1,1,1)) self.assertTupleEqual(tuple(dirlight.direction), (0,0,-1)) self.assertIsNotNone(str(dirlight)) dirlight.color = (0.1, 0.2, 0.3) dirlight.id = "yourdirlight" dirlight.save() loaded_dirlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(dirlight.xmlnode))) self.assertTrue(isinstance(loaded_dirlight, collada.light.DirectionalLight)) self.assertTupleEqual(loaded_dirlight.color, (0.1, 0.2, 0.3)) self.assertEqual(loaded_dirlight.id, "yourdirlight") def test_ambient_light_saving(self): ambientlight = collada.light.AmbientLight("myambientlight", (1,1,1)) self.assertEqual(ambientlight.id, "myambientlight") self.assertTupleEqual(ambientlight.color, (1,1,1)) self.assertIsNotNone(str(ambientlight)) ambientlight.color = (0.1, 0.2, 0.3) ambientlight.id = "yourambientlight" ambientlight.save() loaded_ambientlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(ambientlight.xmlnode))) self.assertTrue(isinstance(loaded_ambientlight, collada.light.AmbientLight)) self.assertTupleEqual(ambientlight.color, (0.1, 0.2, 0.3)) self.assertEqual(ambientlight.id, "yourambientlight") def test_point_light_saving(self): pointlight = collada.light.PointLight("mypointlight", (1,1,1)) self.assertEqual(pointlight.id, "mypointlight") self.assertTupleEqual(pointlight.color, (1,1,1)) self.assertEqual(pointlight.quad_att, None) self.assertEqual(pointlight.constant_att, None) self.assertEqual(pointlight.linear_att, None) self.assertEqual(pointlight.zfar, None) self.assertIsNotNone(str(pointlight)) pointlight.color = (0.1, 0.2, 0.3) pointlight.constant_att = 0.7 pointlight.linear_att = 0.8 pointlight.quad_att = 0.9 pointlight.id = "yourpointlight" pointlight.save() loaded_pointlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(pointlight.xmlnode))) self.assertTrue(isinstance(loaded_pointlight, collada.light.PointLight)) self.assertTupleEqual(loaded_pointlight.color, (0.1, 0.2, 0.3)) self.assertEqual(loaded_pointlight.constant_att, 0.7) self.assertEqual(loaded_pointlight.linear_att, 0.8) self.assertEqual(loaded_pointlight.quad_att, 0.9) self.assertEqual(loaded_pointlight.zfar, None) self.assertEqual(loaded_pointlight.id, "yourpointlight") loaded_pointlight.zfar = 0.2 loaded_pointlight.save() loaded_pointlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(loaded_pointlight.xmlnode))) self.assertEqual(loaded_pointlight.zfar, 0.2) def test_spot_light_saving(self): spotlight = collada.light.SpotLight("myspotlight", (1,1,1)) self.assertEqual(spotlight.id, "myspotlight") self.assertTupleEqual(spotlight.color, (1,1,1)) self.assertEqual(spotlight.constant_att, None) self.assertEqual(spotlight.linear_att, None) self.assertEqual(spotlight.quad_att, None) self.assertEqual(spotlight.falloff_ang, None) self.assertEqual(spotlight.falloff_exp, None) self.assertIsNotNone(str(spotlight)) spotlight.color = (0.1, 0.2, 0.3) spotlight.constant_att = 0.7 spotlight.linear_att = 0.8 spotlight.quad_att = 0.9 spotlight.id = "yourspotlight" spotlight.save() loaded_spotlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(spotlight.xmlnode))) self.assertTrue(isinstance(loaded_spotlight, collada.light.SpotLight)) self.assertTupleEqual(loaded_spotlight.color, (0.1, 0.2, 0.3)) self.assertEqual(loaded_spotlight.constant_att, 0.7) self.assertEqual(loaded_spotlight.linear_att, 0.8) self.assertEqual(loaded_spotlight.quad_att, 0.9) self.assertEqual(loaded_spotlight.falloff_ang, None) self.assertEqual(loaded_spotlight.falloff_exp, None) self.assertEqual(loaded_spotlight.id, "yourspotlight") loaded_spotlight.falloff_ang = 180 loaded_spotlight.falloff_exp = 2 loaded_spotlight.save() loaded_spotlight = collada.light.Light.load(self.dummy, {}, fromstring(tostring(loaded_spotlight.xmlnode))) self.assertEqual(loaded_spotlight.falloff_ang, 180) self.assertEqual(loaded_spotlight.falloff_exp, 2) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_material.py000066400000000000000000000331541200577111600213030ustar00rootroot00000000000000import os import sys import collada from collada.util import unittest from collada.xmlutil import etree from collada.material import OPAQUE_MODE fromstring = etree.fromstring tostring = etree.tostring class TestMaterial(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(aux_file_loader = self.image_dummy_loader, validate_output=True) self.dummy_cimage = collada.material.CImage("yourcimage", "./whatever.tga", self.dummy) self.cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) self.dummy.images.append(self.dummy_cimage) self.dummy.images.append(self.cimage) self.othereffect = collada.material.Effect("othereffect", [], "phong") self.dummy.effects.append(self.othereffect) def test_effect_saving(self): effect = collada.material.Effect("myeffect", [], "phong", emission = (0.1, 0.2, 0.3, 1.0), ambient = (0.4, 0.5, 0.6, 1.0), diffuse = (0.7, 0.8, 0.9, 0.5), specular = (0.3, 0.2, 0.1, 1.0), shininess = 0.4, reflective = (0.7, 0.6, 0.5, 1.0), reflectivity = 0.8, transparent = (0.2, 0.4, 0.6, 1.0), transparency = 0.9) self.assertEqual(effect.id, "myeffect") self.assertEqual(effect.shininess, 0.4) self.assertEqual(effect.reflectivity, 0.8) self.assertEqual(effect.transparency, 0.9) self.assertTupleEqual(effect.emission, (0.1, 0.2, 0.3, 1.0)) self.assertTupleEqual(effect.ambient, (0.4, 0.5, 0.6, 1.0)) self.assertTupleEqual(effect.diffuse, (0.7, 0.8, 0.9, 0.5)) self.assertTupleEqual(effect.specular, (0.3, 0.2, 0.1, 1.0)) self.assertTupleEqual(effect.reflective, (0.7, 0.6, 0.5, 1.0)) self.assertTupleEqual(effect.transparent, (0.2, 0.4, 0.6, 1.0)) self.assertEqual(effect.double_sided, False) self.assertEqual(effect.opaque_mode, OPAQUE_MODE.A_ONE) self.assertIsNotNone(str(effect)) effect.id = "youreffect" effect.shininess = 7.0 effect.reflectivity = 2.0 effect.transparency = 3.0 effect.emission = (1.1, 1.2, 1.3, 1.0) effect.ambient = (1.4, 1.5, 1.6, 1.0) effect.diffuse = (1.7, 1.8, 1.9, 1.0) effect.specular = (1.3, 1.2, 1.1, 1.0) effect.reflective = (1.7, 1.6, 1.5, 0.3) effect.transparent = (1.2, 1.4, 1.6, 1.0) effect.opaque_mode = OPAQUE_MODE.RGB_ZERO effect.double_sided = True effect.save() loaded_effect = collada.material.Effect.load(self.dummy, {}, fromstring(tostring(effect.xmlnode))) self.assertEqual(loaded_effect.id, "youreffect") self.assertEqual(loaded_effect.shininess, 7.0) self.assertEqual(loaded_effect.reflectivity, 2.0) self.assertEqual(loaded_effect.transparency, 3.0) self.assertTupleEqual(loaded_effect.emission, (1.1, 1.2, 1.3, 1.0)) self.assertTupleEqual(loaded_effect.ambient, (1.4, 1.5, 1.6, 1.0)) self.assertTupleEqual(loaded_effect.diffuse, (1.7, 1.8, 1.9, 1.0)) self.assertTupleEqual(loaded_effect.specular, (1.3, 1.2, 1.1, 1.0)) self.assertTupleEqual(loaded_effect.reflective, (1.7, 1.6, 1.5, 0.3)) self.assertTupleEqual(loaded_effect.transparent, (1.2, 1.4, 1.6, 1.0)) self.assertEqual(loaded_effect.opaque_mode, OPAQUE_MODE.RGB_ZERO) self.assertEqual(loaded_effect.double_sided, True) def image_dummy_loader(self, fname): return self.image_return def test_cimage_saving(self): self.image_return = None cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) self.assertEqual(cimage.id, "mycimage") self.assertEqual(cimage.path, "./whatever.tga") cimage.id = "yourcimage" cimage.path = "./next.tga" cimage.save() loaded_cimage = collada.material.CImage.load(self.dummy, {}, fromstring(tostring(cimage.xmlnode))) self.assertEqual(loaded_cimage.id, "yourcimage") self.assertEqual(loaded_cimage.path, "./next.tga") with self.assertRaises(collada.DaeBrokenRefError): loaded_cimage.data self.assertEqual(loaded_cimage.data, '') self.assertEqual(loaded_cimage.pilimage, None) self.assertEqual(loaded_cimage.uintarray, None) self.assertEqual(loaded_cimage.floatarray, None) self.assertIsNotNone(str(cimage)) def test_cimage_data_loading(self): data_dir = os.path.join(os.path.dirname(os.path.realpath( __file__ )), "data") texture_file_path = os.path.join(data_dir, "duckCM.tga") self.failUnless(os.path.isfile(texture_file_path), "Could not find data/duckCM.tga file for testing") texdata = open(texture_file_path, 'rb').read() self.assertEqual(len(texdata), 786476) self.image_return = texdata cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) image_data = cimage.data self.assertEqual(len(image_data), 786476) try: import Image as pil except ImportError: pil = None if pil is not None: pil_image = cimage.pilimage self.assertTupleEqual(pil_image.size, (512,512)) self.assertEqual(pil_image.format, "TGA") numpy_uints = cimage.uintarray self.assertTupleEqual(numpy_uints.shape, (512, 512, 3)) numpy_floats = cimage.floatarray self.assertTupleEqual(numpy_uints.shape, (512, 512, 3)) def test_surface_saving(self): cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) surface = collada.material.Surface("mysurface", cimage) self.assertEqual(surface.id, "mysurface") self.assertEqual(surface.image.id, "mycimage") self.assertEqual(surface.format, "A8R8G8B8") self.assertIsNotNone(str(surface)) surface.id = "yoursurface" surface.image = self.dummy_cimage surface.format = "OtherFormat" surface.save() loaded_surface = collada.material.Surface.load(self.dummy, {}, fromstring(tostring(surface.xmlnode))) self.assertEqual(loaded_surface.id, "yoursurface") self.assertEqual(loaded_surface.image.id, "yourcimage") self.assertEqual(loaded_surface.format, "OtherFormat") def test_surface_empty(self): surface1 = """ file1-image A8R8G8B8 """ self.assertRaises(collada.DaeIncompleteError, collada.material.Surface.load, self.dummy, {}, fromstring(surface1)) surface2 = """ file1-image A8R8G8B8 """ self.assertRaises(collada.DaeBrokenRefError, collada.material.Surface.load, self.dummy, {}, fromstring(surface2)) surface3 = """ A8R8G8B8 """ self.assertRaises(collada.DaeBrokenRefError, collada.material.Surface.load, self.dummy, {}, fromstring(surface3)) def test_sampler2d_saving(self): cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) surface = collada.material.Surface("mysurface", cimage) sampler2d = collada.material.Sampler2D("mysampler2d", surface) self.assertEqual(sampler2d.id, "mysampler2d") self.assertEqual(sampler2d.minfilter, None) self.assertEqual(sampler2d.magfilter, None) self.assertEqual(sampler2d.surface.id, "mysurface") sampler2d = collada.material.Sampler2D("mysampler2d", surface, "LINEAR_MIPMAP_LINEAR", "LINEAR") self.assertEqual(sampler2d.minfilter, "LINEAR_MIPMAP_LINEAR") self.assertEqual(sampler2d.magfilter, "LINEAR") self.assertIsNotNone(str(sampler2d)) other_surface = collada.material.Surface("yoursurface", cimage) sampler2d.id = "yoursampler2d" sampler2d.minfilter = "QUADRATIC_MIPMAP_WHAT" sampler2d.magfilter = "QUADRATIC" sampler2d.surface = other_surface sampler2d.save() loaded_sampler2d = collada.material.Sampler2D.load(self.dummy, {'yoursurface':other_surface}, fromstring(tostring(sampler2d.xmlnode))) self.assertEqual(loaded_sampler2d.id, "yoursampler2d") self.assertEqual(loaded_sampler2d.surface.id, "yoursurface") self.assertEqual(loaded_sampler2d.minfilter, "QUADRATIC_MIPMAP_WHAT") self.assertEqual(loaded_sampler2d.magfilter, "QUADRATIC") def test_map_saving(self): cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) surface = collada.material.Surface("mysurface", cimage) sampler2d = collada.material.Sampler2D("mysampler2d", surface) map = collada.material.Map(sampler2d, "TEX0") self.assertEqual(map.sampler.id, "mysampler2d") self.assertEqual(map.texcoord, "TEX0") self.assertIsNotNone(str(map)) other_sampler2d = collada.material.Sampler2D("yoursampler2d", surface) map.sampler = other_sampler2d map.texcoord = "TEX1" map.save() loaded_map = collada.material.Map.load(self.dummy, {'yoursampler2d': other_sampler2d}, fromstring(tostring(map.xmlnode))) self.assertEqual(map.sampler.id, "yoursampler2d") self.assertEqual(map.texcoord, "TEX1") def test_effect_with_params(self): surface = collada.material.Surface("mysurface", self.cimage) sampler2d = collada.material.Sampler2D("mysampler2d", surface) effect = collada.material.Effect("myeffect", [surface, sampler2d], "phong", emission = (0.1, 0.2, 0.3, 1.0), ambient = (0.4, 0.5, 0.6, 1.0), diffuse = (0.7, 0.8, 0.9, 1.0), specular = (0.3, 0.2, 0.1, 1.0), shininess = 0.4, reflective = (0.7, 0.6, 0.5, 1.0), reflectivity = 0.8, transparent = (0.2, 0.4, 0.6, 1.0), transparency = 0.9, opaque_mode = OPAQUE_MODE.A_ONE) other_cimage = collada.material.CImage("yourcimage", "./whatever.tga", self.dummy) other_surface = collada.material.Surface("yoursurface", other_cimage) other_sampler2d = collada.material.Sampler2D("yoursampler2d", other_surface) other_map = collada.material.Map(other_sampler2d, "TEX0") effect.params.pop() effect.params.append(other_surface) effect.params.append(other_sampler2d) effect.diffuse = other_map effect.transparent = other_map effect.save() self.dummy.images.append(self.dummy_cimage) loaded_effect = collada.material.Effect.load(self.dummy, {}, fromstring(tostring(effect.xmlnode))) self.assertEqual(type(loaded_effect.diffuse), collada.material.Map) self.assertEqual(type(loaded_effect.transparent), collada.material.Map) self.assertEqual(len(loaded_effect.params), 3) self.assertTrue(type(loaded_effect.params[0]) is collada.material.Surface) self.assertEqual(loaded_effect.params[0].id, "mysurface") self.assertTrue(type(loaded_effect.params[1]) is collada.material.Surface) self.assertEqual(loaded_effect.params[1].id, "yoursurface") self.assertTrue(type(loaded_effect.params[2]) is collada.material.Sampler2D) self.assertEqual(loaded_effect.params[2].id, "yoursampler2d") self.assertEqual(loaded_effect.opaque_mode, OPAQUE_MODE.A_ONE) def test_rgbzero(self): effect = collada.material.Effect("myeffect", [], "phong", opaque_mode = OPAQUE_MODE.RGB_ZERO) self.assertEqual(effect.opaque_mode, OPAQUE_MODE.RGB_ZERO) self.assertEqual(effect.transparency, 0.0) effect.save() loaded_effect = collada.material.Effect.load(self.dummy, {}, fromstring(tostring(effect.xmlnode))) self.assertEqual(loaded_effect.opaque_mode, OPAQUE_MODE.RGB_ZERO) effect = collada.material.Effect("myeffect", [], "phong") self.assertEqual(effect.opaque_mode, OPAQUE_MODE.A_ONE) self.assertEqual(effect.transparency, 1.0) effect.save() def test_material_saving(self): effect = collada.material.Effect("myeffect", [], "phong") mat = collada.material.Material("mymaterial", "mymat", effect) self.assertEqual(mat.id, "mymaterial") self.assertEqual(mat.name, "mymat") self.assertEqual(mat.effect, effect) self.assertIsNotNone(str(mat)) mat.id = "yourmaterial" mat.name = "yourmat" mat.effect = self.othereffect mat.save() loaded_mat = collada.material.Material.load(self.dummy, {}, fromstring(tostring(mat.xmlnode))) self.assertEqual(loaded_mat.id, "yourmaterial") self.assertEqual(loaded_mat.name, "yourmat") self.assertEqual(loaded_mat.effect.id, self.othereffect.id) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_scene.py000066400000000000000000000364741200577111600206120ustar00rootroot00000000000000import numpy import collada from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestScene(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) self.yourcam = collada.camera.PerspectiveCamera("yourcam", 45.0, 0.01, 1000.0) self.dummy.cameras.append(self.yourcam) self.yourdirlight = collada.light.DirectionalLight("yourdirlight", (1,1,1)) self.dummy.lights.append(self.yourdirlight) cimage = collada.material.CImage("mycimage", "./whatever.tga", self.dummy) surface = collada.material.Surface("mysurface", cimage) sampler2d = collada.material.Sampler2D("mysampler2d", surface) mymap = collada.material.Map(sampler2d, "TEX0") self.effect = collada.material.Effect("myeffect", [surface, sampler2d], "phong", emission = (0.1, 0.2, 0.3), ambient = (0.4, 0.5, 0.6), diffuse = mymap, specular = (0.3, 0.2, 0.1)) self.effect2 = collada.material.Effect("youreffect", [], "phong", emission = (0.1, 0.2, 0.3), ambient = (0.4, 0.5, 0.6), specular = (0.3, 0.2, 0.1)) self.dummy.materials.append(self.effect) self.dummy.materials.append(self.effect2) self.floatsource = collada.source.FloatSource("myfloatsource", numpy.array([0.1,0.2,0.3]), ('X', 'Y', 'Z')) self.geometry = collada.geometry.Geometry(self.dummy, "geometry0", "mygeometry", {"myfloatsource":self.floatsource}) self.geometry2 = collada.geometry.Geometry(self.dummy, "geometry1", "yourgeometry", {"myfloatsource":self.floatsource}) self.dummy.geometries.append(self.geometry) self.dummy.geometries.append(self.geometry2) def test_scene_light_node_saving(self): dirlight = collada.light.DirectionalLight("mydirlight", (1,1,1)) lightnode = collada.scene.LightNode(dirlight) bindtest = list(lightnode.objects('light')) self.assertEqual(lightnode.light, dirlight) self.assertEqual(len(bindtest), 1) self.assertEqual(bindtest[0].original, dirlight) self.assertIsNotNone(str(lightnode)) lightnode.light = self.yourdirlight lightnode.save() loadedlightnode = collada.scene.LightNode.load(self.dummy, fromstring(tostring(lightnode.xmlnode))) self.assertEqual(loadedlightnode.light.id, 'yourdirlight') def test_scene_camera_node_saving(self): cam = collada.camera.PerspectiveCamera("mycam", 45.0, 0.01, 1000.0) camnode = collada.scene.CameraNode(cam) bindtest = list(camnode.objects('camera')) self.assertEqual(camnode.camera, cam) self.assertEqual(len(bindtest), 1) self.assertEqual(bindtest[0].original, cam) self.assertIsNotNone(str(camnode)) camnode.camera = self.yourcam camnode.save() loadedcamnode = collada.scene.CameraNode.load(self.dummy, fromstring(tostring(camnode.xmlnode))) self.assertEqual(loadedcamnode.camera.id, 'yourcam') def test_scene_translate_node(self): translate = collada.scene.TranslateTransform(0.1, 0.2, 0.3) self.assertAlmostEqual(translate.x, 0.1) self.assertAlmostEqual(translate.y, 0.2) self.assertAlmostEqual(translate.z, 0.3) self.assertIsNotNone(str(translate)) loaded_translate = collada.scene.TranslateTransform.load(self.dummy, fromstring(tostring(translate.xmlnode))) self.assertAlmostEqual(loaded_translate.x, 0.1) self.assertAlmostEqual(loaded_translate.y, 0.2) self.assertAlmostEqual(loaded_translate.z, 0.3) def test_scene_rotate_node(self): rotate = collada.scene.RotateTransform(0.1, 0.2, 0.3, 90) self.assertAlmostEqual(rotate.x, 0.1) self.assertAlmostEqual(rotate.y, 0.2) self.assertAlmostEqual(rotate.z, 0.3) self.assertAlmostEqual(rotate.angle, 90) self.assertIsNotNone(str(rotate)) loaded_rotate = collada.scene.RotateTransform.load(self.dummy, fromstring(tostring(rotate.xmlnode))) self.assertAlmostEqual(loaded_rotate.x, 0.1) self.assertAlmostEqual(loaded_rotate.y, 0.2) self.assertAlmostEqual(loaded_rotate.z, 0.3) self.assertAlmostEqual(loaded_rotate.angle, 90) def test_scene_scale_node(self): scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) self.assertAlmostEqual(scale.x, 0.1) self.assertAlmostEqual(scale.y, 0.2) self.assertAlmostEqual(scale.z, 0.3) self.assertIsNotNone(str(scale)) loaded_scale = collada.scene.ScaleTransform.load(self.dummy, fromstring(tostring(scale.xmlnode))) self.assertAlmostEqual(loaded_scale.x, 0.1) self.assertAlmostEqual(loaded_scale.y, 0.2) self.assertAlmostEqual(loaded_scale.z, 0.3) def test_scene_matrix_node(self): matrix = collada.scene.MatrixTransform(numpy.array([1.0,0,0,2, 0,1,0,3, 0,0,1,4, 0,0,0,1])) self.assertAlmostEqual(matrix.matrix[0][0], 1.0) self.assertIsNotNone(str(matrix)) loaded_matrix = collada.scene.MatrixTransform.load(self.dummy, fromstring(tostring(matrix.xmlnode))) self.assertAlmostEqual(loaded_matrix.matrix[0][0], 1.0) def test_scene_lookat_node(self): eye = numpy.array([2.0,0,3]) interest = numpy.array([0.0,0,0]) upvector = numpy.array([0.0,1,0]) lookat = collada.scene.LookAtTransform(eye, interest, upvector) self.assertListEqual(list(lookat.eye), list(eye)) self.assertListEqual(list(lookat.interest), list(interest)) self.assertListEqual(list(lookat.upvector), list(upvector)) self.assertIsNotNone(str(lookat)) loaded_lookat = collada.scene.LookAtTransform.load(self.dummy, fromstring(tostring(lookat.xmlnode))) self.assertListEqual(list(loaded_lookat.eye), list(eye)) self.assertListEqual(list(loaded_lookat.interest), list(interest)) self.assertListEqual(list(loaded_lookat.upvector), list(upvector)) def test_scene_node_combos(self): emptynode = collada.scene.Node('myemptynode') self.assertEqual(len(emptynode.children), 0) self.assertEqual(len(emptynode.transforms), 0) self.assertIsNotNone(str(emptynode)) loadedempty = collada.scene.Node.load(self.dummy, fromstring(tostring(emptynode.xmlnode)), {}) self.assertEqual(len(loadedempty.children), 0) self.assertEqual(len(loadedempty.transforms), 0) justchildren = collada.scene.Node('myjustchildrennode', children=[emptynode]) self.assertEqual(len(justchildren.children), 1) self.assertEqual(len(justchildren.transforms), 0) self.assertEqual(justchildren.children[0], emptynode) loadedjustchildren = collada.scene.Node.load(self.dummy, fromstring(tostring(justchildren.xmlnode)), {}) self.assertEqual(len(loadedjustchildren.children), 1) self.assertEqual(len(loadedjustchildren.transforms), 0) scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) justtransform = collada.scene.Node('myjusttransformnode', transforms=[scale]) self.assertEqual(len(justtransform.children), 0) self.assertEqual(len(justtransform.transforms), 1) self.assertEqual(justtransform.transforms[0], scale) loadedjusttransform = collada.scene.Node.load(self.dummy, fromstring(tostring(justtransform.xmlnode)), {}) self.assertEqual(len(loadedjusttransform.children), 0) self.assertEqual(len(loadedjusttransform.transforms), 1) both = collada.scene.Node('mybothnode', children=[justchildren, justtransform], transforms=[scale]) self.assertEqual(len(both.children), 2) self.assertEqual(len(both.transforms), 1) self.assertEqual(both.transforms[0], scale) self.assertEqual(both.children[0], justchildren) self.assertEqual(both.children[1], justtransform) loadedboth = collada.scene.Node.load(self.dummy, fromstring(tostring(both.xmlnode)), {}) self.assertEqual(len(both.children), 2) self.assertEqual(len(both.transforms), 1) def test_scene_node_saving(self): myemptynode = collada.scene.Node('myemptynode') rotate = collada.scene.RotateTransform(0.1, 0.2, 0.3, 90) scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) mynode = collada.scene.Node('mynode', children=[myemptynode], transforms=[rotate, scale]) self.assertEqual(mynode.id, 'mynode') self.assertEqual(mynode.children[0], myemptynode) self.assertEqual(mynode.transforms[0], rotate) self.assertEqual(mynode.transforms[1], scale) translate = collada.scene.TranslateTransform(0.1, 0.2, 0.3) mynode.transforms.append(translate) mynode.transforms.pop(0) youremptynode = collada.scene.Node('youremptynode') mynode.children.append(youremptynode) mynode.id = 'yournode' mynode.save() yournode = collada.scene.Node.load(self.dummy, fromstring(tostring(mynode.xmlnode)), {}) self.assertEqual(yournode.id, 'yournode') self.assertEqual(len(yournode.children), 2) self.assertEqual(len(yournode.transforms), 2) self.assertEqual(yournode.children[0].id, 'myemptynode') self.assertEqual(yournode.children[1].id, 'youremptynode') self.assertTrue(type(yournode.transforms[0]) is collada.scene.ScaleTransform) self.assertTrue(type(yournode.transforms[1]) is collada.scene.TranslateTransform) def test_scene_material_node(self): binding1 = ("TEX0", "TEXCOORD", "0") binding2 = ("TEX1", "TEXCOORD", "1") binding3 = ("TEX2", "TEXCOORD", "2") matnode = collada.scene.MaterialNode("mygeommatref", self.effect, [binding1, binding2]) self.assertEqual(matnode.target, self.effect) self.assertEqual(matnode.symbol, "mygeommatref") self.assertListEqual(matnode.inputs, [binding1, binding2]) self.assertIsNotNone(str(matnode)) matnode.save() self.assertEqual(matnode.target, self.effect) self.assertEqual(matnode.symbol, "mygeommatref") self.assertListEqual(matnode.inputs, [binding1, binding2]) matnode.symbol = 'yourgeommatref' matnode.target = self.effect2 matnode.inputs.append(binding3) matnode.inputs.pop(0) matnode.save() loaded_matnode = collada.scene.MaterialNode.load(self.dummy, fromstring(tostring(matnode.xmlnode))) self.assertEqual(loaded_matnode.target.id, self.effect2.id) self.assertEqual(loaded_matnode.symbol, "yourgeommatref") self.assertListEqual(loaded_matnode.inputs, [binding2, binding3]) def test_scene_geometry_node(self): binding = ("TEX0", "TEXCOORD", "0") matnode = collada.scene.MaterialNode("mygeommatref", self.effect, [binding]) geomnode = collada.scene.GeometryNode(self.geometry, [matnode]) bindtest = list(geomnode.objects('geometry')) self.assertEqual(len(bindtest), 1) self.assertEqual(bindtest[0].original, self.geometry) self.assertEqual(geomnode.geometry, self.geometry) self.assertListEqual(geomnode.materials, [matnode]) self.assertIsNotNone(str(geomnode)) geomnode.save() bindtest = list(geomnode.objects('geometry')) self.assertEqual(len(bindtest), 1) self.assertEqual(bindtest[0].original, self.geometry) self.assertEqual(geomnode.geometry, self.geometry) self.assertListEqual(geomnode.materials, [matnode]) matnode2 = collada.scene.MaterialNode("yourgeommatref", self.effect, [binding]) geomnode.materials.append(matnode2) geomnode.materials.pop(0) geomnode.geometry = self.geometry2 geomnode.save() loaded_geomnode = collada.scene.loadNode(self.dummy, fromstring(tostring(geomnode.xmlnode)), {}) self.assertEqual(loaded_geomnode.geometry.id, self.geometry2.id) self.assertEqual(len(loaded_geomnode.materials), 1) self.assertEqual(loaded_geomnode.materials[0].target, matnode2.target) self.assertEqual(loaded_geomnode.materials[0].symbol, "yourgeommatref") self.assertListEqual(loaded_geomnode.materials[0].inputs, [binding]) def test_scene_node_with_instances(self): binding = ("TEX0", "TEXCOORD", "0") matnode = collada.scene.MaterialNode("mygeommatref", self.effect, [binding]) geomnode = collada.scene.GeometryNode(self.geometry, [matnode]) camnode = collada.scene.CameraNode(self.yourcam) lightnode = collada.scene.LightNode(self.yourdirlight) myemptynode = collada.scene.Node('myemptynode') rotate = collada.scene.RotateTransform(0.1, 0.2, 0.3, 90) scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) mynode = collada.scene.Node('mynode', children=[myemptynode, geomnode, camnode, lightnode], transforms=[rotate, scale]) self.assertEqual(len(mynode.children), 4) self.assertEqual(mynode.children[0], myemptynode) self.assertEqual(mynode.children[1], geomnode) self.assertEqual(mynode.children[2], camnode) self.assertEqual(mynode.children[3], lightnode) self.assertEqual(mynode.transforms[0], rotate) self.assertEqual(mynode.transforms[1], scale) mynode.id = 'yournode' mynode.children.pop(0) mynode.save() yournode = collada.scene.Node.load(self.dummy, fromstring(tostring(mynode.xmlnode)), {}) self.assertEqual(yournode.id, 'yournode') self.assertEqual(len(yournode.children), 3) self.assertEqual(len(yournode.transforms), 2) self.assertEqual(yournode.children[0].geometry.id, self.geometry.id) self.assertEqual(yournode.children[1].camera.id, self.yourcam.id) self.assertEqual(yournode.children[2].light.id, self.yourdirlight.id) self.assertTrue(type(yournode.transforms[0]) is collada.scene.RotateTransform) self.assertTrue(type(yournode.transforms[1]) is collada.scene.ScaleTransform) def test_scene_with_nodes(self): rotate = collada.scene.RotateTransform(0.1, 0.2, 0.3, 90) scale = collada.scene.ScaleTransform(0.1, 0.2, 0.3) mynode = collada.scene.Node('mynode', children=[], transforms=[rotate, scale]) yournode = collada.scene.Node('yournode', children=[], transforms=[]) othernode = collada.scene.Node('othernode', children=[], transforms=[]) scene = collada.scene.Scene('myscene', [mynode, yournode, othernode]) self.assertEqual(scene.id, 'myscene') self.assertEqual(len(scene.nodes), 3) self.assertEqual(scene.nodes[0], mynode) self.assertEqual(scene.nodes[1], yournode) self.assertEqual(scene.nodes[2], othernode) scene.id = 'yourscene' scene.nodes.pop(1) anothernode = collada.scene.Node('anothernode') scene.nodes.append(anothernode) scene.save() loaded_scene = collada.scene.Scene.load(self.dummy, fromstring(tostring(scene.xmlnode))) self.assertEqual(loaded_scene.id, 'yourscene') self.assertEqual(len(loaded_scene.nodes), 3) self.assertEqual(loaded_scene.nodes[0].id, 'mynode') self.assertEqual(loaded_scene.nodes[1].id, 'othernode') self.assertEqual(loaded_scene.nodes[2].id, 'anothernode') if __name__ == '__main__': unittest.main() pycollada-0.4/collada/tests/test_source.py000066400000000000000000000066071200577111600210100ustar00rootroot00000000000000import numpy import collada from collada.util import unittest from collada.xmlutil import etree fromstring = etree.fromstring tostring = etree.tostring class TestSource(unittest.TestCase): def setUp(self): self.dummy = collada.Collada(validate_output=True) def test_float_source_saving(self): floatsource = collada.source.FloatSource("myfloatsource", numpy.array([0.1,0.2,0.3]), ('X', 'Y', 'X')) self.assertEqual(floatsource.id, "myfloatsource") self.assertEqual(len(floatsource), 1) self.assertTupleEqual(floatsource.components, ('X', 'Y', 'X')) self.assertIsNotNone(str(floatsource)) floatsource.id = "yourfloatsource" floatsource.components = ('S', 'T') floatsource.data = numpy.array([0.4, 0.5, 0.6, 0.7, 0.8, 0.9]) floatsource.save() loaded_floatsource = collada.source.Source.load(self.dummy, {}, fromstring(tostring(floatsource.xmlnode))) self.assertTrue(isinstance(loaded_floatsource, collada.source.FloatSource)) self.assertEqual(floatsource.id, "yourfloatsource") self.assertEqual(len(floatsource), 3) self.assertTupleEqual(floatsource.components, ('S', 'T')) def test_idref_source_saving(self): idrefsource = collada.source.IDRefSource("myidrefsource", numpy.array(['Ref1', 'Ref2'], dtype=numpy.string_), ('MORPH_TARGET',)) self.assertEqual(idrefsource.id, "myidrefsource") self.assertEqual(len(idrefsource), 2) self.assertTupleEqual(idrefsource.components, ('MORPH_TARGET',)) self.assertIsNotNone(str(idrefsource)) idrefsource.id = "youridrefsource" idrefsource.components = ('JOINT_TARGET', 'WHATEVER_TARGET') idrefsource.data = numpy.array(['Ref5', 'Ref6', 'Ref7', 'Ref8', 'Ref9', 'Ref10'], dtype=numpy.string_) idrefsource.save() loaded_idrefsource = collada.source.Source.load(self.dummy, {}, fromstring(tostring(idrefsource.xmlnode))) self.assertTrue(isinstance(loaded_idrefsource, collada.source.IDRefSource)) self.assertEqual(loaded_idrefsource.id, "youridrefsource") self.assertEqual(len(loaded_idrefsource), 3) self.assertTupleEqual(loaded_idrefsource.components, ('JOINT_TARGET', 'WHATEVER_TARGET')) def test_name_source_saving(self): namesource = collada.source.NameSource("mynamesource", numpy.array(['Name1', 'Name2'], dtype=numpy.string_), ('JOINT',)) self.assertEqual(namesource.id, "mynamesource") self.assertEqual(len(namesource), 2) self.assertTupleEqual(namesource.components, ('JOINT',)) self.assertIsNotNone(str(namesource)) namesource.id = "yournamesource" namesource.components = ('WEIGHT', 'WHATEVER') namesource.data = numpy.array(['Name1', 'Name2', 'Name3', 'Name4', 'Name5', 'Name6'], dtype=numpy.string_) namesource.save() loaded_namesource = collada.source.Source.load(self.dummy, {}, fromstring(tostring(namesource.xmlnode))) self.assertTrue(isinstance(loaded_namesource, collada.source.NameSource)) self.assertEqual(loaded_namesource.id, "yournamesource") self.assertEqual(len(loaded_namesource), 3) self.assertTupleEqual(loaded_namesource.components, ('WEIGHT', 'WHATEVER')) if __name__ == '__main__': unittest.main() pycollada-0.4/collada/triangleset.py000066400000000000000000000414001200577111600176160ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """Module containing classes and functions for the primitive.""" import numpy from collada import primitive from collada.common import E, tag from collada.common import DaeIncompleteError, DaeBrokenRefError, \ DaeMalformedError, DaeUnsupportedError from collada.util import toUnitVec, checkSource, normalize_v3, dot_v3, xrange from collada.xmlutil import etree as ElementTree class Triangle(object): """Single triangle representation.""" def __init__(self, indices, vertices, normal_indices, normals, texcoord_indices, texcoords, material): """A triangle should not be created manually.""" self.vertices = vertices """A (3, 3) float array for points in the triangle""" self.normals = normals """A (3, 3) float array with the normals for points in the triangle. If the triangle didn't have normals, they will be computed.""" self.texcoords = texcoords """A tuple with (3, 2) float arrays with the texture coordinates for the points in the triangle""" self.material = material """If coming from an unbound :class:`collada.triangleset.TriangleSet`, contains a string with the material symbol. If coming from a bound :class:`collada.triangleset.BoundTriangleSet`, contains the actual :class:`collada.material.Effect` the triangle is bound to.""" self.indices = indices """A (3,) int array with vertex indexes of the 3 vertices in the vertex array""" self.normal_indices = normal_indices """A (3,) int array with normal indexes of the 3 vertices in the normal array""" self.texcoord_indices = texcoord_indices """A (3,2) int array with texture coordinate indexes of the 3 vertices in the texcoord array.""" if self.normals is None: #generate normals vec1 = numpy.subtract(vertices[0], vertices[1]) vec2 = numpy.subtract(vertices[2], vertices[0]) vec3 = toUnitVec(numpy.cross(toUnitVec(vec2), toUnitVec(vec1))) self.normals = numpy.array([vec3, vec3, vec3]) def __repr__(self): return '' % (str(self.vertices[0]), str(self.vertices[1]), str(self.vertices[2]), str(self.material)) def __str__(self): return repr(self) class TriangleSet(primitive.Primitive): """Class containing the data COLLADA puts in a tag, a collection of triangles. * The TriangleSet object is read-only. To modify a TriangleSet, create a new instance using :meth:`collada.geometry.Geometry.createTriangleSet`. * If ``T`` is an instance of :class:`collada.triangleset.TriangleSet`, then ``len(T)`` returns the number of triangles in the set. ``T[i]`` returns the i\ :sup:`th` triangle in the set. """ def __init__(self, sources, material, index, xmlnode=None): """A TriangleSet should not be created manually. Instead, call the :meth:`collada.geometry.Geometry.createTriangleSet` method after creating a geometry instance. """ if len(sources) == 0: raise DaeIncompleteError('A triangle set needs at least one input for vertex positions') if not 'VERTEX' in sources: raise DaeIncompleteError('Triangle set requires vertex input') max_offset = max([ max([input[0] for input in input_type_array]) for input_type_array in sources.values() if len(input_type_array) > 0]) self.material = material self.index = index self.indices = self.index self.nindices = max_offset + 1 self.index.shape = (-1, 3, self.nindices) self.ntriangles = len(self.index) self.sources = sources if len(self.index) > 0: self._vertex = sources['VERTEX'][0][4].data self._vertex_index = self.index[:,:, sources['VERTEX'][0][0]] self.maxvertexindex = numpy.max( self._vertex_index ) checkSource(sources['VERTEX'][0][4], ('X', 'Y', 'Z'), self.maxvertexindex) else: self._vertex = None self._vertex_index = None self.maxvertexindex = -1 if 'NORMAL' in sources and len(sources['NORMAL']) > 0 and len(self.index) > 0: self._normal = sources['NORMAL'][0][4].data self._normal_index = self.index[:,:, sources['NORMAL'][0][0]] self.maxnormalindex = numpy.max( self._normal_index ) checkSource(sources['NORMAL'][0][4], ('X', 'Y', 'Z'), self.maxnormalindex) else: self._normal = None self._normal_index = None self.maxnormalindex = -1 if 'TEXCOORD' in sources and len(sources['TEXCOORD']) > 0 and len(self.index) > 0: self._texcoordset = tuple([texinput[4].data for texinput in sources['TEXCOORD']]) self._texcoord_indexset = tuple([ self.index[:,:, sources['TEXCOORD'][i][0]] for i in xrange(len(sources['TEXCOORD'])) ]) self.maxtexcoordsetindex = [ numpy.max( tex_index ) for tex_index in self._texcoord_indexset ] for i, texinput in enumerate(sources['TEXCOORD']): checkSource(texinput[4], ('S', 'T'), self.maxtexcoordsetindex[i]) else: self._texcoordset = tuple() self._texcoord_indexset = tuple() self.maxtexcoordsetindex = -1 if 'TEXTANGENT' in sources and len(sources['TEXTANGENT']) > 0 and len(self.index) > 0: self._textangentset = tuple([texinput[4].data for texinput in sources['TEXTANGENT']]) self._textangent_indexset = tuple([ self.index[:,:, sources['TEXTANGENT'][i][0]] for i in xrange(len(sources['TEXTANGENT'])) ]) self.maxtextangentsetindex = [ numpy.max( tex_index ) for tex_index in self._textangent_indexset ] for i, texinput in enumerate(sources['TEXTANGENT']): checkSource(texinput[4], ('X', 'Y', 'Z'), self.maxtextangentsetindex[i]) else: self._textangentset = tuple() self._textangent_indexset = tuple() self.maxtextangentsetindex = -1 if 'TEXBINORMAL' in sources and len(sources['TEXBINORMAL']) > 0 and len(self.index) > 0: self._texbinormalset = tuple([texinput[4].data for texinput in sources['TEXBINORMAL']]) self._texbinormal_indexset = tuple([ self.index[:,:, sources['TEXBINORMAL'][i][0]] for i in xrange(len(sources['TEXBINORMAL'])) ]) self.maxtexbinormalsetindex = [ numpy.max( tex_index ) for tex_index in self._texbinormal_indexset ] for i, texinput in enumerate(sources['TEXBINORMAL']): checkSource(texinput[4], ('X', 'Y', 'Z'), self.maxtexbinormalsetindex[i]) else: self._texbinormalset = tuple() self._texbinormal_indexset = tuple() self.maxtexbinormalsetindex = -1 if xmlnode is not None: self.xmlnode = xmlnode else: self._recreateXmlNode() def __len__(self): return len(self.index) def _recreateXmlNode(self): self.index.shape = (-1) acclen = len(self.index) txtindices = ' '.join(map(str, self.index.tolist())) self.index.shape = (-1, 3, self.nindices) self.xmlnode = E.triangles(count=str(self.ntriangles)) if self.material is not None: self.xmlnode.set('material', self.material) all_inputs = [] for semantic_list in self.sources.values(): all_inputs.extend(semantic_list) for offset, semantic, sourceid, set, src in all_inputs: inpnode = E.input(offset=str(offset), semantic=semantic, source=sourceid) if set is not None: inpnode.set('set', str(set)) self.xmlnode.append(inpnode) self.xmlnode.append(E.p(txtindices)) def __getitem__(self, i): v = self._vertex[ self._vertex_index[i] ] n = self._normal[ self._normal_index[i] ] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append( uvindex[i] ) uv.append( self._texcoordset[j][ uvindex[i] ] ) return Triangle(self._vertex_index[i], v, self._normal_index[i], n, uvindices, uv, self.material) @staticmethod def load( collada, localscope, node ): indexnode = node.find(tag('p')) if indexnode is None: raise DaeIncompleteError('Missing index in triangle set') source_array = primitive.Primitive._getInputs(collada, localscope, node.findall(tag('input'))) try: if indexnode.text is None: index = numpy.array([], dtype=numpy.int32) else: index = numpy.fromstring(indexnode.text, dtype=numpy.int32, sep=' ') index[numpy.isnan(index)] = 0 except: raise DaeMalformedError('Corrupted index in triangleset') triset = TriangleSet(source_array, node.get('material'), index, node) triset.xmlnode = node return triset def bind(self, matrix, materialnodebysymbol): """Create a bound triangle set from this triangle set, transform and material mapping""" return BoundTriangleSet( self, matrix, materialnodebysymbol) def generateNormals(self): """If :attr:`normals` is `None` or you wish for normals to be recomputed, call this method to recompute them.""" norms = numpy.zeros( self._vertex.shape, dtype=self._vertex.dtype ) tris = self._vertex[self._vertex_index] n = numpy.cross( tris[::,1] - tris[::,0], tris[::,2] - tris[::,0] ) normalize_v3(n) norms[ self._vertex_index[:,0] ] += n norms[ self._vertex_index[:,1] ] += n norms[ self._vertex_index[:,2] ] += n normalize_v3(norms) self._normal = norms self._normal_index = self._vertex_index def generateTexTangentsAndBinormals(self): """If there are no texture tangents, this method will compute them. Texture coordinates must exist and it uses the first texture coordinate set.""" #The following is taken from: # http://www.terathon.com/code/tangent.html # It's pretty much a direct translation, using numpy arrays tris = self._vertex[self._vertex_index] uvs = self._texcoordset[0][self._texcoord_indexset[0]] x1 = tris[:,1,0]-tris[:,0,0] x2 = tris[:,2,0]-tris[:,1,0] y1 = tris[:,1,1]-tris[:,0,1] y2 = tris[:,2,1]-tris[:,1,1] z1 = tris[:,1,2]-tris[:,0,2] z2 = tris[:,2,2]-tris[:,1,2] s1 = uvs[:,1,0]-uvs[:,0,0] s2 = uvs[:,2,0]-uvs[:,1,0] t1 = uvs[:,1,1]-uvs[:,0,1] t2 = uvs[:,2,1]-uvs[:,1,1] r = 1.0 / (s1 * t2 - s2 * t1) sdirx = (t2 * x1 - t1 * x2) * r sdiry = (t2 * y1 - t1 * y2) * r sdirz = (t2 * z1 - t1 * z2) * r sdir = numpy.vstack((sdirx, sdiry, sdirz)).T tans1 = numpy.zeros( self._vertex.shape, dtype=self._vertex.dtype ) tans1[ self._vertex_index[:,0] ] += sdir tans1[ self._vertex_index[:,1] ] += sdir tans1[ self._vertex_index[:,2] ] += sdir norm = self._normal[self._normal_index] norm.shape = (-1, 3) tan1 = tans1[self._vertex_index] tan1.shape = (-1, 3) tangent = normalize_v3(tan1 - norm * dot_v3(norm, tan1)[:,numpy.newaxis]) self._textangentset = (tangent,) self._textangent_indexset = (numpy.arange(len(self._vertex_index)*3, dtype=self._vertex_index.dtype),) self._textangent_indexset[0].shape = (len(self._vertex_index), 3) tdirx = (s1 * x2 - s2 * x1) * r tdiry = (s1 * y2 - s2 * y1) * r tdirz = (s1 * z2 - s2 * z1) * r tdir = numpy.vstack((tdirx, tdiry, tdirz)).T tans2 = numpy.zeros( self._vertex.shape, dtype=self._vertex.dtype ) tans2[ self._vertex_index[:,0] ] += tdir tans2[ self._vertex_index[:,1] ] += tdir tans2[ self._vertex_index[:,2] ] += tdir tan2 = tans2[self._vertex_index] tan2.shape = (-1, 3) tanw = dot_v3(numpy.cross(norm, tan1), tan2) tanw = numpy.sign(tanw) binorm = numpy.cross(norm, tangent).flatten() binorm.shape = (-1, 3) binorm = binorm * tanw[:,numpy.newaxis] self._texbinormalset = (binorm,) self._texbinormal_indexset = (numpy.arange(len(self._vertex_index) * 3, dtype=self._vertex_index.dtype),) self._texbinormal_indexset[0].shape = (len(self._vertex_index), 3) def __str__(self): return '' % len(self) def __repr__(self): return str(self) class BoundTriangleSet(primitive.BoundPrimitive): """A triangle set bound to a transform matrix and materials mapping. * If ``T`` is an instance of :class:`collada.triangleset.BoundTriangleSet`, then ``len(T)`` returns the number of triangles in the set. ``T[i]`` returns the i\ :sup:`th` triangle in the set. """ def __init__(self, ts, matrix, materialnodebysymbol): """Create a bound triangle set from a triangle set, transform and material mapping. This gets created when a triangle set is instantiated in a scene. Do not create this manually.""" M = numpy.asmatrix(matrix).transpose() self._vertex = None if ts.vertex is None else numpy.asarray(ts._vertex * M[:3,:3]) + matrix[:3,3] self._normal = None if ts._normal is None else numpy.asarray(ts._normal * M[:3,:3]) self._texcoordset = ts._texcoordset self._textangentset = ts._textangentset self._texbinormalset = ts._texbinormalset matnode = materialnodebysymbol.get( ts.material ) if matnode: self.material = matnode.target self.inputmap = dict([ (sem, (input_sem, set)) for sem, input_sem, set in matnode.inputs ]) else: self.inputmap = self.material = None self.index = ts.index self._vertex_index = ts._vertex_index self._normal_index = ts._normal_index self._texcoord_indexset = ts._texcoord_indexset self._textangent_indexset = ts._textangent_indexset self._texbinormal_indexset = ts._texbinormal_indexset self.ntriangles = ts.ntriangles self.original = ts def __len__(self): return len(self.index) def __getitem__(self, i): vindex = self._vertex_index[i] v = self._vertex[vindex] if self._normal is None: n = None nindex = None else: nindex = self._normal_index[i] n = self._normal[nindex] uvindices = [] uv = [] for j, uvindex in enumerate(self._texcoord_indexset): uvindices.append(uvindex[i]) uv.append(self._texcoordset[j][uvindex[i]]) return Triangle(vindex, v, nindex, n, uvindices, uv, self.material) def triangles(self): """Iterate through all the triangles contained in the set. :rtype: generator of :class:`collada.triangleset.Triangle` """ for i in xrange(self.ntriangles): yield self[i] def shapes(self): """Iterate through all the triangles contained in the set. :rtype: generator of :class:`collada.triangleset.Triangle` """ return self.triangles() def generateNormals(self): """If :attr:`normals` is `None` or you wish for normals to be recomputed, call this method to recompute them.""" norms = numpy.zeros( self._vertex.shape, dtype=self._vertex.dtype ) tris = self._vertex[self._vertex_index] n = numpy.cross( tris[::,1] - tris[::,0], tris[::,2] - tris[::,0] ) normalize_v3(n) norms[ self._vertex_index[:,0] ] += n norms[ self._vertex_index[:,1] ] += n norms[ self._vertex_index[:,2] ] += n normalize_v3(norms) self._normal = norms self._normal_index = self._vertex_index def __str__(self): return '' % len(self) def __repr__(self): return str(self) pycollada-0.4/collada/util.py000066400000000000000000000204651200577111600162620ustar00rootroot00000000000000#################################################################### # # # THIS FILE IS PART OF THE pycollada LIBRARY SOURCE CODE. # # USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS # # GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE # # IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. # # # # THE pycollada SOURCE CODE IS (C) COPYRIGHT 2011 # # by Jeff Terrace and contributors # # # #################################################################### """This module contains utility functions""" import numpy import math import sys if sys.version_info[0] > 2: import unittest from io import StringIO, BytesIO bytes = bytes basestring = (str,bytes) xrange = range else: import unittest if not hasattr(unittest.TestCase, "assertIsNone"): # external dependency unittest2 required for Python <= 2.6 import unittest2 as unittest from StringIO import StringIO BytesIO = StringIO def bytes(s, encoding='utf-8'): return s basestring = basestring xrange = xrange from collada.common import DaeMalformedError, E, tag def falmostEqual(a, b, rtol=1.0000000000000001e-05, atol=1e-08): """Checks if the given floats are almost equal. Uses the algorithm from numpy.allclose. :param float a: First float to compare :param float b: Second float to compare :param float rtol: The relative tolerance parameter :param float atol: The absolute tolerance parameter :rtype: bool """ return math.fabs(a - b) <= (atol + rtol * math.fabs(b)) def toUnitVec(vec): """Converts the given vector to a unit vector :param numpy.array vec: The vector to transform to unit length :rtype: numpy.array """ return vec / numpy.sqrt(numpy.vdot(vec, vec)) def checkSource( source, components, maxindex): """Check if a source objects complies with the needed `components` and has the needed length :param collada.source.Source source: A source instance to check :param tuple components: A tuple describing the needed channels, e.g. ``('X','Y','Z')`` :param int maxindex: The maximum index that refers to this source """ if len(source.data) <= maxindex: raise DaeMalformedError( "Indexes (maxindex=%d) for source '%s' (len=%d) go beyond the limits of the source" % (maxindex, source.id, len(source.data)) ) #some files will write sources with no named parameters #by spec, these params should just be skipped, but we need to #adapt to the failed output of others... if len(source.components) == len(components): source.components = components if source.components != components: raise DaeMalformedError('Wrong format in source %s'%source.id) return source def normalize_v3(arr): """Normalize a numpy array of 3 component vectors with shape (N,3) :param numpy.array arr: The numpy array to normalize :rtype: numpy.array """ lens = numpy.sqrt( arr[:,0]**2 + arr[:,1]**2 + arr[:,2]**2 ) lens[numpy.equal(lens, 0)] = 1 arr[:,0] /= lens arr[:,1] /= lens arr[:,2] /= lens return arr def dot_v3(arr1, arr2): """Calculates the dot product for each vector in two arrays :param numpy.array arr1: The first array, shape Nx3 :param numpy.array arr2: The second array, shape Nx3 :rtype: numpy.array """ return arr1[:,0]*arr2[:,0] + arr1[:,1]*arr2[:,1] + arr2[:,2]*arr1[:,2] class IndexedList(list): """ Class that combines a list and a dict into a single class - Written by Hugh Bothwell (http://stackoverflow.com/users/33258/hugh-bothwell) - Original source available at: http://stackoverflow.com/questions/5332841/python-list-dict-property-best-practice/5334686#5334686 - Modifications by Jeff Terrace Given an object, obj, that has a property x, this allows you to create an IndexedList like so: L = IndexedList([], ('x')) o = obj() o.x = 'test' L.append(o) L[0] # = o L['test'] # = o """ def __init__(self, items, attrs): super(IndexedList, self).__init__(items) # do indexing self._attrs = tuple(attrs) self._index = {} _add = self._addindex for obj in self: _add(obj) def _addindex(self, obj): _idx = self._index for attr in self._attrs: _idx[getattr(obj, attr)] = obj def _delindex(self, obj): _idx = self._index for attr in self._attrs: try: del _idx[getattr(obj, attr)] except KeyError: pass def __delitem__(self, ind): try: obj = list.__getitem__(self, ind) except (IndexError, TypeError): obj = self._index[ind] ind = list.index(self, obj) self._delindex(obj) return list.__delitem__(self, ind) def __delslice__(self, i, j): return list.__delslice__(self, i, j) def __getitem__(self, ind): try: return self._index[ind] except KeyError: if isinstance(ind, str): raise return list.__getitem__(self, ind) def get(self, key, default=None): try: return self._index[key] except KeyError: return default def __contains__(self, item): if item in self._index: return True return list.__contains__(self, item) def __getslice__(self, i, j): return IndexedList(list.__getslice__(self, i, j), self._attrs) def __setitem__(self, ind, new_obj): try: obj = list.__getitem__(self, ind) except (IndexError, TypeError): obj = self._index[ind] ind = list.index(self, obj) self._delindex(obj) self._addindex(new_obj) return list.__setitem__(ind, new_obj) def __setslice__(self, i, j, newItems): _get = self.__getitem__ _add = self._addindex _del = self._delindex newItems = list(newItems) # remove indexing of items to remove for ind in xrange(i, j): _del(_get(ind)) # add new indexing if isinstance(newList, IndexedList): self._index.update(newList._index) else: for obj in newList: _add(obj) # replace items return list.__setslice__(self, i, j, newList) def append(self, obj): self._addindex(obj) return list.append(self, obj) def extend(self, newList): newList = list(newList) if isinstance(newList, IndexedList): self._index.update(newList._index) else: _add = self._addindex for obj in newList: _add(obj) return list.extend(self, newList) def insert(self, ind, new_obj): # ensure that ind is a numeric index try: obj = list.__getitem__(self, ind) except (IndexError, TypeError): obj = self._index[ind] ind = list.index(self, obj) self._addindex(new_obj) return list.insert(self, ind, new_obj) def pop(self, ind= -1): # ensure that ind is a numeric index try: obj = list.__getitem__(self, ind) except (IndexError, TypeError): obj = self._index[ind] ind = list.index(self, obj) self._delindex(obj) return list.pop(self, ind) def remove(self, ind_or_obj): try: obj = self._index[ind_or_obj] ind = list.index(self, obj) except KeyError: ind = list.index(self, ind_or_obj) obj = list.__getitem__(self, ind) self._delindex(obj) return list.remove(self, ind) def _correctValInNode(outernode, tagname, value): innernode = outernode.find( tag(tagname) ) if value is None and innernode is not None: outernode.remove(innernode) elif innernode is not None: innernode.text = str(value) elif value is not None: outernode.append(E(tagname, str(value))) pycollada-0.4/collada/xmlutil.py000066400000000000000000000100011200577111600167640ustar00rootroot00000000000000import sys import functools COLLADA_NS = 'http://www.collada.org/2005/11/COLLADASchema' HAVE_LXML = False try: from lxml import etree HAVE_LXML = True except ImportError: from xml.etree import ElementTree as etree ET = etree try: from functools import partial except ImportError: # fake it for pre-2.5 releases def partial(func, tag): return lambda *args, **kwargs: func(tag, *args, **kwargs) try: callable except NameError: # Python 3 def callable(f): return hasattr(f, '__call__') try: basestring except (NameError, KeyError): basestring = str try: unicode except (NameError, KeyError): unicode = str if HAVE_LXML: from lxml.builder import E, ElementMaker def writeXML(xmlnode, fp): xmlnode.write(fp, pretty_print=True) else: class ElementMaker(object): def __init__(self, namespace=None, nsmap=None): if namespace is not None: self._namespace = '{' + namespace + '}' else: self._namespace = None def __call__(self, tag, *children, **attrib): if self._namespace is not None and tag[0] != '{': tag = self._namespace + tag elem = etree.Element(tag, attrib) for item in children: if isinstance(item, dict): elem.attrib.update(item) elif isinstance(item, basestring): if len(elem): elem[-1].tail = (elem[-1].tail or "") + item else: elem.text = (elem.text or "") + item elif etree.iselement(item): elem.append(item) else: raise TypeError("bad argument: %r" % item) return elem def __getattr__(self, tag): return functools.partial(self, tag) E = ElementMaker() if etree.VERSION[0:3] == '1.2': #in etree < 1.3, this is a workaround for supressing prefixes def fixtag(tag, namespaces): import string # given a decorated tag (of the form {uri}tag), return prefixed # tag and namespace declaration, if any if isinstance(tag, etree.QName): tag = tag.text namespace_uri, tag = string.split(tag[1:], "}", 1) prefix = namespaces.get(namespace_uri) if namespace_uri not in namespaces: prefix = etree._namespace_map.get(namespace_uri) if namespace_uri not in etree._namespace_map: prefix = "ns%d" % len(namespaces) namespaces[namespace_uri] = prefix if prefix == "xml": xmlns = None else: if prefix is not None: nsprefix = ':' + prefix else: nsprefix = '' xmlns = ("xmlns%s" % nsprefix, namespace_uri) else: xmlns = None if prefix is not None: prefix += ":" else: prefix = '' return "%s%s" % (prefix, tag), xmlns etree.fixtag = fixtag etree._namespace_map[COLLADA_NS] = None else: #For etree > 1.3, use register_namespace function etree.register_namespace('', COLLADA_NS) def indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i def writeXML(xmlnode, fp): indent(xmlnode.getroot()) xmlnode.write(fp) pycollada-0.4/docs/000077500000000000000000000000001200577111600142555ustar00rootroot00000000000000pycollada-0.4/docs/Makefile000066400000000000000000000060741200577111600157240ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = _build # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . .PHONY: help clean html dirhtml pickle json htmlhelp qthelp latex changes linkcheck doctest help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " dirhtml to make HTML files named index.html in directories" @echo " pickle to make pickle files" @echo " json to make JSON files" @echo " htmlhelp to make HTML files and a HTML help project" @echo " qthelp to make HTML files and a qthelp project" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " changes to make an overview of all changed/added/deprecated items" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" clean: -rm -rf $(BUILDDIR)/* html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." dirhtml: $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." pickle: $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle @echo @echo "Build finished; now you can process the pickle files." json: $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json @echo @echo "Build finished; now you can process the JSON files." htmlhelp: $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDDIR)/htmlhelp." qthelp: $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pycollada.qhcp" @echo "To view the help file:" @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pycollada.qhc" latex: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." @echo "Run \`make all-pdf' or \`make all-ps' in that directory to" \ "run these through (pdf)latex." changes: $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes @echo @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." doctest: $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest @echo "Testing of doctests in the sources finished, look at the " \ "results in $(BUILDDIR)/doctest/output.txt." pycollada-0.4/docs/_static/000077500000000000000000000000001200577111600157035ustar00rootroot00000000000000pycollada-0.4/docs/_static/empty000066400000000000000000000000001200577111600167520ustar00rootroot00000000000000pycollada-0.4/docs/_templates/000077500000000000000000000000001200577111600164125ustar00rootroot00000000000000pycollada-0.4/docs/_templates/empty000066400000000000000000000000001200577111600174610ustar00rootroot00000000000000pycollada-0.4/docs/changelog.rst000066400000000000000000000126551200577111600167470ustar00rootroot00000000000000Changelog ========= 0.4 (2012-07-31) ---------------- Backwards Compatibility Notes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * Python 2.5 is no longer supported. Supported versions are now 2.6, 2.7 and 3.2. New Features ^^^^^^^^^^^^ * Added support for reading the opaque attribute from tag. * Normals and texture coordinate indices are now available in shapes (Triangle and Polygon). * Library is now compatible with python's built-in ElementTree API instead of requiring lxml. lxml is still recommended. * Added support for Python 3.2. Supported versions are now 2.6, 2.7 and 3.2. * Added support for index_of_refraction in . * Added optional parameter to Collada that does XML schema validation when saving. * Automatically corrects broken files that don't have correct xfov, yfov, and aspect ratio in cameras. Bug Fixes ^^^^^^^^^ * Fix the default value for transparency in Effect. Now correctly defaults to 1.0 when opaque mode is A_ONE, and 0.0 when opaque mode is RGB_ZERO. * Fixed bug where BoundPolylist was not returning the correct length value. * Removed support for RGB from Effect since it's not valid in the spec. If an RGB is given, a fourth A channel is automatically added as 1.0. * Made instance_geometry not write an empty bind_material if it's empty since it breaks validation. * Made saving strip out empty tags since it breaks validation. 0.3 (2011-08-31) ---------------- Backwards Compatibility Notes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * If using the old Camera object, this has been changed to an abstract class with types for PerspectiveCamera and OrthographicCamera * If using the old Collada.assetInfo dictionary to read asset information, this has been changed to an object. See documentation for more information. New Features ^^^^^^^^^^^^ * Added support for bump maps inside the extra tag of an effect * Added texbinormal and textangent to triangle sets * Added a method to generate texture tangents and binormals * Added detection for double_sided * Added an optional parameter to specify what filename inside an archive to use when loading from zip * Added support for loading multiple sets of library_* nodes * Refactored asset information into a separate module. Fixed #12 * Refactored Camera into PerspectiveCamera and OrthographicCamera, inheriting from Camera Bug Fixes ^^^^^^^^^ * Changed Collada IndexedLists attributes to be properties. Fixed Issue #14 * Updated scene to use a local scope when nodes are instantiated inside a scene * Changed parsing to raise DaeMalformedError when an lxml parser exception is thrown * Fixed bug when loading an tag local to an not showing up in Collada.images * Fixed bug when loading an empty * Fixed bug in if statement when loading morph controllers * Fixed bug when triangulating a length-0 polylist * Updated install instructions for OS X and Ubuntu problems * Fixed bugs in IndexedList from Issue #13 * Fixed a bug where using the same map twice in an effect would cause incorrrect output * Changed geometry export to delete any sources in the vertices tag that no longer exist * Changed library output to not output emtpy library nodes so validator doesn't complain * Add same checks in scene loading that was done in library_nodes loading so that if nodes are not found yet while loading, it will keep trying * Changed the way library_nodes is loaded so that if a referenced node from instance_node is not loaded yet, it will keep trying * Fixed bug where a triangles xml node would try to set an attribute to None * Fixed bug in handling joints that influence 0 vertices 0.2.2 (2011-05-03) ------------------ * Changed the way instance_node is handled to actually maintain the mapping so it's not lost when saving * Added setdata function to CImage and made Effect compare only image path * Fixed a bug when rewriting geometry sources * Change primitive sources to point to the tag when possible since other importers don't like not having a tag * Export source data with only 7 decimal precision for better file size * Prevent NaN from being the result of a normalize_v3 call * Fixed bug where effect was not correctly reading all four color values * Fixed a bug where a triangleset would not create its xml node when generated from a polylist * Big speed increases for converting numpy data to strings * Moved getInputs function to Primitive * Added functions to triangleset to generate normals and get an input list * Fixed bug in saving a scene node if there was no id * Fixed some bugs/optimizations with saving * Added function to test if an Effect is almost equal to another Effect * Adding dynamic dependencies to setup.py 0.2.1 (2011-04-15) ------------------ * Fixed bug with saving existing files that didn't have some library\_ tags. 0.2 (2011-04-15) ---------------- * Many bugfixes * polylist support * polygons support without holes * lines support * blinn and constant material support * More effect attributes * Better support for auxiliary texture files * Lights (directional, ambient, point, spot) * lookat transform * Experimental controller support (skin, morph) * polygons/polylist can be triangulated * Automatic computation of per-vertex normals 0.1 (2009-02-08) ---------------- * Initial release * Triangles geometry * Reads vertices and normals * Multiple texture coordinate channels * Phong and Lambert Materials * Texture support using PIL * Scene suppport for geometry, material and camera instances * Transforms (matrix, rotate, scale, translate)pycollada-0.4/docs/conf.py000066400000000000000000000147521200577111600155650ustar00rootroot00000000000000# -*- coding: utf-8 -*- # # pycollada documentation build configuration file, created by # sphinx-quickstart on Mon Mar 14 16:59:13 2011. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.abspath('..')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.graphviz', 'sphinx.ext.inheritance_diagram'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pycollada' copyright = u'2011, Jeff Terrace and contributors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.4' # The full version, including alpha/beta/rc tags. release = '0.4' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pycolladadoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pycollada.tex', u'pycollada Documentation', u'Jeff Terrace', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True autoclass_content = 'class' autodoc_default_flags = ['members', 'show-inheritance', 'inherited-members'] autodoc_member_order = 'bysource' #autosummary_generate = True pycollada-0.4/docs/creating.rst000066400000000000000000000072651200577111600166150ustar00rootroot00000000000000Creating A Collada Object ========================= In this section, we outline how to create a collada document from scratch. First, let's create an empy collada document:: >>> from collada import * >>> mesh = Collada() We could save this out, but it would be completely blank. Let's first add a :class:`.Material` to the document:: >>> mesh = Collada() >>> effect = material.Effect("effect0", [], "phong", diffuse=(1,0,0), specular=(0,1,0)) >>> mat = material.Material("material0", "mymaterial", effect) >>> mesh.effects.append(effect) >>> mesh.materials.append(mat) Note that the second argument to :class:`.Effect` is for parameters. These are used for textures. We omit textures for simplicity here. Next, let's first create some source arrays. These are going to be used to create a triangle set later:: >>> import numpy >>> vert_floats = [-50,50,50,50,50,50,-50,-50,50,50, ... -50,50,-50,50,-50,50,50,-50,-50,-50,-50,50,-50,-50] >>> normal_floats = [0,0,1,0,0,1,0,0,1,0,0,1,0,1,0, ... 0,1,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,-1,0,0, ... -1,0,0,-1,0,0,-1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,-1, ... 0,0,-1,0,0,-1,0,0,-1] >>> vert_src = source.FloatSource("cubeverts-array", numpy.array(vert_floats), ('X', 'Y', 'Z')) >>> normal_src = source.FloatSource("cubenormals-array", numpy.array(normal_floats), ('X', 'Y', 'Z')) Now that we have some sources, let's create a :class:`.Geometry` and add the sources to it:: >>> geom = geometry.Geometry(mesh, "geometry0", "mycube", [vert_src, normal_src]) To add a triangle set to the geometry, we can call the :meth:`.Geometry.createTriangleSet` method. To do this, we need to define the inputs to the triangle set. In this case, we are going to input the arrays we previously defined:: >>> input_list = source.InputList() >>> input_list.addInput(0, 'VERTEX', "#cubeverts-array") >>> input_list.addInput(1, 'NORMAL', "#cubenormals-array") This says to use the source with identifier `cubeverts-array` as the vertex source and source with identifier `cubenormals-array` as the normal source. The offsets indicate that the vertex data is the first offset in the index array and the normal data is the second offset in the index array. Let's now create the index array:: >>> indices = numpy.array([0,0,2,1,3,2,0,0,3,2,1,3,0,4,1,5,5,6,0, ... 4,5,6,4,7,6,8,7,9,3,10,6,8,3,10,2,11,0,12, ... 4,13,6,14,0,12,6,14,2,15,3,16,7,17,5,18,3, ... 16,5,18,1,19,5,20,7,21,6,22,5,20,6,22,4,23]) Now that we have an index array, an input list, and a material, we can create a triangle set and add it to the geometry's list of primitives. We then add it to the list of geometries in the mesh:: >>> triset = geom.createTriangleSet(indices, input_list, "materialref") >>> geom.primitives.append(triset) >>> mesh.geometries.append(geom) We now have everything we need in the object except for a scene. To get the geometry to show up, we have to create a scene. First, we instantiate the geometry into a scene node, mapping it to a material:: >>> matnode = scene.MaterialNode("materialref", mat, inputs=[]) >>> geomnode = scene.GeometryNode(geom, [matnode]) >>> node = scene.Node("node0", children=[geomnode]) Now that we have the scene node, we can create a scene, add the node to the scene, add the scene to the document, and then set our scene as the default:: >>> myscene = scene.Scene("myscene", [node]) >>> mesh.scenes.append(myscene) >>> mesh.scene = myscene We can now save the document to a file:: >>> mesh.write('/tmp/test.dae') If you load this file, it should look like a red cube. Here's a screenshot: .. image:: cube.png pycollada-0.4/docs/cube.png000066400000000000000000000050641200577111600157060ustar00rootroot00000000000000‰PNG  IHDRòòsöˆsRGB®Îé pHYs  šœtIMEÛ9 §û ÆIDATxÚíÛl”õÀñÏóp½Þð @CÌL‘É"( Ã…eЭˆ¤™²EÃ\Êd°‰8B$n‡N,1]I§¤d…,å3E³V¡³l 0.1€0³²nz‡½¶wG{÷|÷Ç—ÞÊQF[®½{ž{¿þjÂ^Ÿû¾û|¾ß»3”R CL.@QE€¢Š( E•ß¾e\»0xÏDNÙº|¹¯¸XDþùñÇgïû½göZVªªo¬\©,KYÖϹb…«þôæ›n·ˆÙ·ïý††«Ï‡i*ËJû›J$!’vŸ2Œkž»—š›{{zD侊 ®-E9\2‘Ð_ünË–W·o0‰ÿcÀ¢~: ÃR*õ7›”ÒßzŒËų@Qövð•WŽîÛ§Wó™cÇRm cK4ø¢¬K‰”ΚåõûEäJ,¶ëäIžŠÊu¯×Ô¸½^9þî»~ûíÌþçÃ+êF™¥žñ§ví² K©Êuëx)*kBmm†iŠH°ºúàË/u„ËnQ7j,õÐ߸|¹'‘Û&OÖ?&(*CëX)£ïØzÿ‹/ª¯Ó4ÿóé§ú’Ú‘öˆ•–—ô­‡Û&OvèAñõÏ?g=PÔ0ã9vàÀß?üPD ½Þ`uuN<¼Q+êf§_[±bâÔ©"Ò?U_ÏÊ¡¨küëüùÎpXDüãÆ=~×]·rxàà¢nšÙÚÚÚ™ Šˆ•L~¥¬Œ¢ò®¨ Ãp¹Ý"’L$,ËÒóÛˆn„œWTÚÃ3ú¾((,Ôsãæ`ð«••å4?]¼¸Ðç‘SGŽÄººô³n6û©s¼¨›ºÿ¡‡ô«ÏßÝ´IßÍÒ&mŠÊEGõ똿^³¦ëòåÔpâ€ÐîE øU>ëì‘ésç–”–RT6õÄãV2išæª;ï ]ºä¤xò¤¨ë@={7)ïîßOQ#®jÚ4}¡ÛΞí‰ÇóçýØŽ/*íw¢™~Ï=úýSkjjæ–—ÛhPÌÑ¢~ÿÜsúðàÕíÛ£‘ˆãïB5?®«Ów°ùFEDYÖ÷îeYPÔ(d–zõ¹¤´tö¢E"íêÚ Ú¬¨Ó--úÓxw÷/|0õªK¢²ŸY¿rΘ?ÿÕÕ"’L$æ.Y’[E]no´¤„±¢ì~7»oéÒm‡jQ¡¶¶—V®Ã0Móoï½—6ËòôP”c®öœÅ‹U2)"_ºûîu}ؤ!|X:ž:zt€G@NpÒKäds³þZ¿yjHøHIC+Лɢå¦>€©`êÀÔP@QE (À.Eqzd²(NϦ>€©`êÀÔPÀ>  (öQSÀÔ0õ`ê(  (€¢P`×¢8=2Y§çSÀÔ0õ`ê( `Pû(€©`ê˜ú0õL}S@Q( `Pû(€©`ê˜ú0õP@Q( °OQœž™,ŠÓs€©`ê˜ú0õ°(Š}ÀÔ0õL}˜úŠ(  (ص(NÏLÅé9ÀÔ0õL}˜úŠ(  (Ø¥(NÏLÅé9ÀÔ0õL}˜úŠØGÅ> `ê˜ú¦>L}EPŠìZ§ç@&‹âô`ê˜ú¦>L}E죊b0õL}S¦>€©`ê( E죊b0õL}S¦>€¢Š( Eö)ŠÓs “Eqz0õL}S¦>€¢öQE±˜ú¦>€©S@QE€¢»Åé9É¢8=˜ú¦>€©S@Qû(€¢ØGL}SÀÔ€©`ê˜úŠ@Qû(€¢ØGL}SÀÔ€© (€¢Š@Q€}ŠâôÈdQœžL}SÀÔ€© (ÀE)Ëúßøg0™ú¯íh$2ä®ÔpŽ~ûÌ3¦iêoùÖÎ"¢Øe%’àòŽL<©õ˜2å›UU"r%ûÑŽÃÿ?‡WÔ€Ÿ1ÃJ$ôݬýÂ2£¨\‹G¯uÏ7¡¤DDº;:|öY†¿Q‹ê/ ‰È—kE `Y–èa¢8§¨ì\Ã&Ëê ‡EÄíñxüþ‘JWâ?¼{·iš†iîXµJWãÚ;/(*#6ƒÑÎN™6{ö—çÍÕ›aÖWó† =9ýÁÉd’Ì(j×D/•¹ååÉÞ^Yºzõ×yäêŸ*•­Ã³]¸œ%RÔu;¡Ô–á‡55+6nÌч™ã·‚s'NtwtèÝäOÊÊ(*/Ú1MeYz]~{ýú••"’èíW^nƒoÇá꺺 §N‰a4ïÝk%“}¿Â;(æOQËŸxâJ,ïêÚ Úõ×cVárŸÏëó‰H×_¤2sÆé¢#‹7q¢^{U/¼°líZçÜ`÷{=ÔÖÖ‹ˆÇï´¤Dìÿ²˜­‹ê?Â}ïÙg—<ö˜ˆ(Ëš:}º3GÖ<9RkÙ¿_¿èìöz³aE\<úëû~xúœ9"Ò‹}ÿùçógӛׇԻ7n<ÑÔ$"c\®ó'ORÔÖM¿]ëä;îð‹H4i¸xQò/û\ïîÖ_ÔVU{íµœ:íÈ‘¢ú_ %Ò¬”¾h…^¯aò!Š„÷ Eä­;O·´\?Û8µ¨þï‚3D~yð`O<®DÊ–-+ôzY•I›-ò+"ÿhmmÿä“Q¸›hQiwž…••ÉdR)õóÆFoQO7EeG…a¸Ün±,K¿?7‹êßOêÛÚÆOšÄ“HQ¹( éWÃÖ­}ç݃ykƒâ-•6Âíimww†1Êo!¥(dLÝêÕž¢"9uäÈù>Ò+{ðû±Á•6|~çé§½½"²jÛ¶BŸ'‚¢œ¬Òï/D$ÖÙÙÕÑ!7þÙ€E¥í&Ý~»(¥”ÚÓÚê7ŽËKQùëJ4ªß \,÷xyR"{Μè¼S¦p%) 7ôï‹ÿrèˆxüþ_UU­®­-p»EÄt¹–­YÃõ¡( ÷X"{žEYÆ›GŠ(  (P@Q(  (À.þ 6Üïé:¹õIEND®B`‚pycollada-0.4/docs/features.rst000066400000000000000000000021251200577111600166250ustar00rootroot00000000000000Features ======== Geometry -------- * Triangles a set of triangles * Polylist a set of polygons with no holes * Polygons a set of polygons that can contain holes (holes unimplemented, currently an alias for Polylist) * Lines a set of lines Source Data ----------- * Vertex * Normals * Multiple texture coordinate sets Materials --------- * Shader types: phong, lambert, blinn, constant * Effect attributes: emission, ambient, diffuse, specular, shininess, reflective, reflectivity, transparent, transparency * Texture support: Can read from local file, zip archives, or a custom auxiliary file handler * Loads texture images with PIL if available Lights ------ * Directional * Ambient * Point * Spot Cameras ------- * Perspective Scenes ------ * Full scene construction * Transformations: rotate, scale, translate, matrix, lookat (for cameras) * Supports iterating through a scene, yielding transformed geometry Controllers ----------- * Currently experimental (more support coming) * Morph * Skin Additional Features ------------------- * Fast triangulation of polygons * Fast computation of normals pycollada-0.4/docs/index.rst000066400000000000000000000010701200577111600161140ustar00rootroot00000000000000.. pycollada documentation master file Welcome to pycollada's documentation ==================================== Source Code ----------- The source code for pycollada lives on `github `_ Tutorial -------- .. toctree:: intro.rst features.rst install.rst loading.rst structure.rst creating.rst changelog.rst Reference --------- .. toctree:: :maxdepth: 1 reference/summary.rst reference/index.rst Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search` pycollada-0.4/docs/install.rst000066400000000000000000000013131200577111600164530ustar00rootroot00000000000000Installation ============ github ------- The source code for pycollada is available on github here: https://github.com/pycollada/pycollada To pull a read-only copy, you can clone the repository:: git clone git://github.com/pycollada/pycollada.git pycollada Python Package Index -------------------- pycollada is available as a package at: http://pypi.python.org/pypi/pycollada/ You can also use easy_install:: easy_install pycollada On Mac OS X, try this if you get an error installing lxml:: export ARCHFLAGS="arch i386 -arch x86_64" easy_install pycollada On Ubuntu, install these dependencies first:: apt-get install python-lxml python-numpy python-dateutil easy_install pycollada pycollada-0.4/docs/intro.rst000066400000000000000000000016321200577111600161440ustar00rootroot00000000000000Introduction ============ **pycollada** is a python module for creating, editing and loading `COLLADA `_, which is a COLLAborative Design Activity for establishing an interchange file format for interactive 3D applications. The library allows you to load a COLLADA file and interact with it as a python object. In addition, it supports creating a collada python object from scratch, as well as in-place editing. pycollada uses `lxml `_ for XML loading, construction, and saving. `numpy `_ is used for numerical arrays. Both of these libraries are impleted in C/C++ which makes pycollada quite fast. pycollada was originally written by Alejandro Conty Estevez of Scopia Visual Interfaces Systems in 2009. Since 2011, the library is now maintained by Jeff Terrace. For a list of additional contributors, see the AUTHORS file included with distribution. pycollada-0.4/docs/loading.rst000066400000000000000000000030511200577111600164230ustar00rootroot00000000000000Loading A Collada Document ========================== Collada documents can be loaded with the :class:`.Collada` class:: mesh = Collada('file.dae') Zip archives are also supported. The archive will be searched for a dae file. The constructor can also accept a file-like object:: f = open('file.dae') mesh = Collada(f) Note that this will also work with the `StringIO` module. When loading from non-file sources, the `aux_file_loader` parameter can be passed to the constructor. This is useful if loading from an unusual source, like a database:: dae_file = open('file.dae') dae_data = dae_file.read() texture_file = open('texture.jpg') texture_data = texture_file.read() def my_aux_loader(filename): if filename == 'texture.jpg': return texture_data return None mesh = Collada(StringIO(dae_data), aux_file_loader=my_aux_loader) When using the Collada object (see :ref:`structure`), if you try and read a texture, the `my_aux_loader` function will be invoked. Loading a collada document can result in an exception being thrown. For a list of possible exceptions, see :ref:`exception-summary`. Sometimes, you may want to ignore some exceptions and let the loader try to continue loading the file. For example, the following will ignore errors about broken references and features that pycollada doesn't support:: mesh = Collada('file.dae', ignore=[DaeUnsupportedError, DaeBrokenRefError]) If any errors occurred during the load, you can find them in :attr:`.Collada.errors`.pycollada-0.4/docs/reference/000077500000000000000000000000001200577111600162135ustar00rootroot00000000000000pycollada-0.4/docs/reference/asset.rst000066400000000000000000000002311200577111600200600ustar00rootroot00000000000000Asset ----- .. autosummary:: :toctree: generated :nosignatures: collada.asset.Contributor collada.asset.Asset collada.asset.UP_AXIS pycollada-0.4/docs/reference/bound.rst000066400000000000000000000013461200577111600200600ustar00rootroot00000000000000Bound ----- .. autosummary:: :toctree: generated :nosignatures: collada.geometry.BoundGeometry collada.primitive.BoundPrimitive collada.triangleset.BoundTriangleSet collada.lineset.BoundLineSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons collada.camera.BoundCamera collada.camera.BoundPerspectiveCamera collada.camera.BoundOrthographicCamera collada.controller.BoundController collada.controller.BoundMorph collada.controller.BoundSkin collada.controller.BoundSkinPrimitive collada.light.BoundLight collada.light.BoundAmbientLight collada.light.BoundDirectionalLight collada.light.BoundPointLight collada.light.BoundSpotLight collada.primitive.BoundPrimitive pycollada-0.4/docs/reference/camera.rst000066400000000000000000000003411200577111600201730ustar00rootroot00000000000000Camera ------ .. inheritance-diagram:: collada.camera :parts: 1 .. autosummary:: :toctree: generated :nosignatures: collada.camera.Camera collada.camera.PerspectiveCamera collada.camera.OrthographicCamera pycollada-0.4/docs/reference/controller.rst000066400000000000000000000002521200577111600211270ustar00rootroot00000000000000Controller ---------- .. autosummary:: :toctree: generated :nosignatures: collada.controller.Controller collada.controller.Skin collada.controller.Morph pycollada-0.4/docs/reference/exceptions.rst000066400000000000000000000005011200577111600211220ustar00rootroot00000000000000.. _exception-summary: Exceptions ---------- .. autosummary:: :toctree: generated :nosignatures: collada.common.DaeError collada.common.DaeIncompleteError collada.common.DaeBrokenRefError collada.common.DaeMalformedError collada.common.DaeUnsupportedError collada.common.DaeSaveValidationError pycollada-0.4/docs/reference/generated/000077500000000000000000000000001200577111600201515ustar00rootroot00000000000000pycollada-0.4/docs/reference/generated/collada.Collada.rst000066400000000000000000000004411200577111600236370ustar00rootroot00000000000000collada.Collada =============== .. currentmodule:: collada .. autoclass:: Collada .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Collada.__init__ ~Collada.handleError ~Collada.ignoreErrors ~Collada.save pycollada-0.4/docs/reference/generated/collada.asset.Asset.rst000066400000000000000000000003531200577111600244770ustar00rootroot00000000000000collada.asset.Asset =================== .. currentmodule:: collada.asset .. autoclass:: Asset .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Asset.__init__ ~Asset.load ~Asset.save pycollada-0.4/docs/reference/generated/collada.asset.Contributor.rst000066400000000000000000000004171200577111600257330ustar00rootroot00000000000000collada.asset.Contributor ========================= .. currentmodule:: collada.asset .. autoclass:: Contributor .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Contributor.__init__ ~Contributor.load ~Contributor.save pycollada-0.4/docs/reference/generated/collada.asset.UP_AXIS.rst000066400000000000000000000001451200577111600245670ustar00rootroot00000000000000collada.asset.UP_AXIS ===================== .. currentmodule:: collada.asset .. autoclass:: UP_AXISpycollada-0.4/docs/reference/generated/collada.asset.rst000066400000000000000000000004221200577111600234160ustar00rootroot00000000000000collada.asset ============= .. automodule:: collada.asset :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.asset.Asset collada.asset.Contributor collada.asset.UP_AXIS pycollada-0.4/docs/reference/generated/collada.camera.BoundCamera.rst000066400000000000000000000003461200577111600257130ustar00rootroot00000000000000collada.camera.BoundCamera ========================== .. currentmodule:: collada.camera .. autoclass:: BoundCamera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ pycollada-0.4/docs/reference/generated/collada.camera.BoundOrthographicCamera.rst000066400000000000000000000005461200577111600302670ustar00rootroot00000000000000collada.camera.BoundOrthographicCamera ====================================== .. currentmodule:: collada.camera .. autoclass:: BoundOrthographicCamera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundOrthographicCamera.__init__ pycollada-0.4/docs/reference/generated/collada.camera.BoundPerspectiveCamera.rst000066400000000000000000000005421200577111600301230ustar00rootroot00000000000000collada.camera.BoundPerspectiveCamera ===================================== .. currentmodule:: collada.camera .. autoclass:: BoundPerspectiveCamera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundPerspectiveCamera.__init__ pycollada-0.4/docs/reference/generated/collada.camera.Camera.rst000066400000000000000000000004351200577111600247220ustar00rootroot00000000000000collada.camera.Camera ===================== .. currentmodule:: collada.camera .. autoclass:: Camera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Camera.load ~Camera.save pycollada-0.4/docs/reference/generated/collada.camera.OrthographicCamera.rst000066400000000000000000000006331200577111600272740ustar00rootroot00000000000000collada.camera.OrthographicCamera ================================= .. currentmodule:: collada.camera .. autoclass:: OrthographicCamera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~OrthographicCamera.__init__ ~OrthographicCamera.bind ~OrthographicCamera.load ~OrthographicCamera.save pycollada-0.4/docs/reference/generated/collada.camera.PerspectiveCamera.rst000066400000000000000000000006301200577111600271310ustar00rootroot00000000000000collada.camera.PerspectiveCamera ================================ .. currentmodule:: collada.camera .. autoclass:: PerspectiveCamera .. inheritance-diagram:: collada.camera :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~PerspectiveCamera.__init__ ~PerspectiveCamera.bind ~PerspectiveCamera.load ~PerspectiveCamera.save pycollada-0.4/docs/reference/generated/collada.camera.rst000066400000000000000000000004131200577111600235270ustar00rootroot00000000000000collada.camera ============== .. inheritance-diagram:: collada.camera :parts: 1 .. automodule:: collada.camera :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.camera.BoundCamera collada.camera.Camera pycollada-0.4/docs/reference/generated/collada.common.DaeBrokenRefError.rst000066400000000000000000000002121200577111600270640ustar00rootroot00000000000000collada.common.DaeBrokenRefError ================================ .. currentmodule:: collada.common .. autoexception:: DaeBrokenRefErrorpycollada-0.4/docs/reference/generated/collada.common.DaeError.rst000066400000000000000000000001571200577111600252760ustar00rootroot00000000000000collada.common.DaeError ======================= .. currentmodule:: collada.common .. autoexception:: DaeErrorpycollada-0.4/docs/reference/generated/collada.common.DaeIncompleteError.rst000066400000000000000000000002151200577111600273110ustar00rootroot00000000000000collada.common.DaeIncompleteError ================================= .. currentmodule:: collada.common .. autoexception:: DaeIncompleteErrorpycollada-0.4/docs/reference/generated/collada.common.DaeMalformedError.rst000066400000000000000000000002121200577111600271150ustar00rootroot00000000000000collada.common.DaeMalformedError ================================ .. currentmodule:: collada.common .. autoexception:: DaeMalformedErrorpycollada-0.4/docs/reference/generated/collada.common.DaeObject.rst000066400000000000000000000004051200577111600254070ustar00rootroot00000000000000collada.common.DaeObject ======================== .. currentmodule:: collada.common .. autoclass:: DaeObject .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~DaeObject.load ~DaeObject.save pycollada-0.4/docs/reference/generated/collada.common.DaeSaveValidationError.rst000066400000000000000000000002311200577111600301210ustar00rootroot00000000000000collada.common.DaeSaveValidationError ===================================== .. currentmodule:: collada.common .. autoexception:: DaeSaveValidationErrorpycollada-0.4/docs/reference/generated/collada.common.DaeUnsupportedError.rst000066400000000000000000000002201200577111600275360ustar00rootroot00000000000000collada.common.DaeUnsupportedError ================================== .. currentmodule:: collada.common .. autoexception:: DaeUnsupportedErrorpycollada-0.4/docs/reference/generated/collada.common.rst000066400000000000000000000007171200577111600235760ustar00rootroot00000000000000collada.common ============== .. automodule:: collada.common :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.common.DaeObject collada.common.DaeError collada.common.DaeIncompleteError collada.common.DaeBrokenRefError collada.common.DaeMalformedError collada.common.DaeUnsupportedError collada.common.DaeSaveValidationError pycollada-0.4/docs/reference/generated/collada.controller.BoundController.rst000066400000000000000000000003031200577111600275720ustar00rootroot00000000000000collada.controller.BoundController ================================== .. currentmodule:: collada.controller .. autoclass:: BoundController .. automethod:: __init__ pycollada-0.4/docs/reference/generated/collada.controller.BoundMorph.rst000066400000000000000000000004031200577111600265350ustar00rootroot00000000000000collada.controller.BoundMorph ============================= .. currentmodule:: collada.controller .. autoclass:: BoundMorph .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundMorph.__init__ pycollada-0.4/docs/reference/generated/collada.controller.BoundSkin.rst000066400000000000000000000005201200577111600263540ustar00rootroot00000000000000collada.controller.BoundSkin ============================ .. currentmodule:: collada.controller .. autoclass:: BoundSkin .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundSkin.__init__ ~BoundSkin.getJoint ~BoundSkin.getWeight ~BoundSkin.primitives pycollada-0.4/docs/reference/generated/collada.controller.BoundSkinPrimitive.rst000066400000000000000000000005041200577111600302470ustar00rootroot00000000000000collada.controller.BoundSkinPrimitive ===================================== .. currentmodule:: collada.controller .. autoclass:: BoundSkinPrimitive .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundSkinPrimitive.__init__ ~BoundSkinPrimitive.shapes pycollada-0.4/docs/reference/generated/collada.controller.Controller.rst000066400000000000000000000004551200577111600266120ustar00rootroot00000000000000collada.controller.Controller ============================= .. currentmodule:: collada.controller .. autoclass:: Controller .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Controller.bind ~Controller.load ~Controller.save pycollada-0.4/docs/reference/generated/collada.controller.Morph.rst000066400000000000000000000004451200577111600255530ustar00rootroot00000000000000collada.controller.Morph ======================== .. currentmodule:: collada.controller .. autoclass:: Morph .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Morph.__init__ ~Morph.bind ~Morph.load ~Morph.save pycollada-0.4/docs/reference/generated/collada.controller.Skin.rst000066400000000000000000000004361200577111600253720ustar00rootroot00000000000000collada.controller.Skin ======================= .. currentmodule:: collada.controller .. autoclass:: Skin .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Skin.__init__ ~Skin.bind ~Skin.load ~Skin.save pycollada-0.4/docs/reference/generated/collada.controller.rst000066400000000000000000000006161200577111600244670ustar00rootroot00000000000000collada.controller ================== .. automodule:: collada.controller :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.controller.BoundController collada.controller.BoundMorph collada.controller.BoundSkin collada.controller.BoundSkinPrimitive collada.controller.Controller collada.controller.Morph collada.controller.Skin pycollada-0.4/docs/reference/generated/collada.geometry.BoundGeometry.rst000066400000000000000000000005421200577111600267170ustar00rootroot00000000000000collada.geometry.BoundGeometry ============================== .. currentmodule:: collada.geometry .. autoclass:: BoundGeometry .. inheritance-diagram:: collada.geometry :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundGeometry.__init__ ~BoundGeometry.primitives pycollada-0.4/docs/reference/generated/collada.geometry.Geometry.rst000066400000000000000000000007531200577111600257330ustar00rootroot00000000000000collada.geometry.Geometry ========================= .. currentmodule:: collada.geometry .. autoclass:: Geometry .. inheritance-diagram:: collada.geometry :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Geometry.__init__ ~Geometry.bind ~Geometry.createLineSet ~Geometry.createPolylist ~Geometry.createPolygons ~Geometry.createTriangleSet ~Geometry.load ~Geometry.save pycollada-0.4/docs/reference/generated/collada.geometry.rst000066400000000000000000000004361200577111600241370ustar00rootroot00000000000000collada.geometry ================ .. inheritance-diagram:: collada.geometry :parts: 1 .. automodule:: collada.geometry :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.geometry.Geometry collada.geometry.BoundGeometry pycollada-0.4/docs/reference/generated/collada.light.AmbientLight.rst000066400000000000000000000005751200577111600257650ustar00rootroot00000000000000collada.light.AmbientLight ========================== .. currentmodule:: collada.light .. autoclass:: AmbientLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~AmbientLight.__init__ ~AmbientLight.bind ~AmbientLight.load ~AmbientLight.save pycollada-0.4/docs/reference/generated/collada.light.BoundAmbientLight.rst000066400000000000000000000005061200577111600267470ustar00rootroot00000000000000collada.light.BoundAmbientLight =============================== .. currentmodule:: collada.light .. autoclass:: BoundAmbientLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundAmbientLight.__init__ pycollada-0.4/docs/reference/generated/collada.light.BoundDirectionalLight.rst000066400000000000000000000005261200577111600276270ustar00rootroot00000000000000collada.light.BoundDirectionalLight =================================== .. currentmodule:: collada.light .. autoclass:: BoundDirectionalLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundDirectionalLight.__init__ pycollada-0.4/docs/reference/generated/collada.light.BoundLight.rst000066400000000000000000000003331200577111600254450ustar00rootroot00000000000000collada.light.BoundLight ======================== .. currentmodule:: collada.light .. autoclass:: BoundLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ pycollada-0.4/docs/reference/generated/collada.light.BoundPointLight.rst000066400000000000000000000004761200577111600264670ustar00rootroot00000000000000collada.light.BoundPointLight ============================= .. currentmodule:: collada.light .. autoclass:: BoundPointLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundPointLight.__init__ pycollada-0.4/docs/reference/generated/collada.light.BoundSpotLight.rst000066400000000000000000000004721200577111600263170ustar00rootroot00000000000000collada.light.BoundSpotLight ============================ .. currentmodule:: collada.light .. autoclass:: BoundSpotLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundSpotLight.__init__ pycollada-0.4/docs/reference/generated/collada.light.DirectionalLight.rst000066400000000000000000000006311200577111600266340ustar00rootroot00000000000000collada.light.DirectionalLight ============================== .. currentmodule:: collada.light .. autoclass:: DirectionalLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~DirectionalLight.__init__ ~DirectionalLight.bind ~DirectionalLight.load ~DirectionalLight.save pycollada-0.4/docs/reference/generated/collada.light.Light.rst000066400000000000000000000004441200577111600244600ustar00rootroot00000000000000collada.light.Light =================== .. currentmodule:: collada.light .. autoclass:: Light .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Light.load ~Light.save pycollada-0.4/docs/reference/generated/collada.light.PointLight.rst000066400000000000000000000005571200577111600254770ustar00rootroot00000000000000collada.light.PointLight ======================== .. currentmodule:: collada.light .. autoclass:: PointLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~PointLight.__init__ ~PointLight.bind ~PointLight.load ~PointLight.save pycollada-0.4/docs/reference/generated/collada.light.SpotLight.rst000066400000000000000000000005501200577111600253240ustar00rootroot00000000000000collada.light.SpotLight ======================= .. currentmodule:: collada.light .. autoclass:: SpotLight .. inheritance-diagram:: collada.light :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~SpotLight.__init__ ~SpotLight.bind ~SpotLight.load ~SpotLight.save pycollada-0.4/docs/reference/generated/collada.light.rst000066400000000000000000000007771200577111600234230ustar00rootroot00000000000000collada.light ============= .. inheritance-diagram:: collada.light :parts: 1 .. automodule:: collada.light :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.light.AmbientLight collada.light.BoundAmbientLight collada.light.BoundDirectionalLight collada.light.BoundLight collada.light.BoundPointLight collada.light.BoundSpotLight collada.light.DirectionalLight collada.light.Light collada.light.PointLight collada.light.SpotLight pycollada-0.4/docs/reference/generated/collada.lineset.BoundLineSet.rst000066400000000000000000000013241200577111600262760ustar00rootroot00000000000000collada.lineset.BoundLineSet ============================ .. currentmodule:: collada.lineset .. autoclass:: BoundLineSet .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundLineSet.__init__ ~BoundLineSet.lines ~BoundLineSet.shapes .. rubric:: Attributes .. autosummary:: ~BoundLineSet.normal ~BoundLineSet.normal_index ~BoundLineSet.texcoord_indexset ~BoundLineSet.texcoordset ~BoundLineSet.vertex ~BoundLineSet.vertex_index pycollada-0.4/docs/reference/generated/collada.lineset.Line.rst000066400000000000000000000003421200577111600246310ustar00rootroot00000000000000collada.lineset.Line ==================== .. currentmodule:: collada.lineset .. autoclass:: Line .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Line.__init__ pycollada-0.4/docs/reference/generated/collada.lineset.LineSet.rst000066400000000000000000000012251200577111600253060ustar00rootroot00000000000000collada.lineset.LineSet ======================= .. currentmodule:: collada.lineset .. autoclass:: LineSet .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~LineSet.__init__ ~LineSet.bind ~LineSet.load ~LineSet.save .. rubric:: Attributes .. autosummary:: ~LineSet.normal ~LineSet.normal_index ~LineSet.texcoord_indexset ~LineSet.texcoordset ~LineSet.vertex ~LineSet.vertex_index pycollada-0.4/docs/reference/generated/collada.lineset.rst000066400000000000000000000010531200577111600237430ustar00rootroot00000000000000collada.lineset =============== .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automodule:: collada.lineset :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.lineset.BoundLineSet collada.lineset.Line collada.lineset.LineSet pycollada-0.4/docs/reference/generated/collada.material.CImage.rst000066400000000000000000000006451200577111600252300ustar00rootroot00000000000000collada.material.CImage ======================= .. currentmodule:: collada.material .. autoclass:: CImage .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~CImage.__init__ ~CImage.load ~CImage.save .. rubric:: Attributes .. autosummary:: ~CImage.data ~CImage.floatarray ~CImage.pilimage ~CImage.uintarray pycollada-0.4/docs/reference/generated/collada.material.Effect.rst000066400000000000000000000004231200577111600252710ustar00rootroot00000000000000collada.material.Effect ======================= .. currentmodule:: collada.material .. autoclass:: Effect .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Effect.__init__ ~Effect.load ~Effect.save pycollada-0.4/docs/reference/generated/collada.material.Map.rst000066400000000000000000000004011200577111600246060ustar00rootroot00000000000000collada.material.Map ==================== .. currentmodule:: collada.material .. autoclass:: Map .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Map.__init__ ~Map.load ~Map.save pycollada-0.4/docs/reference/generated/collada.material.Material.rst000066400000000000000000000004371200577111600256400ustar00rootroot00000000000000collada.material.Material ========================= .. currentmodule:: collada.material .. autoclass:: Material .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Material.__init__ ~Material.load ~Material.save pycollada-0.4/docs/reference/generated/collada.material.OPAQUE_MODE.rst000066400000000000000000000001731200577111600256750ustar00rootroot00000000000000collada.material.OPAQUE_MODE ============================ .. currentmodule:: collada.material .. autoclass:: OPAQUE_MODE pycollada-0.4/docs/reference/generated/collada.material.Sampler2D.rst000066400000000000000000000004451200577111600256720ustar00rootroot00000000000000collada.material.Sampler2D ========================== .. currentmodule:: collada.material .. autoclass:: Sampler2D .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Sampler2D.__init__ ~Sampler2D.load ~Sampler2D.save pycollada-0.4/docs/reference/generated/collada.material.Surface.rst000066400000000000000000000004311200577111600254640ustar00rootroot00000000000000collada.material.Surface ======================== .. currentmodule:: collada.material .. autoclass:: Surface .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Surface.__init__ ~Surface.load ~Surface.save pycollada-0.4/docs/reference/generated/collada.material.rst000066400000000000000000000005101200577111600240730ustar00rootroot00000000000000collada.material ================ .. automodule:: collada.material :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.material.CImage collada.material.Effect collada.material.Map collada.material.Material collada.material.Sampler2D collada.material.Surface pycollada-0.4/docs/reference/generated/collada.polygons.BoundPolygons.rst000066400000000000000000000014071200577111600267560ustar00rootroot00000000000000collada.polygons.BoundPolygons ============================== .. currentmodule:: collada.polygons .. autoclass:: BoundPolygons .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundPolygons.__init__ ~BoundPolygons.polygons ~BoundPolygons.shapes ~BoundPolygons.triangleset .. rubric:: Attributes .. autosummary:: ~BoundPolygons.normal ~BoundPolygons.normal_index ~BoundPolygons.texcoord_indexset ~BoundPolygons.texcoordset ~BoundPolygons.vertex ~BoundPolygons.vertex_index pycollada-0.4/docs/reference/generated/collada.polygons.Polygons.rst000066400000000000000000000013011200577111600257570ustar00rootroot00000000000000collada.polygons.Polygons ========================= .. currentmodule:: collada.polygons .. autoclass:: Polygons .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Polygons.__init__ ~Polygons.bind ~Polygons.load ~Polygons.save ~Polygons.triangleset .. rubric:: Attributes .. autosummary:: ~Polygons.normal ~Polygons.normal_index ~Polygons.texcoord_indexset ~Polygons.texcoordset ~Polygons.vertex ~Polygons.vertex_index pycollada-0.4/docs/reference/generated/collada.polygons.rst000066400000000000000000000010421200577111600241500ustar00rootroot00000000000000collada.polygons ================ .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automodule:: collada.polygons :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.polygons.BoundPolygons collada.polygons.Polygons pycollada-0.4/docs/reference/generated/collada.polylist.BoundPolylist.rst000066400000000000000000000014071200577111600267700ustar00rootroot00000000000000collada.polylist.BoundPolylist ============================== .. currentmodule:: collada.polylist .. autoclass:: BoundPolylist .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundPolylist.__init__ ~BoundPolylist.polygons ~BoundPolylist.shapes ~BoundPolylist.triangleset .. rubric:: Attributes .. autosummary:: ~BoundPolylist.normal ~BoundPolylist.normal_index ~BoundPolylist.texcoord_indexset ~BoundPolylist.texcoordset ~BoundPolylist.vertex ~BoundPolylist.vertex_index pycollada-0.4/docs/reference/generated/collada.polylist.Polygon.rst000066400000000000000000000004121200577111600256030ustar00rootroot00000000000000collada.polylist.Polygon ======================== .. currentmodule:: collada.polylist .. autoclass:: Polygon .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Polygon.__init__ ~Polygon.triangles pycollada-0.4/docs/reference/generated/collada.polylist.Polylist.rst000066400000000000000000000013011200577111600257710ustar00rootroot00000000000000collada.polylist.Polylist ========================= .. currentmodule:: collada.polylist .. autoclass:: Polylist .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Polylist.__init__ ~Polylist.bind ~Polylist.load ~Polylist.save ~Polylist.triangleset .. rubric:: Attributes .. autosummary:: ~Polylist.normal ~Polylist.normal_index ~Polylist.texcoord_indexset ~Polylist.texcoordset ~Polylist.vertex ~Polylist.vertex_index pycollada-0.4/docs/reference/generated/collada.polylist.rst000066400000000000000000000010721200577111600241600ustar00rootroot00000000000000collada.polylist ================ .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automodule:: collada.polylist :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.polylist.BoundPolylist collada.polylist.Polylist collada.polylist.Polygon pycollada-0.4/docs/reference/generated/collada.primitive.BoundPrimitive.rst000066400000000000000000000012671200577111600272560ustar00rootroot00000000000000collada.primitive.BoundPrimitive ================================ .. currentmodule:: collada.primitive .. autoclass:: BoundPrimitive .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundPrimitive.shapes .. rubric:: Attributes .. autosummary:: ~BoundPrimitive.normal ~BoundPrimitive.normal_index ~BoundPrimitive.texcoord_indexset ~BoundPrimitive.texcoordset ~BoundPrimitive.vertex ~BoundPrimitive.vertex_index pycollada-0.4/docs/reference/generated/collada.primitive.Primitive.rst000066400000000000000000000012331200577111600262570ustar00rootroot00000000000000collada.primitive.Primitive =========================== .. currentmodule:: collada.primitive .. autoclass:: Primitive .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Primitive.bind ~Primitive.load ~Primitive.save .. rubric:: Attributes .. autosummary:: ~Primitive.normal ~Primitive.normal_index ~Primitive.texcoord_indexset ~Primitive.texcoordset ~Primitive.vertex ~Primitive.vertex_index pycollada-0.4/docs/reference/generated/collada.primitive.rst000066400000000000000000000010421200577111600243060ustar00rootroot00000000000000collada.primitive ================= .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automodule:: collada.primitive :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.primitive.BoundPrimitive collada.primitive.Primitive pycollada-0.4/docs/reference/generated/collada.rst000066400000000000000000000005441200577111600223050ustar00rootroot00000000000000collada ======= .. automodule:: collada :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.Collada collada.common.DaeBrokenRefError collada.common.DaeError collada.common.DaeIncompleteError collada.common.DaeMalformedError collada.common.DaeObject collada.common.DaeUnsupportedError pycollada-0.4/docs/reference/generated/collada.scene.CameraNode.rst000066400000000000000000000004741200577111600254000ustar00rootroot00000000000000collada.scene.CameraNode ======================== .. currentmodule:: collada.scene .. autoclass:: CameraNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~CameraNode.__init__ ~CameraNode.load ~CameraNode.objects ~CameraNode.save pycollada-0.4/docs/reference/generated/collada.scene.ControllerNode.rst000066400000000000000000000005301200577111600263240ustar00rootroot00000000000000collada.scene.ControllerNode ============================ .. currentmodule:: collada.scene .. autoclass:: ControllerNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~ControllerNode.__init__ ~ControllerNode.load ~ControllerNode.objects ~ControllerNode.save pycollada-0.4/docs/reference/generated/collada.scene.ExtraNode.rst000066400000000000000000000004651200577111600252730ustar00rootroot00000000000000collada.scene.ExtraNode ======================= .. currentmodule:: collada.scene .. autoclass:: ExtraNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~ExtraNode.__init__ ~ExtraNode.load ~ExtraNode.objects ~ExtraNode.save pycollada-0.4/docs/reference/generated/collada.scene.GeometryNode.rst000066400000000000000000000005121200577111600257740ustar00rootroot00000000000000collada.scene.GeometryNode ========================== .. currentmodule:: collada.scene .. autoclass:: GeometryNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~GeometryNode.__init__ ~GeometryNode.load ~GeometryNode.objects ~GeometryNode.save pycollada-0.4/docs/reference/generated/collada.scene.LightNode.rst000066400000000000000000000004651200577111600252570ustar00rootroot00000000000000collada.scene.LightNode ======================= .. currentmodule:: collada.scene .. autoclass:: LightNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~LightNode.__init__ ~LightNode.load ~LightNode.objects ~LightNode.save pycollada-0.4/docs/reference/generated/collada.scene.LookAtTransform.rst000066400000000000000000000005001200577111600264550ustar00rootroot00000000000000collada.scene.LookAtTransform ============================= .. currentmodule:: collada.scene .. autoclass:: LookAtTransform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~LookAtTransform.__init__ ~LookAtTransform.load ~LookAtTransform.save pycollada-0.4/docs/reference/generated/collada.scene.MaterialNode.rst000066400000000000000000000005121200577111600257370ustar00rootroot00000000000000collada.scene.MaterialNode ========================== .. currentmodule:: collada.scene .. autoclass:: MaterialNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~MaterialNode.__init__ ~MaterialNode.load ~MaterialNode.objects ~MaterialNode.save pycollada-0.4/docs/reference/generated/collada.scene.MatrixTransform.rst000066400000000000000000000005001200577111600265300ustar00rootroot00000000000000collada.scene.MatrixTransform ============================= .. currentmodule:: collada.scene .. autoclass:: MatrixTransform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~MatrixTransform.__init__ ~MatrixTransform.load ~MatrixTransform.save pycollada-0.4/docs/reference/generated/collada.scene.Node.rst000066400000000000000000000004221200577111600242600ustar00rootroot00000000000000collada.scene.Node ================== .. currentmodule:: collada.scene .. autoclass:: Node .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Node.__init__ ~Node.load ~Node.objects ~Node.save pycollada-0.4/docs/reference/generated/collada.scene.NodeNode.rst000066400000000000000000000004361200577111600250730ustar00rootroot00000000000000collada.scene.NodeNode ====================== .. currentmodule:: collada.scene .. autoclass:: NodeNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Node.__init__ ~Node.load ~Node.objects ~Node.save pycollada-0.4/docs/reference/generated/collada.scene.RotateTransform.rst000066400000000000000000000005001200577111600265220ustar00rootroot00000000000000collada.scene.RotateTransform ============================= .. currentmodule:: collada.scene .. autoclass:: RotateTransform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~RotateTransform.__init__ ~RotateTransform.load ~RotateTransform.save pycollada-0.4/docs/reference/generated/collada.scene.ScaleTransform.rst000066400000000000000000000004721200577111600263230ustar00rootroot00000000000000collada.scene.ScaleTransform ============================ .. currentmodule:: collada.scene .. autoclass:: ScaleTransform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~ScaleTransform.__init__ ~ScaleTransform.load ~ScaleTransform.save pycollada-0.4/docs/reference/generated/collada.scene.Scene.rst000066400000000000000000000004311200577111600244300ustar00rootroot00000000000000collada.scene.Scene =================== .. currentmodule:: collada.scene .. autoclass:: Scene .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Scene.__init__ ~Scene.load ~Scene.objects ~Scene.save pycollada-0.4/docs/reference/generated/collada.scene.SceneNode.rst000066400000000000000000000004331200577111600252400ustar00rootroot00000000000000collada.scene.SceneNode ======================= .. currentmodule:: collada.scene .. autoclass:: SceneNode .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~SceneNode.load ~SceneNode.objects ~SceneNode.save pycollada-0.4/docs/reference/generated/collada.scene.Transform.rst000066400000000000000000000004021200577111600253440ustar00rootroot00000000000000collada.scene.Transform ======================= .. currentmodule:: collada.scene .. autoclass:: Transform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Transform.load ~Transform.save pycollada-0.4/docs/reference/generated/collada.scene.TranslateTransform.rst000066400000000000000000000005221200577111600272250ustar00rootroot00000000000000collada.scene.TranslateTransform ================================ .. currentmodule:: collada.scene .. autoclass:: TranslateTransform .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~TranslateTransform.__init__ ~TranslateTransform.load ~TranslateTransform.save pycollada-0.4/docs/reference/generated/collada.scene.rst000066400000000000000000000011141200577111600233730ustar00rootroot00000000000000collada.scene ============= .. automodule:: collada.scene :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.scene.CameraNode collada.scene.ControllerNode collada.scene.ExtraNode collada.scene.GeometryNode collada.scene.LightNode collada.scene.LookAtTransform collada.scene.MaterialNode collada.scene.MatrixTransform collada.scene.Node collada.scene.RotateTransform collada.scene.ScaleTransform collada.scene.Scene collada.scene.SceneNode collada.scene.Transform collada.scene.TranslateTransform pycollada-0.4/docs/reference/generated/collada.source.FloatSource.rst000066400000000000000000000005421200577111600260270ustar00rootroot00000000000000collada.source.FloatSource ========================== .. currentmodule:: collada.source .. autoclass:: FloatSource .. inheritance-diagram:: collada.source :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~FloatSource.__init__ ~FloatSource.load ~FloatSource.save pycollada-0.4/docs/reference/generated/collada.source.IDRefSource.rst000066400000000000000000000005421200577111600257130ustar00rootroot00000000000000collada.source.IDRefSource ========================== .. currentmodule:: collada.source .. autoclass:: IDRefSource .. inheritance-diagram:: collada.source :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~IDRefSource.__init__ ~IDRefSource.load ~IDRefSource.save pycollada-0.4/docs/reference/generated/collada.source.InputList.rst000066400000000000000000000005351200577111600255360ustar00rootroot00000000000000collada.source.InputList ======================== .. currentmodule:: collada.source .. autoclass:: InputList .. inheritance-diagram:: collada.source :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~InputList.__init__ ~InputList.addInput ~InputList.getList pycollada-0.4/docs/reference/generated/collada.source.NameSource.rst000066400000000000000000000005341200577111600256430ustar00rootroot00000000000000collada.source.NameSource ========================= .. currentmodule:: collada.source .. autoclass:: NameSource .. inheritance-diagram:: collada.source :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~NameSource.__init__ ~NameSource.load ~NameSource.save pycollada-0.4/docs/reference/generated/collada.source.Source.rst000066400000000000000000000004551200577111600250440ustar00rootroot00000000000000collada.source.Source ===================== .. currentmodule:: collada.source .. autoclass:: Source .. inheritance-diagram:: collada.source :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Source.load ~Source.save pycollada-0.4/docs/reference/generated/collada.source.rst000066400000000000000000000005421200577111600236020ustar00rootroot00000000000000collada.source ============== .. inheritance-diagram:: collada.source :parts: 1 .. automodule:: collada.source :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.source.FloatSource collada.source.IDRefSource collada.source.InputList collada.source.NameSource collada.source.Source pycollada-0.4/docs/reference/generated/collada.triangleset.BoundTriangleSet.rst000066400000000000000000000014741200577111600300400ustar00rootroot00000000000000collada.triangleset.BoundTriangleSet ==================================== .. currentmodule:: collada.triangleset .. autoclass:: BoundTriangleSet .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~BoundTriangleSet.__init__ ~BoundTriangleSet.generateNormals ~BoundTriangleSet.shapes ~BoundTriangleSet.triangles .. rubric:: Attributes .. autosummary:: ~BoundTriangleSet.normal ~BoundTriangleSet.normal_index ~BoundTriangleSet.texcoord_indexset ~BoundTriangleSet.texcoordset ~BoundTriangleSet.vertex ~BoundTriangleSet.vertex_index pycollada-0.4/docs/reference/generated/collada.triangleset.Triangle.rst000066400000000000000000000003761200577111600263740ustar00rootroot00000000000000collada.triangleset.Triangle ============================ .. currentmodule:: collada.triangleset .. autoclass:: Triangle .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~Triangle.__init__ pycollada-0.4/docs/reference/generated/collada.triangleset.TriangleSet.rst000066400000000000000000000013251200577111600270430ustar00rootroot00000000000000collada.triangleset.TriangleSet =============================== .. currentmodule:: collada.triangleset .. autoclass:: TriangleSet .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~TriangleSet.__init__ ~TriangleSet.bind ~TriangleSet.load ~TriangleSet.save .. rubric:: Attributes .. autosummary:: ~TriangleSet.normal ~TriangleSet.normal_index ~TriangleSet.texcoord_indexset ~TriangleSet.texcoordset ~TriangleSet.vertex ~TriangleSet.vertex_index pycollada-0.4/docs/reference/generated/collada.triangleset.rst000066400000000000000000000011171200577111600246220ustar00rootroot00000000000000collada.triangleset =================== .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. inheritance-diagram:: collada.lineset.BoundLineSet collada.triangleset.BoundTriangleSet collada.polylist.BoundPolylist collada.polygons.BoundPolygons :parts: 1 .. automodule:: collada.triangleset :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.triangleset.BoundTriangleSet collada.triangleset.Triangle collada.triangleset.TriangleSet pycollada-0.4/docs/reference/generated/collada.util.IndexedList.rst000066400000000000000000000010471200577111600254730ustar00rootroot00000000000000collada.util.IndexedList ======================== .. currentmodule:: collada.util .. autoclass:: IndexedList .. automethod:: __init__ .. rubric:: Methods .. autosummary:: ~IndexedList.__init__ ~IndexedList.append ~IndexedList.extend ~IndexedList.get ~IndexedList.insert ~IndexedList.pop ~IndexedList.remove .. rubric:: Attributes .. autosummary:: ~IndexedList.count ~IndexedList.index ~IndexedList.reverse ~IndexedList.sort pycollada-0.4/docs/reference/generated/collada.util.checkSource.rst000066400000000000000000000001571200577111600255160ustar00rootroot00000000000000collada.util.checkSource ======================== .. currentmodule:: collada .. automethod:: util.checkSourcepycollada-0.4/docs/reference/generated/collada.util.normalize_v3.rst000066400000000000000000000001621200577111600256640ustar00rootroot00000000000000collada.util.normalize_v3 ========================= .. currentmodule:: collada .. automethod:: util.normalize_v3pycollada-0.4/docs/reference/generated/collada.util.rst000066400000000000000000000003551200577111600232610ustar00rootroot00000000000000collada.util ============ .. automodule:: collada.util :no-members: :no-inherited-members: .. rubric:: Members .. autosummary:: :nosignatures: collada.util.checkSource collada.util.normalize_v3 collada.util.toUnitVec pycollada-0.4/docs/reference/generated/collada.util.toUnitVec.rst000066400000000000000000000001511200577111600251720ustar00rootroot00000000000000collada.util.toUnitVec ====================== .. currentmodule:: collada .. automethod:: util.toUnitVecpycollada-0.4/docs/reference/geometry.rst000066400000000000000000000007141200577111600206020ustar00rootroot00000000000000Geometry -------- .. inheritance-diagram:: collada.geometry :parts: 1 .. inheritance-diagram:: collada.lineset.LineSet collada.triangleset.TriangleSet collada.polylist.Polylist collada.polygons.Polygons :parts: 1 .. autosummary:: :toctree: generated :nosignatures: collada.geometry.Geometry collada.primitive.Primitive collada.triangleset.TriangleSet collada.lineset.LineSet collada.polylist.Polylist collada.polygons.Polygons pycollada-0.4/docs/reference/index.rst000066400000000000000000000001001200577111600200430ustar00rootroot00000000000000API Reference ============= .. toctree:: :glob: generated/* pycollada-0.4/docs/reference/light.rst000066400000000000000000000004121200577111600200510ustar00rootroot00000000000000Light ----- .. inheritance-diagram:: collada.light :parts: 1 .. autosummary:: :toctree: generated :nosignatures: collada.light.Light collada.light.DirectionalLight collada.light.AmbientLight collada.light.PointLight collada.light.SpotLight pycollada-0.4/docs/reference/main.rst000066400000000000000000000001651200577111600176730ustar00rootroot00000000000000Main ---- .. autosummary:: :toctree: generated :nosignatures: collada.Collada collada.common.DaeObject pycollada-0.4/docs/reference/material.rst000066400000000000000000000004231200577111600205420ustar00rootroot00000000000000Material -------- .. autosummary:: :toctree: generated :nosignatures: collada.material.Material collada.material.Effect collada.material.CImage collada.material.Surface collada.material.Sampler2D collada.material.Map collada.material.OPAQUE_MODE pycollada-0.4/docs/reference/modules.rst000066400000000000000000000004621200577111600204170ustar00rootroot00000000000000Modules ------- .. autosummary:: :toctree: generated collada collada.camera collada.common collada.controller collada.geometry collada.light collada.lineset collada.material collada.polygons collada.polylist collada.primitive collada.scene collada.source collada.triangleset collada.util pycollada-0.4/docs/reference/scene.rst000066400000000000000000000010321200577111600200360ustar00rootroot00000000000000Scene ----- .. autosummary:: :toctree: generated :nosignatures: collada.scene.Scene collada.scene.SceneNode collada.scene.Node collada.scene.NodeNode collada.scene.GeometryNode collada.scene.ControllerNode collada.scene.MaterialNode collada.scene.LightNode collada.scene.CameraNode collada.scene.ExtraNode collada.scene.Transform collada.scene.TranslateTransform collada.scene.RotateTransform collada.scene.ScaleTransform collada.scene.MatrixTransform collada.scene.LookAtTransform pycollada-0.4/docs/reference/shapes.rst000066400000000000000000000002361200577111600202310ustar00rootroot00000000000000Shapes ------ .. autosummary:: :toctree: generated :nosignatures: collada.triangleset.Triangle collada.polylist.Polygon collada.lineset.Line pycollada-0.4/docs/reference/source.rst000066400000000000000000000004161200577111600202460ustar00rootroot00000000000000Source ------ .. inheritance-diagram:: collada.source :parts: 1 .. autosummary:: :toctree: generated :nosignatures: collada.source.InputList collada.source.Source collada.source.FloatSource collada.source.NameSource collada.source.IDRefSource pycollada-0.4/docs/reference/summary.rst000066400000000000000000000002701200577111600204410ustar00rootroot00000000000000API Summary =========== .. toctree:: main asset geometry shapes controller camera light material source scene bound exceptions util modules pycollada-0.4/docs/reference/util.rst000066400000000000000000000002641200577111600177240ustar00rootroot00000000000000Util ---- .. autosummary:: :toctree: generated :nosignatures: collada.util.toUnitVec collada.util.checkSource collada.util.normalize_v3 collada.util.IndexedListpycollada-0.4/docs/structure.rst000066400000000000000000000125121200577111600170500ustar00rootroot00000000000000.. _structure: Collada Object Structure ======================== After loading a collada document, all of the information about the file is stored within the Collada object. For example, consider the following code:: >>> from collada import * >>> mesh = Collada('duck_triangles.dae') >>> mesh This sample file is located in `collada/tests/data` of the pycollada distribution. We can now explore the attributes of the :class:`.Collada` class. Let's see what :attr:`.Collada.geometries` it has:: >>> mesh.geometries [] Each geometry has a number of :class:`.Source` objects that contain raw source data like an array of floats. It then has a number of :class:`.Primitive` objects contained. Let's inspect them:: >>> geom = mesh.geometries[0] >>> geom.primitives [] In this case, there is only a single primitive contained in the geometry and it's a set of triangles. The :class:`.TriangleSet` object lets us get at the vertex, normal, and texture coordinate information. There are index properties that index into the source arrays, and the sources are also automatically mapped for you. You can iterate over the triangle set to yield individual :class:`.Triangle` objects:: >>> triset = geom.primitives[0] >>> trilist = list(triset) >>> len(trilist) 4212 >>> trilist[0] The triangle object has the vertex, normal, and texture coordinate data associated with the triangle, as well as the material it references. Iterating over the triangle set is convenient, but it can be slow for large meshes. Instead, you can access the numpy arrays in the set. For example, to get the vertex, normal, and texture coordinate for the first triangle in the set:: >>> triset.vertex[triset.vertex_index][0] array([[-23.93639946, 11.53530025, 30.61249924], [-18.72640038, 10.1079998 , 26.6814003 ], [-15.69919968, 11.42780018, 34.23210144]], dtype=float32) >>> triset.normal[triset.normal_index][0] array([[-0.192109 , -0.934569 , 0.299458 ], [-0.06315 , -0.99362302, 0.093407 ], [-0.11695 , -0.92131299, 0.37081599]], dtype=float32) >>> triset.texcoordset[0][triset.texcoord_indexset[0]][0] array([[ 0.866606 , 0.39892399], [ 0.87138402, 0.39761901], [ 0.87415999, 0.398826 ]], dtype=float32) These are numpy arrays which allows for fast retrieval and computations. The collada object also has arrays for accessing :class:`.Camera`, :class:`.Light`, :class:`.Effect`, :class:`.Material`, and :class:`.Scene` objects:: >>> mesh.cameras [] >>> mesh.lights [] >>> mesh.effects [] >>> mesh.materials [] >>> mesh.scenes [] A collada scene is a graph that contains nodes. Each node can have transformations and a list of child nodes. A child node can be another node or an instance of a geometry, light, camera, etc. The default scene is contained in the :attr:`.Collada.scene` attribute. Let's take a look:: >>> mesh.scene >>> mesh.scene.nodes [, , ] We could write code to iterate through the scene, applying transformations on bound objects, but the Scene object already does this for you via its :meth:`.Scene.objects` method. For example, to find all of the instantiated geometries in a scene and have them bound to a material and transformation:: >>> boundgeoms = list(mesh.scene.objects('geometry')) >>> boundgeoms [] Notice that we get a :class:`.BoundGeometry` here. We can also pass in `light`, `camera`, or `controller` to get back a :class:`.BoundLight`, :class:`.BoundCamera`, or :class:`.BoundController`, respectively. The bound geometry is very similar to the geometry we looked through above. We can use the iterative method:: >>> boundprims = list(boundgeoms[0].primitives()) >>> boundprims [] >>> boundtrilist = list(boundprims[0]) >>> boundtrilist[0] ")> or by accessing the numpy arrays directly:: >>> boundprims[0].vertex[boundprims[0].vertex_index][0] array([[-23.93639946, -30.61249924, 11.53530025], [-18.72640038, -26.6814003 , 10.1079998 ], [-15.69919968, -34.23210144, 11.42780018]], dtype=float32) In this case, the triangle is identical to above. This is because the collada duck example only has identity transformations. We can inspect these in the scene:: >>> mesh.scene.nodes[0].transforms [, , ] >>> mesh.scene.nodes[0].children [] pycollada-0.4/examples/000077500000000000000000000000001200577111600151435ustar00rootroot00000000000000pycollada-0.4/examples/check_collada.py000066400000000000000000000007001200577111600202460ustar00rootroot00000000000000import collada import sys import traceback print 'Attempting to load file %s' % sys.argv[1] try: col = collada.Collada(sys.argv[1], \ ignore=[collada.DaeUnsupportedError, collada.DaeBrokenRefError]) except: traceback.print_exc() print print "Failed to load collada file." sys.exit(1) print print 'Successfully loaded collada file.' print 'There were %d errors' % len(col.errors) for e in col.errors: print e pycollada-0.4/examples/print_collada_info.py000066400000000000000000000061201200577111600213420ustar00rootroot00000000000000#!/usr/bin/env python import collada import numpy import sys def inspectController(controller): """Display contents of a controller object found in the scene.""" print ' Controller (id=%s) (type=%s)' % (controller.skin.id, type(controller).__name__) print ' Vertex weights:%d, joints:%d' % (len(controller), len(controller.joint_matrices)) for controlled_prim in controller.primitives(): print ' Primitive', type(controlled_prim.primitive).__name__ def inspectGeometry(obj): """Display contents of a geometry object found in the scene.""" materials = set() for prim in obj.primitives(): materials.add( prim.material ) print ' Geometry (id=%s): %d primitives'%(obj.original.id, len(obj)) for prim in obj.primitives(): print ' Primitive (type=%s): len=%d vertices=%d' % (type(prim).__name__, len(prim), len(prim.vertex)) for mat in materials: if mat: inspectMaterial( mat ) def inspectMaterial(mat): """Display material contents.""" print ' Material %s: shading %s'%(mat.effect.id, mat.effect.shadingtype) for prop in mat.effect.supported: value = getattr(mat.effect, prop) # it can be a float, a color (tuple) or a Map ( a texture ) if isinstance(value, collada.material.Map): colladaimage = value.sampler.surface.image # Accessing this attribute forces the loading of the image # using PIL if available. Unless it is already loaded. img = colladaimage.pilimage if img: # can read and PIL available print ' %s = Texture %s:'%(prop, colladaimage.id),\ img.format, img.mode, img.size else: print ' %s = Texture %s: (not available)'%( prop, colladaimage.id) else: print ' %s ='%(prop), value def inspectCollada(col): # Display the file contents print 'File Contents:' print ' Geometry:' if col.scene is not None: for geom in col.scene.objects('geometry'): inspectGeometry( geom ) print ' Controllers:' if col.scene is not None: for controller in col.scene.objects('controller'): inspectController( controller ) print ' Cameras:' if col.scene is not None: for cam in col.scene.objects('camera'): print ' Camera %s: '%cam.original.id print ' Lights:' if col.scene is not None: for light in col.scene.objects('light'): print ' Light %s: color =' % light.original.id, light.color if not col.errors: print 'File read without errors' else: print 'Errors:' for error in col.errors: print ' ', error if __name__ == '__main__': filename = sys.argv[1] if len(sys.argv) > 1 else 'misc/base.zip' # open COLLADA file ignoring some errors in case they appear col = collada.Collada(filename, ignore=[collada.DaeUnsupportedError, collada.DaeBrokenRefError]) inspectCollada(col) pycollada-0.4/examples/recurse_check.py000066400000000000000000000103651200577111600203270ustar00rootroot00000000000000import sys import os, os.path import traceback import time import argparse try: import collada except: sys.exit("Could not find pycollada library.") def main(): parser = argparse.ArgumentParser( description='Recursively scans a directory, loading any .dae file found.') parser.add_argument('directory', help='Directory to scan') parser.add_argument('--show-time', '-t', default=False, action='store_true', help='Show how much time (in seconds) it took to load file') parser.add_argument('--show-warnings', '-w', default=False, action='store_true', help='If warnings present, print warning type') parser.add_argument('--show-errors', '-e', default=False, action='store_true', help='If errors present, print error and traceback') parser.add_argument('--show-summary', '-s', default=False, action='store_true', help='Print a summary at the end of how many files had warnings and errors') parser.add_argument('--zip', '-z', default=False, action='store_true', help='Include .zip files when searching for files to load') args = parser.parse_args() if not os.path.isdir(args.directory): sys.exit("Given path '%s' is not a directory." % args.directory) directories = [args.directory] collada_files = [] while len(directories) > 0: directory = directories.pop() for name in os.listdir(directory): fullpath = os.path.join(directory,name) (root, ext) = os.path.splitext(fullpath) if os.path.isfile(fullpath) and ext.lower() == ".dae": collada_files.append(fullpath) elif os.path.isfile(fullpath) and ext.lower() == ".zip": collada_files.append(fullpath) elif os.path.isdir(fullpath): directories.append(fullpath) collada_files.sort() file_success_count = 0 file_warning_count = 0 file_error_count = 0 for c in collada_files: (root, leaf) = os.path.split(c) print "'%s'..." % leaf, sys.stdout.flush() start_time = time.time() try: col = collada.Collada(c, \ ignore=[collada.DaeUnsupportedError, collada.DaeBrokenRefError]) if len(col.errors) > 0: print "WARNINGS:", len(col.errors) file_warning_count += 1 err_names = [type(e).__name__ for e in col.errors] unique = set(err_names) type_cts = [(e, err_names.count(e)) for e in unique] if args.show_warnings: for e, ct in type_cts: for err in col.errors: if type(err).__name__ == e: print " %s" % str(err) break if ct > 1: print " %s: %d additional warnings of this type" % (e, ct-1) else: print "SUCCESS" file_success_count += 1 #do some sanity checks looping through result if not col.scene is None: for geom in col.scene.objects('geometry'): for prim in geom.primitives(): assert(len(prim) >= 0) for cam in col.scene.objects('camera'): assert(cam.original.id) except (KeyboardInterrupt, SystemExit): print sys.exit("Keyboard interrupt. Exiting.") except: print "ERROR" file_error_count += 1 if args.show_errors: print traceback.print_exc() print end_time = time.time() if args.show_time: print " Loaded in %.3f seconds" % (end_time-start_time) if args.show_summary: print print print "Summary" print "=======" print "Files loaded successfully: %d" % file_success_count print "Files with warnings: %d" % file_warning_count print "Files with errors: %d" % file_error_count if __name__ == "__main__": main() pycollada-0.4/setup.py000066400000000000000000000016171200577111600150440ustar00rootroot00000000000000import sys from setuptools import find_packages, setup install_requires = [] try: import numpy except ImportError: install_requires.append('numpy') if sys.version_info[0] > 2: install_requires.append('python-dateutil>=2.0') else: import unittest if not hasattr(unittest.TestCase, "assertIsNone"): install_requires.append('unittest2') install_requires.append('python-dateutil==1.5') setup( name = "pycollada", version = "0.4", description = "python library for reading and writing collada documents", author = "Jeff Terrace and contributors", author_email = 'jterrace@gmail.com', platforms=["any"], license="BSD", install_requires=install_requires, extras_require = { 'prettyprint': ["lxml"], 'validation': ["lxml"] }, url = "http://pycollada.github.com/", test_suite = "collada.tests", packages = find_packages() )