pax_global_header 0000666 0000000 0000000 00000000064 14174766155 0014532 g ustar 00root root 0000000 0000000 52 comment=1a4118650fab05bbd284eb49c99f9185bdf6a927
pygmsh-7.1.17/ 0000775 0000000 0000000 00000000000 14174766155 0013136 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/.codecov.yml 0000664 0000000 0000000 00000000014 14174766155 0015354 0 ustar 00root root 0000000 0000000 comment: no
pygmsh-7.1.17/.flake8 0000664 0000000 0000000 00000000161 14174766155 0014307 0 ustar 00root root 0000000 0000000 [flake8]
ignore = E203, E266, E501, W503, E741
max-line-length = 80
max-complexity = 18
select = B,C,E,F,W,T4,B9
pygmsh-7.1.17/.github/ 0000775 0000000 0000000 00000000000 14174766155 0014476 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/.github/workflows/ 0000775 0000000 0000000 00000000000 14174766155 0016533 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/.github/workflows/ci.yml 0000664 0000000 0000000 00000002365 14174766155 0017657 0 ustar 00root root 0000000 0000000 name: ci
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
doc:
runs-on: ubuntu-latest
steps:
- uses: actions/setup-python@v2
with:
python-version: "3.x"
- uses: actions/checkout@v2
- run: |
pip install sphinx sphinx-autodoc-typehints
sphinx-build -M html doc/ build/
lint:
runs-on: ubuntu-latest
steps:
- name: Check out repo
uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
- name: Run pre-commit
uses: pre-commit/action@v2.0.3
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10"]
steps:
- uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- uses: actions/checkout@v2
# install gmsh from system -- not sure why this is necessary
- name: Install gmsh
run: |
sudo apt-get install -y python3-gmsh
- name: Test with tox
run: |
pip install tox
tox -- --cov pygmsh --cov-report xml --cov-report term
- uses: codecov/codecov-action@v1
if: ${{ matrix.python-version == '3.9' }}
pygmsh-7.1.17/.gitignore 0000664 0000000 0000000 00000000232 14174766155 0015123 0 ustar 00root root 0000000 0000000 *.pyc
*.geo
*.msh
*.e
*.vtk
*.vtu
.DS_Store
.cache/
.tox/
*.xml
MANIFEST
README.rst
build/
dist/
pygmsh.egg-info/
doc/_build/
*.pos
*.prof
.pytest_cache/
pygmsh-7.1.17/.pre-commit-config.yaml 0000664 0000000 0000000 00000000455 14174766155 0017423 0 ustar 00root root 0000000 0000000 repos:
- repo: https://github.com/PyCQA/isort
rev: 5.10.1
hooks:
- id: isort
- repo: https://github.com/psf/black
rev: 21.12b0
hooks:
- id: black
language_version: python3
- repo: https://github.com/PyCQA/flake8
rev: 4.0.1
hooks:
- id: flake8
pygmsh-7.1.17/.readthedocs.yml 0000664 0000000 0000000 00000000306 14174766155 0016223 0 ustar 00root root 0000000 0000000 version: 2
python:
version: 3
# use pip for installation, see
#
install:
- path: .
method: pip
pygmsh-7.1.17/CITATION.cff 0000664 0000000 0000000 00000000475 14174766155 0015036 0 ustar 00root root 0000000 0000000 cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
- family-names: "Schlömer"
given-names: "Nico"
orcid: "https://orcid.org/0000-0001-5228-0946"
title: "pygmsh: A Python frontend for Gmsh"
doi: 10.5281/zenodo.1173105
url: https://github.com/nschloe/pygmsh
license: GPL-3.0
pygmsh-7.1.17/LICENSE.txt 0000664 0000000 0000000 00000104513 14174766155 0014765 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
pygmsh-7.1.17/MANIFEST.in 0000664 0000000 0000000 00000000031 14174766155 0014666 0 ustar 00root root 0000000 0000000 include tests/helpers.py
pygmsh-7.1.17/README.md 0000664 0000000 0000000 00000026354 14174766155 0014427 0 ustar 00root root 0000000 0000000
Gmsh for Python.
[](https://pypi.org/project/pygmsh/)
[](https://pypi.org/project/pygmsh/)
[](https://doi.org/10.5281/zenodo.1173105)
[](https://github.com/nschloe/pygmsh)
[](https://pypistats.org/packages/pygmsh)
[](https://discord.gg/hnTJ5MRX2Y)
[](https://pygmsh.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/nschloe/pygmsh/actions?query=workflow%3Aci)
[](https://codecov.io/gh/nschloe/pygmsh)
[](https://lgtm.com/projects/g/nschloe/pygmsh)
[](https://github.com/psf/black)
pygmsh combines the power of [Gmsh](https://gmsh.info/) with the versatility of Python.
It provides useful abstractions from Gmsh's own Python interface so you can create
complex geometries more easily.
To use, install Gmsh itself and pygmsh from [pypi](https://pypi.org/project/pygmsh/):
```
[sudo] apt install python3-gmsh
pip install pygmsh
```
This document and the [`tests/`](https://github.com/nschloe/pygmsh/tree/main/tests/)
directory contain many small examples. See
[here](https://pygmsh.readthedocs.io/en/latest/index.html) for the full documentation.
#### Flat shapes
| | | |
| :-------------------------------------------------------------------: | :------------------------------------------------------------------: | :-------------------------------------------------------------------: |
| Polygon | Circle | (B-)Splines |
Codes:
```python
import pygmsh
with pygmsh.geo.Geometry() as geom:
geom.add_polygon(
[
[0.0, 0.0],
[1.0, -0.2],
[1.1, 1.2],
[0.1, 0.7],
],
mesh_size=0.1,
)
mesh = geom.generate_mesh()
# mesh.points, mesh.cells, ...
# mesh.write("out.vtk")
```
```python
import pygmsh
with pygmsh.geo.Geometry() as geom:
geom.add_circle([0.0, 0.0], 1.0, mesh_size=0.2)
mesh = geom.generate_mesh()
```
```python
import pygmsh
with pygmsh.geo.Geometry() as geom:
lcar = 0.1
p1 = geom.add_point([0.0, 0.0], lcar)
p2 = geom.add_point([1.0, 0.0], lcar)
p3 = geom.add_point([1.0, 0.5], lcar)
p4 = geom.add_point([1.0, 1.0], lcar)
s1 = geom.add_bspline([p1, p2, p3, p4])
p2 = geom.add_point([0.0, 1.0], lcar)
p3 = geom.add_point([0.5, 1.0], lcar)
s2 = geom.add_spline([p4, p3, p2, p1])
ll = geom.add_curve_loop([s1, s2])
pl = geom.add_plane_surface(ll)
mesh = geom.generate_mesh()
```
The return value is always a [meshio](https://pypi.org/project/meshio/) mesh, so to
store it to a file you can
```python
mesh.write("test.vtk")
```
The output file can be visualized with various tools, e.g.,
[ParaView](https://www.paraview.org/).
With
```python
pygmsh.write("test.msh")
```
you can access Gmsh's native file writer.
#### Extrusions
| | | |
| :-------------------------------------------------------------------: | :-------------------------------------------------------------------: | :-----------------------------------------------------------------: |
| `extrude` | `revolve` | `twist` |
```python
import pygmsh
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[0.0, 0.0],
[1.0, -0.2],
[1.1, 1.2],
[0.1, 0.7],
],
mesh_size=0.1,
)
geom.extrude(poly, [0.0, 0.3, 1.0], num_layers=5)
mesh = geom.generate_mesh()
```
```python
from math import pi
import pygmsh
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[0.0, 0.2, 0.0],
[0.0, 1.2, 0.0],
[0.0, 1.2, 1.0],
],
mesh_size=0.1,
)
geom.revolve(poly, [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], 0.8 * pi)
mesh = geom.generate_mesh()
```
```python
from math import pi
import pygmsh
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[+0.0, +0.5],
[-0.1, +0.1],
[-0.5, +0.0],
[-0.1, -0.1],
[+0.0, -0.5],
[+0.1, -0.1],
[+0.5, +0.0],
[+0.1, +0.1],
],
mesh_size=0.05,
)
geom.twist(
poly,
translation_axis=[0, 0, 1],
rotation_axis=[0, 0, 1],
point_on_axis=[0, 0, 0],
angle=pi / 3,
)
mesh = geom.generate_mesh()
```
#### OpenCASCADE
| | | |
| :------------------------------------------------------------------------: | :---------------------------------------------------------------------------: | :------------------------------------------------------------------: |
| | |
Gmsh also supports OpenCASCADE (`occ`), allowing for a CAD-style geometry specification.
```python
from math import pi, cos
import pygmsh
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_max = 0.1
r = 0.5
disks = [
geom.add_disk([-0.5 * cos(7 / 6 * pi), -0.25], 1.0),
geom.add_disk([+0.5 * cos(7 / 6 * pi), -0.25], 1.0),
geom.add_disk([0.0, 0.5], 1.0),
]
geom.boolean_intersection(disks)
mesh = geom.generate_mesh()
```
```python
# ellpsoid with holes
import pygmsh
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_max = 0.1
ellipsoid = geom.add_ellipsoid([0.0, 0.0, 0.0], [1.0, 0.7, 0.5])
cylinders = [
geom.add_cylinder([-1.0, 0.0, 0.0], [2.0, 0.0, 0.0], 0.3),
geom.add_cylinder([0.0, -1.0, 0.0], [0.0, 2.0, 0.0], 0.3),
geom.add_cylinder([0.0, 0.0, -1.0], [0.0, 0.0, 2.0], 0.3),
]
geom.boolean_difference(ellipsoid, geom.boolean_union(cylinders))
mesh = geom.generate_mesh()
```
```python
# puzzle piece
import pygmsh
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.1
geom.characteristic_length_max = 0.1
rectangle = geom.add_rectangle([-1.0, -1.0, 0.0], 2.0, 2.0)
disk1 = geom.add_disk([-1.2, 0.0, 0.0], 0.5)
disk2 = geom.add_disk([+1.2, 0.0, 0.0], 0.5)
disk3 = geom.add_disk([0.0, -0.9, 0.0], 0.5)
disk4 = geom.add_disk([0.0, +0.9, 0.0], 0.5)
flat = geom.boolean_difference(
geom.boolean_union([rectangle, disk1, disk2]),
geom.boolean_union([disk3, disk4]),
)
geom.extrude(flat, [0, 0, 0.3])
mesh = geom.generate_mesh()
```
#### Mesh refinement/boundary layers
| | | |
| :---------------------------------------------------------------------: | :------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: |
| | |
```python
# boundary refinement
import pygmsh
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[0.0, 0.0],
[2.0, 0.0],
[3.0, 1.0],
[1.0, 2.0],
[0.0, 1.0],
],
mesh_size=0.3,
)
field0 = geom.add_boundary_layer(
edges_list=[poly.curves[0]],
lcmin=0.05,
lcmax=0.2,
distmin=0.0,
distmax=0.2,
)
field1 = geom.add_boundary_layer(
nodes_list=[poly.points[2]],
lcmin=0.05,
lcmax=0.2,
distmin=0.1,
distmax=0.4,
)
geom.set_background_mesh([field0, field1], operator="Min")
mesh = geom.generate_mesh()
```
```python
# mesh refinement with callback
import pygmsh
with pygmsh.geo.Geometry() as geom:
geom.add_polygon(
[
[-1.0, -1.0],
[+1.0, -1.0],
[+1.0, +1.0],
[-1.0, +1.0],
]
)
geom.set_mesh_size_callback(
lambda dim, tag, x, y, z: 6.0e-2 + 2.0e-1 * (x ** 2 + y ** 2)
)
mesh = geom.generate_mesh()
```
```python
# ball with mesh refinement
from math import sqrt
import pygmsh
with pygmsh.occ.Geometry() as geom:
geom.add_ball([0.0, 0.0, 0.0], 1.0)
geom.set_mesh_size_callback(
lambda dim, tag, x, y, z: abs(sqrt(x ** 2 + y ** 2 + z ** 2) - 0.5) + 0.1
)
mesh = geom.generate_mesh()
```
#### Optimization
pygmsh can optimize existing meshes, too.
```python
import meshio
mesh = meshio.read("mymesh.vtk")
optimized_mesh = pygmsh.optimize(mesh, method="")
```
You can also use the command-line utility
```
pygmsh-optimize input.vtk output.xdmf
```
where input and output can be any format supported by
[meshio](https://pypi.org/project/meshio/).
### Testing
To run the pygmsh unit tests, check out this repository and type
```
pytest
```
### Building Documentation
Docs are built using [Sphinx](http://www.sphinx-doc.org/en/stable/).
To build, run
```
sphinx-build -b html doc doc/_build
```
### License
This software is published under the [GPLv3 license](https://www.gnu.org/licenses/gpl-3.0.en.html).
pygmsh-7.1.17/doc/ 0000775 0000000 0000000 00000000000 14174766155 0013703 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/doc/Makefile 0000664 0000000 0000000 00000016361 14174766155 0015352 0 ustar 00root root 0000000 0000000 # Makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = _build
# User-friendly check for sphinx-build
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)
endif
# Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
PAPEROPT_letter = -D latex_paper_size=letter
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
# the i18n builder cannot share the environment and doctrees with the others
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest coverage gettext
help:
@echo "Please use \`make ' where is one of"
@echo " html to make standalone HTML files"
@echo " dirhtml to make HTML files named index.html in directories"
@echo " singlehtml to make a single large HTML file"
@echo " pickle to make pickle files"
@echo " json to make JSON files"
@echo " htmlhelp to make HTML files and a HTML help project"
@echo " qthelp to make HTML files and a qthelp project"
@echo " applehelp to make an Apple Help Book"
@echo " devhelp to make HTML files and a Devhelp project"
@echo " epub to make an epub"
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
@echo " latexpdf to make LaTeX files and run them through pdflatex"
@echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx"
@echo " text to make text files"
@echo " man to make manual pages"
@echo " texinfo to make Texinfo files"
@echo " info to make Texinfo files and run them through makeinfo"
@echo " gettext to make PO message catalogs"
@echo " changes to make an overview of all changed/added/deprecated items"
@echo " xml to make Docutils-native XML files"
@echo " pseudoxml to make pseudoxml-XML files for display purposes"
@echo " linkcheck to check all external links for integrity"
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
@echo " coverage to run coverage check of the documentation (if enabled)"
clean:
rm -rf $(BUILDDIR)/*
html:
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
dirhtml:
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
singlehtml:
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
@echo
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
pickle:
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
@echo
@echo "Build finished; now you can process the pickle files."
json:
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
@echo
@echo "Build finished; now you can process the JSON files."
htmlhelp:
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
@echo
@echo "Build finished; now you can run HTML Help Workshop with the" \
".hhp project file in $(BUILDDIR)/htmlhelp."
qthelp:
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
@echo
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/pygmsh.qhcp"
@echo "To view the help file:"
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/pygmsh.qhc"
applehelp:
$(SPHINXBUILD) -b applehelp $(ALLSPHINXOPTS) $(BUILDDIR)/applehelp
@echo
@echo "Build finished. The help book is in $(BUILDDIR)/applehelp."
@echo "N.B. You won't be able to view it unless you put it in" \
"~/Library/Documentation/Help or install it in your application" \
"bundle."
devhelp:
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
@echo
@echo "Build finished."
@echo "To view the help file:"
@echo "# mkdir -p $$HOME/.local/share/devhelp/pygmsh"
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/pygmsh"
@echo "# devhelp"
epub:
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
@echo
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
latex:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
@echo "Run \`make' in that directory to run these through (pdf)latex" \
"(use \`make latexpdf' here to do that automatically)."
latexpdf:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through pdflatex..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
latexpdfja:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through platex and dvipdfmx..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf-ja
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
text:
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
@echo
@echo "Build finished. The text files are in $(BUILDDIR)/text."
man:
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
@echo
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
texinfo:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
@echo "Run \`make' in that directory to run these through makeinfo" \
"(use \`make info' here to do that automatically)."
info:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo "Running Texinfo files through makeinfo..."
make -C $(BUILDDIR)/texinfo info
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
gettext:
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
@echo
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
changes:
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
@echo
@echo "The overview file is in $(BUILDDIR)/changes."
linkcheck:
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
@echo
@echo "Link check complete; look for any errors in the above output " \
"or in $(BUILDDIR)/linkcheck/output.txt."
doctest:
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
@echo "Testing of doctests in the sources finished, look at the " \
"results in $(BUILDDIR)/doctest/output.txt."
coverage:
$(SPHINXBUILD) -b coverage $(ALLSPHINXOPTS) $(BUILDDIR)/coverage
@echo "Testing of coverage in the sources finished, look at the " \
"results in $(BUILDDIR)/coverage/python.txt."
xml:
$(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml
@echo
@echo "Build finished. The XML files are in $(BUILDDIR)/xml."
pseudoxml:
$(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml
@echo
@echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml."
pygmsh-7.1.17/doc/common.rst 0000664 0000000 0000000 00000002643 14174766155 0015732 0 ustar 00root root 0000000 0000000 Common
======
Common functions shared between the geo and the occ kernels.
Geometry
--------
.. automodule:: pygmsh.common.geometry
:members:
:undoc-members:
:show-inheritance:
Bspline
-------
.. automodule:: pygmsh.common.bspline
:members:
:undoc-members:
:show-inheritance:
CircleArc
---------
.. automodule:: pygmsh.common.circle_arc
:members:
:undoc-members:
:show-inheritance:
EllipseArc
----------
.. automodule:: pygmsh.common.ellipse_arc
:members:
:undoc-members:
:show-inheritance:
LineBase
--------
.. automodule:: pygmsh.common.line_base
:members:
:undoc-members:
:show-inheritance:
CurveLoop
---------
.. automodule:: pygmsh.common.curve_loop
:members:
:undoc-members:
:show-inheritance:
Line
----
.. automodule:: pygmsh.common.line
:members:
:undoc-members:
:show-inheritance:
Point
-----
.. automodule:: pygmsh.common.point
:members:
:undoc-members:
:show-inheritance:
Spline
------
.. automodule:: pygmsh.common.spline
:members:
:undoc-members:
:show-inheritance:
SurfaceLoop
-----------
.. automodule:: pygmsh.common.surface_loop
:members:
:undoc-members:
:show-inheritance:
Surface
-------
.. automodule:: pygmsh.common.surface
:members:
:undoc-members:
:show-inheritance:
Volume
------
.. automodule:: pygmsh.common.volume
:members:
:undoc-members:
:show-inheritance:
pygmsh-7.1.17/doc/conf.py 0000664 0000000 0000000 00000024142 14174766155 0015205 0 ustar 00root root 0000000 0000000 # pygmsh documentation build configuration file, created by
# sphinx-quickstart on Tue Oct 27 19:56:53 2015.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import os
import sys
from pathlib import Path
from unittest import mock
this_dir = Path(__file__).resolve().parent
about = {}
with open(this_dir / ".." / "src" / "pygmsh" / "__about__.py") as f:
d = exec(f.read(), about)
__version__ = about["__version__"]
ON_RTD = os.environ.get("READTHEDOCS", None) == "True"
MOCK_MODULES = ["meshio", "gmsh"]
for mod_name in MOCK_MODULES:
sys.modules[mod_name] = mock.Mock()
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
# sys.path.insert(0, os.path.abspath('.'))
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.mathjax",
"sphinx.ext.napoleon",
"sphinx_autodoc_typehints",
]
# Napoleon settings
napoleon_google_docstring = False
napoleon_numpy_docstring = True
napoleon_include_init_with_doc = False
napoleon_include_private_with_doc = False
napoleon_include_special_with_doc = False
napoleon_use_admonition_for_examples = False
napoleon_use_admonition_for_notes = False
napoleon_use_admonition_for_references = False
napoleon_use_ivar = True
napoleon_use_param = True
napoleon_use_rtype = True
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
# source_suffix = ['.rst', '.md']
source_suffix = ".rst"
# The encoding of source files.
# source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = "index"
# General information about the project.
project = "pygmsh"
copyright = "2013-2022, Nico Schlömer et al."
author = "Nico Schlömer"
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = ".".join(__version__.split(".")[:2])
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
# today = ''
# Else, today_fmt is used as the format for a strftime call.
# today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ["_build"]
# The reST default role (used for this markup: `text`) to use for all
# documents.
# default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
# add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
# add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
# show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"
# A list of ignored prefixes for module index sorting.
# modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
# keep_warnings = False
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "default"
if not ON_RTD:
try:
import sphinx_rtd_theme
html_theme = "sphinx_rtd_theme"
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
except ImportError:
pass
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
# html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
# html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# " v documentation".
# html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
# html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
# html_logo = None
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
# html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
# html_static_path = ['_static']
# Add any extra paths that contain custom files (such as robots.txt or
# .htaccess) here, relative to this directory. These files are copied
# directly to the root of the documentation.
# html_extra_path = []
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
# html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
# html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
# html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
# html_additional_pages = {}
# If false, no module index is generated.
# html_domain_indices = True
# If false, no index is generated.
# html_use_index = True
# If true, the index is split into individual pages for each letter.
# html_split_index = False
# If true, links to the reST sources are added to the pages.
# html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
# html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
# html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
# html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
# html_file_suffix = None
# Language to be used for generating the HTML full-text search index.
# Sphinx supports the following languages:
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja'
# 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr'
# html_search_language = 'en'
# A dictionary with options for the search language support, empty by default.
# Now only 'ja' uses this config value
# html_search_options = {'type': 'default'}
# The name of a javascript file (relative to the configuration directory) that
# implements a search results scorer. If empty, the default will be used.
# html_search_scorer = 'scorer.js'
# Output file base name for HTML help builder.
htmlhelp_basename = "pygmshdoc"
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
# 'preamble': '',
# Latex figure (float) alignment
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, "pygmsh.tex", "pygmsh Documentation", "Nico Schlömer", "manual")
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
# latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
# latex_use_parts = False
# If true, show page references after internal links.
# latex_show_pagerefs = False
# If true, show URL addresses after external links.
# latex_show_urls = False
# Documents to append as an appendix to all manuals.
# latex_appendices = []
# If false, no module index is generated.
# latex_domain_indices = True
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [(master_doc, "pygmsh", "pygmsh Documentation", [author], 1)]
# If true, show URL addresses after external links.
# man_show_urls = False
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
master_doc,
"pygmsh",
"pygmsh Documentation",
author,
"pygmsh",
"Python interface for Gmsh",
"Miscellaneous",
)
]
# Documents to append as an appendix to all manuals.
# texinfo_appendices = []
# If false, no module index is generated.
# texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
# texinfo_show_urls = 'footnote'
# If true, do not generate a @detailmenu in the "Top" node's menu.
# texinfo_no_detailmenu = False
pygmsh-7.1.17/doc/geo.rst 0000664 0000000 0000000 00000000472 14174766155 0015212 0 ustar 00root root 0000000 0000000 Built-in Engine
===============
The default Gmsh kernel with basic geometry construction functions.
For advanced geometries it is recommended to use the openCASCADE kernel.
.. automodule:: pygmsh.geo
Geometry
--------
.. automodule:: pygmsh.geo.geometry
:members:
:undoc-members:
:show-inheritance:
pygmsh-7.1.17/doc/index.rst 0000664 0000000 0000000 00000005621 14174766155 0015550 0 ustar 00root root 0000000 0000000 .. pygmsh documentation master file, created by
sphinx-quickstart on Tue Oct 27 19:56:53 2015.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to pygmsh's documentation!
==================================
This class provides a Python interface for the Gmsh scripting language. It aims
at working around some of Gmsh's inconveniences (e.g., having to manually
assign an ID for every entity created) and providing access to Python's
features.
In Gmsh, the user must manually provide a unique ID for every point, curve,
volume created. This can get messy when a lot of entities are created and it
isn't clear which IDs are already in use. Some Gmsh commands even create new
entities and silently reserve IDs in that way. This module tries to work around
this by providing routines in the style of add_point(x) which _return_ the ID.
To make variable names in Gmsh unique, keep track of how many points, circles,
etc. have already been created. Variable names will then be p1, p2, etc. for
points, c1, c2, etc. for circles and so on.
Geometry Overview
-----------------
Gmsh’s geometry module provides a simple CAD engine, using a boundary representation
(“BRep”) approach: you need to first define points (using the Point command: see below),
then lines (using Line, Circle, Spline, …, commands or by extruding points), then surfaces
(using for example the Plane Surface or Surface commands, or by extruding lines),
and finally volumes (using the Volume command or by extruding surfaces).
These geometrical entities are called “elementary” in Gmsh’s jargon, and
are assigned identification numbers (stricly positive) when they are created:
1. Each elementary point must possess a unique identification number;
2. Each elementary line must possess a unique identification number;
3. Each elementary surface must possess a unique identification number;
4. Each elementary volume must possess a unique identification number.
Elementary geometrical entities can then be manipulated in various ways, for
example using the Translate, Rotate, Scale or Symmetry commands.
They can be deleted with the Delete command, provided that no
higher-dimension entity references them. Zero or negative identification
numbers are reserved by the system for special uses: do not use them in your scripts.
Groups of elementary geometrical entities can also be defined and are called
“physical” entities. These physical entities cannot be modified by geometry
commands: their only purpose is to assemble elementary entities into larger
groups so that they can be referred to by the mesh module as single entities.
As is the case with elementary entities, each physical point, physical line,
physical surface or physical volume must be assigned a unique identification number.
Contents:
.. toctree::
:maxdepth: 1
:caption: Table of Contents
common
geo
occ
pygmsh-7.1.17/doc/occ.rst 0000664 0000000 0000000 00000002242 14174766155 0015201 0 ustar 00root root 0000000 0000000 openCASCADE Engine
==================
Using the openCASCADE kernel instead of the built-in geometry kernel. Models
can be built using constructive solid geometry, allowing for 2D and 3D polygon
boolean operations.
.. automodule:: pygmsh.occ
Geometry
--------
.. automodule:: pygmsh.occ.geometry
:members:
:undoc-members:
:show-inheritance:
Ball
----
.. automodule:: pygmsh.occ.ball
:members:
:undoc-members:
:show-inheritance:
Box
---
.. automodule:: pygmsh.occ.box
:members:
:undoc-members:
:show-inheritance:
Cone
----
.. automodule:: pygmsh.occ.cone
:members:
:undoc-members:
:show-inheritance:
Cylinder
--------
.. automodule:: pygmsh.occ.cylinder
:members:
:undoc-members:
:show-inheritance:
Disk
----
.. automodule:: pygmsh.occ.disk
:members:
:undoc-members:
:show-inheritance:
Rectangle
---------
.. automodule:: pygmsh.occ.rectangle
:members:
:undoc-members:
:show-inheritance:
Torus
-----
.. automodule:: pygmsh.occ.torus
:members:
:undoc-members:
:show-inheritance:
Wedge
-----
.. automodule:: pygmsh.occ.wedge
:members:
:undoc-members:
:show-inheritance:
pygmsh-7.1.17/doc/requirements.txt 0000664 0000000 0000000 00000000073 14174766155 0017167 0 ustar 00root root 0000000 0000000 mock
numpy
sphinxcontrib-napoleon
sphinx-autodoc-typehints
pygmsh-7.1.17/justfile 0000664 0000000 0000000 00000000713 14174766155 0014707 0 ustar 00root root 0000000 0000000 version := `python3 -c "from src.pygmsh.__about__ import __version__; print(__version__)"`
default:
@echo "\"just publish\"?"
publish:
@if [ "$(git rev-parse --abbrev-ref HEAD)" != "main" ]; then exit 1; fi
gh release create "v{{version}}"
flit publish
clean:
@find . | grep -E "(__pycache__|\.pyc|\.pyo$)" | xargs rm -rf
@rm -rf src/*.egg-info/ build/ dist/ .tox/
format:
isort .
black .
blacken-docs README.md
lint:
black --check .
flake8 .
pygmsh-7.1.17/pyproject.toml 0000664 0000000 0000000 00000002554 14174766155 0016060 0 ustar 00root root 0000000 0000000 [build-system]
requires = ["flit_core >=3.2,<4"]
build-backend = "flit_core.buildapi"
[tool.isort]
profile = "black"
[project]
name = "pygmsh"
authors = [{name = "Nico Schlömer", email = "nico.schloemer@gmail.com"}]
description = "Python frontend for Gmsh"
readme = "README.md"
license = {file = "LICENSE.txt"}
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)",
"Operating System :: OS Independent",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Utilities",
]
dynamic = ["version"]
requires-python = ">=3.7"
dependencies = [
"gmsh",
"meshio >= 4.3.2, <6",
"numpy >= 1.20.0",
]
keywords = ["mesh", "gmsh", "mesh generation", "mathematics", "engineering"]
[project.urls]
Code = "https://github.com/nschloe/pygmsh"
Documentation = "https://pygmsh.readthedocs.io/en/latest"
Funding = "https://github.com/sponsors/nschloe"
Issues = "https://github.com/nschloe/pygmsh/issues"
[project.scripts]
pygmsh-optimize = "pygmsh._cli:optimize_cli"
pygmsh-7.1.17/src/ 0000775 0000000 0000000 00000000000 14174766155 0013725 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/src/pygmsh/ 0000775 0000000 0000000 00000000000 14174766155 0015234 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/src/pygmsh/__about__.py 0000664 0000000 0000000 00000000027 14174766155 0017513 0 ustar 00root root 0000000 0000000 __version__ = "7.1.17"
pygmsh-7.1.17/src/pygmsh/__init__.py 0000664 0000000 0000000 00000000424 14174766155 0017345 0 ustar 00root root 0000000 0000000 from . import geo, occ
from .__about__ import __version__
from ._optimize import optimize
from .helpers import orient_lines, rotation_matrix, write
__all__ = [
"geo",
"occ",
"rotation_matrix",
"orient_lines",
"write",
"optimize",
"__version__",
]
pygmsh-7.1.17/src/pygmsh/_cli.py 0000664 0000000 0000000 00000003204 14174766155 0016513 0 ustar 00root root 0000000 0000000 import argparse
from sys import version_info
import meshio
from .__about__ import __version__
from ._optimize import optimize
def optimize_cli(argv=None):
parser = argparse.ArgumentParser(
description=("Optimize mesh."),
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("infile", type=str, help="mesh to optimize")
parser.add_argument("outfile", type=str, help="optimized mesh")
parser.add_argument(
"-q",
"--quiet",
dest="verbose",
action="store_false",
default=True,
help="suppress output",
)
parser.add_argument(
"-m",
"--method",
default="",
# Valid choices are on
# https://gmsh.info/doc/texinfo/gmsh.html#Namespace-gmsh_002fmodel_002fmesh
help='method (e.g., "", Netgen, ...)',
)
parser.add_argument(
"-v",
"--version",
action="version",
version=_get_version_text(),
help="display version information",
)
args = parser.parse_args(argv)
mesh = meshio.read(args.infile)
optimize(mesh, method=args.method, verbose=args.verbose).write(args.outfile)
def _get_version_text():
try:
# Python 3.8
from importlib import metadata
__gmsh_version__ = metadata.version("gmsh")
except Exception:
__gmsh_version__ = "unknown"
return "\n".join(
[
f"pygmsh {__version__} "
f"[Gmsh {__gmsh_version__}, "
f"Python {version_info.major}.{version_info.minor}.{version_info.micro}]",
"Copyright (c) 2013-2022 Nico Schlömer et al.",
]
)
pygmsh-7.1.17/src/pygmsh/_optimize.py 0000664 0000000 0000000 00000004162 14174766155 0017610 0 ustar 00root root 0000000 0000000 import gmsh
import meshio
import numpy as np
from .helpers import extract_to_meshio
def optimize(mesh, method="", verbose=False):
# mesh.remove_lower_dimensional_cells()
mesh.cell_data = {}
# read into meshio like
#
gmsh.initialize()
# add dummy entity
dim = 3
tag = gmsh.model.addDiscreteEntity(dim=dim)
#
nodes = np.arange(1, len(mesh.points) + 1)
assert mesh.points.shape[1] == 3
gmsh.model.mesh.addNodes(dim, tag, nodes, mesh.points.flat)
for cell_block in mesh.cells:
gmsh.model.mesh.addElementsByType(
tag,
meshio.gmsh.meshio_to_gmsh_type[cell_block.type],
[],
cell_block.data.flatten() + 1,
)
gmsh.model.mesh.optimize(method, force=True)
mesh = extract_to_meshio()
gmsh.finalize()
# This writes a temporary file and reads it into gmsh ("merge"). There are other
# ways of feeding gmsh a mesh
# (https://gitlab.onelab.info/gmsh/gmsh/-/issues/1030#note_11435), but let's not do
# that for now.
# with tempfile.TemporaryDirectory() as tmpdirname:
# tmpdir = Path(tmpdirname)
# tmpfile = tmpdir / "tmp.msh"
# mesh.write(tmpfile)
# gmsh.initialize()
# if verbose:
# gmsh.option.setNumber("General.Terminal", 1)
# gmsh.merge(str(tmpfile))
# # We need force=True because we're reading from a discrete mesh
# gmsh.model.mesh.optimize(method, force=True)
# mesh = extract_to_meshio()
# gmsh.finalize()
return mesh
def print_stats(mesh):
import termplotlib
q = mesh.q_radius_ratio
q_hist, q_bin_edges = np.histogram(
q, bins=np.linspace(0.0, 1.0, num=41, endpoint=True)
)
grid = termplotlib.subplot_grid((1, 2), column_widths=None, border_style=None)
grid[0, 0].hist(q_hist, q_bin_edges, bar_width=1, strip=True)
grid[0, 1].aprint(f"min quality: {np.min(q):5.3f}")
grid[0, 1].aprint(f"avg quality: {np.average(q):5.3f}")
grid[0, 1].aprint(f"max quality: {np.max(q):5.3f}")
grid.show()
pygmsh-7.1.17/src/pygmsh/common/ 0000775 0000000 0000000 00000000000 14174766155 0016524 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/src/pygmsh/common/__init__.py 0000664 0000000 0000000 00000000103 14174766155 0020627 0 ustar 00root root 0000000 0000000 from .geometry import CommonGeometry
__all__ = ["CommonGeometry"]
pygmsh-7.1.17/src/pygmsh/common/bezier.py 0000664 0000000 0000000 00000001045 14174766155 0020356 0 ustar 00root root 0000000 0000000 from __future__ import annotations
from .line_base import LineBase
from .point import Point
class Bezier(LineBase):
"""
Creates a B-spline.
Parameters
----------
control_points : Contains the identification numbers of the control points.
"""
def __init__(self, env, control_points: list[Point]):
for c in control_points:
assert isinstance(c, Point)
assert len(control_points) > 1
id0 = env.addBezier([c._id for c in control_points])
super().__init__(id0, control_points)
pygmsh-7.1.17/src/pygmsh/common/bspline.py 0000664 0000000 0000000 00000001047 14174766155 0020534 0 ustar 00root root 0000000 0000000 from __future__ import annotations
from .line_base import LineBase
from .point import Point
class BSpline(LineBase):
"""
Creates a B-spline.
Parameters
----------
control_points : Contains the identification numbers of the control points.
"""
def __init__(self, env, control_points: list[Point]):
for c in control_points:
assert isinstance(c, Point)
assert len(control_points) > 1
id0 = env.addBSpline([c._id for c in control_points])
super().__init__(id0, control_points)
pygmsh-7.1.17/src/pygmsh/common/circle_arc.py 0000664 0000000 0000000 00000001243 14174766155 0021164 0 ustar 00root root 0000000 0000000 from .line_base import LineBase
from .point import Point
class CircleArc(LineBase):
"""
Creates a circle arc.
Parameters
----------
start : Coordinates of start point needed to construct circle-arc.
center : Coordinates of center point needed to construct circle-arc.
end : Coordinates of end point needed to construct circle-arc.
"""
def __init__(self, env, start: Point, center: Point, end: Point):
assert isinstance(start, Point)
assert isinstance(center, Point)
assert isinstance(end, Point)
id0 = env.addCircleArc(start._id, center._id, end._id)
super().__init__(id0, [start, center, end])
pygmsh-7.1.17/src/pygmsh/common/curve_loop.py 0000664 0000000 0000000 00000002217 14174766155 0021255 0 ustar 00root root 0000000 0000000 from __future__ import annotations
class CurveLoop:
"""
Increments the Line ID every time a new object is created that inherits
from LineBase.
Parameters
----------
curves : Containing the lines defining the shape.
Notes
-----
A line loop must be a closed loop, and the elementary lines should be ordered and
oriented (negating to specify reverse orientation). If the orientation is correct,
but the ordering is wrong, Gmsh will actually reorder the list internally to create
a consistent loop.
"""
dim = 1
def __init__(self, env, curves: list):
for k in range(len(curves) - 1):
assert curves[k].points[-1] == curves[k + 1].points[0]
assert curves[-1].points[-1] == curves[0].points[0]
self._id = env.addCurveLoop([c._id for c in curves])
self.dim_tag = (1, self._id)
self.dim_tags = [self.dim_tag]
self.curves = curves
def __len__(self):
return len(self.curves)
def __repr__(self):
curves = ", ".join([str(l._id) for l in self.curves])
return f""
pygmsh-7.1.17/src/pygmsh/common/dummy.py 0000664 0000000 0000000 00000000460 14174766155 0020231 0 ustar 00root root 0000000 0000000 class Dummy:
def __init__(self, dim, id0):
assert isinstance(id0, int)
self.dim = dim
self.id = id0
self._id = id0
self.dim_tag = (dim, id0)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/common/ellipse_arc.py 0000664 0000000 0000000 00000002147 14174766155 0021364 0 ustar 00root root 0000000 0000000 from .line_base import LineBase
from .point import Point
class EllipseArc(LineBase):
"""
Creates an ellipse arc.
Parameters
----------
start : Coordinates of start point needed to construct elliptic arc.
center : Coordinates of center point needed to construct elliptic arc.
point_on_major_axis : Point on the center axis of ellipse.
end : Coordinates of end point needed to construct elliptic arc.
"""
def __init__(
self, env, start: Point, center: Point, point_on_major_axis: Point, end: Point
):
assert isinstance(start, Point)
assert isinstance(center, Point)
assert isinstance(point_on_major_axis, Point)
assert isinstance(end, Point)
id0 = env.addEllipseArc(start._id, center._id, point_on_major_axis._id, end._id)
super().__init__(id0, [start, center, end])
self.points = [start, center, end]
self.point_on_major_axis = point_on_major_axis
def __repr__(self):
pts = ", ".join(str(p._id) for p in self.points)
return f""
pygmsh-7.1.17/src/pygmsh/common/geometry.py 0000664 0000000 0000000 00000032155 14174766155 0020737 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import warnings
import gmsh
from ..helpers import extract_to_meshio
from .bezier import Bezier
from .bspline import BSpline
from .circle_arc import CircleArc
from .curve_loop import CurveLoop
from .dummy import Dummy
from .ellipse_arc import EllipseArc
from .line import Line
from .plane_surface import PlaneSurface
from .point import Point
from .polygon import Polygon
from .size_field import BoundaryLayer, SetBackgroundMesh
from .spline import Spline
from .surface import Surface
from .surface_loop import SurfaceLoop
from .volume import Volume
class CommonGeometry:
"""Geometry base class containing all methods that can be shared between built-in
and occ.
"""
def __init__(self, env, init_argv=None):
self.env = env
self.init_argv = init_argv
self._COMPOUND_ENTITIES = []
self._RECOMBINE_ENTITIES = []
self._EMBED_QUEUE = []
self._TRANSFINITE_CURVE_QUEUE = []
self._TRANSFINITE_SURFACE_QUEUE = []
self._TRANSFINITE_VOLUME_QUEUE = []
self._AFTER_SYNC_QUEUE = []
self._SIZE_QUEUE = []
self._PHYSICAL_QUEUE = []
self._OUTWARD_NORMALS = []
def __enter__(self):
gmsh.initialize([] if self.init_argv is None else self.init_argv)
gmsh.model.add("pygmsh model")
return self
def __exit__(self, *_):
try:
# Gmsh >= 4.7.0
# https://gitlab.onelab.info/gmsh/gmsh/-/issues/1036
gmsh.model.mesh.removeSizeCallback()
except AttributeError:
pass
gmsh.finalize()
def synchronize(self):
self.env.synchronize()
def __repr__(self):
return ""
def add_bspline(self, *args, **kwargs):
return BSpline(self.env, *args, **kwargs)
def add_bezier(self, *args, **kwargs):
return Bezier(self.env, *args, **kwargs)
def add_circle_arc(self, *args, **kwargs):
return CircleArc(self.env, *args, **kwargs)
def add_ellipse_arc(self, *args, **kwargs):
return EllipseArc(self.env, *args, **kwargs)
def add_line(self, *args, **kwargs):
return Line(self.env, *args, **kwargs)
def add_curve_loop(self, *args, **kwargs):
return CurveLoop(self.env, *args, **kwargs)
def add_plane_surface(self, *args, **kwargs):
return PlaneSurface(self.env, *args, **kwargs)
def add_point(self, *args, **kwargs):
return Point(self.env, *args, **kwargs)
def add_spline(self, *args, **kwargs):
return Spline(self.env, *args, **kwargs)
def add_surface(self, *args, **kwargs):
return Surface(self.env, *args, **kwargs)
def add_surface_loop(self, *args, **kwargs):
return SurfaceLoop(self.env, *args, **kwargs)
def add_volume(self, *args, **kwargs):
return Volume(self.env, *args, **kwargs)
def add_polygon(self, *args, **kwargs):
return Polygon(self, *args, **kwargs)
def add_physical(self, entities, label: str | None = None):
if label in [label for _, label in self._PHYSICAL_QUEUE]:
raise ValueError(f'Label "{label}" already exists.')
if not isinstance(entities, list):
entities = [entities]
# make sure the dimensionality is the same for all entities
dim = entities[0].dim
for e in entities:
assert e.dim == dim
if label is None:
# 2021-02-18
warnings.warn(
"Physical groups without label are deprecated. "
'Use add_physical(entities, "dummy").'
)
else:
if not isinstance(label, str):
raise ValueError(f"Physical label must be string, not {type(label)}.")
self._PHYSICAL_QUEUE.append((entities, label))
def set_transfinite_curve(
self, curve, num_nodes: int, mesh_type: str, coeff: float
):
assert mesh_type in ["Progression", "Bump", "Beta"]
self._TRANSFINITE_CURVE_QUEUE.append((curve._id, num_nodes, mesh_type, coeff))
def set_transfinite_surface(self, surface, arrangement: str, corner_pts):
corner_tags = [pt._id for pt in corner_pts]
self._TRANSFINITE_SURFACE_QUEUE.append((surface._id, arrangement, corner_tags))
def set_transfinite_volume(self, volume, corner_pts):
corner_tags = [pt._id for pt in corner_pts]
self._TRANSFINITE_VOLUME_QUEUE.append((volume._id, corner_tags))
def set_recombined_surfaces(self, surfaces):
for i, surface in enumerate(surfaces):
assert surface.dim == 2, f"item {i} is not a surface"
self._RECOMBINE_ENTITIES += [s.dim_tags[0] for s in surfaces]
def extrude(
self,
input_entity,
translation_axis: tuple[float, float, float],
num_layers: int | list[int] | None = None,
heights: list[float] | None = None,
recombine: bool = False,
):
"""Extrusion of any entity along a given translation_axis."""
if isinstance(num_layers, int):
num_layers = [num_layers]
if num_layers is None:
num_layers = []
assert heights is None
heights = []
else:
if heights is None:
heights = []
else:
assert len(num_layers) == len(heights)
assert len(translation_axis) == 3
ie_list = input_entity if isinstance(input_entity, list) else [input_entity]
out_dim_tags = self.env.extrude(
[e.dim_tag for e in ie_list],
*translation_axis,
numElements=num_layers,
heights=heights,
recombine=recombine,
)
top = Dummy(*out_dim_tags[0])
extruded = Dummy(*out_dim_tags[1])
lateral = [Dummy(*e) for e in out_dim_tags[2:]]
return top, extruded, lateral
def _revolve(
self,
input_entity,
rotation_axis: tuple[float, float, float],
point_on_axis: tuple[float, float, float],
angle: float,
num_layers: int | list[int] | None = None,
heights: list[float] | None = None,
recombine: bool = False,
):
"""Rotation of any entity around a given rotation_axis, about a given angle."""
if isinstance(num_layers, int):
num_layers = [num_layers]
if num_layers is None:
num_layers = []
heights = []
else:
if heights is None:
heights = []
else:
assert len(num_layers) == len(heights)
assert len(point_on_axis) == 3
assert len(rotation_axis) == 3
out_dim_tags = self.env.revolve(
input_entity.dim_tags,
*point_on_axis,
*rotation_axis,
angle,
numElements=num_layers,
heights=heights,
recombine=recombine,
)
top = Dummy(*out_dim_tags[0])
extruded = Dummy(*out_dim_tags[1])
lateral = [Dummy(*e) for e in out_dim_tags[2:]]
return top, extruded, lateral
def translate(self, obj, vector: tuple[float, float, float]):
"""Translates input_entity itself by vector.
Changes the input object.
"""
self.env.translate(obj.dim_tags, *vector)
def rotate(
self,
obj,
point: tuple[float, float, float],
angle: float,
axis: tuple[float, float, float],
):
"""Rotate input_entity around a given point with a given angle.
Rotation axis has to be specified.
Changes the input object.
"""
self.env.rotate(obj.dim_tags, *point, *axis, angle)
def copy(self, obj):
dim_tag = self.env.copy(obj.dim_tags)
assert len(dim_tag) == 1
return Dummy(*dim_tag[0])
def symmetrize(self, obj, coefficients: tuple[float, float, float, float]):
"""Transforms all elementary entities symmetrically to a plane. The vector
should contain four expressions giving the coefficients of the plane's equation.
"""
self.env.symmetrize(obj.dim_tags, *coefficients)
def dilate(
self, obj, x0: tuple[float, float, float], abc: tuple[float, float, float]
):
self.env.dilate(obj.dim_tags, *x0, *abc)
def mirror(self, obj, abcd: tuple[float, float, float, float]):
self.env.mirror(obj.dim_tags, *abcd)
def remove(self, obj, recursive: bool = False):
self.env.remove(obj.dim_tags, recursive=recursive)
def in_surface(self, input_entity, surface):
"""Embed the point(s) or curve(s) in the given surface. The surface mesh will
conform to the mesh of the point(s) or curves(s).
"""
self._EMBED_QUEUE.append((input_entity, surface))
def in_volume(self, input_entity, volume):
"""Embed the point(s)/curve(s)/surface(s) in the given volume. The volume mesh
will conform to the mesh of the input entities.
"""
self._EMBED_QUEUE.append((input_entity, volume))
def set_mesh_size_callback(self, fun, ignore_other_mesh_sizes=True):
gmsh.model.mesh.setSizeCallback(fun)
#
# If a mesh size is set from a function, ignore the mesh sizes from the
# entities.
#
# From :
# ```
# To determine the size of mesh elements, Gmsh locally computes the minimum of
#
# 1) the size of the model bounding box;
# 2) if `Mesh.CharacteristicLengthFromPoints' is set, the mesh size specified at
# geometrical points;
# 3) if `Mesh.CharacteristicLengthFromCurvature' is set, the mesh size based on
# the curvature and `Mesh.MinimumElementsPerTwoPi';
# 4) the background mesh field;
# 5) any per-entity mesh size constraint.
#
# This value is then constrained in the interval
# [`Mesh.CharacteristicLengthMin', `Mesh.CharacteristicLengthMax'] and
# multiplied by `Mesh.CharacteristicLengthFactor'. In addition, boundary mesh
# sizes (on curves or surfaces) are interpolated inside the enclosed entity
# (surface or volume, respectively) if the option
# `Mesh.CharacteristicLengthExtendFromBoundary' is set (which is the case by
# default).
# ```
if ignore_other_mesh_sizes:
gmsh.option.setNumber("Mesh.CharacteristicLengthExtendFromBoundary", 0)
gmsh.option.setNumber("Mesh.CharacteristicLengthFromPoints", 0)
gmsh.option.setNumber("Mesh.CharacteristicLengthFromCurvature", 0)
def add_boundary_layer(self, *args, **kwargs):
layer = BoundaryLayer(*args, **kwargs)
self._AFTER_SYNC_QUEUE.append(layer)
return layer
def set_background_mesh(self, *args, **kwargs):
setter = SetBackgroundMesh(*args, **kwargs)
self._AFTER_SYNC_QUEUE.append(setter)
def generate_mesh( # noqa: C901
self,
dim: int = 3,
order: int | None = None,
# http://gmsh.info/doc/texinfo/gmsh.html#index-Mesh_002eAlgorithm
algorithm: int | None = None,
verbose: bool = False,
):
"""Return a meshio.Mesh, storing the mesh points, cells, and data, generated by
Gmsh from the `self`.
"""
self.synchronize()
for item in self._AFTER_SYNC_QUEUE:
item.exec()
for item, host in self._EMBED_QUEUE:
gmsh.model.mesh.embed(item.dim, [item._id], host.dim, host._id)
# set compound entities after sync
for c in self._COMPOUND_ENTITIES:
gmsh.model.mesh.setCompound(*c)
for s in self._RECOMBINE_ENTITIES:
gmsh.model.mesh.setRecombine(*s)
for t in self._TRANSFINITE_CURVE_QUEUE:
gmsh.model.mesh.setTransfiniteCurve(*t)
for t in self._TRANSFINITE_SURFACE_QUEUE:
gmsh.model.mesh.setTransfiniteSurface(*t)
for e in self._TRANSFINITE_VOLUME_QUEUE:
gmsh.model.mesh.setTransfiniteVolume(*e)
for item, size in self._SIZE_QUEUE:
gmsh.model.mesh.setSize(
gmsh.model.getBoundary(item.dim_tags, False, False, True), size
)
for entities, label in self._PHYSICAL_QUEUE:
d = entities[0].dim
assert all(e.dim == d for e in entities)
tag = gmsh.model.addPhysicalGroup(d, [e._id for e in entities])
if label is not None:
gmsh.model.setPhysicalName(d, tag, label)
for entity in self._OUTWARD_NORMALS:
gmsh.model.mesh.setOutwardOrientation(entity.id)
gmsh.option.setNumber("General.Terminal", 1 if verbose else 0)
# set algorithm
# http://gmsh.info/doc/texinfo/gmsh.html#index-Mesh_002eAlgorithm
if algorithm:
gmsh.option.setNumber("Mesh.Algorithm", algorithm)
gmsh.model.mesh.generate(dim)
# setOrder() after generate(), see
#
if order is not None:
gmsh.model.mesh.setOrder(order)
return extract_to_meshio()
def save_geometry(self, filename: str):
# filename is typically a geo_unrolled or brep file
self.synchronize()
gmsh.write(filename)
pygmsh-7.1.17/src/pygmsh/common/line.py 0000664 0000000 0000000 00000001524 14174766155 0020027 0 ustar 00root root 0000000 0000000 from .line_base import LineBase
from .point import Point
class Line(LineBase):
"""
Creates a straight line segment.
Parameters
----------
p0 : Point object that represents the start of the line.
p1 : Point object that represents the end of the line.
Attributes
----------
points : array-like[1][2]
List containing the begin and end points of the line.
"""
dim = 1
def __init__(self, env, p0: Point, p1: Point):
assert isinstance(p0, Point)
assert isinstance(p1, Point)
id0 = env.addLine(p0._id, p1._id)
self.dim_tag = (1, id0)
self.dim_tags = [self.dim_tag]
super().__init__(id0, [p0, p1])
def __repr__(self):
pts = ", ".join(str(p._id) for p in self.points)
return f""
pygmsh-7.1.17/src/pygmsh/common/line_base.py 0000664 0000000 0000000 00000000650 14174766155 0021020 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import copy
class LineBase:
dim = 1
def __init__(self, id0: int, points: list[int]):
self._id = id0
self.dim_tag = (1, self._id)
self.dim_tags = [self.dim_tag]
self.points = points
def __neg__(self):
neg_self = copy.deepcopy(self)
neg_self._id = -self._id
neg_self.points = self.points[::-1]
return neg_self
pygmsh-7.1.17/src/pygmsh/common/plane_surface.py 0000664 0000000 0000000 00000003237 14174766155 0021712 0 ustar 00root root 0000000 0000000 from .curve_loop import CurveLoop
class PlaneSurface:
"""
Creates a plane surface.
Parameters
----------
curve_loop : Object
Each unique line in the line loop will be used for the surface construction.
holes : list
List of line loops that represents polygon holes.
Notes
-----
The first line loop defines the exterior boundary of the surface; all other line
loops define holes in the surface.
A line loop defining a hole should not have any lines in common with the exterior
line loop (in which case it is not a hole, and the two surfaces should be defined
separately).
Likewise, a line loop defining a hole should not have any lines in common with
another line loop defining a hole in the same surface (in which case the two line
loops should be combined).
"""
dim = 2
def __init__(self, env, curve_loop, holes=None):
assert isinstance(curve_loop, CurveLoop)
self.curve_loop = curve_loop
if holes is None:
holes = []
# The input holes are either line loops or entities that contain line loops
# (like polygons).
self.holes = [h if isinstance(h, CurveLoop) else h.curve_loop for h in holes]
self.num_edges = len(self.curve_loop) + sum(len(h) for h in self.holes)
curve_loops = [self.curve_loop] + self.holes
self._id = env.addPlaneSurface([ll._id for ll in curve_loops])
self.dim_tag = (2, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return (
""
)
pygmsh-7.1.17/src/pygmsh/common/point.py 0000664 0000000 0000000 00000001741 14174766155 0020232 0 ustar 00root root 0000000 0000000 from __future__ import annotations
class Point:
"""
Creates an elementary point.
Parameters
----------
x : Give the coordinates X, Y (and Z) of the point in the three-dimensional
Euclidean space.
mesh_size : The prescribed mesh element size at this point.
Attributes
----------
x : array-like
Point coordinates.
"""
dim = 0
def __init__(
self,
env,
x: tuple[float, float] | tuple[float, float, float],
mesh_size: float | None = None,
):
if len(x) == 2:
x = (x[0], x[1], 0.0)
assert len(x) == 3
self.x = x
args = list(x)
if mesh_size is not None:
args.append(mesh_size)
self._id = env.addPoint(*args)
self.dim_tag = (0, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
X = ", ".join(str(x) for x in self.x)
return f""
pygmsh-7.1.17/src/pygmsh/common/polygon.py 0000664 0000000 0000000 00000003025 14174766155 0020565 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import numpy as np
from numpy.typing import ArrayLike
class Polygon:
dim = 2
def __init__(
self,
host,
points: ArrayLike,
mesh_size: float | list[float | None] | None = None,
holes=None,
make_surface: bool = True,
):
if holes is None:
holes = []
else:
assert make_surface
points = np.asarray(points)
if isinstance(mesh_size, list):
assert len(points) == len(mesh_size)
else:
mesh_size = len(points) * [mesh_size]
if points.shape[1] == 2:
points = np.column_stack([points, np.zeros_like(points[:, 0])])
# Create points.
self.points = [
host.add_point(x, mesh_size=size) for x, size in zip(points, mesh_size)
]
# Create lines
self.curves = [
host.add_line(self.points[k], self.points[k + 1])
for k in range(len(self.points) - 1)
] + [host.add_line(self.points[-1], self.points[0])]
self.lines = self.curves
self.curve_loop = host.add_curve_loop(self.curves)
# self.surface = host.add_plane_surface(ll, holes) if make_surface else None
if make_surface:
self.surface = host.add_plane_surface(self.curve_loop, holes)
self.dim_tag = self.surface.dim_tag
self.dim_tags = self.surface.dim_tags
self._id = self.surface._id
def __repr__(self):
return ""
pygmsh-7.1.17/src/pygmsh/common/size_field.py 0000664 0000000 0000000 00000004623 14174766155 0021220 0 ustar 00root root 0000000 0000000 import gmsh
class BoundaryLayer:
def __init__(
self,
lcmin,
lcmax,
distmin,
distmax,
edges_list=None,
faces_list=None,
nodes_list=None,
num_points_per_curve=None,
):
self.lcmin = lcmin
self.lcmax = lcmax
self.distmin = distmin
self.distmax = distmax
# Don't use [] as default argument, cf.
#
self.edges_list = edges_list or []
self.faces_list = faces_list or []
self.nodes_list = nodes_list or []
self.num_points_per_curve = num_points_per_curve
def exec(self):
tag1 = gmsh.model.mesh.field.add("Distance")
if self.edges_list:
gmsh.model.mesh.field.setNumbers(
tag1, "EdgesList", [e._id for e in self.edges_list]
)
# edge nodes must be specified, too, cf.
#
# nodes = list(set([p for e in self.edges_list for p in e.points]))
# gmsh.model.mesh.field.setNumbers(tag1, "NodesList", [n._id for n in nodes])
if self.faces_list:
gmsh.model.mesh.field.setNumbers(
tag1, "FacesList", [f._id for f in self.faces_list]
)
if self.nodes_list:
gmsh.model.mesh.field.setNumbers(
tag1, "NodesList", [n._id for n in self.nodes_list]
)
if self.num_points_per_curve:
gmsh.model.mesh.field.setNumber(
tag1, "NumPointsPerCurve", self.num_points_per_curve
)
tag2 = gmsh.model.mesh.field.add("Threshold")
gmsh.model.mesh.field.setNumber(tag2, "IField", tag1)
gmsh.model.mesh.field.setNumber(tag2, "LcMin", self.lcmin)
gmsh.model.mesh.field.setNumber(tag2, "LcMax", self.lcmax)
gmsh.model.mesh.field.setNumber(tag2, "DistMin", self.distmin)
gmsh.model.mesh.field.setNumber(tag2, "DistMax", self.distmax)
self.tag = tag2
class SetBackgroundMesh:
def __init__(self, fields, operator):
self.fields = fields
self.operator = operator
def exec(self):
tag = gmsh.model.mesh.field.add(self.operator)
gmsh.model.mesh.field.setNumbers(
tag, "FieldsList", [f.tag for f in self.fields]
)
gmsh.model.mesh.field.setAsBackgroundMesh(tag)
pygmsh-7.1.17/src/pygmsh/common/spline.py 0000664 0000000 0000000 00000001014 14174766155 0020364 0 ustar 00root root 0000000 0000000 from __future__ import annotations
from .line_base import LineBase
from .point import Point
class Spline(LineBase):
"""
With the built-in geometry kernel this constructs a Catmull-Rom spline.
Parameters
----------
points : List containing Point objects
"""
def __init__(self, env, points: list[Point]):
for c in points:
assert isinstance(c, Point)
assert len(points) > 1
id0 = env.addSpline([c._id for c in points])
super().__init__(id0, points)
pygmsh-7.1.17/src/pygmsh/common/surface.py 0000664 0000000 0000000 00000001734 14174766155 0020533 0 ustar 00root root 0000000 0000000 from .curve_loop import CurveLoop
class Surface:
"""
Generates a Surface from a CurveLoop.
Parameters
----------
curve_loop : Object
CurveLoop object that contains all the Line objects for the loop construction.
Notes
-----
With the built-in kernel, the first line loop should be composed of either three or
four elementary lines.
With the built-in kernel, the optional In Sphere argument forces the surface to be a
spherical patch (the extra parameter gives the identification number of the center
of the sphere).
"""
dim = 2
def __init__(self, env, curve_loop):
assert isinstance(curve_loop, CurveLoop)
self.curve_loop = curve_loop
self.num_edges = len(curve_loop)
self._id = env.addSurfaceFilling([self.curve_loop._id])
self.dim_tag = (2, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/common/surface_loop.py 0000664 0000000 0000000 00000001255 14174766155 0021562 0 ustar 00root root 0000000 0000000 class SurfaceLoop:
"""
Creates a surface loop (a shell).
Parameters
----------
surfaces : list
Contain the identification numbers of all the elementary surfaces that
constitute the surface loop.
Notes
-----
A surface loop must always represent a closed shell, and the elementary surfaces
should be oriented consistently (using negative identification numbers to specify
reverse orientation).
"""
dim = 2
def __init__(self, env, surfaces):
self.surfaces = surfaces
self._id = env.addSurfaceLoop([s._id for s in surfaces])
self.dim_tag = (2, self._id)
self.dim_tags = [self.dim_tag]
pygmsh-7.1.17/src/pygmsh/common/volume.py 0000664 0000000 0000000 00000002320 14174766155 0020402 0 ustar 00root root 0000000 0000000 class Volume:
"""
Creates a volume.
Parameters
----------
surface_loop : list
Contain the identification numbers of all the surface
loops defining the volume.
holes : list
List containing surface loop objects that represents polygon holes.
Notes
-----
The first surface loop defines the exterior boundary of the volume;
all other surface loops define holes in the volume.
A surface loop defining a hole should not have any surfaces in common
with the exterior surface loop (in which case it is not a hole,
and the two volumes should be defined separately).
Likewise, a surface loop defining a hole should not have any surfaces
in common with another surface loop defining a hole in the same volume
(in which case the two surface loops should be combined).
"""
dim = 3
def __init__(self, env, surface_loop, holes=None):
if holes is None:
holes = []
self.surface_loop = surface_loop
self.holes = holes
surface_loops = [surface_loop] + holes
self._id = env.addVolume([s._id for s in surface_loops])
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
pygmsh-7.1.17/src/pygmsh/geo/ 0000775 0000000 0000000 00000000000 14174766155 0016006 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/src/pygmsh/geo/__init__.py 0000664 0000000 0000000 00000000067 14174766155 0020122 0 ustar 00root root 0000000 0000000 from .geometry import Geometry
__all__ = ["Geometry"]
pygmsh-7.1.17/src/pygmsh/geo/dummy.py 0000664 0000000 0000000 00000000432 14174766155 0017512 0 ustar 00root root 0000000 0000000 class Dummy:
def __init__(self, dim, id0):
assert isinstance(id0, int)
self.dim = dim
self._id = id0
self.dim_tag = (dim, id0)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/geo/geometry.py 0000664 0000000 0000000 00000047744 14174766155 0020233 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import math
import gmsh
import numpy as np
from .. import common
from .dummy import Dummy
class Circle:
def __init__(
self,
x0: list[float],
radius: float,
R,
compound,
num_sections: int,
holes,
curve_loop,
plane_surface,
mesh_size: float | None = None,
):
self.x0 = x0
self.radius = radius
self.mesh_size = mesh_size
self.R = R
self.compound = compound
self.num_sections = num_sections
self.holes = holes
self.curve_loop = curve_loop
self.plane_surface = plane_surface
class Geometry(common.CommonGeometry):
def __init__(self, init_argv=None):
super().__init__(gmsh.model.geo, init_argv=init_argv)
def revolve(self, *args, **kwargs):
if len(args) >= 4:
angle = args[3]
else:
assert "angle" in kwargs
angle = kwargs["angle"]
assert angle < math.pi
return super()._revolve(*args, **kwargs)
def twist(
self,
input_entity,
translation_axis: list[float],
rotation_axis: list[float],
point_on_axis: list[float],
angle: float,
num_layers: int | list[int] | None = None,
heights: list[float] | None = None,
recombine: bool = False,
):
"""Twist (translation + rotation) of any entity along a given translation_axis,
around a given rotation_axis, about a given angle.
"""
if isinstance(num_layers, int):
num_layers = [num_layers]
if num_layers is None:
num_layers = []
heights = []
else:
if heights is None:
heights = []
else:
assert len(num_layers) == len(heights)
assert len(point_on_axis) == 3
assert len(rotation_axis) == 3
assert len(translation_axis) == 3
assert angle < math.pi
out_dim_tags = self.env.twist(
input_entity.dim_tags,
*point_on_axis,
*translation_axis,
*rotation_axis,
angle,
numElements=num_layers,
heights=heights,
recombine=recombine,
)
top = Dummy(*out_dim_tags[0])
extruded = Dummy(*out_dim_tags[1])
lateral = [Dummy(*e) for e in out_dim_tags[2:]]
return top, extruded, lateral
def add_circle(
self,
x0: list[float],
radius: float,
mesh_size: float | None = None,
R=None,
compound=False,
num_sections: int = 3,
holes=None,
make_surface: bool = True,
):
"""Add circle in the :math:`x`-:math:`y`-plane."""
if holes is None:
holes = []
else:
assert make_surface
# Define points that make the circle (midpoint and the four cardinal
# directions).
X = np.zeros((num_sections + 1, len(x0)))
if num_sections == 4:
# For accuracy, the points are provided explicitly.
X[1:, [0, 1]] = np.array(
[[radius, 0.0], [0.0, radius], [-radius, 0.0], [0.0, -radius]]
)
else:
X[1:, [0, 1]] = np.array(
[
[
radius * np.cos(2 * np.pi * k / num_sections),
radius * np.sin(2 * np.pi * k / num_sections),
]
for k in range(num_sections)
]
)
if R is not None:
assert np.allclose(
abs(np.linalg.eigvals(R)), np.ones(X.shape[1])
), "The transformation matrix doesn't preserve circles; at least one eigenvalue lies off the unit circle."
X = np.dot(X, R.T)
X += x0
# Add Gmsh Points.
p = [self.add_point(x, mesh_size=mesh_size) for x in X]
# Define the circle arcs.
arcs = [
self.add_circle_arc(p[k], p[0], p[k + 1]) for k in range(1, len(p) - 1)
] + [self.add_circle_arc(p[-1], p[0], p[1])]
if compound:
self._COMPOUND_ENTITIES.append((1, [arc._id for arc in arcs]))
curve_loop = self.add_curve_loop(arcs)
if make_surface:
plane_surface = self.add_plane_surface(curve_loop, holes)
if compound:
self._COMPOUND_ENTITIES.append((2, [plane_surface._id]))
else:
plane_surface = None
return Circle(
x0,
radius,
R,
compound,
num_sections,
holes,
curve_loop,
plane_surface,
mesh_size=mesh_size,
)
def add_rectangle(
self,
xmin: float,
xmax: float,
ymin: float,
ymax: float,
z: float,
mesh_size: float | None = None,
holes=None,
make_surface: bool = True,
):
return self.add_polygon(
[[xmin, ymin, z], [xmax, ymin, z], [xmax, ymax, z], [xmin, ymax, z]],
mesh_size=mesh_size,
holes=holes,
make_surface=make_surface,
)
def add_ellipsoid(
self,
x0: list[float],
radii: list[float],
mesh_size: float | None = None,
with_volume: bool = True,
holes=None,
):
"""Creates an ellipsoid with radii around a given midpoint :math:`x_0`."""
if holes is None:
holes = []
if holes:
assert with_volume
# Add points.
p = [
self.add_point(x0, mesh_size=mesh_size),
self.add_point([x0[0] + radii[0], x0[1], x0[2]], mesh_size=mesh_size),
self.add_point([x0[0], x0[1] + radii[1], x0[2]], mesh_size=mesh_size),
self.add_point([x0[0], x0[1], x0[2] + radii[2]], mesh_size=mesh_size),
self.add_point([x0[0] - radii[0], x0[1], x0[2]], mesh_size=mesh_size),
self.add_point([x0[0], x0[1] - radii[1], x0[2]], mesh_size=mesh_size),
self.add_point([x0[0], x0[1], x0[2] - radii[2]], mesh_size=mesh_size),
]
# Add skeleton.
# Alternative for circles:
# `self.add_circle_arc(a, b, c)`
c = [
self.add_ellipse_arc(p[1], p[0], p[6], p[6]),
self.add_ellipse_arc(p[6], p[0], p[4], p[4]),
self.add_ellipse_arc(p[4], p[0], p[3], p[3]),
self.add_ellipse_arc(p[3], p[0], p[1], p[1]),
self.add_ellipse_arc(p[1], p[0], p[2], p[2]),
self.add_ellipse_arc(p[2], p[0], p[4], p[4]),
self.add_ellipse_arc(p[4], p[0], p[5], p[5]),
self.add_ellipse_arc(p[5], p[0], p[1], p[1]),
self.add_ellipse_arc(p[6], p[0], p[2], p[2]),
self.add_ellipse_arc(p[2], p[0], p[3], p[3]),
self.add_ellipse_arc(p[3], p[0], p[5], p[5]),
self.add_ellipse_arc(p[5], p[0], p[6], p[6]),
]
# Add surfaces (1/8th of the ball surface).
# Make sure the loops are oriented outwards!
ll = [
# one half
self.add_curve_loop([c[4], c[9], c[3]]),
self.add_curve_loop([c[8], -c[4], c[0]]),
self.add_curve_loop([-c[9], c[5], c[2]]),
self.add_curve_loop([-c[5], -c[8], c[1]]),
# the other half
self.add_curve_loop([c[7], -c[3], c[10]]),
self.add_curve_loop([c[11], -c[0], -c[7]]),
self.add_curve_loop([-c[10], -c[2], c[6]]),
self.add_curve_loop([-c[1], -c[11], -c[6]]),
]
# Create a surface for each line loop.
s = [self.add_surface(l) for l in ll]
# Combine the surfaces to avoid seams
#
# Cannot enable those yet,
self._COMPOUND_ENTITIES.append((2, [surf._id for surf in s[:4]]))
self._COMPOUND_ENTITIES.append((2, [surf._id for surf in s[4:]]))
# Create the surface loop.
surface_loop = self.add_surface_loop(s)
# if holes:
# # Create an array of surface loops; the first entry is the outer
# # surface loop, the following ones are holes.
# surface_loop = self.add_array([surface_loop] + holes)
# Create volume.
volume = self.add_volume(surface_loop, holes) if with_volume else None
class Ellipsoid:
dim = 3
def __init__(self, x0, radii, surface_loop, volume, mesh_size=None):
self.x0 = x0
self.mesh_size = mesh_size
self.radii = radii
self.surface_loop = surface_loop
self.volume = volume
return
return Ellipsoid(x0, radii, surface_loop, volume, mesh_size=mesh_size)
def add_ball(self, x0: list[float], radius: float, **kwargs):
return self.add_ellipsoid(x0, [radius, radius, radius], **kwargs)
def add_box(
self,
x0: float,
x1: float,
y0: float,
y1: float,
z0: float,
z1: float,
mesh_size: float | None = None,
with_volume: bool = True,
holes=None,
):
if holes is None:
holes = []
if holes:
assert with_volume
# Define corner points.
p = [
self.add_point([x1, y1, z1], mesh_size=mesh_size),
self.add_point([x1, y1, z0], mesh_size=mesh_size),
self.add_point([x1, y0, z1], mesh_size=mesh_size),
self.add_point([x1, y0, z0], mesh_size=mesh_size),
self.add_point([x0, y1, z1], mesh_size=mesh_size),
self.add_point([x0, y1, z0], mesh_size=mesh_size),
self.add_point([x0, y0, z1], mesh_size=mesh_size),
self.add_point([x0, y0, z0], mesh_size=mesh_size),
]
# Define edges.
e = [
self.add_line(p[0], p[1]),
self.add_line(p[0], p[2]),
self.add_line(p[0], p[4]),
self.add_line(p[1], p[3]),
self.add_line(p[1], p[5]),
self.add_line(p[2], p[3]),
self.add_line(p[2], p[6]),
self.add_line(p[3], p[7]),
self.add_line(p[4], p[5]),
self.add_line(p[4], p[6]),
self.add_line(p[5], p[7]),
self.add_line(p[6], p[7]),
]
# Define the six line loops.
ll = [
self.add_curve_loop([e[0], e[3], -e[5], -e[1]]),
self.add_curve_loop([e[0], e[4], -e[8], -e[2]]),
self.add_curve_loop([e[1], e[6], -e[9], -e[2]]),
self.add_curve_loop([e[3], e[7], -e[10], -e[4]]),
self.add_curve_loop([e[5], e[7], -e[11], -e[6]]),
self.add_curve_loop([e[8], e[10], -e[11], -e[9]]),
]
# Create a surface for each line loop.
s = [self.add_surface(l) for l in ll]
# Create the surface loop.
surface_loop = self.add_surface_loop(s)
# Create volume
vol = self.add_volume(surface_loop, holes) if with_volume else None
class Box:
def __init__(
self, x0, x1, y0, y1, z0, z1, surface_loop, volume, mesh_size=None
):
self.x0 = x0
self.x1 = x1
self.y0 = y0
self.y1 = y1
self.z0 = z0
self.z1 = z1
self.mesh_size = mesh_size
self.surface_loop = surface_loop
self.volume = volume
return Box(x0, x1, y0, y1, z0, z1, surface_loop, vol, mesh_size=mesh_size)
def add_torus(
self,
irad: float,
orad: float,
mesh_size: float | None = None,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
variant: str = "extrude_lines",
):
if variant == "extrude_lines":
return self._add_torus_extrude_lines(
irad, orad, mesh_size=mesh_size, R=R, x0=x0
)
assert variant == "extrude_circle"
return self._add_torus_extrude_circle(
irad, orad, mesh_size=mesh_size, R=R, x0=x0
)
def _add_torus_extrude_lines(
self,
irad: float,
orad: float,
mesh_size: float = None,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
):
"""Create Gmsh code for the torus in the x-y plane under the coordinate
transformation
.. math::
\\hat{x} = R x + x_0.
:param irad: inner radius of the torus
:param orad: outer radius of the torus
"""
# Add circle
x0t = np.dot(R, np.array([0.0, orad, 0.0]))
# Get circles in y-z plane
Rc = np.array([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]])
c = self.add_circle(x0 + x0t, irad, mesh_size=mesh_size, R=np.dot(R, Rc))
rot_axis = [0.0, 0.0, 1.0]
rot_axis = np.dot(R, rot_axis)
point_on_rot_axis = [0.0, 0.0, 0.0]
point_on_rot_axis = np.dot(R, point_on_rot_axis) + x0
# Form the torus by extruding the circle three times by 2/3*pi. This
# works around the inability of Gmsh to extrude by pi or more. The
# Extrude() macro returns an array; the first [0] entry in the array is
# the entity that has been extruded at the far end. This can be used
# for the following Extrude() step. The second [1] entry of the array
# is the surface that was created by the extrusion.
previous = c.curve_loop.curves
angle = 2 * np.pi / 3
all_surfaces = []
for _ in range(3):
for k, p in enumerate(previous):
# ts1[] = Extrude {{0,0,1}, {0,0,0}, 2*Pi/3}{Line{tc1};};
# ...
top, surf, _ = self.revolve(
p,
rotation_axis=rot_axis,
point_on_axis=point_on_rot_axis,
angle=angle,
)
all_surfaces.append(surf)
previous[k] = top
# compound_surface = CompoundSurface(all_surfaces)
surface_loop = self.add_surface_loop(all_surfaces)
vol = self.add_volume(surface_loop)
return vol
def _add_torus_extrude_circle(
self,
irad,
orad,
mesh_size=None,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
):
"""Create Gmsh code for the torus under the coordinate transformation
.. math::
\\hat{x} = R x + x_0.
:param irad: inner radius of the torus
:param orad: outer radius of the torus
"""
# Add circle
x0t = np.dot(R, np.array([0.0, orad, 0.0]))
Rc = np.array([[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
c = self.add_circle(x0 + x0t, irad, mesh_size=mesh_size, R=np.dot(R, Rc))
rot_axis = [0.0, 0.0, 1.0]
rot_axis = np.dot(R, rot_axis)
point_on_rot_axis = [0.0, 0.0, 0.0]
point_on_rot_axis = np.dot(R, point_on_rot_axis) + x0
# Form the torus by extruding the circle three times by 2/3*pi. This
# works around the inability of Gmsh to extrude by pi or more. The
# Extrude() macro returns an array; the first [0] entry in the array is
# the entity that has been extruded at the far end. This can be used
# for the following Extrude() step. The second [1] entry of the array
# is the surface that was created by the extrusion. The third [2-end]
# is a list of all the planes of the lateral surface.
previous = c.plane_surface
all_volumes = []
num_steps = 3
for _ in range(num_steps):
top, vol, _ = self.revolve(
previous,
rotation_axis=rot_axis,
point_on_axis=point_on_rot_axis,
angle=2 * np.pi / num_steps,
)
previous = top
all_volumes.append(vol)
assert int(gmsh.__version__.split(".")[0])
self._COMPOUND_ENTITIES.append((3, [v._id for v in all_volumes]))
def add_pipe(
self,
outer_radius,
inner_radius,
length,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
mesh_size=None,
variant="rectangle_rotation",
):
if variant == "rectangle_rotation":
return self._add_pipe_by_rectangle_rotation(
outer_radius, inner_radius, length, R=R, x0=x0, mesh_size=mesh_size
)
assert variant == "circle_extrusion"
return self._add_pipe_by_circle_extrusion(
outer_radius, inner_radius, length, R=R, x0=x0, mesh_size=mesh_size
)
def _add_pipe_by_rectangle_rotation(
self,
outer_radius,
inner_radius,
length,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
mesh_size=None,
):
"""Hollow cylinder.
Define a rectangle, extrude it by rotation.
"""
X = np.array(
[
[0.0, outer_radius, -0.5 * length],
[0.0, outer_radius, +0.5 * length],
[0.0, inner_radius, +0.5 * length],
[0.0, inner_radius, -0.5 * length],
]
)
# Apply transformation.
X = [np.dot(R, x) + x0 for x in X]
# Create points set.
p = [self.add_point(x, mesh_size=mesh_size) for x in X]
# Define edges.
e = [
self.add_line(p[0], p[1]),
self.add_line(p[1], p[2]),
self.add_line(p[2], p[3]),
self.add_line(p[3], p[0]),
]
rot_axis = [0.0, 0.0, 1.0]
rot_axis = np.dot(R, rot_axis)
point_on_rot_axis = [0.0, 0.0, 0.0]
point_on_rot_axis = np.dot(R, point_on_rot_axis) + x0
# Extrude all edges three times by 2*Pi/3.
previous = e
angle = 2 * np.pi / 3
all_surfaces = []
# com = []
for _ in range(3):
for k, p in enumerate(previous):
# ts1[] = Extrude {{0,0,1}, {0,0,0}, 2*Pi/3}{Line{tc1};};
top, surf, _ = self.revolve(
p,
rotation_axis=rot_axis,
point_on_axis=point_on_rot_axis,
angle=angle,
)
# if k==0:
# com.append(surf)
# else:
# all_names.appends(surf)
all_surfaces.append(surf)
previous[k] = top
#
# cs = CompoundSurface(com)
# Now just add surface loop and volume.
# all_surfaces = all_names + [cs]
surface_loop = self.add_surface_loop(all_surfaces)
vol = self.add_volume(surface_loop)
return vol
def _add_pipe_by_circle_extrusion(
self,
outer_radius,
inner_radius,
length,
R=np.eye(3),
x0=np.array([0.0, 0.0, 0.0]),
mesh_size=None,
):
"""Hollow cylinder.
Define a ring, extrude it by translation.
"""
# Define ring which to Extrude by translation.
Rc = np.array([[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
c_inner = self.add_circle(
x0,
inner_radius,
mesh_size=mesh_size,
R=np.dot(R, Rc),
make_surface=False,
)
circ = self.add_circle(
x0,
outer_radius,
mesh_size=mesh_size,
R=np.dot(R, Rc),
holes=[c_inner.curve_loop],
)
# Now Extrude the ring surface.
_, vol, _ = self.extrude(
circ.plane_surface, translation_axis=np.dot(R, [length, 0, 0])
)
return vol
def in_surface(self, input_entity, surface):
"""Embed the point(s) or curve(s) in the given surface. The surface mesh will
conform to the mesh of the point(s) or curves(s).
"""
self._EMBED_QUEUE.append((input_entity, surface))
def in_volume(self, input_entity, volume):
"""Embed the point(s)/curve(s)/surface(s) in the given volume. The volume mesh
will conform to the mesh of the input entities.
"""
self._EMBED_QUEUE.append((input_entity, volume))
pygmsh-7.1.17/src/pygmsh/helpers.py 0000664 0000000 0000000 00000010521 14174766155 0017247 0 ustar 00root root 0000000 0000000 import gmsh
import meshio
import numpy as np
def write(filename: str):
import gmsh
gmsh.write(filename)
def rotation_matrix(u, theta):
"""Return matrix that implements the rotation around the vector :math:`u`
by the angle :math:`\\theta`, cf.
https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle.
:param u: rotation vector
:param theta: rotation angle
"""
assert np.isclose(np.inner(u, u), 1.0), "the rotation axis must be unitary"
# Cross-product matrix.
cpm = np.array([[0.0, -u[2], u[1]], [u[2], 0.0, -u[0]], [-u[1], u[0], 0.0]])
c = np.cos(theta)
s = np.sin(theta)
R = np.eye(3) * c + s * cpm + (1.0 - c) * np.outer(u, u)
return R
def orient_lines(lines):
"""Given a sequence of unordered and unoriented lines defining a closed polygon,
returns a reordered list of reoriented lines of that polygon.
:param lines: a sequence of lines defining a closed polygon
"""
# Categorise graph edges by their vertex pair ids
point_pair_ids = np.array(
[[line.points[0]._id, line.points[1]._id] for line in lines]
)
# Indices of reordering
order = np.arange(len(point_pair_ids), dtype=int)
# Compute orientations where oriented[j] == False requires edge j to be reversed
oriented = np.array([True] * len(point_pair_ids), dtype=bool)
for j in range(1, len(point_pair_ids)):
out = point_pair_ids[j - 1, 1] # edge out from vertex
inn = point_pair_ids[j:, 0] # candidates for edge into vertices
wh = np.where(inn == out)[0] + j
if len(wh) == 0:
# look for candidates in those which are not correctly oriented
inn = point_pair_ids[j:, 1]
wh = np.where(inn == out)[0] + j
# reorient remaining edges
point_pair_ids[j:] = np.flip(point_pair_ids[j:], axis=1)
oriented[j:] ^= True
# reorder
point_pair_ids[[j, wh[0]]] = point_pair_ids[[wh[0], j]]
order[[j, wh[0]]] = order[[wh[0], j]]
# Reconstruct an ordered and oriented line loop
lines = [lines[o] for o in order]
lines = [lines[j] if oriented[j] else -lines[j] for j in range(len(oriented))]
return lines
def extract_to_meshio():
# extract point coords
idx, points, _ = gmsh.model.mesh.getNodes()
points = np.asarray(points).reshape(-1, 3)
idx -= 1
srt = np.argsort(idx)
assert np.all(idx[srt] == np.arange(len(idx)))
points = points[srt]
# extract cells
elem_types, elem_tags, node_tags = gmsh.model.mesh.getElements()
cells = []
for elem_type, elem_tags, node_tags in zip(elem_types, elem_tags, node_tags):
# `elementName', `dim', `order', `numNodes', `localNodeCoord',
# `numPrimaryNodes'
num_nodes_per_cell = gmsh.model.mesh.getElementProperties(elem_type)[3]
node_tags_reshaped = np.asarray(node_tags).reshape(-1, num_nodes_per_cell) - 1
node_tags_sorted = node_tags_reshaped[np.argsort(elem_tags)]
cells.append(
meshio.CellBlock(
meshio.gmsh.gmsh_to_meshio_type[elem_type], node_tags_sorted
)
)
cell_sets = {}
for dim, tag in gmsh.model.getPhysicalGroups():
name = gmsh.model.getPhysicalName(dim, tag)
cell_sets[name] = [[] for _ in range(len(cells))]
for e in gmsh.model.getEntitiesForPhysicalGroup(dim, tag):
# TODO node_tags?
# elem_types, elem_tags, node_tags
elem_types, elem_tags, _ = gmsh.model.mesh.getElements(dim, e)
assert len(elem_types) == len(elem_tags)
assert len(elem_types) == 1
elem_type = elem_types[0]
elem_tags = elem_tags[0]
meshio_cell_type = meshio.gmsh.gmsh_to_meshio_type[elem_type]
# make sure that the cell type appears only once in the cell list
# -- for now
idx = []
for k, cell_block in enumerate(cells):
if cell_block.type == meshio_cell_type:
idx.append(k)
assert len(idx) == 1
idx = idx[0]
cell_sets[name][idx].append(elem_tags - 1)
cell_sets[name] = [
(None if len(idcs) == 0 else np.concatenate(idcs))
for idcs in cell_sets[name]
]
# make meshio mesh
return meshio.Mesh(points, cells, cell_sets=cell_sets)
pygmsh-7.1.17/src/pygmsh/occ/ 0000775 0000000 0000000 00000000000 14174766155 0016000 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/src/pygmsh/occ/__init__.py 0000664 0000000 0000000 00000000067 14174766155 0020114 0 ustar 00root root 0000000 0000000 from .geometry import Geometry
__all__ = ["Geometry"]
pygmsh-7.1.17/src/pygmsh/occ/ball.py 0000664 0000000 0000000 00000002173 14174766155 0017267 0 ustar 00root root 0000000 0000000 from math import pi
import gmsh
class Ball:
"""
Creates a sphere.
Parameters
----------
center: array-like[3]
Center of the ball.
radius: float
Radius of the ball.
x0: float
If specified and `x0 > -1`, the ball is cut off at `x0*radius`
parallel to the y-z plane.
x1: float
If specified and `x1 < +1`, the ball is cut off at `x1*radius`
parallel to the y-z plane.
alpha: float
If specified and `alpha < 2*pi`, the points between `alpha` and
`2*pi` w.r.t. to the x-y plane are not part of the object.
char_length: float
If specified, sets the `Characteristic Length` property.
"""
dim = 3
def __init__(self, center, radius, angle1=-pi / 2, angle2=pi / 2, angle3=2 * pi):
self.center = center
self.radius = radius
self._id = gmsh.model.occ.addSphere(
*center, radius, angle1=angle1, angle2=angle2, angle3=angle3
)
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/box.py 0000664 0000000 0000000 00000001223 14174766155 0017140 0 ustar 00root root 0000000 0000000 import gmsh
class Box:
"""
Creates a box.
Parameters
----------
x0 : array-like[3]
List containing the x, y, z values of the start point.
extends : array-like[3]
List of the 3 extents of the box edges.
char_length : float
Characteristic length of the mesh elements of this polygon.
"""
dim = 3
def __init__(self, x0, extents, char_length=None):
assert len(x0) == 3
assert len(extents) == 3
self.x0 = x0
self.extents = extents
self._id = gmsh.model.occ.addBox(*x0, *extents)
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
pygmsh-7.1.17/src/pygmsh/occ/cone.py 0000664 0000000 0000000 00000001656 14174766155 0017306 0 ustar 00root root 0000000 0000000 from math import pi
import gmsh
class Cone:
"""
Creates a cone.
center : array-like[3]
The 3 coordinates of the center of the first circular face.
axis : array-like[3]
The 3 components of the vector defining its axis.
radius0 : float
Radius of the first circle.
radius1 : float
Radius of the second circle.
angle : float
Angular opening of the the Cone.
"""
dim = 3
def __init__(self, center, axis, radius0, radius1, angle=2 * pi):
assert len(center) == 3
assert len(axis) == 3
self.center = center
self.axis = axis
self.radius0 = radius0
self.radius1 = radius1
self._id = gmsh.model.occ.addCone(*center, *axis, radius0, radius1, angle=angle)
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/cylinder.py 0000664 0000000 0000000 00000001562 14174766155 0020167 0 ustar 00root root 0000000 0000000 from math import pi
import gmsh
class Cylinder:
"""
Creates a cylinder.
Parameters
----------
x0 : array-like[3]
The 3 coordinates of the center of the first circular face.
axis : array-like[3]
The 3 components of the vector defining its axis.
radius : float
Radius value of the cylinder.
angle : float
Angular opening of the cylinder.
"""
dim = 3
def __init__(self, x0, axis, radius, angle=2 * pi):
assert len(x0) == 3
assert len(axis) == 3
self.x0 = x0
self.axis = axis
self.radius = radius
self.angle = angle
self._id = gmsh.model.occ.addCylinder(*x0, *axis, radius, angle=angle)
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/disk.py 0000664 0000000 0000000 00000001755 14174766155 0017314 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import gmsh
class Disk:
"""
Creates a disk.
Parameters
----------
x0 : array-like[3]
The 3 coordinates of the center of the disk face.
radius0 : float
Radius value of the disk.
radius1 : float
Radius along Y, leading to an ellipse.
"""
dim = 2
def __init__(
self,
x0: tuple[float, float] | tuple[float, float, float],
radius0: float,
radius1: float | None = None,
):
if len(x0) == 2:
x0 = (x0[0], x0[1], 0.0)
assert len(x0) == 3
if radius1 is None:
radius1 = radius0
assert radius0 >= radius1
self.x0 = x0
self.radius0 = radius0
self.radius1 = radius1
self._id = gmsh.model.occ.addDisk(*x0, radius0, radius1)
self.dim_tag = (self.dim, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/dummy.py 0000664 0000000 0000000 00000000432 14174766155 0017504 0 ustar 00root root 0000000 0000000 class Dummy:
def __init__(self, dim, id0):
assert isinstance(id0, int)
self.dim = dim
self._id = id0
self.dim_tag = (dim, id0)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/geometry.py 0000664 0000000 0000000 00000021710 14174766155 0020206 0 ustar 00root root 0000000 0000000 import math
import warnings
from itertools import groupby
import gmsh
from .. import common
from .ball import Ball
from .box import Box
from .cone import Cone
from .cylinder import Cylinder
from .disk import Disk
from .dummy import Dummy
from .rectangle import Rectangle
from .torus import Torus
from .wedge import Wedge
#
def _all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
class Geometry(common.CommonGeometry):
def __init__(self, init_argv=None):
super().__init__(gmsh.model.occ, init_argv=init_argv)
def __exit__(self, *_):
# TODO remove once gmsh 4.7.0 is out long enough (out November 5, 2020)
#
gmsh.option.setNumber("Mesh.CharacteristicLengthMin", 0.0)
gmsh.option.setNumber("Mesh.CharacteristicLengthMax", 1.0e22)
gmsh.finalize()
@property
def characteristic_length_min(self):
return gmsh.option.getNumber("Mesh.CharacteristicLengthMin")
@property
def characteristic_length_max(self):
return gmsh.option.getNumber("Mesh.CharacteristicLengthMax")
@characteristic_length_min.setter
def characteristic_length_min(self, val):
gmsh.option.setNumber("Mesh.CharacteristicLengthMin", val)
@characteristic_length_max.setter
def characteristic_length_max(self, val):
gmsh.option.setNumber("Mesh.CharacteristicLengthMax", val)
def force_outward_normals(self, tag):
self._OUTWARD_NORMALS.append(tag)
def revolve(self, *args, **kwargs):
if len(args) >= 4:
angle = args[3]
else:
assert "angle" in kwargs
angle = kwargs["angle"]
assert angle < 2 * math.pi
return super()._revolve(*args, **kwargs)
def add_rectangle(self, *args, mesh_size=None, **kwargs):
entity = Rectangle(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((entity, mesh_size))
return entity
def add_disk(self, *args, mesh_size=None, **kwargs):
entity = Disk(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((entity, mesh_size))
return entity
def add_ball(self, *args, mesh_size=None, **kwargs):
obj = Ball(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((obj, mesh_size))
return obj
def add_box(self, *args, mesh_size=None, **kwargs):
box = Box(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((box, mesh_size))
return box
def add_cone(self, *args, mesh_size=None, **kwargs):
cone = Cone(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((cone, mesh_size))
return cone
def add_cylinder(self, *args, mesh_size=None, **kwargs):
cyl = Cylinder(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((cyl, mesh_size))
return cyl
def add_ellipsoid(self, center, radii, mesh_size=None):
obj = Ball(center, 1.0)
self.dilate(obj, center, radii)
if mesh_size is not None:
self._SIZE_QUEUE.append((obj, mesh_size))
return obj
def add_torus(self, *args, mesh_size=None, **kwargs):
obj = Torus(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((obj, mesh_size))
return obj
def add_wedge(self, *args, mesh_size=None, **kwargs):
obj = Wedge(*args, **kwargs)
if mesh_size is not None:
self._SIZE_QUEUE.append((obj, mesh_size))
return obj
def boolean_intersection(
self, entities, delete_first: bool = True, delete_other: bool = True
):
"""Boolean intersection, see
https://gmsh.info/doc/texinfo/gmsh.html#Boolean-operations input_entity
and tool_entity are called object and tool in gmsh documentation.
"""
entities = [e if isinstance(e, list) else [e] for e in entities]
ent = [e.dim_tag for e in entities[0]]
# form subsequent intersections
# https://gitlab.onelab.info/gmsh/gmsh/-/issues/999
for e in entities[1:]:
out, _ = gmsh.model.occ.intersect(
ent,
[ee.dim_tag for ee in e],
removeObject=delete_first,
removeTool=delete_other,
)
if len(out) == 0:
raise RuntimeError("Empty intersection.")
if not _all_equal(out):
raise RuntimeError(
f"Expected all-equal elements, but got dim_tags {out}"
)
ent = [out[0]]
# remove entities from SIZE_QUEUE if necessary
all_entities = []
if delete_first:
all_entities += entities[0]
if delete_other:
for e in entities[1:]:
all_entities += e
for s in self._SIZE_QUEUE:
if s[0] in all_entities:
warnings.warn(
f"Specified mesh size for {s[0]} "
"discarded in Boolean intersection operation."
)
self._SIZE_QUEUE = [s for s in self._SIZE_QUEUE if s[0] not in all_entities]
return [Dummy(*ent[0])]
def boolean_union(
self, entities, delete_first: bool = True, delete_other: bool = True
):
"""Boolean union, see
https://gmsh.info/doc/texinfo/gmsh.html#Boolean-operations input_entity
and tool_entity are called object and tool in gmsh documentation.
"""
entities = [e if isinstance(e, list) else [e] for e in entities]
dim_tags, _ = gmsh.model.occ.fuse(
[e.dim_tag for e in entities[0]],
[ee.dim_tag for e in entities[1:] for ee in e],
removeObject=delete_first,
removeTool=delete_other,
)
# remove entities from SIZE_QUEUE if necessary
all_entities = []
if delete_first:
all_entities += entities[0]
if delete_other:
for ent in entities[1:]:
all_entities += ent
for s in self._SIZE_QUEUE:
if s[0] in all_entities:
warnings.warn(
f"Specified mesh size for {s[0]} "
"discarded in Boolean union operation."
)
self._SIZE_QUEUE = [s for s in self._SIZE_QUEUE if s[0] not in all_entities]
return [Dummy(*dim_tag) for dim_tag in dim_tags]
def boolean_difference(
self, d0, d1, delete_first: bool = True, delete_other: bool = True
):
"""Boolean difference, see
https://gmsh.info/doc/texinfo/gmsh.html#Boolean-operations input_entity
and tool_entity are called object and tool in gmsh documentation.
"""
d0 = d0 if isinstance(d0, list) else [d0]
d1 = d1 if isinstance(d1, list) else [d1]
dim_tags, _ = gmsh.model.occ.cut(
[d.dim_tag for d in d0],
[d.dim_tag for d in d1],
removeObject=delete_first,
removeTool=delete_other,
)
# remove entities from SIZE_QUEUE if necessary
all_entities = []
if delete_first:
all_entities += d0
if delete_other:
all_entities += d1
for s in self._SIZE_QUEUE:
if s[0] in all_entities:
warnings.warn(
f"Specified mesh size for {s[0]} "
"discarded in Boolean difference operation."
)
self._SIZE_QUEUE = [s for s in self._SIZE_QUEUE if s[0] not in all_entities]
return [Dummy(*dim_tag) for dim_tag in dim_tags]
def boolean_fragments(
self, d0, d1, delete_first: bool = True, delete_other: bool = True
):
"""Boolean fragments, see
https://gmsh.info/doc/texinfo/gmsh.html#Boolean-operations input_entity
and tool_entity are called object and tool in gmsh documentation.
"""
d0 = d0 if isinstance(d0, list) else [d0]
d1 = d1 if isinstance(d1, list) else [d1]
dim_tags, _ = gmsh.model.occ.fragment(
[d.dim_tag for d in d0],
[d.dim_tag for d in d1],
removeObject=delete_first,
removeTool=delete_other,
)
# remove entities from SIZE_QUEUE if necessary
all_entities = []
if delete_first:
all_entities += d0
if delete_other:
all_entities += d1
for s in self._SIZE_QUEUE:
if s[0] in all_entities:
warnings.warn(
f"Specified mesh size for {s[0]} "
"discarded in Boolean fragments operation."
)
self._SIZE_QUEUE = [s for s in self._SIZE_QUEUE if s[0] not in all_entities]
return [Dummy(*dim_tag) for dim_tag in dim_tags]
def import_shapes(self, filename: str):
s = gmsh.model.occ.importShapes(filename)
return [Dummy(*i) for i in s]
pygmsh-7.1.17/src/pygmsh/occ/rectangle.py 0000664 0000000 0000000 00000001727 14174766155 0020325 0 ustar 00root root 0000000 0000000 from __future__ import annotations
import gmsh
class Rectangle:
"""
Creates a rectangle.
x0 : array-like[3]
The 3 first expressions define the lower-left corner.
a : float
Rectangle width.
b : float
Rectangle height.
corner_radius : float
Defines a radius to round the rectangle corners.
"""
dim = 2
def __init__(
self,
x0: tuple[float, float, float],
a: float,
b: float,
corner_radius: float | None = None,
):
assert len(x0) == 3
self.x0 = x0
self.a = a
self.b = b
self.corner_radius = corner_radius
if corner_radius is None:
corner_radius = 0.0
self._id = gmsh.model.occ.addRectangle(*x0, a, b, roundedRadius=corner_radius)
self.dim_tag = (self.dim, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/torus.py 0000664 0000000 0000000 00000001372 14174766155 0017531 0 ustar 00root root 0000000 0000000 from math import pi
import gmsh
class Torus:
"""
Creates a torus.
center : array-like[3]
The 3 coordinates of its center.
radius0 : float
Inner radius.
radius1 : float
Outer radius.
alpha : float
Defines the angular opening.
"""
dim = 3
def __init__(self, center, radius0, radius1, alpha=2 * pi):
assert len(center) == 3
self.center = center
self.radius0 = radius0
self.radius1 = radius1
self.alpha = alpha
self._id = gmsh.model.occ.addTorus(*center, radius0, radius1, angle=alpha)
self.dim_tag = (3, self._id)
self.dim_tags = [self.dim_tag]
def __repr__(self):
return f""
pygmsh-7.1.17/src/pygmsh/occ/wedge.py 0000664 0000000 0000000 00000001177 14174766155 0017453 0 ustar 00root root 0000000 0000000 import gmsh
class Wedge:
"""
Creates a right angular wedge.
x0 : array-like[3]
The 3 coordinates of the right-angle point.
extends : array-like[3]
List of the 3 extends of the box edges.
top_extend : float
Defines the top X extent.
"""
dim = 3
def __init__(self, x0, extents, top_extent=None):
self.x0 = x0
self.extents = extents
self.top_extent = top_extent
self._id = gmsh.model.occ.addWedge(*x0, *extents, ltx=top_extent)
self.dim_tags = [(3, self._id)]
def __repr__(self):
return f""
pygmsh-7.1.17/tests/ 0000775 0000000 0000000 00000000000 14174766155 0014300 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/tests/built_in/ 0000775 0000000 0000000 00000000000 14174766155 0016105 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/tests/built_in/helpers.py 0000664 0000000 0000000 00000005107 14174766155 0020124 0 ustar 00root root 0000000 0000000 import math
import numpy as np
def prune_nodes(points, cells):
# Only points/cells that actually used
uvertices, uidx = np.unique(cells, return_inverse=True)
cells = uidx.reshape(cells.shape)
points = points[uvertices]
return points, cells
def get_triangle_volumes(pts, cells):
# Works in any dimension; taken from voropy
local_idx = np.array([[1, 2], [2, 0], [0, 1]]).T
idx_hierarchy = cells.T[local_idx]
half_edge_coords = pts[idx_hierarchy[1]] - pts[idx_hierarchy[0]]
ei_dot_ej = np.einsum(
"ijk, ijk->ij", half_edge_coords[[1, 2, 0]], half_edge_coords[[2, 0, 1]]
)
vols = 0.5 * np.sqrt(
+ei_dot_ej[2] * ei_dot_ej[0]
+ ei_dot_ej[0] * ei_dot_ej[1]
+ ei_dot_ej[1] * ei_dot_ej[2]
)
return vols
def get_simplex_volumes(pts, cells):
"""Signed volume of a simplex in nD. Note that signing only makes sense for
n-simplices in R^n.
"""
n = pts.shape[1]
assert cells.shape[1] == n + 1
p = pts[cells]
p = np.concatenate([p, np.ones(list(p.shape[:2]) + [1])], axis=-1)
return np.abs(np.linalg.det(p) / math.factorial(n))
def compute_volume(mesh):
if "tetra" in mesh.cells_dict:
vol = math.fsum(
get_simplex_volumes(*prune_nodes(mesh.points, mesh.cells_dict["tetra"]))
)
elif "triangle" in mesh.cells_dict or "quad" in mesh.cells_dict:
vol = 0.0
if "triangle" in mesh.cells_dict:
# triangles
vol += math.fsum(
get_triangle_volumes(
*prune_nodes(mesh.points, mesh.cells_dict["triangle"])
)
)
if "quad" in mesh.cells_dict:
# quad: treat as two triangles
quads = mesh.cells_dict["quad"].T
split_cells = np.column_stack(
[[quads[0], quads[1], quads[2]], [quads[0], quads[2], quads[3]]]
).T
vol += math.fsum(
get_triangle_volumes(*prune_nodes(mesh.points, split_cells))
)
else:
assert "line" in mesh.cells_dict
segs = np.diff(mesh.points[mesh.cells_dict["line"]], axis=1).squeeze()
vol = np.sum(np.sqrt(np.einsum("...j, ...j", segs, segs)))
return vol
def plot(filename, points, triangles):
from matplotlib import pyplot as plt
pts = points[:, :2]
for e in triangles:
for idx in [[0, 1], [1, 2], [2, 0]]:
X = pts[e[idx]]
plt.plot(X[:, 0], X[:, 1], "-k")
plt.gca().set_aspect("equal", "datalim")
plt.axis("off")
# plt.show()
plt.savefig(filename, transparent=True)
pygmsh-7.1.17/tests/built_in/test_airfoil.py 0000664 0000000 0000000 00000012356 14174766155 0021152 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test():
# Airfoil coordinates
airfoil_coordinates = np.array(
[
[1.000000, 0.000000, 0.0],
[0.999023, 0.000209, 0.0],
[0.996095, 0.000832, 0.0],
[0.991228, 0.001863, 0.0],
[0.984438, 0.003289, 0.0],
[0.975752, 0.005092, 0.0],
[0.965201, 0.007252, 0.0],
[0.952825, 0.009744, 0.0],
[0.938669, 0.012538, 0.0],
[0.922788, 0.015605, 0.0],
[0.905240, 0.018910, 0.0],
[0.886092, 0.022419, 0.0],
[0.865417, 0.026096, 0.0],
[0.843294, 0.029903, 0.0],
[0.819807, 0.033804, 0.0],
[0.795047, 0.037760, 0.0],
[0.769109, 0.041734, 0.0],
[0.742094, 0.045689, 0.0],
[0.714107, 0.049588, 0.0],
[0.685258, 0.053394, 0.0],
[0.655659, 0.057071, 0.0],
[0.625426, 0.060584, 0.0],
[0.594680, 0.063897, 0.0],
[0.563542, 0.066977, 0.0],
[0.532136, 0.069789, 0.0],
[0.500587, 0.072303, 0.0],
[0.469022, 0.074486, 0.0],
[0.437567, 0.076312, 0.0],
[0.406350, 0.077752, 0.0],
[0.375297, 0.078743, 0.0],
[0.344680, 0.079180, 0.0],
[0.314678, 0.079051, 0.0],
[0.285418, 0.078355, 0.0],
[0.257025, 0.077096, 0.0],
[0.229618, 0.075287, 0.0],
[0.203313, 0.072945, 0.0],
[0.178222, 0.070096, 0.0],
[0.154449, 0.066770, 0.0],
[0.132094, 0.063005, 0.0],
[0.111248, 0.058842, 0.0],
[0.091996, 0.054325, 0.0],
[0.074415, 0.049504, 0.0],
[0.058573, 0.044427, 0.0],
[0.044532, 0.039144, 0.0],
[0.032343, 0.033704, 0.0],
[0.022051, 0.028152, 0.0],
[0.013692, 0.022531, 0.0],
[0.007292, 0.016878, 0.0],
[0.002870, 0.011224, 0.0],
[0.000439, 0.005592, 0.0],
[0.000000, 0.000000, 0.0],
[0.001535, -0.005395, 0.0],
[0.005015, -0.010439, 0.0],
[0.010421, -0.015126, 0.0],
[0.017725, -0.019451, 0.0],
[0.026892, -0.023408, 0.0],
[0.037880, -0.026990, 0.0],
[0.050641, -0.030193, 0.0],
[0.065120, -0.033014, 0.0],
[0.081257, -0.035451, 0.0],
[0.098987, -0.037507, 0.0],
[0.118239, -0.039185, 0.0],
[0.138937, -0.040493, 0.0],
[0.161004, -0.041444, 0.0],
[0.184354, -0.042054, 0.0],
[0.208902, -0.042343, 0.0],
[0.234555, -0.042335, 0.0],
[0.261221, -0.042058, 0.0],
[0.288802, -0.041541, 0.0],
[0.317197, -0.040817, 0.0],
[0.346303, -0.039923, 0.0],
[0.376013, -0.038892, 0.0],
[0.406269, -0.037757, 0.0],
[0.437099, -0.036467, 0.0],
[0.468187, -0.035009, 0.0],
[0.499413, -0.033414, 0.0],
[0.530654, -0.031708, 0.0],
[0.561791, -0.029917, 0.0],
[0.592701, -0.028066, 0.0],
[0.623264, -0.026176, 0.0],
[0.653358, -0.024269, 0.0],
[0.682867, -0.022360, 0.0],
[0.711672, -0.020466, 0.0],
[0.739659, -0.018600, 0.0],
[0.766718, -0.016774, 0.0],
[0.792738, -0.014999, 0.0],
[0.817617, -0.013284, 0.0],
[0.841253, -0.011637, 0.0],
[0.863551, -0.010068, 0.0],
[0.884421, -0.008583, 0.0],
[0.903777, -0.007191, 0.0],
[0.921540, -0.005900, 0.0],
[0.937637, -0.004717, 0.0],
[0.952002, -0.003650, 0.0],
[0.964576, -0.002708, 0.0],
[0.975305, -0.001896, 0.0],
[0.984145, -0.001222, 0.0],
[0.991060, -0.000691, 0.0],
[0.996020, -0.000308, 0.0],
[0.999004, -0.000077, 0.0],
]
)
# Scale airfoil to input coord
coord = 1.0
airfoil_coordinates *= coord
# Instantiate geometry object
with pygmsh.geo.Geometry() as geom:
# Create polygon for airfoil
char_length = 1.0e-1
airfoil = geom.add_polygon(airfoil_coordinates, char_length, make_surface=False)
# Create surface for numerical domain with an airfoil-shaped hole
left_dist = 1.0
right_dist = 3.0
top_dist = 1.0
bottom_dist = 1.0
xmin = airfoil_coordinates[:, 0].min() - left_dist * coord
xmax = airfoil_coordinates[:, 0].max() + right_dist * coord
ymin = airfoil_coordinates[:, 1].min() - bottom_dist * coord
ymax = airfoil_coordinates[:, 1].max() + top_dist * coord
domainCoordinates = np.array(
[[xmin, ymin, 0.0], [xmax, ymin, 0.0], [xmax, ymax, 0.0], [xmin, ymax, 0.0]]
)
polygon = geom.add_polygon(domainCoordinates, char_length, holes=[airfoil])
geom.set_recombined_surfaces([polygon.surface])
ref = 10.525891646546
mesh = geom.generate_mesh()
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("airfoil.vtu")
pygmsh-7.1.17/tests/built_in/test_bsplines.py 0000664 0000000 0000000 00000001675 14174766155 0021346 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
lcar = 0.1
p1 = geom.add_point([0.0, 0.0, 0.0], lcar)
p2 = geom.add_point([1.0, 0.0, 0.0], lcar)
p3 = geom.add_point([1.0, 0.5, 0.0], lcar)
p4 = geom.add_point([1.0, 1.0, 0.0], lcar)
s1 = geom.add_bspline([p1, p2, p3, p4])
p2 = geom.add_point([0.0, 1.0, 0.0], lcar)
p3 = geom.add_point([0.5, 1.0, 0.0], lcar)
s2 = geom.add_bspline([p4, p3, p2, p1])
ll = geom.add_curve_loop([s1, s2])
pl = geom.add_plane_surface(ll)
# test some __repr__
print(p1)
print(ll)
print(s1)
print(pl)
mesh = geom.generate_mesh(verbose=True)
# ref = 0.9156598733673261
ref = 0.7474554072002251
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("bsplines.vtu")
pygmsh-7.1.17/tests/built_in/test_circle.py 0000664 0000000 0000000 00000001355 14174766155 0020763 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
geom.add_circle(
[0.0, 0.0, 0.0],
1.0,
mesh_size=0.1,
num_sections=4,
# If compound==False, the section borders have to be points of the
# discretization. If using a compound circle, they don't; gmsh can
# choose by itself where to point the circle points.
compound=True,
)
# geom.add_physical(c.plane_surface, "super disk")
mesh = geom.generate_mesh()
ref = 3.1363871677682247
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("circle.vtk")
pygmsh-7.1.17/tests/built_in/test_circle_transform.py 0000664 0000000 0000000 00000001111 14174766155 0023044 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test(radius=1.0):
with pygmsh.geo.Geometry() as geom:
R = [
pygmsh.rotation_matrix(np.eye(1, 3, d)[0], theta)
for d, theta in enumerate(np.pi / np.array([2.0, 3.0, 5]))
]
geom.add_circle([7.0, 11.0, 13.0], radius, 0.1, R[0] @ R[1] @ R[2])
ref = np.pi * radius ** 2
mesh = geom.generate_mesh()
assert np.isclose(compute_volume(mesh), ref, rtol=1e-2)
return mesh
if __name__ == "__main__":
test().write("circle_transformed.vtk")
pygmsh-7.1.17/tests/built_in/test_cube.py 0000664 0000000 0000000 00000000554 14174766155 0020440 0 ustar 00root root 0000000 0000000 """Creates a mesh on a cube.
"""
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
geom.add_box(0, 1, 0, 1, 0, 1, 1.0)
mesh = geom.generate_mesh()
ref = 1.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("cube.vtu")
pygmsh-7.1.17/tests/built_in/test_ellipsoid.py 0000664 0000000 0000000 00000000637 14174766155 0021510 0 ustar 00root root 0000000 0000000 """
Creates a mesh for an ellipsoid.
"""
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
geom.add_ellipsoid([0.0, 0.0, 0.0], [1.0, 0.5, 0.75], 0.05)
mesh = geom.generate_mesh()
ref = 1.5676038497587947
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("ellipsoid.vtu")
pygmsh-7.1.17/tests/built_in/test_embed.py 0000664 0000000 0000000 00000003020 14174766155 0020565 0 ustar 00root root 0000000 0000000 import pytest
from helpers import compute_volume
import pygmsh
def test_in_surface():
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[0, 0.3],
[0, 1.1],
[0.9, 1.1],
[0.9, 0.3],
[0.6, 0.7],
[0.3, 0.7],
[0.2, 0.4],
],
mesh_size=[0.2, 0.2, 0.2, 0.2, 0.03, 0.03, 0.01],
)
geom.in_surface(poly.lines[4], poly)
geom.in_surface(poly.points[6], poly)
mesh = geom.generate_mesh()
ref = 0.505
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
# Exception: PLC Error: A segment and a facet intersect at point
@pytest.mark.skip
def test_in_volume():
with pygmsh.geo.Geometry() as geom:
box = geom.add_box(-1, 2, -1, 2, 0, 1, mesh_size=0.5)
poly = geom.add_polygon(
[
[0.0, 0.3],
[0.0, 1.1],
[0.9, 1.1],
[0.9, 0.3],
[0.6, 0.7],
[0.3, 0.7],
[0.2, 0.4],
],
mesh_size=[0.2, 0.2, 0.2, 0.2, 0.03, 0.03, 0.01],
)
geom.in_volume(poly.lines[4], box.volume)
geom.in_volume(poly.points[6], box.volume)
geom.in_volume(poly, box.volume)
mesh = geom.generate_mesh()
ref = 30.505
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test_in_surface().write("test.vtk")
pygmsh-7.1.17/tests/built_in/test_hex.py 0000664 0000000 0000000 00000002201 14174766155 0020275 0 ustar 00root root 0000000 0000000 from itertools import permutations
import meshio
from helpers import compute_volume
import pygmsh
def test(lcar=1.0):
with pygmsh.geo.Geometry() as geom:
lbw = [2, 3, 5]
points = [geom.add_point([x, 0.0, 0.0], lcar) for x in [0.0, lbw[0]]]
line = geom.add_line(*points)
_, rectangle, _ = geom.extrude(
line, translation_axis=[0.0, lbw[1], 0.0], num_layers=lbw[1], recombine=True
)
geom.extrude(
rectangle,
translation_axis=[0.0, 0.0, lbw[2]],
num_layers=lbw[2],
recombine=True,
)
# compute_volume only supports 3D for tetras, but does return surface area for
# quads
mesh = geom.generate_mesh()
# mesh.remove_lower_dimensional_cells()
# mesh.remove_orphaned_nodes()
ref = sum(l * w for l, w in permutations(lbw, 2)) # surface area
# TODO compute hex volumes
quad_mesh = meshio.Mesh(mesh.points, {"quad": mesh.cells_dict["quad"]})
assert abs(compute_volume(quad_mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
meshio.write("hex.vtu", test())
pygmsh-7.1.17/tests/built_in/test_hole_in_square.py 0000664 0000000 0000000 00000001763 14174766155 0022522 0 ustar 00root root 0000000 0000000 import numpy as np
import pygmsh
def test():
# Characteristic length
lcar = 1e-1
# Coordinates of lower-left and upper-right vertices of a square domain
xmin = 0.0
xmax = 5.0
ymin = 0.0
ymax = 5.0
# Vertices of a square hole
squareHoleCoordinates = np.array([[1.0, 1.0], [4.0, 1.0], [4.0, 4.0], [1.0, 4.0]])
with pygmsh.geo.Geometry() as geom:
# Create square hole
squareHole = geom.add_polygon(squareHoleCoordinates, lcar, make_surface=False)
# Create square domain with square hole
geom.add_rectangle(
xmin, xmax, ymin, ymax, 0.0, lcar, holes=[squareHole.curve_loop]
)
mesh = geom.generate_mesh(order=2)
assert "triangle6" in mesh.cells_dict
# TODO support for volumes of triangle6
# ref = 16.0
# from helpers import compute_volume
# assert abs(compute_volume(points, cells) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("hole_in_square.vtu")
pygmsh-7.1.17/tests/built_in/test_layers.py 0000664 0000000 0000000 00000001725 14174766155 0021022 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test(mesh_size=0.05):
with pygmsh.geo.Geometry() as geom:
# Draw a cross with a circular hole
circ = geom.add_circle(
[0.0, 0.0, 0.0], 0.1, mesh_size=mesh_size, make_surface=False
)
poly = geom.add_polygon(
[
[+0.0, +0.5, 0.0],
[-0.1, +0.1, 0.0],
[-0.5, +0.0, 0.0],
[-0.1, -0.1, 0.0],
[+0.0, -0.5, 0.0],
[+0.1, -0.1, 0.0],
[+0.5, +0.0, 0.0],
[+0.1, +0.1, 0.0],
],
mesh_size=mesh_size,
holes=[circ],
)
axis = [0, 0, 1.0]
geom.extrude(poly, translation_axis=axis, num_layers=1)
mesh = geom.generate_mesh()
ref = 0.16951514066385628
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("layers.vtu")
pygmsh-7.1.17/tests/built_in/test_pacman.py 0000664 0000000 0000000 00000002601 14174766155 0020754 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
from numpy import cos, pi, sin
import pygmsh
def test(lcar=0.3):
with pygmsh.geo.Geometry() as geom:
r = 1.25 * 3.4
p1 = geom.add_point([0.0, 0.0, 0.0], lcar)
# p2 = geom.add_point([+r, 0.0, 0.0], lcar)
p3 = geom.add_point([-r, 0.0, 0.0], lcar)
p4 = geom.add_point([0.0, +r, 0.0], lcar)
p5 = geom.add_point([0.0, -r, 0.0], lcar)
p6 = geom.add_point([r * cos(+pi / 12.0), r * sin(+pi / 12.0), 0.0], lcar)
p7 = geom.add_point([r * cos(-pi / 12.0), r * sin(-pi / 12.0), 0.0], lcar)
p8 = geom.add_point([0.5 * r, 0.0, 0.0], lcar)
c0 = geom.add_circle_arc(p6, p1, p4)
c1 = geom.add_circle_arc(p4, p1, p3)
c2 = geom.add_circle_arc(p3, p1, p5)
c3 = geom.add_circle_arc(p5, p1, p7)
l1 = geom.add_line(p7, p8)
l2 = geom.add_line(p8, p6)
ll = geom.add_curve_loop([c0, c1, c2, c3, l1, l2])
pacman = geom.add_plane_surface(ll)
# test setting physical groups
geom.add_physical(p1, label="c")
geom.add_physical(c0, label="arc")
geom.add_physical(pacman, "dummy")
geom.add_physical(pacman, label="77")
mesh = geom.generate_mesh()
ref = 54.312974717523744
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("pacman.vtu")
pygmsh-7.1.17/tests/built_in/test_physical.py 0000664 0000000 0000000 00000001317 14174766155 0021334 0 ustar 00root root 0000000 0000000 import meshio
import pygmsh
def test(lcar=0.5):
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]], lcar)
top, volume, lat = geom.extrude(poly, [0, 0, 2])
geom.add_physical(poly, label="bottom")
geom.add_physical(top, label="top")
geom.add_physical(volume, label="volume")
geom.add_physical(lat, label="lat")
geom.add_physical(poly.lines[0], label="line")
mesh = geom.generate_mesh()
assert len(mesh.cell_sets) == 5
return mesh
if __name__ == "__main__":
test().write("physical.vtu")
read_mesh = meshio.read("physical.vtu")
assert len(read_mesh.cell_sets) == 5
pygmsh-7.1.17/tests/built_in/test_pipes.py 0000664 0000000 0000000 00000001565 14174766155 0020645 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test():
"""Pipe with double-ring enclosure, rotated in space."""
with pygmsh.geo.Geometry() as geom:
sqrt2on2 = 0.5 * np.sqrt(2.0)
R = pygmsh.rotation_matrix([sqrt2on2, sqrt2on2, 0], np.pi / 6.0)
geom.add_pipe(
inner_radius=0.3, outer_radius=0.4, length=1.0, R=R, mesh_size=0.04
)
R = np.array([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]])
geom.add_pipe(
inner_radius=0.3,
outer_radius=0.4,
length=1.0,
mesh_size=0.04,
R=R,
variant="circle_extrusion",
)
mesh = geom.generate_mesh()
ref = 0.43988203517453256
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("pipes.vtu")
pygmsh-7.1.17/tests/built_in/test_quads.py 0000664 0000000 0000000 00000000644 14174766155 0020637 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
rectangle = geom.add_rectangle(0.0, 1.0, 0.0, 1.0, 0.0, 0.1)
geom.set_recombined_surfaces([rectangle.surface])
mesh = geom.generate_mesh(dim=2)
ref = 1.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("quads.vtu")
pygmsh-7.1.17/tests/built_in/test_recombine.py 0000664 0000000 0000000 00000002434 14174766155 0021464 0 ustar 00root root 0000000 0000000 import numpy as np
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
pts = [
geom.add_point((0.0, 0.0, 0.0), mesh_size=1.0),
geom.add_point((2.0, 0.0, 0.0), mesh_size=1.0),
geom.add_point((0.0, 1.0, 0.0), mesh_size=1.0),
geom.add_point((2.0, 1.0, 0.0), mesh_size=1.0),
]
lines = [
geom.add_line(pts[0], pts[1]),
geom.add_line(pts[1], pts[3]),
geom.add_line(pts[3], pts[2]),
geom.add_line(pts[2], pts[0]),
]
ll0 = geom.add_curve_loop(lines)
rs0 = geom.add_surface(ll0)
geom.set_transfinite_curve(lines[3], 3, "Progression", 1.0)
geom.set_transfinite_curve(lines[1], 3, "Progression", 1.0)
geom.set_transfinite_curve(lines[2], 3, "Progression", 1.0)
geom.set_transfinite_curve(lines[0], 3, "Progression", 1.0)
geom.set_transfinite_surface(rs0, "Left", pts)
geom.set_recombined_surfaces([rs0])
mesh = geom.generate_mesh()
assert "quad" in mesh.cells_dict.keys()
ref = np.array([[0, 4, 8, 7], [7, 8, 6, 2], [4, 1, 5, 8], [8, 5, 3, 6]])
assert np.array_equal(ref, mesh.cells_dict["quad"])
return mesh
if __name__ == "__main__":
test().write("rectangle_structured.vtu")
pygmsh-7.1.17/tests/built_in/test_rectangle.py 0000664 0000000 0000000 00000000535 14174766155 0021465 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
geom.add_rectangle(0.0, 1.0, 0.0, 1.0, 0.0, 0.1)
mesh = geom.generate_mesh()
ref = 1.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("rectangle.vtu")
pygmsh-7.1.17/tests/built_in/test_rectangle_with_hole.py 0000664 0000000 0000000 00000001244 14174766155 0023525 0 ustar 00root root 0000000 0000000 """
Creates a mesh for a square with a round hole.
"""
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
circle = geom.add_circle(
x0=[0.5, 0.5, 0.0],
radius=0.25,
mesh_size=0.1,
num_sections=4,
make_surface=False,
)
geom.add_rectangle(
0.0, 1.0, 0.0, 1.0, 0.0, mesh_size=0.1, holes=[circle.curve_loop]
)
mesh = geom.generate_mesh()
ref = 0.8086582838174551
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("rectangle_with_hole.vtu")
pygmsh-7.1.17/tests/built_in/test_regular_extrusion.py 0000664 0000000 0000000 00000001517 14174766155 0023303 0 ustar 00root root 0000000 0000000 """Creates regular cube mesh by extrusion.
"""
from helpers import compute_volume
import pygmsh
def test():
x = 5
y = 4
z = 3
x_layers = 10
y_layers = 5
z_layers = 3
with pygmsh.geo.Geometry() as geom:
p = geom.add_point([0, 0, 0], 1)
_, l, _ = geom.extrude(p, [x, 0, 0], num_layers=x_layers)
_, s, _ = geom.extrude(l, [0, y, 0], num_layers=y_layers)
geom.extrude(s, [0, 0, z], num_layers=z_layers)
mesh = geom.generate_mesh()
ref_vol = x * y * z
assert abs(compute_volume(mesh) - ref_vol) < 1.0e-2 * ref_vol
# Each grid-cell from layered extrusion will result in 6 tetrahedra.
ref_tetras = 6 * x_layers * y_layers * z_layers
assert len(mesh.cells_dict["tetra"]) == ref_tetras
return mesh
if __name__ == "__main__":
test().write("cube.vtu")
pygmsh-7.1.17/tests/built_in/test_rotated_layers.py 0000664 0000000 0000000 00000001556 14174766155 0022546 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test(mesh_size=0.05):
with pygmsh.geo.Geometry() as geom:
# Draw a square
poly = geom.add_polygon(
[
[+0.5, +0.0, 0.0],
[+0.0, +0.5, 0.0],
[-0.5, +0.0, 0.0],
[+0.0, -0.5, 0.0],
],
mesh_size=mesh_size,
)
axis = [0, 0, 1.0]
geom.twist(
poly,
translation_axis=axis,
rotation_axis=axis,
point_on_axis=[0.0, 0.0, 0.0],
angle=0.5 * pi,
num_layers=5,
recombine=True,
)
mesh = geom.generate_mesh()
ref = 3.98156496566
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("rotated_layers.vtu")
pygmsh-7.1.17/tests/built_in/test_rotation.py 0000664 0000000 0000000 00000002360 14174766155 0021356 0 ustar 00root root 0000000 0000000 """Test translation for all dimensions."""
import numpy as np
import pygmsh
def test_rotation2d():
"""Rotation of a surface object."""
angle = np.pi / 5
# Generate reference geometry
with pygmsh.geo.Geometry() as geom:
rect = geom.add_rectangle(0.0, 2.0, 0.0, 1.0, 0.0, 0.1)
mesh_unrot = geom.generate_mesh()
vertex_index = mesh_unrot.cells_dict["vertex"]
vertex_index = vertex_index.reshape((vertex_index.shape[0],))
with pygmsh.geo.Geometry() as geom:
# Generate rotated geometry
geom = pygmsh.geo.Geometry()
rect = geom.add_rectangle(0.0, 2.0, 0.0, 1.0, 0.0, 0.1)
geom.rotate(rect.surface, (0, 0, 0), angle, (0, 0, 1))
mesh = geom.generate_mesh()
new_vertex_index = mesh.cells_dict["vertex"]
new_vertex_index = new_vertex_index.reshape((new_vertex_index.shape[0],))
# Generate rotation matrix and compare with rotated geometry
Rm = pygmsh.helpers.rotation_matrix([0, 0, 1], angle)
for v, v_new in zip(vertex_index, new_vertex_index):
point = mesh_unrot.points[v, :]
rot_point = np.dot(Rm, point)
new_point = mesh.points[v, :]
assert np.allclose(rot_point, new_point)
if __name__ == "__main__":
test_rotation2d()
pygmsh-7.1.17/tests/built_in/test_screw.py 0000664 0000000 0000000 00000002017 14174766155 0020641 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test(mesh_size=0.05):
with pygmsh.geo.Geometry() as geom:
# Draw a cross with a circular hole
circ = geom.add_circle([0.0, 0.0], 0.1, mesh_size=mesh_size)
poly = geom.add_polygon(
[
[+0.0, +0.5],
[-0.1, +0.1],
[-0.5, +0.0],
[-0.1, -0.1],
[+0.0, -0.5],
[+0.1, -0.1],
[+0.5, +0.0],
[+0.1, +0.1],
],
mesh_size=mesh_size,
holes=[circ],
)
geom.twist(
poly,
translation_axis=[0.0, 0.0, 1.0],
rotation_axis=[0.0, 0.0, 1.0],
point_on_axis=[0.0, 0.0, 0.0],
angle=2.0 / 6.0 * np.pi,
)
mesh = geom.generate_mesh()
ref = 0.16951514066385628
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("screw.vtu")
pygmsh-7.1.17/tests/built_in/test_splines.py 0000664 0000000 0000000 00000001444 14174766155 0021176 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
lcar = 0.1
p1 = geom.add_point([0.0, 0.0, 0.0], lcar)
p2 = geom.add_point([1.0, 0.0, 0.0], lcar)
p3 = geom.add_point([1.0, 0.5, 0.0], lcar)
p4 = geom.add_point([1.0, 1.0, 0.0], lcar)
s1 = geom.add_spline([p1, p2, p3, p4])
p2 = geom.add_point([0.0, 1.0, 0.0], lcar)
p3 = geom.add_point([0.5, 1.0, 0.0], lcar)
s2 = geom.add_spline([p4, p3, p2, p1])
ll = geom.add_curve_loop([s1, s2])
geom.add_plane_surface(ll)
mesh = geom.generate_mesh()
ref = 1.0809439490373247
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("splines.vtu")
pygmsh-7.1.17/tests/built_in/test_subdomains.py 0000664 0000000 0000000 00000001603 14174766155 0021662 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
lcar = 0.1
circle = geom.add_circle([0.5, 0.5, 0.0], 1.0, lcar)
triangle = geom.add_polygon(
[[2.0, -0.5, 0.0], [4.0, -0.5, 0.0], [4.0, 1.5, 0.0]], lcar
)
rectangle = geom.add_rectangle(4.75, 6.25, -0.24, 1.25, 0.0, lcar)
# hold all domain
geom.add_polygon(
[
[-1.0, -1.0, 0.0],
[+7.0, -1.0, 0.0],
[+7.0, +2.0, 0.0],
[-1.0, +2.0, 0.0],
],
lcar,
holes=[circle.curve_loop, triangle.curve_loop, rectangle.curve_loop],
)
mesh = geom.generate_mesh()
ref = 24.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("subdomains.vtu")
pygmsh-7.1.17/tests/built_in/test_swiss_cheese.py 0000664 0000000 0000000 00000001656 14174766155 0022212 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test():
X0 = np.array(
[[+0.0, +0.0, 0.0], [+0.5, +0.3, 0.1], [-0.5, +0.3, 0.1], [+0.5, -0.3, 0.1]]
)
R = np.array([0.1, 0.2, 0.1, 0.14])
with pygmsh.geo.Geometry() as geom:
holes = [
geom.add_ball(x0, r, with_volume=False, mesh_size=0.2 * r).surface_loop
for x0, r in zip(X0, R)
]
# geom.add_box(
# -1, 1,
# -1, 1,
# -1, 1,
# mesh_size=0.2,
# holes=holes
# )
geom.add_ball([0, 0, 0], 1.0, mesh_size=0.2, holes=holes)
# geom.add_physical_volume(ball, label="cheese")
mesh = geom.generate_mesh(algorithm=5)
ref = 4.07064892966291
assert abs(compute_volume(mesh) - ref) < 2.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("swiss_cheese.vtu")
pygmsh-7.1.17/tests/built_in/test_symmetrize.py 0000664 0000000 0000000 00000000770 14174766155 0021732 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0]],
mesh_size=0.05,
)
cp = geom.copy(poly)
geom.symmetrize(cp, [0.0, 1.0, 0.0, -0.5])
mesh = geom.generate_mesh()
ref = 1.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("symmetry.vtk")
pygmsh-7.1.17/tests/built_in/test_tori.py 0000664 0000000 0000000 00000001425 14174766155 0020475 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test(irad=0.05, orad=0.6):
"""Torus, rotated in space."""
with pygmsh.geo.Geometry() as geom:
R = pygmsh.rotation_matrix([1.0, 0.0, 0.0], np.pi / 2)
geom.add_torus(irad=irad, orad=orad, mesh_size=0.03, x0=[0.0, 0.0, -1.0], R=R)
R = pygmsh.rotation_matrix([0.0, 1.0, 0.0], np.pi / 2)
geom.add_torus(
irad=irad,
orad=orad,
mesh_size=0.03,
x0=[0.0, 0.0, 1.0],
variant="extrude_circle",
)
mesh = geom.generate_mesh()
ref = 2 * 2 * np.pi ** 2 * orad * irad ** 2
assert np.isclose(compute_volume(mesh), ref, rtol=5e-2)
return mesh
if __name__ == "__main__":
test().write("torus.vtu")
pygmsh-7.1.17/tests/built_in/test_torus.py 0000664 0000000 0000000 00000001037 14174766155 0020673 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test(irad=0.05, orad=0.6):
"""Torus, rotated in space."""
with pygmsh.geo.Geometry() as geom:
R = pygmsh.rotation_matrix([1.0, 0.0, 0.0], np.pi / 2)
geom.add_torus(irad=irad, orad=orad, mesh_size=0.03, x0=[0.0, 0.0, -1.0], R=R)
mesh = geom.generate_mesh()
ref = 2 * np.pi ** 2 * orad * irad ** 2
assert np.isclose(compute_volume(mesh), ref, rtol=5e-2)
return mesh
if __name__ == "__main__":
test().write("torus.vtu")
pygmsh-7.1.17/tests/built_in/test_torus_crowd.py 0000664 0000000 0000000 00000003357 14174766155 0022100 0 ustar 00root root 0000000 0000000 import numpy as np
from helpers import compute_volume
import pygmsh
def test():
# internal radius of torus
irad = 0.15
# external radius of torus
orad = 0.27
Z_pos = (irad + orad) * np.concatenate(
[+np.ones(8), -np.ones(8), +np.ones(8), -np.ones(8)]
)
Alpha = np.concatenate(
[
np.arange(8) * np.pi / 4.0,
np.arange(8) * np.pi / 4.0 + np.pi / 16.0,
np.arange(8) * np.pi / 4.0,
np.arange(8) * np.pi / 4.0 + np.pi / 16.0,
]
)
A1 = (
(irad + orad)
/ np.tan(np.pi / 8.0)
* np.concatenate(
[1.6 * np.ones(8), 1.6 * np.ones(8), 1.9 * np.ones(8), 1.9 * np.ones(8)]
)
)
with pygmsh.geo.Geometry() as geom:
for alpha, a1, z in zip(Alpha, A1, Z_pos):
# Rotate torus to the y-z-plane.
R1 = pygmsh.rotation_matrix([0.0, 1.0, 0.0], 0.5 * np.pi)
R2 = pygmsh.rotation_matrix([0.0, 0.0, 1.0], alpha)
x0 = np.array([a1, 0.0, 0.0])
x1 = np.array([0.0, 0.0, z])
# First rotate to y-z-plane, then move out to a1, rotate by angle
# alpha, move up by z.
#
# xnew = R2*(R1*x+x0) + x1
#
geom.add_torus(
irad=irad,
orad=orad,
mesh_size=0.1,
R=np.dot(R2, R1),
x0=np.dot(R2, x0) + x1,
)
geom.add_box(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0, mesh_size=0.3)
mesh = geom.generate_mesh()
ref = len(A1) * 2 * np.pi ** 2 * orad * irad ** 2 + 2.0 ** 3
assert np.isclose(compute_volume(mesh), ref, rtol=2e-2)
return mesh
if __name__ == "__main__":
test().write("torus_crowd.vtu")
pygmsh-7.1.17/tests/built_in/test_transfinite.py 0000664 0000000 0000000 00000000700 14174766155 0022041 0 ustar 00root root 0000000 0000000 import pygmsh
def test(lcar=0.1):
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]], lcar
)
geom.set_transfinite_surface(poly, "Left", corner_pts=[])
mesh = geom.generate_mesh()
assert len(mesh.cells_dict["triangle"]) == 10 * 10 * 2
return mesh
if __name__ == "__main__":
test().write("transfinite.vtu")
pygmsh-7.1.17/tests/built_in/test_unordered_unoriented.py 0000664 0000000 0000000 00000002106 14174766155 0023740 0 ustar 00root root 0000000 0000000 import random
import numpy as np
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
# Generate an approximation of a circle
t = np.arange(0, 2.0 * np.pi, 0.05)
x = np.column_stack([np.cos(t), np.sin(t), np.zeros_like(t)])
points = [geom.add_point(p) for p in x]
# Shuffle the orientation of lines by point order
o = [0 if k % 3 == 0 else 1 for k in range(len(points))]
lines = [
geom.add_line(points[k + o[k]], points[k + (o[k] + 1) % 2])
for k in range(len(points) - 1)
]
lines.append(geom.add_line(points[-1], points[0]))
# Shuffle the order of lines
random.seed(1)
random.shuffle(lines)
oriented_lines = pygmsh.orient_lines(lines)
ll = geom.add_curve_loop(oriented_lines)
geom.add_plane_surface(ll)
mesh = geom.generate_mesh()
ref = np.pi
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("physical.vtu")
pygmsh-7.1.17/tests/built_in/test_volume.py 0000664 0000000 0000000 00000001115 14174766155 0021023 0 ustar 00root root 0000000 0000000 import meshio
import numpy as np
from helpers import compute_volume
def test_volume():
points = np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[3.0, 0.0, 0.0],
[3.0, 1.0, 0.0],
[2.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
]
)
cells = {
"triangle": np.array([[0, 1, 6], [0, 6, 7]]),
"quad": np.array([[1, 2, 5, 6], [2, 3, 4, 5]]),
}
vol = compute_volume(meshio.Mesh(points, cells))
assert abs(vol - 3.0) < 1.0e-14
pygmsh-7.1.17/tests/helpers.py 0000664 0000000 0000000 00000005107 14174766155 0016317 0 ustar 00root root 0000000 0000000 import math
import numpy as np
def prune_nodes(points, cells):
# Only points/cells that actually used
uvertices, uidx = np.unique(cells, return_inverse=True)
cells = uidx.reshape(cells.shape)
points = points[uvertices]
return points, cells
def get_triangle_volumes(pts, cells):
# Works in any dimension; taken from voropy
local_idx = np.array([[1, 2], [2, 0], [0, 1]]).T
idx_hierarchy = cells.T[local_idx]
half_edge_coords = pts[idx_hierarchy[1]] - pts[idx_hierarchy[0]]
ei_dot_ej = np.einsum(
"ijk, ijk->ij", half_edge_coords[[1, 2, 0]], half_edge_coords[[2, 0, 1]]
)
vols = 0.5 * np.sqrt(
+ei_dot_ej[2] * ei_dot_ej[0]
+ ei_dot_ej[0] * ei_dot_ej[1]
+ ei_dot_ej[1] * ei_dot_ej[2]
)
return vols
def get_simplex_volumes(pts, cells):
"""Signed volume of a simplex in nD. Note that signing only makes sense for
n-simplices in R^n.
"""
n = pts.shape[1]
assert cells.shape[1] == n + 1
p = pts[cells]
p = np.concatenate([p, np.ones(list(p.shape[:2]) + [1])], axis=-1)
return np.abs(np.linalg.det(p) / math.factorial(n))
def compute_volume(mesh):
if "tetra" in mesh.cells_dict:
vol = math.fsum(
get_simplex_volumes(*prune_nodes(mesh.points, mesh.cells_dict["tetra"]))
)
elif "triangle" in mesh.cells_dict or "quad" in mesh.cells_dict:
vol = 0.0
if "triangle" in mesh.cells_dict:
# triangles
vol += math.fsum(
get_triangle_volumes(
*prune_nodes(mesh.points, mesh.cells_dict["triangle"])
)
)
if "quad" in mesh.cells_dict:
# quad: treat as two triangles
quads = mesh.cells_dict["quad"].T
split_cells = np.column_stack(
[[quads[0], quads[1], quads[2]], [quads[0], quads[2], quads[3]]]
).T
vol += math.fsum(
get_triangle_volumes(*prune_nodes(mesh.points, split_cells))
)
else:
assert "line" in mesh.cells_dict
segs = np.diff(mesh.points[mesh.cells_dict["line"]], axis=1).squeeze()
vol = np.sum(np.sqrt(np.einsum("...j, ...j", segs, segs)))
return vol
def plot(filename, points, triangles):
from matplotlib import pyplot as plt
pts = points[:, :2]
for e in triangles:
for idx in [[0, 1], [1, 2], [2, 0]]:
X = pts[e[idx]]
plt.plot(X[:, 0], X[:, 1], "-k")
plt.gca().set_aspect("equal", "datalim")
plt.axis("off")
# plt.show()
plt.savefig(filename, transparent=True)
pygmsh-7.1.17/tests/occ/ 0000775 0000000 0000000 00000000000 14174766155 0015044 5 ustar 00root root 0000000 0000000 pygmsh-7.1.17/tests/occ/helpers.py 0000664 0000000 0000000 00000005107 14174766155 0017063 0 ustar 00root root 0000000 0000000 import math
import numpy as np
def prune_nodes(points, cells):
# Only points/cells that actually used
uvertices, uidx = np.unique(cells, return_inverse=True)
cells = uidx.reshape(cells.shape)
points = points[uvertices]
return points, cells
def get_triangle_volumes(pts, cells):
# Works in any dimension; taken from voropy
local_idx = np.array([[1, 2], [2, 0], [0, 1]]).T
idx_hierarchy = cells.T[local_idx]
half_edge_coords = pts[idx_hierarchy[1]] - pts[idx_hierarchy[0]]
ei_dot_ej = np.einsum(
"ijk, ijk->ij", half_edge_coords[[1, 2, 0]], half_edge_coords[[2, 0, 1]]
)
vols = 0.5 * np.sqrt(
+ei_dot_ej[2] * ei_dot_ej[0]
+ ei_dot_ej[0] * ei_dot_ej[1]
+ ei_dot_ej[1] * ei_dot_ej[2]
)
return vols
def get_simplex_volumes(pts, cells):
"""Signed volume of a simplex in nD. Note that signing only makes sense for
n-simplices in R^n.
"""
n = pts.shape[1]
assert cells.shape[1] == n + 1
p = pts[cells]
p = np.concatenate([p, np.ones(list(p.shape[:2]) + [1])], axis=-1)
return np.abs(np.linalg.det(p) / math.factorial(n))
def compute_volume(mesh):
if "tetra" in mesh.cells_dict:
vol = math.fsum(
get_simplex_volumes(*prune_nodes(mesh.points, mesh.cells_dict["tetra"]))
)
elif "triangle" in mesh.cells_dict or "quad" in mesh.cells_dict:
vol = 0.0
if "triangle" in mesh.cells_dict:
# triangles
vol += math.fsum(
get_triangle_volumes(
*prune_nodes(mesh.points, mesh.cells_dict["triangle"])
)
)
if "quad" in mesh.cells_dict:
# quad: treat as two triangles
quads = mesh.cells_dict["quad"].T
split_cells = np.column_stack(
[[quads[0], quads[1], quads[2]], [quads[0], quads[2], quads[3]]]
).T
vol += math.fsum(
get_triangle_volumes(*prune_nodes(mesh.points, split_cells))
)
else:
assert "line" in mesh.cells_dict
segs = np.diff(mesh.points[mesh.cells_dict["line"]], axis=1).squeeze()
vol = np.sum(np.sqrt(np.einsum("...j, ...j", segs, segs)))
return vol
def plot(filename, points, triangles):
from matplotlib import pyplot as plt
pts = points[:, :2]
for e in triangles:
for idx in [[0, 1], [1, 2], [2, 0]]:
X = pts[e[idx]]
plt.plot(X[:, 0], X[:, 1], "-k")
plt.gca().set_aspect("equal", "datalim")
plt.axis("off")
# plt.show()
plt.savefig(filename, transparent=True)
pygmsh-7.1.17/tests/occ/test_ball_with_stick.py 0000664 0000000 0000000 00000002043 14174766155 0021616 0 ustar 00root root 0000000 0000000 import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.1
geom.characteristic_length_max = 0.1
ball = geom.add_ball([0.0, 0.0, 0.0], 1.0)
box1 = geom.add_box([0, 0, 0], [1, 1, 1])
box2 = geom.add_box([-2, -0.5, -0.5], [1.5, 0.8, 0.8])
cut = geom.boolean_difference(ball, box1)
frag = geom.boolean_fragments(cut, box2)
# The three fragments are:
# frag[0]: The ball with two cuts
# frag[1]: The intersection of the stick and the ball
# frag[2]: The stick without the ball
geom.add_physical([frag[0], frag[1]], label="Sphere cut by box 1")
geom.add_physical(frag[2], label="Box 2 cut by sphere")
mesh = geom.generate_mesh(algorithm=6)
assert "Sphere cut by box 1" in mesh.cell_sets
assert "Box 2 cut by sphere" in mesh.cell_sets
# mesh.remove_lower_dimensional_cells()
# mesh.sets_to_int_data()
return mesh
if __name__ == "__main__":
test().write("ball-with-stick.vtu")
pygmsh-7.1.17/tests/occ/test_logo.py 0000664 0000000 0000000 00000005012 14174766155 0017413 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
# test setters, getters
print(geom.characteristic_length_min)
print(geom.characteristic_length_max)
geom.characteristic_length_min = 2.0
geom.characteristic_length_max = 2.0
rect1 = geom.add_rectangle([10.0, 0.0, 0.0], 20.0, 40.0, corner_radius=5.0)
rect2 = geom.add_rectangle([0.0, 10.0, 0.0], 40.0, 20.0, corner_radius=5.0)
disk1 = geom.add_disk([14.5, 35.0, 0.0], 1.85)
disk2 = geom.add_disk([25.5, 5.0, 0.0], 1.85)
rect3 = geom.add_rectangle([10.0, 30.0, 0.0], 10.0, 1.0)
rect4 = geom.add_rectangle([20.0, 9.0, 0.0], 10.0, 1.0)
r1 = geom.add_rectangle([9.0, 0.0, 0.0], 21.0, 20.5, corner_radius=8.0)
r2 = geom.add_rectangle([10.0, 00.0, 0.0], 20.0, 19.5, corner_radius=7.0)
diff1 = geom.boolean_difference(r1, r2)
r22 = geom.add_rectangle([9.0, 10.0, 0.0], 11.0, 11.0)
inter1 = geom.boolean_intersection([diff1, r22])
r3 = geom.add_rectangle([10.0, 19.5, 0.0], 21.0, 21.0, corner_radius=8.0)
r4 = geom.add_rectangle([10.0, 20.5, 0.0], 20.0, 20.0, corner_radius=7.0)
diff2 = geom.boolean_difference(r3, r4)
r33 = geom.add_rectangle([20.0, 19.0, 0.0], 11.0, 11.0)
inter2 = geom.boolean_intersection([diff2, r33])
geom.boolean_difference(
geom.boolean_union([rect1, rect2]),
geom.boolean_union([disk1, disk2, rect3, rect4, inter1, inter2]),
)
mesh = geom.generate_mesh()
ref = 1082.4470502181903
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
mesh = test()
points = mesh.points
cells = mesh.get_cells_type("triangle")
# import optimesh
# # points, cells = optimesh.cvt.quasi_newton_uniform_lloyd(
# # points, cells, 1.0e-5, 1000, omega=2.0, verbose=True
# # )
# # points, cells = optimesh.cvt.quasi_newton_uniform_blocks(
# # points, cells, 1.0e-5, 1000, verbose=True
# # )
# points, cells = optimesh.cvt.quasi_newton_uniform_full(
# points, cells, 1.0e-5, 1000, verbose=True
# )
# # from helpers import plot
# # plot("logo.png", points, {"triangle": cells})
import meshio
# meshio.write_points_cells("logo.vtu", points, {"triangle": cells})
mesh = meshio.Mesh(points, {"triangle": cells})
meshio.svg.write(
"logo.svg", mesh, float_fmt=".3f", stroke_width="1", force_width=300
)
pygmsh-7.1.17/tests/occ/test_meshio_logo.py 0000664 0000000 0000000 00000001636 14174766155 0020767 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
container = geom.add_rectangle([0.0, 0.0, 0.0], 10.0, 10.0)
letter_i = geom.add_rectangle([2.0, 2.0, 0.0], 1.0, 4.5)
i_dot = geom.add_disk([2.5, 7.5, 0.0], 0.6)
disk1 = geom.add_disk([6.25, 4.5, 0.0], 2.5)
disk2 = geom.add_disk([6.25, 4.5, 0.0], 1.5)
letter_o = geom.boolean_difference(disk1, disk2)
geom.boolean_difference(
container, geom.boolean_union([letter_i, i_dot, letter_o])
)
mesh = geom.generate_mesh()
ref = 81.9131851877
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
# import meshio
# meshio.write_points_cells('m.vtu', *test())
from helpers import plot
mesh = test()
plot("meshio_logo.png", mesh.points, mesh.get_cells_type("triangle"))
pygmsh-7.1.17/tests/occ/test_opencascade_ball.py 0000664 0000000 0000000 00000000572 14174766155 0021720 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_ball([0.0, 0.0, 0.0], 1.0, mesh_size=0.1)
mesh = geom.generate_mesh()
ref = 4 / 3 * pi
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_ball.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_boolean.py 0000664 0000000 0000000 00000004724 14174766155 0022430 0 ustar 00root root 0000000 0000000 import math
from helpers import compute_volume
import pygmsh
def test_union():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.1
geom.characteristic_length_max = 0.1
rectangle = geom.add_rectangle([-1.0, -1.0, 0.0], 2.0, 2.0)
disk_w = geom.add_disk([-1.0, 0.0, 0.0], 0.5)
disk_e = geom.add_disk([+1.0, 0.0, 0.0], 0.5)
geom.boolean_union([rectangle, disk_w, disk_e])
mesh = geom.generate_mesh()
ref = 4.780361
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
def test_intersection():
with pygmsh.occ.Geometry() as geom:
angles = [math.pi * 3 / 6, math.pi * 7 / 6, math.pi * 11 / 6]
disks = [
geom.add_disk([math.cos(angles[0]), math.sin(angles[0]), 0.0], 1.5),
geom.add_disk([math.cos(angles[1]), math.sin(angles[1]), 0.0], 1.5),
geom.add_disk([math.cos(angles[2]), math.sin(angles[2]), 0.0], 1.5),
]
geom.boolean_intersection(disks)
mesh = geom.generate_mesh()
ref = 1.0290109753807914
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
def test_difference():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.1
geom.characteristic_length_max = 0.1
rectangle = geom.add_rectangle([-1.0, -1.0, 0.0], 2.0, 2.0)
disk_w = geom.add_disk([-1.0, 0.0, 0.0], 0.5)
disk_e = geom.add_disk([+1.0, 0.0, 0.0], 0.5)
geom.boolean_union([disk_w, disk_e])
geom.boolean_difference(rectangle, geom.boolean_union([disk_w, disk_e]))
mesh = geom.generate_mesh()
ref = 3.2196387
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
def test_all():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.1
geom.characteristic_length_max = 0.1
rectangle = geom.add_rectangle([-1.0, -1.0, 0.0], 2.0, 2.0)
disk1 = geom.add_disk([-1.0, 0.0, 0.0], 0.5)
disk2 = geom.add_disk([+1.0, 0.0, 0.0], 0.5)
union = geom.boolean_union([rectangle, disk1, disk2])
disk3 = geom.add_disk([0.0, -1.0, 0.0], 0.5)
disk4 = geom.add_disk([0.0, +1.0, 0.0], 0.5)
geom.boolean_difference(union, geom.boolean_union([disk3, disk4]))
mesh = geom.generate_mesh()
ref = 4.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test_difference().write("boolean.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_booleans.py 0000664 0000000 0000000 00000014267 14174766155 0022616 0 ustar 00root root 0000000 0000000 """Test module for boolean operations."""
import meshio
import numpy as np
import pytest
from helpers import compute_volume
import pygmsh
def square_loop(geom):
"""Construct square using built in geometry."""
points = [
geom.add_point([-0.5, -0.5], 0.05),
geom.add_point([-0.5, 0.5], 0.05),
geom.add_point([0.5, 0.5], 0.05),
geom.add_point([0.5, -0.5], 0.05),
]
lines = [
geom.add_line(points[0], points[1]),
geom.add_line(points[1], points[2]),
geom.add_line(points[2], points[3]),
geom.add_line(points[3], points[0]),
]
return geom.add_curve_loop(lines)
def circle_loop(geom):
"""construct circle using geo geometry module."""
points = [
geom.add_point([+0.0, +0.0], 0.05),
geom.add_point([+0.0, +0.1], 0.05),
geom.add_point([-0.1, +0.0], 0.05),
geom.add_point([+0.0, -0.1], 0.05),
geom.add_point([+0.1, +0.0], 0.05),
]
quarter_circles = [
geom.add_circle_arc(points[1], points[0], points[2]),
geom.add_circle_arc(points[2], points[0], points[3]),
geom.add_circle_arc(points[3], points[0], points[4]),
geom.add_circle_arc(points[4], points[0], points[1]),
]
return geom.add_curve_loop(quarter_circles)
def _square_hole_classical(geom):
"""Construct surface using builtin and boolean methods."""
# construct surface with hole using standard built in
geom.characteristic_length_min = 0.05
geom.characteristic_length_max = 0.05
square = square_loop(geom)
circle = circle_loop(geom)
geom.add_plane_surface(square, [circle])
def _square_hole_cad(geom):
# construct surface using boolean
geom.characteristic_length_min = 0.05
geom.characteristic_length_max = 0.05
square2 = square_loop(geom)
curve_loop2 = circle_loop(geom)
surf1 = geom.add_plane_surface(square2)
surf2 = geom.add_plane_surface(curve_loop2)
geom.boolean_difference(surf1, surf2)
@pytest.mark.parametrize("fun", [_square_hole_classical, _square_hole_cad])
def test_square_circle_hole(fun):
"""Test planar surface with holes.
Construct it with boolean operations and verify that it is the same.
"""
with pygmsh.occ.Geometry() as geom:
fun(geom)
mesh = geom.generate_mesh()
surf = 1 - 0.1 ** 2 * np.pi
assert np.abs((compute_volume(mesh) - surf) / surf) < 1e-3
@pytest.mark.skip()
def test_square_circle_slice():
"""Test planar surface square with circular hole.
Also test for surface area of fragments.
"""
with pygmsh.occ.Geometry() as geom:
square = square_loop(geom)
curve_loop = circle_loop(geom)
surf1 = geom.add_plane_surface(square)
surf2 = geom.add_plane_surface(curve_loop)
geom.boolean_fragments(surf1, surf2)
mesh = geom.generate_mesh()
ref = 1.0
val = compute_volume(mesh)
assert np.abs(val - ref) < 1e-3 * ref
# Gmsh 4 default format MSH4 doesn't have geometrical entities.
outer_mask = np.where(mesh.cell_data["gmsh:geometrical"][2] == 13)[0]
outer_cells = {}
outer_cells["triangle"] = mesh.cells_dict["triangle"][outer_mask]
inner_mask = np.where(mesh.cell_data["gmsh:geometrical"][2] == 12)[0]
inner_cells = {}
inner_cells["triangle"] = mesh.cells_dict["triangle"][inner_mask]
ref = 1 - 0.1 ** 2 * np.pi
value = compute_volume(meshio.Mesh(mesh.points, outer_cells))
assert np.abs(value - ref) < 1e-2 * ref
@pytest.mark.skip("cell data not working yet")
def test_fragments_diff_union():
"""Test planar surface with holes.
Construct it with boolean operations and verify that it is the same.
"""
# construct surface using boolean
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.04
geom.characteristic_length_max = 0.04
square = square_loop(geom)
surf1 = geom.add_plane_surface(square)
curve_loop = circle_loop(geom)
surf2 = geom.add_plane_surface(curve_loop)
geom.add_physical([surf1], label="1")
geom.add_physical([surf2], label="2")
geom.boolean_difference(surf1, surf2, delete_other=False)
mesh = geom.generate_mesh()
ref = 1.0
assert np.abs(compute_volume(mesh) - ref) < 1e-3 * ref
surf = 1 - 0.1 ** 2 * np.pi
outer_mask = np.where(mesh.cell_data_dict["gmsh:geometrical"]["triangle"] == 1)[0]
outer_cells = {}
outer_cells["triangle"] = mesh.cells_dict["triangle"][outer_mask]
inner_mask = np.where(mesh.cell_data_dict["gmsh:geometrical"]["triangle"] == 2)[0]
inner_cells = {}
inner_cells["triangle"] = mesh.cells_dict["triangle"][inner_mask]
value = compute_volume(meshio.Mesh(mesh.points, outer_cells))
assert np.abs(value - surf) < 1e-2 * surf
@pytest.mark.skip("cell data not working yet")
def test_diff_physical_assignment():
"""construct surface using boolean.
Ensure that after a difference operation the initial volume physical label
is kept for the operated geometry.
"""
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.05
geom.characteristic_length_max = 0.05
square2 = square_loop(geom)
curve_loop2 = circle_loop(geom)
surf1 = geom.add_plane_surface(square2)
surf2 = geom.add_plane_surface(curve_loop2)
geom.add_physical(surf1, label="1")
geom.boolean_difference(surf1, surf2)
mesh = geom.generate_mesh()
assert np.allclose(
mesh.cell_data_dict["gmsh:geometrical"]["triangle"],
np.ones(mesh.cells_dict["triangle"].shape[0]),
)
surf = 1 - 0.1 ** 2 * np.pi
assert np.abs((compute_volume(mesh) - surf) / surf) < 1e-3
def test_polygon_diff():
with pygmsh.occ.Geometry() as geom:
poly = geom.add_polygon([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
disk = geom.add_disk([0, 0, 0], 0.5)
geom.boolean_difference(poly, disk)
def test_mesh_size_removal():
with pygmsh.occ.Geometry() as geom:
box0 = geom.add_box([0.0, 0, 0], [1, 1, 1], mesh_size=0.1)
box1 = geom.add_box([0.5, 0.5, 1], [0.5, 0.5, 1], mesh_size=0.2)
geom.boolean_union([box0, box1])
geom.generate_mesh()
if __name__ == "__main__":
test_square_circle_slice()
pygmsh-7.1.17/tests/occ/test_opencascade_box.py 0000664 0000000 0000000 00000000542 14174766155 0021573 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_box([0.0, 0.0, 0.0], [1, 2, 3], mesh_size=0.1)
mesh = geom.generate_mesh()
ref = 6.0
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_box.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_builtin_mix.py 0000664 0000000 0000000 00000001606 14174766155 0023330 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_max = 0.1
p0 = geom.add_point([-0.5, -0.5, 0], 0.01)
p1 = geom.add_point([+0.5, -0.5, 0], 0.01)
p2 = geom.add_point([+0.5, +0.5, 0], 0.01)
p3 = geom.add_point([-0.5, +0.5, 0], 0.01)
l0 = geom.add_line(p0, p1)
l1 = geom.add_line(p1, p2)
l2 = geom.add_line(p2, p3)
l3 = geom.add_line(p3, p0)
ll0 = geom.add_curve_loop([l0, l1, l2, l3])
square_builtin = geom.add_plane_surface(ll0)
square_occ = geom.add_rectangle([0, 0, 0], 1.0, 1.0)
geom.boolean_difference(square_occ, square_builtin)
mesh = geom.generate_mesh()
ref = 0.75
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("mix.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_cone.py 0000664 0000000 0000000 00000000767 14174766155 0021740 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_cone(
[0.0, 0.0, 0.0],
[0.0, 0.0, 1.0],
1.0,
0.3,
mesh_size=0.1,
angle=1.25 * pi,
)
mesh = geom.generate_mesh()
ref = 0.90779252263
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_cone.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_cylinder.py 0000664 0000000 0000000 00000000670 14174766155 0022616 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_cylinder(
[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], 0.5, 0.25 * pi, mesh_size=0.1
)
mesh = geom.generate_mesh()
ref = 0.097625512963
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_cylinder.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_ellipsoid.py 0000664 0000000 0000000 00000000616 14174766155 0022771 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_ellipsoid([1.0, 1.0, 1.0], [1.0, 2.0, 3.0], mesh_size=0.1)
mesh = geom.generate_mesh()
ref = 8.0 * pi
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_ellipsoid.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_extrude.py 0000664 0000000 0000000 00000004617 14174766155 0022472 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_max = 0.05
rectangle = geom.add_rectangle([-1.0, -1.0, 0.0], 2.0, 2.0, corner_radius=0.2)
disk1 = geom.add_disk([-1.2, 0.0, 0.0], 0.5)
disk2 = geom.add_disk([+1.2, 0.0, 0.0], 0.5, 0.3)
disk3 = geom.add_disk([0.0, -0.9, 0.0], 0.5)
disk4 = geom.add_disk([0.0, +0.9, 0.0], 0.5)
flat = geom.boolean_difference(
geom.boolean_union([rectangle, disk1, disk2]),
geom.boolean_union([disk3, disk4]),
)
geom.extrude(flat, [0, 0, 0.3])
mesh = geom.generate_mesh()
ref = 1.1742114942
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
def test2():
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_max = 1.0
mesh_size = 1
h = 25
w = 10
length = 100
# x_fin = -0.5 * length
cr = 1
f = 0.5 * w
y = [-f, -f + cr, +f - cr, +f]
z = [0.0, h - cr, h]
f = 0.5 * cr
x = [-f, f]
points = [
geom.add_point((x[0], y[0], z[0]), mesh_size=mesh_size),
geom.add_point((x[0], y[0], z[1]), mesh_size=mesh_size),
geom.add_point((x[0], y[1], z[1]), mesh_size=mesh_size),
geom.add_point((x[0], y[1], z[2]), mesh_size=mesh_size),
geom.add_point((x[0], y[2], z[2]), mesh_size=mesh_size),
geom.add_point((x[0], y[2], z[1]), mesh_size=mesh_size),
geom.add_point((x[0], y[3], z[1]), mesh_size=mesh_size),
geom.add_point((x[0], y[3], z[0]), mesh_size=mesh_size),
]
lines = [
geom.add_line(points[0], points[1]),
geom.add_circle_arc(points[1], points[2], points[3]),
geom.add_line(points[3], points[4]),
geom.add_circle_arc(points[4], points[5], points[6]),
geom.add_line(points[6], points[7]),
geom.add_line(points[7], points[0]),
]
curve_loop = geom.add_curve_loop(lines)
surface = geom.add_plane_surface(curve_loop)
geom.extrude(surface, translation_axis=[length, 0, 0])
mesh = geom.generate_mesh()
ref = 24941.503891355664
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_extrude.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_regular_extrusion.py 0000664 0000000 0000000 00000001517 14174766155 0024567 0 ustar 00root root 0000000 0000000 """Creates regular cube mesh by extrusion.
"""
from helpers import compute_volume
import pygmsh
def test():
x = 5
y = 4
z = 3
x_layers = 10
y_layers = 5
z_layers = 3
with pygmsh.occ.Geometry() as geom:
p = geom.add_point([0, 0, 0], 1)
_, l, _ = geom.extrude(p, [x, 0, 0], num_layers=x_layers)
_, s, _ = geom.extrude(l, [0, y, 0], num_layers=y_layers)
geom.extrude(s, [0, 0, z], num_layers=z_layers)
mesh = geom.generate_mesh()
ref_vol = x * y * z
assert abs(compute_volume(mesh) - ref_vol) < 1.0e-2 * ref_vol
# Each grid-cell from layered extrusion will result in 6 tetrahedrons.
ref_tetras = 6 * x_layers * y_layers * z_layers
assert len(mesh.cells_dict["tetra"]) == ref_tetras
return mesh
if __name__ == "__main__":
test().write("cube.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_torus.py 0000664 0000000 0000000 00000000617 14174766155 0022162 0 ustar 00root root 0000000 0000000 from math import pi
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_torus([0.0, 0.0, 0.0], 1.0, 0.3, 1.25 * pi, mesh_size=0.1)
mesh = geom.generate_mesh()
ref = 1.09994740709
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_torus.vtu")
pygmsh-7.1.17/tests/occ/test_opencascade_wedge.py 0000664 0000000 0000000 00000000574 14174766155 0022103 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_wedge([0.0, 0.0, 0.0], [1.0, 1.0, 1.0], top_extent=0.4, mesh_size=0.1)
mesh = geom.generate_mesh()
ref = 0.7
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test().write("occ_wedge.vtu")
pygmsh-7.1.17/tests/occ/test_refinement.py 0000664 0000000 0000000 00000000635 14174766155 0020615 0 ustar 00root root 0000000 0000000 from math import sqrt
import pytest
import pygmsh
@pytest.mark.skip("Only works in Gmsh 4.7.0+")
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_ball([0.0, 0.0, 0.0], 1.0)
geom.set_mesh_size_callback(
lambda dim, tag, x, y, z: abs(sqrt(x ** 2 + y ** 2 + z ** 2) - 0.5) + 0.1
)
mesh = geom.generate_mesh()
assert mesh.cells[0].data.shape[0] > 1500
pygmsh-7.1.17/tests/occ/test_translations.py 0000664 0000000 0000000 00000003232 14174766155 0021176 0 ustar 00root root 0000000 0000000 """Test translation for all dimensions."""
import numpy as np
from helpers import compute_volume
import pygmsh
# def test_translation1d():
# """Translation of a line."""
# geom = pygmsh.geo.Geometry()
# points = []
# for array in [[1, 0, 0], [0, 0, 0], [0, 1, 0]]:
# points.append(geom.add_point(array, 0.5))
# circle = geom.add_circle_arc(*points)
# # mesh = geom.generate_mesh()
# geom.translate(circle, [1.5, 0, 0])
# translated_mesh = geom.generate_mesh()
# points[:, 0] = points[:, 0] + 1.5
# assert np.allclose(points, translated_mesh.points)
def test_translation2d():
"""Translation of a surface object."""
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.05
geom.characteristic_length_max = 0.05
disk = geom.add_disk([0, 0, 0], 1)
disk2 = geom.add_disk([1.5, 0, 0], 1)
geom.translate(disk, [1.5, 0, 0])
geom.boolean_union([disk2, disk])
mesh = geom.generate_mesh()
surf = np.pi
assert np.abs(compute_volume(mesh) - surf) < 1e-3 * surf
def test_translation3d():
"""Translation of a volume object."""
with pygmsh.occ.Geometry() as geom:
geom.characteristic_length_min = 0.2
geom.characteristic_length_max = 0.2
ball = geom.add_ball([0, 0, 0], 1)
ball2 = geom.add_ball([1.5, 0, 0], 1)
geom.translate(ball, [1.5, 0, 0])
geom.boolean_union([ball2, ball])
mesh = geom.generate_mesh()
surf = 4 / 3 * np.pi
assert np.abs(compute_volume(mesh) - surf) < 2e-2 * surf
if __name__ == "__main__":
# test_translation1d()
test_translation2d()
test_translation3d()
pygmsh-7.1.17/tests/test_boundary_layers.py 0000664 0000000 0000000 00000003651 14174766155 0021120 0 ustar 00root root 0000000 0000000 from helpers import compute_volume
import pygmsh
def test_geo():
with pygmsh.geo.Geometry() as geom:
poly = geom.add_polygon(
[
[0.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[3.0, 1.0, 0.0],
[1.0, 2.0, 0.0],
[0.0, 1.0, 0.0],
],
mesh_size=0.1,
)
field0 = geom.add_boundary_layer(
edges_list=[poly.curve_loop.curves[0]],
lcmin=0.01,
lcmax=0.1,
distmin=0.0,
distmax=0.2,
)
field1 = geom.add_boundary_layer(
nodes_list=[poly.curve_loop.curves[1].points[1]],
lcmin=0.01,
lcmax=0.1,
distmin=0.0,
distmax=0.2,
)
geom.set_background_mesh([field0, field1], operator="Min")
ref = 4.0
mesh = geom.generate_mesh()
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
def test_occ():
with pygmsh.occ.Geometry() as geom:
geom.add_rectangle([0.0, 0.5, 0.0], 5.0, 0.5)
edge1 = pygmsh.occ.dummy.Dummy(dim=1, id0=1)
point1 = pygmsh.occ.dummy.Dummy(dim=0, id0=3)
field0 = geom.add_boundary_layer(
edges_list=[edge1],
lcmin=0.01,
lcmax=0.1,
distmin=0.0,
distmax=0.2,
num_points_per_curve=50,
)
field1 = geom.add_boundary_layer(
nodes_list=[point1],
lcmin=0.01,
lcmax=0.1,
distmin=0.0,
distmax=0.2,
num_points_per_curve=50,
)
geom.set_background_mesh([field0, field1], operator="Min")
ref = 2.5
mesh = geom.generate_mesh()
assert abs(compute_volume(mesh) - ref) < 1.0e-2 * ref
return mesh
if __name__ == "__main__":
test_geo().write("boundary_layers_geo.vtu")
test_occ().write("boundary_layers_occ.vtu")
pygmsh-7.1.17/tests/test_extrusion_entities.py 0000664 0000000 0000000 00000003631 14174766155 0021660 0 ustar 00root root 0000000 0000000 """Create several entities by extrusion, check that the expected
sub-entities are returned and the resulting mesh is correct.
"""
import numpy as np
import pytest
import pygmsh
@pytest.mark.parametrize("kernel", [pygmsh.geo, pygmsh.occ])
def test(kernel):
with kernel.Geometry() as geom:
p = geom.add_point([0, 0], 1)
p_top, _, _ = geom.extrude(p, translation_axis=[1, 0, 0])
# The mesh should now contain exactly two points, the second one should be where
# the translation pointed.
mesh = geom.generate_mesh()
assert len(mesh.points) == 2
assert np.array_equal(mesh.points[-1], [1, 0, 0])
# Check that the top entity (a PointBase) can be extruded correctly again.
_, _, _ = geom.extrude(p_top, translation_axis=[1, 0, 0])
mesh = geom.generate_mesh()
assert len(mesh.points) == 3
assert np.array_equal(mesh.points[-1], [2, 0, 0])
# Set up new geometry with one line.
with kernel.Geometry() as geom:
p1 = geom.add_point([0, 0], 1.0)
p2 = geom.add_point([1, 0], 1.0)
line = geom.add_line(p1, p2)
l_top, _, _ = geom.extrude(line, [0, 1, 0])
mesh = geom.generate_mesh()
assert len(mesh.points) == 5
assert np.array_equal(mesh.points[-2], [1, 1, 0])
# Check again for top entity (a LineBase).
_, _, _ = geom.extrude(l_top, [0, 1, 0])
mesh = geom.generate_mesh()
assert len(mesh.points) == 8
assert np.array_equal(mesh.points[-3], [1, 2, 0])
# Check that extrusion works on a Polygon
poly = geom.add_polygon([[5.0, 0.0], [6.0, 0.0], [5.0, 1.0]], mesh_size=1e20)
a, b, poly_lat = geom.extrude(poly, [0.0, 0.0, 1.0], num_layers=1)
mesh = geom.generate_mesh()
assert len(mesh.points) == 8 + 6
assert len(poly_lat) == 3
if __name__ == "__main__":
test(pygmsh.geo)
# test(pygmsh.occ)
pygmsh-7.1.17/tests/test_helpers.py 0000664 0000000 0000000 00000001053 14174766155 0017352 0 ustar 00root root 0000000 0000000 """Tests module for helpers in tests."""
import numpy as np
from helpers import compute_volume
import pygmsh
def test():
with pygmsh.geo.Geometry() as geom:
geom.add_circle([0, 0, 0], 1, 0.1, make_surface=False)
mesh = geom.generate_mesh()
ref = 2 * np.pi
assert np.abs(compute_volume(mesh) - ref) < 1e-2 * ref
def test_save_geo():
with pygmsh.geo.Geometry() as geom:
geom.add_circle([0, 0, 0], 1, 0.1, make_surface=False)
geom.save_geometry("out.geo_unrolled")
if __name__ == "__main__":
test()
pygmsh-7.1.17/tests/test_labels.py 0000664 0000000 0000000 00000000464 14174766155 0017157 0 ustar 00root root 0000000 0000000 import pytest
def test_raise_duplicate():
import pygmsh
with pygmsh.geo.Geometry() as geom:
p = geom.add_rectangle(-1, 1, -1, 1, z=0, mesh_size=1)
geom.add_physical(p.lines[0], label="A")
with pytest.raises(ValueError):
geom.add_physical(p.lines[1], label="A")
pygmsh-7.1.17/tests/test_optimize.py 0000664 0000000 0000000 00000000341 14174766155 0017547 0 ustar 00root root 0000000 0000000 import pytest
import pygmsh
@pytest.mark.skip()
def test():
with pygmsh.occ.Geometry() as geom:
geom.add_ball([0.0, 0.0, 0.0], 1.0, mesh_size=0.1)
mesh = geom.generate_mesh()
pygmsh.optimize(mesh)
pygmsh-7.1.17/tox.ini 0000664 0000000 0000000 00000000276 14174766155 0014456 0 ustar 00root root 0000000 0000000 [tox]
envlist = py3
isolated_build = True
[testenv]
deps =
gmsh
matplotlib
pytest
pytest-codeblocks
pytest-cov
extras = all
commands =
pytest {posargs} --codeblocks